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Abstract

Three-dimensional (3D) electron microscopy (EM) has bexama-
jor player in structural cell biology as it enables the as&\of sub-
cellular architecture at an unprecedented level of ddtairpretation
of the resulting 3D volumes strongly depends on segmemtatibich
consists in decomposing the volume into their structuradgonents.
The computational approaches proposed so far have notitotrigo
be of general applicability. Thus, manual segmentatidhrstnains
a prevalent method. Here, a new computational frameworkégr
mentation of 3D EM datasets is introduced. It relies on detr@nd
characterization of ridges (i.e. local maxima). The detécidges are
modelled as asymmetric Gaussian functions whose parasnaier
stitute ridge descriptors. This local information is thesed to cluster
the ridges, which leads to the ultimate segmentation. Is wWork
we focus on membranes and locally planar structures in gergne
performance of the framework is illustrated with its apation to a

number of complex 3D datasets and a quantitative analysis.
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1. Introduction

Electron tomography (ET) is an essential technique in giratcell biology
for visualization of the supramolecular organization & tellular environmernn
situat a resolution of a few nanometresiic et al, 2009. It relies on the acqui-
sition of a set of electron microscope (EM) images from thecgpen at dierent
views, which are subsequently combined to yield the thieeedsional volume
(also known as tomogramirérnandez2012. Interpretation of the tomogram is
complicated due to a number of factox®lkmann 2010 Fernandez2012. As a
consequence, there are a number of post-processing stgeedito tomogram
analysis (e.g. noise reduction). Segmentation is a stagenodst importance,
which aims at decomposing the tomogram into its structwalmonents by iden-
tifying the sets of voxels that constitute them. This taskeaserely hampered
by the low signal-to-noise ratio (SNR), the inherent biatad) complexity and
artefacts deriving from the ET imaging conditions. Thougimerous automatic
or semi-automatic approaches have been propdogskiniann 201Q Fernandez
2012, none has stood out as a general applicable method yet.elrash few
years there is a trend towards methods focused on detedtgpeoific features,
such as membrane$/lartinez-Sanchez et ak011), actin filamentsRigort et al,
2012 or microtubules\(Veber et al.2012), but the general acceptance has yet to
be confirmed. Thus, manual segmentation still remains aafgetymethod.

Electron tomography is only applicable to relatively thamgples (up to 0.5—
1um) (Lucic et al, 2009. If pretty thick specimens (severaim thick) are to be
studied, there exist other very well-known electron micops/ modalities com-
monly used. They rely on serial sectioning (SS) of the samtere the sections

are imaged after (classical SS) or before (serial blockflaemg cut Harris 1999



Denk and Horstmanr2004). SS can also be combined with E3qto et al.1994),
which yields better resolution along the electron beamctiiva. In all these SS
techniques, segmentation is also a central step to fdeilitéerpretation of the re-
sulting 3D datasets. Manual segmentation is the standatftbehethough there is
significant progress towards automatidaif et al.2010. The methods devised
for ET are also directly applicable to SS as long as the iatdvgtween the serial
sections is short enough.

In this work we introduce a new framework for segmentatioBEM datasets
in structural cell biology. It relies on detection and cleaeaization of ridges (i.e.
local maxima). The local information associated to ridgeextracted and ana-
lyzed to characterize and classify the planar structurdésgiwieads to the seg-
mented tomogram. The local properties of ridges are oldduydfitting a Gaus-
sian model. The resulting feature vectors contain atteibdbat turn out to be
visually perceptible by humans, which facilitates furtiesnual supervision or
annotation. In this work we focus on membranes and strusthia at local scale
can be considered planar ridges. Membranes are naturatihnes that encom-
pass compartments within biological specimens. So thégotien would involve

a good step towards full segmentation of datasets.

2. Ridge-based segmentation framework

Florack et al (1992 defined the concept of scale and determined how to use
differential geometry tools (e.g. gradient, curvature) to deedmages. They
also introduced the concept of isophote, which allows deton of objects as
n-manifolds (also known as-dimensional manifolds). Edges and ridges can be
described as 1-manifolds (curves in the plane) in images2am@nifolds (sur-

faces in the space) in volumes. Nowadays, these tools aslyided in image
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processing (e.gArbelaez et al.2011). Ridges in particular are very useful in
Computer Vision, for example to detect and analyse tulbedikd plane-like fea-
tures (e.gSato et al.2003 Kirbas and Franci2004 Bauer et al.2010.

2.1. 1D ridge analysis

This section shows how ridges can be locally described ineaddmensional
function or 1D image. In that case, ridges are 0-manifoldsc(dte points irR).

This work assumes that the information of interest is regamesd by positive
curvature structures. Detection of local maxima (i.e. eslgin a 1D functionf
allows isolation of the seD = {xj =1 ., KD} e X, with X € R being the
domain off and wherex; is a O-manifold. The ridges i constitute theletails
of interest. A simple Gaussian-based model can be usedathyaescribe every
detail (Figs.1 and2). This model is defined af, : R —» R*:

(X- Xj)z]

7 ®

fm(X) = 0] + S exp(—

wherex; is the location of a local maximum df, i.e. an element aD, o; (offse)
represents its intensity leveffset,s; is the local significancesparpnespand the
size is expressed Uy (thicknesy The functionf, is a local approximation of.
We must now define what local is for evexye D. Let be&; an interval around

Xj. The next three premises have been used to establish lasal se
o X; €& =X ¢&,Vi#]jwherei,je{l,2--- ,Kp}
o §N&E =0,Vi# jwherei, je{1,2,---,Kp).

o U & =X~ {Ufs Si}, whereS; is one of theK s stepregions that are pure
edges, which cannot be approximatedfpyand are not considered in this

work.



At each interval€; delimited byantidetailsthe functionf can be approxi-
mated byf,. In this work the set of antidetails is composed by local miior
saddle points surrounding ridges (see black arrows inTjigexcept for the spe-
cial cases off = 1 andj = Ky, a detailx; is delimited by the antidetail)ﬁj and
x.. Consequently; € &; = [x'lxj] For the special cases ¢f= 1 andj = Ky,
X, € E = [inf{X},xrl] andxg, € &k, = [x'KD,sup{X}], where inf-} and sug}
are the infimum and superior of a set, respectively. Usinglatails, the step re-
gions can be isolated as well (Fit). A new parameter can then be introduced,
resolution given byr; = z{&;j}, whereg{-} is the diameter of a set.

Fig. 2 shows that data on the left and the right of a detail are no¢ssarily
symmetrical. However, the Gaussian model in Eb.i¢ symmetrical. To acco-
modate this asymmetry, the model is then divided in two garend up with the

following piecewise function

] fi= (X)) VX e X, x] = &

fmp_ — I I X 1 — r
fi=f(X) ¥X € [xj,xj] =&

(@)

for every detailx;. This definition of&; = 8'J. U &; makes each parameter require
a pair of valuesdj, s, t;, T}, with 0; = {0}, 0}, etc.) that are obtained from the
information in&, and&'.

Once every detail and its local neighbourhood has beentdetgbe model pa-
rameters are adjusted to real datavlodel fitting can be expressed as an overde-
termined non-linear equations system:

arg

0j,Sj,tj.rj

min{ % (%) - (% 0.5 T, ﬂ)z}] (3)

VX
An optimization algorithm can solve this problem (in pautar, Newton-based

methods have been used here) and the result consists of bpsgameter pairs

6



0, S;,t;,1; of fp that minimises the quadratic error (Fidgright), 2). We then
characterize ridges with an eight-dimensional vector cased of the maximum

valuep; = max p'j, p;} and the asymmetry (E¢) of each parametep; € {oj, S, tj, r,-}.

o PP
[T r
Ip; + Pl

(4)

2.2. Extension to three dimensions

For data dimensiond > 1 (i.e. 2D for images; 3D for tomograms), an ex-
tension of a local maximum can be a ridge described ds-dl(-manifold plane
ridge) (Eberly, 1999 (other types of ridges described by others manifolds ate no
considered in this work). As a result, a poigte RY in a ridge (detail) can be
defined by its second orderftrential structure and the Hessian mathkaftinez-
Sanchez et g12011). In the 3D case in particular, an eigenanalysis of the td@ssi
matrix provides three orthogonal eigenvectgrand the corresponding eigenval-
uesA;, withi = 1,2, 3. For planar ridges, the first eigenvectgris the one whose
eigenvaluel; exhibits the largest absolute value and points to the dinedf the
maximum curvature (second derivative) while the othermigkies are null. This
kind of ridges can therefore be characterized just analysia 3D functionf in
the direction ofv;. It means that for the analysis we are interested in, thetifmmc
f : R® - R* can actually be turned into a one-dimensional funcfiarR — R*
in the neighbourhood of a detafl. Consequently, the theory developed in the
previous sections can be applied, fsis approximated bymp, Whose parameters
will describe this detail belonging to a 2-manifold k¥ (i.e. a surface in a 3D
space)(se&uppl. Fig. S).

These ridges can be identified by means of the detector diyqatanar struc-

tures introduced biylartinez-Sanchez et §011), M. This local detector was de-
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fined as the ratio between the squared second-order anceddirat-order deriva-

tives, which in brief can be expressed as:

()= VA213)?
M = : |Vf|22 ) A1 <0 (5)
0 otherwise

where|V f| denotes the gradient. In this work, we also include a thriedhyoover
M to discard spurious ridges. Specifically, the ridge detaacsed in this work is
given by:

(6)
M (XJ) > twm

{(f(xj) > f(x; — avy))and(f(x;) > f(x; + avy))
where the first condition (with being a small number) denotes that only the local
maximum associated to the ridge is to be extractd(l. Fig. S).

Detection of ridges and the antidetails encompassing thecaded local set
is sensitive to noise, so a pre-processing step intendeeldiace it is required.
As thoroughly discussed in our previous woMdrtinez-Sanchez et alk011),
scale-space can allow focusing on structural features attaio scaler whereas
smaller features and noise are filtered or smeared out. -Spake is achieved
by convolution with a Gaussian function. More aggressiterfihg methods are
also applicable, such as those based on nonlinear tectsnfegrmandez2009 or
anisotropic nonlinear éiusion Fernandez and |.2003. However, even in those
cases scale-space should be applied for a better fit with dlus<gan ridge model

in the previous section.
2.3. Ridge classification and tomogram segmentation

The parameters characterizing the ridges constitute-eigh¢nsional feature

vectors that can be used for clustering the ridges. In thikkywwe have used



several techniques for this. First, thresholding appleedhe diferent parame-
ters turns out to be a simple bufective way to cluster them. The fact that the
ridge parameters correspond to features visually petdegdor humans (e.g.f®
set, thickness, sharpness, resolution) makes them ajgefor interactive user
clustering or for further supervision. Second, these feavectors are suited for
unsupervised classification methods as well. In partichlere we have tested the
well-known K-means and Self-Organizing Maps (SOMdg(slan 2009, which
are methods commonly used in the field of 3D-EM foffelient clustering pur-
poses Frank 2006. Briefly, SOMs Marabini and Carazdl994 Fernandez and
Carazg 1996 Kohonen 200]) are neural networks that are trained by unsuper-
vised learning. Given an input vector, the neurons of the SOMpete by means
of mutual lateral interactions and only one is thus activafEhe winner neuron
and its neighbours are then tuned to the input vector. Aslgaithm iteratively
proceeds with all input vectors, the locations of the neacévity tend to become
ordered. The trained SOM approximates the probability idefisnction of the
input data. Each neuron of the SOM may be considered as a atag contains
a so-called code vector that is the representative of thet idata mapped onto
that neuron. However, the fact that the SOM reflects the fnitiadensity func-
tion results in the ability to better discriminate among isaminput vectors that
occur more frequently. As a consequence, it is common apposessing stage
consisting of clustering the SOM neurons. The goal is todyiké definite set of
classes that are asfiirent as possible from each oth€efnandez and Carazo
1996 Yu and Frangakis2011).

The clustering partitions the set of ridg€s= {X;} into K¢ classes or regions

C={Cc:k=1,...,Kc}. This classification is, however, limited to the discrete



set of points making up the 2-manifolds (i.e. surfaces).s lthus necessary to
extend it to the voxels of the tomogram. To this end, a regrawmg procedure
is applied whereby the ridges are considered initial 'sg@ihts and neighbour
voxels are progressively added to the regions. In this grgprocess, every voxel
under consideration is assigned to the region of the neadgstx;. On the other
hand, those voxels unlikely belonging to locally planaustures are ignored (i.e.

those withM < ty;, see Eqs5 and6). This process can be expressed as:
XjeCy = xeC ¥VxeXy:j=arg nj)ir{||x—xj||}} (7)

with Xy = {x € X : M(x) > ty} and X denoting the whole set of voxels of the
tomogram.

Finally, a region merging procedure is applied with the afreliminating spu-
rious segmented areas. An analysis based on the size ofgheested regions is
performed first. Then, any region with a volume size lowentaagiven threshold
t, is merged to the neighbour region that contains more voxgissed to it. For
illustration purposessuppl. Fig. SZhows an example of the region growing and
merging procedures.

The ridge-based framework for 3D segmentation is thus sumaethas:

1. Pre-processing: noise reduction and scale-space.
2. Ridge detection according to the local plane detet¢Eqgs.5 and6).

3. Ridge characterization:

e Extraction of the 1D ridge and the associated local set aloaglirec-

tion given by the first eigenvector of the Hessian mairix

e Parameterization based on Gaussian-model fittiffgeq sharpness,

thickness, resolution and their corresponding asymnsetrie
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4. Ridge classification.
5. Extension of ridge clusters to tomogram segmentation.

6. Segmentation refinement by region merging.
3. Validation

Validation of segmentation algorithms is dfaiult topic in the field mainly be-
cause of the lack of reliable and unquestionable 'grourtti$t(Molkmann 2010).
For this reason, the quantitative assessment of the dlgohts been based on a
synthetic phantom resembling representative experirhdatasets. This allows
us to directly measure the sensitivity, i.e. fraction oktpositives (TPF, points
correctly segmented and classified) and the specificitytitee negatives (TNF,
points that have been correctly left out of the segmentedabd), as commonly
defined in the fieldGarduno et a).2008 Martinez-Sanchez et ak011, Langlois
and Frank2011). As complementary metrics, we have also used those prayiou
proposed for segmentation of relatively thin structutdartinez-Sanchez et al.
201]). They were specially focused on analysis of outlined shapther than

voxel-based comparisons:
e Centroid: centre of mass.

e Bounding box: WidthandHeightof the smaller rectangular box containing

the shape.

e Axes. Length of theMajor and Minor axesof the ellipse with the same

normalized second central moment as the shape.

These metrics are calculated planewise along the X, Y andeZ ard the final

figures are obtained by weighted averaging, as describedopsty (Martinez-
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Sanchez et g120117).

There are not many existing methods to detect and clasdifg $tructures. A
recent, related tool (TomoSegMem) for segmentation of mrands (i.e. locally
planar structures) based orffdrential structureMlartinez-Sanchez et ak011)
has also been tested for comparison. That tool managesdotdeembranous

structures, but it has limited capabilities to classify ditinguish them.
4. Results

The ridge-based segmentation framework has been testafferedt 3D vol-
umes obtained by electron tomography and serial blockfdde Ehe datasets
were subjected to anisotropic nonlineatdsion first Fernandez and |.2005 to
reduce noise, preserve the features of interest and fladraickground. For this,
the software package TomoAND and its capability of autochpsgameter tuning
were usedKernandez and L2003 20095. Afterwards, a scale-space operation
was applied (with scale in the range [13]) in order to ensure good ridge detec-
tion with the Gaussian model fitting. The density in tomogsamas normalized
so as to be in the range,[0], with high values representing electron dense ob-
jects. The thresholtl, was set in the range [8 0.5] andt, in [500, 1000]. Most
of the datasets tested were taken from the CCDB databadejced.edu), where
detailed information about the preparation techniquesaadable (mostly using
chemical fixation, high pressure freezing and freeze switisin). For ridge clus-
tering, we used parameter thresholding and also the autgdohitstering methods
K-means and SOMs with a number of initial clusters in the eah§—20. Similar
results were obtained for the three clustering technicaes for that reason only

one will be shown in the following illustrative examples.
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With regard to parameter setting, the best results werer@atavith values in
the ranges specified in the previous paragraph. The mosatgarameter turns
out to beo, which is used in the scale-space operation. However, ibeagas-
ily tuned according to the scale (i.e. thickness) of the mamés or structures
that are targeted. The threshdjglused in the ridge detector also has an impor-
tant influence because it contributes to reduce spuriogesidt should be set by
trial-and-error, though the range given above is expecéa troadly applicable.
The threshold on the volume sigeused for region merging strongly depends on
the dataset and the structures under study. However, we thahoptimal setting
of this parameter is not crucial, in general. Finally, weodisund that the num-
ber of clusters involved in the automated clustering meshsahot critical either.

A moderate number of clusters should be used to accomodateatiability of

ridges present in the dataset.

4.1. Segmentation of experimental datasets

The first dataset was an electron tomogram (CCDB, ID: 815d)atning an
axonal mitochondrionin a Schwann cell of the peripheraveer adult rat Perkins
and Ellisman 2011). Fig. 3 illustrates the dterent steps of this segmentation
framework on a small piece of the tomogram. Clustering ajeslwas performed
by thresholding the ridge parameters (FH.and the actual threshold values are
presented irsuppl. Table S1Fig.5 shows the complete segmentation of the to-
mogram, where separation of théfdrent structural components is apparent. The
precise delineation of the fine details in the myelin shesibarticularly remark-
able. This example clearly exhibits the potential of thehrodt as the components
of this complex tomogram are extracted and labelled (i.éoured) with almost

no user intervention (except threshold settings).
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The second dataset was a tomogram focused on another typerinal mi-
tochondrion, prepared as those taken from the CCDB.&-gipows a slice of the
tomogram and the resulting segmentation. Ridge classditatas also based on
parameter thresholding, as shown in Tahl&he interest here was to confirm the
ability of this ridge framework to identify and separate thembranes and cristae
of the mitochondrion. Previous works failed to discrimmperfectly these struc-
tures Martinez-Sanchez et aR011). However, the methodology presented here
succeeds. It is important to note from Figthat the density within the mito-
chondrion is, in general, higher than the surrounding bamkgd. Therefore, the
sharpness parameter is key in this segmentation (TgblMoreover, the asym-
metries (in particular of fiset and sharpness) are other important parameters as
well. At the ridges associated to the mitochondrion memésathese asymme-
tries are high because at one side the background is founceasat the other
side there is the denser content within the mitochondrioowéVer, the cristae
are embedded in a relatively homogeneous content (heruse #symmetries are
not significant). Therefore, it was readily simple to set ¥h&ies for parameter
thresholding.

An electron tomogram of a cerebellar synapse (CCDB, ID: 3§84sinsky
et al, 2009 was then tested. Fig. shows the resulting segmentation. In this
particular example, ridge classification was performedgiSOMs composed of
20 neurons. A user-guided post-processing stage to cliigereurons was then
applied, as usual in the fieléFérnandez and Carazb996), to end up with the 5
classes shown in Fig. Note how well the pre- and post-synaptic membranes are
extracted out based on the ridge parameters, as highlightediow.

A dataset from adult mouse myocardium imaged by electrom{paphy was
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also taken from the CCDB (ID: 3603Hayashi et al.2009. It presented com-
plex, densely packed structures that proved to Kecdlt to be separated even by
manual delineation. The framework introduced here managsegment the main
structures in the tomogram (Fig§). Note that myosin fibres are well extracted as
they are considered planes at a local level. This is paytile to one of the well-
known artefacts introduced by electron tomography, whicthe blurring along
the beam directionHernandez and |.2003.

A tomogram of Vaccinia virus was used to test the robustnéfseomethod
on datasets with low SNR and low contrast typically founchia tnodality known
as electron cryo-tomographgyrklaft et al, 2005. The method succeeded in
extracting the membranes of the virion (outer and core’s)siown in Fig9, the
difference of the characteristics of those membranes in terasyaimetries and
offset and sharpness is apparent, which was key for the segioanta

The last example of application of this segmentation fraorews a serial
blockface EM volume from mouse retina (CCDB, ID: 774Rp(yen et al.2017).
SOMs were used for ridge classification. Twenty neurons watially used,
which were then clustered into seven groups to end up witkttinetures actually
segmented (FidL0). The method succeeds in separating thedent major layers
within the retina. Asillustrated in the figure, the userépd post-processing stage
is key to fuse clusters and yield the definite set of seversetaslhe need for this
stage arises from the fact that a given structural featurg Ioeacomposed by
ridges with diterent parameters (e.gftset, thickness, etc.), as clearly happened

with the cells at the Inner or at the Outer Nuclear Layer (E@.centre).
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4.2. Validation results

For quantitative assessment, a synthetic phantom resagthk axonal mito-
chondrion in a Schwann cell (see Fk).was designed. Six tferent biological
structures were included: axon membrane, myelin sheatbsigle, and an ax-
onal mitochondrion including outer membrane, crista amstajunction Guppl.
Fig. S3. Scattered blobs intended to resemble macromoleculaplexes were
also spread throughout. To simulate noise conditions, Sansvhite noise was
added to produce versions at signal-to-noise ratio (SNR)aofd 6.

The phantom was subjected to segmentation by TomoSegNamtifez-
Sanchez et gl2011) and by the ridge-based procedure using scale-space with
o=2. The segmentation results with both methods can be seendpl. Fig. S4
The results with SNR of 6 and 1 turned out to be very similarstshowing robust-
ness against noise. The limitation of TomoSegMem to disd#farent structures
is clearly seen: it can only classify isolated structureghmir size. Structures
that are connected or that have the same size are thus catsaiea whole (for
instance, the mitochondrion: membrane, crista and juncto axon membrane
and myelin sheath). Another limitation is that it is unaldeget rid of spurious
locally planar features apposed to the true membranes@tance, the inner side
of the vesicle’s membrane). Ridge-based segmentatiorconess these limita-
tions Suppl. Fig. S) Ridge clustering by any of the strategies (SOMs, K-means,
parameter thresholding) yielded very similar results.

The phantom represents the 'ground truth’, which allowswakion of the
fraction of true positives (TPF) and true negatives (TNFRduhon voxel-based
comparisons. In addition, complementary metrics aboyseshaalysisilartinez-

Sanchez et gl2011) were also measured, obtaining values higher than or around
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90%. Suppl. Tables S2—S€ontain a detailed report of the quantitative results.
For brevity, only a representative subset of TPF and TNF dsas@verage shape
values are presented here (TaBJe As expected, the results show that, in global
terms, both algorithms (TomoSegMem vs. Ridge-based) leesiavilarly if just
detection of the structures is considered (i.e. row ladedie Global in Tabl®),
with high sensitivity (TPF> 91%) and higher specificity (TNB 98%). How-
ever, ridge-based segmentation stands out by its abiliextiact the six dierent
structures present in the phantom with extremely high $ip#gi It exhibits high
sensitivity as well, yet it is still susceptible to false fin®s due to other struc-
tures apposed to the local planes (e.g. at the crista junatibich is a fine detail,
or at the vesicle due to the dense content). The three seatéy ridge clus-
tering yielded similar performance in global terms, as dest@ted bySuppl.
Tables S3—-S5,57-SJ0 further study the results with these classificationtstra
gies, we computed the centroids of the clusters derived 8@ and K-means
(Suppl. Tables S10 and S)land then calculated the Euclidean distance between
them for the six classes (Axon, Myelin, Mem.Mito, Cristandtion and Vesi-
cle). The distance turned out to be 0.15, 0.16, 0.24, 0.38, @.37, respectively,
which are relatively low values for a maximum of8 in the eight-dimensional
space where the components are normalized to be ij.[There are two classes
with poorer agreement: Junction (distance of 0.39) andcie$0.37). As dis-
cussed a few lines above, these classes are precisely e by a slightly
larger rate of false positives (i.e. poorer TPF). A comparisf the parameter
thresholds with these centroidSuppl. Tables S10-S).8hows that they all are,
in general, in good agreement. Therefore, the similar bebawf the diferent

clustering strategies is confirmed.

17



5. Discussion and Conclusion

A new framework for segmentation of 3D EM datasets has beteoduced.
The methodology relies on the detection of planar ridgeslagid characterisation
according to asymmetrical Gaussian model fitting. The weafliocal informa-
tion obtained this way is then exploited for ridge clustgramd the subsequent ex-
tension to the tomogram. The application to representativeplex experimental
datasets has clearly shown the good performance of theitgehrA quantitative
analysis has also proved its high specificity and sengitivit

The framework consists of several consecutive stages. Mdtadithe scale-
space representation of the tomogram, which has a two-foid i helps to re-
duce noise and smear out all structures lower than the stadeeoest. Secondly,
it ensures that local maxima in the resulting tomogram aggra Gaussian pro-
file. More aggressive noise reduction techniques can be hesfede scale-space
So as to substantially remove noise, flatten background sespre and enhance
features of interest. Here we have systematically usedtasc nonlinear dif-
fusion. However, though in all cases it has been useful, ¢heautility of this
previous strong filtering depends on the dataset under @eraion. In particu-
lar, for datasets with very low signal-to-noise ratios,seofiltering may turn out
to be an essential pre-processing step, as happens with sgmentation ap-
proachesRigort et al, 2012 Rusu et al.2012.

Extraction of ridge descriptors is then performed basedtbndiwith a Gaus-
sian function. The ridges are thus characterized by eighexdsional feature
vectors, which can be used for their unsupervised classditaHere we have
tested several techniques for this clustering, which hageiged similar results.

The simplest one is based on parameter thresholding caielly the user in a
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straightforward manner. The fact that the ridge descriptorrespond to features

visually perceptible (e.g.ftset, thickness, sharpness) makes them appropriate for

this interactive process. Two automatic clustering meshual/e also been tested:
K-means and Self-Organizing Maps. Though they work nicelgn automated
fashion, we have observed that the user still needs to posegs the classifi-
cation results. In particular, they have to be further dtesdl so as to yield the
definite classes that actually represent the data. Ourefutierests include ex-
ploration of other techniques for clustering and dimenaiiby reduction, which
could facilitate and accelerate the process.

This framework is specially focused on membranes and othgctares that,
at a local scale, can be considered planes. Membranestotastatural bound-
aries of biological compartments, so their extraction alagsification facilitate
interpretation of the whole volume. There are, however, esomembranes that
may not comply with the Gaussian model used here (e.g. thesee@ted to filled
vesicles would essentially be steps). These should be sggdhesing a dierent
approach. On the other hand, in electron tomography thetatal features are
blurred along the electron beam direction because of thgimgaconditions found
in this discipline. This fact actually turns any structuslatail into a plane at local
scale. For that reason, this framework may also be helpfidggmentation with

general applicability in that field.
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Figure L egends

Figure 1. Ridge characterization in 1D. (left) Six ridges (A—F) withffdrent
properties that constitute the details of interest in a 1ocfiwn. Black arrows
denote antidetails, which represent the boundaries ofdbal Ineighbourhood
around each detail of interest. (right) Description of gdgn terms of param-
eters based on a Gaussian model (see main text). Here, omyresry as-
sociated to the fiset is shown. This description allows classification of eslg
based on fiset {A,B,C,D} and{E,F}), sharpnessQ,E}, {D} and{B,C,R), thick-
nesss{A,B,D,E,R and{C}), offset asymmetry{A} and{B,D,C,E,R), resolution
({A,D,E}, {B}, {C}, and{F}) or any other far more complex criterion by combining

parameters.
Figure 2. Sketch of ridge parameters over a zoomed view of ridge A inEig

Figure 3. Steps of ridge-based segmentation. (top-left) Slice obtiggnal tomo-
gram of axonal mitochondrion. (top-right) Pre-processaté dcontrast inversion,
noise reduction and scale-space). (bottom-left) Classifin of detected ridges
based on parameter thresholding (see actual ridge pananeteéig.4) using the
thresholds irsuppl. Table S1(bottom-right) Extension of ridge classification to

voxel segmentation (color code as in F.

Figure 4. Parameters describing the ridges in the tomogram of axoitathon-
drion. top-left: dfset. top-right: sharpness. bottom-left: thickness. boitght:

asymmetry of sharpness. Values are according to the coppomahe right.
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Figure 5. Segmentation of axonal mitochondrion tomogram. (leftt&Sbf the
original tomogram. The rectangle encloses the data shotigs3 and4. (centre
and right) Diferent views of the segmented tomogram. Visualization aghéri
level of detail of the segmentation result of the enclosed & available in Figs
and4.

Color code: yellow — mitochondrion membrane; pink — mitaathi@on cristae;
green —axon membrane and other axoplasmic plane-likestas; violet— myelin
sheath of the Schwann cell; red — Schwann cell’s mitochondiight green —
Schwann cell's membranous structure. In transparencygy atiarp axonal struc-

tures (mainly microtubules and neurofilaments).

Figure 6. Neuronal mitochondrion. (left) Slice of the pre-processmdogram.
(right) Segmentation with the ridge-based framework. #sandicate areas where
this framework behaves particularly well and overcomesf#il@res and mis-
classification of other membrane segmentation appradeltinez-Sanchez et al.
(201D, Fig. 9). Dataset courtesy of Dr. G.A. Perkins.

Color code: yellow — mitochondrion membrane; pink — cristae

Figure 7. Cerebellar synapse. (left) Slice of the pre-processed datgnt) Seg-
mented tomogram with the proposed method using SOMs foe ritissification.
Color code: yellow — pre- and post-synaptic membranes; pimgsicles; green —
mitochondrion membrane; violet — mitochondrion crista +eother membranous

structures.
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Figure 8. Mouse myocardium. (top-left) Slice of the pre-processed.d@ight)
Segmented tomogram with the proposed method using SOM&ltp classifica-
tion. (bottom-left) The area dashed in the right panel issshat a higher level of
detail and overlying the density data.

Color code: violet — Z-bands; pink — myosin fibres; yellow ibules, junctional

sarcoplasmic reticulum and neighbour mitochondria.

Figure 9. Vaccinia virus. (left) Slice of the original cryo-tomogratifright) Seg-
mentation with the ridge framework using SOM for ridge cifasation.
Color code: yellow — outer membrane; pink — membrane of tme;dcansparent

blue — lateral bodies.

Figure 10. Mouse retina serial blockface EM. (left) Slice of the origimata.
(centre) Ridge classification (only the area boxed at leftepés presented) as
comes directly from SOM (i.e. 20 classes as shown fifetgnt colors and tones)
and after clustering the neurons into 7 groups. (right) 3@®wof the segmented
volume with color code: yellow and red — cells at the Inner Mac Layer; pink
— cells at the Outer Nuclear Layer; light blue and light gree@Quter Plexiform

Layer; dark green — Inner Plexiform Layer; dark blue — Inregreents.
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Figure 1: Ridge characterization in 1D. (left) Six ridges-tA with different properties that con-
stitute the details of interest in a 1D function. Black arsosienote antidetails, which represent
the boundaries of the local neighbourhood around eachl détaterest. (right) Description of
ridges in terms of parameters based on a Gaussian model éedaxt). Here, only asymmetry

associated to theflset is shown. This description allows classification of esl@pased onftset
({A,B,C,D} and{E,F}), sharpness A, E}, {D} and{B,C,R), thicknesss{@,B,D,E,R and{C}), off-

set asymmetry{fA} and{B,D,C,E,R), resolution {A,D,E}, {B}, {C}, and{F}) or any other far more

complex criterion by combining parameters.
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Figure 2: Sketch of ridge parameters over a zoomed view gériin Fig.1.
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Figure 3: Steps of ridge-based segmentation. (top-lefteSif the original tomogram of ax-
onal mitochondrion. (top-right) Pre-processed data (festinversion, noise reduction and scale-
space). (bottom-left) Classification of detected ridgesellaon parameter thresholding (see actual
ridge parameters in Figl) using the thresholds i8uppl. Table S1 (bottom-right) Extension of
ridge classification to voxel segmentation (color code d3dn5).
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Figure 4: Parameters describing the ridges in the tomogifamxanal mitochondrion. top-left:
offset. top-right: sharpness. bottom-left: thickness. mit@ght: asymmetry of sharpness. Values
are according to the colormap on the right.
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Figure 5: Segmentation of axonal mitochondrion tomograeft) Slice of the original tomogram.
The rectangle encloses the data shown in RBgad4. (centre and right) Dierent views of the
segmented tomogram. Visualization at a higher level ofidetahe segmentation result of the
enclosed area is available in Figsand4.

Color code: yellow — mitochondrion membrane; pink — mitaathdon cristae; green — axon mem-
brane and other axoplasmic plane-like structures; violatelin sheath of the Schwann cell; red
— Schwann cell's mitochondrion; light green — Schwann setfembranous structure. In trans-
parency, other sharp axonal structures (mainly microesahd neurofilaments).
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Figure 6: Neuronal mitochondrion. (left) Slice of the pn&qessed tomogram. (right) Segmen-
tation with the ridge-based framework. Arrows indicatesarevhere this framework behaves par-
ticularly well and overcomes the failures and misclasdificaof other membrane segmentation
approachlartinez-Sanchez et g2011), Fig. 9). Dataset courtesy of Dr. G.A. Perkins.

Color code: yellow — mitochondrion membrane; pink — cristae
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Figure 7: Cerebellar synapse. (left) Slice of the pre-pseed data. (right) Segmented tomogram
with the proposed method using SOMs for ridge classification

Color code: yellow — pre- and post-synaptic membranes; pin&sicles; green — mitochondrion
membrane; violet — mitochondrion crista; red — other memébus structures.
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Figure 8: Mouse myocardium. (top-left) Slice of the pregassed data. (right) Segmented to-
mogram with the proposed method using SOMs for ridge classifin. (bottom-left) The area
dashed in the right panel is shown at a higher level of detailaverlying the density data.

Color code: violet — Z-bands; pink — myosin fibres; yellow tubules, junctional sarcoplasmic
reticulum and neighbour mitochondria.
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Figure 9: Vaccinia virus. (left) Slice of the original cryomogram. (right) Segmentation with the
ridge framework using SOM for ridge classification.

Color code: yellow — outer membrane; pink — membrane of thre;doansparent blue — lateral
bodies.
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Figure 10: Mouse retina serial blockface EM. (left) Slicetioé original data. (centre) Ridge
classification (only the area boxed at left panel is preshrde comes directly from SOM (i.e.
20 classes as shown infidirent colors and tones) and after clustering the neuron</igroups.
(right) 3D view of the segmented volume with color code: gelland red — cells at the Inner
Nuclear Layer; pink — cells at the Outer Nuclear Layer; lighte and light green — Outer Plexiform
Layer; dark green — Inner Plexiform Layer; dark blue — Inreggraents.
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Table 1: Parameter thresholding for segmentation in&id.

Class o & S & t a r ar

1 T4 17115 12 12 - - 130 -
2 T4 - |2 12 12 - 120 |3

! The eight ridge parameters represefiset @), sharpnessg,
thickness 1), resolution ) and their corresponding assymetries
(a0, as, a', a").

Class 1 and 2 represent membranes and cristae, respectialy
values indicate the actual thresholds used for the segtiwmnta]’
indicates upthresholding (higher than)), downthresholding (lower
than) and =’ no thresholding applied for this parameter.
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Table 2: Quantitative analysis based on phantom £%).

SNR=1 SNR=6
Class TPF TNF Shape TPF TNF Shape
TomoSegMem
Myelin 95.54 99.85 99.13 97.50 99.99 99.27
Mito. 85.03 98.93 96.87 86.79 99.78 98.79
Vesicle 71.28 99.46 93.80 70.68 99.44 94.04
Global 91.33 98.01 97.15 93.12 99.09 098.16
Ridge-based Segmentation
Axon 90.32 99.97 98.36 88.09 99.98 98.38
Myelin 97.99 99.71 98.56 98.45 99.75 98.77
Mem.Mito. 85.69 99.76 98.82 85.61 99.79 98.84
Crista 96.81 99.61 96.01 96.61 99.62 96.55
Junction  43.98 99.99 95.36 74.20 99.99 94.92
Vesicle 67.59 99.69 97.00 67.45 99.75 96.72
Global 92.76 98.65 98.26 92.87 98.77 98.46

2 Global denotes that all segmented structures are treagedhsle, i.e. belonging to
only one class.

Shapealenotes the average value of the five metrics used for thestreghysis (bound-
ing box, centroid and axes).

The results shown for the ridge-based segmentation weegnaot using SOMs for
classification. The results with other classification mdghturned out to be similar
(seeSuppl. Tables S2-39
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