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Resumen

El estudio de las desigualdades de tipo Griinbaum ha sido un campo de investigacién muy
fructifero durante los tltimos anos. Sus origenes podemos encontrarlos en el trabajo [3] de Ascoli,
publicado en los afios treinta, y posteriormente generalizado a dimensién arbitraria por Griinbaum
en el articulo [16]. La raiz de este resultado se encuentra en una pregunta natural relativa a los
cuerpos convexos: jpodemos asegurar la existencia de un punto “a priori” del interior de un cuerpo
convexo, tal que al cortar este ultimo por dicho punto resulten dos subcuerpos con una cantidad

reseniable del volumen total?

A la hora de intentar responder a esta pregunta uno queda naturalmente conducido a la nocién
de centroide (también conocido como centro de masas) de un cuerpo convexo. Asi, para un conjunto
compacto K cualquiera, no necesariamente convexo, con volumen positivo vol(K) (es decir, con
medida de Lebesgue n-dimensional positiva) el centroide de dicho conjunto es el punto covariante

afin definido como

1
g(K) = vol(K) /de:r.

Volviendo a la pregunta anterior, la desigualdad de Griinbaum asegura entonces que para todo

cuerpo convexo K, con centroide en el origen, se tiene que
— n
vol(K™) S n 7 ()
vol(K) — \n+1

donde K~ = KN{z € R": (z,u) <0}y KT = KN{x € R": (x,u) > 0} representan las partes de
K divididas por el hiperplano H = {x € R" : (z,u) = 0}, para un vector unitario u. La igualdad

se cumple, fijado u, si y solo si K es un cono en la direccién u, es decir, la envoltura convexa de
{z} U(K N (y+ H)), para ciertos z,y € R™.

Aunque escape a los objetivos de este trabajo hacer una lista exhaustiva, merece la pena destacar
algunos de los trabajos publicados en los iltimos anos relacionados con la desigualdad de Griinbaum.
Por un lado, podemos encontrar extensiones al caso de secciones [12, 29] y proyecciones [33] de
cuerpos convexos, y generalizaciones al contexto analitico de funciones log-concavas [28] (véase
también |21, Lemma 5.4] y [8 Lemma 2.2.6]) y funciones p-céncavas [29], con p > 0. Por otro lado,
el estudio de desigualdades de tipo Griinbaum en el contexto de secciones de cuerpos convexos,

posteriormente generalizadas para quermassintegrales en [32], pueden encontrarse en [11] 23].
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A grandes rasgos, esta tesis estd dedicada al estudio de generalizaciones y extensiones de la
desigualdad de Griilnbaum, desde una perspectiva tanto geométrica como funcional (asi como desde

el enfoque propio de la teoria de la medida).

De forma maés precisa, este trabajo comienza con un primer capitulo introductorio donde re-
copilamos algunas definiciones y resultados que serdn utilizados maés tarde. Asi, la primera seccién
de este capitulo estd dedicada tanto a establecer la notacién usada como a recordar algunas nociones
importantes, tales como la suma de Minkowski, la nocién de cuerpo convexo, etc. Ademds de esto,
algunos resultados importantes como la desigualdad de Brunn-Minkowski o el principio de concavi-
dad de Brunn seran establecidos, asi como el enunciado preciso de la desigualdad de Griinbaum
(v otros resultados relacionados que involucran al centroide, bien de un cuerpo convexo, bien de
una funcién con cierta concavidad). Finalmente, a lo largo de la ultima seccién de este capitulo
incluiremos algunas nociones clave como las de funcién céncava y funcién p-céncava, para después

finalizar el capitulo recogiendo algunos resultados funcionales que usaremos posteriormente.

Volviendo al resultado que nos ocupa, la clave de su demostraciéon original recae sobre el
resultado clasico conocido como principio de concavidad de Brunn. Este garantiza que, para
cualquier cuerpo convexo K C R™ y un hiperplano H, la funcién f : H+ — R>o dada por
f(x) =vol,—1 (KN (xz+ H)) es (1/(n — 1))-céncava. En otras palabras, para cualquier hiperplano
H dado, la funcién de los volimenes seccionales f elevada a (1/(n — 1)) es céncava en su soporte.
A pesar de que esta propiedad no puede ser en general mejorada, podriamos encontrar facilmente
ejemplos para los cuales la funcién f satisface uan concavidad més fuerte, para un hiperplano H
adecuado. Por tanto, por un lado, es natural preguntarse por una versiéon mejorada de la desigual-
dad de Griinbaum para una familia de cuerpos convexos K tales que (existe un hiperplano
H para el cual) f es p-céncava, con (1/(n — 1)) < p. Por otro lado, atendiendo a lo anterior,
podriamos esperar una posible extensiéon para conjuntos compactos, no necesariamente convexos,

para los cuales f es p-concava (para un cierto hiperplano H), con p < (1/(n — 1)).

El Capitulo [2| estd dedicado a este problema. Para ello, como evidencia la prueba original de
Griinbaum, es clave caracterizar los casos extremos de la desigualdad que buscamos. De hecho,
observando que el caso de igualdad en viene dado por conos, es decir, conjuntos para los cuales
la funcién f es (1/(n — 1))-afin (en otras palabras, tales que fY/(~Y es una funcién afin), los
conjuntos de revolucién asociados a una funcién p-afin, que denotaremos como C),, emergen como
candidatos naturales para los casos extremales de esa desigualdad que buscamos. De esta forma, la
primera seccién de este capitulo estd dedicada a un estudio de los conjuntos C),. Especificamente,
obtenemos que, para todo p € (—oo, —1]U [0, 4+00), si C), esta centrado (es decir, tiene centroide en

el origen) entonces

vol(Cy) _ (p+1 (p+1)/p
vol(Cp) — \2p+1 '

Ademss, terminaremos la seccién estudiando el caso de p € (—1/2,0).
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Usando la informacién obtenida en la seccién anterior, tal y como se establece en los objetivos
del capitulo, a lo largo de la segunda seccién del capitulo probaremos una extensiéon de la desigual-
dad cléasica de Griinbaum al caso de conjuntos compactos con una funciéon de los volimenes
seccionales f p-céncava (abordando los casos en los que p > 0 y p = 0) para un hiperplano dado.
Asi, obtenemos que para todo conjunto compacto K con centroide en el origen (y cuya funcién f

satisface las premisas anteriores) se tiene que

VOI(K’)> p+1 (p+1)/p
vol(K) ~— \2p+1 '

(1)

Por otro lado, también mostramos que, bajo la hipétesis de concavidad mas débil posible, es decir, f
siendo quasi-concava, anadiendo la condicién adicional de que esta sea monétona podemos obtener
una desigualdad para K del mismo tipo. Finalmente, abordamos el caso en el que p es negativo

probando que la concavidad limite para un resultado de este tipo es la log-concavidad.

Sabiendo de la relacién de las funciones log-concavas y p-céncavas con la geometria de los
cuerpo convexos, parece natural esperar una forma funcional de la desigualdad . De hecho,
en [29, Corollary 7], a partir de un resultado para funciones p-céncavas mds general, los autores
dan una respuesta positiva a esta pregunta para el caso p > 0. Sin embargo, teniendo en cuenta
la relacién entre la desigualdad de Griinbaum y la desigualdad de Brunn-Minkowski, podriamos
esperar que la desigualdad de Borell-Brascamp-Lieb desempenase un rol importante en la prueba

de un resultado de este tipo.

En el Capitulo [3] daremos una prueba sencilla de la forma funcional de la desigualdad de
Griinbaum usando induccién en la dimensiéon y la desigualdad de Borell-Brascamp-Lieb. Con-
cretamente obtenemos que para cualquier funcién centrada p-céncava f : R"™ — R, con p > 0,

se tiene que
1 (np+1)/p
f(z)de > (np+>
H- (n+1)p+1

para cualquier hiperplano H.

f(z)de
R”

A este respecto, en la primera seccién del capitulo recogemos la prueba del caso uno dimensional,
baséndose esta en un comparacién de (una cierta potencia de) la funcién 2 — [ f(¢)dt con su
recta tangente en un punto. Ademés, mostraremos que como consecuencia de esto iltimo podemos
obtener una extension de ([f|) para cualquier medida. Finalmente, en la segunda seccién del capitulo,
completamos la prueba de este resultado en dimensién arbitraria usando la desigualdad de Borell-

Brascamp-Lieb junto con un argumento estdndar para funciones p-céncavas.

En este punto, atendiendo a lo que sucede en el ambito de las operaciones de cuerpos convexos,
donde la L,-suma es extendida a la suma Orlicz con respecto a una funcién convexa y estrictamente
creciente ¢ : R>g — R>¢ con ¢(0) = 0, podria ser natural contemplar la posibilidad de una
desigualdad de tipo Griinbaum para los conjuntos compactos K tales que (existe un hiperplano H

para el cual) ¢o f es concava, siendo ¢ una funcién de clase Orlicz (convexa, estrictamente creciente
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y con ¢(0) = 0). Ademds, podria esperarse obtener una familia de desigualdades dependiendo de
la funcién ¢, que recuperasen las estudiadas en el Capitulo [2| cuando ¢(t) = t¥ con p > 0, o
¢(t) = log(t) si p = 0, obteniendo, de esta forma, otra extensién de ().

Sabiendo lo anterior, es importante mencionar que debemos asumir ciertas restricciones para
la funcién ¢. Como menciondbamos en el Capitulo [2] la log-concavidad representa un caso limite
para una generalizacién de la desigualdad de Griinbaum de este tipo, si consideramos el rango
completo de p € R en el caso de conjuntos compactos con una funcién f p-céncava. Por tanto,
seria interesante encontrar las condiciones adecuadas para esas familia general de funciones ¢ que
nos permita obtener la desigualdad buscada. A lo largo del Capitulo [4] abordaremos este problema

siguiendo una estrategia similar a la adoptada en el Capitulo

Con este objetivo en mente, como menciondbamos antes, caracterizar los conjuntos extremales
de esa posible desigualdad es clave. Por tanto, teniendo en cuanta que a lo largo del Capitulo
trabajabamos con funciones p-afines, parece natural abordar el caso que ocupa este capitulo
usando los conjuntos de revolucién generados por una funcién ¢-afin, que denotaremos en este caso
como Cy. Asi, la primera secciéon de este capitulo estd dedicada a un estudio exhaustivo de esta
familia de conjuntos donde, bajo ciertas condiciones técnicas para la funcién ¢, establecemos que
el ratio vol(-~)/vol(-) de estos conjuntos (asumiendo que tienen su centroide en el origen) depende

esencialmente solo de la funcién ¢.

Explotando este resultado, a lo largo de la segunda seccién del capitulo extendemos (v
en consecuencia ) al caso de conjuntos compactos cuya funcién de los volimenes seccionales
f es ¢-céncava. Finalmente, en la tercera seccién de este capitulo probamos algunas extensiones
¢-céncavas de otros resultados de tipo Griinbaum que podemos encontrar en la literatura. En
concreto, a pesar de que seguimos la misma estrategia, incluimos en esta seccion las pruebas de

una extension al caso ¢-céncavo de [23, Theorem 3.1] y [11, Lemma 1 and Theorem 2].

Volviendo al resultado original de Griinbaum , uno podria dar una interpretacion ligeremente
distinta de este, como menciondbamos anteriormente. En base a esta, dicho resultado asegura que,
para cualquier cuerpo convexo, siempre existe un punto contenido en su interior (el centroide) de
forma que cuando se corta este mediante un hiperplano a través de dicho punto, obtenemos dos
subcuerpos con una porcién relativamente “grande” del volumen total. A partir de esta observacion,
surge la siguiente pregunta: ;existe una familia de puntos, potencialmente conteniendo al centroide,
que compartan una propiedad similar? Ademads de esto, ;jhay algin otro punto, digamos especial

o reconocido en la literatura, con una caracteristica de esta indole?

En el Capitulo [5| abordamos estas preguntas. Para ello, exploramos varios aspectos; en primer
lugar, presentamos dos ejemplos de esos citado puntos “especiales” para los cuales no es posible
obtener una desigualdad de tipo Grinbaum. Por otro lado, probaremos que considerando el punto
medio en la direccion del vector normal unitario v del hiperplano H en cuestion, es decir, el punto

[(a + b)/2] -u, podemos establecer que, si K es un conjunto compacto tal que (a+b)/2 = 0 (y cuya
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funcién f : [a,b] — Rx( satisface las mismas premisas que en ({])), entonces

vol(K ™) - <1>(p+1)/p

vol(K) 2

Atendiendo a este hecho, en la primera seccién del capitulo introduciremos la familia de puntos
uniparamétrica (asociada a un hiperplano con vector normal unitario w, con funcién f de los
volumenes de las secciones mediante hiperplanos paralelos a este) dada por g, - u, siendo

b r
Jtf(t)rde
o= d 4
[ f@)rde
para cada r > 0. Claramente, dicha familia contiene tanto al punto medio (en la direccién u) como
al centroide del cuerpo convexo (casos r = 0 y r = 1, respectivamente), siendo esta la potencial

familia de puntos para dar respuesta a la pregunta planteada previamente.

De esta forma, la segunda seccién del capitulo estda dedicada a probar una desigualdad de tipo
Griinbaum que involucra a esta familia de puntos g, - u. Para ello, lo abordaremos desde una
perspectiva funcional, es decir, reescribiendo como los siguientes a-centroides de una funcién

coéncava de una variable h : [a, b] — R>¢, dados por
[P th(t)> dt
ga(h) 1= St

L h(t)>dt

Con esta definicién, obtendremos que cualquier funciéon céncava satisface una desigualdad de tipo

Griinbaum funcional considerando estos puntos. Concretamente, probamos que si § < « entonces

fgba(h) h(t)? dt - <5+1)B+1
f(fh(t)ﬁdt “\a+2 ’

mientras que si a < 3

Sy 1(0)? dlt - <a + 1)5“
[ h(t)s at a+2 ‘

Finalmente, veremos que a partir de este resultado podemos obtener (ademds de varias de las
desigualdades contempladas en capitulos previos) otros dos resultados clésicos de la literatura, en

apariencia no conectados entre si, subrayando asi algunas de las aplicaciones encontradas.

Los resultados originales contenidos en esta tesis se pueden encontrar en los articulos de inves-
tigacion [11 24] 25] 26].
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Preface

The study of Griinbaum type inequalities has demonstrated to be a very prolific and interesting
topic during the last years. Its origin goes back to a classical work by Ascoli [3] from the 30’s,
lately generalized to higher dimensions by Griinbaum [16], and published in 1960. It concerns a
very natural question involving convex bodies: can one ensure the existence of an “a priori” point
within the interior of a convex body in such a way that cutting it through this point results in two

parts both having a remarkable portion of the total volume?

Trying to figure out an answer to the previous question one is led to the centroid (also known
as the center of mass) of a convex body. For a compact set K, not necessarily convex, with
positive volume vol(K) (i.e., with positive n-dimensional Lebesgue measure) the centroid of K is

the affine-covariant point defined as

1
g(K) := Vol(K) /K:cda:.

Griinbaum’s inequality then asserts that any convex body with centroid at the origin satisfies that
vol(K~ n \"
) > , (8)
vol(K) n+1
where K~ = KN{z € R": (x,u) <0} and K+ = KN {x € R": (z,u) > 0} represent the parts
of K which are split by the hyperplane H = {x € R" : (z,u) = 0}, for any given unit vector u.

Equality holds, for a fixed w, if and only if K is a cone in the direction u, i.e., the convex hull of
{z} U (KN (y+ H)), for some z,y € R™.

Although it is not our intention to make an exhaustive list, it is worth mentioning that
Griinbaum’s result has been studied in many other contexts. Some examples which underscore
its relevance are the extensions to the case of sections [12] 29] and projections [33] of convex bodies,
the generalizations to the analytic setting of log-concave functions [28] (see also [21, Lemma 5.4]
and [8, Lemma 2.2.6]) and p-concave functions [29], for p > 0. Other Griinbaum type inequalities
involving volumes of sections of convex bodies through their centroid, later generalized to the case

of classical and dual quermassintegrals in [32], can be found in [IT], 23].

Roughly speaking, this thesis is devoted to the study of generalizations and extensions of
Griinbaum’s inequality from both a geometric and a functional (and measure theoretical) point

of view.
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More precisely, this dissertation starts with an introductory first chapter, where we collect
some definitions and results that will be needed later on, both concerning convex bodies and
concave functions. Thus, the first section is devoted to establishing the notation and recalling
some important notions such as that of Minkowski addition, convex body, etc. Moreover, some
important inequalities such as the Brunn-Minkowski inequality and Brunn’s concavity principle are
collected, together with the precise statement of Griinbaum’s inequality (and other related results
involving the centroid of either a convex body or a function with certain concavity). Finally, along
the last section of this chapter we recall the notion of concave function, jointly with the definition
of p-concave function, to conclude the chapter by stating some functional results that will be used
throughout the thesis.

Going back to Grinbaum’s inequality, the underlying key fact in the original proof of is the
so-called Brunn’s concavity principle. This result ensures that for any compact convex set K C R"
and any hyperplane H, then the function f : H- — Rxq given by f(z) = vol,_1 (K N(z+ H)) is
(1/(n—1))-concave. In other words, for any given hyperplane H, the cross-sections volume function
f to the power 1/(n — 1) is concave on its support. Although this property cannot be in general
enhanced, one can easily find compact convex sets for which f satisfies a stronger concavity, for a
suitable hyperplane H; thus, on the one hand, it is natural to wonder about a possible enhanced
version of Griinbaum’s inequality for the family of those compact convex sets K such that
(there exists a hyperplane H for which) f is p-concave, with 1/(n — 1) < p. On the other hand,
one could expect to extend this inequality to compact sets K, not necessarily convex, for which f

is p-concave (for some hyperplane H), with p < 1/(n —1).

In Chapter [2] we address the aforementioned problem and delve into its intricacies. A crucial
aspect, as evident from Griinbaum’s original proof, lies in characterizing the extremal cases to
establish the desired inequality. Indeed, observing that the equality case in Griinbaum’s result is
characterized by cones, that is, those sets for which f is (1/(n— 1))—afﬁne (i.e., such that f1/(»=1 is
an affine function), the sets of revolution associated now to p-affine functions, which will be denoted
as Cp, emerge as natural candidates to be the extremal sets, in some sense, for the inequalities we
seek. Consequently, the first section of this chapter is dedicated to a thorough examination of the

sets Cp. More precisely, we get that, for any p € (—oo, —1] U [0, +00), if C), is centred then

vol(C,) S (p+1 (+1)/p
vol(Cp) ~ \2p+1 ’

Furthermore, an investigation of the case p € (—1/2,0) is also given.

By exploiting the information gathered during this analysis, we extend Grinbaum’s inequality
to encompass the case of compact sets with a p-concave cross-sections volume function (both

the case of p > 0 and p = 0) with respect to a given hyperplane. Indeed, if K is a centred compact
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set satisfying the previous premise, it is proved that

vol(K™) _ (p+ 1\
vol(K) — \2p+1 '

(D

Moreover, we also show that, under the weakest possible concavity assumption, i.e., the cross-
section volume function being quasi-concave, monotonicity is enough to ensure such an inequality.
Lastly, we provide a brief discussion on the scenario where p is negative, highlighting that the limit

concavity assumption for this type of result is the log-concavity (i.e., p = 0).

Attending to the interplay between log-concave and p-concave functions and the geometry of
convex sets, it seems natural to expect a functional form of Griinbaum’s inequality (ED In fact,
in [29, Corollary 7] the authors provide a positive answer to this question when p > 0, with a
sharp constant, obtaining it from a more general result for p-concave functions. Nevertheless,
taking into account its connection with the Brunn-Minkowski inequality, one would claim that the
Borell-Brascamp-Lieb inequality should play a relevant role in the proof of such an analytic

result.

In Chapter [3] we give a simpler proof of the functional form of Griinbaum’s inequality by using
induction on the dimension and the Borell-Brascamp-Lieb inequality ((1.9). More precisely, we
obtain that for any centred p-concave function f : R” — R>g, with p > 0, then

np + 1 >(np+1)/p

(n+1)p+1 Rn f(w)de

[t (

for any hyperplane H.

To this regard, the first section of this chapter collects the proof of the one-dimensional case,
which arises from a quite direct comparison of (a suitable power of) the function  — [ f(t)d¢
with its tangent line at one point of its graph. Moreover, we show that, as a consequence of the
latter, an extension of @D for general measures follows. Then the second section is devoted to
the proof of the n-dimensional case, which is shown by using the Borell-Brascamp-Lieb inequality

together with a standard argument for p-concave functions.

At this stage, following the principles observed in the realm of convex body operations, where
L,-addition is extended to Orlicz-sums with respect to a convex and strictly increasing function
¢ : R>g — R>o with ¢(0) = 0, it is natural to contemplate the possibility of a Griinbaum type
inequality for the family of those compact sets K such that (there exists a hyperplane H for which)

¢ o f is concave, with ¢ being an Orlicz-class function (convex, strictly increasing and ¢(0) = 0).

Furthermore, one can expect to derive a family of inequalities based on a function ¢, which can
recover the ones studied in Chapter [2 when ¢(t) = t? for p > 0, or ¢(t) = log(t). This would lead to
a further generalization of . However, it is important to note that certain assumptions regarding
the function ¢ must be made. As mentioned in Chapter [2| the log-concave case represents the

limiting assumption of concavity for this generalization of Griinbaum’s inequality, when considering
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the full-range of p € R in the case of compact sets with a p-concave cross-sections volume function.
Therefore, it would be interesting to find the suitable conditions for such a general family of
functions ¢’s that permit to obtain these inequalities. In Chapter [4] we address this problem by
following a similar approach to the one used in Chapter

With this objective in mind, as mentioned earlier, characterizing the extremal sets of the desired
inequality is crucial. Thus, since we want to obtain a family of inequalities recovering @[}, observing
that the compact sets are compared with sets of revolution given by a p-affine function with p > 0,
it seems natural to work now with sets of revolution associated to a ¢-affine function, denoted as
Cy. Therefore, the first section of this chapter provides a comprehensive study of this family of sets.
Under certain technical assumptions for the function ¢, we establish that the ratio vol(-~)/vol(-)
for these sets (assuming that they have their centroid at the origin) depends essentially only on the

function ¢.

Exploiting this result, in the second section of this chapter, we extend @D (and consequently
(8)) to the case of a compact set with a ¢-concave cross-sections volume function. Finally, the
third section of Chapter [ focuses on discussing potential ¢-concave extensions of Griilnbaum-type
results found in the literature. More precisely, although we follow a similar approach, we include a

proof of the ¢-concave extension of [23, Theorem 3.1] and [I1, Lemma 1 and Theorem 2.

Returning to Griinbaum'’s original result [§} we can interpret it from a slightly different perspec-
tive. It asserts that for any convex body, there always exists a point within the set (the centroid) in
such a way that cutting the body through a hyperplane passing by this point yields two sub-bodies
with a substantial proportion of the total volume. This observation prompts a natural inquiry: can
we identify a family of points, potentially including the centroid, that share this property? More-
over, are there additional special points that possess similar intriguing characteristics, warranting

further investigation?

In Chapter [5, we delve into the questions raised earlier and provide a comprehensive approach
to addressing them. In doing so, we explore various aspects. Firstly, we present two examples of
special points where a Grinbaum-type inequality is not feasible, shedding light on the limitations
of certain points in this context. Conversely, we demonstrate that by considering the midpoint in
the direction of the unit normal vector u of a given hyperplane, i.c., the point [(a+b)/2] -u, we can
establish that for any compact set K with (a+b)/2 = 0 (and whose cross-sections volume function

f:[a,b] — Rxq satisfies the same assumptions as in () one has the following inequality:

vol(K~) (1><P+1>/p

vol(K) = \2

This insight leads us to define a family of points to investigate further. Indeed, in the first section

of this chapter we define a uniparametric family of powered centroids (associated to a hyperplane
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with normal unit vector u, and with cross-sections volume function f) given by g, - u, where

Ju tF(t)" dt
gr = b iy 1g (h

[ f@)rde
for any r > 0. Clearly, such a family encompasses both the midpoint (in the direction ) and the
centroid (cases of = 0 and r = 1, respectively), and serves as a potential family of points to

answer the previously posed question.

Thus, the second section of this chapter is devoted to proving a sharp Griinbaum type inequality
involving the points g,.-u. To accomplish this, we adopt a functional approach, namely, by rewriting

(]]H) as the following a-powered centroids of a concave function h : [a.b] — R>q, given by

 [Pth(t)dt

Ba(h) := [P n(t)ear

Taking into account this definition, we show that any concave function satisfies a (functional)
Griinbaum type inequality when considering these points. More precisely, it is proven that, if
6 < « then

Jguy M0t (5 + 1)5“
[Pa@ypar — \a+2 ’

whereas if a < 8

b
Sy 12)7 dt . <a+ 1>5+1
f;’ h(t)B dt a+2 ’

Therefore, we provide a solid foundation for our investigation into the defined family of points
(]:ﬂ]). Finally, we show that, from the latter result, one may derive (besides various inequalities ap-
pearing in the previous chapters) two classical results from the literature, in principle not connected

among them, highlighting in this way some of the applications we have found so far.

The original results which are contained in this dissertation can be found in the papers [1I 24|
25, [26].
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Chapter 1

Preliminaries

This chapter is devoted to collecting some definitions, properties, and results of convex bodies

and concave functions that will be used throughout this dissertation.

1.1 Notation and definitions

We shall work with the following standard notation. We use R™ to denote the n-dimensional
Euclidean space with standard scalar product (-,-). We will denote by e; the i-th canonical unit
vector, we represent by B,, the n-dimensional Euclidean (closed) unit ball and by S*~! its boundary.
Given a vector v € S"~!, an orthonormal basis of R™ (uy,us, ..., u,) with u; = u, and z € R", we
will denote by [z]; the first coordinate of x with respect to this basis. Moreover, for a hyperplane
H={zeR": (x,u) =c}, c € R, we represent by H~ = {z € R" : (z,u) < c} and H" = {z €
R™ : (z,u) > ¢} the halfspaces bounded by H.

The Grassmannian of k-dimensional vector subspaces of R" is denoted by G(n,k), and for
H € G(n,k), the orthogonal projection of a subset M C R™ onto H is represented by M|H,
whereas the orthogonal complement of H is denoted by H+. Moreover, the positive hull of M will
be written by pos M whereas the convex hull of it will be represented by conv M.

Definition 1.1. Let M C R"™ be a measurable set. The volume of M, denoted as vol(M), is the

(n-dimensional) Lebesgue measure of M.

Moreover, the k-dimensional Lebesgue measure of M (whenever M is measurable) is written as

voli(M). When integrating, as usual, dz will stand for dvol(x), and we set k,, = vol(By,).
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Definition 1.2. LetA, B C R". The Minkowski (vectorial) addition of A and B is defined as
A+B={a+b:ac A be B}

(see Figure .

This operation of sets clearly preserves convexity and compacity.

W A+ B

B

Figure 1.1: Minkowski sum.

Definition 1.3. A non-empty set K C R"™ is convex if for any two points x,y € K the segment
determined by them, i.e., the set [x,y] := {(1 — Nz + Ay : 0 < XA < 1}, is contained in K. In other
words, (1 =Nz + Ay € K for all0 < X < 1.

Definition 1.4. A non-empty set K C R"™ is said to be a conver body if it is a compact convex set.

Two convex bodies K, L C R"™ are said to be homothetic if K = AL +t with t € R™ and A\ > 0.

1.2 The Brunn-Minkowski and Griinbaum’s inequalities

Relating the volume with the Minkowski addition of convex bodies, in terms of their volumes,
one is led to the famous Brunn-Minkowski inequality (for extensive survey articles on this and
related inequalities we refer the reader to [4, [13]; for a general reference on Brunn-Minkowski

theory, we also refer to the updated monograph [31]). One form of it is the following one:

Theorem A. Let K,L C R"™ be conver bodies and A € (0,1), then
vol((1 = N K + AL)Y™ > (1 = Avol(K)/™ 4 Avol(L) /™, (1.1)

with equality, if vol(K)vol(L) > 0, if and only if K and L are homothetic.
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Although this result is also true for the more general case of measurable sets, since our disserta-
tion is mostly focused on convex bodies, we will use the above version. Moreover, when dealing with
convex bodies, the proof of Brunn-Minkowski’s inequality relies on the following result concerning

sections of convex bodies (see e.g. [8, Section 1.2.1] and also [27, Theorem 12.2.1}):

Theorem B (Brunn’s concavity principle). Let K C R™ be a convex body and let F be a k-

dimensional subspace. Then, the function f : F+ — Rsq given by f(z) = vol,_y (Kﬁ (x+ F))l/k

1S concave.

Another definition that will be crucial along this work is the following one.

Definition 1.5. Let K C R"™ be a compact set with positive volume vol(K) (i.e., with positive

n-dimensional Lebesque measure). The centroid of K is the affine-covariant point

1
g(K) := vol(K) /dea:.

As we have mentioned during the introduction, Griinbaum’s inequality asserts that, given a

convex body K C R™ with centroid at the origin, one can find a lower bound for the ratio
vol(K ™) /vol(K) depending only on the dimension of K, where K~ denotes the intersection of
K with a halfspace bounded by a hyperplane passing through its centroid. Its statement is the

following:

Theorem C. Let H = {x € R" : {x,u) = 0}, u € S", be a hyperplane and, given a convex body
K C R™ with non-empty interior, let K~ = KN H~. If K has centroid at the origin then

) ()

Equality holds, for a fized v € S"™1, if and only if K is a cone in the direction u, i.e., the convex
hull of {x} U(K N (y+ H)), for some x,y € R™.

Similar in spirit to Griinbaum’s inequality is a classical inequality, attributed to Minkowski for
n = 2,3 and Radon for general n, which bounds the distance from g(K) to a supporting hyperplane
of the convex body K (see [3], p. 57-58]). This result asserts that when K has centroid at the origin
then K C —nK, a fact that is equivalent to the following statement:

Theorem D. Let K CR" be a convex body with non-empty interior and let H be a hyperplane. If

K has centroid at the origin then

vol; (K~ |H™t) 1
> :
voly (K|HY) —n+1

(1.3)
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Another inequality of this type, but now involving volume sections instead of projections, is the
following inequality (1.4)). It was shown (independently) by Makai Jr. and Martini [23], and later
by Fradelizi [11], who further proved this result when considering sections by planes of arbitrary

dimension.

Theorem E ([11,23]). Let K C R™ be a convez body with non-empty interior, let H be a hyperplane
and let f : [a,b] — Rxq be the function given by f(t) = vol,—1 (K N (tu+ H)). If K has centroid

at the origin then

n—1

1) o (n . (1.4)
[fllc = \n+1

For the sake of simplicity, from now on we shall consider H = {x € R" : (z,u) = 0}, for a given
direction u € S"~! that is extended to an orthonormal basis (u1,uz,...,u,) of R, with u; = w.

Also, a non-negative measurable function f : R" — R>( satisfying that

/nxf(x)dx:

will be referred to as a centred function.

Furthermore, for a compact set K C R™ with non-empty interior, we shall write
Kit)=Kn(tu+ H) (1.5)

for any ¢ € R, and the function f : R — Rx given by f(t) = vol,—1 (K(t)) will denote the
cross-sections volume function of K. We observe that if K|H* C [au, bu], Fubini’s theorem implies
(if a < 0) that

vol(K / Ft)dt and vol(K / £(t) (1.6)

Moreover, we notice that by Fubini’s theorem, we have

b
(K0 = oy | O (17)

vol(

and so, a < [g(K)]1 <b (cf. (L.6)).

1.3 Concave functions and related results

Given a convex body K C R™, the Brunn concavity principle implies that the function f(t) =
vol,—1(K(t)) is (1/(n — 1))-concave. In this regard, we recall that a function f : R" — Rxq is
said to be p-concave, for p € RU {£o0}, if

FUE =Nz +Ay) = My (f(x), f(y),A)



1.3 Concave functions and related results 5

for all z,y € R™ such that f(x)f(y) > 0 and any A € (0,1). Here M, is the p-mean of two positive

numbers a, b:
(1= N)a? + AP) P if p £ 0, 00,

a' =t if p=0,
My(a,b,\) =

max{a, b} if p = oo,

min{a, b} if p= —o0.

We observe that if p > 0, then f is p-concave if and only if fP is concave on its support
{x € R": f(x) > 0} and hence 1-concavity is nothing but concavity (on the support) in the usual

sense, namely, that
FA =Nz +dy) > (1= XN f(x) + M (y)
for all z,y in the support of f. A 0-concave function is usually referred to as log-concave whereas

a (—oo)-concave function is called quasi-concave.

When p > 0, we can also see the notion of p-concavity as a particular case of the following one

(this concept has already appeared in the literature; see, e.g., [20]):

Definition 1.6. Let ¢ : R>g — RU{—o00} be a strictly increasing function with ¢ := ¢~ (defined
on ¢(R>g)). We say that a function f: R"™ — R is ¢-concave if

(=22 +x) = o((1 = No(f(@) +A6(f (1))
for all z,y € R™ such that f(x)f(y) > 0. In other words, the function f is ¢-concave if and only if

¢ o f is concave on the support of f.

Note that if f : [a,b] — R>¢ is ¢-concave, then the superlevel set {s € R: f(s) > t} is convex
for all ¢ > 0. And so, from now on we will assume, without loss of generality, that f(¢) > 0 for
all t € (a,b). Furthermore, we may suppose, if needed, that the support of f is actually [a, b]
(since, when integrating, [a,b] and (a,b) are indistinguishable). And, more generally, whenever we
deal with either a concave/convex function or a ¢-concave function f (and then, in particular, a
p-concave function, for some p > 0), we will always exclude the trivial case of f = 0, i.e., we will

assume that it is a non-zero function.

Additionally, in the following, we will assume that f is upper semicontinuous (and the same
will apply for any function f : K — R>( defined on any convex body K C R" such that ¢ o f
is concave). Indeed, otherwise, we would work with its upper closure, which is determined via the
closure of the superlevel sets of f (see [30, page 14 and Theorem 1.6]), and thus they have the same
Lebesgue measure to those of f. In particular, this will imply that the maximum of such an f is

attained.

A classical tool when dealing with concave functions is the well-known Jensen’s inequality. For
a reference on it, we recommend the classical texts [9, [I7]. We collect here the version of it that

we will use throughout this dissertation.
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Theorem F (Jensen’s inequality). Let u be a probability measure on R", let K C R™ be a compact
set, and let f: K — R be a measurable and bounded function. If g : [a,b] — Rx>q is a concave
function with [a,b] D f(K) then

g( / f(w)du($)> > [ 9l1@) duto) (1.8)

We conclude this chapter by collecting here the following result, originally proved in [6] and [7]
(see also [13] for a detailed presentation), which can be regarded as the functional counterpart of
the Brunn-Minkowski inequality (1.1]).

Theorem G (The Borell-Brascamp-Lieb inequality). Let A € (0,1). Let —1/n < p < co and let
fi9,h : R" — R>( be measurable functions, with positive integrals, such that

h((1 =Nz + Xy) > My(f(x),9(y), A)

for all x,y € R™ such that f(x)g(y) > 0. Then

/n h(z)dz > M, < [ @) dx,/ng(x) dx,)\) , (1.9)

where ¢ = p/(np + 1).



Chapter 2

On Grunbaum type inequalities for the
volume

Despite its apparent simplicity, Griinbaum’s inequality turns out to be a property of
convex bodies (or functions) satisfied in many different contexts. Indeed, Griinbaum’s result was
extended to the case of sections [12], 29] and projections [33] of convex bodies, and generalized to
the analytic setting of log-concave functions [28] (see also [21, Lemma 5.4] and [§, Lemma 2.2.6])
and p-concave functions [29], for p > 0. Other Griinbaum type inequalities involving volumes of
sections of convex bodies through their centroid, later generalized to the case of classical and dual

quermassintegrals in [32], can be found in [11], 23].

In this chapter, given a compact set K C R" of positive volume, we deal with the problem of
showing that fixing a hyperplane H, one can find a sharp lower bound for the ratio vol(K ™) /vol(K)
depending on the concavity nature of the function that gives the volumes of cross-sections (parallel
to H) of K. When K is convex, this inequality recovers the above-mentioned result by Griinbaum.
To this respect, we will also prove that the log-concave case is the limit concavity assumption for
such a generalization of Griinbaum’s inequality. The original content of this chapter can be found
in [26].

2.1 Natural candidates for the extremal cases

From Brunn’s concavity principle (Theorem [B]) we have that, for any given hyperplane H, the

cross-sections volume function f to the power 1/(n—1) is concave on its support, which is equivalent
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(due to the convexity of K) to the well-known Brunn-Minkowski inequality (see (L.1])). Although
this property cannot be in general enhanced, one can easily find convex bodies for which f satisfies
a stronger concavity, for a suitable hyperplane H; similarly, the Brunn-Minkowski inequality can
be refined when dealing with restricted families of sets (see e.g. [18,[19] and the references therein).
Thus, on the one hand, it is natural to wonder about a possible enhanced version of Griinbaum’s
inequality for the family of those convex bodies K such that (there exists a hyperplane H for
which) f is p-concave, with 1/(n — 1) < p. On the other hand, one could expect to extend this
inequality to compact sets K, not necessarily convex, for which f is p-concave (for some hyperplane
H), with p < 1/(n—1).

Remark 2.1. Let us note that the concavity nature of the cross-sections volume function f may
depend on the choice of the hyperplane H. Indeed, given Hy = {x € R3 : (xz,e1) = 0} and
Hy = {x € R?: (x,e3) = 0}, and considering the set

Cy = {z = (z1,22,23) € R* 1 21 € [0,1], 23 + 23 < r(z1)*}
of radius r(t) = t1/2 we have voly (6’1 N (tep + Hl)) = Kot and

vols (Cl N (tea + Hg)) = volg({a: ER3: 1 € [t2, 1], x% < r(ml)z — t2})
4
2 232
3( ) ?
for any t € [0,1]. Therefore, the function fi : Hi- — Rxq defined by vola(Cy N (z + Hy)) is
1-concave whereas the function fs : HQL — R>¢ given by voly (C’l N(x+ Hg)) 1s not 1-concave.

Observing that the equality case in Griinbaum’s inequality (1.2)) is characterized by cones, that
is, those sets for which f is (1/(n — 1))-affine (i.e., such that f/("=1 is an affine function), the
following sets of revolution, associated to p-affine functions, arise as natural candidates to be the

extremal sets, in some sense, of these inequalities that we are seeking.
Definition 2.1. Let p € R and let ¢,v,d > 0 be fized. Then

i) if p#0, let gp : I —> R>( be the non-negative function given by g,(t) = c(t + YP, where
I'=[-v,0]ifp>0and = (-v,0] if p<0;

ii) if p=0, let go : (—00,d] — R>q be the non-negative function defined by go(t) = ce’.

Let u € S"1 be fized. By C, we denote the set of revolution whose section by the hyperplane
{zx e R": (z,u) =t} is an (n — 1)-dimensional ball of radius (gp(t)//-in,l)l/("_l) with azxis parallel
to u (see Figure . (We warn the reader that, in the following, we will use the word “radius” to
refer to such a generating function (gp(t)//in_l)l/("_l) of the set Cp, for short.)
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Figure 2.1: Sets C,, in R?, with centroid at the origin, and C,~ (coloured), for p = 1 (left) and p = 1/4 (right).

In other words, one may speculate whether, among all compact sets K with centroid at the
origin such that f is p-concave (for some hyperplane H), C, gives the infimum for the ratio
vol(K ™) /vol(K). We note that, in this way, we would have a general family of inequalities depend-
ing on a real parameter p (with extremal sets varying continuously on it), and having Griinbaum’s
inequality as the particular case p =1/(n —1).

As mentioned, these sets C), associated to (cross-sections volume) functions that are p-affine
(see Definition [2.1]) seem to be possible extremal sets of such expected inequalities. So, we start by
computing the ratio vol(-~)/vol(-) for the sets C,,.

Lemma 2.1.1 ([26]). Let p € (—o0,—1)U[0,00) and let H € G(n,n — 1) be a hyperplane with unit
normal vector w € S"'. Let gp and Cy,, with axis parallel to u, be as in Definition for any
fized c,v,0 > 0. If C), has centroid at the origin then

vol(Cy)  (p4+1\®H0? 2.1
vol(Cp)  \2p+1 (2.1)
where, if p =0, the above identity must be understood as
volCy) oy, (2T (2.2)
vol(Cy) p—0t \ 2p+1 ' '

Proof. First we assume that p # 0 and show ([2.1)). On the one hand, by Fubini’s theorem, we get

5 (p+1)/p
vol(C)) = / gp(t)dt = PO

— p+1
On the other hand, from (1.7, we have
1 0 p+ 1 oy 1/p
[8(Cp)], = wol(Cy) /_v tgp(t) dt = W,/O (s —~)s/Pds

P+1)(6+7)
2p+1
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Therefore, from the hypothesis g(C),) = 0, we obtain that v/(d +v) = (p+1)/(2p + 1), and hence

vol(C’p_) _ 1 /0 0o(t) dt = ( ~y >(p+1)/p _ <p+ 1 >(p+1)/p

vol(Cy)  vol(Cyp) J_, o0+ 2p+1

as desired.

Now we assume that p = 0 and show ([2.2). Again, by Fubini’s theorem and (|1.7)), respectively,
we get
0 0676
vol(Cy) = / go(t)dt = <=
-0 Y

and
1 J 1
[g(CO)]l = VOI(CO)/ tgo(t)dt = 4§ — 5

—0o0

In particular, g(Cp) = 0 implies that § = 1/, and hence

vol(Cy) 1 /0

_ -1
VOl(C()) _Vol(C()) _Oogo(t)dt—e ’

This concludes the proof. ]

Notice that the value ((p+ 1)/(2p+1))(p+1)/p obtained in is not defined for p € [—1,—1/2].
However, although the above expression makes also sense for any p € (—1/2,0), the corresponding
sets (), present remarkable differences with those of the range p > 0, as we will see next. So, we
will study this case separately.

To this aim, let p € (—1/2,0) and let € > 0 be fixed. Let C). be the set of revolution, with

axis parallel to u, of radius (gpﬁ(t)//{n,l)l/(”_l)

associated to the non-negative p-affine function
Ope : [—7+¢€,0] — Rxq given by g, -(t) = c(t+~)'/?, for some ¢,v,d > 0 (for our purpose we may

assume that v > ¢).

On the one hand, by Fubini’s theorem, we get

g 5 (p+1)/p _ (p+1)/p
Vol(Cp a) = / °p (( i 7) c ) .

gp(t)dt =
s —

Then we notice first that vol(Cpc) — 00 as € — 0F. On the other hand, from (1.7), we have

é
[g(cp,s)] 1= VOl(lcpg)/ tgp(t) dt

—y+e
_ p+1 S+ Up
(0 +y)ErD/p — e+ D)) /g (s —7)s/Pds
(4 1a(e)
2p+1

i

where
(6 +~)@PD/p _ Cp+1)/p

&) = G ) = e
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We note that a(e) — 0 as e — 07, and moreover that a(e) > 0 because of the direct relation
—y +¢ < [g(Cpe)], jointly with (p+1)/(2p+ 1) > 0. Hence, we get

vol(Cpe N (8(Cpe) + H)') 1 /5 a(0)dt
vol(Cp.) vol(Cpe) J oyt (priyate) /ot
5+ @0/p _ (2 YPTP pry
(6+7) T (€)

(8 4+ 7)tD/p — gp+1)/p

Therefore, although lim vol(C) ) = oo, we have

e—0t
. vol(Cpe N (g(Cpe) + H)+) _(p+1 (p+1)/p
lim = . (2.3)
e—0+ vol(Cy.¢) 2p+1

Thus, the value (p +1)/(2p + 1))(p+1)/p is asymptotically attained by the sets C},.. The main
difference with the case p > 0 is that it is now reached by the part obtained by the positive
halfspace (see (2.3)) bounded by the hyperplane passing through their centroid, whereas in the

case p > 0 the above value is attained by the part lying at the negative halfspace, i.e., one has

Vol(Cp N (g(Cp) + H)f) _(p+1 (p+1)/p
vol(Cy) 2p+1

(see Lemma [2.1.1)).

2.2 Main results

Griinbaum’s inequality ([1.2) can also be expressed by saying that if K is a convex body, of

positive volume, with centroid at the origin, then
. [vol(K™) vol(K™) n \"
min , > .
vol(K) ~ vol(K) n+1

To this regard, we start this section by showing that, if the cross-sections volume function f

associated to a compact set K is increasing in the direction of the normal vector of H, then the

above minimum is attained at vol(K ~)/vol(K), independently of the concavity nature of f.

Proposition 2.2.1 ([26]). Let K C R™ be a compact set with non-empty interior and with centroid
at the origin. Let H € G(n,n — 1) be a hyperplane, with unit normal vector v € S" !, such
that the function f : H- — Rsq given by f(x) = vol,_1 (K N (z+ H)) is quasi-concave with
f(bu) = max, g0 f(x), where [au,bu] = K|H*. Then

vol(K™)

vol(K) =

1
5"
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Proof. Let g : [—v,d] — R>( be the constant function given by ¢(t) = f(0), where

10 1
1= / f0dt and 3= 5o /0 (1) dt. (2.4)

Since f is quasi-concave with f(b) = maxcr f(t), f is increasing on [a, b] and thus (from (2.4))) we
have a < —y < 0 < b < 4. Hence, since g(K) = 0 (and using (1.7)), from ([2.4]) we get

£(0) 72;52 = —/6 tg(t)dt:/btf(t)dt—/6 tg(t) dt

- -

— 0
:/ (t+’Y)f(t)dt+/ (t+2)(f(t) —g(t)) dt

-
b )
+A@®U@9@%R+AGQ(Q@NRSQ

which yields v < §, or equivalently vol(K ) < vol(K™). This concludes the proof. O

We are now ready to show the following result, which constitutes the main aim of this chapter.

Theorem 2.2.1 ([20]). Let K C R™ be a compact set with non-empty interior and with centroid
at the origin. Let H be a hyperplane such that the function f : H- — R>o given by f(z) =
vol,—1 (K N (z+ H)) is p-concave, for some p € [0,00). If p > 0 then

vol(K ™) N p+1 (p+1)/p (2.5)
vol(K) ~— \2p+1 )
with equality if and only if o (K) = Cp. If p=0 then
vol(K ™) 1
—_— > . 2.
vol(K) = © (26)

The inequality is sharp; that is, the quotient vol(K~)/vol(K) comes arbitrarily close to e™*.

Proof. First we assume that p > 0 and show (22.5). We assert that there exists a (p-affine) function
gp : [—7, 8] — Rsq given by g,(t) = c(t + v)'/P, for some 7, d, ¢ > 0, such that g,(0) = £(0),

0 0 é b
/ng(t)dt:/a f(H)dt and /ng(t)dt:/o F(t)dt. (2.7)

Indeed, taking

/(p+1)
p+1/0 £(0) p—l—l/b P
_ £dt, e=2~7 and o= (2= t) dt —

/7 pf(O) a f( ) Y c ’71/p an pC a f( ) 77
elementary computations show (2.7)). We also note that, since

0 p/(p+1)
7=<p+1/,ﬂﬂ&> ,

pc
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we actually have § > 0.

In other words, for the set of revolution C, of radius (gp(t)//in,l)l/(”fl), we have C,(0) =
op1 (K(0)),
vol(C,7) = vol(K~) and vol(C,") = vol(K™). (2.8)
And thus, in particular, vol(C)) = vol(K).
From the concavity of f?, together with the relations g,(0) = f(0) and (2.7), we get on the one

hand that —y < a < 0 < § < b. On the other hand, defining the functions f, g, : [-7,b] — Rxg
given by
- f@t) iftea,b], _ gp(t) ifte[—,d],
t) = and t) =
10 { 0 otherwise, (1) 0 otherwise,
we may conclude that there exists g € [a,0) such that f(t) > g,(¢) for all t € [z,0] U [4,b] and
f(t) < gp(t) otherwise (see Figure . Hence, since g(K) = 0 (and using (L.7))), from (2.7)) we

have

) b ) b
- [ gwa= [rwa- [ ga= [ (5o -g0) @

- - -

0o b
:/ t(f(t)—gp(t))dt+/0 t(F() — gp(1)) dt

—
0 b
= [ =) (0 - gu0) dt+ [ =570 - ) at 20,
—
with equality if and only if f = g,. Thus, we have [g(Cp)]1 < 0, and equality holds if and only if
f = gp. Then, from (2.8) and Lemma [2.1.1

)

vol(K™) vol(C'p_) - vol(Cp N (g(Cp) + H) ) _ <p+ 1 )(p+1)/p
vol(K) — vol(Cp) — vol(Cp) 2p+1

with equality if and only if f = g, that is, if and only if 0. (K) = C,,.

Now we assume that p = 0 and show ([2.6)). We assert that there exists an exponential function
go : (—00,8] — R>q given by go(t) = ce™, for some v, d, ¢ > 0, such that go(0) = f(0),

0 0 ) b
/Oogo(t)dt:/a f(t)dt and /Ogo(t)dt:/o (1) dt. (2.9)

Straightforward computations show that the above relations are equivalent to take

c=f(0), ~=f(0) (/aof(t)dt>1 and 5:i10g <f(70)/:f(t)dt);

note that, indeed, § > 0.
Again, the set of revolution Cj of radius (gg(t)//ﬁn_l)l/(”_l) satisfies that Cp(0) = o1 (K(0)),

vol(Cy ) =vol(K~) and vol(Cyh) = vol(K™), (2.10)
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fp

Figure 2.2: Relative position of the functions f? and g5.

and thus, in particular, vol(Cp) = vol(K).

Now the concavity of log f, jointly with the relations go(0) = f(0) and , implies that
(go(t) > f(t) for all t € [0,6] and so) § < b. Moreover, for the functions f,go : (—00,b] — Rx
given by
go(t) ift e (—o0,d],

0 otherwise, 0 otherwise,

= t) ifte€la,b], i
f(t):{ o L go(t):{
we conclude that there exists zg € [a,0) such that f(t) > go(t) for all t € [x0,0] U [§,b] and

f(t) < go(t) otherwise (cf. Figure . Arguing as in the case p > 0, using (2.9)) and g(K) = 0, we
have that [g(Cp)]1 < 0. Then, from (2.10) and Lemma [2.1.1

vol(K ™) _ VOI(CO_) - Vol(C'o N (g(C’o) +H)_) _
vol(K) vol(Cp) — vol(C) '

Finally, we notice that if we consider an unbounded set L such that ogi(L) = Cpy, for a given
go : (—00,8] — Rxq of the form go(t) = ce?, with v,d, ¢ > 0, and so that ffoo tgo(t) dt = 0, then
vol(L™)/vol(L) = e ! (cf. (2.2))). Hence, considering K, = LN {z € R" : (z,u) > a}, a < §, we
have [g(Kq4)]1 — 0 and vol(K, )/vol(K,) — e !, as a — —oo. This proves the final statement of
the theorem. O

Note that the “limit case” p = oo in Theorem [2.2.1] is also trivially fulfilled. Indeed, if f is
oo-concave then f is constant on [a,b] and thus 0 = [g(K)]; = b+ a (see (1.7))), which yields that

a = —b and hence

Vol(K) 2 pose

vol(K—) 1 p+ 1\ PP
2p + 1 '

Remark 2.2. Grinbaum’s inequality (1.2), jointly with its equality case, is collected in the case

p=1/(n—1) of Theorem[2.2.1 Indeed, on the one hand, Theorem[B|implies that the cross-sections

volume function f is (1/(n—1))-concave, and thus (2.5) yields (1.2]). On the other hand, regarding
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the equality case of (1.2)), we note that the fact that f is (1/(n — 1))-affine, combined with the
convezity of K jointly with the equality case of the Brunn-Minkowski inequality (1.1)), implies that

K must be a cone in the direction of the normal vector of H.

Remark 2.3. We point out that Theorem [2.2.1 can be obtained from recent involved results in
the functional setting (more precisely, the case p > 0 is derived from [29, Theorem 1] whereas the
case p =0 follows from [28, Theorem in p. 746] -see also [21, Lemma 5.4] and [8, Lemma 2.2.6]).
Our goal here is to provide a simpler geometric (and unified) proof, inspired by the role of Brunn’s
concavity principle and comparing (the original bodies) with the sets Cp, in the spirit of Grimbaum’s

approach in [16].

2.3 A note on the case of negative concavity

Let K C R" be a compact set with non-empty interior and with centroid at the origin, such that
its cross-sections volume function f is p-concave, with respect to a given hyperplane H. Moreover,
if pe (—oo0,—1)U(—1/2,00), we write for short

)

L (pe1E
P\ 2p+1

where, if p = 0, «q is the value that is obtained “by continuity”, that is,

_ (p +1 )(p+1)/p .
ap = lim =e .
p—0 2p +1

In Theorem we have shown that, whenever p > 0, o, is a sharp lower bound for the ratio
vol(K ™) /vol(K), as a consequence of the fact that [g(Cp)]1 < 0 for the (suitable) set C), such that
vol(C,;) = vol(K~) and vol(C,F) = vol(K™). In the following result we point out that, even for

certain negative values of p, these two conditions are equivalent.

Corollary 2.3.1 ([26]). Let p € (—o0,—1)U[0,00) and let H € G(n,n — 1) be a hyperplane with

unit normal vector w € S*1. Let K C R™ be a compact set with non-empty interior and with

centroid at the origin. If C), given as in Deﬁm’tion with axis parallel to u, is such that
vol(C,7) = vol(K™) and vol(C,") = vol(K™),

p

then the following assertions are equivalent:
(a) vol(K™)/vol(K) > ap;

(b) 8(Cp)lr <0.



16 On Griinbaum type inequalities for the volume

Proof. From Lemma we have

vol(Cp N (g(Cp) + H) )
vol(Cp)

- O[p.

Moreover, by hypothesis, we get
vol(K~)  vol(C,NH™)

vol(K) — vol(Cp)

Therefore, the result now follows from the fact that, for any z,y € R™ such that {z,y}|H+ C C,|H*,
vol(Cp N (z 4+ H)™) < vol(Cp N (y + H)™) if and only if [z]; < [y]:. O

Furthermore, we show that Theorem cannot be extended to the range of p € (—o0, —1).

In fact, we prove a more general result:

Proposition 2.3.1 ([26]). Let p € (—oo, —1). There exists no positive constant 3, such that
- +
0 vol( K )’ vol(K™) > 8,
vol(K) ’ vol(K)
for all compact sets K C R™ with non-empty interior and with centroid at the origin, for which
there exists H € G(n,n — 1) such that f(z) = vol,_1 (K N (z+ H)), x € H*, is p-concave.

Proof. By Lemma for any ¢ € (—oo, —1) we have ag = VOI(C(;)/VOI(C[]), provided that C,

has centroid at the origin. Since oy — 1 as ¢ — —17, we obtain

1(C~ 1(CF
lim min{vo (Cy) vollC, )}: lim (1—o4)=0.

q——1- VO](Cq> ’ VO](Cq) q——1-

The proof is now concluded from the fact that any g-concave function is also p-concave, whenever
q > p. ]

We conclude the chapter by showing that the statement of Theorem [2.2.1] cannot be extended
to the range of p € (—1/2,0) either. To this aim, note that if p < ¢ are parameters for which
Bp and B, are such sharp lower bounds for the ratio vol(K™)/vol(K) (i.e., in the cases in which
f is respectively p-concave and g-concave) then (3, < ,, because every g-concave function is also
p-concave. We notice however that, if p € (—1/2,0), the value obtained by C), is not oy, but 1 — ay,
(cf. (2.3)), and then 1 — oy, > 1 — a9 > 1/2 for any p € (—1/2,0) whereas o, < 1/2 for all p > 0.

Therefore, this fact (jointly with the case in which p € (—o0,—1), collected in Proposition
gives that [0,00] is the largest subset of the real line (with respect to set inclusion) for
which C), provides us with the infimum value for the ratio vol(-~)/vol(-), among all compact sets
with (centroid at the origin and) p-concave cross-sections volume function. However, since a, is
increasing in the parameter p on (—1/2,00), and o, — 0 as p — (—1/2)", it is still possible to
expect aj, to be a lower bound for min{vol(K~)/vol(K),vol(K™)/vol(K)}. Unfortunately, we do

not know so far whether this issue has a positive answer or not.



Chapter 3

(A simple proof of) The functional form
of Grunbaum’s inequality

The interplay between log-concave and p-concave functions and the geometry of convex sets is
one of the main topics of high interest in Convexity, as it can be seen by means of many different

works in the literature of the last decades.

In this regard, it is natural to expect a functional form of Griinbaum’s inequality (1.2). Fur-
thermore, and taking into account its connection with the Brunn-Minkowski inequality (1.1)), one
would claim that the Borell-Brascamp-Lieb inequality should play a relevant role in the possi-
ble proof of such an analytic result. A feasible statement would be the following: there exists some
positive constant C'(n,p), depending on the dimension n and the degree of concavity p, such that
if f:R"™ — R>¢ is a p-concave function, for some p € [0, 00), with compact support, and that is

centred, then
flx)ydz > C(n,p) [ flz)dx (3.1)
H- R™

for any hyperplane H. Moreover, one would expect that (3.1 recovers (1.2)) when considering as f

the characteristic function of a convex body K C R™ with centroid at the origin.

In [29, Corollary 7] the authors provide a positive answer to this question when p > 0, with the

sharp constant
np + 1 (np+1)/p
)
Furthermore, in the log-concave case (i.e., when p = 0), we have the tight constant C(n,0) = e~
(due to Lovész and Vempala [21, Lemma 5.4] -see also [8, Lemma 2.2.6]) and the work [28]).

C(”ap):<

1
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In this chapter, we give a simpler (and unified) proof of the above-mentioned functional form
of Grinbaum’s inequality by using induction on the dimension and the Borell-Brascamp-Lieb in-
equality , where the one-dimensional case arises from a quite direct comparison of (a suitable
power of) the function x +— ff f(t) dt with its tangent line at one point of its graph. For the proof
of the latter, we follow the main ideas of the proof of [2I, Lemma 5.4] (see also [§8, Lemma 2.2.6]),
in which the authors show the corresponding log-concave case (p = 0). The original content of this

chapter can be found in [25].

3.1 The one-dimensional case

This section is devoted to the proof of the one-dimensional case of the functional form of
Griinbaum’s inequality. As we have said before, our approach is based on the main ideas of [21]
Lemma 5.4] (see also [8, Lemma 2.2.6]). We include here the proof in full detail for the sake of

completeness.

Theorem 3.1.1 ([25]). Let f : [a,b] — R>q be a p-concave function, for some p € (0,00). If f is

/a U )t > <p 1 )(pHW / . (3.2)

2p+1

centred then

with equality if and only if f is p-affine.

Proof. First we observe that since [a,b] is the support of f, jointly with the fact that {t € R :
f(t) > 0} is convex, we have that f(¢) > 0 for all ¢ € (a,b) and so the hypothesis of being centred,
namely that

b
/ LE(E) dE =0,
yields a < 0 < b.

Now, let F': R — R>q be the function given by

Fla) = / " f)at.

Then, from the Borell-Brascamp-Lieb inequality (1.9)), F' is a g-concave function, for ¢ = p/(p+1),
and we have that F(z) = 0 for all x < a and F(x) = F(b) for all x > b. Moreover, since f is
continuous in (a,b) (due to the fact that every concave function is continuous in the interior of its

domain), from the fundamental theorem of calculus we have that
F'(z) = f(x) (3-3)

for all € (a,b). Hence, by applying integration by parts we get

/abF(x) dz = b/abf(t) dt — /abtf(t) dt = b/abf(t) dt, (3.4)
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where in the last equality we have used that f is centred.

Thus FY is concave and differentiable on (a,b), and then its tangent at = 0, which is given
by the function hg : R — R defined by

hala) = F(0)(ga + 1),
for « = F'(0)/F(0) > 0, lies above its graph. Then, F(x)? < hy(x) for all z € (a,b) and further
@)1 < hy(x) (3.5)

for all z € (—1/(qev), 00).

F4

Figure 3.1: The functions F'? and h,.

Hence, from (3.4) and (3.5), and taking into account that F(z) < F(b) for all x < b and
F(z) = F(b) for any x > b, we have

/ Ft)dt = / F(t dt_/bl/(qa) F(t)dt
_ / 11/;&) F(t)dt + /1 | Fa
g/_ll/zqa) hg(H)Y/9dt + (b—i) /abf(t)dt
— Fg))(qul)l/qu <b—;> /abf(t)dt

/aof(t)dt:F(O) <q41r1>1/q/f <2p+1> p+1/p/f

Therefore,
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and so (3.2)) follows. Furthermore, equality holds if and only if
F(z) = hq(z)"/
for all z € [a,b] (with a = —1/(qar) and b = 1/«), which is equivalent (cf. (3.3) to the fact that

f(z) = (1/q)hq($)1/lI—1 _ (1/q)hq(x)1/p

for all z € [a,b] (with a = —1/(ga) and b = 1/a). So, since hy is an affine function, the latter
implies that there is equality in (3.2)) if and only if f is p-affine. This concludes the proof. O

Remark 3.1. In [21, Lemma 5.4] (see also [8, Lemma 2.2.6]) it is shown what would be the
corresponding case p = 0 of the previous result. That is, one has that if f : [a,b] — R>q is a

log-concave function, that is centred, then

0 b
/ f(t) dtZe_l/ f(t)dt. (3.6)

Moreover, the inequality is sharp, in the sense that ff f(t)yde/ f:f(t) dt comes arbitrarily close to
e~b (when f is log-affine and a — —o0).

Given a measure 1 on R™ and a compact set K of positive measure p(K), the p-centroid of K
is given by

() = s [ wduta)

Furthermore, in the following we will use the notation (cf. (L.5)))
Kt)={z cR": (z,t) € K},
for any t € R.

The above result allows us to extend Theorem to the more general setting of general

measures.

Corollary 3.1.1 ([25]). Let g = pp—1 X 1 be a product measure on R™ such that p,—1 is a locally
finite measure on R"™! and py is the measure on R defined by duy(t) = ¢(t) dt, where ¢ : R — R

is an s-concave function, for some s € (0,00), supported on [a,b].

Let K C R™ be a compact set of positive measure (K) with p-centroid at the origin and let
H = {z € R" : (z,ey) = 0}. If the function f : R — Rxq given by f(t) = pn—1 (K (1)) is

p-concave, for some p € (0,00), then

W) (1)
“\2¢+1 ’

where ¢ = (ps)/(p + s).
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Proof. By Fubini’s theorem we have that

p) = [ a //]R ) At 1 () dpn (8) /f (3.7)

and, analogously, also that
b
— [ et (3.8)

Now, using that g, (/) = 0, by Fubini’s theorem we also get

O:/K<x en) du(z / /Rn 1tXK Yy, t) dpn—1(y) dpa (1)

g (3.9)
- / LF(B)o(t) dt

Notice also that since f is p-concave and ¢ is s-concave then the function f - ¢ is g-concave for
q=(1/p+1/s)7! (see e.g. [2, Lemma 1.2.4]). Thus, taking into account (3.7), (3.8) and (3.9)), the
result now follows from Theorem [3.1.1] O

3.2 The general case

We conclude this chapter by showing the n-dimensional case of the functional form of Griinbaum’s

inequality.

Theorem 3.2.1 ([25]). Let f : R" — Rx>q be a p-concave function, for some p € [0,00), with
compact support, and let H be a hyperplane. If f is centred then

np + 1 (np+1)/p
) flx)dx > <(n—|—1)p—|—1> - f(z)dz, (3.10)

where, if p =0, the above identity must be understood as

=€

o mpa1 O
p—0t \(n+1)p+1

Proof. The case n =1 is collected in Theorem (see also Remark for the case p = 0), and

so we suppose that n > 2.

Assuming without loss of generality that v = ej, let g : R — R>( be the function given by

9(t) = /Rnl f(t,y) dy.

Since f is p-concave with compact support, there exist a,b € R such that [a, b] is the support of g.
Moreover, from the Borell-Brascamp-Lieb inequality (1.9)), g is g-concave, for ¢ = p/ ((n —1)p+ 1).
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On the one hand, by Fubini’s theorem we have

- f(a:)dx:/OOO/Rn_lf(t,y)dydt:/aog(t)dt,

and also .
f(z)dx :/ g(t) dt.
R a
On the other hand, since f is centred, from Fubini’s theorem we get

/ab tg(t) dt = /n (z,e1) f(z)dz = 0.

Thus, using that g is g-concave and centred, if p > 0 (and thus ¢ > 0) we may apply Theorem
to obtain that

0 (¢+1)/q b
[ wae= [amaz ()7 [

apt 1\ PP
= —— dz.
<(”+1)p+ 1) Rr fa) da

Finally, if p = 0 (and hence ¢ = 0 as well) we may apply (3.6]) to obtain

0 b
= e ! =e ! x)dx.
[ jwe= [Cawarz e [Cgar fl)d

R‘IL

This concludes the proof. ]

Observe that if f = x, is the characteristic function of a convex body K C R" with centroid
at the origin, we have that f is centred on the one hand, and that f is co-concave on the other
hand, and hence p-concave for any p > 0. Thus, holds for all p > 0 and then, taking limits
as p — oo in both sides, infers.



Chapter 4

On ¢-concave extensions of Grunbaum
type inequalities

In Chapter [2| we showed that Griinbaum’s inequality can be enhanced in terms of the
concavity nature of the function f : H+ — R>g, asssociated to a convex body K C R" and
a hyperplane H, given by f(z) = vol,—i(K N (z+ H)), and furthermore that this result may
be extended to the case of compact sets, not necessarily convex, for which such an f (for some

hyperplane H) satisfies certain concavity assumption.

At this point, in the spirit of what happens in the setting of operations of convex bodies, in
which the Ly-addition (see [10], [22] and [31], Sect. 9.1]) is extended to the Orlicz-sum (see [14] and
[15]) with respect to a convex and strictly increasing function ¢ : R>g — R>g with ¢(0) =0, it is
natural to wonder about a possible Griinbaum type inequality for the family of those compact sets
K such that (there exists a hyperplane H for which) ¢ o f is concave, with ¢ being an Orlicz-class
function (convex, strictly increasing and ¢(0) = 0). Moreover, one could expect to obtain a family
of inequalities depending on a function ¢ that may recover when ¢(t) = tP if p > 0, and
if ¢(t) = log(t), getting therefore a further generalization of (I.2).

Throughout this chapter, we will prove that if the cross-sections volume function of a compact
set K C R" (of positive volume) with respect to some hyperplane H passing through its centroid
is ¢-concave, then one can find a sharp lower bound for the ratio vol(K~)/vol(K). Moreover, we
will study other related results for ¢-concave functions (and involving the centroid). The results

collected in this chapter can be found in [24].
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4.1 Some preliminary results

We start this section by showing that if the cross-sections volume function f (of a compact
set K C R"™ with non-empty interior) is ¢-concave in the direction of the normal vector of the
hyperplane H, with ¢ being an Orlicz-class function, then 4/9 is a lower bound for vol(K ™) /vol(K).

More precisely, we have:

Proposition 4.1.1 ([24]). Let K C R™ be a compact set with non-empty interior and with centroid
at the origin. Let H be a hyperplane such that the function f : H- — Rsq given by f(z) =

voly,_1 (K N (x+ H)) is ¢-concave, for some Orlicz-class function ¢ : R>g — R>o. Then
vol(K ™) S 4

vol(K) — 9

Proof. Let ¢ := ¢~ and let 51 = ¢(t1) and s3 = ¢(t2), for some t1,t2 € R>g. Thus, for every
A€ (0,1),

P((1=N)s1 4 As2) = @((1 = N)o(t1) + Ap(t2)) > <P<¢((1 - Mt + At2)>
= (1= XNt1+ M2 = (1 = N)p(s1) + Ap(s2),
because ¢ is strictly increasing and convex. Hence ¢ is a concave function on its support.

Furthermore, using that ¢ is concave together with the fact that the function ¢ o f is concave,
we deduce that, for all A € (0,1) and any =,y € R"™ with f(z)f(y) > 0,

=Nz + ) = o((1= V(@) + 26/ (1))
> (1= N)f(2) + A ()

and thus f is concave on its support.
Finally, using Theorem with p = 1, we obtain that
vol(K™) _ 4
vol(K) — 9’

as we wanted to see. O

Remark 4.1. Although some assumptions on such a function ¢ must be assumed, as we have seen
in Proposition[{.1.1], the case of ¢ being an Orlicz-class function is deduced directly from Theorem
2.2.1. Therefore, within the rest of chapter, we will focus on the case of ¢ : R>g — R U {—o0}

being a strictly increasing function.

Since the aim of the chapter is to obtain a family of inequalities recovering and ,
observing that in [26] (and also in Griinbaum’s original proof collected in [16]) the compact sets
are compared with sets of revolution given by a p-affine function with p > 0, it seems natural to
work now with sets of revolution associated to a ¢-affine function. This leads us to the following

definition.
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Definition 4.1. Let ¢,6 > 0 and v € R be fized and ¢ : R>9g — RU{—o00} be a strictly increasing
function satisfying that limy_,o ¢(t) = co. Then, setting p :== ¢~ 1, gy : (—y + $(0)/c, 8] — Rxg
is a non-negative function given by ge(t) = p(c(t +7)).

Let u € S"~! be fired. By Cy we denote the set of revolution whose section by the hyperplane
{z € R": (z,u) =t} is an (n — 1)-dimensional ball of radius (gd)(t)/fin_l)l/(”_l) with azis parallel
to u. (We would like to warn the reader that, in the following, we shall use the word “radius” for

such a generating function (g¢(t)/&n,1)1/("_1) of the set Cy, for short.)

Therefore, we shall start by computing the value of the ratio vol(-~)/vol(-) for the above-

mentioned sets Cl.

Lemma 4.1.1 ([24, Lemma 2.1]). Let ¢ : R>g — RU{—00} be a strictly increasing function and

let H € G(n,n — 1) be a hyperplane with unit normal vector v € S*~'. Let 9o and Cy, with axis

parallel to u, be as in Deﬁnition for any fized c¢,d > 0 and v € R. Then, if Cy has centroid at

the origin and ¢ = ¢~ satisfies that fq(s](o) p(s)ds < oo and ’fq?(O) sp(s) ds’ < 00, we have
VO](C(;) :(:(%) o(s)ds

vol(Cy) fdﬁo) o(s)ds’

_ fﬁo) sp(s)ds

where x, = 17 o and R = ¢(d + 7).

Proof. On the one hand, by Fubini’s theorem, we obtain

) 1 [e(é6+7)
vol(Cy) = / o(c(t+7))dt = - / ©(s)ds.
—1+6(0)/c € J6(0)
Therefore, from the hypothesis g(Cy) = 0, we get that
1 1)
0= |g(C = / to(c(t+y))dt
I Tonl A ()

if and only if

Hence, for R = ¢(§ +7),

Finally, we have that

— 0 c T
VOl(C(z) ) B ffﬁfﬂ)(o)/c o(c(t+7))dt ¢&)) o(s)ds _ f¢(“8) p(s)ds

vol(Cy) fiqub(o)/c <p(c(t + ’y)) dt fﬁo) o(s)ds fqﬁo) ©o(s) ds’

This concludes the proof. ]
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4.2 The case of the volume

Once the possible extremal cases have been studied in Section we are in conditions to prove
one of the main theorems of the chapter. Although the proof we collect here exploits the original
idea used by Griinbaum in [I6] (and follows similar steps to that of [26] Theorem 1.1]), we include

here the details to make reading easier.

Theorem 4.2.1 ([24]). Let K C R™ be a compact set with non-empty interior and with centroid
at the origin. Let H be a hyperplane such that the function f : H- — R>o given by f(z) =
vol,—1 (K N(z+ H)) is ¢-concave, for some strictly increasing function ¢ : R>og — R U {—o0}

with im0 ¢(t) = oo, f¢ s)ds < oo and f¢(0) se(s )ds < o0, where ¢ := ¢~t. Then, if
F: (4(0),00) — Ry is the functwn given by F(t f¢ s)ds, we have that
e(s)d
Vol1 f ’ (4.1)
vol(K f¢(0) ©o(s)ds

Sty ss) ds _ vol(K
where T, = % and R=F 1<F(gb(f(0)))vol((K_))>.

Proof. First, we set the function g4 : (—y 4+ ¢(0)/c, ] — R given by g4(t) = ¢(c(t + 7)) with
¢,6 >0 and v € R such that g4(0) = £(0),

0 0 5 ,
/ W)(O)/ngs(t)dt: /a f(t)dt and /0 gg(t) dt = /0 f(t)dt. (4.2)

Indeed, if we set the function F : (qﬁ(O),oo) — Ry as F(t f¢(0) ©(s)ds, since ¢(t) > 0 for
all t > ¢(0) (note that ¢ is defined on (¢(0),00) because hmt%oo ¢(t) = o00), then F' is a strictly
increasing function and so there exists F~!: Ry — (qS(O), oo). Hence, if qb(f(O)) £ 0, taking

£(0) _¢(f(0))
F(6(f(0))) /f ‘T

o)

elementary computations show (4.2]) (we also note that, since F~! is strictly increasing and

-t (c/aof(t) dt) ,

we actually have § > 0), whereas if ¢(f(0)) = 0, taking v =0,

c= _Fo and § = %Fﬁl <c /abf(t) dt> , (4.4)

and

(4.3)
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we also have (4.2)). And note that, in any case, —y + ¢(0)/c < 4.
In other words, for the set of revolution Cy of radius (gqg(t)/ﬁn,l)l/(n_l), we have vol,,_1 (Cy(0))
= VOlnfl (K(O)) 5
VOI(C¢_) =vol(K™) and Vol(Cdj’) = vol(K™). (4.5)

And thus, in particular, vol(Cy) = vol(K).

From the concavity of ¢ o f, together with g4(0) = f(0) and thus (gzb o g¢)(0) = (gb o f) (0), the
fact that ¢ o g4 is affine and (4.2)), we get on the one hand that —y + ¢(0)/c <a <0< <b. On
the other hand, defining the functions f, s : (—v + ¢(0)/c,b] — R>¢ given by

o) f@) iftela,b], B ) ge(t) ifte (=y+#(0)/c,d],
)= { 0 otherwise, and - go(t) = { 0 otherwise,

we may conclude that there exists z¢ € [a,0) such that f(t) > g4(t) for all t € [z0,0] U [4,b] and
f(t) < gs(t) otherwise. Hence, since g(K) = 0, from (4.2 we have

) b 1)
_ / g (t) dt = / LE(E) dt — / g () dt
) “ o)/

b
:/ H(F () — go(t)) dt

—7+9(0)/c

0 b
= [ HF@ = gete) e [ (70 - gult)

—7+¢(0)/c

0 b
[ a0 - g ek [ (- 570 - gu0) a0

—+¢(0)/c

with equality if and only if f = g, almost everywhere. Thus, we have [g(Cy4)]1 < 0, and then,

vol(Cy) _ vol(Co (8(Co) + H) )
vol(Cy) — vol(Cly) '

Finally, from (4.5) and Lemma we get that

vol(K™) VOl(Cd,*) - VOI(C¢ N (g(C¢) + H)f) f;(%) @(s)ds

vol(K) — vol(Cy) — vol(Cy) N fqﬁo) o(s)ds’
where from (see (4.3) and ([.4)), R=F~! <F(¢(f(0))) V‘;?(I(If))) O

Remark 4.2. Inequality is (asymptotically) sharp:

o if the function ¢ : R>g — R satisfies that ¢(0) > —oo, then there is equality if and only if

f = g4 almost everywhere.
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o Otherwise, that is, if $(0) = —oo, considering the set Cy with centroid at the origin and, for
simplicity, § = 1, from Lemma[{.1.1 we know that

vol(C) _ ffgo o(s)ds
vol(Cy) ff’oo ©(s) ds

Hence, if we consider K, = Cy N {x € R" : (x,u) > a}, a < 1, we have [g(K,)]1 — 0 and

L vol(Ky) J22 p(s)ds
a——oc vol(Kq) ffzoo o(s) ds

Remark 4.3. On the one hand, (2.5)) is collected in the case of f being ¢-concave with ¢(t) = tP
€ (0,00). In this case, o(t) = tY/? and a straightforward computation shows that

foc(5+7) s(p+1)/p ds p +1
f06(5+7) sl/p ds 2p +1

c(0+7).

Ty =

Thus,

f(;v(‘g) p(s)ds  [reglinqs <p+ 1 )(p+1)/p
fﬁo) p(s)ds fOC(Hw sl/pds 2p+1 '

On the other hand, (2.6) can be recovered when f is ¢-concave with ¢(t) = log(t). Concerning

this case, considering by convention log(0) = —oo, we have that
fc(5+’7) sesds
Tp="—————=c(0+7)— 1.
v ff(o?_w esds
Hence,
Joy #9005 [Tetds

fﬁo) o(s)ds f_cgi—w) esds

as we expected.

4.3 A note on ¢-concave functions

Throughout this section, our focus will be on ¢-concave functions and their behavior with
respect to the centroid. To this regard, we start by showing that, exploiting the approach used
in [23] Theorem 3.1] we can also prove, in the same more general setting of ¢-concave functions
(for some unbounded strictly increasing function ¢), a Griinbaum type inequality for the volume
of cross-sections of compact sets with centroid at the origin, which is furthermore a consequence of

the following more general result for centred functions:
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Theorem 4.3.1 ([24]). Let f : [a,b] — R>o be a non-negative (and not identically zero) centred
function. Then, if f is ¢-concave for some strictly increasing function ¢ : R>g — RU{—o0} with

limy 00 ¢(t) = 00, fd?(O) ¢(s)ds < oo and ‘f(f(o) sp(s) ds‘ < 00, where ¢ := ¢~ L, we have

& P(@y)
L= e(R)

(4.6)

_ fqﬁ'o) sp(s)ds

where x, =
® f(ﬁo) w(s)ds

andR:¢(|f|Oo).

Proof. On the one hand, we can assume, without loss of generality, that |f| = f(to) with 0 <
to < band f(0) < f(to) (otherwise there is nothing to prove).

On the other hand, since f is centred, we get that

b
/ tf(t)dt = 0,

and hence,

0 b to
/a(—t)f(t)dt:/o tf(t)dtz/o LE(E) dt. (4.7)

Now, let g, : (= 4+ ¢(0)/c, to)) — R be the function given by g4(t) = ¢(c(t + 7)) such that
96(0) = f(0) and gy(to) = f(to). Thus, if ¢(f(0)) # 0,

B o(f(0)) ~ 9(f(0)
’V‘t0<¢(f<to>>—¢<f<o>>> and =T

Otherwise, when ¢(f(0)) = 0 we have that v = 0 and ¢ = ¢(f(to))/to. Note that, in any case, we

get that ¢ > 0 because ¢ is strictly increasing.

Notice also that since ¢ o g4 is an affine function and ¢ o f is a concave function, and taking
into account that g,(0) = f(0) and g4(to) = f(to), we have that ¢(g4(t)) > ¢(f(t)) for all ¢ € [a, 0]
and ¢(g4(t)) < ¢(f(t)) for all t € [0,¢0]. Thus, using that ¢ is increasing, we get that ge(t) > f(t)
for all ¢ € [a,0] and gy(t) < f(t) for all ¢ € [0, ], and hence, from (4.7), we get

0 0 0
/ (—t)gp(t) dt > / (—t)g(t) dt > / (—0)f(t) dt

—7+¢(0)/c

to to
> /0 EF(E) dt > /0 tg(t) dt.

Therefore,

to 1 (1 reltot) c(to+7)
0 2/ tge(t) dt = — / sp(s) ds—v/ p(s)ds |,
—y+(0)/c ¢\ ¢ Jo0) $(0)
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which implies, taking into account that R = qS( f (to)), that

R
Jo(o) s0(s) ds
To=—f < cy.
f¢(o) ¢(s)ds
Finally, putting all these facts together and taking into account that ¢ is strictly increasing, we
conclude that
fO) _99(0) _ pler)  plzy)

fto)  golto)  ¢(clto+)) — »(R)
This concludes the proof. O

Remark 4.4. Note that, if we consider a compact set with centroid at the origin, then the cross-
sections volume function is centred as a consequence of Fubini’s theorem. And so, if the cross-
sections volume function is ¢-concave (where ¢ is a function in the conditions of Theorem ,

then (4.6)) holds.

We end this chapter by showing the suitable extension of [I1, Lemma 1 and Theorem 2] to the
setting of ¢-concave functions. Although we exploit the techniques there used, we include here all

the details of the proofs for the sake of completeness.

Lemma 4.3.1 (|24, Lemma 3.1]). Let K C R™ be a conver body with non-empty interior. If
f+ K — R>q is a non-negative (and not identically zero) function such that for a given strictly
increasing function ¢ : R>g — R>q the function ¢ o f is concave, then for every interior point xy
of K there exists a hyperplane H € G(n,n — 1) such that

f@1) = max f(z)

Proof. First, since x; is an interior point of K we know that f(x1) > 0. Now, if we define the
set K = {(x,t) ER"xR:ze K, 0<t< gb(f(x))}, considering that ¢ o f is concave, then K is a
convex body. Thus, taking into account that the point (acl, qﬁ( f (;1:1))) belongs to the boundary of
K, we have that there exists a support hyperplane H passing through that point, i.e, there exists
a point (y,s) € R x R such that, for every (z,t) € K,

(@ —a1,9) + (t= 0 (F(21)) )s < 0.

Furthermore, knowing that (v1,0) € K, we have that ¢(f(z1))s > 0 and hence, since ¢(0) = 0
(and f(x1) > 0) together with the fact that ¢ is strictly increasing, we get that s > 0. Moreover,
if s = 0, then every = € K satisfies that (x,y) < (x1,y) and thus, H = {z € R" : (z,y) = (z1,9)}
would separate x1 and K, which is a contradiction with the fact that K is convex and z; belongs

to its interior.

Therefore, s > 0 and for every x € K N H we have that gb(f( )) - gb(f(ml ) 0 (smce
(m,d)(f(x))) € .f() Then, using again that ¢ is strictly increasing, we obtain that f(z) < f(z1),

as we wanted to see. O
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Theorem 4.3.2 ([24]). Let K C R™ be a convex body with non-empty interior. Let f : K — R
be a non-negative (and not identically zero) function such that ¢ o f is concave, for some strictly

increasing function ¢ : Rsg — Rso. Then, writing ¢ :== ¢, we have

o(fzp) | I'"w.R)

o(Ifle) = I e, R)
where I"( f —s/R)"p(s)ds, x = Jgml@de g R~
#(0 S B R an *¢(|f’oo)

Proof. First, if we consider the point z; previously defined, using Lemma we get that there
exists a hyperplane H such that f(z;) = maxgng f(x). Therefore, without loss of generality, we
can assume that 0 € K and |f|,, = f(0) > f(x¢). Then 0 ¢ H, which implies that H = {x € R" :
(x,u) =1} for some u € R", u # 0.

Now, we define the sets Dy = K N H, D = posDy and the function ¥ : R" — R given by
p((L=m)e(f(0) +rd(f(x0)) i (1—r)(¢of)(0)
U(rzg) = +r(¢ o f)(z0) = ¢(0),
0 otherwise,
for any xg € Dy and all » > 0, and ¥(x) =0 if z ¢ D.
Then, on the one hand, taking into account that ¢ o f is concave we get

(poW)(rxg) < (¢po f)(raxg) forall 0<r<1 (4.8)

and any xg € Dy.

On the other hand, for any xg € Dg and r > 1 such that rzp € K, and taking A = 1/r, we have
that

(¢ o f)(xzo) = (¢0 f)((1 =)0+ A(rao))
(L=X)(¢o f)(0)+ A(¢o f)(rxo).

v

Hence,
r(¢o f)(wo) = (r—=1)(d0 f)(0) + (¢ 0 f)(rzo),
and thus
(L=7)(¢o f)0)+r(do f)(zo) > (¢o f)(rzo),
implying (using that f(rzo) > 0) that
(L=7)(¢0 f)(0) +r(do f)(x0) = ¢(0)

for all » > 1 such that rxp € K. Taking into account the latter (and that ¢ o f is concave), when
r > 1 and rrg € K we have

(60 ) (rw0) = (1 =7)(¢0 £)(0) + (¢ 0 f) (a0)
> (1=7)(60 £)(0) + 1A= N)(60 £)(0) +rA(0 f) (T)
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for every A € (0,1]. Hence, if we set A = 1/r, this yields
(poW)(rao) > (¢o f)(rag) foral r>1 (4.9)
such that rzg € K (for xg € Dy).

Then, using that ¢ is strictly increasing, from (4.8) and (4.9) we get that ¥ < fin K N H~
and U > fin KNHT.
Moreover, on the one hand, if we define the point xy as
Jpx¥(x)de
TY = =7~ 1
[p ¥(x)dx
we obtain that
fD (x —xp,u) ¥(r)de _ fD(<x7u) —1)¥(x)dz
[p ¥(x)dx Jp ¥(x)dx ’
which yields, using the previous two relations, that ((x,u) —1)¥(z) > ((z,u)—1)f(z) forall x € K.

<x‘1’_xf7u>:

Hence, since the point z; belongs to H, we deduce that

/D(<a:,u> — )Y (z)dx > /K(<x,u> —1)¥(x)dx > / ((x,u)y —1)f(x)dx =0,

K
and thus we have that (zy,u) > 1.

On the other hand, for all z € D with ¥(z) # 0 we have

W) = w((l ~ () + o7 ( (gjw)))

- <p<¢(f(0)) (1- ﬂf(’jjj)),
)) . Then, using Fubini’s Theorem, we obtain that
/D (1) U(z) dz = /D <x,u><p<¢(f(0)) <1 - ij}”(;;)) da

:/OOO /{xeR":(w,U>=0} Xp (2 + tu)ty (cb(f(O)) (1 — w» dzdt,

where, doing the change of variables z = ty and using that ¢ (tx) = (), we deduce again from
Fubini’s theorem (jointly with the definition of ¥) that

/D (z,w)¥(z) dz

N /ooo /DO e <¢(f(0)) <1 — Jw))) dw dt
:/DO /Ow(w)(lab(ow(fw))) t"p <¢(f(o)) <1 _ w(i}))) At dw.
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Hence, doing the change of variables s = qb(f(O)) (1 — t/w(w)), we get

D
_ 1 o) Y
s o L s (1= s ) o

— L w)" T dw ¢(f(0)) R — >n s)ds
~ ¢(£0)) Jp, w)y™"d (/¢(0) ! ¢(f(0)) ela)d

_ 1 n wn+1 w
_¢>(f(0))1 (v, R) Dow )" dw.

Furthermore, using the same technique, it is easy to see that

z)dx = ! n—1 w)" dw
/Dw o= S e [ v

and then,

In((p,R) fDo '¢(w)n+1 dw - In(sp’ R)) max .

LR S TEGR) v e~ TR

Finally, using the previous lemma, for every point x € Dy we have

s(f)  __ ¢(f(0)
o(F(0)) = 6(F(x) ~ &(£(0)) — &(f(xy)

(z) =

and hence,

I"(p, R)$(/(0)) |
1Y, R) (6((0)) = 6(f ()

1 < (xg,u) <

The latter yields
ITL
o(te) = (1= eyt ) olro))

as we wanted to see.
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Chapter 5

Cutting the body through other points

One way of interpreting Griinbaum’s result is that, given any convex body, we can always
find a point within the set (the centroid) in such a way that cutting the body through a hyperplane
passing by this point results in two sets with a significant proportion of the total volume. Consid-
ering this, a natural question arises: is there a family of points, potentially including the centroid,
also exhibiting this property? Furthermore, are there other special points with similar properties

worth exploring?

Along this chapter, together with the study of some other cases, we will extend Griinbaum’s
result (and Theorem to the case in which the hyperplane H passes by any of the points
lying in a whole uniparametric family of r-powered centroids associated to K (depending on a real
parameter r > 0), by proving a more general functional result on concave functions. The original

content of this chapter is collected in [1].

5.1 A first approach

When dealing with potential candidates for those points we have mentioned before (that is, that
ensure a big amount of volume for both sets that are obtained when cutting the original body by a
hyperplane passing through them), one could first think about the incenter and the circumcenter
of a convex body. We start this section by showing that it is not possible to get an anologue of
Griinbaum’s inequality if we assume that one of these points is at the origin instead of its

centroid.
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On the one hand, regarding the case of the circumcenter, if we consider the planar set K; given
by the convex hull of a right triangle with hypotenuse at the y-axis and opposite vertex placed at
e1, and the point (—t,0), for ¢ > 0 arbitrarily small (see Figure |5.1]), then we clearly obtain that

the circumcenter of such a set lies at the origin (for any ¢ small enough). However, we have that

vol(K; ) t
VOI(Kt) - 1 —I—t7

and hence, we get lim,_,o+ vol(K, )/vol(K:) = 0.

CEN
NVZ

Figure 5.1: A set with circumcenter at the origin but with a small ratio of volumes.

On the other hand, considering the planar set K; = COHV(B2 U {(t,())}) (see Figure , it is
clear that the incenter of K; is at the origin for every ¢t > 1. Therefore, K, does not depend on ¢,
and we clearly have that limy_,~ vol(K; )/vol(K;) = 0.

Figure 5.2: A set with incenter at the origin but with a small ratio of volumes.

As we have seen, one can easily find “special” points for which it is not possible to get an
analogue of Theorem Now, by considering the midpoint in the direction u of K, instead of
its centroid, that is, the point [(a +0b)/ 2] -u, we will show that a positive answer for the previously

posed question is possible. This is the content of the following result.
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Proposition 5.1.1 ([I]). Let K C R™ be a compact set with non-empty interior and with midpoint,
with respect to some direction u € S*7L, at the origin. Let H = {x € R" : (z,u) = 0} be
the hyperplane with normal vector u and assume that the function f : H+ — R>o given by
f(x) = voly,—1 (K N (z + H)) is p-concave, for some p € (0,00). Then

vol(K ™) - <1> (p+1)/p

vol(K) 2

Proof. In the proof of Theorem [2.2.1]it is shown that there exists a non-negative p-affine function
gp : [—7, 9] — Rxq given by g,(t) = c(t + 7)/P, for some v, d, ¢ > 0, such that gp(0) = £(0),

/_i gp(t)dt = /ao f(t)dt and /05 gp(t)dt = /Ob F(1) dt,

and further that —v <a <0< 4§ <b.

Here, since K has its midpoint (w.r.t. u) at the origin, we have that a = —b and then we get
—v+ 06 <0. Thus

)

vol(K ™) fi)—y gp(t) dt S f£;7+5)/2 gp(t)dt (1 (r+1)/p
VoK) 2 gty 2 gyl - (3)

2
as desired. O

At this point, having in mind Theorem [2.2.1] and Proposition to figure out such a possible
family of points we notice that, fixed a unit direction u € S*~!, the corresponding components

w.r.t. u of both the centroid and the midpoint have a similar nature. Indeed, the component of
g(K) w.r.t. uis given by (see (1.7)))

(=

1 b IR
gmm_mmﬂlﬁm&_ﬁﬂW&’

whereas the corresponding component of the midpoint is

a+b  JUtf(t)°dt
2 Pr@yodt

Thus, with the above-mentioned aim in mind, it seems reasonable to consider the points g, - u,

where
[Pty at
TP ryrat

for any » > 0. In fact, following the same idea as in [I1, Theorem 3], we can get a first result

(5.1)

concerning this family of points. The statement reads as follows.
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Corollary 5.1.1 ([1]). Let r € (0,00) and let K C R™ be a compact set with non-empty interior
having the point g, - u, with respect to some direction u € S*~!, at the origin. Let H = {x € R" :
(x,u) = 0} be the hyperplane with normal vector u and assume that the function f : R — Rxq
given by f(t) = voln,l(K N (tu + H)) is p-concave, for some p € (0,00). Then

vol(K ™) >< D )(p+1)/p

vol(K) — \2p+r (52)

We will derive Corollary as a simple application of the following (slightly more general)

functional result.

Proposition 5.1.2 ([I]). Let K C R™ be a convex body. Let g : K — R>q be a concave function
and let f : K — R>q be a p-concave function, with p > 0. Then

(B2 () e

Proof. Let p be the probability measure whose density function is given by

du(z) = Ldm.

fo(x)d:L'

Since g is concave, using Jensen’s inequality (1.8) we get that

Q(W) o ([ van@)) = [ s aut = | " e € K- gla) > 1))

where in the last identity we have used Fubini’s theorem. Now, since the density of u, with respect

to the Lebesgue measure, is p-concave, from the Borell-Brascamp-Lieb inequality , we have
that the function p(t) := p({z € K : g(z) > t}) is (p/(np + 1))-concave. Hence, and taking into
account that ¢(0) = 1 and ¢(|g|os) > 0, we may assure that o(t)?/ "1 > (1 — t/|g|s) for all
t € [0,]g|oo]- So, by integrating we obtain that

|9]o0s

|9] 0o |9] oo
x calx _ (nptV)/p gy — (P
/0 plle € K g@) 2 1)) dtz/o (L= /lgloo) ™0 dt <(n+1)p+ 1>

from where the result immediately follows. O

We conclude this section by showing Corollary

Proof of Corollary[5.1.1. Denoting by [a, b] the support of f, let f,g : [a,b] — R>o be the func-

tions given by

t p/(p+1)
g(t) = vol(Kn(tu+H) ™) @) = < / £(s) ds> and f(t) = vol, 1 (KN(tu+H)) = f(t)".
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By hypothesis, it is clear that f is (p/r)-concave, whereas from the Borell-Brascamp-Lieb inequality
(1.9), we have that g is concave on [a,b]. So, from Proposition applied to the functions f and
g, and taking into account that g, = 0, we get that

byF (P+1)/p (+1)/ (r+1)/
vol(K™) =g M > p e |g|®tD/P = p g pvol(K)
ff F(t)de “\2p+r o0 2p+r ’

as desired. ]

5.2 General Grinbaum type inequalities involving a uniparametric
family of points

During this section, we will show that the uniparametric class of points given by {g,-u : r > 0},
where g, is given by , allows us to extend Griinbaum’s inequality (or more generally Theorem
to the case in which one replaces the classical centroid by any of them. Moreover, two tighter
inequalities improving the one that was shown in Corollary will be obtained. More precisely,
we will enhance the constant given by , namely, (p/ (2p + r))(p /P , by other two constants
(depending on whether 7 is either less than one or greater than one). Furthermore, these new
constants do fit well with , since, in fact, they all coincide when r = 1, that is, when one
considers the centroid of the set. The precise statement of our main (geometric) result reads as

follows.

Theorem 5.2.1 ([I]). Let r € [0,00) and let K C R™ be a compact set with non-empty interior
having the point g, - u, with respect to some direction u € S*~!, at the origin. Let H = {x € R" :
(z,u) = 0} be the hyperplane with normal vector u and assume that the function f : H- — R>o
given by f(z) = vol,—1 (K N (z + H)) is p-concave, for some p € (0,00). If r > 1 then

)

VOI(K_)> p+1 (p+1)/p
vol(K) — \2p+r

whereas if 0 < r <1 then

VOI(K_)> p4r PP
vol(K) — \2p+r '

Notice that the cases r = 1 and r = 0 correspond to Theorem and Proposition [5.1.1
respectively. Taking into account that, once a unit direction v € S*~! is fixed, the above geometric
results are reduced to the study of one variable functions with certain concavity, here we deal with
the corresponding functional counterpart of these statements (from which the latter result will be

obtained as a consequence of such an equivalent functional one). To this aim, first we need to
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define the notion of functional a-centroid: given a non-negative function h : [a,b] — [0, 00) with

positive integral, for any o > 0 we will write

o

- [ th(t)>dt
ga(h) = 7[; ) dt . (5.4)

Now, the statement of our main result reads as follows.

Theorem 5.2.2 ([1]). Let h : [a,b] — [0, 00) be a non-negative concave function, and let o, § > 0.
If 8 < « then

Sy H(8)° - <B + 1>5+1

5.5
[ h(t)s at a+2 (5:5)
whereas if a < B then
b
Sy ()7 dt N <a + 1>5+1 (56)
[Ph@ypar — \a+2 ' ‘

Remark 5.1. We observe that Theorem |5.2.1| is directly obtained from the previous result by
just taking h = fP, B = 1/p and o = 3 (where the case r = 0 is derived when doing o — 07 ).
Moreover, Theorem[5.2.3 can be shown from Theorem[5.2.1] by just considering the set of revolution
K associated to the radius functionr = (1/kp_1)fY/" D, f =hP, p=1/B andr = o/ . Therefore,
in fact, both results (Theorems|5.2.1 and|5.2.2) are equivalent.

We would like also to point out that, apart from the already mentioned Theorem [5.2.1] and thus
in particular Theorem and Griinbaum’s inequality, both Theorems [D] and [E] can be derived
as direct applications of Theorem

Indeed, on the one hand, applying Theorem with h = f 1/(n=1) " which is concave because
of Brunn’s concavity principle (see e.g. [8, Section 1.2.1] and also [27, Theorem 12.2.1]), and taking
a=n—1and B — 0", one gets b/(b—a) > 1/(n + 1), which is exactly ((1.3).

On the other hand, applying Theorem with h = f1/(=D o = n — 1 and taking 8 — oo
(by raising first both sides of ([5.6) to the power 1/3), one has

(maxte[o,b] f(t)>1/(”_1) .o 51

‘f‘oo “n+1

Since we may assume without loss of generality that |f|e > max,cpy f(t) (considering otherwise
the function ¢ +— f(—t)), we then get max,c(o) f(t) = f(0) (since f is (1/(n—1))-concave and thus
quasi-concave), and therefore (5.7 is nothing but (1.4]).

In order to make the reading easier, we shall divide the proof into several sections. Firstly, we
will provide some general considerations and next we will explore two separate cases to distinguish

whether 5 < a or a < .
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5.2.1 Some preliminaries concerning the proof

Here we are going to slightly modify the approach followed in [33, Theorem 8] (which is equiv-
alent to our case 5 =n — 1) in order to cover all the cases for a general concave function h, which
will allow us to show Theorem To this aim, we split the proof into two steps, depending on
whether 8 < a or a < 3. Note also that the case a =  is equivalent to the statement of Theorem
(by just taking p := 1/a = 1/8 and f = h® = hP®). Before distinguishing whether 3 < « or

«a < [, we make some general considerations.

We may assume, without loss of generality, that a = 0. Now, let L C R? be the convex body
L= {(x,y)ERQ : OSbe,OSySh(x)}
and notice that, from Fubini’s theorem, we have

_ Joth®dt_ [y leen) (@ en)ot da (5.8)

ga(h) — fob h(t)o‘ dt fL<x’ ez>o¢—1 dz

Let pg be the measure on R? given by dug(z) = (z,e2)? ! dz. Then

Jo (@, e1) (@, e2) P dpg(x)

ga(h) = fL<IE,62>O‘7'B d,uﬂ(.’E)

and

fgba(h) h(t)” dt _ f{:}cGL:<m,e1>2ga(h)}<$762>5_1 da
Jormfdt [ (. e2)P T dz
_mplr € L (ze1) > ga(h)}
- pp(L) '

We may assure that there exist v < § and ¢ > 0 in such a way that the affine decreasing function

g:[v,0] — [0,00) given by
g(t) = (6 — 1)

satisfies

(i) g(ga(h)) = h(ga(h))a

(i) [2gt)?dt = [y h(t)’dt, and (5.9)

Indeed, taking

_& ’ B oo Meallt)) . (B2 b 5
T h(ga(h)” /gaaw M7 it galh), o= 5 Ty v =0 ( P /0 h(t) dt) :

elementary computations show ([5.9)).
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Figure 5.3: Sets L and L,.
Then, denoting by L, C R? the triangle (see Figure given by
Ly:={(z,y) €R? : y <2 <6,0<y<g(a)},

from (ii) and (iii) in (5.9) (by using Fubini’s theorem) and the relative position of h and g (see
Figure , we have that

(i) ps(L) = pp(Ly),

(i) js ({ € L+ (1) > galh)}) =ps ({2 € Ly : (1) > ga(R)}), (5.10)

b )
Figure 5.4: Relative position of the functions h and g.

Moreover, defining g(¢) := 0 for all ¢ € [0,7] and h(t) := 0 for any t € [b,0], there exists
zo € (ga(h),b] such that h(t) > g(t) for all ¢ € [0,7] U [ga(h),z0] and h(t) < g(t) otherwise (see
Figure[5.4]-there, observe that z coincides with b). Hence, on the one hand, for every s € [gq(h), zo]
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(the case of s > xp immediately follows) we get that

b b s 1 s 9
/ h(t)? dt = / h(t)? dt — / h(t)? dt < / g(t)? dt — / g(t)? dt = / g(t)? dt.
s a(h) ga(h) a(h) 8a(h) s

On the other hand, for every s € [y,g4(h)] (again, the case of s <y immediately follows) we have
that

/ h(t)? dt = / h(t)? dt +/ h(t)? dt < / g(t)Pdt +/ g(t)Pdt = / g(t)? dt.
s ga(h) s «(h) s s

Therefore,
b 1
ungGl):@gm)Zéﬁ):i/ h@ﬁdtgb/ gPdt = ps({e € Ly : (we)) >s))  (5.10)

for every s € [0, d].

5.2.2 Thecase 5 <«

We devote this section to proving the first part of Theorem namely, we show (5.5]) provided
that g < a.

We will first prove that there exists a non-negative and concave function ¢ : [y, ] — [0, ||A]|co]

such that
ng (z,e1)@((z,e1))* " dps(x)

T2, el en))o 7 djua(a)

To this aim, we consider the function W : [0, ||h|ls] — [0, pg(L)] given by

ga(h) <

(5.12)

W(s)=ps({z € L : (z,e2) > s}),

which is clearly both strictly decreasing and surjective. We may then define the non-negative
function w : [0, ||h]|sc] — [7, 9] that satisfies

W(s) =ps({z € Ly : (z,e1) > w(s)})
for any s € [0, ||h||o]. Indeed, since

(0 — w(s))"*

W =—"5511
we get that o)
1 +1
m@:5—<mijwwwg .

Notice that, from the Borell-Brascamp-Lieb inequality (T.9), we have that the function W1/(#+1)

is concave (since the density of pig, with respect to the Lebesgue measure, is (1/ (B- 1))—concave).
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Therefore, w is strictly increasing, surjective and convex, and then there exists the function ¢ =

w1 [y,8] — [0,]|h]|oc], which is further (strictly increasing and) concave.

Now, we will start by bounding from above the right-hand side of (5.8). By using Fubini’s

theorem, (iii) in and (5.11)), we have
a—p d
— / (2, 1), )7 ()

B (z,e1) 4 (z,e2) o p1

= s1 S dsa dpg(x)
LJo 0
b rllhlles

:/0 /0 sgfﬁfl,ug (L+(e1, s1) N L (e, 32)) dso dsy
b rllhllee

< / / 83_5_1 min {pg(L" (e1,51)), (LT (e2,52)) } dsadsy
0o Jo
b rllhlle

S/ / 837571 min {,uﬁ (L;(el,sl)),,ug (L+(ez,52))} dSQ d81
0 Jo
5 rlitlles

S/ / sg‘_ﬁ_l min {,ug (L;r(el, 31)),,ug (L+(eg, 32))} dsy dsy.
0o Jo

So, on the one hand, from (5.13]) we get

/ (, 1), €2)2P dg(x)
L

(5.13)

1
a—p
5 rlihlles
S/ / ngﬁflmin {ng(Lg (e1,51)), na (LT (e, 52)) } dsads
0o Jo
5 rlihlles
:/ / sg_ﬁ_l min {ug(L;(el,sl)),ug (L;_(el,'LU(SQ))>} dso ds; (5.14)
0o Jo
5 rlihlles
:/ / sg_ﬁ_lug (L;(el, s1) N L;r (81711)(52))) dsg dsy
0o Jo

<$7 €1>g0(<3?, el>)a_6 dug(m),

1
=a"73
where in the last equality above we have used that (z,e;) > w(s2) if and only if ¢({x,e1)) > sa.
On the other hand, since o — 8 > 0, from Fubini’s theorem we have that

[[Aloo
/<l’,82>a_’8 dpg(x) :/ sa_ﬁ_lug({m €L : (z,e) >s})ds
L

IZ(ES

1
a—pf
s@ A1 pa({z € Ly : (z,e1) > w(s)}) ds

”h”oo (5.15)

pa({z € Ly : o((z,e1)) > s})ds

o((z,e1))* P dug ().

g

b\%ho
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Hence, from (5.14)) and (5.15)) (and using (5.8))) we obtain (5.12), as desired.

Now we will prove that for any concave function ¢ : [y, ] — [0, 00) we have that

Jo, (@ en)o((@,e1)* P dug(e) [} (z,e1) ((z,e1) — )7 dug(x)
ng p((z,e1))*Pdug(x)  — ng ((z,e1) — )P dpg(x)

To this aim, let C; > 0 be such that

/ (Ca((zer) — )" dup(a) = / (@, e1))P dup(a).
Ly

g9

Since the latter identity is equivalent (by Fubini’s theorem) to

[ (e =)"? — o) gty at =0,
Y

we may assert, taking into account that ¢ is concave, that there exists ¢ty € (y,6) such that

(i) C1(t —v) < (t) for every v <t <tp, and

(ii) Ci(t — ) > p(t) for every to <t < 4.

Then, from and (and using Fubini’s theorem), we get
ﬁ( [ et e dus - [ @eal(@ise) -)"’ duxs(l’))
g 6 g 75
= [ 4ot = (@t =)o) a
= [t~ (ot =)oty
:

Thus, we have

/L (1o ({2, e1))* " dpag () < / (1) (Cr((z, 1) — 7)) dus(a),

Lg

(5.16)

(5.17)

(5.18)
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which, together with (5.17)), yields (5.16]).

Now, we will compute the right-hand side of (5.16)). On the one hand,

e A —)eB(5 = 1P
/Lg<<,1> 12 dug(a B/t (6~ 1) dt
Cﬂ otl lsa_ﬁ —s)Pds
) /0 (1-5)°d

o L(a=B+1T(B+1)
I'(a+2) ’

B

B

C
—E@—’Y)

whereas, on the other hand, we obtain
B

c )
/L ) (@en) =" dug(e) = E / (it —7)2 B — 1) dt

B 1 1
= ’y%(é - ,Y)aH/O s* A1 —s)Pds + = 3 (5 ’y)aH/ s@ A1 — 5)P ds

0
& aﬂr(a—ml)r(mn(

_ a-pf+1
_5(5 v) T(a+2) a+t2 )

T+ 0 —)
Hence, we have

Ju, (@rer) ((z,e1) =) dpg(x) B a—f+1
T (e 20" da) =7+ 0=

and therefore, this together with (5.12)) and (5.16) yields

)

a—0+1

ga(h)§7+(5_7) a+2

=: 9go-

Finally, the latter relation jointly with (ii) and (iii) in (5.9)) gives us

b 19
Jga P07 A8 [ iy 9 f g(t)7dt <590>5+1

[nmPat () Bdt fgtﬁdt 5~

B 1_a—ﬁ+1 ﬂ+1: B4+1\H
a+2 a+2 ’

as desired. This finishes the proof of (5.5)).

5.23 Thecasea <

Now we show the second part of Theorem namely, (5.6) provided that a < 3. We point
out that here we use an approach similar to the one followed in Subsection [5.2.2] but with the main

difference that we need to truncate the sets L and L, due to certain integrability issues, since now
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the exponent of some functions under the integral sign (vanishing at some points of the domains

of integration) is a — 5 < 0.
We start by considering the function Wy : [0, ||h||ec] — [0, ug(L)] given by
Wi(s) = ,ug({x €L : (r,e0) < s}),

which is clearly both strictly increasing and surjective. We may then define the non-negative
function w; : [0, ||h]lec] — [7, 0] that satisfies

Wi(s) = pp({z € Ly + (z,e1) > wi(s)})
for any s € [0, ||h]|oo]. Indeed, since

_ cﬁ(é—wl(s))fpr1
Wi(s) = BA+1) )

we get that

wi(s) =9 — (ﬁ(ﬁcg_l)Wl(s)

Note that, from the Borell-Brascamp-Lieb inequality (1.9]), we have that the function W11 /D) 4

concave (since the density of pg, with respect to the Lebesgue measure, is (1/(8 — 1))-concave).

>1/(5+1)

Therefore, w; is strictly decreasing, surjective and convex, and then there exists the function

@1 = wy ' i [y,6] — [0, ||h]|so], Which is further (strictly decreasing and) concave.
Now, for any 0 < & < ||h|c we define the sets
Le:={z €L :(x,e0) > ¢}

and
Ly ={xeLy:(x,e) <wi(e)}

Figure 5.5: Sets L. and L, ..
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Notice that, from the definition of W; and w; (jointly with (i) in (5.10)) we have that
(i) po(Le) = pp(Lg,e), and
(i) jp(fo € Le + (w,02) < s}) =pa({z € L : (w.02) = wn(s))), (5.19)
for all € < s < ||h|oo-

We will first prove that, for any 0 < ¢ < ||h||«, we have

i men) oo™ dp(e) [y, (o eor((e ) dus(o)
[y (. ey P djus(a) [ oG, en) ™7 dug(a)

n bée®
Jo (. e)>da

(5.20)

To this aim, we will observe that, denoting by b. = max{:n eR: (x,y) € LE}, forany 0 < s < b,

we have that
pg({z € Le : (z,e1) > s}) < pg({w € Loe : (w,e1) > s}) + Wi(e). (5.21)
Indeed, taking into account that
pa({x € Ly + {a.e1) > 8)) = ps({z € Ly © (z.01) > 5}) + Wi(e)
if s <w;(e) and that
ps({r € Ly + (wen) > s}) < Wie) = pa({ € Lye : (m,e1) > s}) + Wi(e)
if s > wi(e), we get, from (iv) in (5.10), that

ps({z € Le « (w,e1) 2 s}) <ps({z € L« (w,e1) > s})
<us({a € Ly : {,en) > 5))
<pp({z € Lye : {z,e1) > 5}) + Wi(e)
for all 0 < s < b, which shows . This, together with

b e b
< / / P dyde = =&P
0 Jo B
and (ii) in (5.19)), implies that
min {5 (L (o1, 1)) o (L2 e2,1/52>}
gmin{uﬁ(L (61,31 +W1 u ( el,wl 1/82)))}
< Wi(e) + min {HB(L (e1,51)) ( (e, w1 1/52)))}

K3
< ZE/B + min {M,B(L elasl ( el,w1 1/52))>}
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forall 0 < s; <b. and all 0 < 1/s2 < [|A]|so-
So, defining wy (s) := v if s > ||h||oo, and taking into account that b, < b < ¢ (by (iii) in (5.10)),
from the fact that o < 8 and using Fubini’s theorem we have on the one hand that

1
B -

/ (1 e1){z, 2" dpip ()

z,e1) 1/(x,e2) B—oc—l
:/ / dsl/ sh dsa dpg(x)

1/e
g A /Oy Sg_a—luﬁ(L;r(elaSl)ﬁLE_(ez, 1/32)) d82 dSl

b 1/e
< /0 /0 S'g_a_ Hlln{,u,g( (61,81)),/15(11;(62, 1/82))} dss dsy

6 rl/e b
< / / sgfafl—sﬁ dsg dsy
o Jo B

6 rl/e
+/ / sg_o‘_l min {uB(LJrE(el,sl)),,ug <Lzs(e1,w1(1/32))>} dsy dsy
0o Jo

b N 5 rl/e Beal N N
5_@5 +/0/0 S5 ,uﬁ(L (61,81)ﬂLgﬁ(el,’wl(l/Sg)))d82d81

bd 1
T 8- a50‘ + B—« /L (z,e1)p1((z,e1))* P dug(z),

(5.22)

where in the last equality above we have also used that (x,e;) > w;(1/s2) if and only if 1 /¢ ((z,e1))

> s9 (since ) is decreasing).
On the other hand, since o < 3, from Fubini’s theorem (jointly with (ii) in (5.19))) we have that

1

1/{x,e2)
ﬁ—a/ (a,02)* 7 dpg () / / 77 ds dug(x)

1/e I
- /0 #7015 (L7 (2, 1/5)) ds

1/e
= / sﬁ_o‘_l/w(L;E(el,wl(l/s))) ds
0

1

- [ erleen)  dusto)

(5.23)

where in the last equality above we have used again that (z,e1) > w1 (1/s) if and only if 1/ ((x, e1))

> s. Hence, from (5.22)) and ([5.23)), we obtain (5.20]), as desired.

Now we will prove that for any concave function ¢y : [y, d] — [0, 00) we have that

Sy o ener(fe,e)™? dup(a) [y, (e (0 (@en)* ™" dus(a)
[y ot e P dua(e) f%(a (@.e))" 7 dusle)

(5.24)
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To this aim, let C; > 0 be such that
/L (C1(e)(0 — (w,e1))* ™ dug(a) = /L p1((z,e1))* 7 dug(z). (5.25)

Since the latter identity is equivalent (by Fubini’s theorem) to

B ap -8) b
[ (@ee-0)" - aee?) faa=o
.
we may assert, taking into account that ¢ is concave, that there exists to(g) € (v, d) such that

(i) C1(e)(d — t) > ¢1(t) for every v <t < tp(e), and
(5.26)
(ii) Ci(e)(d —t) < p1(t) for every to(e) <t < wy(e).

Then, from (5.25)) and (5.26) (taking into account that o < ), and using Fubini’s theorem, we

obtain

/ (2, e1)on ({2, 1)) dug() — / (,01) (C1()(5 — (1)) dpp(a)
Lg.e Lg.c

wl(s
;/ 901 — (C1(e) (5 — )7 )gﬁ(t) dt
'Y
to(e)
= (m R (TOICE) A PR OR
:
w1 (g)
. ; /t (o107 — ()6 - 1)) (1) o

IN
o~
w =
—
o
N—
Q\
o~
o
=
&
/N
AS)
—=
~~
SN—

- (@@ -1)"") () at

w1 (g)
I U CAC TR e PR
e w1 () —
_to(e) / (107"~ ()6 - 1)) (1)t
~ tole) /L (10w e1)*~ = (C1(e)(6 = we1)))* ") dag(a) = 0.

Thus, we have

/ (a1 (1)) dpug () < / (1, 01) (C1(£)(6 — {z e1)))"
Lg,e

LQ’E

which, together with ((5.25)), yields (5.24)).
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Hence, from (5.20) and (5.24), for every 0 < € < ||h||o We get
[ (,er)(w,e2)* 7 dpg () JL95<$761>(5“<$,61>)Q75 dpg(x)
Jo Az e2)7P dpg () Ju,. 6= (x,e1))* " dug(x)

n boe*
ng (x,e0)*dz’

Now, taking limits as € — 07 in the above inequality, we have that the left-hand side, namely,

Ju(w,e1)(w, e2)* 7 dpug () _ S (@e) (e da
fLs (z,e2)* B dug(x) ng (z,e)0Tdx

tends to
i (z, e1)(z,e)* 1 da

fL<w, eg)*1dx
as € — 07 (see (5.8)). Furthermore, the first term in the right-hand side,

ng’E <ZL’,61> (5 - <xael>)a_6 d,u/g(.l‘) % fw1(€) t((s — t)a dt

.
Jr, (6= (w,e)™ ™ dpg(a) &6 —teat’

Y

= ga(h)

tends to

g o
£u(g) = Jy 1@ —de (5 (a+1)(5—7))

fj(é—t)adt a+2
for e — 0T, whereas the second term in the right-hand side,

bée™
Jo (@ e2)da’

clearly tends to

for € — 0. Therefore, we have that
ga(h) < gal(9)-

Finally, the latter relation jointly with (ii) and (iii) in (5.9) gives us

Joo P07 4 [ 907 At fy i 9®)7at <5 - ga(g)>ﬁ o

Jorwsdat — [Pgmpat T [P\ 0-7

fa+ 1\ fa g1\
S \a+2 S \a+2 ’

as desired. This finishes the proof of ([5.6)), and hence also that of Theorem
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