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Resumen

El aumento en los ultimos anos de la cantidad de informacion disponible ha hecho que
cada vez se desarrollen modelos predictivos con una mayor dimensionalidad y compleji-
dad. Esto puede mitigarse gracias a un proceso de seleccion de atributos, el cual per-
mite reducir la dimensionalidad de los datos de entrada a la hora de construir modelos
predictivos, eliminando atributos redundantes y/o irrelevantes para la tarea que se esta
aplicando. Los tres tipos principales de métodos para la seleccion de atributos son: filter,
wrapper 'y embedded. Los métodos filter separan el proceso de seleccion de atributos del
algoritmo de aprendizaje, por lo que la influencia de este tiltimo no interactia en la se-
leccion. Normalmente son métodos estadisticos. Los métodos wrapper usan la precision
predictiva de un algoritmo de aprendizaje predeterminado para establecer la calidad de los
atributos seleccionados. Los métodos embedded logran el ajuste del modelo y la seleccion
de caracteristicas simultaneamente. Tanto los filters como los embeddeds son métodos
computacionalmente réapidos. Sin embargo, los métodos wrapper son los que mejores re-
sultados obtienen pese a ser muy costosos computacionalmente, especialmente si se aplican
junto con modelos de deep learning y en escenarios con muchos atributos, como puede
ser el caso de algunas aplicaciones basadas en series temporales de datos. En esta tesis
doctoral se ha formalizado la seleccién de atributos como un problema de optimizacion
multi-objetivo, lo cual ha permitido la aplicaciéon de unas estrategias de busqueda de
la solucion 6ptima conocidas como algoritmos evolutivos multi-objetivo (MOEAs). Los
problemas de optimizaciéon multi-objetivo se caracterizan por tener funciones objetivo con-
flictivas. Su principal propoésito es encontrar un balance 6ptimo entre todas las funciones
objetivo. Este equilibrio establece un conjunto de soluciones denominadas no-dominadas,
las cuales constituyen el frente de Pareto. El uso de modelos sustitutos, también cono-
cidos como meta-modelos, permite aproximar la funciéon fitness del algoritmo evolutivo
reduciendo asi el tiempo computacional respecto al consumido por los métodos wrapper
de seleccion de atributos convencionales basados en deep learning.

En el transcurso de esta tesis se ha desarrollado una metodologia genérica y nuevas
métricas para la comparacion de modelos de machine learning y deep learning, estable-
ciendo asi el mejor modelo para usar en un problema determinado de series temporales. La
metodologia permite, ademas, establecer distintos tamanos de ventana para la aplicacion
del método de la ventana deslizante, pudiendo encontrar asi el tamano mas apropiado
para hacer predicciones confiables y robustas. Las fases de la metodologia son las sigu-
ientes: transformacion por ventana deslizante con diferentes tamanos de ventana, ajuste
de hiper-parametros, test estadisticos, toma de decisiones multi-criterio considerando la
raiz del error cuadrdtico medio (RMSE), el error medio absoluto (MAE) y el coeficiente de



correlacion (CC) y, por tltimo, generacion de pasos adelante. Los algoritmos de apren-
dizaje usados para validar esta metodologia han sido los siguientes: redes neuronales
convolucionales de 1 dimension (1D-CNN), gated recurrent unit (GRU), long short-term
memory (LSTM), drboles aleatorios (RF), lasso y mdquinas de soporte vectorial (SVM)
con kernel radial. El proceso de toma de decisiones multi-criterio tiene en cuenta la exacti-
tud y robustez del RMSE, MAE y CC de los modelos, y retine estos criterios en una tnica
métrica ponderada denominada goodness. El modelo con menor goodness es el finalmente
seleccionado.

Se ha propuesto una nueva técnica fundamentada en las propiedades espacio-temporales
de los datos para inferir informacion de zonas de las que no se tienen datos. Para ello,
se ha formalizado el problema de prediccion de calidad del aire como un problema de
optimizaciéon multi-objetivo. Asi, cada objetivo es el RMSE de un modelo predictivo
basado en regresion lineal (LR) con datos de una estacion de monitoreo. Estos objetivos
se minimizan para conseguir las mejores predicciones en cada ubicacion. En el contexto
de aplicacion utilizado en esta tesis, se trata de un problema de optimizacion de 3 obje-
tivos. Los algoritmos evolutivos multi-objetivo evaluados han sido: NSGA-II, MOEA /D
y SPEA2. Los frentes de Pareto resultantes del algoritmo evolutivo son la entrada para
construir un modelo de aprendizaje ensemble. El método de aprendizaje ensemble se basa
en la técnica de stacking. Se han utilizado los siguientes algoritmos de aprendizaje para
entrenar el modelo ensemble: RF, LR, SVM, redes neuronales cuasi-recurrentes (QRNN),
perceptron multicapa (MLP), k vecinos mds cercanos (KNN) y ZeroR. Con el conjunto
entrenado, se realiza el proceso de prondstico en varios pasos adelante para hacer las
predicciones con los datos de test de la estacion de monitoreo, los cuales no han sido
vistos por el algoritmo evolutivo.

Por otra parte, se han formalizado problemas de optimizacién con hasta cuatro obje-
tivos, basados en métodos filter, wrapper e hibridos, para realizar la selecciéon de atributos.
Los algoritmos de correlacion y reliefF se han adaptado para la evaluacion de subconjun-
tos de atributos y se han utilizado para definir los objetivos relacionados con los métodos
filter. Gracias a un modelo sustituto, este método permite el uso de modelos de deep
learning como algoritmo de aprendizaje de un método wrapper pero sin el inconveniente
del elevado coste computacional que ello conlleva. La idea subyacente al planteamiento
propuesto es la siguiente: el modelo sustituto se evaliia con un conjunto de datos de test
consistente en el conjunto de datos de test original en el que los valores de los atributos
no seleccionados se fijan en un valor constante a = 0 en todas las muestras. Cuando
un atributo es redundante o irrelevante, la evaluacién del modelo sustituto, que ha sido
entrenado con todos los atributos, se ve poco afectada por este cambio en el conjunto de
datos de prueba. Sin embargo, cuando un atributo es relevante, la evaluacion del modelo
sustituto se vera muy alterada, ya que el atributo ha tenido una gran influencia en el
entrenamiento del modelo sustituto. Se ha estudiado cuél es el mejor algoritmo evolu-
tivo multi-objetivo entre los algoritmos NSGA-II, NSGA-III, MOEA /D, SPEA2, IBEA,
e-NSGA-II y e-MOFA, y el rendimiento de las predicciones con un modelo sustituto
basado en una red neuronal LSTM. Adicionalmente, se propone una nueva métrica multi-
criterio de rendimiento, H, la cual permite ajustar la importancia de las métricas que la
forman, pudiendo dar més peso a la que sea mas importante para el problema tratado,



pero sin perder la informaciéon adicional que aportan el resto de métricas. Facilita asi la
comparacion de diferentes modelos y sus predicciones a h-pasos adelante. La métrica es
independiente del horizonte de prediccion por lo que se puede utilizar la més adecuada
para cada problema. Ademés, permite obtener modelos de predicciéon méas robustos, ya
que considera varias métricas y las agrega. También se ha evaluado el comportamiento
del uso de miltiples modelos sustitutos para lograr una mejor capacidad de generalizacion
de los modelos predictivos tanto en problemas de regresion como de clasificacion.

En los enfoques descritos anteriormente, el modelo sustituto mantiene siempre la
misma informacion que al principio del método. Esto, en cierto modo, es una desventaja,
ya que no se tiene en cuenta la informacion subyacente obtenida durante el transcurso
del algoritmo evolutivo. Por este motivo, se han propuesto dos enfoques para actualizar
el modelo sustituto, uno basado en el aprendizaje incremental y otro basado en la actua-
lizacion de la base de datos y la construcciéon de un nuevo modelo sustituto. El modelo
sustituto se obtiene construyendo “offline” un meta-modelo de aprendizaje a partir de un
conjunto de muestras de selecciones de atributos y sus evaluaciones reales se obtienen
entrenando una red neuronal LSTM para cada muestra. Por tanto, en esta tesis se han
propuesto hasta un total de cuatro nuevos métodos evolutivos multi-objetivo asistidos por
sustitutos, de los cuales dos utilizan enfoques sin control de evolucion, y los otros dos son
técnicas con control de evolucion fijo basado en generacion.

Durante la estancia de doctorado en Siemens AG Osterreich en Viena (Austria), se
ha llevado a cabo un estudio de diferentes técnicas de clasificacion y clustering de series
temporales. Estos experimentos han dado lugar a una mejor compresion de las series
temporales aplicadas en un contexto de clasificacion. La experiencia adquirida ha sido
util para el desarrollo de un método aplicable a problemas de regresion y clasificacion.

Todos estos experimentos se han realizado sobre diversos conjuntos de datos de series
temporales. El primer conjunto de datos contiene informacion de la calidad del aire entre
2015 y 2017 de una estacion de monitorizacion situada en la ciudad de Wroclaw (Polonia).
También se han usado cuatro conjuntos de datos de calidad del aire entre 2017 y 2020
de cuatro estaciones situadas en La Aljorra, Alcantarilla, Lorca y Valle de Escombreras,
todas ellas dentro de la Region de Murcia (Espafnia). Estos datos se han extraido del portal
de calidad del aire de la Region de Murcia. Otro conjunto de datos usado contiene datos
procedentes de una casa domotica en Valencia (Espana) tomados entre marzo y mayo
de 2012. Este conjunto de datos se ha extraido del UCI Machine Learning Repository.
Por dltimo, el conjunto de datos privado usado en la estancia de doctorado contiene
mediciones horarias de energia, calefaccion y agua procedentes de varios sensores situados
en el interior de edificios inteligentes. Todos los resultados han sido validados con diversos
test estadisticos, incluyendo el test de Diebold-Mariano, especifico para series temporales,
y se han comparado con otros métodos del estado del arte, del tipo filter, wrapper y
embedded. La implementacion de los distintos métodos presentados se ha llevado a cabo
en Python. Para la implementacion de los algoritmos evolutivos multi-objetivo se ha
empleado la libreria Platypus.

Las principales conclusiones derivadas de esta tesis tras el desarrollo y ejecucion de
todos los experimentos planteados son las siguientes:

e La adopcion de una metodologia completa para la evaluacién y comparacion de



algoritmos de aprendizaje ha permitido obtener resultados unificados y adaptados
para resolver cualquier problema de predicciéon con series temporales.

Las redes neuronales recurrentes, como LSTM y GRU, han sido capaces de captar
la complejidad de las series temporales y construir modelos predictivos precisos y
fiables. Entre las técnicas de machine learning analizadas, RF ha presentado un
rendimiento satisfactorio cuando se aplica a la predicciéon de series temporales.

Un proceso de toma de decisiones multi-criterio ha permitido agrupar varias métri-
cas de rendimiento y establecer una comparacion mas adecuada entre diferentes
algoritmos de aprendizaje en el contexto de problemas de prondéstico de series tem-
porales.

Para el pronostico de la calidad del aire con series temporales en una zona de la
que no se dispone de informacién, la predicciéon se ha aproximado con algoritmos
evolutivos multi-objetivo utilizando las previsiones de otras zonas geograficamente
cercanas.

Los algoritmos evolutivos multi-objetivo asistidos por sustitutos han permitido la
seleccion de atributos en problemas costosos como la prediccion de series temporales
basada en deep learning. Ademas, la reduccién de dimensionalidad ha simplificado
los modelos predictivos construidos aumentando asi su interpretabilidad y, ayudando
a dejar de percibir los modelos como una “caja negra’”.

El uso de un MOEA asistido por sustitutos con un algoritmo de aprendizaje pro-
fundo para la seleccién de atributos ha conseguido encontrar un subconjunto satis-
factorio de atributos en un tiempo computacional més corto en comparaciéon con un
método de seleccion de atributos de tipo wrapper convencional.

Entre todos los MOEAs estudiados, NSGA-II es el que mejores resultados ha obtenido
en términos de hipervolumen, en comparacion con otros MOEAs del estado del arte.

El enfoque de control de la evolucion fija basado en la generacion de elementos
permite anadir informaciéon de forma eficiente a los modelos sustitutos dentro del
proceso de seleccion de atributos. Aunque de esta forma se encuentran mejores sub-
conjuntos de atributos y se mejoran los resultados de la prediccion, se hace a costa
de aumentar el tiempo de computo del proceso, ya que después de un nimero fijo
de evaluaciones del algoritmo evolutivo hay que volver a entrenar y/o incrementar
el modelo sustituto. No obstante, es mas eficiente que los métodos convencionales
de seleccion de caracteristicas basados en wrappers.

Se han identificado modelos de prediccion en diversos contextos reales (Polonia,
Murcia, Valencia) que potencialmente permiten realizar previsiones en un futuro
proximo y que pueden ayudar a las instituciones a tomar decisiones en materia
medioambiental. Otro factor significativo de los métodos propuestos en el ambito
medioambiental es que, al tener un menor tiempo computacional, se puede reducir
la huella de carbono, contribuyendo al Pacto Verde Europeo. En el &mbito social, los



métodos propuestos contribuyen a la Inteligencia Artificial Explicable, y se alinean
con los objetivos de iniciativas como el Libro Blanco en Inteligencia Artificial de la
Comision Europea o la Estrategia Nacional de Inteligencia Artificial de Espana.

Tras el estudio descrito en esta tesis, se plantean las siguientes lineas de investigacion
a desarrollar en el futuro:

e Incluir el proceso de seleccion de caracteristicas dentro del enfoque espacio-temporal
con LR, anadiendo un nuevo objetivo dentro del problema de optimizacion que trate
de minimizar el nimero de atributos seleccionados en LR. También se estudiara
esta aplicacion en otros algoritmos de aprendizaje mas complejos, como las redes
neuronales.

e Aplicar los métodos de selecciéon de atributos del algoritmo evolutivo multi-objetivo
asistido por sustitutos y asistido por miltiples sustitutos para la prediccion de otras
series temporales relacionadas con la calidad del aire como COs, PMy5 0 PMy y
comparar su rendimiento con los resultados de NOs.

e Utilizar otros algoritmos de aprendizaje profundo como GRU o QRNN como modelo
sustituto dentro del método evolutivo multi-objetivo de selecciéon de caracteristicas
y comparar su rendimiento con el método actual con LSTM. Ademas, se analizara el
uso de otras estrategias de prediccion de multiples pasos adelante, como la prevision
multipaso directa o la hibrida directa-recursiva.

e Los MOEAs se han utilizado con éxito en la busqueda de la arquitectura éptima
en modelos predictivos, especialmente en aprendizaje profundo. En el desarrollo de
esta tesis se ha demostrado que el uso de MOEAs para la seleccion de atributos con
un modelo basado en LSTM obtiene buenos resultados. Sin embargo, no existen
trabajos en la actualidad que combinen la bisqueda de arquitecturas con la seleccion
de atributos, por lo que es un campo de estudio muy interesante y que sera abordado
en futuras investigaciones, tanto para problemas de regresién como de clasificacion.

e Aplicar los métodos de seleccién de atributos propuestos en otros campos como el
reconocimiento de imagenes y el procesamiento del lenguaje natural.






Abstract

The increase in the amount of information available in recent years has led to the de-
velopment of predictive models with high dimensionality and complexity. This can be
mitigated using a feature selection process, which allows the reduction of the dimension-
ality of the input data when building predictive models, thus removing redundant and/or
irrelevant features for a particular task. One of the most relevant and best-performing
types of feature selection are wrapper methods. However, they are computationally ex-
pensive, especially if applied together with deep learning models and in scenarios with
many attributes, as may be the case for some applications based on time series data.
In this PhD thesis, feature selection has been formalized as a multi-objective optimiza-
tion problem, which allows the application of optimal solution search strategies known as
multi-objective evolutionary algorithms. In addition, the use of a surrogate-assisted models
lets the approximation of the fitness function of the evolutionary algorithm thus reducing
the computational time compared to the consumed by a conventional deep learning-based
wrapper.

In the course of this thesis, a methodology and new error metrics have been developed
for the comparison of machine learning and deep learning models, thus establishing the
best model to use for a particular time series problem. A new technique based on the
spatio-temporal properties of the data has been proposed to infer information from areas
for which no data are available. On the other hand, optimization problems have been
formalized with up to four objectives, based on filter and wrapper methods, to perform
attribute selection. It has been studied which is the best multi-objective evolutionary
algorithm between NSGA-II, NSGA-III, MOEA/D, SPEA2, IBEA, e-NSGA-II and e-
MOEFA and the performance of predictions with one and with multiple surrogate models
based on a LSTM. A total of four new surrogate-assisted evolutionary methods have been
proposed, of which two use approaches without evolution control, and the other two are
techniques with fixed generation-based evolution control.

All experiments have been performed mainly on two public time series datasets, one
for the forecast of air quality, extracted from the air quality portal of the Region of Murcia
(Spain) and the other one for the forecast of indoor temperature in a domotic house in
Valencia (Spain) extracted from the UCI Machine Learning Repository. All the results
have been validated with several statistical tests, including the Diebold-Mariano test,
specific for time series. The proposed techniques have also been compared with other
state-of-the-art methods of filter, wrapper and embedded types. Python has been the
programming language for the implementation of the different methods presented in this
work. For the evolutionary algorithms part, a library called Platypus has been used.



In conclusion, the proposed methods have obtained more accurate and robust forecasts
with a lower computational cost than other state-of-the-art techniques for classification
and regression problems with time series. In addition, the feature selection process has sig-
nificantly reduced the initial number of attributes, simplifying the predictive deep learning
models. The reduction of the computational cost of machine learning algorithms is a topic
of great importance nowadays. This has been conveyed by international and national gov-
ernmental institutions in their R&D strategies, such as the European Commission and
the Government of Spain, with the aim of, on the one hand, reducing the carbon footprint
to curb climate change, and on the other hand, increasing the explainability of machine
learning models and, in general, the confidence in Artificial Intelligence. As future works,
the application of the proposed methods to the prediction of other harmful compounds in
the air is considered. Also, the use of multi-objective evolutionary algorithms to search
for the optimal architecture for predictive deep learning models, or the inclusion of the
proposed techniques in other types of deep learning architectures for application in other
fields such as computer vision and natural language processing.



Chapter 1

Introduction

Time series are a type of data whose main differentiating characteristic is that they have
a time component. They consist of a set of data taken at regular or irregular intervals
and ordered chronologically. Time series have been used in a large number of domains,
such as financial markets [1], internet of things [2|, health care [3|, stock markets [4], air
quality 5], and many others. The applications of time series are very diverse, ranging from
pattern recognition [6] to forecasting [7]. Machine learning and deep learning methods
can be used for classification and forecasting of time series problems. However, due to
the increasing amount of data being collected, one of the main problems of time series is
their high dimensionality and complexity that can be present in the relationships between
attributes. This is known as the curse of dimensionality [8]. This issue can be even worse
in the case of using non-linear models, which may cause overfitting or instability in the
model [9]. One way to mitigate the curse of dimensionality is through feature selection.

Feature selection (FS) [10] is a process in which relevant features are selected from a
data set, thus discarding redundant and/or noisy information. This allows the reduction
of the input dimensions of the data, as well as the complexity of the models created
from those reduced data. It also improves the generalization capability of the models to
previously unseen data, leading to more robust and accurate models. There are three main
methods within F'S: filter, wrapper and embedded. Filters separate the attribute selection
from the learning algorithm so that the influence of the learning algorithm does not
interact with the attribute selection algorithm. They are usually statistical measures of
information. Wrappers use the predictive accuracy of a predetermined learning algorithm
to determine the quality of the selected attributes. Embedded achieve model fitting
and feature selection simultaneously. While filters and embedded are computationally
fast methods, wrappers are very expensive. Nevertheless, wrapper methods tend to find
better combinations of attributes.

Multi-objective evolutionary algorithms (MOEASs) [11] are multi-objective global search
and optimization techniques inspired by the mechanisms of Darwin’s natural selection
and genetics. They have been successfully applied in recent years for FS [12, 13]. Multi-
objective optimization problems are characterized by conflicting objective functions. Their
purpose is to find the best balance or trade-off between the objective functions. This
balance establishes a set of solutions called non-dominated solutions, which forms the
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Pareto front. The Pareto front introduces the concept of dominance relationship between
the objectives of the set of solutions. One solution is said to dominate another when one
possible solution A is at least equal than another possible solution B in all objectives
and solution A is better than solution B in at least one objective. MOEAs are able to
successfully approximate the Pareto front due to their population-based nature. The use
of wrapper methods for FS can be formulated as a multi-objective optimization problem.
However, they require a high computational cost to reach a set of adequate non-dominated
solutions. To avoid this, surrogate models can be used to approximate the fitness function
of a MOEA [14]. Surrogate models, also known as meta-models, simulate the behaviour
of a model and try to approximate its results as closely as possible, which makes possible
a reduction in computational costs and has been successfully applied in conjunction with
MOEAs [15, 16].

The main area of application of the techniques proposed in this thesis is air quality
prediction. It is undeniable that the emission of certain gases into the atmosphere, such
as carbon dioxide (COy), nitrogen dioxide (NO,), nitrogen oxides (NOx), or particulate
matter (PM), is deteriorating air quality at a high rate. The World Health Organization
estimates that in 2022 99% of the world’s population will have lived in areas where the
recommended levels of air quality are not attained [17]. Prolonged exposure to these
noxious gases can affect the health of human beings, causing various problems such as
respiratory diseases [18], the transmission of respiratory viral infections [19] and immune
system problems [20], among others. According to the European Environment Agency,
in 2020 more than 600,000 premature deaths occurred in Furopean countries due to the
concentration of pollutants [21]. Deteriorating air quality not only affects people but can
also have a negative impact on ecosystems, resulting in vegetation loss [22]| or acid rain.
The creation of predictive air quality models will allow the establishment and adoption
of the necessary measures to mitigate the risks posed by the concentration of gases.

In the context of the doctoral thesis, an initial work was carried out for the search,
training and validation of suitable architectures for air quality time series. Thus, a study of
different machine learning and deep learning techniques has been carried out. These archi-
tectures have been subsequently used in the design of MOEAs for F'S. Several optimization
models with different number of objective functions have been studied to determine the
most relevant ones as well as the behavior of several surrogate-assisted approaches. The
spatio-temporal characteristics in the use of MOEAs and the application of incremental
learning for updating surrogate models have also been investigated. All these techniques
have been applied mainly to two public datasets, one related to air quality and the other
to the temperature inside a domotic house. In the first case, the data have been extracted
from the Autonomous Community of the Region of Murcia (Spain)' and in the second
from the UCI Machine Learning Repository [23]*. All proposed methods have been com-
pared with other state-of-the-art techniques. In addition, during the PhD stay at Siemens
AG Osterreich (Austria), a complementary analysis to the thesis studies in the area of
time series classification and clustering has been carried out. For this purpose, a dataset
with consumption measurements from sensors in intelligent buildings has been used.

'https://sinqlair.carm.es/calidadaire/redvigilancia/redvigilancia.aspx
’https://archive.ics.uci.edu/ml/datasets/SML2010

10


https://sinqlair.carm.es/calidadaire/redvigilancia/redvigilancia.aspx
https://archive.ics.uci.edu/ml/datasets/SML2010

Chapter 1. Introduction

The remainder of the doctoral thesis is organized as follows. Section 2 describes the
main objectives of this thesis. Section 3 summarizes the research methodology and details
the results derived from the experiments developed within this thesis. Section 4 presents
the conclusions and future work. Finally, Section 5 includes the publications that are part
of the thesis by compendium.
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Chapter 2

Global summary of research objectives

This section details the objectives of the PhD thesis. A general objective and six specific
objectives have been proposed, which unify the partial objectives proposed in each of the
works of the compendium. The general objective proposed is the following:

Develop efficient and effective feature selection techniques for deep learning through
multi-objective evolutionary algorithms and application of the created methods for
time series forecasting in different areas of interest.

This general objective has been broken down into the following specific objectives:

SO1:

SO2:

SO3:

SO4:

SO5:

SO6:

Develop a comprehensive methodology and implement a multi-criteria decision-
making process for the comparison and evaluation of predictive models for time
series forecasting.

Study, design and develop a multi-objective evolutionary approach based on spatio-
temporal characteristics within the Autonomous Region of Murcia.

Define multi-objective optimization problems for feature selection, with objectives
of different nature, both filter and wrapper.

Solve the proposed optimization problems by identifying the best state-of-the-
art multi-objective evolutionary algorithms and developing surrogate-assisted ap-
proaches to reduce the computational cost of the algorithms.

Identify metrics to quantify the variability between surrogate-assisted approaches
and facilitate the establishment of qualitative analysis.

Evaluate, validate and compare the developed feature selection methods with time
series data for air quality forecasting in the context of the Autonomous Region of
Murcia, as well as in other geographic locations and in other time series forecasting
problems for the sake of generalization verification.

The following chapter shows the methodology carried out to meet the proposed ob-
jectives, as well as the main results obtained.

12
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Summary of research methodology and
results

The methodology and results of this thesis can be found in the articles of the above-
mentioned compendium of publications. This section summarizes the followed methodol-
ogy and the most relevant results related to the objectives of the thesis. Additionally, the
datasets used to validate the experiments are briefly described.

3.1 Datasets

During the course of the thesis, multiple datasets have been used to evaluate the proposed
methods. They mainly comprise two types, air quality and indoor temperature.

The first dataset, with which the first article was developed, contains air quality data
from a monitoring station located in the city of Wroclaw, Poland. Data were collected
between 2015 and 2017. Initially, the data had 26304 instances and 9 attributes and the
output variables are NOy and NOy.

For the second paper, four datasets belonging to four monitoring stations within the
Region of Murcia, Spain, have been used. The stations are located in Alcantarilla, La
Aljorra, Lorca and Valle de Escombreras and take daily air quality information between
2017 and 2020. In total, there are 1461 instances and 19 attributes, including the latitude
and longitude of the monitoring stations. The output variable is NO,.

The rest of the articles have used two datasets, one for air quality at La Aljorra
described above and the other for indoor temperature. The indoor temperature dataset
was initially used in [24] and contains data taken every 15 minutes during March and May
2012 in a domotic house located in Valencia, Spain. In total, it has 4137 instances and
24 attributes. The output is the temperature inside the dining room.

The time series dataset used in the PhD stay in Vienna contains hourly data on energy,
hot water, cold water and heating consumption in different smart buildings. This dataset
is private and belongs to Siemens AG Osterreich, so a detailed description of the data can
not be provided, but the results obtained from the data can be presented.

13
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3.2 Methodology for the identification of deep learning
architectures and comparison of predictive models

For the identification of deep learning architectures and to establish a fair comparison
between different predictive models, regardless of whether they are machine learning or
deep learning, the methodology described in Figure 3.1 has been proposed in [25|. This
methodology is generic, as it can be adapted to any type of regression problem and
does not rely on any inherent learning algorithm. Moreover, by being able to compare
various window sizes (WS), it is possible to find the most appropriate dataset for reliable
and robust predictions. The phases of the methodology are as follows: sliding window
transformation with different window sizes, hyper-parameter tuning with 3-fold cross-
validation and 1 repetition, statistical tests performed with 10-fold cross-validation with
3 repetitions, multi-criteria decision making for mean absolute error (MAE), root mean
square error (RMSE) and correlation coefficient (CC) and step ahead predictions.

For the time series problem on which this methodology has been validated, the fol-
lowing learning algorithms have been used: I dimension convolutional neural network
(ID-CNN) [26], gated recurrent unit (GRU) [27], long short-term memory (LSTM) [28],
random forest (RF) [29], lasso [30], and support vector machine (SVM) [31] with radial
kernel. The multi-criteria decision-making process takes into consideration the exactness
and robustness of the MAE, RMSE and CC of the models, and gathers these criteria into
a single weighted metric called goodness. The model with the lowest goodness is the one
that is finally selected.

This methodology has been applied four times, as the original air quality dataset has
been modified according to the output attribute to be predicted and the concentration of
O3 has been removed to check its impact on the predictions. Figure 3.2 represents the
best architecture (LSTM-WS24) found for NO, prediction. Table 3.1 shows the train and
test errors of the final architecture with 24-steps ahead predictions with the best models.
Finally, Figure 3.3 shows the original and the predicted time series for some steps ahead.

It has been observed that for predicting NO, and NOx concentrations the models
based on LSTM and GRU have obtained better results compared to the rest. This result
was expected, given that both LSTM and GRU are recurrent neural networks (RNN),
i.e., they consider previous information to predict future information. This factor is the
main differentiator of these learning algorithms in comparison with the rest. The 24-
hour predictions for NO, have been very favorable, so this methodology is likely to be
included in a decision system to alert the population of the increase of polluting gases in
the environment.
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Database
WS3-30 1
WS6-30 .y . }
wsiz-30 | Sliding window transformation

WS§24-30 Time Series Lag Maker
Window size 3, 6, 12, 24

Missing values imputation

Ws3-70

ws6-70

WS12-70
L WS24-70

~

4 Hyper-parameter tuning
3-fold cross-validation
1 repetition
WS3-70, WS6-70, WS12-70, WS24-70
1D-CNN, GRU, LSTM
\Random Forest, Lasso Regression, SVM /

Best hyper-parameters

A 4

( Statistical tests )
10-fold cross-validation
3 repetitions
WS3-70, WS6-70, WS12-70, WS24-70
1D-CNN, GRU, LSTM
Random Forest, Lasso Regression, SVM
\ RMSE, MAE, CC metrics /

Best prediction models

A 4

Multi-criteria decision making
WS3-30, WS6-30, WS12-30, WS24-30
RMSE, MAE and CC metrics
1-24 step-ahead predictions
Exactness and robustness criteria

Best prediction model

A 4
Step-ahead
predictions

Figure 3.1: Proposed methodology for the prediction of air quality time series.
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Figure 3.2: Architecture of the LSTM-WS24 deep learning model for NO, prediction.

Steps-ahead
1 2 3 4 5 6 7 8 9 10 11 12
MAE 6.730 8344 9.360 9.972 10.332 10.568 10.723 10.840 10.927 11.008 11.092 11.155
Training | RMSE 9.341 11.694 13.064 13.843 14.314 14.608 14.806 14.955 15.078 15.196 15.307 15.394
cC 0.922 0.877 0.848 0.832 0.823 0.818 0.815 0.813 0.811 0.810 0.808 0.807
MAE 6.267 7.666 8445 8.902 9.167 9.320 9.409 9470 9.510 9.536  9.569  9.598
Test RMSE 8.523 10.464 11.528 12.114 12.443 12.637 12.743 12.810 12.855 12.896 12.944 12.992
CC 0.923 0.883 0.857 0.843 0.835 0.830 0.828 0.826 0.825 0.824 0.823 0.822

Steps-ahead
13 14 15 16 17 18 19 20 21 22 23 24
MAE 11.211 11.264 11.323 11.388 11.453 11.504 11.544 11.575 11.606 11.642 11.699 11.801
Training | RMSE 15469 15.535 15.608 15.690 15.770 15.838 15.895 15.939 15.979 16.026 16.107 16.259
CC 0.806 0.805 0.805 0.804 0.803 0.802 0.801 0.801 0.800 0.800 0.799  0.796
MAE  9.628 9.653 9.674 9.694 9714 9.735 9.756 9.772 9.789 9.800 9.824  9.860
Test RMSE 13.036 13.075 13.110 13.146 13.181 13.209 13.232 13.251 13.269 13.288 13.321 13.383
CC 0.821 0.820 0.819 0.818 0.818 0.817 0.817 0.816 0.816 0.816 0.815 0.814

Table 3.1: Performance on training and test data of the LSTM-WS24 model for 24-steps-
ahead predictions in the NOy problem.
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Figure 3.3: NO, predicted time series in test with the best architecture (LSTM-WS24).

3.3 Multi-objective optimization based spatio-temporal
approach

Continuing with the study of air quality prediction, a multi-objective optimization-based
spatio-temporal approach has been developed in [32]. For this purpose, the problem has
first been formalized as a multi-objective optimization problem. Thus, each objective is
the RMSE of a linear regression (LR) based predictive model of a monitoring station.
These objectives try to be minimized to achieve the best predictions at each location.
In this particular case, it is a 3-objective optimization problem. Non-dominated sorting
genetic algorithm II (NSGA-II) [33], multi-objective evolutionary algorithm based on de-
composition (MOEA /D) [34] and strength Pareto evolutionary algorithm (SPEA2) [35]
were evaluated as MOEAs, and NSGA-II was finally selected as it presents better opti-
mality and diversity. The Pareto fronts resulting from the genetic algorithm (as in Figure
3.5) are the input to build an ensemble learning model. The ensemble learning approach
is based on stacking. In this work, the following learning algorithms have been used to
train the ensemble model: RF, LR, SVM, quasi-recurrent neural networks (QRNN) [36],
multilayer perceptron (MLP) [37|, k-nearest neighbors (kNN) [38] and ZeroR. With the
trained ensemble, the multi-step forecasting process is performed to make the predictions
of the monitoring station data not seen by the genetic algorithm. In this way, a method
capable of making approximations in the predictions based on nearby geographical points
is obtained. Figure 3.4 shows graphically the flow that this process follows.

The proposed method has achieved better results in test than other similar approaches
in the literature, such as the case of interpolation based on an inverse distance weighting
(IDW) [39] function of the model predictions, as shown in Table 3.2. LR has been the
learning algorithm with the best goodness in test, followed by QRNN. For the ensemble
evaluated in the test set, our method presents a better generalization error, since for
previously unseen data (those of the La Aljorra monitoring station) it manages to make
better predictions. Table 3.3 shows the results of the 7-steps ahead evaluation of the
LR model in test of the proposed method (MOEA + Ensemble) and the IDW-based
interpolation method (Interpolation). Figure 3.6 depicts the predicted time serie for 1-
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Figure 3.5: Pareto front in 3D with NSGA-II.
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step ahead in test of the LR model. This new technique also shows a lower propensity to
overfitting. It has been statistically demonstrated that the proposed ensemble approach
is able to obtain significant differences compared to the union of datasets.

Models Goodness RF Goodness LR Goodness SVM  Goodness QRNN
Training MOEA + Ensemble 0.130603 0.218094 0.206317 0.173174
Training Interpolation 0.081890 0.218155 0.136968 0.151813
La Aljorra Test MOEA + Ensemble 0.269400 0.250435 0.282549 0.267744
La Aljorra Test Interpolation 0.339744 0.326777 0.329596 0.302130

Table 3.2: Goodness of the predictions models with RF, LR, SVM and QRNN.

1-step 2-steps 3-steps 4-steps 5-steps 6-steps 7-steps
ahead ahead ahead ahead ahead ahead ahead

RMSE 0.1118 0.1207  0.1229  0.1233  0.1207  0.1261 0.1408
MOEA + Ensemble MAE 0.0890 0.0960  0.0980  0.0984  0.0961 0.1014  0.1154

Method Metric

cC 0.5410 0.4863 04745 0.4724 04860 0.4581  0.3830
RMSE 0.1175 0.1207  0.1212  0.1296  0.1322  0.1346  0.1352
Interpolation MAE 0.0919 0.0936  0.0939  0.1014  0.1027  0.1035  0.1035
cC 0.3199 0.2673  0.2393  0.2420 0.2574  0.2057  0.1874

Table 3.3: Results of the evaluation of models on La Aljorra test set with LR.
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Figure 3.6: Original and predicted NO, time series for 1-step ahead built with the multi-
objective optimization based spatio-temporal approach for LR.
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3.4 Multi-objective evolutionary algorithms based on
surrogate models

After analyzing the most appropriate state-of-the-art learning algorithms for time series
and the performance of MOEAs, several techniques based on surrogate methods have
been developed. These techniques are described in the following sections.

3.4.1 Surrogate-assisted and filter-based multi-objective evolu-
tionary FS for deep learning

A multi-objective FS method based on surrogate-assisted models for deep learning has
been presented in [40]. Up to four objectives have been defined to formalize the F'S problem
with wrapper, filters and hybrids as a multi-objective optimization problem. Correlation
[41] and reliefF [42] algorithms have been adapted for attribute subset evaluation and used
to define the objectives related to the filter methods. Figure 3.7 shows a flow diagram of
the surrogate-assisted multi-objective evolutionary algorithm.

A generic FS method applicable to any regression problem has been developed and
tested on air quality and indoor temperature time series. Thanks to a surrogate model,
this method allows the use of deep learning models as the learning algorithm of a wrapper
method, but without the disadvantage of the high computational cost that this would
have. The surrogate-assisted model also helps to reduce possible overfitting and achieve
a better generalization capacity. The idea behind the proposed approach is the following:
the surrogate model is evaluated with a test dataset consisting of the original test dataset
where the values of the unselected attributes are set to a constant value @ = 0 in all
samples. When an attribute is redundant or irrelevant, the evaluation of the surrogate
model, which has been trained on all the attributes, is little impaired by this change in
the test data set. However, when an attribute is relevant, the evaluation of the surrogate
model will be greatly altered since the attribute has been highly influential in the training
of the surrogate model. Several state-of-the-art MOEAs have been compared, includ-
ing NSGA-II, non-dominated sorting genetic algorithm III (NSGA-III) [43], MOEA/D,
SPEA2, indicator-based evolutionary algorithm (IBEA) |44], e-MOEA [45] and e-NSGA-I1
[46]. Figure 3.8 shows the Pareto front for NSGA-II.

The new multi-criteria summary performance metric, H, allows adjusting the impor-
tance of the metrics that form it, being able to give more weight to the one that is more
important for the treated problem but without losing the additional information provided
by the rest of the metrics. It makes it possible to compare different models and their
predictions at h-steps ahead. The metric is independent of the prediction horizon so that
the most appropriate one for each problem can be used. In addition, it allows obtaining
more robust predictive models, since it considers several metrics and summarizes them.
The final results of the best predictive model found for 7-steps ahead in train and test
are shown in Table 3.4 as well as the time series of the predicted NO, values for 1-step
ahead in Figure 3.9.
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0.24

Figure 3.8: Pareto front in 3D for the best prediction model (O10203) and the best
MOEA (NSGA-II) for air quality. Red point represents the model with best average
RMSE of 7-steps ahead predictions.

Set | Metric 1-step | 2-steps | 3-steps | 4-steps | b-steps | 6-steps | 7-steps
ahead | ahead | ahead | ahead | ahead | ahead | ahead
RMSE | 0.0761 | 0.0744 | 0.0749 | 0.0751 0.0755 | 0.0758 | 0.0773
R MAE | 0.0533 | 0.0529 | 0.0534 | 0.0535 | 0.0537 | 0.0538 | 0.0548
CC 0.8892 | 0.8916 | 0.8900 | 0.8885 | 0.8861 | 0.8846 | 0.8805
RMSE | 0.0814 | 0.0819 | 0.0822 | 0.0829 | 0.0832 | 0.0848 | 0.0873
T MAE | 0.0494 | 0.0498 | 0.0503 | 0.0505 | 0.0507 | 0.0517 | 0.0537
CC 0.7535 | 0.7508 | 0.7507 | 0.7478 | 0.7467 | 0.7380 | 0.7257

Table 3.4: Results of the best prediction model (obtained with O10203-NSGA-II method)
for air quality evaluated on the training set R and test set T datasets.
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Figure 3.9: Times series of 1-step ahead predictions for NO, evaluated on test T' of the
prediction model obtained with O10203-NSGA-II.

In both problems studied, a reduction of the attributes of more than 80% for the initial
set has been achieved, making the new reduced datasets more interpretable. Furthermore,
it has been determined that all the defined objectives are relevant in the multi-objective
search for the best subset of features. In the comparison with other F'S methods in the
literature (Table 3.5), the proposed method outperforms most of them in terms of Hr (H
in the train set R) and all of them in terms of Hy (#H in the test set T'). The literature
methods compared have been: hybrid filter-wrapper FS method based on correlation
and LSTM with deterministic search (M1), hybrid filter-wrapper FS method based on
reliefF and LSTM with deterministic search (M2), wrapper multi-objective evolutionary
FS method based on linear regression (M3), wrapper multi-objective evolutionary FS
method based on random forest (M4), CancelOut [47] (M5) and random forest (M6).

Method He o Number ‘of Ru.n time
selected attributes | (minutes)

010203-NSGA-II | 0.0807 | 0.1298 16 15.76

M1 0.1246 | 0.1437 2 3.93

M2 0.1246 | 0.1437 2 4.09

My 0.1235 | 0.1876 6 22.60

M6 0.1701 | 0.2069 1 2.16

M3 0.1227 | 0.2243 14 5.45

M5 0.0602 | 0.2452 84 0.07

All attributes 0.0560 | 0.2763 84 0.01

Table 3.5: Comparison of feature selection methods for the air quality problem, sorted
from best to worse evaluation of Hr.
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3.4.2 Multi-surrogate assisted multi-objective evolutionary algo-
rithm for F'S with deep learning

In [40] it has been proven that the use of surrogate models is effective for F'S processes
applied to regression problems. Therefore, the next step was to test the behavior of
multiple surrogate-assisted models [48], in order to achieve better generalizability of the
predictive models. For this purpose, a scheme similar to Figure 3.7 has been followed
but incorporating multiple surrogate models based on a deep learning algorithm and a
new metric to decide the best model. This new algorithm is shown in Figure 3.10. In
addition, the effectiveness of the proposed method has been validated in both regression
and classification problems.

A new variability metric named Vx has been defined to qualitatively analyze the FS
results. Thus, it is compared whether the order of the results of the multi-surrogate
method is similar to those of a wrapper method. The results show that in both cases the
worst subset of attributes coincides. Moreover, for both regression and classification, the
variability does not exceed 36% in any case, so it can be determined that the proposed
approach is reliable.

For the air quality problem, the multi-surrogate method obtains better results in Hr
than the conventional wrapper method at the same run time, both for regression and
classification. This evidences the fact that the multi-criteria metric H can be extended as
a classification metric. Thus, comparisons between different models can be successfully
established. At the statistical level, the proposed method obtains significant differences
in comparison with the wrapper method. Moreover, the predictions are more stable
and, therefore, robust. Tables 3.6 and 3.7 show the results of the 7-steps ahead best
model predictions for the train and test sets for the regression and classification problem,
respectively. Figures 3.11 and 3.12 represent the 7-steps ahead predictions for NOs for the
best models in regression and classification. In terms of diversity, as shown in Figures 3.13
and 3.14 the Pareto fronts belonging to the multi-surrogates are more diverse, obtaining
a greater variety of non-dominated solutions. To demonstrate the generalizability of
the proposed method, it has also been applied to an indoor temperature problem, with
satisfactory results. Finally, it has been compared with two other state-of-the-art FS
methods, CancelOut and lasso, outperforming their results.

Evaluation Performance 1-step 2-steps 3-steps 4-steps 5-steps 6-steps 7-steps

dataset metric ahead ahead ahead ahead ahead ahead ahead
RMSE 0.0780  0.0790  0.0801  0.0805  0.0807  0.0810  0.0820

R MAE 0.0549  0.0558  0.0569  0.0573  0.0576  0.0580  0.0586
CcC 0.8469 0.8395  0.8345 0.8313 0.8293  0.8269  0.8235

RMSE 0.0633 0.0715  0.0746  0.0758  0.0764 0.077 0.0795

T MAE 0.0435 0.0493  0.0528  0.0545 0.0552  0.0554  0.0578
CcC 0.6967  0.6052  0.5687  0.5533  0.5474  0.5404  0.5068

Table 3.6: RMSE, MAE and CC of the multi-step ahead forecasting for the multi-surrogate
assisted multi-objective evolutionary algorithm with LSTM (air quality regression prob-
lem), evaluated on the training set R and the test set 7.
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Evaluation Performance 1-step 2-steps 3-steps 4-steps 5-steps 6-steps 7-steps

dataset metric ahead ahead ahead ahead ahead ahead ahead
R BA 1.0 1.0 1.0 1.0 1.0 1.0 1.0
AUC 1.0 1.0 1.0 1.0 1.0 1.0 1.0

T BA 0.3270  0.3209  0.3153  0.3158 0.3163  0.3195  0.3212

AUC 0.8063 0.7911  0.7770  0.7779  0.7787  0.7862  0.7882

Table 3.7: BA and AUC of the multi-step ahead forecasting for the multi-surrogate as-
sisted multi-objective evolutionary algorithm with RF (air quality classification problem),
evaluated on the training set R and the test set 7.
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Figure 3.11: T7-steps ahead forecasting for NO, of the multi-surrogate assisted MOEA
with LSTM for regression evaluated on test.
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Figure 3.12: T7-steps ahead forecasting for NO, of the multi-surrogate assisted MOEA
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3.4.3 Surrogate-assisted multi-objective evolutionary algorithm
of generation-based fixed evolution control for FS with deep
learning

In the previous sections, it has been shown that the use of one or more surrogate-assisted
models in MOEASs are able to perform the FS process successfully. However, the surrogate
model always maintains the same information as at the beginning of the method. This,
in a way, is wasteful, since the underlying information obtained in the genetic algorithm
is not considered. For this reason, two approaches have been proposed for updating the
surrogate model, one based on incremental learning [49] (Algorithm 1) and the other based
on updating the database and building a new surrogate model (Algorithm 2). Figure
3.15 shows the scheme followed by the surrogate-assisted multi-objective evolutionary
algorithm with incremental learning for FS. In this case, the surrogate model is obtained
by building offline a learning meta-model from a set of samples of attribute selections
and their actual evaluations are obtained by training a neural network (LSTM) for each
sample.
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Figure 3.15: Surrogate-assisted multi-objective evolutionary algorithm with incremental
learning for FS.

The method based on updating the surrogate model has achieved better results than
the previously proposed method without updating the surrogate model, both for the air
quality (Table 3.8) and for the indoor temperature problems. Figure 3.16 shows the NO,
predicted time series for the proposed method evaluated on test. As shown in Table 3.9,
compared to other state-of-the-art methods it also manages to achieve better results in
terms of H. The statistical tests have been performed on the h-steps ahead predictions
and not on the error metrics, as was previously done. For this purpose, the Diebold
Mariano test [50] has been applied. Thus, win-loss rankings are established to determine
the statistical significance of the proposed method.

Although there is no reduction in the number of attributes for the method without
updating compared to the O102 approach of [40], there is still a decrease of more than
80% in the number of attributes in contrast with the original number of features, thus,
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Algorithm 1: Incremental learning based surrogate-assisted multi-objective evo-
lutionary algorithm for feature selection

Data: R;

Data: V;

Data: @;; //
Data: ®;

Data: G > 1;

Data: N > 1;

Data: E;

Data: epochs;

Result: FS;,

// Training dataset

// Validation dataset

Learning algorithm of the optimization problem
// Learning algorithm for surrogate model

// Number of generations

// Number of individuals in the population

// Surrogate model update frequency

// Number of epochs for incremental learning
// Feature selection

1 D%\/ < BuiltAuxiliaryDataset(R, V, ®;);
9 ]\/[31‘?2 — BuiltSurrogateModel(D}I;lv, Dy);
3 P « InitializePopulation(N);

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Approximate(P, Mg}?z);
g+ L

while ¢ < G do

Q « 0

1+ 1;

while i < N/2 do

141+ 1;
end

P+ P;
Evaluate(P’, Hy);

end
g g+1
end

// Evaluation with surrogate model

parent] <— Selection(P);

parent2 <— Selection(P);

(child1, child2) < Crossover(parentl, parent2);
offspringl < Mutation(child1);

offspring2 <— Mutation(child2);

Q « Q U {offspringl, offspring2};

Approximate((Q, Mgf‘??); // Evaluation with surrogate model
P « PopulationUpdate(P, Q);
if (¢ mod F) =0 then

// Evaluation with real fitness function

ND <+ NonDominated(P’);

NR < NonRepeated(ND, Dglv);
UpdateAuXiliaryDataSet(D}{;}V, NR);
UpdateSurrogateModel(Mg}l‘;bz, NR, epochs);

FS < DecisionMaking(ND);

return FS
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Algorithm 2: Non-incremental surrogate-assisted multi-objective evolutionary
algorithm for feature selection

Data: R; // Training dataset
Data: V; // Validation dataset
Data: &q; // Learning algorithm of the optimization problem
Data: ®,; // Learning algorithm for surrogate model
Data: G > 1; // Number of generations
Data: N > 1; // Number of individuals in the population
Data: E; // Surrogate model update frequency
Result: FS; // Feature selection

1 D}{;}V + BuiltAuxiliaryDataset(R, V, ®1);
2 ]\/[E}&DQ — BuiltSurrogateModel(D%y; D,);
3 P « InitializePopulation(N);

4 Approximate(P, ME}‘E’?);

// Evaluation with surrogate model

5 g4+ 1;

6 while g < G do

7 Q « 0;

8 14+ 1

9 while i < N/2 do

10 parent] <— Selection(P);

11 parent2 < Selection(P);

12 (child1, child2) < Crossover(parentl, parent2);
13 offspringl < Mutation(child1);

14 offspring2 < Mutation(child2);

15 Q « Q U {offspringl, offspring2};

16 141+ 1;

17 end

18 Approximate((Q, Mg’fg); // Evaluation with surrogate model
19 P <+ PopulationUpdate(P, Q);

20 if (¢ mod E) =0 then

21 P+ P;

22 Evaluate(P’, Hy); // Evaluation with real fitness function
23 ND <+ NonDominated(P’);

24 NR < NonRepeated(ND, D}{;}V);

25 UpdateAuXiliaryDataSet(D;lv, NR);

26 Mg}}pz — BuiltSurrogateModel(D%V, Dy);

27 end

28 g g+1;

29 end

30 F'S < DecisionMaking(/ND);

31

return FS
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Evaluation Performance 1-step 2-steps 3-steps 4-steps 5-steps 6-steps 7-steps

dataset metric ahead ahead ahead ahead ahead ahead ahead
RMSE 0.0834 0.0820  0.0818 0.0819  0.0818  0.0818  0.0815

R MAE 0.0572  0.0573  0.0575  0.0576  0.0574  0.0574  0.0573
CcC 0.8661 0.8681  0.8683  0.8668  0.8664  0.8655  0.8666

RMSE 0.0943  0.0975  0.0979  0.0981  0.0983  0.0984  0.0985

T MAE 0.0727  0.0760  0.0766 ~ 0.0769  0.0770  0.0771  0.0771
CC 0.7535  0.7462  0.7469  0.7466  0.7465  0.7466  0.7467

Table 3.8: Results of the best forecast model with RF for the air quality forecast problem,
evaluated on the training set R and the test set 7T'.
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Figure 3.16: Times series of 1-step ahead predictions for NO, evaluated on test with the
best model (RF).

Method Number .of M o Ru’n time

selected attributes (minutes)
Generation-based fixed evolution control 14 0.0909 0.1421 25.17
0102 in [40] 2 0.1234 0.1442 9.80
All attributes 84 0.0560 0.2763 0.01

Table 3.9: Comparison of the best generation-based fixed evolution control model with
other surrogate-assisted approach and with the forecast model with all attributes for the
air quality forecast problem, sorted from best to worse evaluation of Hr.
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maintaining good model interpretability.

On the other hand, a study of the behavior of the method has been carried out
depending on the update frequency of the surrogate model. Logically, the lower the
frequency, the longer the method takes since the update period is shorter. Though in the
indoor temperature problem there are no significant differences between the frequencies,
in the air quality problem it has been established that a frequency of 50 achieves better
solutions on average. Despite the increase in computational time with respect to other
methods presented, it is one of the best forecasting methods of all those analyzed.

3.5 Time series classification and clustering

During the PhD stay at Siemens AG Osterreich in Vienna (Austria), a study of different
techniques for time series classification and clustering has been conducted. This study was
carried out on a dataset containing hourly energy, heating and water measurements from
several sensors inside smart buildings. These experiments have helped me to have a better
understanding of time series applied in a classification context. The acquired experience
was useful for the development of a method applicable to regression and classification
problems [48]. The following results are being considered for release as part of a broader
study within the field of smart buildings.

3.5.1 Time series classification

To apply classification methods the time series have been studied and aggregated for
three granularities: day (566028 time series with a length of 24), week (97524 time series
with a length of 168) and month (16175 time series with a length of 672). The series
were normalized and divided into 80% for training and 20% for testing. Several time
series classification techniques such as kNN, learning shapelets [51|, symbolic aggregate
approzimation - vector space model (SAX-VSM) [52|, bag-of-SFA symbols in vector space
(BOSSVS) [53] and TimeSeriesForest [54] have been considered. After a preliminary
study, it was decided to use SAX-VSM and TimeSeriesForest, as they were the best-
performing models. The results are shown in Tables 3.10, 3.11 and 3.12.

precision recall fl-score support precision recall fl-score support
Energy 0.69 0.73 0.71 22767 Energy 0.98 0.97 0.98 24271
Heating 0.51 0.34 0.41 15952 Heating 0.72 0.88 0.79 8675
Cold water 0.32 0.53 0.40 16009 Cold water 0.73 0.72 0.72 26667
Warm water 0.75 0.60 0.67 30632 Warm water 0.75 0.71 0.73 25747
accuracy 0.57 85360 accuracy 0.80 85360
macro avg 0.57 .55 0.55 85360 macro avg 0.79 0.82 0.80 85360
weighted avg 0.61 0.57 0.58 85360 weighted avg 0.80 0.80 0.80 85360

Table 3.10: Classification report for SAX-VSM and TimeSeriesForest (left to right) with
day granularity.
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precision recall fl-score support precision recall fl-score support
Energy 0.84 0.88 0.86 2681 Energy 0.99 0.99 0.99 2797
Heating 0.60 0.60 0.60 1522 Heating 0.78 0.87 0.82 1359
Cold water 0.56 0.68 0.61 2607 Cold water 0.79 0.78 0.79 3242
Warm water 0.84 0.68 0.76 3852 Warm water 0.83 0.79 0.81 3264
accuracy 0.72 10662 accuracy 0.85 10662
macro avg 0.71 0.71 0.71 10662 macro avg 0.85 0.86 0.85 10662
weighted avg 0.74 0.72 0.72 10662 weighted avg 0.85 0.85 0.85 10662

Table 3.11: Classification report for SAX-VSM and TimeSeriesForest (left to right) with
week granularity.

precision recall fl-score support precision recall fl-score support
Energy 0.89 0.92 0.91 794 Energy 0.99 0.98 0.98 825
Heating 0.65 0.76 0.70 467 Heating 0.82 0.87 0.84 521
Cold water 0.63 0.71 0.67 816 Cold water 0.78 0.76 0.77 944
Warm water 0.88 0.72 0.79 1158 Warm water 0.82 0.81 0.81 945
accuracy 0.77 3235 accuracy 0.85 3235
macro avg 0.76 0.78 0.77 3235 macro avg 0.85 0.86 0.85 3235
weighted avg 0.79 0.77 0.78 3235 weighted avg 0.85 0.85 0.85 3235

Table 3.12: Classification report for SAX-VSM and TimeSeriesForest (left to right) with
month granularity.

For both algorithms, the classification between cold and warm water is the worst, as
they are time series that follow a similar pattern. Energy consumption shows the best
classification, since it follows a fairly characteristic pattern compared to the rest of the
time series. The case with granularity of one day is the one with the worst accuracy,
this is due to the fact that the length of the time series is short and it is difficult to
find distinguishable characteristics between the different series. The performance of the
models with one week and one month granularity are very similar.

3.5.2 Time series clustering

In order to check if there is any pattern within the energy consumption time series, these
series have been grouped by ID. Therefore, there are 133 time series in total. For each
of the 7 days of the week, each of its 24 hours has been averaged by hour. That is, the
average of the values of all Mondays at 12 pm, at 1 am, and so on. Those new time series
have a length of 168 (7 days x 24 hours). To establish the optimal number of clusters
and their consistency, the silhouette index |55] of the time series set is calculated. Figure
3.17 shows that 3 clusters are a good size since there are hardly any misclassified samples.

The k-means [56] clustering algorithm has been applied to group time series with
similar patterns. Figure 3.18 shows the result, the red line represents the mean value of
all the time series in the cluster in question. Three different patterns of behavior have
been established. Cluster 0 would belong to houses with workers, and clusters 1 and 3
would belong to houses where some inhabitant does not work.
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Figure 3.17: Silhouette score for 2 to 7 clusters for averaged hour of days of the week.

Generally, the highest consumption peaks occur in the evening hours around 6 pm,
this fits the time when workers go home. In contrast, the hours with the lowest energy
consumption are between 12 am and 6 am, an interval that coincides with sleeping hours.
On weekends, a general increase in consumption is observed, since it is likely that all the
inhabitants of the house are at home.
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Figure 3.18: 3 clusters k-means for energy IDs with mean per hour of days of the week.
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Chapter 4

Conclusions and future works

In this last chapter, the conclusions of the work carried out and possible future works are
presented.

4.1 Conclusions

In recent years, the amount of information available has increased dramatically, partly due
to the proliferation of new technologies and the way in which data is collected. Working
with a large amount of data is in many cases unfeasible and makes it difficult to build
comprehensible learning models. For this reason, F'S techniques are very useful as they
reduce the complexity of the available information, especially in the context of time series,
where redundant information may be present.

This thesis develops several F'S techniques for deep learning based on surrogate-assisted
MOEAs applied to time series forecasting. First, a previous study of the behavior of
different machine learning and deep learning techniques in a time series problem has
been carried out. In addition, a multi-objective evolutionary algorithm in conjunction
with ensemble learning has been proposed in order to find prediction models with spatio-
temporal characteristics of a prediction problem where no data are available. Besides,
their contribution to the forecasts has been analyzed. After this, the FS problem has
been formalized as different multi-objective optimization problems, in which the behavior
of the objective functions and their contribution to the selection of optimal features has
been studied. The performance of various MOEAs such as NSGA-II, NSGA-III, SPEA2,
MOEA /D, IBEA, e MOEA or e-NSGA-II as well as their best parameters have also been
analyzed. To reduce the computational cost of a wrapper-type FS method with deep
learning, three different approaches for FS with deep learning based on surrogate-assisted
multi-objective evolutionary algorithms have been proposed and validated. The developed
methods have been applied mainly in air quality time series. The techniques proposed in
this thesis have been compared with other existing FS methods such as CancelOut, real
wrappers, hybrid filter-wrapper or RF.

The main conclusions drawn from this thesis after the execution of all the experiments
are as follows:
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e The adoption of a complete methodology for the evaluation and comparison of
learning algorithms has allowed to obtain unified and adapted results in order to
solve any prediction problem with time series.

e Recurrent neural networks, such as LSTM and GRU, have been able to capture
the complexity of time series and build accurate and reliable predictive models.
Among the analyzed machine learning techniques, RF has presented a satisfactory
performance when applied to time series forecasting.

e A multi-criteria decision-making process has allowed to pool several performance
metrics and to establish a more appropriate comparison between different learning
algorithms in the context of time series forecasting problems.

e For air quality forecasting with time series in an area for which no information is
available, the prediction has been approximated with multi-objective evolutionary
algorithms using forecasts from other geographically nearby areas.

e Surrogate-assisted multi-objective evolutionary algorithms has allowed feature selec-
tion in expensive problems such as time series forecasting based on deep learning.
Additionally, dimensionality reduction has simplified the predictive models built
thus increasing their interpretability and, helping to stop perceiving the models as
a “black box”.

e The use of a surrogate-assisted MOEAs with a deep learning algorithm for feature
selection has managed to find a satisfactory subset of features in a shorter compu-
tational time compared to a conventional wrapper-type feature selection method.

e Among all the MOEAs studied, NSGA-II is the one that has obtained the best
results in terms of hypervolume, compared to other MOEAs of the state of the art.

e Generation-based fixed evolution control approach allows information to be effi-
ciently added to surrogate models within the feature selection process. While this
succeeds in finding better subsets of attributes and improving prediction results, it
does so at the cost of increasing the computational time of the process, since after a
fixed number of evaluations of the evolutionary algorithm the surrogate model has
to be retrained and/or incremented. Although, it is more efficient than conventional
wrapper F'S methods.

e Prediction models have been identified in various real contexts (Poland, Murcia,
Valencia) that potentially allow forecasting in the near future and that can help
institutions to make decisions on environmental issues. Another significant factor
of the proposed methods in the environmental field is that by having a shorter com-
putational time, the carbon footprint can be reduced, contributing to the European
Green Deal'. In the social field, the proposed methods contribute to Explainable
Artificial Intelligence (XIA) [57], and are aligned with the objectives of initiatives

"https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-
green-deal_en
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such as the White Paper on Artificial Intelligence? of the European Commission
and Spain’s National Artificial Intelligence Strategy?®.

4.2 Future works

After the study described in this thesis, the following lines of research to be developed in
the future are considered:

e Include the feature selection process within the spatio-temporal approach with LR,
adding a new objective within the optimization problem that tries to minimize the
number of attributes selected in LR. This application in other more complex learning
algorithms, such as neural networks, will also be studied.

e Apply the surrogate-assisted and multi-surrogate assisted multi-objective evolution-
ary algorithm feature selection methods for forecasting other air quality related time

series such as COy, PMs 5 or PMjy and compare its performance with the results
from NO,.

e Use other deep learning algorithms such as GRU or QRNN as a surrogate model
within the evolutionary multi-objective feature selection method and compare their
performance with the current method with LSTM. Additionally, the use of other
multi-step ahead forecasting strategies, such as direct multi-step forecast or direct-
recursive hybrid, will be analyzed.

e MOEAs have been successfully used in the search for the optimal architecture in
predictive models, especially in deep learning. In the development of this thesis,
it has been shown that the use of MOEAs for feature selection with a LSTM-
based model obtains good results. However, there are no works at present that
combine architecture search with attribute selection, so it is a very interesting field of
study and will be addressed in future research, both for regression and classification
problems.

e Apply the proposed feature selection methods in other fields such as image recog-
nition and natural language processing.

2https://commission.europa.eu/publications/white-paper-artificial-intelligence-
european-approach-excellence-and-trust_en

3https://portal.mineco.gob.es/es-es/ministerio/areas-prioritarias/Paginas/
inteligencia-artificial.aspx
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Chapter 5

Publications composing the doctoral
thesis

5.1 A time series forecasting based multi-criteria
methodology for air quality prediction

Abstract There is a very extensive literature on the design and test of models of envi-
ronmental pollution, especially in the atmosphere. Current and recent models, however,
are focused on explaining the causes and their temporal relationships, but do not explore,
in full detail, the performances of pure forecasting models. We consider here three years
of data that contain hourly nitrogen oxides concentrations in the air; exposure to high
concentrations of these pollutants has been indicated as potential cause of numerous res-
piratory, circulatory, and even nervous diseases. Nitrogen oxides concentrations are paired
with meteorological and vehicle traffic data for each measure. We propose a methodol-
ogy based on exactness and robustness criteria to compare different pollutant forecasting
models and their characteristics. 1IDCNN, GRU and LSTM deep learning models, along
with Random Forest, Lasso Regression and Support Vector Machines regression models,
are analyzed with different window sizes. As a result, our best models offer a 24-hours
ahead, very reliable prediction of the concentration of pollutants in the air in the consid-
ered area, which can be used to plan, and implement, different kinds of interventions and
measures to mitigate the effects on the population.
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5.2 Multi-objective evolutionary spatio-temporal
forecasting of air pollution

Abstract Nowadays, air pollution forecasting modeling is vital to achieve an increase
in air quality, allowing an improvement of ecosystems and human health. It is important
to consider the spatial characteristics of the data, as they allow us to infer predictions in
those areas for which no information is available. In the current literature, there are a large
number of proposals for spatio-temporal air pollution forecasting. In this paper we propose
a novel spatio-temporal approach based on multi-objective evolutionary algorithms for the
identification of multiple non-dominated linear regression models and their combination
in an ensemble learning model for air pollution forecasting. The ability of multi-objective
evolutionary algorithms to find a Pareto front of solutions is used to build multiple forecast
models geographically distributed in the area of interest. The proposed method has been
applied for one-week NO, prediction in southeastern Spain and has obtained promising
results in statistical comparison with other approaches such as the union of datasets or the
interpolation of the predictions for each monitoring station. The validity of the proposed
spatio-temporal approach is thus demonstrated, opening up a new field in air pollution
engineering.
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5.3 Multi-surrogate assisted multi-objective evolution-
ary algorithms for feature selection in regression
and classification problems with time series data

Abstract Feature selection wrapper methods are powerful mechanisms for reducing
the complexity of prediction models while preserving and even improving their precision.
Meta-heuristic methods, such as multi-objective evolutionary algorithms, are commonly
used as search strategies in feature selection wrapper methods since they allow minimizing
the cardinality of the attribute subset and simultaneously maximizing the predictive ca-
pacity of the model. However, in high-dimensional problems, multi-objective evolutionary
algorithms for wrapper-type feature selection may require excessive computational time,
sometimes impractical, especially when the learning algorithm has a high computational
cost, such as deep learning. To address this drawback, in this paper we propose a multi-
surrogate assisted multi-objective evolutionary algorithm for feature selection, specially
designed to improve generalization error. The proposed method has been compared with
conventional feature selection wrapper methods that use random forest, support vector
machine and long short-term memory learning algorithms to evaluate subsets of attributes.
The experiments have been carried out with regression and classification problems with
time series data for air quality forecasting in the south-east of Spain and for indoor tem-
perature forecasting in a domotic house. The results demonstrate the superiority of the
proposed multi-surrogate assisted method over conventional wrapper methods using the
same run times.
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5.4 Surrogate-assisted and filter-based multiobjective
evolutionary feature selection for deep learning

Abstract Feature selection for deep learning prediction models is a difficult topic for
researchers to tackle. Most of the approaches proposed in the literature consist of embed-
ded methods through the use of hidden layers added to the neural network architecture
that modify the weights of the units associated with each input attribute so that the
worst attributes have less weight in the learning process. Other approaches used for deep
learning are filter methods, which are independent of the learning algorithm, which can
limit the precision of the prediction model. Wrapper methods are impractical with deep
learning due to their high computational cost. In this paper, we propose new attribute
subset evaluation feature selection methods for deep learning of the wrapper, filter and
wrapper-filter hybrid types, where multi-objective and many-objective evolutionary algo-
rithms are used as search strategies. A novel surrogate-assisted approach is used to reduce
the high computational cost of the wrapper-type objective function, while the filter-type
objective functions are based on correlation and an adaptation of the reliefF algorithm.
The proposed techniques have been applied in a time series forecasting problem of air
quality in the Spanish south-east and an indoor temperature forecasting problem in a do-
motic house, with promising results compared to other feature selection techniques used
in the literature.
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Appendix A. Abbreviations

Appendix A

Abbreviations

Abbreviation Meaning

1D-CNN 1 Dimension Convolutional Neural Network
BOSSVS Bag-Of-SFA Symbols in Vector Space

CC Correlation Coefficient

CO, Carbon Dioxide

FS Feature Selection

GRU Gated Recurrent Unit

IBEA Indicator-Based Evolutionary Algorithm
IDW Inverse Distance Weighting

KNN K Nearest Neighbors

LR Linear Regression

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MLP Multi-layer Perceptron

MOEA Multi-Objective Evolutionary Algorithm
MOEA/D Multi-Objective Evolutionary Algorithm based on Decomposition
NO Nitrogen Monoxide

NO, Nitrogen Dioxide

NOx Nitrogen Oxides

NSGA-II Non-dominated Sorting Genetic Algorithm II
NSGA-III Non-dominated Sorting Genetic Algorithm III
O3 Ozone

PM Particulate Matter

QRNN Quasi-Recurrent Neural Network

RF Random Forest

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SAX-VSM Symbolic Aggregate Approximatioon - Vector Space Model
SPEA2 Strength Pareto Evolutionary Algorithm 2
SVM Support Vector Machine

TMP Temperature

UucCI University of California Irvine

Table A.1: Abbreviations.
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