
UNIVERSIDAD DE MURCIA
ESCUELA INTERNACIONAL DE DOCTORADO

TESIS DOCTORAL

Improving the Performance, Portability,
and Productivity of Hardware Accelerators

Mejorando el Rendimiento, la Portabilidad y
Usabilidad de los Aceleradores Hardware

D. Pablo Antonio Martínez Sánchez
2023

UNIVERSIDAD DE MURCIA
ESCUELA INTERNACIONAL DE DOCTORADO

TESIS DOCTORAL

Improving the Performance,
Portability, and Productivity of

Hardware Accelerators

Mejorando el Rendimiento, la
Portabilidad y Usabilidad de los

Aceleradores Hardware

Autor:
Pablo Antonio Martínez Sánchez

Directores:
José Manuel García Carrasco

Gregorio Bernabé García

Información básica sobre protección de sus datos personales aportados

Responsable:
Universidad de Murcia.
Avenida teniente Flomesta, 5. Edificio de la Convalecencia. 30003; Murcia.
Delegado de Protección de Datos: dpd@um.es

Legitimación: La Universidad de Murcia se encuentra legitimada para el tratamiento de sus datos por ser necesario para el
cumplimiento de una obligación legal aplicable al responsable del tratamiento. art. 6.1.c) del Reglamento General
de Protección de Datos

Finalidad: Gestionar su declaración de autoría y originalidad

Destinatarios: No se prevén comunicaciones de datos

Derechos:

Los interesados pueden ejercer sus derechos de acceso, rectificación, cancelación, oposición, limitación del
tratamiento, olvido y portabilidad a través del procedimiento establecido a tal efecto en el Registro Electrónico o
mediante la presentación de la correspondiente solicitud en las Oficinas de Asistencia en Materia de Registro de la
Universidad de Murcia

A mis padres, mi hermano Daniel y Ana

Índice

Índice 9

Agradecimientos 11

Resumen en Español 13

Lista de Figuras 33

Lista de Tablas 36

Lista de Siglas 37

1 Introducción 39

2 Conceptos Básicos 49

3 Lenguajes de Programación de Alto y Bajo Nivel en la Era Heterogénea 59

4 Compilación de Código Existente a Aceleradores 103

5 Explotación del Paralelismo a Nivel de Acelerador 133

6 Conclusiones y Vías Futuras 159

A Detalles de Implementación de Caffe 167

B Implementación de PHAST-Caffe 171

C Implementación de oneAPI-Caffe 187

Bibliografía 193

9

Publicaciones que Componen la Tesis 219

10

Agradecimientos

En primer lugar quiero agradecer a mis padres. Si he llegado hasta aquí creo
que es en gran parte gracias a ellos, que me dieron la educación y valores que
hoy defiendo, y también la oportunidad de estudiar en la universidad. Haber
conseguido todo lo que ha venido después ha sido posible gracias a ellos.

De la informática he disfrutado casi desde que empecé mis estudios en esta
universidad, y por suerte esa pasión sigue viva hasta hoy. Con el tiempo, sin
embargo, este gusto por el campo de la informática ha ido evolucionando. Y en
estos últimos años, una de las cosas que mantenía esa motivación y entusiasmo
tan latente han sido las extensas conversaciones con mi hermano Daniel. Hace
mucho que sentí en él también esa misma pasión por la informática que yo tenía
con su edad. Espero que al leer estos agradecimientos y esta tesis se sienta tan
inspirado y motivado como yo me he sentido hablando con él. Y que esto le per-
mita darse cuenta de lo que se puede conseguir con esa pasión por aprender y
saber más. Yo diría que con pasión, intelecto y paciencia, en ese orden, cualquier
cosa.

En siguiente lugar quiero agradecer a mis directores de tesis, José Manuel y
Gregorio. Gracias a Gregorio por su ayuda en todos los problemas que han ido
surgiendo y sobre todo por su motivación constante, fundamentalmente en los
primeros años en los que empecé a dar clase. Para mi fue una experiencia muy
bonita y que siempre quedará en mi memoria. A José Manuel quiero agradecer-
le especialmente todos estos años que hemos estado trabajando juntos. Quienes
me conocen saben que suelo ser una persona muy exigente conmigo mismo.
Le agradezco mucho su exigencia durante todo este tiempo, aun incluso en los
momentos más complicados, como en los peores meses de la pandemia. Para
mí esa exigencia significaba también confianza y certeza de que a veces podía
hacerlo mejor. A la larga eso me ha ayudado mucho. Con él he aprendido mu-
cho de arquitectura de computadores, pero sin duda lo que más me ha marcado
ha sido todo lo demás. La capacidad de análisis, el pensamiento crítico, el rigor
científico. También la parte humana y personal, que a menudo tiende a infrava-

11

Agradecimientos

lorarse y olvidarse, y que en realidad es fundamental. No puedo poner ni una
pega a cómo ha dirigido la tesis. Creo honestamente que nadie podría haberlo
hecho mejor.

Ana ha sido otro pilar fundamental todo este tiempo. Desde un punto de
vista motivacional, pero también técnico. No olvidaré la de horas que hemos
pasado juntos revisando los artículos, y hasta incluso esta misma tesis, para
revisar y corregir el texto en inglés. Si esta tesis está escrita en un inglés decente,
es en buena parte gracias a lo que me has enseñado durante estos años.

Y qué habría sido de mí y de este trabajo sin las incontables partidas de
juegos de mesa con Jonatan, Siro, Javi, Miguel Ángel y Gonzalo. En el equilibrio
está la virtud y después de una dura semana de trabajo, esas tardes con ellos me
hacían recuperar toda esa energía. Quiero agradecer especialmente a mi gran
amigo Gonzalo, mi compañero de carrera desde el principio y que por suerte
puedo seguir contando con él en esta etapa de mi vida. No quiero olvidarme de
mi amigo José Luis, con el que pude compartir mi año de máster y al que tengo
un gran aprecio.

My stay in Edinburgh was, without a doubt, the best moment in my Ph.D. It has
been an honor to work with Michael O’Boyle during my stay. I want to thank him for
his hospitality and for the time he spent with me in not always so serious conversations.
I want to take this opportunity to say that I miss all my friends from Edinburgh. Celeste,
Jackson, Jordi, Li, I miss being there - I miss those days. The memories of Princes Street,
Edinburgh Castle, and the streets I crossed to reach the School of Informatics are burnt
inside my heart. They are now a dream that a long time ago I had the chance to live. The
time I spent with all of you in Edinburgh is something I will never forget.

I also want to thank Biagio and Sandro, from the University of Siena, for the time
we shared in Italy and all the work we have done together. The beginning of my research
career was not easy for me, but you always have been a great support. It has been a
pleasure to work with you.

Last but not least, I wish to thank all my friends and Ph.D. colleagues. Special thanks
to my friends Ashkan, Vahid, Sawan, Víctor, Paco, Agustín, Eduardo, Juan Manuel and
Sebastián. Thanks for all the lunches we had during this time, all the deep conversations
about life, and your company.

Estoy feliz y satisfecho de cerrar este capítulo en mi vida. Al mismo tiempo,
no tengo duda de que echaré de menos esto. La gente con la que he compartido
esta experiencia, lo que he aprendido por el camino y todo lo que he vivido.
Gracias a todos.

12

Resumen

Introducción y Motivación

Mejorar el rendimiento de los computadores es uno de los objetivos centrales de
la arquitectura de computadores. Desde el diseño del primer microprocesador,
los ordenadores han evolucionado de maneras innumerables e inimaginables.
Conceptos básicos como la jerarquía de memoria, el pipelining y la predicción
de saltos pronto aparecieron en los primeros microprocesadores. Después, la ex-
plotación del paralelismo a nivel de instrucción (ILP) fue el método principal
para ganar rendimiento. La explotación del ILP empezó alrededor de los años
80 y terminó aproximadamente en el año 2000. Para entonces, una nueva ba-
rrera apareció en la lucha para mejorar el rendimiento de los computadores: la
potencia de diseño térmico (TDP). Aumentar las capacidades del hardware y su
frecuencia implica, en el fondo, incrementar la potencia. Por desgracia, la po-
tencia que entra en un microprocesador debe ser extraída en forma de calor.
Este factor dictó cómo se seguiría innovando en el campo de la arquitectura.
Para principios de siglo, la atención pasó a los procesadores multinúcleo, lo cual
abrió nuevas oportunidades para la investigación y mejoras de las CPU: el para-
lelismo a nivel de hilo (TLP). Es un momento muy relevante en la historia de la
arquitectura de computadores porque, por primera vez, las mejoras en la arqui-
tectura de los computadores llevaban ligadas un incremento de la complejidad
en la programación. Al contrario que otras mejoras en los microprocesadores,
los multinúcleo no se pueden aprovechar automáticamente. Los arquitectos de
computadores dejaron parte del trabajo a los desarrolladores, que tuvieron que
incluir paralelismo a nivel de hilo en sus programas. Sin embargo, la fiebre por
el paralelismo a nivel de hilo no podía durar para siempre, puesto que tener
una gran cantidad de núcleos es inviable, principalmente debido a la sincroni-
zación y coherencia de cache. El paralelismo a nivel de hilo ha sido crucial para
el rendimiento de los microprocesadores en los últimos años, pero hoy en día

13

Resumen

su impacto es menos perceptible. Aunque las mejoras en la arquitectura de las
CPU se están ralentizando rápidamente, las necesidades de potencia de cómpu-
to no hacen más que incrementar día tras día. Por ejemplo, uno de las últimas
propuestas de DeepMind, AlphaCode, es un modelo de 41 billones de paráme-
tros que necesitó más de 2000 PFLOP/s-días para ser entrenado, lo que viene
a ser unos 157 megavatios/hora, que se estima que son 16 veces el consumo
energético de un un hogar americano al cabo de un año. Entonces, ¿cuál es el
nuevo paradigma en el que los arquitectos de computadores deberían trabajar
en las próximas décadas? La realidad que debemos afrontar es que mejorar el
rendimiento de los microprocesadores es cada vez más complejo. Por lo tanto, el
presente y futuro de la arquitectura de computadores está en nuevas arquitectu-
ras, especializadas y más eficientes. En vez de usar una misma arquitectura para
todas las tareas, la arquitectura de computadores está evolucionando hacia el
uso de arquitecturas especializadas para cada carga de trabajo. Pero, de nuevo,
las mejoras en la arquitectura no pueden desarrollarse sin alterar el flujo de tra-
bajo del desarrollo de software. Al igual que en la irrupción de los multinúcleo,
esta nueva era, la era de los aceleradores hardware, no necesita solo depender
del hardware, sino también del software. Realmente, los aceleradores proporcio-
nan una mejor eficiencia energética y potencia de cómputo que las CPU. Pero
también está claro que el software debe evolucionar para soportar esta inmensa
cantidad de diversidad de hardware. Esta nueva era, que a veces se dice que va
a abrir una nueva edad de oro para la arquitectura de computadores, viene con
grandes promesas, pero también con retos extraordinarios.

Uno de los primeros retos consiste en encontrar el nuevo paradigma que
permita explotar los aceleradores para mejorar el rendimiento de un compu-
tador. Después de los mencionados ILP, TLP y del posterior paralelismo a nivel
de datos (DLP), un nuevo paradigma está emergiendo en los últimos años. El
paralelismo a nivel de acelerador (ALP) se postula como el siguiente gran pa-
radigma, candidato a dominar los próximos años en los que los aceleradores ya
están siendo los actores principales de las innovaciones dentro del ámbito de la
arquitectura. El ALP se define como el uso concurrente de múltiples acelerado-
res. De forma similar a como el ILP utiliza múltiples unidades funcionales, el
ALP trata de explotar el paralelismo a nivel de acelerador. De hecho, el ALP ya
se está manifestando dentro de los SoC, donde la CPU se encarga de orquestar
una extensa lista de aceleradores, desde la GPU hasta otros aceleradores más
específicos como DSPs, aceleradores para aprendizaje profundo, etc.

Después del fin de la ley de Moore y de la escala de Dennard, los arquitec-
tos de computadores han de buscar nuevas formas de mejorar el rendimiento
de los computadores. Se estima que un procesador en orden ejecutando una
instrucción aritmética tan solo utiliza el 6 % de la energía total para ejecutar la

14

instrucción en sí, mientras que el resto de energía se desperdicia en acceder a
las cachés, en llevar a cabo la lógica de control, etc. El caso de un procesador
moderno fuera de orden es mucho peor, en el que se estima que el 99.9 % de
su energía se desperdicia. Por lo tanto, la respuesta a cómo seguir mejorando el
rendimiento de los computadores está lejos de seguir mejorando el rendimiento
de las CPU. La computación ha llegado a un momento en el que, si queremos
conseguir este objetivo, tienen que aparecer nuevas arquitecturas. Estas son las
arquitecturas especializadas, también conocidas como aceleradores. La diferen-
cia respecto a las CPU está en que los aceleradores se especializan en resolver
un problema concreto. Esto ha provocado una gran explosión de aceleradores
en los últimos años. Primero apareció la GPU, el acelerador más conocido, es-
pecializado en aplicaciones como aprendizaje automático, compresión de video,
videojuegos y realidad aumentada. Otro ejemplo es las FPGA, que proporcionan
un hardware reconfigurable, de forma que permiten resolver problemas directa-
mente en hardware. Al igual que las GPU, también son aplicables a más de un
dominio, desde aplicaciones médicas hasta aplicaciones industriales. En cuanto
a aceleradores específicos de un dominio, el aprendizaje automático es clara-
mente el campo más estudiado. La TPU es un ejemplo típico de acelerador para
aprendizaje profundo, tanto para el entrenamiento como para inferencia.

Al igual que las CPU, los aceleradores se pueden programar de formas muy
distintas. Sin embargo, en el caso de los aceleradores, la variedad en cuanto a
lenguajes de programación y tecnologías es significativamente mayor. Mientras
que los lenguajes de propósito general como C/C++ se usan típicamente para
programar CPU, no hay ningún lenguaje estandarizado para aceleradores. Es-
to provoca que para usar un acelerador el programador necesite desarrollar un
nuevo programa. Así, cuando el número de aceleradores aumenta linealmente,
la complejidad en el código aumenta de forma exponencial, debido a lo comple-
jo que resulta mantener códigos diferentes para cada dispositivo. Además de los
lenguajes específicos para cada acelerador, también existen lenguajes que per-
miten escribir un código único y que este se ejecute en múltiples dispositivos.
En esta tesis nos refereimos a ellos como «lenguajes de código único». Algu-
nos ejemplos son OpenCL, oneAPI, PHAST o Kokkos. Esta nueva generación
de lenguajes de programación abre grandes posibilidades dentro del mundo del
desarrollo de software. Sin embargo, también conllevan muchos problemas y
retos. Diversos autores creen que existen tres problemas fundamentales dentro
de la programación en entornos heterogéneos:

• Productividad: el desarrollo de software tiene un coste. Normalmente se
mide en horas de desarrollo, así que para comparar diferentes lenguajes
de programación se puede considerar el numero de horas necesarias para

15

Resumen

desarrollar un programa. Cada acelerador necesita un lenguaje distinto, así
que la complejidad del desarrollo crece de forma exponencial en entornos
heterogéneos. Una alternativa a usar lenguajes específicos para cada ace-
lerador es usar lenguajes de código único. Estos lenguajes (como DPC++)
permiten a los desarrolladores escribir un programa una vez y ejecutarlo
en múltiples aceleradores. Sin embargo, estos lenguajes pueden ser más
complejos que los lenguajes de propósito general (como C++), lo que sig-
nifica que se necesita más tiempo para terminar un programa. Por otro
lado, ya hay una gran cantidad de código escrito, así que para utilizar
aceleradores nuevos con este tipo de lenguajes, los desarrolladores tienen
que reescribir código. En los últimos años han aparecido nuevas formas
de reemplazar código ya escrito con llamadas a librerías optimizadas. En
el fondo, esto puede ser útil para compilar código antiguo y reemplazarlo
con librerías que utilizan las API de los aceleradores, lo que permite así su
uso sin reescribir código. Aunque estas aproximaciones pueden funcionar
en ciertos casos y escenarios limitados, son frágiles, porque son incapaces
de compilar código complejo y no son extensibles a otros dominios.

• Portabilidad: la portabilidad de un lenguaje de programación es propor-
cional al número de arquitecturas distintas que soporta. Por ejemplo, C++
es uno de los lenguajes de propósito general más populares. Esto es, en
parte, porque proporciona un rendimiento excelente. Sin embargo, su por-
tabilidad es muy limitada porque el código solo es compilable a CPU. Los
lenguajes de código único son mucho más portables, ya que el código escri-
to en esos lenguajes se puede ejecutar en diferentes aceleradores (además
de la CPU).

• Rendimiento: conseguir un buen rendimiento depende de dos factores:
el hardware y el software. Esta vez, con la irrupción de los aceleradores,
no iba a ser una excepción. De hecho, el problema del rendimiento es
agravado por el hecho de que, como hemos discutido, los aceleradores
son muy diversos. Si un programa escrito en un lenguaje de programación
de código único funciona bien para un acelerador no hay garantía que
de que funcione también bien en otro acelerador. Este problema se conoce
comúnmente como performance portability. Es un término cuya definición se
ha discutido desde su creación, aunque algunos estudios recientes dan una
definición más precisa del mismo. En general, una aplicación es performance
portable cuando consigue un buen rendimiento en todas las plataformas
hardware que la aplicación soporta. Es importante mencionar que, puesto
que los aceleradores están muy especializados, no todos los aceleradores

16

son adecuados para una tarea (por ejemplo, una TPU no puede realizar
tareas criptográficas). Por lo tanto, la performance portability solo debería
considerarse entre los aceleradores adecuados para una tarea (por ejemplo,
la CPU, GPU y tensor cores para una multiplicación de matrices).

Por lo tanto, la comunidad está buscando formas de programar sistemas he-
terogéneos que consigan un buen rendimiento (performance), portabilidad (por-
tability) y productividad (productivity) (P3). En el problema de las tres P (P3) es
imposible conseguir lo mejor de los tres mundos al mismo tiempo. Algunos len-
guajes y librerías, como las que ya hemos mencionado, se han creado para tratar
de resolver el problema de P3 en los últimos años.

Lenguajes de Programación de Alto y Bajo Nivel en
la Era Heterogénea

Comenzamos explorando la reprogramación de Caffe, un framework de aprendi-
zaje profundo, utilizando la librería PHAST, que permite escribir código único
que puede ejecutarse en CPU y GPU. Utilizando este lenguaje de código único,
y basándonos en una implementación ya existente, estudiamos los problemas de
rendimiento que sufre respecto a la versión original de Caffe, implementada en
C++ (para CPU) y CUDA (para GPU de NVIDIA). Concretamente, encontramos
oportunidades de mejora de rendimiento en las capas de softmax y de convo-
lución, así como en el solver. De esta forma estudiamos si es posible alcanzar
la performance portability en un de caso de estudio real, como lo es el framework
Caffe. Experimentalmente, encontramos que la performance portability es posible
incluso con una base de código tan grande como la de Caffe. Nuestra versión
implementada en PHAST obtiene una aceleración respecto a la versión original
usando el dataset de MNIST de -15 % y -2 % en CPU y GPU, respectivamente,
mientras que usando el dataset CIFAR-10 obtenemos una aceleración de un 51 %
y un 49 % en CPU y GPU, respectivamente. En cuanto a la performance portability,
obtenemos un 91.24 % y un 100 % en MNIST y CIFAR-10, respectivamente. De
esta forma conseguimos un código competente respecto al Caffe original, mien-
tras que nuestra versión consta de un único código, al contrario de la versión
original, que está implementada en C++ y CUDA, dificultando su desarrollo y
mantenimiento.

A pesar de estas ventajas, aprendimos que el desarrollo usando PHAST se
vuelve tedioso y complejo cuando se busca obtener una buena performance por-
tability. Por ello, estudiamos a continuación el uso de oneAPI, uno de las apues-
tas más novedosas y fuertes por la computación heterogénea, al mismo caso

17

Resumen

de uso, Caffe. En este estudio empezamos con una implementación desde ce-
ro y nos centramos en las capas de softmax y convolución. Dentro de oneAPI
podemos distinguir dos formas de funcionar: programar usando su lenguaje
de código único, DPC++, o bien utilizar su conjunto de librerías optimizadas
como oneDNN, oneTBB, oneMKL, etc. En primer lugar implementamos la ca-
pa de softmax utilizando DPC++ y posteriormente la de convolución usando
oneDNN. El rendimiento obtenido con DPC++ es bueno (solo en CPU, la única
plataforma disponible en nuestro servidor que soporta DPC++ en el momento
de realizar los experimentos) y el de oneDNN, excelente. Además de un rendi-
miento superior al obtenido con PHAST, oneAPI tiene potencial para una mayor
portabilidad que PHAST, ya que soporta CPU, GPU de NVIDIA y de Intel e in-
cluso FPGA.

Sin embargo, la programación usando DPC++ y oneDNN, al igual que en el
caso de PHAST, sigue siendo compleja. En consecuencia, proponemos un nue-
vo lenguaje de dominio específico (DSL), llamado «Heterogeneous Deep Neural
Network» (HDNN), que está enfocado al dominio de las redes neuronales pro-
fundas. Este lenguaje está basado en MLIR, un nuevo proyecto que nace en
Google con el fin de adaptar ideas del conocido LLVM a otros ámbitos y mejo-
rar ciertos aspectos del mismo. La gran diferencia de MLIR respecto a LLVM es
que MLIR permite hacer un lowering de la representación intermedia en varios
niveles o pasadas. Pensamos que este aspecto es tremendamente interesante de
cara al desarrollo de un lenguaje de código único que pretende usarse en len-
guajes heterogéneos, ya que permite traducir un código de muy alto nivel a
otros de nivel de abstracción más bajo en diferentes pasos. Esta traducción por
niveles es muy interesante en un contexto de arquitecturas heterogéneas porque
permite especializar el código según la arquitectura a la que se vaya a compi-
lar el código. HDNN soporta CPU, GPU de NVIDIA y TPU. Además, incluye
una idea novedosa: en vez de compilar el código a cada dispositivo de forma
manual, HDNN utiliza por debajo librerías optimizadas de aprendizaje profun-
do (oneDNN, cuDNN, etc) con el fin de conseguir el mejor rendimiento posible.
Nuestros experimentos demuestran que HDNN proporciona una productividad
similar a otros DSL, lo que permite una programación mucho más sencilla que
otros lenguajes de código único, como los estudiados PHAST y oneAPI. Ade-
más, su portabilidad es muy buena gracias a su soporte para CPU, GPU y TPU.
Por último, su rendimiento es similar o superior al de otras propuestas, gracias
al uso de librerías optimizadas. Creemos que este tipo de propuestas tienen el
potencial de solventar el problema de las tres P’s (P3) proporcionando al mismo
tiempo portabilidad, rendimiento y productividad.

18

Compilación de Código Existente a Aceleradores

Reemplazar código escrito en un lenguaje de propósito general (como C++) por
una llamada a una API optimizada (que hace lo mismo, pero con un rendimien-
to superior) es una técnica que ha ganado mucha popularidad en los últimos
años gracias a la llegada de la computación heterogénea, debido a que estas
APIs a menudo descargan la carga de trabajo en aceleradores hardware. Algunos
ejemplos de estas técnicas son IDL que define un lenguaje (Idiom Description Lan-
guage) que permite describir patrones de código. Por ejemplo, para detectar una
multiplicación de matrices, IDL permite definir su patrón, que posteriormente se
detecta y reemplaza por la llamada a la API correspondiente (MKL, openBLAS,
etc). Otro ejemplo es KernelFaRer, que busca directamente patrones de multipli-
caciones de matrices y las reemplaza con llamadas a MKL. Estas aproximaciones
son muy interesantes pero a la vez limitadas, ya que la búsqueda de patrones es
una técnica muy frágil, porque pequeños cambios en el código hacen inviable
su detección. Un ejemplo más avanzado es FACC, una aproximación aplicada a
transformada rápida de Fourier (FFT) que utiliza redes neuronales para detectar
las secciones de código a reemplazar, en vez de buscar patrones. Sin embargo,
FACC está muy limitado a FFT y no escala a otro tipo de códigos debido a
ciertos problemas que se estudian en la tesis.

En este contexto, proponemos «Algebra and Tensor Compiler» (ATC), un com-
pilador capaz de detectar y reemplazar programas de álgebra lineal y de cálculo
tensorial. ATC funciona en dos etapas. Primero detecta secciones de código que
son candidatas a ser reemplazadas por la llamada a una API. Después, analiza
todos los candidatos, determinando cual de esos candidatos es equivalente a la
sección de código reemplazable y encontrando la correspondencia entre las va-
riables del programa que se está compilando y los argumentos de la API. Esta
es la misma aproximación utilizada en FACC, que tiene tres limitaciones:

• FACC necesita que el programador analice el programa de entrada y pro-
porcione un fichero JSON al compilador que contenga información de en-
trada/salida, como los arrays de entrada, su tamaño y si son arrays de
entrada o de salida. ATC incorpora un compilador en tiempo de ejecución
(JIT) que permite recolectar esta información automáticamente.

• A la hora de encontrar la correspondencia entre las variables del progra-
ma y los argumentos de la API, el espacio de soluciones crece de forma
exponencial con el número de argumentos de la API y las variables del
programa. Las APIs de FFT no suelen tener más de 3 argumentos, por lo
que el espacio de soluciones no es excesivamente grande. Sin embargo, las

19

Resumen

de GEMM o convolución pueden llegar a tener hasta 12. En esta investiga-
ción proponemos diferentes técnicas que consiguen reducir el espacio de
soluciones para hacerlo manejable.

• FACC siempre descarga el trabajo a la API. Sin embargo, dependiendo de
la sobrecarga de usar el acelerador, el coste de las copias de memoria, etc,
la API no siempre es más rápida que ejecutar el código en la CPU. Por
ello, en ATC proponemos el uso de una máquinas de vectores de soporte
(SVM) para predecir cuando descargar a la API es beneficioso o no.

Al contrario que otras propuestas, ATC utiliza equivalencia a nivel de en-
trada/salida para determinar cuándo dos secciones de código son equivalentes.
Esto le permite compilar programas de multiplicación de matrices con la es-
tructura típica de los tres bucles anidados, pero también otras estructuras más
complejas, como el algoritmo de Strassen, algoritmos paralelos o vectorizados.

Evaluamos ATC con programas de multiplicación de matrices y convolución
y lo comparamos con las alternativas más actuales en el campo. ATC soporta la
descarga en tensor cores para la multiplicación de matrices y en TPU en el caso
de los programas de convolución. Diseñamos un conjunto de pruebas de 50 pro-
gramas de multiplicación de matrices y 15 de convolución. En ambos casos utili-
zamos programas de GitHub y buscamos programas que estén implementados
de formas distintas (distintos algoritmos, estrategias, etc). Aunque FACC solo
funciona para FFT, extendemos su funcionalidad para soportar GEMM, aun-
que no incorporamos ninguna de las mejoras presentadas en ATC. Llamamos a
esta nueva implementación FACC*. En programas de multiplicación de matri-
ces, ATC es capaz de compilar 42 programas (84 %), mientras que LLVM-Polly,
KernelFaRer, FACC* e IDL consiguen compilar 13, 11, 10 y 6 programas, respec-
tivamente (lo que corresponde a un 26 %, 22 %, 20 % y 12 % de los programas,
respectivamente). En los programas de convolución ATC consigue compilar un
total de 10 programas (un 66 %). En cuanto a rendimiento, ATC consigue una
aceleración media ponderado de 344x en los programas de multiplicación de
matrices, mientras que el resto de propuestas no pasan de un 10x. Por último,
ATC genera un número de combinaciones posibles significativamente inferior a
FACC*, que genera en la mayoría de casos más de un millón de combinaciones
para un programa, lo que hace inviable su compilación.

Explotación del Paralelismo a Nivel de Acelerador

Los aceleradores son cada vez más comunes, mejorando las capacidades de
cómputo de aplicaciones tanto científicas e industriales (como el aprendizaje

20

automático) como la de aplicaciones más simples, al alcance de cualquier usua-
rio (como la compresión de vídeo). Esto último es posible gracias a los SoC,
unos circuitos que integran una unidad central de procesamiento junto a múl-
tiples dispositivos como GPU y aceleradores. Disponer de varios aceleradores
dentro de un mismo chip permite ejecutar ciertas cargas de trabajo en acelera-
dores específicos, mejorando el rendimiento del computador. Otra opción para
aprovechar las capacidades de los SoC sería utilizar varios aceleradores para
una tarea común, siempre y cuando dicha tarea pueda ejecutarse en varios ace-
leradores. Ambas opciones pueden realizarse de forma paralela, por lo tanto
aprovechando lo que se conoce como el paralelismo a nivel de acelerador (ALP).
En el ejemplo de utilizar varios aceleradores para ejecutar un mismo programa,
esto implicaría ejecutar dicho programa (por ejemplo, una multiplicación de ma-
trices) en más de un acelerador de forma concurrente. Sin embargo, aunque el
hardware lo permite, no existe actualmente ninguna propuesta desde el punto de
vista software para explotar el ALP en entornos con múltiples aceleradores.

En este marco, presentamos «Predict, Optimize, Adapt and Schedule» (POAS),
un framework que permite planificar aplicaciones de forma automática para ex-
plotar el ALP. El framework es adaptable a cualquier tipo de aplicación y funcio-
na en cuatro fases bien diferenciadas. En la primera, la fase predict, se diseña un
predictor capaz de estimar bien el tiempo de ejecución o bien el consumo ener-
gético de los aceleradores que participen en la ejecución del programa. En la
fase optimize se formula el comportamiento de la aplicación y se optimiza. Esta
formulación se lleva a cabo como un problema de satisfacción de restricciones
(CSP). La optimización puede llevarse a cabo con el fin de minimizar el tiempo
de ejecución o bien para minimizar el consumo energético. A continuación, la
fase adapt, que es la única fase opcional, se encarga de adaptar los valores de
salida de la fase anterior. A veces, es necesario adaptar estos valores para que
el planificador (scheduler) pueda llevar a cabo la planificación (por ejemplo, si
el planificador necesita trabajar con tamaños de matrices pero la optimización
se ha hecho trabajando con otros datos). Por último, la fase schedule utiliza la
información proveniente de las fases anteriores para planificar la aplicación en
los diferentes dispositivos.

Aplicamos POAS a dos casos de estudio: multiplicación de matrices y convo-
lución. Evaluamos POAS en dos máquinas distintas que disponen de CPU, GPU
y tensor cores (XPU), un hardware específico para multiplicación de matrices. Pa-
ra evaluar POAS diseñamos un conjunto de pruebas con matrices de diferentes
tamaños y formas. En cuanto a la convolución, diseñamos un conjunto de prue-
bas similar a las entradas típicas de una capa de convolución, con tamaños de
imagen de aproximadamente 256x256 y distintos tamaños de filtro. Para evaluar
el desempeño de POAS, calculamos la raíz del error cuadrático medio (RMSE)

21

Resumen

de la predicción que POAS hace sobre el tiempo de ejecución y de copia en cada
dispositivo respecto al tiempo real que luego tarda tanto el cómputo como la
copia. A continuación, comparamos la distribución obtenida con POAS respec-
to a la distribución óptima, que calculamos ajustando manualmente el reparto
entre los diferentes dispositivos hasta encontrar aquel reparto cuyo tiempo de
ejecución sea mínimo. Los resultados de RMSE son especialmente bajos en CPU
para ambas máquinas (RMSE <3) y muy competitivos en GPU y XPU (RMSE
<6 en ambos casos). Respecto al reparto óptimo, POAS es capaz de encontrarlo
en 4 de las 12 pruebas que se hacen para multiplicación de matrices, quedando
en el resto de casos muy cerca del óptimo, obteniendo una planficación con un
error por debajo del 4 % respecto a la óptima. En convolución, POAS genera
planificaciones muy cercanas a la óptima, desde un 0.1 % hasta un máximo de
2.8 % de error respecto a la óptima. En vista de los resultados, POAS es capaz
de proporcionar ALP en entornos heterogéneos y con una sobrecarga despre-
ciable, lo que lo hace un candidato excelente para alcanzar ALP en los sistemas
computacionales del futuro.

Conclusiones y Vías Futuras

Cada vez es más evidente que el mundo de la computación se inclina por las
arquitecturas heterogéneas y abandona la idea de una unidad central que lle-
ve a cabo todas las tareas. Desde un punto de vista hardware, creemos que esta
tendencia tiene todo el sentido, pero desde un punto de vista software queda de-
mostrado que aún hay mucho camino por recorrer para poder explotar todas las
capacidades que el hardware es capaz de ofrecer. En esta tesis hemos propuesto
soluciones a varios problemas que consideramos relevantes dentro del incipiente
mundo de la computación heterogénea, como un estudio sobre la nueva gene-
ración de lenguajes junto con una nueva propuesta de lenguaje para el campo
del aprendizaje profundo, un novedoso compilador capaz de reemplazar códi-
go ya escrito por llamadas a una API optimizada que a su vez descanse en un
acelerador, o un framework capaz de explotar ALP automáticamente en entornos
heterogéneos. Creemos que todas estas propuestas pueden ser de utilidad para
reducir la complejidad del desarrollo del software en los próximos años, así co-
mo un mayor aprovechamiento del hardware sin la necesidad de realizar trabajo
manual adicional.

Por otro lado, el trabajo desarrollado en esta tesis abre nuevas vías de trabajo
muy interesantes:

• Diseñar una intefaz de alto nivel para HDNN. A pesar de los aspectos

22

positivos de HDNN, los desarrolladores tendrían que trabajar a nivel de
MLIR e interaccionar con el dialecto HDNN directamente. Este no es el
escenario ideal ya que programar a nivel de MLIR está en un nivel de
abstracción muy bajo. Por ello nos gustaría diseñar un lenguaje de alto
nivel para HDNN similar a lenguajes fáciles de usar como Python. Esto
facitlitaría la extensiblidad y mejoraría la popularidad de HDNN, haciendo
más fácil su uso para la audiencia general.

• Extender el compilador ATC a otros dominios y lenguajes de programa-
ción. Hemos demostrado que la metodología usada por ATC tiene un gran
potencial para reemplazar código de CPU con llamadas a APIs automática-
mente. Sin embargo, ATC solo se ha aplicado a multiplicación de matrices
y convolución. Extender el compilador a otros dominios demostraría su
gran capacidad y extendiría su uso en entornos no solo puramente acadé-
micos si no también industriales.

• Diseñar un método de aprendizaje automático capaz de encontrar la co-
rrespondencia entre las variables de un programa y los argumentos de
una API. En ATC, utilizamos un método de aprendizaje automático para
encontrar las porciones de código candidatas a ser acelerables y a conti-
nuación un método determinista que encuentre la correspondencia entre
variables del programa y argumentos de la API. Una mejora interesan-
te sería utilizar aprendizaje automático en ambas fases, ya sea de forma
separada (una red neuronal que haga una tarea y otra que haga la otra
tarea) o bien de forma conjunta (una red neuronal que haga ambas cosas
de golpe).

• Utilizar modelos de lenguaje grandes (LLMs) para detectar código acele-
rable dentro de un programa. Actualmente, utilizamos una red basada en
PrograML entrenada con el dataset OJClone para detectar cuando una por-
ción de código corresponde a un cierto tipo de programa (por ejemplo, si
es una multiplicación de matrices o no). En base a nuestra experiencia, este
método funciona bien si se usa conjuntamente con un test de equivalen-
cia a nivel de entrada/salida, ya que esta red actúa como un «filtro» para
evitar tener que probar todo el código para comprobar si corresponde a
un cierto tipo de programa o no. Debido a los avances recientes en LLMs
(como GPT-3), creemos que este tipo de técnicas pueden ser de una gran
utilidad para este campo.

• Diseñar un nuevo planificador para ejecutar múltiples aplicaciones en ALP.
POAS es un framework que permite ejecutar una aplicación el ALP, por lo

23

Resumen

tanto ejecutándose en varios aceleradores concurrentemente. Una vuelta de
tuerca a esta idea es ejecutar varias aplicaciones en ALP. Esto abre un reto
fascinante: el descubrimiento. En otras palabras, descubrir aplicaciones y
hardware y comprender qué aceleradores son útiles para qué aplicaciones.
Pensamos que esta nueva aproximación podría llegara a integrarse dentro
del sistema operativo para orquestar la ejecución de programas, de forma
similar al planificador de procesos, pero para aceleradores.

• Extender POAS con políticas de planificación más sofisticadas, puesto que
las que incorpora actualmente no siempre funcionarán bien en todos los
escenarios. Otro aspecto a estudiar es cómo planificar eficientemente las
comunicaciones entre la CPU y los aceleradores, ya que esta tiene un im-
pacto notable en el rendimiento, especialmente en entornos con un bus
compartido.

24

Contents

Acknowledgements 11

Extended Abstract in Spanish 13

Abstract 29

List of Figures 31

List of Tables 35

List of Acronyms 37

1 Introduction 39
1.1 Accelerator-Level Parallelism . 40
1.2 Domain-Specific Accelerators . 41
1.3 Productivity, Portability and Performance 44
1.4 Objectives and Goals . 46
1.5 Thesis Organization . 47

2 Background 49
2.1 Compiler Technologies . 49
2.2 Single-Source Languages . 51
2.3 A DNN Framework: Caffe . 53
2.4 Performance Portability . 54
2.5 Accelerators and Tensor Cores . 55
2.6 Program Synthesis and Code Generation 56
2.7 Scheduling and Co-Execution . 57

3 High and Low-Level Programming Languages in the Heterogeneous
Era 59

25

Contents

3.1 Introduction . 59
3.2 Achieving Performance Portability 62
3.3 A Novel Heterogeneous Language for Deep Neural Networks . . . 72
3.4 Evaluation . 80
3.5 Related Work . 99
3.6 Conclusions . 100

4 Compiling Existent Code to Accelerators 103
4.1 Introduction . 103
4.2 Matching Linear Algebra and Tensor Code to Accelerators 107
4.3 Evaluation . 117
4.4 Related Work . 128
4.5 Conclusions . 130

5 Exploiting Accelerator-Level Parallelism 133
5.1 Introduction . 133
5.2 Exploiting Accelerator-Level Parallelism 136
5.3 Evaluation . 147
5.4 Related Work . 155
5.5 Conclusions . 157

6 Conclusions and Future Ways 159
6.1 Conclusions . 159
6.2 Thesis Contributions . 161
6.3 Publications . 163
6.4 Future Ways . 164

A Caffe Implementation Details 167
A.1 The Softmax Layer in Caffe . 167
A.2 The Convolution Layer in Caffe . 168

B PHAST-Caffe Implementation 171
B.1 Softmax (Feedforward) . 171
B.2 Convolution (Feedforward) . 174
B.3 Convolution (Backpropagation) . 176
B.4 Adam Solver . 178
B.5 Extended Evaluation . 179

C oneAPI-Caffe Implementation 187
C.1 Softmax . 187
C.2 Convolution . 191

26

Contents

Bibliography 195

Publications Composing the Thesis 219
1 Performance portability in a real world application: PHAST ap-

plied to Caffe . 219
2 Applying Intel’s oneAPI to a machine learning case study 223
3 HDNN: a cross-platform MLIR dialect for deep neural networks . 225
4 Matching Linear Algebra and Tensor Code to Specialized Hard-

ware Accelerators . 227

27

Abstract

With the end of Moore’s Law and Dennard’s scaling, attention is shifting to
new ways of enhancing computer performance. Improving microprocessor
performance is becoming increasingly complex, whereas computational power
demands still grow tremendously fast. In recent years, we are witnessing a
paradigm change: rather than using one single chip, the CPU, for computing
everything, computers are evolving into more heterogeneous organizations. In
this new configuration, multiple specialized chips compute specific workloads
while the CPU orchestrates them, and is only used for actual computing when
no other chip can be used. These specialized chips are usually called accelera-
tors. Since they are highly specialized, architecture enhancements have tremen-
dous room for improvement, unlike CPUs. Accelerators are way more efficient
than CPUs in terms of performance, energy consumption, or both.

Like multicores, accelerators come with great benefits to computer perfor-
mance, but also notable challenges to the programming workflow. In environ-
ments with multiple accelerators, writing code for each of them is very inefficient
since each accelerator is programmed with different languages. Performance is
also concerning because programming languages often struggle to exploit hard-
ware to take advantage of its full potential. Lastly, portability is also compli-
cated because when a program is designed for an specific accelerator, it cannot
be executed in a different one. Achieving programming languages that provide
productivity, performance and portability is known as the P3 problem. To tackle
it, in this thesis, we have studied how two different single-source programming
languages perform in real-world scenarios. After studying their performance
in each of the three P3 categories, we found that they struggle to achieve good
performance, portability, and productivity at the same time. Therefore, we have
proposed a new domain-specific language specialized in deep neural networks
that supports multiple heterogeneous architectures and reaches superior results
in all P3 aspects.

Even though we can develop programs with decent portability, productivity

29

Abstract

and performance in heterogeneous environments, there is much code already
written. Therefore, if we wish to target new hardware, we would need to rewrite
this code with new languages in order to use new accelerators. In this thesis,
we propose a compiler that automatically matches and replaces existing code
with API calls. Since the target API can be reconfigured easily, our compiler
can target an optimized CPU library, which is more efficient than executing the
handwritten code or an API that relies on a hardware accelerator. Our proposal
is designed for C/C++ and recognizes linear algebra and tensor codes. The
main strength of this proposal is its ability to recognize simple code (e.g., the
three-loop structure of matrix multiplication) as well as complex code constructs
(like the Strassen algorithm, hand-optimized vectorized code, etc.).

Furthermore, a notable trend in SoC design, which is becoming increas-
ingly common, is including a sea of disparate accelerators inside the chip. Even
though the hardware is already offering performance improvements never seen
before, the software is still struggling to take advantage of it. For example, there
is no clear way of managing multiple accelerators to accelerate a given workload
or how to assign accelerators to the right tasks automatically. Using multiple ac-
celerators concurrently, like how ILP exploits multiple functional units, is called
Accelerator-Level Parallelism (ALP). In this thesis, we show a new proposal for
exploiting ALP in heterogeneous environments. We present a framework capa-
ble of orchestrating multiple accelerators to run a single task jointly, significantly
improving performance. We apply our framework to matrix multiplication and
convolution use cases, demonstrating that it automatically schedules tasks be-
tween accelerators with a low prediction error and a work distribution very close
to the optimal.

We expect that the proposal described in this thesis will help to improve the
usability and the performance of heterogeneous computing, which will relent-
lessly establish the standard for future-generation computing systems.

30

List of Figures

1.1 Evolution of different computer architecture techniques. 41
1.2 Transistors per chip vs. Moore’s Law. 42
1.3 Summary of accelerator types divided by application domain and

accelerator type. 44

2.1 Performance portability formula. 54
2.2 Difference between heterogeneous scheduling approaches; offloading

(left) and co-execution (right). Arrows indicate data transfers between
devices. 57

3.1 An HDNN program that runs the convolution and softmax layer in
GPU. 74

3.2 HDNN compilation flow. 76
3.3 HDNN example lowering with runtime communication. 79
3.4 Time spent in each of the layers (MNIST) (running in CPU). 83
3.5 Time spent in each of the layers (MNIST) (running in GPU). 84
3.6 Time spent in each of the layers (CIFAR-10) (running in CPU). 84
3.7 Time spent in each of the layers (CIFAR-10) (running in GPU). 85
3.8 P3 analysis of PHAST and C++. 87
3.9 Execution time evolution from 1 to 1000 iterations in each version. . . 89
3.10 P3 analysis of oneAPI, PHAST and C++. 92
3.11 P3 analysis of HDNN, oneAPI, PHAST and C++. 96
3.12 DeepDSL convolution (top) and softmax (bottom) programs used in

the evaluation. 97

4.1 Easy API replacement example. Figure shows the program, taken
from the parboil benchmark, a widely-used benchmark suite, and
how is transformed into a call to an optimized GEMM accelerator API.105

31

List of Figures

4.2 Hard API replacement example. Figure shows the program, taken
from GitHub, consisting of 120 lines of hand-optimized intrinsics for
AVX2, and how ATC matches the code to the accelerator API. 105

4.3 ATC compiler architecture. 108
4.4 Dimension detection algorithm overview for a target example array

called A. 110
4.5 Example application of the matching algorithm. Given two functions,

A and U, with three 2D arrays each, the algorithm generates the
3! = 6 permutations (only the first three shown), finding the right
combination (the first one) automatically. 113

4.6 Levenshtein recursive definition. 114
4.7 Levenshtein distance calculation for the arguments of the tensor core

API (above) and an example user program. 115
4.8 Cross-validation accuracy with mean and standard deviation of the

neural classifier in terms of the number examples per class when
trained using a reduced version of the OJClone dataset with GEMM
and convolution examples. 121

4.9 Percentage of matched GEMM codes by different techniques. 122
4.10 Percentage of matched GEMM codes by ATC divided by failure reason.123
4.11 Geometric mean speedup obtained by IDL, KernelFaRer, FACC* and

ATC in GEMM programs with n = 8192. 123
4.12 Comparison of the number of candidates generated for matching

GEMM codes: FACC* vs our approach. 124
4.13 ATC compilation time for different number of candidates. 125
4.14 Percentage of speedup lost by ATC compared to optimal switching

between CPU and XPU depending on matrix shapes. 126
4.15 Matched convolution codes by ATC. 127
4.16 ATC speedup in convolution programs with h = w = 224, kw = kh =

11, c = 3, k = 96 and n = 100. 127
4.17 P3 analysis of ATC compared to other approaches. 128

5.1 POAS operation overview. The framework takes different applica-
tions and executes them in co-execution, providing ALP. 134

5.2 General overview of POAS (Predict, Optimize, Adapt and Schedule)
framework. 136

5.3 Proposed scheduling communication scheme in a shared bus with
CPU+GPU+XPU. 145

5.4 Percentage of work distribution among devices in mach1 and mach2
for GEMM and convolution. 153

32

List of Figures

5.5 Runtime comparison of POAS implementation for GEMM and con-
volution against optimal distribution. 153

5.6 P3 analysis of POAS compared to other approaches. 155

A.1 Data organization in Caffe’s original softmax layer. 168

33

List of Tables

3.1 Summary of HDNN available operations to the user with their de-
scription. f32 refers to simple precision data types. 73

3.2 Hardware configuration for the three machines used in the evaluation. 81
3.3 Hardware specifications for the testbed environment (per chip). 81
3.4 Performance comparison between Original Caffe and PHAST version

for MNIST dataset. 85
3.5 Performance comparison between Original Caffe and PHAST version

for CIFAR-10 dataset. 86
3.6 Performance portability metrics obtained from total execution time

(application efficiency). 86
3.7 Different inputs for isolated softmax layer. 88
3.8 Execution times in seconds for isolated softmax layer (CPU). 89
3.9 Execution times in seconds for isolated softmax layer (GPU). 90
3.10 Input sizes for isolated convolution layer. 91
3.11 Execution times in seconds for isolated convolution layer (CPU). . . . 91
3.12 Execution time of the softmax layer in CPU, GPU and TPU (in seconds). 95
3.13 Execution time of the convolution layer in CPU, GPU and TPU (in

seconds). 95
3.14 Source lines of code (SLOC) measured in different languages. 98

4.1 Input sizes used by the predictor for matrix multiplication and con-
volution. 117

4.2 List of GEMM codes. 119
4.3 List of convolution codes. 120
4.4 SVM accuracy for different sizes. 126

5.1 Hardware configuration for the testbed environment. 148
5.2 Hardware specifications for the testbed environment. 149

35

List of Tables

5.3 Libraries used in each platform for matrix multiplication and convo-
lution. 149

5.4 Matrix sizes used in the evaluation. 150
5.5 Convolution inputs used in the evaluation. 150
5.6 Root mean square error (RMSE) and prediction error for GEMM in

mach1 and mach2. The compute (COM) error and RMSE are shown
for CPU, whereas the error and RMSE are divided into computing
(COM) and memory copy (CPY) for GPU and XPU (in parentheses),
along with the global error (GLB) and RMSE. 151

5.7 Root mean square error (RMSE) and prediction error for convolu-
tion in mach1 (above) and mach2 (below). The compute (Comp.)
error and RMSE are shown for CPU, whereas the error and RMSE
are divided into computing and memory copy for GPU and XPU (in
parentheses), along with the global error and RMSE. 151

B.1 Caffe test results for the preliminary PHAST implementation. 179
B.2 Extended inputs for the isolated softmax layer. 180
B.3 Extended execution times for the isolated softmax layer on the CPU

and GPU. 181
B.4 Extended inputs for isolated convolution layer (for both feedforward

and backpropagation). 182
B.5 Extended execution times for the isolated convolution layer in feed-

forward phase on the CPU and GPU. 183
B.6 Extended execution times for the isolated convolution layer in back-

propagation on the CPU and GPU. 184
B.7 Input sizes for isolated Adam solver. 185
B.8 Execution times for isolated Adam solver on the CPU and GPU. . . . 185

36

List of Acronyms

AI: Artificial Intelligence (Inteligencia artificial).

ALP: Accelerator-Level Parallelism (Paralelismo a nivel de acelerador).

ALU: Arithmetic Logic Unit (Unidad aritmético-lógica).

AOCL: AMD Optimized CPU Libraries (Librerías optimizadas para CPU
AMD).

API: Application Programming Interface (Interfaz de programación de aplica-
ciones).

ASIC: Application-Specific Integrated Circuit (Circuito integrado de aplicación
específica).

BLAS: Basic Linear Algebra Subprograms (Subprogramas básicos de álgebra
lineal).

CNN: Convolutional Neural Network (Red neuronal convolucional).

DNN: Deep Neural Network (Red neuronal profunda).

DSL: Domain-Specific Language (Lenguaje de dominio específico).

FFT: Fast Fourier Transform (Transformada rápida de Fourier).

FPGA: Field-Programmable Gate Array (Matriz de puertas lógicas programable
en campo).

GEMM: General Matrix Multiply (Multiplicación general de matrices).

HMMA: Half Matrix-Multiply Accumulate (Multiplicación acumulado de ma-
triz en media precisión).

37

List of Acronyms

HPC: High Performance Computing (Computación de alto rendimiento).

ILP: Instruction Level Parallelism (Paralelismo a nivel de instrucción).

IMMA: Integer Matrix Multiply Accumulate (Multiplicación y acumulado de
matriz entera).

IO: Input/Output (Entrada/Salida).

IR: Intermediate Representation (Representación intermedia).

JIT: Just-In-Time (Justo a tiempo).

LLC: Last Level Cache (Caché de último nivel).

LLM: Large Language Model (Modelo de lenguaje grande).

MILP: Mixed Integer Linear Programming (Programación lineal en enteros
mixta).

MLIR: Multi-Level Intermediate Representation (Representación intermedia
multinivel).

NPU: Neural Processing Unit (Unidad de procesamiento neuronal).

RMSE: Root-Mean-Square error (Raíz del error cuadrático medio).

SIMD: Single Instruction, Multiple Data (Una instrucción, múltiples datos).

SIMT: Single Instruction, Multiple Threads (Una instrucción, múltiples hilos).

SMV: Support Vector Machine (Máquina de vectores de soporte).

TDP: Thermal Design Power (Potencia de diseño térmico).

TLP: Thread Level Parallelism (Paralelismo a nivel de hilo).

TPU: Tensor Processing Unit (Unidad de procesamiento tensorial).

USM: Unified Shared Memory (Memoria compartida unificada).

38

Chapter 1
Introduction

Improving computers’ performance is one of the central goals of computer archi-
tecture. Since the design of the first microprocessors, computers have evolved in
innumerable and unimaginable ways. Basic architectural concepts like memory
hierarchies, pipelining and branch prediction soon appeared in early micropro-
cessors [77]. After that, the exploitation of instruction level parallelism (ILP)
was the primary architectural method for gaining performance. ILP exploita-
tion started around 1980 and ended by the year 2000. By then, a new barrier
appeared in the race of improving computer performance: thermal dissipation
power (TDP). Increasing the hardware capabilities and the frequency ultimately
implies increasing the power. Unfortunately, the power that goes into a pro-
cessor must be removed as heat. This limiting factor dictated how architectural
innovations should be made. By the beginning of the century, attention shifted
to multicores, which opened new opportunities for CPU research and improve-
ments: the thread-level parallelism (TLP). It is indeed a very relevant point in
computer architecture history because, for the first time, improvements in com-
puter architecture led to increased programming complexity. Unlike other en-
hancements in microprocessors, multicores are not something that programs can
exploit automatically. Computer architects left part of the duty to programmers,
which had to include thread-level parallelism in their programs. However, TLP
and multicores fever couldn’t last forever, as very large amounts of cores have
many problems like synchronization and cache coherence, power consumption
or scalability. TLP has been crucial for microprocessors’ performance in the
last years, but nowadays its impact is less noticeable. Despite architectural im-
provements in CPUs rapidly slowing down, computational power needs are

39

1. Introduction

only increasing every day. AI is constantly improving with impressive results,
but this unprecedented explosion of AI also needs computational power and
efficiency never seen before. For example, one of the last models by DeepMind,
AlphaCode, is a 41B model that required more than 2000 petaflop/s-days to be
trained, which in turn is around 175 megawatt-hours, which is estimated to be
16 times the average American household’s yearly energy consumption [112].
Then, what is the new paradigm in which computer scientists should work for
the next decades? Ahead of us is the fact that improving microprocessors’ per-
formance is increasingly complex. Therefore, the present and future of computer
architecture are in new, specialized and more efficient architectures. Rather than
using one architecture for everything, computer architecture is evolving to use
specialized architectures for each workload. But, once again, architectural im-
provements cannot be developed without disturbing the software development
workflow. Like in the irruption of multicores, this new era, the era of hardware
accelerators, must not only rely on hardware but also software. Accelerators
deliver higher energy efficiencies and computing power than CPUs [44], that is
for sure. But it is also clear that software needs to evolve in order to support
this new plethora of hardware diversity. This new era, which is called to open a
new golden age for computer architecture [78], comes with great promises but
also astonishing challenges.

1.1 Accelerator-Level Parallelism

As we have discussed, within each stage of processor architecture evolution, a
new paradigm has emerged. Superscalar, pipelined processors allowed archi-
tects to run multiple instructions concurrently. With it, Instruction Level Par-
allelism (ILP) arrived. Later, with multicores, Thread-Level Parallelism (TLP)
emerged as a smart way of exploiting parallelism inside chips at another level.
Data Level Parallelism (DLP) was the next innovation, which takes advantage of
big amounts of data that has to be processed in equal ways. Figure 1.1 shows
the evolution of these paradigms over the years.

After the shift from general-purpose CPUs to specialized hardware acceler-
ators, a new paradigm is arriving. Accelerator-Level Parallelism (ALP) is often
defined as the concurrent use of various accelerators [80]. Similarly to how ILP
utilizes multiple functional units, ALP seeks to exploit workload parallelism at
the accelerator level. A very clear manifestation of ALP is already happening
in SoCs. Inside an SoC, the CPU is responsible for orchestrating the extensive
list of accelerators: GPUs, DSPs, deep learning accelerators, etc. Actually, there
are many applications where SoCs are already exploiting ALP, like live video

40

1.2. Domain-Specific Accelerators

1950 1960 1970 1980 1990 2000 2010 2020

ILP

TLP

DLP

ALP

pipeline super-scalar speculate

multiprocessor SMP multicore

SIMD vector subword GPU-SIMT

SoC

Figure 1.1: Evolution of different computer architecture techniques.

recording. However, for adequately exploiting ALP in heterogeneous environ-
ments, new methods should be designed for fully exploiting all the hardware
capabilities inside heterogeneous chips.

1.2 Domain-Specific Accelerators

Moore’s law, Dennard Scaling and dark silicon. Moore’s original prediction
in 1965 estimated a doubling in transistor density yearly [127]. In 1975, after
reviewing it, he projected a doubling every two years [128]. This estimation is
commonly known as Moore’s Law. The transistor density growth allowed com-
puter architects to improve performance with relative ease. The more transistors
that can fit into a chip, the more cores can contain, more hardware dedicated to
caches, etc. However, Moore’s Law was not infinite and, as Figure 1.2 shows, it
started to fade around 2010. The more time passes, the wider the gap between
actual transistor count and Moore’s Law.

Accompanying Moore’s Law, Robert Dennard also made a projection called
“Dennard scaling” [49], stating that as transistor density increased, power con-
sumption per transistor would drop, so the power per mm2 of silicon would
be near constant. Since the computational capability of an mm2 of silicon was
increasing with each new generation of technology, computers would become
more energy efficient. Like Moore’s Law, this prediction lasted for some time
but also ended years ago, in 2012.

The failure of both Moore’s Law and Dennard Scaling motivated the arrival
of the “dark silicon” [58] era. Adding transistors and boosting frequency with-
out control is not possible because the CPU must dissipate all this power as
heat. In other words, the TDP barrier is a strong limit that architects must com-
ply with. Dark silicon can be defined as a technique based on powering off parts

41

1. Introduction

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
103
104
105
106
107
108
109
1010
1011
1012

Year

T
ra
n
si
st
or
s

Microprocessors transistors

Moore’s Law (1975)

Figure 1.2: Transistors per chip vs. Moore’s Law.

of the chip (hence the name) to satisfy TDP limits. If there is part of the chip
that is not used for certain tasks, it can be turned off to save power. Over the
last few years, the percentage of dark silicon has been increasing.

The end of Moore’s law and Denard Scaling is nothing more than a new hur-
dle in the way of improving microprocessors’ performance. How can computer
architects keep improving computers’ performance, as they have been doing
since the conception of the first computer?

The energy efficiency of microprocessors and accelerators. An in-order pro-
cessor executing an arithmetic instruction is estimated to spend only 6% of the
total energy for the instruction itself [42]. The rest of the energy is wasted in
supplying the data and instructions from caches, as well as control logic. The
case of a modern out-of-order processor is much worse, which is estimated to
spend over 99.9% of its energy on overhead [44]. On top of the aforementioned
overhead costs, out-of-order processors suffer energy inefficiencies from branch
prediction, speculation, register renaming, etc.

The answer to the question about how to keep improving computers’ per-
formance seems to be far from improving CPUs’ performance. Indeed, many
improvements to CPU architecture can still developed. Yet, they are needed
very substantial enhancements to hold the tremendous pace that computer im-
provement has exhibited over the years. This tremendous performance gain
has allowed the appearance of several milestones in computer science, like AI.
The main source of inefficiencies in microprocessors is their generality. Because
CPUs must be able to execute all possible programs and workloads, it prevents
them from improving specific aspects for certain domains. Thus, it is very dif-

42

1.2. Domain-Specific Accelerators

ficult to achieve great enhancements in microprocessors. Computer history has
reached the moment in which new architectures have to appear: domain-specific
architectures, also known as accelerators.

Rather than using one device for all the computations (CPU philosophy),
accelerators are hardware devices specialized for a given domain. As we men-
tioned, CPUs can be used for any domain because they are intrinsically generic.
This is indeed their source of inefficiency. On the contrary, special-purpose ac-
celerators can eliminate most processors’ overhead. For example, they don’t
typically have to fetch instructions and hence don’t spend energy in instructions
fetching and decoding. There is no speculation, and hence no work lost due to
miss-speculation. Most data is supplied directly from dedicated registers, so no
energy is required to read from cache.

To compare the energy efficiency of CPUs and specialized architectures,
let’s consider the NVIDIA Volta GPU. In the Volta microarchitecture, the ma-
trix multiply-accumulate instruction (HMMA) multiplies two 4x4 half-precision
matrices, accumulating the results into a third matrix. This instruction is imple-
mented in a new type of core inside the GPU, called tensor cores, specialized
in tensor computations. It is estimated that the HMMA in Volta utilizes 77%
of the energy for the arithmetic, while the rest 23% is wasted [44]. Compared
to the in-order processor example, the HMMA instruction is around 12.8x more
energy efficient. Even bigger is the gap if out-of-order processors are compared
to more specialized accelerators like the TPU [95].

A sea of accelerators. Motivated by all these facts, massive growth in acceler-
ator applications for different domains has risen in recent years. To understand
better how accelerators are used, Figure 1.3 classifies the sea of different accel-
erator types. The first, and most common accelerator is the Graphics Processing
Unit (GPU). The GPU is the most popular architecture, being more specialized
than the CPU, but still more generic than other architectures. Their field of ap-
plication is very wide, from applications like machine learning, video encoding,
gaming and augmented reality. In the last years, GPUs are incorporating dedi-
cated hardware for specific applications [44] (e.g., tensor cores) and they might
even specialize further in the near future [63]. Field-programmable gate arrays
(FPGAs) play another crucial role in specialization, as they allow solving spe-
cific problems directly in hardware. Their hardware is reprogrammable, which
means that can be reconfigured for different tasks. Coarse-Grained Reconfig-
urable Arrays (CGRAs) also have reconfigurable hardware, although they have
much shorter reconfiguration times. Systolic accelerators and ASICs are the last
levels of hardware specialization. However, since accelerators are targeted to
specific tasks, the majority of them are useful only for a particular domain. The

43

1. Introduction

ACCELERATORS

TYPE DOMAIN

GPU

FPGA CGRA

Systolic

ASIC

ML Inference ML Training

Pattern Matching Genomics AR

Network Encryption Cryptography

Data Compression Video Processing

Figure 1.3: Summary of accelerator types divided by application domain and
accelerator type.

TPU [95] is a good example of a systolic accelerator specialized for the machine
learning domain. In systolic accelerators, computations are performed in 1D or
2D arrays of ALUs. Data enters the array in the first level, then ALUs perform a
given computation over the data and pass its output to the ALUs in the follow-
ing level. Finally, ASICs are accelerators specialized for a specific application,
thus offering the most efficient solution. The Darwin accelerator [185], an ac-
celerator for genomics is a good example of ASIC. In the end, many of these
accelerators are often included in System on a Chip (SoC) that nowadays power
not only HPC superchips [57, 143] but also our smartphones [83], laptops [98]
and workstations [168].

1.3 Productivity, Portability and Performance

Like CPUs, accelerators can be programmed in very different ways. However,
in the case of accelerators, the variety of programming languages, technologies
and frameworks is significantly wider. While general-purpose languages like
C/C++ are typically used for programming CPUs, accelerators have no stan-
dard language. In fact, each of them requires radically different languages.
Even accelerators that belong to the same category, like GPUs, require differ-
ent, often proprietary languages or frameworks (CUDA [139] for NVIDIA GPUs
and ROCm [10] for AMD GPUs). When the accelerator type is different (e.g.,
a deep learning accelerator and a Fast-Fourier Transform accelerator), the dif-
ference in use is huge. The consequence of this diversity is that the volume
of code for accelerators is very big and one code cannot be reused for another

44

1.3. Productivity, Portability and Performance

accelerator. In a heterogeneous environment where multiple accelerators exist,
using one language for each accelerator increases software development com-
plexity rapidly. Therefore, developers seek languages that allow them to write
code once and target multiple devices. In this thesis, we refer to those languages
as “single-source languages”. OpenCL [177] is one of the best known examples
of this, although newer and more modern solutions have appeared over the last
years, like DPC++ [87], PHAST [153] or Kokkos [55]. This new generation of
programming languages and frameworks opens great possibilities in software
development. However, they also open many new issues and challenges. Many
authors [195] devise three crucial aspects within heterogeneous programming.
We share this vision of these three potential challenges:

• Productivity: Software development has a cost. It is commonly measured
in hours of development, so to compare different programming languages,
the number of hours needed to develop a program can be considered.
Each accelerator need different languages to be programmed, so software
development complexity grows exponentially in heterogeneous environ-
ments. An alternative to using specific languages for each accelerator is
to use single-source languages. In practice, single-source languages (e.g.,
DPC++) can be used to reduce software complexity. These languages allow
programmers to write code once and target multiple accelerators. How-
ever, single-source languages can be more complex than general-purpose
languages (e.g., C++), meaning that more time is required to finish a pro-
gram. On the other hand, developing a new program from scratch is only
useful when new software is developed. There is already a huge amount
of code base that is already written, so to use new accelerators with single-
source languages, developers need to rewrite already existing code. In re-
cent years, new ways of replacing handwritten code with calls to optimized
libraries [68, 46] have appeared. In the end, this can be useful for compil-
ing old code with libraries that target the accelerator API, effectively using
the accelerator without rewriting code [196]. Although these approaches
can work for some niches and limited scenarios, they are brittle, because
they are unable to compile complex code and are not extendible to further
domains.

• Portability: The portability of a programming language is proportional to
the number of different architectures that the language support. For ex-
ample, C++ is one of the most popular general-purpose languages. It is, in
part, because it provides excellent performance. However, its portability is
very limited since it is only applicable to CPUs. Single-source languages

45

1. Introduction

are way more portable, as the code written in those languages can be exe-
cuted in different accelerators (besides the CPU).

• Performance: That accelerators are significantly more efficient than CPUs
is a fact. However, performance has always been a matter of two: hardware
and software. This time, with the irruption of accelerators, it is not an ex-
ception. In fact, the performance problem is exacerbated by the fact that, as
we have discussed, accelerators are highly diverse. If a program written in
a single-source programming language works well under a certain acceler-
ator, there is no guarantee that it will work well too on another accelerator.
This issue is commonly known as performance portability [132].

This is a term that has been extensively discussed since its creation, despite
the ambiguity associated with the term. More recent research gives us
more precise definitions of performance portability [160, 195]. In general,
an application is performant portable when it achieves good performance
on all the hardware platform that the application supports. It is worth
noting that because accelerators are highly specialized, not all accelerators
are suitable for a task, e.g., a TPU cannot perform cryptography tasks.
Therefore, performance portability should only be considered among the
suitable accelerators for a given task, e.g., CPU, GPU and tensor cores for
a matrix multiplication computation.

Therefore, the community seeks ways to program heterogeneous systems
that offer performance, portability and productivity (P3) [195]. This problem is
usually a tradeoff [160] because it is impossible to get the best of the three worlds
at the same time. Some frameworks and libraries, like the ones we have already
mentioned, have appeared trying to solve the P3 problem in recent years.

1.4 Objectives and Goals

With the irruption of heterogeneous computing, there are many challenges to
overcome in order to unlock the full potential of accelerators. Programming ac-
celerators is difficult, not only to achieve good performance but also to maintain
software development productivity. We identify opportunities for these issues
in single-source languages, but also in other compilation techniques that we will
discuss later. In this thesis, we also study the new paradigm called Accelerator-
Level Parallelism, and how it can be exploited to enhance the present and future
computers’ performance. More precisely, we identified the following research
opportunities:

46

1.5. Thesis Organization

• Productivity in software development with accelerators is very low due to
the need of developing multiple versions of a program for different de-
vices. Single-source languages can be a good solution to improve it.

• Good performance in accelerators is difficult to achieve. Using Domain-
Specific Languages with optimized APIs under the hood, instead of com-
piling directly code to the accelerator, can boost accelerator performance
drastically.

• Rewriting code for using accelerators is expensive and unrealistic for large
code bases. Portability can be further enhanced with novel compilation
techniques based on program synthesis, which can be used to make this
rewriting automatic, saving countless software development hours and
other resources.

• Having multiple accelerators inside a chip (SoC) has much potential, but
current schemes are incapable of exploiting it. Smart scheduling can ex-
ploit Accelerator-Level Parallelism in accelerator-rich environments, en-
hancing the energy efficiency and/or performance of future computing sys-
tems.

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 gives a generic
background on different topics relevant to the thesis, like compiler technolo-
gies, single-source programming languages, program synthesis and scheduling,
among others. The remaining three Chapters (3, 4 and 5), present the three re-
search lines that compose the thesis. All Chapters are organized similarly. First,
a brief introduction of the research line is given, followed by a background.
The following chapter details our contributions. After that, the evaluation is
presented, where we study our proposal and/or compare our work to state-
of-the-art approaches. It follows an analysis of related work and lastly, our
conclusions. All Chapters are mostly self-contained to ease their reading inde-
pendently. Lastly, Chapter 6 concludes the thesis and gives some hints for future
research.

47

Chapter 2
Background

In this chapter, we describe the most relevant concepts needed to understand
the contributions described in this thesis. First, we detail the existent compiler
technologies, necessary to understand Chapters 3 and 4. We later explore the
single-source language proposals, study the Caffe framework and explain the
performance portability problem. Those concepts are needed to understand
Chapter 3. We also explore the field of accelerators, and more precisely, tensor
cores, which are needed to better understand all Chapters, especially Chapters
4 and 5. The program synthesis technique is detailed later, which is essential to
understand Chapter 4. Lastly, we detail scheduling and co-execution techniques,
the fundamental basics to comprehend Chapter 5.

2.1 Compiler Technologies

LLVM. It is a collection of modular compiler and toolchain technologies [105].
One of the most important features of LLVM is intermediate representation (IR).
Instead of compiling high-level code to machine code directly, LLVM compiles
code into IR. Intermediate representation is a program representation that sits
between the source code and the machine code. LLVM features optimization
passes at the IR level, which allows reasoning about code without details of its
implementation. After the optimization phase, the IR is compiled into machine
code. The LLVM IR is based on Static Single Assignment (SSA), which provides
many important features in compilation workflows. Nowadays, LLVM is one of
the de facto standards for building compilers. It has been extensively used in
industry and academia. Some examples of successful projects in academia are

49

2. Background

HPVM [104, 56], Glow [169], Polly [73] or IDL [68]. In industry, oneAPI [87],
OpenCL [177], XLA [109] and AOCC [45] are some examples.

MLIR. In addition to the aforementioned features, LLVM is composed of dif-
ferent sub-projects (like the mentioned Polly [73]). Multi-Level Intermediate
Representation (MLIR) [106, 107] is one of the latest LLVM sub-projects which
aims to build reusable and extensible compiler infrastructures. This project was
developed by Google with a very concise goal in mind: to improve the devel-
opment of machine learning frameworks [107]. Google is now using MLIR in
TensorFlow [1], but it is also used in many other scientific projects [102, 75, 123].
Like LLVM, MLIR is also based on the concept of IR, but introduces a novel
idea: the multi-level IR. Instead of translating source code to LLVM IR directly,
MLIR offers a framework to do a progressive lowering of the IR. In MLIR, the IR
starts from a high-level representation of the original code that gets lowered into
lower-level IR at each compiler pass. This process is known as progressive low-
ering. Those transformations are technically referred to as transformation passes.
Each of the transformation passes modifies the IR with different goals. Thanks
to these step-by-step transformations, the high-level semantics of the high-level
code are preserved during IR transformations. MLIR introduces a concept called
Op (or operations), which represents an individual operation, which can be an
instruction, a function or a module. The key idea of operations is that MLIR
does not limit the number of MLIR operations but rather encourages developers
to extend MLIR with newer operations. To ease the organization and extensibil-
ity of operations, MLIR introduces dialects. In essence, an MLIR dialect groups
different operations and attributes under a common namespace.

HPVM. Heterogeneous Parallel Virtual Machine (HPVM) is a state-of-the-art
proposal compiler for heterogeneous computing based on LLVM [104, 56]. It
extends the idea of the IR used in LLVM to a hardware-agnostic, parallel IR.
HeteroC++ is the straightforward approach for programming in HPVM, but
other frameworks like PyTorch and Keras can also be employed. In essence,
HeteroC++ is a C++ extension that allows programming in HPVM. At the IR
level, HPVM uses a hierarchical dataflow graph representation, which allows
different optimization passes within the IR. In conjunction with a runtime sys-
tem (HPVM-RT), HPVM supports compilation for diverse hardware backends
like CPUs, NVIDIA GPUs, FPGAs and even accelerators for FFTs and ma-
chine learning. Under the hood, HPVM uses different optimized libraries for
high-performance in end devices. For example, in NVIDIA GPUs, HPVM uses
cuDNN and the ATen library. Using device-specific optimized libraries provides
high-performance whitout compromising productivity or portability.

50

2.2. Single-Source Languages

2.2 Single-Source Languages

2.2.1 The PHAST Library

The PHAST library [154, 155, 153] is a C++ high-level library for easily program-
ming both multi-core CPUs and NVIDIA GPUs. PHAST code can be written
once and targeted to different devices via a single macro at compile time, which
generates either CPU or NVIDIA GPU executables. The library allows program-
mers to do so through an STL-like interface that provides containers, iterators,
algorithms, and functors.

Containers, iterators, functors and algorithms. PHAST containers are used
to encapsulate data. They are collections that store contiguous data on the de-
vice and provide a multi-dimensional layout: 1D for vectors, 2D for matrices,
and 3D for cubes. These containers can be visited via many kinds of iterators
that provide access to the data. In PHAST, iterators are used to retrieve sin-
gle elements from containers, as well as collections of elements with different
shapes. PHAST C++ functors give the ability to customize any computation,
which then can be executed inside the PHAST environment. The PHAST library
gives the programmer a high-level interface without preventing the code from
being expressive and concise. Besides that, PHAST algorithms let the program-
mer achieve automatic parallelization (on CPUs and GPUs) and vectorization,
thus exploiting the target hardware’s parallelism. To achieve that, the program-
mer must use PHAST algorithms. For example, a PHAST algorithm to compute
the dot product (phast::dot_product) is parallelized internally by the library.
A typical PHAST program includes algorithms like for_each that take advan-
tage of functors to apply a custom computation to a set of the elements. This
construction is inherently parallel, allowing the computation of the elements
without any data race.

The PHAST library was compared to other low-level and high-level ap-
proaches, from both performance and productivity points of view. It was
demonstrated to be a more productive approach in terms of three different
complexity metrics (Source Lines Of Code, Halstead’s Mental Discriminations,
and McCabe’s Cyclomatic Complexity) and also to provide competitive per-
formance [153]. Furthermore, PHAST supports both the data-parallelism and
task-parallelism approach [154, 155]. By default, when a PHAST algorithm is
launched, the library applies heuristics to determine the best values for a set of
parallelization parameters, which act in the backend as degrees of freedom. For
instance, the number of threads and the affinity policy on the CPU side, or
the block-sizes, and the Streaming Multiprocessors’ scheduling strategy on the

51

2. Background

GPU. This choice can be left to heuristics or overridden using library calls, such
as phast::custom::multi_core::set_n_thread on the CPU to set the number
of threads.

2.2.2 oneAPI

oneAPI is the Intel’s implementation of the SYCL [99] standard. SYCL defines a
standard that must be followed by specific implementations. Other implemen-
tations of the SYCL standard are ComputeCpp [172] and triSYCL [199]. Strictly
speaking, oneAPI is the composition of the Intel’s SYCL implementation, called
Data Parallel C++ (DPC++) and other Intel tools, like oneDNN (for neural net-
works), oneMKL, or oneTBB. This integration between the programming model
and other Intel technologies enhances integration with other tools and frame-
works and performance. In addition to the SYCL standard features, DPC++
includes some relevant contributions like the USM (Unified Shared Memory)
memory model or the concept of sub-items. It makes sense to add USM in
oneAPI because one of the things that oneAPI offers is the possibility of target-
ing Intel integrated GPUs, which use the same address space as the CPU itself.
Sub-items are an interesting contribution too because they allow automatic vec-
torization on Intel CPUs.

Now, to briefly outline the current state of oneAPI, we divide the analysis
in two parts; the state of the DPC++ compiler (dpcpp) and the state of oneDNN
(optimized oneAPI library for deep learning):

a) oneAPI can be downloaded from Intel’s webpage 1. The oneAPI toolkit pro-
vides libraries and tools to deploy a single-source application to many het-
erogeneous architectures. The key component that allows this integration
is the dpcpp compiler (Data Parallel C++ compiler). At the time of writing,
oneAPI’s latest official release (2021.1-beta09) provides a dpcpp compiler
that supports Intel CPUs, some Intel GPUs (integrated graphics) and Intel
FPGAs, but not NVIDIA GPUs. However, the source code of the dpcpp com-
piler does have support for NVIDIA GPUs 2. Because this enhancement was
introduced recently [70], the NVIDIA backend is expected to be less mature
than the rest of the oneAPI standard. Currently, it is disabled in the official
builds, but compiling dpcpp from source allows to build it with support for
NVIDIA GPUs (AMD GPUs support is available too).

1Available at https://software.intel.com/content/www/us/en/develop/tools/oneapi/
base-toolkit.html

2Available at https://github.com/intel/llvm

52

https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/base-toolkit.html
https://github.com/intel/llvm

2.3. A DNN Framework: Caffe

b) In oneDNN we find a similar scenario. Even with a dpcpp with support for
NVIDIA, the official build of oneDNN (version 1.7) does not support NVIDIA
GPUs. This happens because it does not interoperate with dpcpp, so it is
unable to use the dpcpp support for heterogeneous architectures. However,
oneDNN v2.0 Beta can interoperate with dpcpp, but because it has no official
release yet, to enable CUDA we must compile it from source. To enable
CUDA support, several CMake flags such as -DDNNL_GPU_VENDOR=NVIDIA,
have to be set to specify the path of CUDA and cuDNN installations.

To sum up, both the DPC++ compiler and oneDNN offer support for
NVIDIA GPUs, but none of them has enabled such a functionality in the of-
ficial builds. To enable CUDA support, compiling from source is needed.

2.3 A DNN Framework: Caffe

Caffe is an open-source deep learning framework initially developed by Berkeley
AI Research. While it supports other network models, it is specialized in convo-
lutional neural networks [88]. Nowadays, Caffe has been superseded by more
modern solutions, like PyTorch [152] and TensorFlow [1]. However, it is a sim-
ple framework compared to others, making it a great choice for research. In this
Section we briefly outline the structure of Caffe. The softmax and convolution
layers have been deeply studied throughout this thesis. Refer to Appendix A for
an detailed explanation of those layers in Caffe.

The framework is organized into modules, where each layer is implemented
in a separate file. The majority of these layers are coded twice, in two separate
files: one for CPUs (in C++) and another for NVIDIA GPUs (in CUDA). This not
only complicates the development but also makes code maintenance difficult.
To provide high performance, Caffe implements the majority of layers of neural
networks using BLAS [22]. Under the hood, Caffe can leverage three BLAS
libraries on the CPU: ATLAS, openBLAS, and MKL. On the GPU, cuBLAS is
always used. The specific library to use on the CPU can be chosen at compile
time. Moreover, all the layers implement two methods, which correspond to
feedforward and backpropagation stages.

Feedforward. In the feedforward phase, all computation are performed as a
sequence of operations on the outputs of a previous layer. The final set of op-
erations generates the output of the network. The feedforward phase is used in
both inference and training. Specifically, an inference iteration only needs the
feedforward phase, while a training iteration is performed with a feedforward
phase followed by backpropagation.

53

2. Background

Backpropagation. To allow networks to learn from the data, the weights have to
be updated, which often is performed using a hill-climbing optimization process
called gradient descent. An efficient way to compute the partial derivatives
of the gradient is through backpropagation. In backpropagation, values are
passed backwards from the end of the network to the beginning. At each layer,
backpropagation computes how the loss is affected by each weight. Actually,
backpropagation is quite similar to feedforward. Thus, efficient techniques for
performing feedforward are usually efficient for backpropagation too [183].

In Caffe, there are two structures to store data, called bottom and top. All
layers take these two data structures as arguments. In the feedforward stage,
top contains the input for a given layer, while bottom is the structure where
the layer’s output is stored. In the backpropagation stage, the role of the data
structures is the other way around.

2.4 Performance Portability

Performance portability has been regarded as a major concern in recent research,
despite the ambiguity associated to the term [132]. Fortunately, recent stud-
ies [159, 160] give a more precise definition of the term. They define a per-
formance portable application as “an application that can solve a given prob-
lem achieving good performance on all of the supported hardware platforms”.
In [159], authors propose a metric for quantitatively measuring performance
portability, based on either the architectural or the application efficiency. On
one hand, architectural efficiency represents the performance achieved as a frac-
tion of peak performance, representing the ability of an application to utilize
hardware efficiently. On the other hand, application efficiency represents the
performance achieved as a fraction of best observed performance (using the
best known performant application). The performance portability can be quan-
titatively measured as Figure 2.1 shows:

Φ(a, p, H) =

|H|

∑i∈H
1

ei(a,p)
if i is supported ∀i ∈ H

0

Figure 2.1: Performance portability formula.

where H is the set of hardware platforms and ei(a, p) is the efficiency of appli-
cation a solving the problem p on a platform i. Therefore, calculating application

54

2.5. Accelerators and Tensor Cores

or hardware efficiency depends on the ei(a, p) used. To compute architectural
efficiency, ei(a, p) should be the performance of application a on platform i di-
vided by the peak performance of platform i. For application efficiency the idea
is the same, but using the execution time divided by the best known execution
time. Note that if there is a platform i that is not supported in the hardware set
of platforms H, the performance portability is 0 (since it is not portable across
all platforms).

A quantitative evaluation of performance portability is crucial because it al-
lows comparisons between different applications, but also because it shows pre-
cisely how much an application is “performance portable”.

2.5 Accelerators and Tensor Cores

In the area of matrix multiplication, accelerators supporting dense and sparse
products [11], as well as sparse-only matrix multiplication [150] exist. In com-
puter architecture, a new approach to building accelerators for broader domains
is to incorporate domain-specific cores in general-purpose processors [44]. This
allows using the general processor for generic tasks while offloading domain-
specific ones to specialized cores. Tensor cores [29, 90], included for the first
time in Volta microarchitecture, are a good example. They are designed to en-
hance matrix multiplications performance, which ultimately boosts deep learn-
ing applications. When Volta architecture was released, tensor cores were only
available through the wmma API. Since then, new APIs are available to use ten-
sor cores directly, like ldmatrix, mma, and mma.sp [181]. Different APIs provide
different performances depending on the generation of the tensor core [181]. An
easier way to use tensor cores is through CUDA APIs like cuBLAS or cuDNN,
which offer an easier interface for the programmer and should always choose
the highest performant API. Regarding tensor chores architecture, in Volta they
implement a 4x4x4 FP16 matrix multiply and accumulate instruction, HMMA
(half precision matrix multiplication and accumulate) [90]. The Turing tensor
cores add support for int8, int4 and int1 data types [89] through a new IMMA
instruction. In the Ampere microarchitecture, the matrix multiplication size
changes from 4x4x4 to 8x4x8, doubling its FP16 throughput [43]. It also adds
new instructions for sparse matrix multiplication, which in turn doubles the
throughput of dense matrix multiplications. Tensor cores boost specific appli-
cations’ performance in an unprecedented way, providing a 4x boost in peak
performance compared to CUDA cores, and 8x for the case of sparse matri-
ces [43].

55

2. Background

2.6 Program Synthesis and Code Generation

Program synthesis [74] is a well-studied field that has been given many defi-
nitions. Generally, program synthesis can be defined as a class of techniques
that can generate a program from a collection of artifacts that establish semantic
and syntactic requirements for the generated code. In short, program synthesis
aims to generate a program that satisfies a certain formal specification. The for-
mal specification can be simple as a description of what the program should do
in natural language or a more formal specification like input/output examples.
For example, program synthesis is used in [196] to generate code to bind the gap
between a C program and an accelerator API, allowing to replace parts of the C
program with a library call to the API. In this case, the compiler automatically
generates drop-in replacement adapters using input/output (IO)-based program
synthesis. When generating a program to solve a problem, the number of po-
tential programs is infinite, even in very restricted contexts, so exploring such
search space is computationally prohibitive. Hence, program synthesis always
tries to exploit constraints or any information that helps to reduce the search
space when generating a program. For that reason, traditional program synthe-
sis approaches are tied to specialized domains, where constraints to reduce the
search space of programs are specific to the particular domain.

A step further in program synthesis is automatic code generation using deep
learning [17]. This evolution has been made possible thanks to recent deep learn-
ing advances like transformer architecture [187]. In recent years, many novel so-
lutions have been proposed, like GitHub Copilot [69], AlphaCode [112] or Chat-
GPT [146], which can be used for code generation and many other tasks. Unlike
traditional synthesis approaches, large language models can generate programs
without domain restriction, which is way more powerful. GitHub copilot can
be competitive against computer science students generating code [41], while
AlphaCode can achieve an average ranking in the top 54.3% in programming
competitions against human participants. These tools can aid the programmer
to generate code, effectively improving programming productivity. This can be
particularly interesting to generate non-complex code like device management
or data movement between the CPU and the accelerators, although the usage
limits of these technologies are yet not well known. The transformer architec-
ture can also be used for more exotic code generation like compiling C to x86
assembly [16]. Although authors claim that it can only compile 33% of the func-
tions in the benchmark suite, this approach could be improved with a larger
network. This approach is interesting in the context of heterogeneous compila-
tion because, in case it would achieve good accuracy, the same could be achieved

56

2.7. Scheduling and Co-Execution

CPU GPU XPU CPU GPU XPU

T
im

e

Offloading Co-execution

Figure 2.2: Difference between heterogeneous scheduling approaches; offload-
ing (left) and co-execution (right). Arrows indicate data transfers between de-
vices.

for compiling to accelerators rather than x86, allowing to compile code to accel-
erators directly from traditional programming languages.

2.7 Scheduling and Co-Execution

Task scheduling algorithms have been applied successfully in the past to exploit
scenarios where multiple tasks have to be scheduled to different processing el-
ements [191, 190, 116]. Within the same node, scheduling can be divided into
two different approaches: offloading and co-execution. In offloading, the idea
is to enhance application performance by offloading the compute-intensive part
to specialized hardware devices [125, 4]. Traditionally, when an application is
scheduled, the scheduler decides whether to run part of the application in one
of the available compute elements. To decide on which device the workload
should be offloaded, previous works studied the performance of each device
and selected the best fitting for this task. In other words, the workload was
offloaded to one device at a time, meaning that only one device was executing
code in a given period. Unlike task scheduling and offloading, co-execution
aims to distribute a single application among different devices and run all of
them concurrently. Co-execution provides enhanced performance by employing
multiple accelerators, fully exploiting all the capabilities of the system. Differ-
ences between offloading and co-execution are depicted in Figure 2.2.

57

2. Background

Performance prediction is a common approach in scheduling, and it has been
extensively studied in the last decades [59]. This technique consists in predicting
the application performance for a given set of hardware resources, allowing to
estimate the execution time of an application. In scheduling, we can differentiate
between analytical (mathematical models) and non-analytical methods, which
often rely on machine learning techniques. However, using standalone analytical
or non-analytical models can barely be used to predict performance, so they are
typically coupled with some characterization. For example, executing total or
partially the application to help deduce its behavior, analyzing the source code,
or carrying out some profiling. This characterization may provide information
about the hardware and/or software to be measured. In this sense, the roofline
model [193] may also be useful to understand the performance behavior. With
the heterogeneous computing growth in last years, it has also been proposed for
GPUs [114] but also SoCs with different accelerators [79].

58

Chapter 3
High and Low-Level Programming
Languages in the Heterogeneous

Era

3.1 Introduction

3.1.1 Motivation

The explosion of alternative architectures to the CPU is bringing unprecedented
levels of performance. The downside of this vast hardware variety is on the
software side, which has not yet evolved to take advantage of heterogeneous
hardware efficiently. Each kind of accelerator needs a different environment,
programming languages, libraries and/or tools to be used. Some example
languages are CUDA (for NVIDIA GPUs) [139], Hardware Description Lan-
guages (HDLs) (for FPGAs) [131], or more generally, Domain-Specific Lan-
guages (DSLs) [103], which embrace any language that focuses specific domains,
typically used to program specialized accelerators. Since we need different ap-
proaches to deploy software on each device, we introduce high complexity in
software development. Today, to develop an application to work with CPUs and
NVIDIA GPUs, we need to write two different versions of the same algorithm,
one for each device. If we are willing to add FPGAs, we would need to add a
new version. Additionally, if we have a wide variety of accelerators designed for
machine learning, we need to use different DSLs to take advantage of them, we
can’t just use one for all, even if they all work in the same domain. In the typical

59

3. High and Low-Level Programming Languages in the Heterogeneous

Era

scenario where we need to develop software for each hardware device, software
development’s complexity grows exponentially.

Major computer manufacturing companies rely on different accelerators to
run the heavy workload instead of running it on CPUs. Therefore, the soft-
ware must join hardware in this challenging but promising evolution, letting
programmers take advantage of the unprecedented performance and energy ef-
ficiency that these novel architectures can deliver. In this context, the ability to
preserve the performance across a wide variety of hardware, known as perfor-
mance portability, becomes of the utmost importance. In the last year, we have
witnessed an increasing interest in this topic. Academia and companies are pur-
suing the same target. For example, Xilinx is working on triSYCL [199] and Intel
recently launched oneAPI [84, 87]. These new solutions are centered around the
idea of having a single-source code capable of running on multiple devices.

The appearance of multiple devices of execution has created a problem in
parallel programming languages often known as P3 [160]. This concept refers to
three desirable features of modern programming languages:

• Portability: The portability refers to the number of hardware devices that
the language supports (CPUs, GPUs, FPGAs). C++ and CUDA are not
portable, since they only support CPUs and GPUs, respectively. On the
other hand, oneAPI is highly portable, supporting CPUs, GPUs and FP-
GAs.

• Productivity: The productivity is reflected in the effort that the developer
has to make in order to develop a program. Languages like python are
highly productive, because they are very easy compared to others, like as-
sembly language, which is very hard and thus not particularly productive.

• Performance: The performance in must not only concern CPU performance,
but also the performance of the other supported devices.

Thus, in this new era of heterogeneous computing, we seek programming
languages to provide portability, productivity, and performance.

3.1.2 Research Context

To conduct this research, we use the processing of deep neural networks as our
case study. DNNs are the central part of today’s most relevant applications,
like image processing, speech recognition, robotics, games and medical applica-
tions [183]. Nowadays, the performance of DNNs is critical and very sensible

60

3.1. Introduction

to hardware and software characteristics. It is indeed a very relevant way of
measuring the performance of different languages, but also the productivity.

In this context, the purpose of this chapter is twofold: First, to show the value
of single-source programming in real-world applications, and second, to pro-
pose a new single-source, domain-specific language for deep neural networks.
The main benefits of single-source development come from the programming
side, as this approach allows programmers to be more expressive and develop
hardware-agnostic software, thus increasing their productivity. This way, the
single-source code-base is shorter and more general, i.e., less tied to the under-
lying architecture. For the first part of this chapter we use high-level languages
that allow single-source coding, while for the second part we use a low-level
approach to design and implement our DSL. In this chapter, we:

1. Study performance portability with single-source programming. We
study the re-implementation of Caffe [88], a machine learning framework
specialized in CNNs. Caffe was implemented for CPU and GPU using C++
and CUDA, so each device had a different source code base. We study how
to achieve performance portability using:

• PHAST (Section 3.2.1). We start evaluating the performance of a pre-
vious basic PHAST implementation of Caffe [76]. By thoroughly an-
alyzing this implementation, we identify the sources of inefficiencies
and improve them by intervening on two different levels. Firstly, from
the programmer’s point of view, i.e., enhancing the Caffe source code.
Secondly, at the internals of the PHAST library. In most cases, work-
ing at the programmer level is enough to solve the performance issues.
However, to achieve a competitive version of Caffe, we had to include
a native convolution in the PHAST library.

• oneAPI (Section 3.2.2). We start from scratch isolating the softmax and
convolution layers in Caffe. Then we implement two version for each
layer: one version using DPC++, and another version using oneDNN.
We compare each other from the usability and performance stand-
points.

Since machine learning workloads are heavy, the PHAST and oneAPI ver-
sion must be very efficient against native CPU and GPU code. We selected
PHAST over other concurrent single-source approaches like Kokkos [55]
or OpenCL [177] because it proved to be a better solution from productiv-
ity and performance standpoints [153]. Several works have already com-
pared PHAST with other state-of-the-art approaches [154, 155, 153]. We

61

3. High and Low-Level Programming Languages in the Heterogeneous

Era

also chose oneAPI (developed by Intel) because we believe that it is a very
recent and solid proposal for heterogeneous computing that will gain rel-
evance in the upcoming years.

2. Propose a novel heterogeneous DSL for DNNs: We present Heteroge-
neous Deep Neural Network (HDNN), a proof-of-concept MLIR dialect
for deep neural networks. HDNN currently supports convolution and
softmax layers along with basic I/O functionality. This heterogeneous lan-
guage supports CPUs, GPUs and TPUs, a domain-specific accelerator for
machine learning.

HDNN programs are portable thanks to our MLIR-based ecosystem, fol-
lowing an idea of progressive lowering of high-level constructs, device-
agnostic to low-level operations and device-specific operations. Regard-
ing productivity, HDNN allows programming using a single device-
agnostic source code language using MLIR. Rather than compiling code
through MLIR infrastructure like other works do [75, 102], HDNN uses
optimized libraries for performance-critical operations and compiles only
parts of the code that do not have an optimized library available. This
way, HDNN achieves competitive performance against state-of-the-art ap-
proaches. Moreover, this approach has negligible overhead and thus allows
for taking advantage of the full potential of the underlying libraries.

The rest of this chapter is organized as follows. Section 3.2 shows the process
of re-engineering an application to achieve performance portability. We divide
this topic into Section 3.2.1, where we use PHAST to re-implement Caffe and
Section 3.2.2, where we use oneAPI and oneDNN. Then, Section 3.3 presents
HDNN, our novel domain-specific heterogeneous language for DNNs. Our ex-
perimental methodology, alongside the performance evaluation, is shown in Sec-
tion 3.4. We discuss related work in single-source programming languages and
libraries in Section 3.5. Finally, Section 3.6 concludes the chapter and gives some
hints for future work.

3.2 Achieving Performance Portability

3.2.1 Using PHAST

The re-engineering process begins with a performance analysis of the Caffe-
PHAST base version. This analysis helps to understand the weak points and
where to focus to enhance the performance. We analyze different parts of the

62

3.2. Achieving Performance Portability

implementation from two points of view. First, we explore possible opportu-
nities to improve the performance from the programmer’s point of view. In
other words, improvements that come from a better implementation at the Caffe
front-end. Second, we explore deficiencies and lack of support inside the PHAST
library that can be responsible for other performance shortcomings. To ease the
reading of this section, we omit the source code listing and implementations
details here. We only discuss the final implementation of each layer here and
omit alternative, lower-performance implementations. See Appendix B (or our
paper [120]) for an extended, detailed explanation of the final and preliminary
PHAST implementations.

3.2.1.1 Caffe-PHAST Base Version

We start revisiting our correct functional Caffe version using the PHAST library
we developed in the past. In this Section, this implementation is briefly outlined
(see [76] for a more extensive description). The base version is functional, but it
does not support all kinds of layers and networks. The blocks identified for the
porting were:

• Blob: Stores the network data.

• Inner Product: The inner product layer.

• Convolution: The convolution layer.

• Pooling: The pooling layer.

• ReLU: The ReLU layer.

• Accuracy: Computes the network’s accuracy for a specific set of inputs.

• Softmax: The softmax layer.

• Softmax with loss: The softmax layer with the computation of the loss.

This implementation was tested for correctness using Caffe’s test mode,
which executed different unit tests on each of the ported layers. The tests showed
that all ported functionality worked on both CPU and GPU.

An elementary performance evaluation was conducted which reported a loss
of 5x and 15x on CPU and GPU, respectively. To sum up, the base PHAST ver-
sion can run LeNet based neural networks, but the performance was poor. That
exercise was a working proof-of-concept but useless in a real-world scenario. It
was developed with the sole purpose of having a functionally working imple-
mentation, with no attention to performance.

63

3. High and Low-Level Programming Languages in the Heterogeneous

Era

3.2.1.2 Opportunities for Performance Enhancements

Caffe framework is executed with Caffe time mode, which depicts the execution
time by the time spent in each of the network layers. Using the hardware plat-
form machine1 (detailed in Section 3.4.1), we find that most layers present in the
convolutional networks provide the same performance in the native version of
Caffe and the PHAST version, while others perform much worse in the latter.
Therefore, we decide to work only on the layers that suffer from performance
degradation against native Caffe. We highlight three modules:

• Softmax layer (feedforward): PHAST version is around ∼450x slower in
the feedforward stage on the GPU, compared to the original version. In
the CPU, the loss is much smaller but still noticeable.

• Convolution layer (feedforward and backpropagation): PHAST version is
around 6-7x slower in both feedforward and backpropagation on the CPU
and the GPU. The loss factor is much smaller compared to the softmax
layer. The convolution layer is the most computationally intensive in the
whole network. Thus, this layer is the main cause of the slowdown of the
PHAST version.

• Adam solver: Adam solver was not ported to PHAST in the base version.
As such, even selecting the GPU as the target platform, caused the Adam
solver to run on the CPU, which is the fallback choice for non-ported func-
tionalities. This code is ∼200x slower than the original implementation of
Caffe, which, on the contrary, takes advantage of the GPU.

The following three sections detail all the steps in order to solve the prob-
lems just described. An additional section (Section 3.2.1.6) describes the new
primitives and other enhancements introduced into the PHAST library.

3.2.1.3 The Softmax Layer (Feedforward)

The softmax layer implements the softmax function: a mathematical function
that maps any set of numbers to probabilities that always add up to 1. The
original source code of the softmax layer in Caffe can be found online 1. To
implement the feedforward stage of the softmax layer from scratch, we first
study the implementation of the layer from beginning to end. This way, we can

1CPU version at: https://github.com/BVLC/caffe/blob/master/src/caffe/layers/sof
tmax_layer.cpp
GPU version at: https://github.com/BVLC/caffe/blob/master/src/caffe/layers/cudnn_s
oftmax_layer.cu

64

https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_layer.cpp
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_layer.cpp
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/cudnn_softmax_layer.cu
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/cudnn_softmax_layer.cu

3.2. Achieving Performance Portability

port the layer in a more general way than trying to replace line by line. While
this approach enables global optimizations and modifications to the original
algorithm, it requires much more development effort.

The code for the softmax layer is detailed in Appendix B, Listing B.2. In
this new implementation, the outer loop is replaced with a single for_each al-
gorithm that processes in parallel all the elements. Two changes were made to
allow these modifications:

• The input tensor was transposed to swap the two minor dimensions.

• The scale container was transformed into a matrix.

This way, each of the vectors from the input tensor can be mapped to an
element in the scale matrix. Additionally, all the previous calculations were
moved into a single for_each algorithm that uses a single functor. Inside it, the
vector is manipulated taking advantage of two in-functor for_each algorithms
that can leverage an additional axis of parallelism on NVIDIA GPUs [153]. By
moving every operation into a single functor and eliminating the outer loop, this
new version extracts as much parallelism as possible. Besides, it is much more
expressive, simple, concise, and clean than the previous implementation.

3.2.1.4 The Convolution Layer

The original source code of the convolution layer in Caffe can be found online2.
To compute the convolution, Caffe loops over the batches. At each iteration,
Caffe does the convolution calling the im2col method (images to columns) and
computing a general matrix multiplication. Later, it applies the bias if necessary.

Feedforward. The base PHAST version also used a general matrix multipli-
cation in the convolution layer. Native Caffe benefits from high-performance
matrix multiplications on both CPU and GPU using BLAS-based libraries. In
PHAST, the matrix multiplication takes advantage of cuBLAS on the GPU side,
while no special-purpose library has been integrated on the CPU which leads
to worse performance than original Caffe. Instead of improving the PHAST
backend for matrix multiplication, we decided to add a native convolution al-
gorithm in the PHAST library. We decided to do so because we believe that

2CPU version at: https://github.com/BVLC/caffe/blob/master/src/caffe/layers/con
v_layer.cpp
GPU version at: https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_la
yer.cu

65

https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cpp
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cpp
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu

3. High and Low-Level Programming Languages in the Heterogeneous

Era

this enhanced convolution algorithm can improve the performance of convolu-
tions. Rather than reusing the matrix multiplication algorithm, a new algorithm
specifically designed for convolution can enhance performance thanks to higher
specialization. Actually, as we will discuss later, we did not opted for a GEMM-
based convolution. Our new algorithm is reviewed in detail in Section 3.2.1.6.
In this case, the re-engineering process is more relevant on the PHAST backend
than in the Caffe frontend. Hence, the convolution layer at the programmer
level is way simpler. The main task to accomplish is preparing the data to pass
them to the PHAST native convolution. The PHAST convolution algorithm takes
one image (in PHAST terminology, a PHAST cube) as input and computes the
convolution.

Essentially, the PHAST implementation calls PHAST native convolution di-
rectly with all the batches, which are processed internally in the PHAST library.
Thus, the Caffe frontend has to arrange all the data as a PHAST cube container
and call the PHAST native algorithm. In this approach, the PHAST convolution
algorithm parallelizes both the batches and the filters, so this is a coarse-grained
parallelization scheme. Listing B.4 shows this implementation. The new code
is even shorter and more concise than before because the new PHAST prim-
itive (batch_convolution) contains more logic than the previous one. In the
re-engineered version of the convolution, the computation workload goes di-
rectly to the PHAST library, instead of relying on the Caffe front-end. Since
convolution is the heaviest layer of the convolutional networks, the performance
of the native PHAST convolution is crucial to achieve good performance in the
whole network.

Backpropagation. The backpropagation phase can be divided in three different
steps:

1. The bias gradient calculation.

2. The weight gradient calculation.

3. The input data gradient calculation.

The second and third steps require the calculation of a convolution, whereas
the bias gradient does not. Since the backpropagation phase also needs to com-
pute convolutions, it also benefits from the new PHAST convolution primitive.
With the backpropagation, we only propose one version, unlike the previous
layers. The bias gradient computation is done by accumulating all the matrices.
We show this step of our implementation in Listing B.5. In the case of the weight
gradient, the computation is essentially a convolution. The new PHAST native
primitive is used, as shown in Listing B.6.

66

3.2. Achieving Performance Portability

There is an essential detail in this step: Caffe performs the convolution trans-
posing the input data, telling the underlying library to transpose the matrix
after the matrix multiplication. Under the hood, this transpose is implemented
as an implicit operation instead of transposing the data. Thanks to that, the
transpose operation is very efficient. Therefore, we decided to do the same
inside the PHAST library. We added a new version of the convolution called
batch_convolution_channel_major, that implements the data transposition as
previously explained.

Lastly, regarding the input gradient calculation, the PHAST library has to be
extended with two new primitives, phast::ai::pad and phast::ai::rotate_-
and_pad. The PHAST code for this phase is given in the Listing B.7.

3.2.1.5 Adam Solver

The original source code of the Adam solver in Caffe can be found online3.
The CPU code matches almost exactly the algorithm presented by [100], which
makes it easier to port the solver using PHAST. The solver algorithm is divided
into four computations:

• m = β1 ·mt−1 + (1− β1) · gt

• v = β2 ·mt−1 + (1− β2) · gt
2

• t = m/sqrt(v) + eps_hat

• np_di f f = t ∗ (local_rate · correction)

where m, v, t and np_diff are vector variables inside the Adam solver. Those
structures can be retrieved from Caffe directly.

Caffe computes all of them using mathematical functions, provided by BLAS-
like libraries under the hood. Like the Caffe version, the PHAST version is
also very simple, since we translated the calculation into a single functor that
encompasses the same mathematical operations. As np_diff is a vector, the
phast::for_each algorithm iterates over its elements and applies the functor
to all of elements in parallel. The other vectors (val_m, val_v, and val_t) are
passed to the functor’s constructor and accessed by index inside its body. The
PHAST port of Adam solver is shown in Listings B.8 and B.9.

3CPU version at: https://github.com/BVLC/caffe/blob/master/src/caffe/solvers/ad
am_solver.cpp
GPU version at: https://github.com/BVLC/caffe/blob/master/src/caffe/solvers/adam_s
olver.cu

67

https://github.com/BVLC/caffe/blob/master/src/caffe/solvers/adam_solver.cpp
https://github.com/BVLC/caffe/blob/master/src/caffe/solvers/adam_solver.cpp
https://github.com/BVLC/caffe/blob/master/src/caffe/solvers/adam_solver.cu
https://github.com/BVLC/caffe/blob/master/src/caffe/solvers/adam_solver.cu

3. High and Low-Level Programming Languages in the Heterogeneous

Era

Note that, except for the square root, all the solver calculations are written
directly in a PHAST functor. Unlike the original Caffe code, PHAST implemen-
tation of Adam solver does not call optimized libraries for each architecture.
Therefore, performance will depend on the quality of the generated code by the
PHAST library for each architecture from the code written inside the PHAST
functor.

Like in the softmax version, the Adam module was ported directly from the
CPU Caffe code. A small refactoring process is needed in the solver to include
all the algorithm code inside a single algorithm invocation. Nevertheless, the
Caffe code for the softmax layer wrapped this set of steps inside a loop that
iterated over the data to be processed, while the Adam solver does not have any
for loop; it computes each of the steps for all of the data at once.

3.2.1.6 PHAST Upgrades

The re-engineering process was successful in softmax and Adam without any
modifications to the PHAST library. Nevertheless, we detected that the convo-
lution needed better support from the PHAST side because a significant per-
centage of the execution time is spent inside the convolution layer. Henceforth,
we prefer adding a native convolution primitive instead of relying on a man-
ual implementation on the Caffe frontend. Following the library’s philosophy,
we have been able to wrap two architecture-specific implementations (for multi-
core CPUs and NVIDIA GPUs) behind a standard high-level PHAST interface
without introducing performance-related constraints.

New primitives. The quickest solution was to provide a thin PHAST layer
around a BLAS-based im2col+GEMM convolution that mimics that found in
Caffe’s code. However, in recent years, this method has been questioned by
studies that propose alternative techniques, such as [52, 67, 203]. We took this
opportunity to investigate further. After studying various possibilities, the di-
rect convolution algorithms described by [203] and [67] proved to be promising
on the multi-core CPU. They both allow computing a convolution “from the def-
inition”: they do not use any matrix multiplications, but use the base algorithm
improved with cache and register blocking. Georganas et al. [67] focus also on
JIT compilation and architectures with wide SIMD units (e.g., 512 bits), while
Zhang et al. [203] investigate loop re-ordering. The latter approach proved the
most promising for our workloads, so we investigated in that direction. After
studying various possibilities, we choose a direct convolution with a novel loop
ordering. We achieve parallelism by processing multiple batches and multiple
filters independently.

68

3.2. Achieving Performance Portability

Also for the GPU convolution we addressed recent literature to provide a
better implementation than the classic one. The GPU implementation is a gen-
eralization of the technique described by [27]. We enhanced it to handle multi-
ple filters, multiple batches, non-unary strides, padding, and “big” filters with
widths significantly bigger than the warp-size. This implementation takes ad-
vantage of systolic techniques that permit accumulating values between threads
of the same CUDA warp without the shared memory intervention, made pos-
sible by CUDA intrinsics like __shfl_up_sync or __shfl_down_sync. Thus, the
shared memory is necessary for extensive filters, where two or more warps need
to cooperate to calculate each output element.

New primitives are available under the phast::ai namespace (omitted in the
next listing for simplicity). The new PHAST primitives developed during this
research are:

• convolution: We implemented it using direct convolution algorithm on
the CPU and a systolic-algorithm on the GPU.

• batch_convolution: The same as convolution, but taking a whole batch of
images instead of a single image.

• batch_convolution_channel_major: The same as batch convolution, but
simulates the transposition operation without any computational cost.

• pad: Pads each face of an input cube with the passed values and writes
them into an output cube.

• rotate_and_pad: The same as the pad call, but each face is also rotated by
180◦.

Configuration file. In conjunction with the aforementioned primitives, we de-
veloped another improvement to the PHAST library during this research. When
a PHAST algorithm is launched on a hardware platform, the launch parameters
are chosen by heuristics. However, these heuristics do not always provide the
best configuration for all of the algorithms calls, and programmers should be
able to provide explicit values through API calls.

In this work, we have added the concept of configuration file, which is loaded
at startup and translated into a read-only global structure. This file contains
the parallelization parameters to be set at each algorithm invocation, mimicking
the user-provided values. Through extensive search techniques, we populated
configuration files to store the best-performing values for each benchmark in
Section 3.4.1.

69

3. High and Low-Level Programming Languages in the Heterogeneous

Era

3.2.2 Using oneAPI

In this Section, we have focused in porting two different layers from Caffe, rather
than re-implementing the whole framework. We choose the softmax and convo-
lution layer. The softmax layer is a simple, very common layer, that can be useful
to compare a native implementation (Caffe in CPU and Caffe in GPU) against
a hardware-agnostic one (oneAPI). On the other hand, the convolution layer
exhibits weakness and opportunities inside the main component of a convolu-
tional neural network, where performance is crucial. Without losing generality,
we decide to concentrate on the feedforward phase. It is the heart of convolu-
tional neural networks in inference mode, and its algorithms have features and
access patterns similar to those used in backpropagation [183]. For these rea-
sons, results emerging from this study may well be valid also for most parts of
backpropagation too.

To design the oneAPI version of a given layer, we first need to isolate a layer
from the Caffe framework. We have to remove all the dependencies of a given
layer from the framework. It allows us to run just the layer itself, filling it
with arbitrary data and content of various sizes. Therefore, in the oneAPI code,
we must respect the data layout of Caffe, because we are going to receive the
data in the same way as the Caffe original layer. This way, we can check the
correctness of our implementation of the layer by comparing the output of the
original Caffe code with our oneAPI implementation. To ease the reading of
this section, we omit the source code listing and implementations details here.
See Appendix C for an extended and detailed explanation of the DPC++ and
oneDNN implementations.

3.2.2.1 Softmax Layer (Feedforward)

Before the softmax is computed, oneAPI’s environment has to be initialized (the
same happens in the convolution layer). The softmax layer in oneAPI receives
the same parameters as Caffe plus one additional parameter: the queue of the
device. In the initialization, a device is selected, and a queue for such a device
is created and passed to the layer. Note that this allows for generating a single
executable that can be run on multiple hardware platforms. The device selected
by oneAPI can be controlled:

• Before program execution: using environment variables, or:

• At runtime: relying on hardware detection and selecting one of the avail-
able devices.

70

3.2. Achieving Performance Portability

To implement the layer, we divide the softmax computation in four parts:

1. Definition of the buffers that store the data to be computed by the softmax layer.
In this part of the code, shown in Listing C.1, the initialization takes place.
More specifically, we define the SYCL buffers and workgroup sizes for the
rest of the computations.

2. Exponentials computation (Step 2 in Section A.1). First, we request access to
write to the output buffer and to read from the input buffer. Them, the
exponential is computed in parallel inside a kernel.

3. Accumulation of the values previously computed with the exponential (Step 3 in
Section A.1). Both SYCL and CUDA rely on the SIMT model. Therefore,
SYCL and CUDA kernel implementation structure are often very similar.
We reused the CUDA implementation of this part of the softmax for im-
plementing it in DPC++. Essentially, we adapted some CUDA specific
constructs. Also, in this part of the kernel, we use local memory. This
will likely have no impact on the CPU performance, but GPUs and other
accelerators will probably benefit from this optimization.

4. The division of all the exponentiated values (Step 4 in Section A.1). Again, we
implement this part of the softmax reusing and adapting the CUDA im-
plementation. In this kernel, we find some room for performance improve-
ment. However, we are unable to exploit it due to some DPC++ limitations
(see Appendix C for more details).

oneAPI support. We have been able to build the dpcpp compiler from source
successfully, even though we have encountered unexpected issues 4. We have
enabled CUDA support in the compilation process in order to deploy the layer
to NVIDIA devices too. In the end, our custom oneAPI softmax layer builds and
runs successfully on both CPU and GPU.

3.2.2.2 Convolution Layer (Feedforward)

To implement the convolution layer in oneAPI, we use oneDNN. The oneDNN
library is integrated in the oneAPI environment, and allows the acceleration of
machine learning workloads. As we mentioned in Section 2.2.2, oneDNN was
renamed from MKL-DNN, and in the future, it will work with dpcpp to deploy
the workloads to the same platforms as those supported by dpcpp.

4See our issue in the oneAPI GitHub repository for more details: https://github.com/int
el/llvm/issues/2696

71

https://github.com/intel/llvm/issues/2696
https://github.com/intel/llvm/issues/2696

3. High and Low-Level Programming Languages in the Heterogeneous

Era

The initialization of oneDNN is similar to the one explained in Section 3.2.2.1.
The only difference is that, instead of a device queue, the layer receives the en-
gine kind to be used. The engine creation is shown in Listing C.5. After the
engine creation, we retrieve the Caffe variables for populating our variables in
oneDNN (Listing C.6). Then, we create the memory descriptors (in Listing C.7)
and memory objects (Listing C.8). Those are used to specify the memory layout
of the data, the location of the data, as well as the data itself. After creating the
memory object and descriptors, we create the forward convolution description
(Listing C.9), specifying the convolution algorithm we want. We are using the
direct convolution (algorithm::convolution_direct), but the Winograd convo-
lution is available in oneDNN too. Then, we link the memory descriptor with
its memory objects (Listing C.10) and run the convolution (Listing C.11). Lastly,
after the convolution is computed, we have to read the data from the oneDNN
memory object and copy it back to the Caffe structure (Listing C.12).

Implementing the layer is much easier with oneDNN than DPC++. The for-
mer allows straightforward, but also limited versions of the layer, since we are
restricted to what is supported in the oneDNN library. The latter allows more
expressive implementations at the cost of lower performance.

oneAPI support. We have been able to build oneDNN from the source (again,
with some issues 5), enabling CUDA support. Nonetheless, we have not been
able to run the convolution layer on the GPU. We build an NVIDIA compatible
oneDNN library, but at the moment, our implementation is incompatible with
oneDNN in NVIDIA GPUs. The underlying implementation of the convolu-
tion uses a USM memory (Unified Shared Memory) approach, while the CUDA
backend currently only supports a buffer-based model 6. Although we were able
to build the code for CPU and GPU, only the CPU version ran successfully.

3.3 A Novel Heterogeneous Language for Deep
Neural Networks

Heterogeneous Deep Neural Network (HDNN) is a proof-of-concept MLIR di-
alect for deep neural networks that supports CPUs, GPUs and TPUs. HDNN
programs are portable thanks to our MLIR-based ecosystem, following an idea
of progressive lowering of high-level, device-agnostic to low-level operations

5See our issue in the oneDNN GitHub repository for more details: https://github.com/o
neapi-src/oneDNN/issues/885

6See our issue in the oneDNN GitHub repository for more details: https://github.com/o
neapi-src/oneDNN/issues/888

72

https://github.com/oneapi-src/oneDNN/issues/885
https://github.com/oneapi-src/oneDNN/issues/885
https://github.com/oneapi-src/oneDNN/issues/888
https://github.com/oneapi-src/oneDNN/issues/888

3.3. A Novel Heterogeneous Language for Deep Neural Networks

Operations for Creating Regions

hdnn.launch {dev = device} {
...

}

Create a region and launch everything inside it to the
device specified in the dev parameter, which can take the
following values:
“cpu”, “gpu” or “tpu”

Operations for Deep Learning

hdnn.softmax(%i) {iters = N} :
(tensor<NxCxWxf32>)→ tensor<NxCxWxf32>

Runs the softmax layer with input %i. iters parameter is
optional and allows to run the layer for the specified number
of iterations. The softmax operation receives a 3D tensor and
outputs a 3D tensor of the same dimensions.

hdnn.conv(%i, %w, %b) {iters = N} :
(tensor<NxCxHxWxf32>,
tensor<N’xCxFxFxf32>,
tensor<N’xf32>)→ tensor<NxN’x?x?>

Runs the convolution layer with the input passed as:
• %i: Input image (4D tensor with dimensions NxCxHxW)
• %w: Input weights (4D tensor with dimensions N’xCxFxF)
• %b: Input bias (1D tensor with dimension N’)
and outputs the result as a 4D tensor. iters parameter is
optional and allows to run the layer for the specified number
of iterations.

Auxiliary Operations
hdnn.print(%i) : tensor<?x?x?x?xf32> Prints a tensor of arbitrary size %i to the standard output
hdnn.random() : tensor<?x?x?x?xf32> Creates a tensor of arbitrary size with random data
hdnn.return Used to end a MLIR function (cannot be omitted)

Table 3.1: Summary of HDNN available operations to the user with their de-
scription. f32 refers to simple precision data types.

and device-specific operations. Unlike other MLIR-based approaches, HDNN
does not compile code to hardware devices directly using the MLIR ecosys-
tem. Instead, HDNN uses optimized libraries for performance-critical opera-
tions, and only compiles code directly when there is no optimized library to
use. This way, HDNN is able to achieve competitive performance against state-
of-the-art approaches without needing to engineer complex compiler optimiza-
tions. HDNN is a step forward in the P3 problem by providing performance,
portability and productivity.

3.3.1 HDNN Frontend

The hdnn dialect provides a set of operations to work with neural networks, but
it does not add new data types to the MLIR ecosystem since it is designed to co-
operate with the already existent data types in MLIR, like the tensor. Currently,
the dialect is not particularly productive from the programming standpoint be-
cause it has to be used directly at the MLIR IR level. For that reason, the hdnn
dialect is not designed as a user-friendly DSL. We leave for future work to design
and implement a top-level DSL to ease the programming task.

73

3. High and Low-Level Programming Languages in the Heterogeneous

Era

func @main() -> i32 {
hdnn.launch {dev = "gpu"} {

%imgs = hdnn.random () : tensor <10x1x28x28xf32 >
%weig = hdnn.random () : tensor <20x1x5x5xf32 >
%bias = hdnn.random () : tensor <20xf32 >

%cout = "hdnn.conv"(%imgs , %weig , %bias) :
(tensor <10x1x28x28xf32 >, tensor <20x1x5x5xf32 >,
tensor <20xf32 >) -> tensor <10x20x24x24xf32 >

%sout = "hdnn.softmax"(%cout) : (tensor <10x20x24x24xf32 >) ->
tensor <10x20x24x24xf32 >

hdnn.print %sout : tensor <10 x20x24x24xf32 >
}
hdnn.return

}

Figure 3.1: An HDNN program that runs the convolution and softmax layer in
GPU.

3.3.1.1 HDNN Operations

The hdnn dialect provides three kinds of operations: operations for creating re-
gions, operations for the deep learning domain, and auxiliary operations. The
only operation available for creating regions is hdnn.launch, which encompasses
an MLIR region that may contain any operation. Those operations will be
launched to the device specified in the operation argument. For deep learn-
ing, the hdnn dialect currently provides two layers; softmax and convolution.
Both layers can only work in inference mode since they implement the feedfor-
ward phase. Finally, hdnn provides auxiliary functions to print an arbitrarily
sized tensor, create an arbitrarily sized tensor with random data (useful to fill
the layers with data), and an operation to mark the end of an MLIR function.
hdnn operations are detailed in Table 3.1.

3.3.1.2 HDNN Programming

In addition to the hdnn dialect, the HDNN compiler supports the tensor, affine,
memref, and standard dialects. In essence, this means that the programmer can
use any of these dialects to build an HDNN compliant program. However, the
normal procedure in an HDNN program is to use only the hdnn and the tensor
dialects, while the rest of them are only used in further lowering passes.

Running a layer in HDNN is straightforward, as can be seen in Figure 3.1.

74

3.3. A Novel Heterogeneous Language for Deep Neural Networks

The first operation corresponds to the launch operation. This operation dic-
tates the device in which the computations will be executed (in the example,
the GPU is selected). Then, random 3D tensors are generated. After that, the
convolution layer is executed and the output is used by the softmax. Note that
the MLIR code inside the launch operation is simple but, more importantly,
device-agnostic. Only the hdnn.launch operation parameter must be modified
to change the target device. At the moment, one limitation of HDNN launch op-
erations is that they cannot be mixed together as they are treated as completely
different tasks. Thus, the current implementation dictates that only the data cre-
ated inside a region can be used. Still, it is not possible to use data from another
region or data created outside of the region.

HDNN programming is straightforward because the function calls hide the
complexity of an HDNN program. This makes sense because programmers
often do not need to know or modify the code of a neural network layer. Fur-
thermore, other common constructions like conditions or control flow can still
be used in HDNN. One of the strengths of HDNN is the fact that data is stored
in tensors, which are extremely flexible (following the MLIR idea, they are ex-
pressed in a very high-level way). Thus, connecting different layers in HDNN is
straightforward, as shown in Figure 3.1.

3.3.2 HDNN Backend

The HDNN backend architecture is built up of two components. The first one is
the HDNN compiler (which we refer to as hdnn-opt), and the second one is the
HDNN runtime (composed by the CPU, GPU and TPU runtimes).

3.3.2.1 HDNN Architecture

The HDNN compilation flow is depicted in Figure 3.2. First, the HDNN com-
piler transforms the MLIR code to LLVM. The original MLIR code suffers differ-
ent modifications (partial lowering) before being converted to the LLVM IR code.
This code is then compiled to an object file using clang. The HDNN runtime is
written in C++, so it can also be compiled to object files using any compiler.
Finally, object files are linked into a single binary file. Depending on the original
MLIR code, the final binary file is executed on CPU, GPU or TPU. However, as
it is tied to a specific device, different devices cannot execute the MLIR code
concurrently. Nonetheless, thanks to the HDNN design, this limitation could be
eliminated easily to allow co-execution. We explore co-execution opportunities
in Chapter 5.

75

3. High and Low-Level Programming Languages in the Heterogeneous

Era

3.3.2.2 HDNN Compilation Process (Lowering)

An HDNN program has to be lowered to transform the HDNN high-level IR code
(MLIR) to a lower-level IR (LLVM). The lowering process is divided into three
different passes, as depicted in Figure 3.2.

First transformation pass. The first pass (marked as 1º in Figure 3.2) takes as
input the HDNN source file. In this file, operations are used inside the launch
operation, so they are device-agnostic. The main goal is to replace device-
agnostic with device-specific operations. For this task, the HDNN dialect has
not only device-agnostic operations but also device-specific ones. For example,
for the convolution, HDNN has the device-agnostic hdnn.conv and the device-
specific hdnn.conv.cpu, hdnn.conv.gpu, and hdnn.conv.tpu. The multi-level
nature of MLIR is convenient in this case; it is very interesting for heteroge-
neous compiling, as multi-level IR can transform a generic IR to one that is
device-specific. In addition to the mentioned transformations, this pass also
adds the operation hdnn.init_gpu when a launch operation on GPU is detected
(explained in the following pass). Another objective is to lower high-level data
types to lower-level ones, e.g., the tensor data type is lowered to the memref
dialect to work with lower-level operations, like loads and stores.

When the pass has finished, only the affine, memref, and standard dialects
are legal. Lastly, the hdnn dialect is said to be dynamically legal because not all the
operations in the dialect are legal, just the device-specific operations generated
by the compiler in the current pass. These device-specific operations are not
available to the user as only the compiler can generate them. Note that the MLIR
code generated in this pass is no longer device-agnostic since we have already

MLIR code

HDNN
+

others

memref

affine

standard

HDNN (partially)

mlir-llvm LLVM

CPU

GPU

TPU

CPU
runtime

GPU
runtime

TPU
runtime

1º 2º 3º

HDNN
PROGRAMMING

(Section 3.3.1.2)

HDNN
COMPILATION
(Section 3.3.2.2)

HDNN
RUNTIME

(Section 3.3.2.3)

Figure 3.2: HDNN compilation flow.

76

3.3. A Novel Heterogeneous Language for Deep Neural Networks

specialized the operations to target a specific device. We leave for future work to
experiment with more sophisticated approaches, like dynamically selecting the
device depending on the system’s load, thus allowing co-execution.

Second transformation pass. The input of the second pass (marked as 2º in
Figure 3.2) is the output of the previous one, which contains deep learning
device-specific operations (neural network layers). The device-specific opera-
tions found in this pass have to be lowered. To do so, the hdnn-opt inserts calls
to the HDNN runtime, which uses optimized libraries for running the layers.
Depending on the layer and the device selected, the compiler also inserts calls
to initialize the library used to do the computations. Data types used by the
library also have to be initialized, and the compiler generates the IR code at this
moment. It is worth noting that when this pass has finished, only the mlir-llvm
dialect is legal.

The rest of the transformations performed by the second pass are dependent
on the device being targeted:

• CPU lowering: This lowering is the easiest because there are no memory
movements. Thus, the compiler inserts the calls to the CPU runtime to
lower the code when the CPU is selected.

• GPU lowering: When the IR contains GPU-specific operations (e.g., a con-
volution launched to the GPU), the compiler needs to provide mechanisms
for data management between CPU and GPU. For this duty, MLIR pro-
vides a GPU dialect. During the second pass, the compiler generates GPU
operations (that are part of the gpu dialect). However, the gpu dialect op-
erations cannot be converted to mlir-llvm7. Our approach to circumvent
this problem is to do a transitive lowering of the gpu dialect. Therefore,
these operations (part of the gpu dialect) are immediately lowered to other
lower-level operations instead of leaving them to be translated in a further
pass (transitive lowering). That is why the gpu dialect does not appear
in Figure 3.2: The dialect appears in the second pass but it immediately
disappears, as it is lowered to lower-level operations. Another important
thing to do is to lower the hdnn.init_gpu operation. This HDNN opera-
tion aims to initialize both a CUDA stream and a cuDNN handler. This
operation is lowered in this pass, and it is done by calling the HDNN GPU
runtime, which will take care of this.

7While it has been discussed if this is how it should work or not, at the moment of writing,
converting the gpu dialect to mlir-llvm is not possible.

77

3. High and Low-Level Programming Languages in the Heterogeneous

Era

• TPU lowering: In standard MLIR, there is a specific dialect for the GPU,
but not for the TPU. The gpu dialect is used to manage memory allocations
and memory transfers between CPU and GPU. Even though in HDNN
we use a specific dialect to handle the GPU, we do not follow the same
approach for TPU. Note that this is our design decision for HDNN, it is
not something imposed by MLIR: we decided not to design a TPU dialect
due to a limitation in the TPU runtime of HDNN. Currently, the memory
allocation and movement in the TPU are managed implicitly, so it does
not make sense to have a dialect that can express these operations as they
cannot be executed using our current TPU runtime. The TPU lowering
inserts calls to the TPU runtime, which handles both the memory and
the computations in the TPU. A lower-level TPU runtime, along with a
tpu dialect, would allow explicit memory management, as well as other
optimizations. We leave this research line as future work.

Third transformation pass. The last pass (marked as 3º in Figure 3.2) trans-
forms the mlir-llvm into LLVM. This transformation is an automated process
managed entirely by MLIR. Thus, the HDNN compiler invokes the appropriate
MLIR function to do it. The output of this pass is LLVM code, which will be
further compiled with the HDNN runtime into the executable file.

3.3.2.3 HDNN Runtime

The HDNN runtime consists of one generic runtime and three device-specific
runtimes; the CPU, GPU and TPU runtimes. The generic runtime is executed
on the CPU. It provides functions for time measurements (useful for the eval-
uation) and functions for generating random floating-point values, which are
called when the operation hdnn.random is used.

The HDNN runtime essentially acts as a middleware between the LLVM
code generated by MLIR and the corresponding optimized library. Each run-
time defines custom functions to operate with the corresponding library. These
functions are used by the IR code, as depicted in Figure 3.3. The HDNN com-
piler needs to generate function definitions for all of the functions defined in
the runtime to connect the IR with the libraries. These definitions are not linked
when the LLVM code is generated since they reference functions that do not
exist in the LLVM code. They are linked when the LLVM code is compiled al-
together with the HDNN runtime because the needed functions are provided
by the device-specific runtime. Therefore, when an HDNN program is com-
piled, the executable contains the HDNN high-level code, together with the
HDNN runtime needed to run the program. If the programmer writes code for

78

3.3. A Novel Heterogeneous Language for Deep Neural Networks

func @main() -> i32 {

hdnn.launch {dev = "cpu"} {

%0 = hdnn.random () : tensor <2x10x6xf32 >

hdnn.print %0 : tensor <2x10x6xf32 >

%1 = hdnn.softmax (...)

hdnn.print %1 : tensor <2x10x6xf32 >

}

hdnn.return

}

MLIR code 9 LoC

...

%87 = llvm.call @onednn_softmax_primitive_create

...

%92 = llvm.call @onednn_softmax_prim_execute

...

LLVM code 204 LoC

...

onednn_softmax_primitive_create

...

onednn_softmax_prim_execute

...

CPU RT

diverse MLIR
transformations

Figure 3.3: HDNN example lowering with runtime communication.

something that does not have an optimized library (e.g., loops, hml.print, etc),
HDNN compiles code directly to the device. Then, the softmax layer written in
Figure 3.3 is executed using the optimized library, so the generated code simply
calls the HDNN runtime (in this case, the CPU runtime). The rest of the code is
compiled to the CPU using the MLIR ecosystem, so the HDNN runtime is not
invoked for that code section.

Device-specific runtimes serve two purposes: to manage library-specific data
structures and run both layers. Runtimes delegate the layers’ computation to
the optimized libraries. We choose the best performant deep-learning library
for each device: oneDNN is used for the CPU runtime, cuDNN for the GPU
runtime, and PyTorch for the TPU runtime. The case of the TPU is different
because there is no optimized, ready-to-use library (like oneDNN and cuDNN).
Hence, we explore different alternatives like PyTorch, TensorFlow, or XLA. Py-
Torch and TensorFlow provide an easy interface to run any layer on the TPU,
but they only work with Python (both libraries offer limited support with lan-
guages different than Python). Therefore, to use TPUs from HDNN, we design
a TPU runtime that takes the inputs from HDNN, sends them to a Python code
and returns the data to HDNN coming from Python. This Python code uses Py-
Torch to run the layers on the TPU and XLA to communicate with the TPU itself.
However, running a layer using PyTorch directly only makes use of 1 TPU core.
Thus, we implemented a basic algorithm inside the TPU runtime to parallelize
the code among the TPU cores. The algorithm follows an allreduce scheme, a
common approach in the execution of distributed DNN workloads [20]. Essen-
tially, the number of batches is divided between the number of TPU cores, and
the master core gathers the partial results at the end of the execution.

79

3. High and Low-Level Programming Languages in the Heterogeneous

Era

3.4 Evaluation

In this Section, we compare PHAST, oneAPI and HDNN with the P3 approach:
performance, portability and productivity. First, we detail our test bed in Sec-
tion 3.4.1. We then study the P3 results of PHAST (Section 3.4.2), oneAPI (Sec-
tion 3.4.3) and HDNN (Section 3.4.4). First, we show a detailed evaluation of the
performance, followed by an analysis of the portability and productivity of each
approach. Lastly, we offer a summary of each proposal in Section 3.4.5, show-
ing how they perform in these three metrics compared to each other. In this
comparison, we also consider a popular general-purpose language like C++ to
illustrate the benefits of single-source programming languages. Next, we detail
how we evaluate P3 and give first results for C++:

• Performance. We evaluate performance with execution time. C++ is a
well-known language with deeply studied compilers like gcc or icpc. In
general-purpose languages, there is probably no better language for high
performance than C/C++. Therefore, in our analysis we consider that C++
has optimal performance.

• Productivity. We evaluate productivity as the effort made by a developer to
write efficient software. A good way of measuring productivity is through
lines of code. Thus, we compared the complexity of programs using differ-
ent programming languages. However, comparing a program’s complexity
is not something purely objective. Different metrics have been proposed
over time, but here we will use the lines of code of a program for sim-
plicity. Before calculating the lines of code, non-essential ones (blank lines,
comments) were removed, allowing for a fair comparison. We evaluate two
layers’ implementations of convolutional networks: softmax and convolu-
tion. The C++ programs were taken from the official Caffe repository.

We also consider our experience programming in each language. In par-
ticular, we consider development time, which does not always have to be
correlated with lines of code. We did not measure our development time,
so this cannot be quantitatively measured like lines of code, but we believe
that programming experience is an essential aspect of productivity. We
consider C++ to have good, although not optimal productivity.

• Portability. We evaluate portability as the support range for diverse hard-
ware devices. C++ is clearly the less portable language in our analysis since
it can only be compiled for CPU. We rate C++ portability as the worst of
all considered languages.

80

3.4. Evaluation

3.4.1 Test Bed

The evaluation platform is divided into three machines: machine1, machine2
and machine3. PHAST is evaluated in machine1, with an Intel Core i9-9900K
and an RTX 2080. oneAPI is evaluated in machine2, with a dual-socket Xeon
Gold 6238 and an RTX 2080 Ti. HDNN is evaluated in machine2 and machine3,
which features a TPU v2. Each experiment is repeated five times and the values
shown are the average over these independent runs (measured in seconds). In
the PHAST and oneAPI evaluation, we study the performance of isolated layers.
We design a set of inputs to gather information about the performance of each
implementation.

3.4.1.1 Hardware

The summary of the hardware platform is shown in Table 3.2 and a detailed
hardware specification for each device is shown in Table 3.3.

Table 3.2: Hardware configuration for the three machines used in the evaluation.

CPU (Intel) GPU (NVIDIA) TPU (Google)

machine1 Core i9-9900K RTX 2080 -
machine2 Xeon Gold 6238 RTX 2080 Ti -
machine3 - - TPUv2

Table 3.3: Hardware specifications for the testbed environment (per chip).

CPU 1 CPU 2 GPU 1 GPU 2 TPU

Model Xeon Gold 6238 Core i9-9900K RTX 2080 Ti RTX 2080 TPUv2
Release date Q2 2019 Q4 2018 Q3 2018 Q3 2018 Q2 2017
Manufacturing process 14nm 14nm 12nm 12nm 16nm
TDP 140W 95W 250W 215W 280W
Chips per host 2 1 1 1 4 1

Cores/chip (total) 22 (44) 8 4352 2944 2 (8)
Maximum Frequency 3700 MHz 2 5000 MHz 3 1545 MHz 1710 MHz 700 MHz
Peak performance (SP) 2.95 TFLOP/s 921 GFLOP/s 13.4 TFLOP/s 10.0 TFLOP/s 3.00 TFLOP/s
Cache memory 30.25 MB L3 16 MB L3 5.5 MB L2 4 MB L2 32 MB
Main memory type DDR4 DDR4 GDDR6 GDDR6 HBM
Memory frequency 2933 MHz 2666 MHz 1750 MHz 1750 MHz -
Memory bandwith 140.7 GB/s 42.6 GB/s 616.0 GB/s 616.0 GB/s ∼600.0 GB/s
1 A single TPUv2 board contains 4 TPU chips with 2 TPU cores each.
2 While maximum frequency is 3.7 GHz, real frequency when the CPU is using all the cores and running

AVX-512 code is 2.1 GHz. Therefore, we used 2.1 GHz to calculate the peak performance.
3 While maximum frequency is 5.0 GHz, real frequency when the CPU is using all the cores and running

AVX2 code is 3.6 GHz. Therefore, we used 3.6 GHz to calculate the peak performance.

81

3. High and Low-Level Programming Languages in the Heterogeneous

Era

3.4.1.2 Software

The software configuration of the three machines used in the evaluation is as
follows:

• machine1: Runs Ubuntu 18.04 with kernel 5.0.0-36-generic. The NVIDIA
driver version is 430.50. The CUDA version is 10.1, and the cuDNN li-
brary version is 7.5.0. The installed C++ compiler version is gcc 8.3.0. The
Caffe implementation and the PHAST library itself are compiled with this
configuration. The PHAST library version used is 1.1.1. The base Caffe
framework was obtained from the official git repository using the 99bd997
commit. Finally, the original Caffe is built with openBLAS as the underly-
ing BLAS library for CPU and cuDNN for GPU.

• machine2: Runs CentOS Linux 8.2 with kernel 4.18.0-193.14.2.el8_2.x86_-
64. The NVIDIA driver version is 450.51.06 The CUDA version used is
11.0, and cuDNN is in version 8.2.4.

BVLC Caffe is compiled using CUDA and the GNU C++ compiler ver-
sion 8.3.1. The Intel Caffe version is compiled using icpc 19.1.2. The
oneAPI softmax and convolution implementations were compiled using
clang 12.0.0. The dpcpp compiler was built from source using the com-
mit 6336913 8. The oneDNN version is v2.0-beta10 (dnnl_lnx_1.96.0_cpu_-
iomp.tgz) 9. The TBB version is tbb-2021.1-beta08, MKL version is 2021.1
Beta Update 9, and openBLAS version is 0.3.3.

HDNN is built using LLVM, which was downloaded from the official git
repository, obtaining the code corresponding to the commit cf72768. Our
custom implementations of softmax and convolution examples of oneDNN
and cuDNN are built using gcc 8.3.1. Furthermore, we use the same
oneDNN and cuDNN version as previously mentioned for HDNN.

• machine3: This machine belongs to the Cloud TPU service in Google
Cloud Platform. This system runs Debian 10 with kernel 4.19.0-14 ker-
nel. In this case, we used the same LLVM version to build the HDNN
compiler, and for the TPU backend we used python 3.7 and PyTorch 1.9.

3.4.2 PHAST

3.4.2.1 Performance

The performance evaluation is divided into three parts:
8Available at https://github.com/intel/llvm
9Available at https://github.com/oneapi-src/oneDNN/releases

82

https://github.com/intel/llvm
https://github.com/oneapi-src/oneDNN/releases

3.4. Evaluation

• Isolated layers: We compare the execution times of the only layers that
were modified in our work, which we isolated from the rest of the frame-
work.

• Whole network: We measure the total execution time of the whole net-
work.

• Performance portability analysis: We study the performance portability of
our PHAST implementation.

In this Section, we only show the performance results for the whole network,
as well as the performance portability analysis. For the evaluation of the isolated
layers, refer to Appendix B.5.

When speaking about performance, we consider the inverse of the elapsed
time as our performance metric. Thus, we adopt the usual notion of the ratio
between two achieved performance scores for speedup, which is the inverse of
the ratio between the elapsed times. We use a LeNet network in inference mode
with the MNIST, and CIFAR-10 datasets for the full network runs. We run the
networks for 1000 iterations. To provide a better insight into the performance,
we use Caffe time mode. This way, we can obtain the execution time for the
whole network and each of the layers.

Figures 3.4, 3.5, 3.6 and 3.7 compare the performance of the native Caffe
version in C++ and CUDA, against the single-source version with the PHAST
library.

Data Conv.
(FF)

Conv.
(BP)

Pooling
(FF)

Pooling
(BP)

Inner
Product

(FF)

Inner
Product

(BP)

ReLU
(FF)

ReLU
(BP)

Softmax
(FF)

Softmax
(BP)

Adam
0
5

10
15
20
25
30
35
40
45

Layer

Ti
m

e
(s

)

Original Caffe
PHAST Caffe

Figure 3.4: Time spent in each of the layers (MNIST) (running in CPU).

83

3. High and Low-Level Programming Languages in the Heterogeneous

Era

Data Conv.
(FF)

Conv.
(BP)

Pooling
(FF)

Pooling
(BP)

Inner
Product

(FF)

Inner
Product

(BP)

ReLU
(FF)

ReLU
(BP)

Softmax
(FF)

Softmax
(BP)

Adam
0

0.5

1

1.5

2

2.5

3

3.5

4

Layer

Ti
m

e
(s

)

Original Caffe
PHAST Caffe

Figure 3.5: Time spent in each of the layers (MNIST) (running in GPU).

Data Conv.
(FF)

Conv.
(BP)

Pooling
(FF)

Pooling
(BP)

Inner
Product

(FF)

Inner
Product

(BP)

ReLU
(FF)

ReLU
(BP)

Softmax
(FF)

Softmax
(BP)

Adam
0

40

80

120

160

200

240

280

Layer

Ti
m

e
(s

)

Original Caffe
PHAST Caffe

Figure 3.6: Time spent in each of the layers (CIFAR-10) (running in CPU).

On the CPU, Figures 3.4 and 3.6 show that Inner Product is the only layer
where PHAST is slower than the original Caffe in both networks. It is a simple
layer and, apparently, the startup harms the performance of the PHAST ver-
sion. The convolution, which is the core layer of convolutional neural networks,
shows different results. On the one hand, PHAST implementation is slower in
backpropagation in MNIST (-34%) and in feedforward in CIFAR-10 (-6.3%). On
the other hand, it is significantly faster in the backpropagation in CIFAR-10,
obtaining a 2.12x speedup.

On the GPU, as depicted by Figures 3.4 and 3.6, the PHAST version is gen-

84

3.4. Evaluation

Data Conv.
(FF)

Conv.
(BP)

Pooling
(FF)

Pooling
(BP)

Inner
Product

(FF)

Inner
Product

(BP)

ReLU
(FF)

ReLU
(BP)

Softmax
(FF)

Softmax
(BP)

Adam
0
1
2
3
4
5
6
7
8
9

10
11
12

Layer

Ti
m

e
(s

)

Original Caffe
PHAST Caffe

Figure 3.7: Time spent in each of the layers (CIFAR-10) (running in GPU).

Table 3.4: Performance comparison between Original Caffe and PHAST version
for MNIST dataset.

Original
Caffe

PHAST
Caffe

CPU 89.0 103.2
GPU 5.63 5.79

(a) Total execution time of the full network
for MNIST, measured in seconds.

Original
Caffe

PHAST
Caffe

CPU 1.0x -1.15x
GPU 1.0x -1.02x

(b) Performance gain/loss against original
Caffe for MNIST. Minus means loss, plus
means gain.

erally a bit slower than the original one. This is true except for the convolution
layer and the Adam solver in the CIFAR-10 dataset. In MNIST, the increased
speed is balanced by the other layers, while in CIFAR-10, the weight of the lay-
ers where PHAST performs better dominates the overall execution time.

Tables 3.4 and 3.5 sum up the performance of the two versions in the case
of full-network execution. In the light of the results, we can conclude that the
PHAST version is competitive against the original one. PHAST version is faster
in CIFAR-10 on both CPU and GPU, while performs very similar in the MNIST
dataset on the GPU and loses around 15% on the CPU. Looking at the execution
time of each layer separately, the small layers are always a bit slower on PHAST
than in the original Caffe. This difference is caused by a small overhead present
in PHAST that appears each time a layer is run. This issue reduces a bit the

85

3. High and Low-Level Programming Languages in the Heterogeneous

Era

Table 3.5: Performance comparison between Original Caffe and PHAST version
for CIFAR-10 dataset.

Original
Caffe

PHAST
Caffe

CPU 852.8 562.8
GPU 21.70 14.55

(a) Total execution time of the full network
for CIFAR-10, measured in seconds.

Original
Caffe

PHAST
Caffe

CPU 1.0x +1.51x
GPU 1.0x +1.49x

(b) Performance gain/loss against original
Caffe for CIFAR-10. Minus means loss,
plus means gain.

performance of the small layers. On the contrary, big layers like convolution
also suffer from the overhead, but the overhead is much smaller compared to the
overall execution time. Therefore, the bigger the workload is, the less (or almost
none) the effect the overhead has on the performance (this can be corroborated
when comparing MNIST and CIFAR-10 results).

3.4.2.1.1 Measuring performance portability. Following the metric proposed
by [159], we apply the formula to the data shown in Tables 3.4a and 3.5a. We
choose to measure performance portability using the application efficiency, for
which we use these time measurements. To do so, we compare the elapsed times
for the full network simulation in the Caffe framework comparing the PHAST
implementation against the native one. Data is summarized in Table 3.6.

Let ΦM and ΦC be the performance portability of PHAST Caffe for the
MNIST and CIFAR-10 dataset, respectively. Using data from Table 3.6, we have:

Table 3.6: Performance portability metrics obtained from total execution time
(application efficiency).

Dataset Platform Time (s) Application
EfficiencyAchieved

(PHAST)
Best

(Original)

MNIST CPU 103.2 89.0 86.24%
GPU 5.79 5.63 97.23%

CIFAR-10 CPU 562.8 852.8 100%
GPU 14.55 21.70 100%

86

3.4. Evaluation

ΦM =
2

1
0.8624 +

1
0.9723

= 91.24%

ΦC =
2

1
1.5152 +

1
1.4914

= 100%

We achieve a near optimal performance portability for the MNIST dataset
and even surpass the optimal performance portability for the CIFAR-10 dataset.
Note that, even though we achieve better performance with PHAST compared
to native Caffe, performance portability is expressed as 100% since PHAST is
now the best implementation. This study demonstrates that our PHAST version
achieves performance portability on the evaluated hardware platforms for both
datasets. The best results are obtained with CIFAR-10, which is the biggest
dataset.

3.4.2.2 Performance, Productivity and Portability Analysis

Peformance. According to our performance results, PHAST has proven to be
good but not excellent. PHAST achieved similar performance compared to the
Caffe framework, which is implemented separately using C++ and CUDA. Be-
cause Caffe is a relatively old framework, it should be relatively easy to find
more efficient frameworks. Like Figure 3.8 shows, we consider that PHAST
provides acceptable performance.

Productivity. Table 3.14 summarizes the results for C++ and PHAST in terms
of lines of code. As we can see, PHAST proved to be much more verbose than
C++. Now, speaking from our experience, PHAST has been one of the hardest

Portability Productivity

Performance C++

PHAST

Figure 3.8: P3 analysis of PHAST and C++.

87

3. High and Low-Level Programming Languages in the Heterogeneous

Era

languages regarding programming productivity, mainly because of the difficulty
to achieve good performance. We give PHAST a slightly worse result in produc-
tivity compared to plain C++, since the latter is also often difficult to achieve
performance with.

Portability. PHAST currently supports CPUs and NVIDIA GPUs. It is signifi-
cantly more portable than C++ thanks to the support for NVIDIA GPUs.

3.4.3 oneAPI

In this Section, we show an evaluation study of the ported layers to oneAPI:
softmax and convolution, comparing our single-source implementation against
the original Caffe framework.

3.4.3.1 Performance

Softmax. The inputs used in the softmax layer are detailed in Table 3.7. The
dimensions of the first input are the same as the dimensions of the softmax
input in a LeNet layer running MNIST. Because a common workload is to run
the net for 1000 iterations, we also used 1000 iterations for input 1. We intend to
create a realistic input. However, because MNIST is a small data set, we design
input 5, which is similar to bigger workloads. We are interested in how the layer
reacts to a different number of iterations, so we create input 4 from input 5.
Finally, inputs 2 and 3 illustrate the behavior of the layer in a large instance.

Table 3.8 depicts the execution times for each version of the softmax layer. Be-
cause original Caffe allows us to select the math library backend (which remark-
ably impacts the execution time), we decide to build a version using openBLAS
(which we observed to run sequentially) and one version using MKL (which we
observed to run in parallel). For the MNIST-like input, Caffe with openBLAS is
the winner, and oneAPI is the loser by far. The input is tiny and the number of

Table 3.7: Different inputs for isolated softmax layer.

Input Iterations N W C

1 1000 2 6 10
2 1 2000 600 100
3 1000 2000 600 100
4 1 200 600 100
5 1000 200 600 100

88

3.4. Evaluation

Table 3.8: Execution times in seconds for isolated softmax layer (CPU).

Version Input 1 Input 2 Input 3 Input 4 Input 5

Caffe (openBLAS) 0.001 0.709 635.000 0.071 63.051
Caffe (MKL) 0.004 0.670 406.000 0.100 40.900
oneAPI 0.474 0.309 70.000 0.150 7.395

iterations is large, so the sequential version of softmax wins against the paral-
lel, which is incapable of benefitting from parallelism. A good point to explain
the oneAPI loss is because of the overhead of the library, which is quite large
compared with the actual work that needed to be done. However, oneAPI com-
pletely outperforms Caffe in bigger instances. In input 3, oneAPI achieves 5.8x
and 9.0x speedup against Caffe, while the gain in input 5 remains the same. At
a first glance, it does not make any sense. Figure 3.9 sheds a bit of light on this
issue.

Input Caffe
(openBLAS)

Caffe (MKL) oneAPI
0

200

400

600

800

1,000

G
ro
w

(X
ti
m
es
) in2 → in3

in4 → in5

Figure 3.9: Execution time evolution from 1 to 1000 iterations in each version.

In this plot, we evaluate the execution time from one input to another. From
input 2 to 3 we can see that the workload should be 1000x larger since the input
is the same, but the layer runs a thousand times. Caffe with sequential math
library evolution is close to 1000x, reaching around 900x. However, the parallel
version using MKL is around 600x, which means that one single iteration is
more expensive than one of the 1000 iterations. Finally, oneAPI drops to 200x.
In the transition from input 4 to 5, the difference is even more dramatic, with a
growth of 50x in the execution time. This explains the gain of oneAPI over the
other versions. We found that this situation is caused by the overhead of oneAPI.
For example, in input 5, oneAPI takes almost 7.4 seconds. We found that the
first iteration of oneAPI takes 0.150s, while the remaining 999 iterations take
∼0.007s. Therefore, 0.150 + 0.007 ∗ 999 = 7.143 ≈ 7.395. In other words, oneAPI

89

3. High and Low-Level Programming Languages in the Heterogeneous

Era

Table 3.9: Execution times in seconds for isolated softmax layer (GPU).

Version Input 1 Input 2 Input 3 Input 4 Input 5

Caffe (BVLC) 0.015 0.041 7.842 0.004 0.821
oneAPI 0.336 0.397 300.000 0.040 31.83

initialization is heavy, which causes poor performance when the network is run
for one iteration. However, the execution time of an iteration itself is great, so
the performance in a real world scenario, running for 1000 iterations, is much
better than the one offered by the original Caffe.

Table 3.9 shows the results for the softmax layer in GPU. In this case, oneAPI
loses against Caffe with all the considered inputs. It happens even though the
softmax layer was written in a similar way as CUDA kernels. The oneAPI ver-
sion is slower for small inputs (like inputs 1 and 2) but also for big ones (like
input 3), where the difference is even more dramatic. These results highlight
that oneAPI support for NVIDIA GPUs is still in a very experimental stage and
is thus not mature enough to be used in a real-world application.

Convolution. Table 3.10 shows the different inputs used for evaluating the con-
volution layer. As we did in the softmax layer, we chose the input sizes based
on real world datasets:

• Input 1 represents the input size of the MNIST dataset (gray-scale 28x28
images) with 5x5 filters.

• Input 3 represents the input size of the CIFAR-10 dataset (32x32 RGB im-
ages) with 5x5 filters.

• Input 5 represents the input size of the Imagenet dataset (227x227 RGB
images) with 11x11 filters.

The rest of the inputs (2, 4 and 6) represent the same dataset but with 1000
iterations, instead of one. This differentiation helps to understand the behavior
of the layer when it is run a single time and when it is run many times, emulating
that the layer is inside a real network. To find the input sizes, we checked
Vivienne Sze’s paper [183], and we ran Caffe using different datasets.

In the evaluation of the convolution layer we also included the Intel Caffe ver-
sion, so we can make a fairer comparison against oneAPI. To create the isolated
layer from the Intel version, we took the conv_layer.cpp 10. There are two other

10Available at https://github.com/intel/caffe/blob/master/src/caffe/layers/conv_l
ayer.cpp

90

https://github.com/intel/caffe/blob/master/src/caffe/layers/conv_layer.cpp
https://github.com/intel/caffe/blob/master/src/caffe/layers/conv_layer.cpp

3.4. Evaluation

Table 3.10: Input sizes for isolated convolution layer.

Input Iterations Image
Size

Number
of filters

Filters
Size Batches

1 1 28x28x1 20 5x5 100
2 1000 28x28x1 20 5x5 100
3 1 32x32x3 32 5x5 100
4 1000 32x32x3 32 5x5 100
5 1 227x227x3 96 11x11 100
6 1000 227x227x3 96 11x11 100

additional implementations of the layer, but we decided to compare this one
for consistency. One of the other implementations used MKL-DNN (oneDNN
now), so we should expect a similar performance. A detail to take into account
when comparing the Intel convolution layer against the original BVLC one is
the compiler used. Caffe BVLC uses g++ compiler by default, while Intel im-
plementation uses icpc (Intel compiler). To be fair in the isolation layer phase,
we keep the compiler in both cases, so we build each of three versions of layers
(Caffe BVLC, Caffe Intel, and oneAPI) with a different compiler.

Execution times of the different convolution layers are presented in Ta-
ble 3.11. In the MNIST dataset (inputs 1 and 2), we can see that Caffe BVLC
is far from the other two versions. oneAPI’s version is close but a bit far from
Intel’s version when running for 1000 iterations. This situation is reversed in the
case of the CIFAR-10 dataset (inputs 3 and 4) because oneAPI achieves slightly
better results than the Intel Caffe version. Moreover, BVLC Caffe competes in
a lower league because the difference, in this case, is even greater. In the Ima-
genet dataset, the biggest one (inputs 5 and 6), oneAPI is much faster than the
Intel version of Caffe, and both of them are much faster than the BVLC Caffe.
Compared to the Intel optimized version of Caffe, the oneAPI implementation
achieves 1.69x and 2.73x speedup in inputs 4 and 6, respectively. We can see that
oneAPI is faster than the Intel version when the input size is big enough, and

Table 3.11: Execution times in seconds for isolated convolution layer (CPU).

Version Input 1 Input 2 Input 3 Input 4 Input 5 Input 6

Caffe (BVLC) MKL 0.058 3.872 0.069 11.971 2.536 1970.1
Caffe (Intel) 0.085 0.734 0.087 1.462 0.924 300.5
oneAPI 0.063 1.122 0.053 0.862 0.267 109.8

91

3. High and Low-Level Programming Languages in the Heterogeneous

Era

we believe this may be due to two different facts. First, the overhead in oneAPI
may be harmful when computing convolution. Second, the algorithm used in
both versions is not the same (matrix multiplication in the case of Intel Caffe
and direct convolution in the case of oneAPI).

As mentioned in Section 3.2.2, our convolution implementation is not sup-
ported in GPU with the current oneDNN version, so we were unable to carry
out a benchmark on the GPU. Furthermore, we used the direct convolution algo-
rithm in oneDNN. We tried Winograd convolution too, but the program crashed
with an exception (dnnl::error: could not create a primitive descriptor iterator).

Finally, we believe that the solid performance oneAPI demonstrated in both
benchmarks is strongly influenced by the hardware platform used. Our dual-
socket Xeon Gold has 44 cores and 88 threads, which is a considerable level of
parallelism. oneAPI seems to be well optimized for Intel parallel architectures
and benefit very well from a large number of cores.

3.4.3.2 Performance, Productivity and Portability Analysis

Peformance. In our experiments, oneAPI provided excellent performance in
CPU, especially using oneDNN. On the contrary, GPU performance is partic-
ularly bad, probably because due a very early state of the GPU backend in
DPC++. Compared to the other approaches, oneAPI achieved similar perfor-
mance portability to PHAST, and far from optimal performance due to the defi-
cient GPU results. We show the oneAPI results in Figure 3.10.

Productivity. Like PHAST, we find that DPC++ is very verbose and its imple-
mentation is significantly larger than the implementation in C++. Our expe-
rience indicates that DPC++ has similar programming complexity as PHAST,

Portability Productivity

Performance C++

PHAST

oneAPI

Figure 3.10: P3 analysis of oneAPI, PHAST and C++.

92

3.4. Evaluation

while oneDNN library is easier to manage than direct programming. We also
had troubles optimizing code using DPC++, which reminds us of our expe-
rience using PHAST. A good point for oneAPI’s productivity is dpct, a tool
integrated in oneAPI that can translate up to 95% of CUDA code to DPC++
automatically [37], which can be really useful when porting CUDA code to be
used within oneAPI.

Portability. oneAPI supports CPUs, NVIDIA and Intel GPUs and Intel FPGAs.
Intel GPU support was initially limited to integrated GPUs in Intel chips, but
it was recently extended to support dedicated Intel GPUs like the Ponte Vec-
chio architecture [91]. Thus, oneAPI has excellent hardware portability, being
significantly better portability than PHAST, since also supports Intel dedicated
and integrated GPUs and also a new type of device, FPGAs. Even though we
have seen that NVIDIA GPUs support is very preliminary, it has great potential
for broader hardware adoption, so we consider that oneAPI achieves optimal
portability. To the best of our knowledge, no language or framework has wider
support than oneAPI.

3.4.4 HDNN

This Section compares the performance using the internal HDNN library against
using a machine learning framework. This analysis is not meant to be a com-
parison of machine learning frameworks but instead to shed a bit of light on the
competitiveness of HDNN concerning already existent approaches. In CPU and
GPU, HDNN was compared against Caffe, and in the TPU, against PyTorch. For
the first comparison, we developed custom softmax and convolution implemen-
tations using oneDNN and cuDNN. Essentially, these programs create tensors
with random data and call the appropriate libraries. This way, the overhead
caused by the communication between HDNN and the corresponding runtime
could be measured. For the second comparison, we developed tiny testing pro-
grams using Caffe and PyTorch. The performance evaluation was accomplished
using only the feedforward phase, as the current HDNN implementation does
not support backpropagation.

The evaluation platform was divided into two parts. On one hand, we have
the CPU and GPU hardware platform, which was equipped with a double-
socket Cascade Lake Intel Xeon Gold 6238 and a Turing NVIDIA RTX 2080 Ti.
On the other hand, we have the TPU hardware platform, which was equipped
with a TPUv2. Hardware details for the CPU, GPU and TPU used are shown in
Table 3.3 (data for the TPUv2 extracted from [94, 93]).

93

3. High and Low-Level Programming Languages in the Heterogeneous

Era

The evaluation was performed using simple precision data types. It is impor-
tant to note that the TPU was designed to work in half precision, so its potential
is reduced in this scenario, compared to the CPU and the GPU. We leave for
future work the support of half precision workloads which would make much
better use of TPUs and other machine learning accelerators.

For the performance evaluation, we measured the execution time of each
implementation (given in seconds), taking into account only computation times.
Each experiment was repeated 5 times, and the values shown are the average
over these 5 independent runs. For the softmax layer, we run each input during
1000 iterations and for the convolution, we run each input during 100 iterations.

3.4.4.1 Performance

Softmax. For the softmax layer, we designed 4 input sizes expressed in the triple
(N,C,W), where N is meant to be the number of classifications that softmax
needs to calculate, C is the number of channels, and W is the width of the vector
containing the softmax data. Input 1 is (2, 10, 6), input 2 is (200, 100, 600), input
3 is (2000, 100, 600) and input 4 is (200, 100, 6000).

Performance results are shown in Table 3.12. It is worth noting that Caffe
was compiled using openBLAS since it achieved better results than MKL11. In
cuDNN, the CUDNN_SOFTMAX_ACCURATE algorithm was used (both for HDNN and
the cuDNN test program) to avoid possible overflows when computing the soft-
max. When we compared the performance achieved by HDNN against the opti-
mized libraries (oneDNN and cuDNN), we found that HDNN achieves the same
performance as using the libraries directly. Therefore, we omitted the results in
the tables for brevity. As we theorized before, we can conclude that HDNN
suffers no overhead when communicating to the specialized backends.

Except for the first input, HDNN achieves speedup near or bigger than 5x
compared with Caffe in CPU. The performance degradation in the first input
comes from the fact that this input is tiny. For bigger workloads, HDNN consis-
tently outperforms Caffe. In GPU, HDNN is around 1.5x faster than Caffe for all
input except the first, reaching 15x. Finally, the results in TPU are very similar
to the ones obtained by PyTorch.

Convolution. For the convolution layer, we designed a set of inputs based on
real neural networks, for which we used the Sze et al. survey [183]. In this
evaluation, we set the number of batches to 100 for all inputs. Inputs 1 and 2
are representative of the MNIST dataset. Although the MNIST dataset images

11MKL outperformed openBLAS for all the operations needed in the softmax layer except for
the division, which ran very slow compared to openBLAS.

94

3.4. Evaluation

Table 3.12: Execution time of the softmax layer in CPU, GPU and TPU (in sec-
onds).

Input CPU GPU TPU

HDNN Caffe (open-
BLAS)

Speedup HDNN Caffe
(cuDNN)

Speedup HDNN Pytorch Speedup

1 0.237 0.001 0.01x 0.001 0.015 15.0x 0.990 0.950 0.96x
2 33.32 151.88 4.55x 0.562 0.821 1.46x 1.220 1.248 1.02x
3 263.4 1529.1 5.80x 5.123 7.482 1.46x 31.69 31.88 1.06x
4 333.1 1554.5 4.66x 4.482 7.727 1.59x 30.31 30.25 0.99x

Table 3.13: Execution time of the convolution layer in CPU, GPU and TPU (in
seconds).

Input CPU GPU TPU

HDNN Caffe (MKL) Speedup HDNN Caffe
(cuDNN)

Speedup HDNN Pytorch Speedup

1 0.101 0.505 5.01x 0.004 0.132 30.0x 1.016 1.063 1.05x
2 0.145 1.029 7.08x 0.012 0.162 13.2x 0.902 0.944 1.05x
3 0.145 1.029 7.08x 1.288 1.720 1.33x 2.226 2.227 1.02x
4 7.091 9.561 1.34x 1.550 2.094 1.35x 2.001 2.018 1.01x
5 7.898 13.722 1.73x 4.158 5.801 1.39x 5.130 5.229 1.02x
6 14.428 39.663 2.74x 1.157 2.120 1.83x 3.102 3.100 1.00x

are gray-scale, we also tried using color images (3 channels instead of 1). Thus,
the size of input 1 is 28x28x1, and input 2 is 28x28x3. Both have 5x5 filters, but
input 1 has 20 filters, and input 2 has 50. Inputs 3, 4, and 5 represent AlexNet
networks (input sizes 227x227x3 with 96 filters, and filter sizes of 3x3, 5x5, 11x11,
respectively). Input 6 is based on ResNet (input size of 224x224x3, with 64 7x7
filters).

We used the direct convolution algorithm in oneDNN (CPU),
the only available algorithm that worked. In cuDNN, we used
cudnnGetConvolutionForwardAlgorithm to automatically get the fastest al-
gorithm for the convolution in each case. We used this approach for HDNN
and the cuDNN test program. In HDNN, the best algorithm is queried once
and is used for all the iterations. According to this function, the best algorithm
was IMPLICIT_GEMM for input 1, IMPLICIT_PRECOMP_GEMM for inputs 2,3,4 and 6,
and FFT_TILING for input 512.

Convolution performance results are shown in Table 3.13. We evaluated the
performance using oneDNN and cuDNN directly, and we did not appreciate any

12The full name of the algorithms (which always starts with CUDNN_CONVOLUTION_FWD_ALGO_)
was omitted for brevity.

95

3. High and Low-Level Programming Languages in the Heterogeneous

Era

negative impact on the performance in this case either, so we also omitted the
results of oneDNN and cuDNN. In both the CPU and the CPU, HDNN achieves
significant enhancements against Caffe, which highlights the fact that HDNN
is competitive, thanks to the use of optimized libraries. As happened with the
softmax layer, HDNN performs similarly to PyTorch. Therefore, we believe that
the TPU distributed algorithm implemented in the TPU runtime and the use of
PyTorch optimized primitives effectively take advantage of the full power of the
TPU.

In the light of the results, we can conclude that HDNN achieves competitive
results against other machine learning frameworks. Even though a given HDNN
program is only written once, it can be targeted to different hardware devices
without any changes, and it also provides solid performance results.

3.4.4.2 Performance, Productivity and Portability Analysis

Performance. HDNN does not compile code directly to the device, but rather
relies on optimized libraries for heavy computations. Specifically, HDNN uses
oneDNN, cuDNN and PyTorch under the hood for CPUs, GPUs and TPUs, re-
spectively. Vendor optimized libraries often provide the best performance pos-
sible. Because the HDNN environment based on MLIR has little to no overhead,
we consider that HDNN performance is near optimal. Figure 3.11 shows the
final verdict of P3, including all evaluated languages.

Productivity. For evaluating HDNN productivity, we also included
DeepDSL [204], a DSL for deep learning, for fair comparison against HDNN.
The source code for convolution and softmax is shown in Figure 3.12. HDNN
and DeepDSL needed similar lines to implement both layers, followed by C++.

Portability Productivity

Performance C++

PHAST

oneAPI

HDNN

Figure 3.11: P3 analysis of HDNN, oneAPI, PHAST and C++.

96

3.4. Evaluation

val K = 10 // # of classes
val N = 500;
val C = 1;
val N1 = 28;
val N2 = 28 // batch size , channel , and x/y size
val y = Vec._new(Mnist , "label", "Y", N) // labels
val x = Vec._new(Mnist , "image", "X", N, C, N1 , N2) // images
val cv1 = CudaLayer.convolv("cv1", 5, 20) // kernel size
val network = f2 o relu o f o flat o mp o cv2 o mp o cv1
val x1 = x.asCuda // load x to GPU
val y1 = y.asIndicator(K).asCuda
val loop = Loop(c, p, (x, y), param , solver)
cudnn_gen.print(loop)

val K = 10 // # of classes
val N = 500;
val C = 1;
val N1 = 28;
val N2 = 28; // batch size , channel , and x/y size
val y = Vec._new(Mnist , "label", "Y", N) // labels
val x = Vec._new(Mnist , "image", "X", N, C, N1 , N2) // images
val softmax = CudaLayer.softmax // softmax
val network = f2 o relu o f o flat o mp o cv2 o mp o cv1
val x1 = x.asCuda // load x to GPU
val y1 = y.asIndicator(K).asCuda
val loop = Loop(c, p, (x, y), param , solver)
cudnn_gen.print(loop)

Figure 3.12: DeepDSL convolution (top) and softmax (bottom) programs used
in the evaluation.

Results also emphasize that HDNN source code is straightforward, so good
productivity can be achieved with it, in the line of existent DSL. In terms of
programming difficulty, HDNN is very easy to use and has very short develop-
ment times. HDNN, like all DSLs, tradeoff productivity for applicability; they
are targeted for narrow domains and can be hardly used for other applications.
Even though HDNN has proved to be more productive than its competitors,
we do not consider that HDNN’s productivity is optimal. For existent code,
rewriting is necessary if the developer want to use accelerators. This fact harms
productivity.

Portability. HDNN supports CPUs, NVIDIA GPUs and TPUs. In other words,
it supports the major machine learning hardware devices but lack support for
other more general accelerators like FPGAs. Therefore, we consider that HDNN

97

3. High and Low-Level Programming Languages in the Heterogeneous

Era

portability is slightly behind oneAPI’s, which proved to be the best in our eval-
uation.

3.4.5 Overall

3.4.5.1 Portability

C++ is clearly the less portable language in our analysis, as is a traditional pro-
gramming language that only compiles for CPU. Regarding single-source lan-
guages, PHAST is the next, currently supporting CPUs and NVIDIA GPUs.
HDNN adds also TPUs to the list compared to PHAST. And lastly, oneAPI sup-
ports CPUs, NVIDIA and Intel GPUs and Intel FPGAs. HDNN supports CPUs,
NVIDIA GPUs and TPUs. oneAPI and HDNN have similar coverage but we
considered HDNN to be slightly worse because the domain is narrower.

3.4.5.2 Productivity

Table 3.14 summarizes the source lines of code needed by different languages
to implement softmax and convolution. PHAST and oneAPI are clearly the
most verbose languages, needing more than the double amount of lines com-
pared to C++, which is the next one in the list. It is worth noting that the C++
Caffe implementation of the convolution relies on GEMM functions to perform
the computations, hiding much of the complexity inside the functions. As we
anticipated, DSLs achieve the shortest programs; HDNN and DeepDSL are sig-
nificantly shorter than C++ programs. Speaking now about programming expe-
rience, DPC++ (oneAPI) and PHAST are the hardest approaches, specially when
trying to achieve performance portability. They are closely followed by C++ and
far from the DSLs. Not surprisingly, our programming experience matches the
results derived from program length.

3.4.5.3 Performance

High-performance computing code is typically written in C/C++, which allows
very efficient code in CPU. HDNN achieves similar performance because re-

Table 3.14: Source lines of code (SLOC) measured in different languages.

Layer HDNN DeepDSL oneAPI PHAST C++

Softmax 7 13 60 58 28
Convolution 9 13 78 57 17

98

3.5. Related Work

lies on optimized libraries (where CPU optimized libraries are typically imple-
mented using C++). Thus, we consider that both are able to achieve the highest
performance. They are followed by oneAPI, which offers a competitive environ-
ment where common workloads can be dispatched using oneDNN, and when
they are not implemented the developer can use DPC++. Lastly we find PHAST,
which oftentimes use optimized libraries under the hood for the computations,
but sometimes data is managed with handcrafted code, and some other algo-
rithms are implemented by hand.

3.5 Related Work

Since heterogeneous hardware is steadily growing, many new single-source
languages are emerging. There are many works that study the existent lan-
guages [9] and ways to classify them [2].

Works with general purpose single-source languages. In addition to
PHAST [153], some examples are OmpSs [53], Kokkos [55] and SYCL [99] based
implementations. SYCL is a standard, just like OpenCL, that allows the design
for specific languages. Some examples of implementations of the SYCL stan-
dard are Intel’s oneAPI [87], Codeplay’s ComputeCpp [172], or Heidelberg Uni-
versity’s hipSYCL [5]. SYCL implementations are usually based on the LLVM
stack and thus make extensive use of intermediate representation (IR). In addi-
tion to the mentioned techniques, HPVM [104, 56] is a very relevant compiler
framework based on dataflow graphs. HPVM introduces a hardware-agnostic
parallel intermediate representation (IR) that allows the compilation of different
devices. Instead of programming at the IR level, like in HDNN, HPVM pro-
vides a custom high-level language, HeteroC++. In essence, it is a C++ extension
that allows programming code easily for using the HPVM infrastructure. Like
HDNN, HPVM uses a runtime system and IR, also featuring a virtual instruction
set architecture (ISA). HPVM also supports Keras and PyTorch as frontends [56],
and features many hardware backends, supporting CPUs, GPUs, FPGAs, fixed
function accelerators and machine learning accelerators.

From the mentioned languages, oneAPI has shown promising results in var-
ious computer fields, such as machine learning [70] or decision making [35]. Re-
cent works have also studied the use of dpct, a tool integrated into the oneAPI
environment used to migrate CUDA programs to DPC++, showing that the mi-
grated DPC++ code reports similar efficiency compared to the CUDA imple-
mentations [36]. In [37], authors performed a similar study to the one we have
presented when porting Caffe using oneAPI, but applied to bioinformatics, also

99

3. High and Low-Level Programming Languages in the Heterogeneous

Era

showing that oneAPI can handle heterogeneous programming with small or
none performance degradation. An SYCL-based solution was proposed for Fast
Fourier Transform (FFT) in [151], where authors also reach good performance
portability results.

Works with Domain-Specific Languages. In machine learning, there are many
examples of compiler-based solutions that aim to provide performance on het-
erogeneous hardware, such as Glow [169] or MLIR [106, 107], which is currently
being used in Tensorflow. MLIR [106] is a compiler infrastructure also based on
LLVM, which is intended to be used in heterogeneous systems. One of the tar-
gets of MLIR is to be used in machine learning (Tensorflow [1] is currently using
it). MLIR was released recently but it already has had a significant impact since
many projects use it in many fields. In addition to our proposal for deep learn-
ing [118], a DSL based on intermediate representation, DeepDSL [204] has been
proposed. Other uses in MLIR comprise image processing [75], quantum com-
puting [123], or polyhedral compilation [102]. Other example of DSL in deep
learning is TVM [28], a compiler that exposes graph-level and operator-level
optimizations to provide performance portability to deep learning workloads
across diverse hardware backends.

3.6 Conclusions

In this Chapter, we carried out a detailed analysis of programming languages in
heterogeneous environments. By applying oneAPI and PHAST to Caffe, we ex-
plored how difficult is to achieve performance portability with such languages
in real-world scenarios. Historically, to get good performance, a good under-
standing of the underlying hardware is mandatory. Most of the hard work of
abstraction and performance portability must be done on the library side, but as
we have shown, the programmer has many duties that can impact the final re-
sult. We can conclude that achieving performance portability using PHAST and
oneAPI is possible, but also that doing so is very hard from the programmer
standpoint. Sometimes changes to achieve performance portability are needed
in the language backend, as we have shown in the PHAST reimplementation
of Caffe. Also, the programming effort is higher than in traditional languages.
As we have shown, oneAPI and PHAST are typically more verbose than C++,
which increases the complexity of software development. Thus, we proposed
HDNN, a deep learning MLIR dialect for heterogeneous computing. HDNN
provides a unified interface to run softmax and convolution layers, executed on
x86_64 CPUs, NVIDIA GPUs and Google TPUs.

100

3.6. Conclusions

PHAST. The PHAST single-source implementation of Caffe provides similar
performance results compared to the native CPU and GPU counterparts. With
this, we provide proofs to evidence that performance portability with PHAST
is possible. If the Caffe framework had to be created from scratch, the PHAST
library would have provided a way to develop the framework with much less
programming effort. With this approach, maintenance and bug fixing is more
straightforward, as there is a single-source code base instead of two. However,
achieving performance portability was a very hard task. Good performance re-
sults are brittle because require deep understanding of the original algorithms.
To complicate things further, part of the work must be done at the internals of
PHAST, which can only be assessed by PHAST developers.

oneAPI. Regarding oneAPI’s strong points, we want to emphasize the CPU per-
formance and programming interface. In the evaluation, we found a very mature
CPU backend that can challenge and even outperform native alternatives. In the
programmability aspect, oneAPI may be difficult because the programmer needs
to learn new concepts related to the SYCL environment. However, programmers
familiar with CUDA or OpenCL interfaces may learn them quickly because of
their similarities with SYCL. On the other hand, two of the weakest points in
oneAPI we have found are the build process and the support for NVIDIA GPUs,
which is in a very early stage. We found easier to achieve competitive perfor-
mance compared to PHAST. Still, productivity can be further improved because
DPC++ is generally too verbose.

HDNN. Using HDNN, developers can employ a domain-specific language to tar-
get domain-specific hardware. This is an opposite approach of a common idea
in heterogeneous computing; trying to compile a unique code efficiently for
multiple platforms. With HDNN we have shown a novel approach to the P3

problem. Overall, HDNN provides portability, as its source code is written once
and can be targeted to three devices (CPUs, GPUs and TPUs). It also provides
good productivity because it is focused on the DNNs domain, making develop-
ment easier. And it also provides performance, thanks to the use of optimized
libraries for the heavy, performance-critical workloads.On the other hand, being
a DSL also limits the usability of HDNN because it is only useful for the specific
domain of DNNs. Even though it is an excellent candidate for achieving good
portability, productivity and performance, it is not applicable in all the use cases.

A step forward in productivity. Despite advances in heterogeneous program-
ming, productivity can still be improved significantly. The code volume that
is already written is way larger than the new code that is being programmed

101

3. High and Low-Level Programming Languages in the Heterogeneous

Era

every day. Accelerating old code would require rewriting large code bases with
languages like the ones we have studied. New languages are indeed improving
programmers’ productivity, even more in the case of DSLs. However, rewriting
code is inefficient from a productivity standpoint, costing innumerable develop-
ment hours and money. Ideally, we would like to find alternative approaches to
accelerate legacy codes without rewriting. Automatically accelerating old codes
would improve productivity to the point of not needing to re-develop software
again. We believe this would achieve “optimal” productivity as represented
in Figure 3.11, while easily maintaining the other features of performance and
portability.

102

Chapter 4
Compiling Existent Code to

Accelerators

4.1 Introduction

4.1.1 Motivation

New generation single-source programming languages [87, 153, 55, 177] improve
productivity [195] by targeting many hardware devices with a single, hardware
agnostic code. However, these approaches need writing code from scratch, or
porting existent code with new languages [120]. Therefore, to accelerate exist-
ing code, the traditional but inefficient approach is to rewrite it. The combined
importance of linear algebra and tensor computations, as well as the difficulty
of rewriting legacy code to accelerators has led to recent work which attempts
to automate the process. Automating the replacement of code with calls to op-
timized APIs can radically improve productivity in heterogeneous environment
for existent code, since developers would not need to rewrite code anymore
but use a compiler that does it automatically. In this context, the importance
of linear algebra is reflected in the large number of accelerator libraries and
hardware devices devoted to fast linear algebra. It is indeed the building block
of many of today’s critical applications; from weather modeling [31] to ubiq-
uitous DNN [48] workloads. Accelerator range from specialized devices such
as Google’s TPU [95] to the tensor cores on NVIDIA [29] among many oth-
ers [86, 15, 93, 12, 62]. While such devices promise significant performance
for an important class of applications [44], their uptake is limited by their pro-

103

4. Compiling Existent Code to Accelerators

grammability [51]. Typically, these accelerators and libraries are accessed via
calls to specialized APIs, meaning existing code has to be rewritten. Given the
volume [96] and variety [113] of existing legacy code, such rewriting is a signif-
icant undertaking [44].

IDL [68], KernelFaRer [46] and Polly [73] aim to compile existing code (typ-
ically, C/C++ code) to accelerators automatically. These techniques search user
code for matrix multiplications using constraints [68, 46] or polyhedral analy-
ses [21] and replace regions of code with appropriate API calls or instructions.
However, as we show in Section 4.3.4.1, these approaches are fragile. Constraints
capture only a limited set of program patterns and small variations in the user
code defeat them. While they work well on curated benchmarks, they perform
poorly on real-world code [46, 196], defeated by function calls, optimized code
and inline assembler. To illustrate the problem, consider the code in Figure 4.1.
It shows a straightforward matrix multiplication program fragment, from the
parboil benchmark suite [179]. The aforementioned approaches aim to detect
this matrix multiplication and replace it with a call to the library, shown at the
bottom of the diagram. To replace code with an API call they have to both detect
the code performing a matrix multiplication and also determine which user pro-
gram variables correspond to the arguments of the API call. IDL, KernelFaRer
and Polly are able to detect that this is a matrix multiplication, and can deter-
mine the mapping between user variables and API parameters. Unfortunately,
in practice, user code can be complex such that code structure or pattern-based
approaches inevitably fail. As an example, consider the code found on GitHub
shown in Figure 4.2, which implements a matrix multiplication algorithm (only
a fragment of the 120 lines of user code are shown here). The code structure
is complex and difficult to understand as it makes extensive use of inline as-
sembler intrinsics which defeats the code structure analysis approaches of IDL,
KernelFaRer and Polly, preventing acceleration.

On the other hand, neural classification techniques (e.g. [39]) can effectively
detect code despite these challenges. However, it does not provide a path to
acceleration, but requires further steps, since detection is not enough for au-
tomatic acceleration. These steps include generating variable mappings and
checking for equivalence [196] which has shown promising results for Fourier
Transforms. However, one of the key challenges in matching code to APIs is
the cost of searching for user program variables that map to API formal param-
eters. As the width of the API and complexity of the user program increase,
this becomes combinatorially expensive. As we show in Section 4.3.4.4 existing
approaches [196] fail to scale to the challenges that linear algebra APIs present.
Critically, it fails to handle the large search space of mappings within General
Matrix Mutiplication (GEMM) and tensor code.

104

4.1. Introduction

Figure 4.1: Easy API replacement ex-
ample. Figure shows the program,
taken from the parboil benchmark,
a widely-used benchmark suite, and
how is transformed into a call to an
optimized GEMM accelerator API.

Figure 4.2: Hard API replacement ex-
ample. Figure shows the program,
taken from GitHub, consisting of 120
lines of hand-optimized intrinsics for
AVX2, and how ATC matches the code
to the accelerator API.

4.1.2 Research Context

We present Algebra and Tensor Compiler (ATC), a compiler that applies pro-
gram synthesis [74] to match and replace general user code to specialized APIs,
which ultimately translates into highly-tuned CPU code or hardware accelera-
tors (source code, as well as the artifact for reproducing the results in this study,
is available at Zenodo [121]). We identify and solve key challenges enabling
the detect/synthesize paradigm to scale to the more complex APIs of linear al-
gebra acceleration. In addition, ATC employs a trained platform predictor to
determine whether acceleration is profitable or not. We applied our approach
to 50 GitHub GEMM and 15 convolution projects and discovered between 2.6
and 7x more linear operators compared to KernelFaRer [46], IDL [68], Polly [73]

105

4. Compiling Existent Code to Accelerators

or FACC [196]. This resulted in more than an order of magnitude performance
improvement. Our research makes the following contributions:

• We present ATC, which maps matrix multiplication and convolution pro-
grams to specialized APIs, up to 7x more frequently than existing tech-
niques.

• We introduce novel heuristics to reduce the mapping search space by four
orders of magnitude.

• We develop novel dynamic analyses to determine higher-level information
about variables, enabling synthesis without costly whole-program analy-
ses.

Rather than relying on code structure to guide detection, ATC uses program
synthesis and behavioral equivalence to determine if a section of code is a lin-
ear algebra operation. Firstly, ATC uses neural program classification [39] to
detect that the code in Figure 4.2 is probably a GEMM. It then searches vari-
able matches to determine the potential source and output arrays. As the search
space is combinatorially large, we introduce scalable, algorithm-independent
heuristics (which we discuss in Section 4.2.3) that keep the number of map-
pings manageable. Next, ATC generates different input values for the arrays
and records the output. After generating many randomized inputs, it observes
that it has the equivalent behavior to the corresponding API and is able to re-
place the AVX2 code with the GEMM call at the bottom of Figure 4.2.

Legality. Now, IO behavioral equivalence is not proof that a section of code is
a particular linear algebra operation - similarly IDL and KernelFaRer do not
prove equivalence. For proof, bounded model checking based on Kleene [32]
can be deployed. In practice, as demonstrated in our experimental section, IO
equivalence gives no false positives. For further guarantees, we can ask for pro-
grammer sign-off or employ model checking. Furthermore, emerging accelera-
tors are now adopting low-precision operators [183] such as BF16, FP16 or INT8.
ATC can easily cover corner cases in IO testing like these low-precision issues
by comparing the precision of the user code and the accelerator API, triggering
a warning where applicable.

Profitable. Once we have detected and can replace a section of code with an
accelerator call, we need to determine if it is profitable to do. Due to hardware
evolution, we do not use a hard-wired heuristic to determine profitability. In-
stead, we learn, off-line, a simple predictive model to determine if the target

106

4.2. Matching Linear Algebra and Tensor Code to Accelerators

accelerator is faster than a CPU implementation. The model is called at runtime,
determining if offloading is worthwhile.

FACC. Behavioral equivalence is also employed in FACC [196]. Unfortunately,
it is restricted to FFTs and one dimensional arrays, and cannot detect the re-
placement in Figure 4.1. Therefore, we extended FACC to FACC* to consider
GEMMs and multi-dimensional arrays. This, however, exposes its weak variable
binding model which is combinatorial in the number of user array variables
and their dimensionality. Furthermore, it relies on program synthesis to deter-
mine the length of arrays, which scales poorly to problems with many potential
length parameters for arrays such as GEMM. FACC also relies on brittle inter-
procedural liveness analyses to determine the liveness status of variables. This
restricts it to running only at link time, rendering it invalid for use in shared
libraries. We will see in Section 4.3 that the combination of these issues results
in excessively large search spaces.

4.2 Matching Linear Algebra and Tensor Code to
Accelerators

4.2.1 System Overview

Figure 4.3 gives a system flow overview of ATC, showing how the combination
of different components enables detection of linear algebra within user code
and their replacement with accelerator calls. Those components based on prior
work are colored blue while new contributions are colored green. We first detect
regions of code that are likely to be linear algebraic operations using a neural
program classifier. The classifier is trained ahead of time, based on example
programs of linear algebra code. Once candidate code sections have been iden-
tified, we apply program analysis to match user program variables with the
particular API formal parameters. Given the combinatorially large search space,
we develop novel techniques to make the problem tractable. For each candidate
matching, we generate multiple data inputs, execute the user code section and
record the output values. If the input/output pairs correspond to the input/out-
put behavior of the accelerator API, we can say they are behavioral equivalent
and candidates for replacement. While candidate user code may be replaceable
with a call to an accelerator API, it may not be profitable. Therefore, we employ
a simple machine learning classifier, trained offline and invoked at runtime to
see if acceleration is appropriate for the user code for the runtime known array
sizes.

107

4. Compiling Existent Code to Accelerators

OJCLONE
DATASET

+ GEMM
PROGRAMS

+ CONV
PROGRAMS

NEURAL EMBEDDINGS
FUNCTION

CANDIDATES
F1 F2

... FN

IO
EQUIVALENCE

IO
DETECTIONACCELERATABLE

FUNCTIONMATCHES
GENERATION

MISMATCH
SOLVER

PROGRAM
SYNTHESIS

SET OF MATCHES

MATCHES HEURISTCS

MATCH ALGORITHM

LEVENSHTEIN

VALID
MATCHES

PERFORMANCE
ANALYSIS

ACCELERATOR
SAMPLING

FUNCTION
SAMPLING

SVM CLASSIFIER

PROGRAM
CLASSIFICATION

ACCELERATOR API USER CODE

ACCELERATED CODE

Acceleratable Candidate Detection

IO Detection

Matches Generation

Matches
Reduction Profitability Detection

Figure 4.3: ATC compiler architecture.

To detect potentially acceleratable parts of a program, we use prior work in
neural program classification [39]. A network is trained with multiple instances
of different program classes. We use the OJClone dataset [129], which includes
105 classes of different programs, and add examples of the programs that we
want to detect e.g. GEMMs and convolutions, gathered from benchmark suite
repositories other than GitHub. At compile time, a new candidate program is
divided into functions, which are presented to the neural classifier. The classi-
fier assigns each function in the program a probability of belonging to a certain
class. We consider the most probable class, which in the case of a GEMM or
convolution is then considered for variable matching and eventual code replace-
ment as described in the following sections. Classification is fast (≤ 1.5 sec) and
has negligible impact on compilation time (see Section 4.3.4.4).

4.2.2 Variable Matching

To check if a section of user code is behaviorally equivalent to the API, we have
to match up the user program variables with API formal parameters. We first
detect what variables are livein/liveout (Section 4.2.2.1) and then the dimensions
of arrays (Section 4.2.2.2).

108

4.2. Matching Linear Algebra and Tensor Code to Accelerators

Algorithm 1 Livein/Liveout detection algorithm.

1: for ptr in funpointers do
2: arr = generateRandomArray(ptr)
3: hash = computeHash(arr)
4: Add arr to A
5: Add hash to H
6: end for
7:
8: V = generateVariables

9: ffi_call(A, V) ▷ Calls the corresponding function
10:
11: for arr in A do
12: newhash = computeHash(arr)
13: if newhash = hash then
14: Add arr to Livein
15: else
16: Add arr to Liveout
17: end if
18: end for
19: return Livein, Liveout

4.2.2.1 Detecting Livein and Liveout Variables

To find if two codes are behaviorally equivalent, ATC needs to know which
variables are livein and liveout in order to execute the code with the appropriate
input and output variables. Detecting livein and liveout variables via standard
static analysis is straightforward for well-structured programs but fails for more
diverse real-world codes, which may use assembly code or intrinsic functions.
ATC uses dynamic analysis to determine which variables are livein and liveouts
inside a function. In C, variables are passed by value, so non-pointers variables
are always livein. In the case of pointers (or arrays), the compiler generates
random inputs with arbitrary sizes, computing the hash of the data to quickly
check value equality. Afterwards, it automatically detects the function signature
and runs the function using the foreign function interface (FFI) mechanism using
libffi [72]. After running the function, the hashes are computed again and
compared with the original ones. If the values in memory change after executing
the program, the array is considered liveout. This allows us to detect which
variables are livein or liveout, but not those that are both livein and liveout at
the same time. Therefore, the compiler saves the hashes of the outputs and

109

4. Compiling Existent Code to Accelerators

executes the function again, changing the input data of the liveout variables.
It generates again a new random input for liveout variables and re-executes the
function. After running the function for the second time, it compares the hash of
the first execution with the second one. If hashes matches, we can conclude that
the variable is just liveout, whereas if the hashes differ we know that the variable
is also livein. The livein/liveout detection algorithm is shown in Algorithm 1.
We implement it as a just-in-time compiler pass in LLVM [105].

4.2.2.2 Detecting the Dimensions of Arrays

Detecting arrays length enables offloading of appropriately-sized regions of
codes, so it is a critical step in ATC. For some programs, lengths can be found
using static analysis (e.g., [164]), but this fails in more complex cases. We use
runtime analysis to determine which program variables define array size using
a modified form of runtime array bound checking. For each set of variables that
could define an array’s size (typically, from the argument list), we set such vari-
ables to a fixed value. For example, in 2D array detection, two variables are set
to an small value (those variables are the guess of the array dimensions) and the
rest are set to a big value. We then execute the user code, which is modified to
check runtime array accesses.

First, the compiler selects a target array to find its size. Then, to generate
the modified program, the compiler tweaks the load and store instructions in
the user program, replacing them with custom function calls in the IR. If a load
or store does not access the array that is being analyzed, the compiler modifies
it to load/store at/from a constant, safe location. If it does, the instruction is
replaced with a function call that will check at runtime if the access is out of
bounds. The program is executed and the compiler checks if the program failed
or not. If the guess of the variables that define the array size is wrong, a load
or store instruction will access an illegal memory address, which will be cached
by the custom function in the IR. In such case, the program exits with a custom

Load/StoreInst

Array A?Out of
bound?

Replace Load/Store
to/from index 0

Perform the
instruction

Exit with
error code

YES NO

YES

NO

Figure 4.4: Dimension detection algorithm overview for a target example array
called A.

110

4.2. Matching Linear Algebra and Tensor Code to Accelerators

Algorithm 2 Dimensions detection algorithm.

1: for arr in function do
2: fakeLoadAndStoresExcept(arr)
3: replaceLoadAndStores(arr)
4: repeat
5: c = getNextCombination(arr)
6: ffi_call(A, V)
7: if not failed then
8: f ound = True
9: end if

10: until not found
11: Add c to C
12: end for
13: return C

error code. If the guess is correct, the program will complete successfully, which
indicates the compiler that the chosen variables are indeed the ones that define
the array size. The basic idea is depicted in Figure 4.4. This is used by our JIT
analysis as shown in Algorithm 2 and implemented in LLVM.

This way, the compiler can assign different input sizes to a given array and
check the exit code. Therefore, the compiler iterates over all the possible dimen-
sions combinations until one of the executions does not end with the custom
error exit code. That means that the program was completed without any illegal
access to the target array, which indicates that it is the right dimension of the
array.

4.2.3 Reducing the Matchings Search Space

To match code to APIs, the compiler generates different candidates for the vari-
able to formal parameter mappings and then tests them using IO equivalence.
For small APIs, all mappings can be explored, but the combinatorial cost makes
it prohibitive for real-world accelerator APIs. We develop techniques that reduce
the mapping space by exploiting arrays information and human coding styles.

4.2.3.1 Exploiting Array Information

Using array dimensions (detailed in Section 4.2.2.2), we can reduce the number
of possible matches that must be checked, as assigning one array to another
means that the dimensions of each array must line up. We first generate all

111

4. Compiling Existent Code to Accelerators

Algorithm 3 Automatic matching algorithm.

1: function dimsMatch(f 1a, f 2a, p, n)
2: S = ∅
3: idx ← 0
4: for args1 in f1a do
5: args2 = f2a[p[idx]]
6: Add {args1, args2} to S
7: idx ← idx + 1
8: end for
9: return Size(S) = n

10: end function
11:
12: function outMatch(f 1o, f 2o, p)
13: idx = IndexOf(f 2o, 1)
14: return IndexOf(p, idx) = IndexOf(f 1o, 1)
15: end function
16:
17: function findMatchings(f 1a, f 2a, f 1o, f 2o, n)
18: B = ∅
19: for p in permutations(0...n) do
20: if dimsMatch(f1a, f2a, p) and
21: outMatch(f1o, f2o, p) then
22: Add p to B
23: end if
24: end for
25: return B
26: end function

n! permutations of the n array variables to n parameters mapping. We discard
all permutations where variable livenesses do not match (e.g., a livein variable
cannot be mapped to a liveout variable). Then, for each candidate user array and
parameter array pair, we generate the constraints defining how their dimensions
match. If we find contradictory constraints for any permutation, we discard it.
The algorithm is shown in Algorithm 3.

Automatic Matching Algorithm: Example. To illustrate this, Figure 4.5 shows
an example where we have two functions with three 2D arrays each. First, the
algorithm generates all the permutations between 0 and n − 1 (n = 3 in this
example). Then, for each permutation, it tries matching each variable in every

112

4.2. Matching Linear Algebra and Tensor Code to Accelerators

Given two arrays, A (API) and U (User),
where X,Y,A,B are livein and Z,C liveout:
Given two functions, A (API) and U (User),

where X,Y,A,B arrays are livein and Z,C liveout:

A: X(x0×x1) Y (x1×x2) Z(x2×x0)

U : A(y0×y1) B(y1×y2) C(y2×y0)
Permutation 1: [0,1,2] ✓

x0 → y0
x1 → y1
x2 → y2

X(x0×x1) Y (x1×x2) Z(x2×x0)

A(y0×y1) B(y1×y2) C(y2×y0)
Permutation 2: [1,0,2]

x0 → y1
x1 → y2
x1 → y0
x2 → y1
x2 → y2
x0 → y0

X(x0×x1) Y (x1×x2) Z(x2×x0)

A(y0×y1) B(y1×y2) C(y2×y0)

Permutation 3: [2,0,1]
x0 → y2
x1 → y0
x2 → y1

X(x0×x1) Y (x1×x2) Z(x2×x0)

A(y0×y1) B(y1×y2) C(y2×y0)

Figure 4.5: Example application of the matching algorithm. Given two functions,
A and U, with three 2D arrays each, the algorithm generates the 3! = 6 permu-
tations (only the first three shown), finding the right combination (the first one)
automatically.

array in the user code (function U) with the corresponding variable in the array
of the API (function A). We represent arrays dimensions of the user code with
x0, x1, x2 and the API arrays dimensions with y0, y1, y2. For simplicity, we show
only the first three of the six possible permutations.

In the first case (permutation [0, 1, 2]), the algorithm tries matching the ar-
ray variables of the user program X, Y, Z with API parameters A, B, C. We then
examine each of the variables defining each of the corresponding arrays. Com-
paring X and A gives a match of x0 → y0 and x1 → y1. For the second array
variable Y and API parameter B, we have x1→ y1 and x2→ y2 and for the third
variable pair Z, C, we have x2 → y2 and x0 → y0. All of these are consistent
with n=3 constraint, which satisfies the condition (dimsMatch in Algorithm 3).
This condition checks that the number of connections between user and API pa-

113

4. Compiling Existent Code to Accelerators

rameters is equal to the number of arrays. In the end, this means that there is
no variable in the user program that matches more than one variable in the API,
which is a clue of inconsistency. In our example, liveout information is also sat-
isfied because Z is matched with C (both being liveout), so this permutation is
added as a potential mapping. In the second permutation [1, 0, 2], where X, Y, Z
maps to B, A, C, the constraints are inconsistent e.g. x1 → y2 and x1 → y0
leading to 6 ≥ 3, so it is not a valid match. In the third and last example, con-
straints are equal to n, but the liveout arrays do not match. X is not liveout
and it is matched with C which is liveout, so the liveness condition (outMatch
in Algorithm 3) is not satisfied. Thus, the only valid match is the one in the first
permutation.

4.2.3.2 Using Argument Names

Programs are developed by humans, so we can assume that the functions that
humans write follow common patterns. We exploit this by analyzing the argu-
ment names of the API and the user program to find lexical similarities.

To compare argument names, we use the Levenshtein distance [111] to com-
pute the distance between each of the user programs and API arguments. Fig-
ure 4.6 shows the definition of the Levenshtein distance, which calculation is
based on the minimal number of modifications needed to transform one word
into another, representing how close are those words. After computing the dis-
tance, the compiler selects the combination that minimizes the Levenshtein dis-
tance.

Figure 4.7 shows an application example of the Levenshtein distance to a real
case of GEMM matching. For calculating the distance, we strip the API suffix
(tc_) and convert all names to lowercase. Results show that the most probable
mapping for tc_A is A in the user code, and for tc_lda is lda, which are the
right matches.

lev(a, b) =

|a| if |b| = 0,
|b| if |a| = 0,
lev(tail(a), tail(b)) if a[0] = b[0],

1 + min

lev(tail(a), b)
lev(a, tail(b))
lev(tail(a), tail(b))

otherwise

(4.1)

Figure 4.6: Levenshtein recursive definition.

114

4.2. Matching Linear Algebra and Tensor Code to Accelerators

gemm_api(float* tc_A , float* tc_B , float* tc_C ,
int tc_m , int tc_n , int tc_k ,
int tc_lda , int tc_ldb , int tc_ldc ,
float tc_alpha , float tc_beta) {

gemm(int M, int N, int K, float alpha ,
float *A, int lda , float *B, int ldb ,
float beta , float *C, int ldc) {

tc A ... tc lda ...

M 1 ... 3 ...
N 1 ... 3 ...
K 1 ... 3 ...

alpha 4 ... 3 ...
A 0 ... 2 ...

lda 2 ... 0 ...
........

Figure 4.7: Levenshtein distance calculation for the arguments of the tensor core
API (above) and an example user program.

4.2.3.3 IO Generation

Once we have a candidate match, we generate random inputs of different sizes
and test for input-output (IO) equivalence. We use 30 inputs of varying sizes.
Although IO behavioral equivalence is not proof, we can increase the number
of tests for increased confidence. No existing technique such as IDL or Ker-
nelFaReR can prove that a matched piece of code is provably equivalent to an
API and therefore rely on user sign-off. Although all library replacement tech-
niques require ultimate sign-off, our approach acts as a kind of “API code pilot”,
drastically reducing the programmer effort.

Behavioral Equivalence and the Limits of Verification. ATC, like prior work
on floating-point accelerators [196], uses behavioral equivalence. The downside
of this strategy is that it requires programmer sign-off to make any substitution.
However, due to the complexities of verifying floating-point programs [196],
verification of such liftings are some way off.

In summary, the key challenges that all competing techniques face are:

• Floating-point numbers often raise challenges in theorem provers as they
are challenging to reason about.

115

4. Compiling Existent Code to Accelerators

• Floating-point functions may have different accuracies in different in-
put ranges, meaning that the obvious checks of correctness (even within
bounds) are difficult to apply.

The backend of ATC is not tied to using behavioral equivalence. As we
will see, the use of such behavioral equivalence results in no false positives.
Further development of theorem prover technologies would mean that the weak
behavioral equivalence in ATC could easily be replaced with a theorem prover
guaranteeing correctness and enabling automatic transformations.

4.2.4 Automatic Profitability Detection

If a workload can be accelerated or not heavily depends on the input size, which
is only known at runtime. An approach to profitability prediction is to analyze
the performance of the user program and the accelerator using its API. This
would involve analyzing the performance of each user program (for example,
extracting static and dynamic features). A machine learning approach might be
used to predict the speedup of the code with respect to the accelerator. Nor-
mally, we would have to go through all this complex checking. However, we can
exploit the fact that, whatever the user code is, it must be semantically equiv-
alent to a well-known, optimized version of that program (executed on CPU).
Because if it is not semantically equivalent, we would not be able to compile it to
the accelerator. Then, we assume (and evaluate in Section 4.3) that the optimized
version of that program is always equal to or faster than the user program. Even
though this might not be true for tiny inputs, where the user code might be
slightly faster than an optimized library, the effect on the performance would be
negligible. Therefore, instead of running the user code as it is, we can always re-
place it with a call to the best implementation of that kernel, using an optimized
library. This approach not only greatly simplifies the predictor (because now it
does not depend on the user code) but also improves overall performance since
when the accelerator is not used, the CPU code will be dramatically faster than
the handmade implementation by the user.

Then, our predictor must decide whether it is best to run on a CPU (e.g., MKL
for GEMM) or accelerator version (e.g., cuDNN for GEMM) of the library. Data
is CPU resident, so input size also affects the cost of data movement between
the CPU and the accelerator, which can incur enough overhead to outweigh
the benefit from acceleration. To detect when offloading to the accelerator is
profitable, we use a predictive model based on empirical data to enable accurate
predictions as platforms and libraries evolve by retraining the model. Our model
takes into consideration both compute time and memory movement overhead,

116

4.3. Evaluation

Table 4.1: Input sizes used by the predictor for matrix multiplication and convo-
lution.

Parameters

GEMM M, N, K
CONV N, C, H, W

so it will only offload computations when it’s profitable, also considering data
movement overhead.

SVM. We build a classifier that predicts the most profitable platform to execute
on depending on runtime data values. More precisely, we use the well-known
support vector machine (SVM) classifier with a polynomial kernel of degree 3
with gamma=1 and C=100. We sample the CPU and the accelerator with a
common dataset of input sizes, which produces a dataset that is small enough
to be processed in less than five minutes, but large enough to be highly accurate.
Data is labeled with 0 or 1 meaning that the CPU or the XPU is faster. The
model is then trained and deployed at runtime, when matrix sizes are known,
The training phase is done only once, at “factory time”, and the resulting model
when deployed has negligible (≤ 0.3msec) runtime overhead (see Section 4.3.4.3).
For ATC, we build two predictors: one for matrix multiplication and another for
the convolution. Table 4.1 summarizes the input sizes used by ATC for both
applications.

4.3 Evaluation

4.3.1 Test Bed

We evaluate GEMM and convolution acceleration on specialized platforms. For
GEMM, we used an Intel i7-11700 (CPU) with an NVIDIA Quadro RTX 5000
(tensor cores) (XPU). For convolution, we used the Google Cloud Platform (GCP)
services equipped with a TPUv3 with 8 TPU cores. Compilation benchmarks in
Section 4.3.4.4 are executed in an AMD EPYC 7413.

The Intel/NVIDIA platform runs CentOS 8.3 with kernel 4.18.0. LLVM was
downloaded from the official Git repository, using commit 329fda3. User codes
were compiled using gcc 11.2.0 with -O3 -march=native flags. We used cuBLAS
11.2 and MKL 2020.2.254 for compiling codes to the XPU and CPU, respectively.
For compiling convolution programs to the CPU, we used oneDNN v1.96. The

117

4. Compiling Existent Code to Accelerators

TPU system runs Debian 10 with kernel 4.19.0-14. Codes were compiled to a
wrapper using PyTorch 1.9 (Python 3.7).

4.3.2 User Code

Matrix multiplications. We explored GitHub looking for C and C++ GEMM
codes, analyzing more than 400 programs from which we selected 50 programs.
We discarded the rest of them because of wrong implementations, compilation
errors or duplicated code. The final list of programs is shown in Table 4.2. We
categorize the codes as follows:

• Naive: Naive implementations with the traditional 3-loop structure.

• Naive Parallel: As Naive, but with simple outer loop parallelization.

• Unrolled: Naive implementation with unrolled loops.

• Kernel Calls: Implementations that divide the loops into different function
calls.

• Blocked: Tiled implementations.

• Goto: Implementations of the Goto algorithm [71].

• Strassen: Implementations of the Strassen algorithm [178].

• Intrinsics: Implementations using Intel intrinsics.

In addition, we selected 50 non-GEMM projects to check whether any of the
approaches gave false positives.

Convolutions. We explored GitHub looking for C and C++ 4D convolution im-
plementations. We analyzed around 50 programs from which we a selected list
of 15 programs based on the same methodology used for selecting GEMMs. The
list of convolution programs is shown in Table 4.3. There are some of the codes
that do not support multiple batches (N = 1) or that have fixed kernel sizes
(FW = FH = 3) which further complicates the compilation. We have included
codes from the most relevant convolution implementations:

• Direct: The direct convolution algorithm.

• im2col+gemm: An algorithm that casts the input as matrices (im2col) and
later uses a GEMM, as in Caffe [88].

• Winograd: The Winograd algorithm [194].

118

4.3. Evaluation

Table 4.2: List of GEMM codes.

Algorithm Code LoC Layout Sizes Optimizations

Naive

1 22 Column-major Squared None
2 127 Both Any None
3 18 Row-major Any None
4 41 Column-major Squared None
5 11 Row-major Any None
6 11 Row-major Any None
7 30 Row-major Any None
8 18 Column-major Any None
9 40 Column-major Any None
10 39 Column-major Any None
11 43 Row-major Any None
12 11 Row-major Squared None

Naive
parallel

13 39 Row-major Squared OpenMP
14 28 Column-major Squared OpenMP
15 164 Row-major Any OpenMP
16 22 Row-major Multiple of nthreads C++ threads
17 107 Row-major Squared C++ threads

Unrolled

18 57 Row-major Any None
19 50 Row-major Any None
20 63 Row-major Squared OpenMP
21 38 Row-major Squared, multiple of bs None

Kernel Calls

22 46 Column-major Any None
23 115 Column-major Any OpenMP
24 61 Column-major Any None
25 105 Column-major Any Unrolled
26 164 Column-major Any Unrolled

Blocked

27 104 Row-major Any Block
28 30 Row-major Squared OpenMP
29 52 Column-major Any None
30 35 Row-major Squared None
31 38 Column-major Squared None
32 42 Row-major Multiple of bs Unrolled
33 49 Row-major Squared None
34 18 Row-major Squared None
35 21 Row-major Squared None

Goto 36 247 Column-major Squared Intrinsics (SSE)
37 89 Row-major Squared None

Strassen
38 210 Row-major Squared None
39 315 Row-major Squared, power of 2 None
40 162 Row-major Squared None

Intrinsics

41 102 Row-major Squared Intrinsics (AVX2)
42 91 Row-major Multiple of 8 Intrinsics (AVX2)
43 82 Row-major Multiple of 8 Intrinsics (AVX2)
44 58 Row-major Any Intrinsics (SSE)
45 112 Row-major Multiple of bs Intrinsics (AVX2)
46 136 Row-major Multiple of bs Intrinsics (AVX2)
47 120 Row-major Any Intrinsics (AVX2)
48 143 Row-major Multiple of bs Intrinsics (AVX2)
49 57 Row-major Multiple of bs Intrinsics (AVX2)
50 60 Row-major Any Intrinsics (SSE)

119

4. Compiling Existent Code to Accelerators

Table 4.3: List of convolution codes.

Algorithm Code LoC Nº Args Optimizations Constraints C struct?

Direct

1 35 12 None None No
2 36 10 OpenMP FW = FH = 3 No
3 34 8 OpenMP FW = FH = 3 No
4 43 11 None FW = FH = 3 No
5 39 8 OpenMP FW = FH = 3 No
6 76 16 None N = 1 No
7 209 18 Vectorized N = 1 Yes
8 102 12 None None No
9 42 16 None None No

im2col+
gemm

10 189 15 None N = 1 Yes
11 286 15 BLAS N = 1 Yes
12 179 17 BLAS FW = FH Yes

Winograd
13 687 17 Intrinsics + OpenMP FW = FH = 3 No
14 254 12 None N = 1 Yes
15 782 12 Intrinsics + OpenMP FW = FH = 3 No

4.3.2.1 Methods

We evaluate our approach against 4 well known schemes:

• IDL: Idioms are described using an idiom description language [68], which
is translated into a set of constraints over LLVM IR. It’s extensible, because
the description language can be adapted to different domains, but it’s also
brittle, because detecting code patterns based on constrains is usually hard.

• KernelFaRer: Uses different pattern matching to detect specific code con-
structs, matching specific matrix multiplication structures [46]. Works very
well for basic GEMM programs but fails detecting and replacing more
complex structures.

• Polly: Detects static control parts (SCoPs) in the code using the polyhedral
model [73]. It does not replace the code with a call to an optimized library.
Instead, it optimized the code using different transformations, following
the polyhedral philosophy. Its limitations are equivalent to polyhedral’s
compilation.

• FACC*: FACC uses neural embeddings and behavioral synthesis to detect
candidates for acceleration [196]. It is limited to 1D arrays so we developed
an extended version, FACC*, which supports multi-dimensional arrays.
But, unlike ATC, it does not have heuristics to reduce the matching search
space or any profitability analysis.

120

4.3. Evaluation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0.2

0.4

0.6

0.8

1

Train instances per class

C
ro
ss
-v
al
id
at
io
n
ac
cu

ra
cy

GEMM

Convolution

Figure 4.8: Cross-validation accuracy with mean and standard deviation of the
neural classifier in terms of the number examples per class when trained using a
reduced version of the OJClone dataset with GEMM and convolution examples.

4.3.3 Neural Code Classification

We rely on prior work on neural program classification to detect candidates for
ATC. We added a new class of GEMM examples to the OJClone dataset and
retrained the model. Figure 4.8 shows the accuracy of classification as we in-
crease the number of training examples. It takes only a relatively small number
of examples (10 codes) to build an effective classifier. We include examples for
all algorithm types in GEMMs and convolutions, both sequential and parallel
implementations, to make sure the network is trained to detect all possible code
kinds. When applied to the 50 GEMM programs it was 100% accurate in classi-
fication.

4.3.4 GEMM

4.3.4.1 Detection

Figure 4.9 shows the percentage of GEMM programs matched by each technique
across each of 8 categories listed in Table 4.2.

IDL. The constraint based scheme [68] only matches 6 out of 50 cases. These pro-
grams are largely naive implementations of GEMM, with a simple loop struc-
ture. It is able to manage 2 programs containing unrolled loops but fails on
anything more complex. Matching more diverse cases would require writing a
new IDL constraint description for each sub-class.

KernelFaRer. This code matching approach [46] is more successful, matching 11
GEMMs due to a more robust pattern matcher. For straightforward sequential

121

4. Compiling Existent Code to Accelerators

Naive Naive p. Unrrolled Kernels Blocked Goto Strassen Intrinsics All
0

20

40

60

80

100

4

9

11

1

12

0

1

0

3

4

2

1

0

1

3

0 0 0 0

4

0

2

0

2

6

0 0 0

1 1

0 0 0

2

3

0 0 0 0

9

6

13
1110

42

%
of

m
at
ch
ed

co
d
es

IDL POLLY KFR FACC* ATC

Figure 4.9: Percentage of matched GEMM codes by different techniques.

implementations, it is able to match all but one of the cases. However, any code
variation, including loop unrolling, defeats it.

Polly. Although it does not match and replace GEMMs, it can detect SCoPs
which may be candidates for replacement with appropriate API calls. It is less
successful than KernelFaRer in detecting naive implementations but is more ro-
bust across other more complex categories including one parallel and unrolled
version and 2 blocked cases. It slightly outperforms KernelFaRer, matching 13
vs. 11 out of 50 cases. While Polly finds SCoPs in many programs (it finds at
least one SCoP in approximately 40% of the programs), sometimes they corre-
spond to other structures that do not represent GEMMs. This is especially true
in complex programs (from program 22 onwards).

FACC*. Unlike the other approaches, FACC* performed poorly on naive imple-
mentations, but better on others. Here, the size of the mapping search space is
the limiting factor. It was able to find 10 cases in the available time (timeout ≤
10 mins). We examine the reasons for this in Section 4.3.4.4.

ATC. Our approach is significantly more robust across all categories, matching
42 out of 50 cases. It is able to detect all naive implementations and the majority
within each other category, outperforming all other techniques in each category.
It detects more naive parallel implementations, unrolled and blocked programs
than Polly and is the only technique to detect GEMMs in codes containing kernel
calls and intrinsic instructions.

4.3.4.2 Accuracy

Figure 4.10 provides a summary of ATC’s success and failure by type. In 8 cases
ATC failed to detect that the program contained a GEMM. In one case, program

122

4.3. Evaluation

0

20

40

60

80

%
of

p
ro
gr
am

s

Matched
Too many candidates
Missed matches

Figure 4.10: Percentage of matched GEMM codes by ATC divided by failure
reason.

23, this is due to there being too many candidate matches, 280 which is above
our timeout threshold of 100 candidates. The remaining cases are due to overly
aggressive search pruning, missing a legal match. Improved search heuristics
are likely to improve program coverage.

False positives. None of the methods classified any of the 50 non-GEMMs as a
GEMM. Across all methods, there were no false positives.

4.3.4.3 Performance

The performance of each approach is shown in Figure 4.11. Polly is not in-
cluded here as although it can detect SCoPs, it does not explicitly identify them
as GEMMs for API replacement. We show two bars for KernelFaRer, which
correspond to the strategy of GEMM code with an optimized CPU implemen-
tation as described in [46] and KFR (XPU) which is our extension, replacing the
CPU library with the optimized XPU implementation. IDL and FACC* directly
target the accelerator, while ATC chooses the CPU or accelerator based on its
SVM platform predictor. This runtime prediction cost is negligible ≤ 0.3msec
and included in Figure 4.11.

Naive Naive p. Unrrolled Kernels Blocked Goto Strassen Intrinsics All
1

10

100

1000

10000

S
p
ee
d
u
p

IDL KFR (CPU) KFR (XPU) FACC* ATC

Figure 4.11: Geometric mean speedup obtained by IDL, KernelFaRer, FACC*
and ATC in GEMM programs with n = 8192.

123

4. Compiling Existent Code to Accelerators

What is immediately clear is that detecting more GEMMs leads to better
overall speedup. In the Naive category, KFR and ATC are both able to achieve
good performance, with a speedup of 726x and 1031x, respectively. The gap is
narrowed when using KFR (XPU). However, KFR is unable to detect GEMMs
in any other category leading to just a 6.2x speedup overall while ATC achieves
344.0x. Unsurprisingly, there is more performance available on naive sequential
implementations than in those cases where the programmer has spent effort in
optimizing the program (e.g., parallel, blocked and intrinsics). Despite Strassen
algorithm being theoretically more efficient, in practice, acceleration gives sig-
nificant performance improvement.

4.3.4.4 Candidate Search Complexity and Compile Time

One of the key challenges in matching code to APIs is searching for program
variables that map to API formal parameters. As the width of the API and
complexity of the user program increase, this becomes combinatorially expen-
sive. Figure 4.12 evaluates FACC* naive matching of variables and our approach
based on the Levenshtein distance. Naive matching varies considerably from
just 4 candidates to over 1 million. Our approach greatly reduces the number
of candidates for the majority of the programs. There are a few exceptions (e.g.:
20), where the number of candidates is already small, where our approach is
unable to improve. There is one special case, code 23, where we reduce the
number of candidates, but it is still too high, making ATC unable to compile the
program in a reasonable amount of time.

Figure 4.13 shows the compilation time of ATC, which strongly depends on
the number of candidates. The initial neural classifier has a negligible constant
execution time of 1.3 seconds, while the other phases’ compilation time grows
with the number of candidates. We omitted the SVM classification time, which

5 10 15 20 25 30 35 40 45 50
1

101

102

103

104

105

106

Code

C
an

d
id
at
es

ge
n
er
at
ed

4s

45s

10m

1h

12h

2d

20d

A
p
p
ro
x
.
co
m
p
il
a
ti
on

ti
m
e

FACC* ATC Threshold

Figure 4.12: Comparison of the number of candidates generated for matching
GEMM codes: FACC* vs our approach.

124

4.3. Evaluation

1 3 8 48
0

20

40

60

80 Code 2

Code 21

Code 7
Code 1

Number of candidates

T
im

e
(s
)

IO Testing
Tests
Generation

Candidates
Generation

Neural
Embeddings

280
0

500

1,000

1,500

2,000

Code 23

Figure 4.13: ATC compilation time for different number of candidates.

takes around 0.3 msec, since the influence on the execution time is negligible. As
the number of candidates begins to increase (e.g., more than 50), the compilation
time becomes prohibitively expensive. Code 23 has 280 candidates which would
take 35 mins more to evaluate. We limit the number of candidates considered to
100 which corresponds to a timeout of ≤ 10 minutes.

4.3.4.5 Profitability Accuracy

To measure the accuracy of the SVM platform predictor, we built a model offline
and tested it on unseen data values.

Table 4.4 summarizes the SVM accuracy with different input sizes and
shapes. In the table, 111 means m = 1 ×m, n = 1 ×m, k = 1 ×m, 123 means m =
1 × m, n = 2 × m, k = 3 × m, etc. The SVM achieves a global accuracy of 99.7%,
where the misprediction occurs between m = 2000 and m = 8000 which is the
“edge” between the CPU and the XPU. In all other intervals, the prediction is
always correct. The best accuracy is achieved with non-squared matrices, while
square matrices give slightly lower accuracy. Overall, this is a highly accurate
predictor with a negligible runtime overhead of ≤ 0.3msec.

In practice, the classification error has little impact on performance as shown
in Figure 4.14, where we plot the % of maximum performance achievable with
optimal platform selection. For m = 6400 the performance achieved drops to
84% of the maximum, but otherwise achieves an average of 96%. The accuracy is
high when there is a significant difference between XPU and CPU performance.
When accuracy drops, the relative cost of miss-classification is much lower.

125

4. Compiling Existent Code to Accelerators

Table 4.4: SVM accuracy for different sizes.

Parameter
Value
(mnk)

m Global
Accuracy

2000 4000 6000 8000 10000

111 100% 100% 100% 70.0% 100% 93.8%
123 100% 78.9% 100% 100% 100% 95.9%
312 100% 84.3% 100% 100% 100% 96.9%
136 100% 89.5% 100% 100% 100% 97.9%

2000 4000 6000 8000 10000
0.80

0.84

0.88

0.92

0.96

1.0

m

S
p
ee
d
u
p
ov
er

or
ac
le

Shape 111

Shape 123

Shape 312

Shape 136

Oracle

Figure 4.14: Percentage of speedup lost by ATC compared to optimal switching
between CPU and XPU depending on matrix shapes.

4.3.5 Convolutions

Our approach is generic and can be applied to other APIs other than GEMMs.
As an example, we consider tensor convolutions which are a significant com-
ponent of DNN workloads. We provide a shorter evaluation of the convolution
that includes the key components: detection and performance.

4.3.5.1 Detection

While IDL, KernelFaRer, Polly and FACC* were unable to detect any of the
convolutions, ATC detected 10 of the 15 convolutions as shown in Figure 4.15;
The neural program classifier was able to detect all convolutions, but we were
unable to match 5 due to the excessive number of candidates.

126

4.3. Evaluation

Direct i2mcol+gemm Winograd All
0

20

40

60

80

100

6

3

3

0

1

2 10

5

%
of

m
at
ch
ed

co
d
es Matched Not matched

Figure 4.15: Matched convolution codes by ATC.

4.3.5.2 Performance

Figure 4.16 shows the performance achieved by replacing programs with library
code for each of the programs we are able to accelerate. Across all codes, the
SVM predicts that the TPU accelerator outperforms the CPU, giving an average
17.8x performance improvement across the programs. The input size correspond
to a valid input of a real-world CNNs, AlexNet [183]. Because there are some
programs that have input constraints (see Table 4.3), we adapted the input size to
match that constraints in the user codes and the CPU/TPU for a fair comparison.
The TPU is optimized for full inputs size (with no restrictions regarding batch
size), which can be confirmed in our experiments, where we found that those
user programs achieve lower speedups on the TPU.

1 3 4 5 6 8 10 11 13 15 All
1

10

100

1000

Code

S
p
ee
d
u
p

Speedup (CPU)
Speedup (TPU)
ATC

Figure 4.16: ATC speedup in convolution programs with h = w = 224, kw =
kh = 11, c = 3, k = 96 and n = 100.

127

4. Compiling Existent Code to Accelerators

4.3.6 Productivity

In Section 3.4.5 we evaluated different single-source languages with focus in
their portability, productivity and performance. We mentioned that productiv-
ity was harmed when code was already written, since using accelerators would
require rewriting code. With ATC we are able to solve this productivity prob-
lem. Following the comparison shown that section, ATC would be classified
like shown in Figure 4.17. First, ATC can provide performance in line with the
best approaches shown in Section 3.4.5 because it also uses vendor libraries for
optimal performance. Furthermore, ATC supports a wide hardware diversity:
CPUs, GPUs (CUDA cores), tensor cores and TPUs. Thanks to our novel tech-
nique based on search and replacement, ATC achieves superior productivity for
existent code, outperforming previous works. We plot ATC with dotted lines
for performance and portability because ATC is not considered a programming
language itself, like the ones we have evaluated previously, but it can be inte-
grated with such languages easily, achieving a result like the one we show in
Figure 4.17.

Portability Productivity

Performance C++

PHAST

oneAPI

HDNN

ATC

Figure 4.17: P3 analysis of ATC compared to other approaches.

4.4 Related Work

Matching in Programs. Matching high-level program structure has been used
to discover parallelism [50], heterogeneous offloading [13, 130] and many
other core compiler tasks [65]. Constraint languages make these tasks eas-
ier [68, 23, 65] but their constraints are very sensitive to code structure [46]. For

128

4.4. Related Work

matrix multiplications in particular, KernelFaRer [46] provides a more robust ap-
proach, detecting characteristics that define matrix multiplications. Polyhedral
analyses can also be used to target matrix multiplication accelerators [21, 182].
Similarly to neural classification, IO equivalence could be proven by creating
a polyhedral representation and comparing it against the polyhedral specifica-
tion of the API. FACC [196] uses IO equivalence, which is robust to program
structure, but only addresses the challenges of FFTs and does not scale to longer
function signatures used for GEMM. To support any accelerator type, the com-
piler should support multi-dimensional arrays, while FACC only supports 1D
arrays. Because in 1D arrays and FFTs the search space in matching the API
parameters is small, FACC does not include anything to reduce it. With more
complex programs and domains, this limitation makes compiling programs in-
tractable. Mask [170] uses symbolic execution to prove equivalence, which does
not work well for floating-point problems. Fuzzy classification techniques based
on code clone detection [115, 180], domain-classification [186], pattern match-
ing [33], code embeddings [7, 6, 47] and identifiers [138, 101] can be used to help
compile to accelerators [196]. These classification strategies are able to classify
diverse code structures, but do not provide a compilation strategy for using an
accelerator on their own. A large class of techniques focus on migrating between
APIs. These techniques often use program synthesis [34], NLP [135] and code
embeddings [134, 161]. These techniques are unable to extract existing code into
APIs.

GEMM Accelerators. GEMM and convolution accelerators have exploded with
the rise in popularity of machine learning. NVIDIA’s NVDLA [142], Intel’s
portfolio of ML hardware accelerators [86] and Arm’s NPU [15] are examples
of the proliferation of ML accelerators. Even companies not traditionally in-
volved in the hardware space have developed GEMM and convolution-capable
accelerators, such as the Google [93], Meta [12] and Microsoft [62]. Beyond
this, there has been a proliferation of academic hardware accelerators for matrix
multiplication [165], optimized for many different special cases such as sparse
matrices [149] and low-power domains [184]. Matrix multiplication hardware
accelerators have been proposed for novel technologies such as PIM [92, 198, 54]
and photonic computation [205].

Compiling for GEMM Accelerators. Existing compilation strategies largely fo-
cus on lowering code from intrinsics to accelerators using rewrite rules [174, 171,
192] and synthesis techniques [38]. Existing approaches to extracting matrix
multiplications [68, 46] are brittle. Synthesis-based techniques [3, 124, 14] and
rewriting-based techniques [26, 175] have been developed to extract these DSLs

129

4. Compiling Existent Code to Accelerators

that can then be lowered: but they largely require flexible DSLs, rather than
APIs presented by hardware accelerators.

Performance Prediction. Predicting code the performance of hardware accel-
erators is challenging, as the break-even point may depend on many different
arguments within a function’s interface [8]. LogCA [8] introduces static perfor-
mance comparison models for hardware accelerators and similar models have
been applied in offloading tasks [201]. While LogCA and parameterizations
provide full performance models, many models only attempt to achieve a bi-
nary classification (should or should not offload). Machine learning has often
been applied in profitability settings, such as OpenCL Kernels [189, 190] and
OpenMP [126]. Similar techniques have been applied to FPGAs, by estimating
power/performance [64] and tracking actual performance [166].

4.5 Conclusions

In this chapter we presented ATC, a flexible domain-agnostic compiler that
matches legacy linear algebra and tensor code to accelerators. In a world dom-
inated by accelerators, automatic hardware acceleration of legacy programs is
a novel and relevant topic in recent literature. Many codebases were written
years ago for specific devices (typically CPUs) and are still in use nowadays.
Thus, this technique allows compiling legacy codes to specialized accelerators,
dramatically improving their performance, without needing to rewrite existent
code. By using IO behavioral equivalence and smart search space reduction,
we are able to match over 80% of challenging real-world programs to accelera-
tor APIs, significantly outperforming all alternative approaches. Thanks to that,
ATC achieves an overall speedup of 344.0x over user codes in GEMM with a
medium input size. Supporting new domains different from GEMM and convo-
lution is easy because ATC focuses on behavior rather than code structure, which
makes it very flexible and extensible. Furthermore, to support other accelerators
in GEMM or convolution, only the accelerator API is needed: ATC adapts to the
new specification automatically. We have also proved how to offload compute-
intensive code to the accelerator only when it is profitable, which significantly
enhances global performance. Overall, we believe that our approach could be
implemented with LLVM as a mainstream compiler (like gcc) to feature the ac-
celeration of real-world code.

A step forward in performance. ATC exploits new-generation hardware accel-
erators by replacing CPU code with accelerator API calls. Despite this notable

130

4.5. Conclusions

advance in productivity, we have not yet analyzed any proposal that exploits ex-
ecution on multiple accelerators concurrently. In our analysis in Figure 4.17, we
show that ATC, like other approaches, achieves optimal performance. But this
performance limit is constrained to using a single accelerator. When consider-
ing multiple devices, this performance limit is further ahead. Because comput-
ing systems with various accelerators are increasingly common, not exploiting
concurrent execution leads to hardware underutilization. Then, rather than exe-
cuting in a single accelerator, using multiple accelerators for a single task could
enhance performance and/or energy efficiency. We believe that this will be an
essential part of any computing system or compiler in the future. Mainly be-
cause otherwise, a high density of accelerators can ultimately lead to highly
underutilized systems.

131

Chapter 5
Exploiting Accelerator-Level

Parallelism

5.1 Introduction

5.1.1 Motivation

Due to the end of Moore’s law [128], recent work in heterogeneous systems has
exploded, both from hardware [156] and software [120, 118, 119, 122] points of
view. Yet, most software technologies to support heterogeneous hardware often
forget the fact that most systems (especially SoCs) have capabilities for concur-
rently executing one or more programs on multiple accelerators. Instead, they
focus on a single accelerator scenario and forget about the rest of the hardware
available in the system, wasting great computing resources. However, having
multiple accelerators is not the same as having multiple cores in a multicore
CPU; accelerators are highly diverse and cannot be used concurrently easily.

With the evolution of computer science, different paradigms appeared to
boost computers’ performance. All of them (ILP, TLP and DLP) have provided
critical advances in computer architecture [80]. Those innovations were sup-
ported by the ability to keep increasing the transistor count inside the CPUs,
until the end of Moore’s law. Since then, computer architecture is transcending
to what some authors call the next computer architecture paradigm; Accelerator-
Level Parallelism (ALP) [80]. This new kind of parallelism seeks to execute
workloads in multiple accelerators concurrently, thus exploiting parallelism at

133

5. Exploiting Accelerator-Level Parallelism

the accelerator level. The first manifestation of ALP are SoCs, as they include
many accelerators that can be used concurrently, thus providing ALP.

Scheduling is a well-known topic that has been extensively studied in re-
cent years. Previous works in this field have usually considered offloading dif-
ferent parts of an application to specific devices (typically, manycores like the
Xeon Phi or GPGPUs). In other words, the workload was typically offloaded
to one device at a time, meaning that only one device was executing code in a
given period. In contrast, ALP seeks the evolution of this idea, the co-execution,
which consists of using many accelerators at the same time, similarly to how
ILP concurrently employs multiple functional units. ALP is a new type of par-
allelism that builds upon the existing ones, meaning that the ALP also exploits
other parallelism types. However, co-execution in heterogeneous environments
is challenging since the software needs to divide the work into parts and sched-
ule them among radically different devices. In this context, the scheduling may
pursue different objectives, like minimizing the execution time, the energy con-
sumption, or even both [163]. In either case, achieving it depends heavily on the
target hardware platform.

5.1.2 Research Context
This chapter presents Predict, Optimize, Adapt and Schedule (POAS), a frame-
work for scheduling an application to run concurrently on multiple accelera-
tors. POAS can be configured to focus on minimizing the execution time (high-
performance) or minimizing the energy consumption (energy efficiency). Fig-
ure 5.1 depicts a general view of our framework, which takes one application
and executes it in ALP, significantly improving the application performance
and/or energy efficiency. The framework is divided into four general steps.
The first one, predict, consists of developing a prediction model of the execution

Other Apps...

POAS
A B C

GEMM

x =

CONV2D

x =

CPU

GPU

XPU

POAS
A B C

GEMM

x =

Other Apps...

CPU

GPU

XPU

Figure 5.1: POAS operation overview. The framework takes different applica-
tions and executes them in co-execution, providing ALP.

134

5.1. Introduction

time of the CPU and the accelerators, as well as the memory cost to copy the
data between the CPU and the accelerators. In the optimization step, the perfor-
mance prediction model is used to build a constraint satisfaction problem (CSP).
The problem is then optimized to find the values so that the objective function
is minimal. Lastly, the results given by the solver may need to be adapted so the
scheduler can use them in the last step of POAS.

To demonstrate how POAS works, we apply our method to two relevant
case studies: matrix multiplication and convolution. We implement POAS as a
framework that runs matrix multiplication and convolution workloads in ALP,
supporting multi-core CPUs, GPUs and XPUs (tensor cores), an accelerator for
matrix multiplication and DNN workloads. Because POAS is easily extensible
to other workloads, it is very suitable to provide ALP for a wide range of appli-
cations. Ideally, we believe that POAS could be implemented like a middleware
at the OS level, similarly to how Intel Thread Director [85] works.

Unlike previous works that offload workloads to one device at a time, POAS
aims to execute one single task in many accelerators concurrently. Previous
works have already studied scheduling in heterogeneous scenarios, but most of
them are application dependant (like [97]), while POAS is completely extendible
to any application. Furthermore, experimental results highlight that POAS can
exploit ALP with negligible overhead, reaching near optimal results.

The main contributions of this chapter are:

• Defines a novel framework for exploiting Accelerator-Level Parallelism
(ALP) in heterogeneous environments.

• Details how the proposed framework works in two real-world applica-
tions like matrix multiplication and convolution, running in CPU, GPU
and XPU.

• Presents an experimental evaluation of the proposed framework showing
that the proposed framework achieves performance close to optimal.

The rest of the chapter is organized as follows. In Section 5.2.1 we present
POAS, our framework for allowing co-execution in heterogeneous environ-
ments. We detail how POAS works in real-world applications like matrix mul-
tiplication and convolution in Section 5.2.2. A performance evaluation of POAS
is shown in Section 5.3. Section 5.4 presents the related work in scheduling and
co-execution state-of-the-art techniques, as well as heterogeneous matrix multi-
plication and convolution approaches. Finally, Section 5.5 concludes the section
and gives some hints for future work.

135

5. Exploiting Accelerator-Level Parallelism

5.2 Exploiting Accelerator-Level Parallelism

5.2.1 Predict, Optimize, Adapt and Schedule (POAS)

PREDICT

CPUCPU

XPU2XPU1

EXECUTION COPY

CPU

XPU1

XPU2

CPU

XPU1

XPU2

OPTIMIZE

max(a1x1+b1,

a2x2+b2+x2c1,

a3x3+b3+x3c2)

CPU XPU1 XPU2

max(a1x1+b1,

a2x2+b2+x2c1,

a3x3+b3+x3c2)

ADAPT

Optimized values
(x1, x2, ..., xn)

Adapted values
(x1

′, x2
′, ..., xk

′)

Domain-specific
adapter

Data

Hardware

SCHEDULE

Adapted values

Scheduling policies

Data communication

CPUCPU
XPU2XPU1

Figure 5.2: General overview of POAS (Predict, Optimize, Adapt and Schedule)
framework.

POAS (Predict, Optimize, Adapt and Schedule) is a framework that sched-
ules any application to be executed in ALP environments. A general view of
POAS is depicted in Figure 5.2. The framework is divided into four phases (Pre-
dict, Optimize, Adapt and Schedule), which must be performed in order. In
this sense, the output of each phase is the input of the next one. All phases
are mandatory except for the Adapt phase, which is optional. The framework
can be tuned to achieve different goals in ALP environments: minimizing ex-
ecution time, energy, or both, considering a tradeoff between performance and
energy. The predict phase must be tuned to pursue one of those goals. It is
worth mentioning that, like other scheduling approaches, POAS is designed to
for scenarios where there is a significant amount of work to do. If not, ALP
would not provide substantial gains over the execution on a single device.

5.2.1.1 Predict

In the predict phase, a performance predictor is designed, and the profiling of
the hardware platform is performed.

Predictor. The goal of the prediction is to give a precise estimation of the exe-
cution time (or energy needed) of the application. This prediction is software
and hardware-dependent, so the prediction must consider both application and

136

5.2. Exploiting Accelerator-Level Parallelism

hardware characteristics. POAS is a modular framework, so any performance
or energy prediction method can be chosen in this phase. There are many per-
formance prediction approaches, and depending on the domain, one predictor
would be more suitable than the others. The POAS framework could implement
different predictors that would be used depending on the application. Fur-
thermore, in the case of performance prediction, the performance model must
predict both the execution time and the time spent in memory transfers between
the CPU and the accelerators over the bus. The only requirement for the per-
formance predictor is to provide a function that, given the input size, predicts
the execution time of the application. While the resultant function has no re-
striction regarding its complexity, it is desirable to have a linear or quadratic
function, as discussed in Section 5.2.1.2. Regression or similar methods can be
used for computing the function from the measured values in the profiling. To
achieve competitive performance, the accuracy of the predictor is vital. If the
prediction fails to precisely reproduce the experimental results, the scheduling
would be poor. At this point, it is worth noting that with POAS it is not manda-
tory to have the source code, which makes the framework more flexible since it
does not depend on the programming language, which is a limitation in many
language-centered models.

Hardware profiling. As part of the prediction phase, a profiling of the hardware
platform is also necessary. With profiling, the hardware is sampled with differ-
ent input sizes, and time is measured to build the function that maps the input
size into execution time or energy consumed. One key aspect before profiling is
to study the behavior of the hardware executing the application because some-
times the hardware provides different performance results depending on data
sizes, alignment, and other factors. For example, in matrix multiplication, tensor
cores only provide optimal performance if m % 8 == 0 and k % 8 == 0 [140]
(where m and k are matrix dimensions).

5.2.1.2 Optimize

The optimization phase takes the prediction model generated in the previous
step as input. This phase has two objectives: to define a formulation of the
application’s behavior and to optimize it. The output of this phase is a set of
optimized values, which typically represent the input size of each device, such
that the desired objective function is optimized.

Formulation of the problem. The formulation is expressed as a constraint sat-
isfaction problem (CSP), which can be enunciated to achieve different goals. In

137

5. Exploiting Accelerator-Level Parallelism

many cases, however, the problem can be further specialized into a constrained-
optimization problem (COP), which is a generalization of the CSP. It is crucial
that the mathematical formulation models all the details of how the application
works in the real world (i.e., when the compute and communication phases oc-
cur and how). The formulation of the problem is the only manual part of the
whole framework since it is application-dependent. Depending on the appli-
cation, communication schemes, and other factors, different applications may
need different formulations. Likewise, one formulation might be reused for
many applications if they behave similarly.

Optimizing the problem. Regarding methods for optimizing the model, linear
or quadratic programming can be used, providing the optimal solution in very
little time. However, these methods can only be used if the function that models
the behavior of the application is linear or quadratic. Considering that there
might be cases where the performance model is too complex to be represented
in these terms (e.g., the function is cubic), the problem should be formulated as
a CSP. In this case, alternative methods (like backtracking, local search, etc) can
be used to optimize the performance model. The POAS framework implemen-
tation can provide different solvers, which would be used by the appropriate
application.

5.2.1.3 Adapt

This is the only optional phase of the POAS framework. Depending on the
application, the variables that come from the optimized model designed in the
previous phase might need some transformations to be used by the scheduler.
Therefore, an intermediate phase called adapt might be needed to make the
scheduler work correctly. The output of this phase is always a set of valid values
to the scheduler. If the input of the adapt phase is a valid input to the scheduler,
data is left unmodified, and the adapt phase is a no-op. Otherwise, the adapt
phase performs an adjustment of the data. We differentiate between two types
of adjustments: data and hardware adjustments.

Data adjustments. This kind of adjustment is needed when the output of the
optimized model contains different variables than the one needed to determine
how to schedule the application. In these cases, the adapt phase must adjust the
values given by the optimization phase to some values that can actually be used
in the scheduler. For example, let’s say that the scheduler needs the number
of elements to be computed by each device within a vector, but the output of
the optimize phase is the start and the end of the portion of the vector to be

138

5.2. Exploiting Accelerator-Level Parallelism

computed. Data adjustments depend on the application so this procedure is
essentially application-dependent.

Hardware adjustments. Generally speaking, hardware is very sensitive to data
sizes and other factors, so performance might vary depending on the input size.
This is very harmful to prediction accuracy and is something that must be solved
in this phase. The goal of hardware adjustments is to ensure that the input of
the next phase (scheduling) matches the same performance conditions as the
previous phase (profiling).

For example, let’s consider the case of tensor cores. As we discussed, tensor
cores typically perform differently depending on the size of m and k. Let’s say
that we perform the profiling phase assuming that input sizes will always be
multiple of 8, the best-case scenario. However, the optimized values m and k
given by the solver do not have to be a multiple of 8. This phase takes care of
these low-level details, which are key for high-quality prediction accuracy.

5.2.1.4 Schedule

Within the POAS framework, the scheduler can work in two different ways:
static and dynamic. Other scheduling policies, as well as modifications to the
presented ones, are left for future work. The scheduler policy must also in-
clude how to manage the communications between the CPU and the acceler-
ators, which might have a significant impact on performance. The framework
might implement different schedulers that work better or worse for different
applications, allowing users to select the best scheduler for each case.

Static scheduling. The static scheduler uses the performance model and opti-
mizes the problem formulation to get the optimal inputs for each device. It is
the simplest mode, as the work distribution does not change over the execution
of the program. This mode works well when the application requirements do
not change over time and when the performance prediction can model precisely
the behavior of the hardware. If one of these requirements is not met, static
scheduling would provide inaccurate predictions of the execution time of the
application, leading to suboptimal scheduling where the hardware utilization
may decrease significantly.

Dynamic scheduling. To overcome the aforementioned problems, a dynamic
scheduler can be employed. In the dynamic scheduler, the performance predic-
tion model is used to optimize the function and obtain the optimal values at the
beginning of the execution, just like static scheduling. But, unlike static schedul-

139

5. Exploiting Accelerator-Level Parallelism

ing, the scheduling might vary over time. We differentiate two approaches to
dynamic scheduling:

• Adapting the prediction values: Instead of having fixed values for the per-
formance or energy of each device, dynamic scheduling modifies those
values during execution. This can be beneficial if an application’s per-
formance varies over time (e.g., hardware can be added or removed dy-
namically, the frequency varies significantly, etc). One approach is to be
constantly measuring the execution time of the application and adapting
the performance model over certain periods, which granularity can be ad-
justed as needed (e.g., every second, or every program iteration).

• Pairing with a queue-based system: The static performance prediction can
be paired with a dynamic queue to tune the work distribution. This way,
prediction acts as a heuristic to indicate where is more promising to send
part of the work to be executed, while the queue works in an FCFS manner.

Data communication scheme. In work distribution, the effective use of the
memory bus is a performance crucial aspect. In ALP environments (like SoCs),
accelerators are usually connected to a shared bus, where all of them can com-
municate with the CPU. Hence, optimizing applications for exploiting ALP is
challenging since the bus (thus, the throughput) must be shared among the ac-
celerators.

As a first approach, we propose a scheduler based on priority scheduling.
The idea is to assign a priority to each device connected to the shared bus. Then,
data is copied to/from the CPU in the order dictated by the priority ordering.
There are many approaches to designing this scheme with different goals, like
minimizing the idle time of accelerators. We leave for future work to further
investigate more efficient approaches.

5.2.2 Using POAS to Schedule GEMM and Convolution

This section details how POAS can schedule real-world applications. First, we
detail all the phases for matrix multiplication. Later, in Section 5.2.2.5, we high-
light only the differences between GEMM and convolution, since most of the
workflow in POAS for GEMM and convolution remains the same.

We designed a POAS implementation focused on minimizing the execu-
tion time, targeting CPUs, GPUs and tensor cores (from now on, XPUs). The
implementation relies on optimized libraries to perform the matrix multiplica-
tions: MKL (in Intel CPUs), BLIS (in AMD CPUs) and cuBLAS (for both CUDA

140

5.2. Exploiting Accelerator-Level Parallelism

and tensor cores). For convolution workloads, our implementation relies on
oneDNN (in CPUs) and cuDNN (in GPUs).

5.2.2.1 Predict (GEMM)

Linear regression. To design the performance predictor for GEMM, we used a
regression analysis approach. It is well known that GEMM general algorithm
has a complexity of O(n3). But to use linear regression, we must find a way to
represent the time with linear complexity. Thus, we model the execution time
with the number of operations (from now on, ops), such that ops = m ∗ n ∗ k,
where m, n and k are the matrix dimensions. In other words, the execution time
grows with a cubic complexity if we consider the input size, but it grows linearly
considering the number of operations.

While this linear function can generally predict the performance of GEMM,
there are certain hardware peculiarities which might cause the prediction to
fail. For example, the XPU will provide radically different results depending
on the input size of the matrix, as the tensor cores can only be optimally used
when the input meets some criteria. To eliminate ambiguity, the performance
predictor always assumes optimal performance. Therefore, one additional task
in the adapt phase is ensuring that real workloads can be computed in the same
way that the predictor was trained for. We further contemplate these details in
Section 5.2.2.3. In addition to the compute times, we also predict copy times
between CPU and GPU.

Profiling. We perform a profiling step of the hardware platform, which is done
only once at installation time and takes less than five minutes to complete. The
profiling phase measures the computing power of all the hardware devices avail-
able in the system and the memory bandwidth between the CPU and the accel-
erators. Then, the results are stored in a text file that is read when real matrix
multiplication workloads arrive. To improve prediction accuracy, we profile the
performance of squared matrix multiplication only, rather than profiling many
different matrix shapes. Restricting the profiling space can improve prediction
significantly since the range of predicted inputs is smaller. Then, when a big,
non-square matrix computation arrives, POAS divides the matrix into a list of
squared matrices, which are equivalent to computing the whole matrix at once
(we detail the slicing algorithm in Section 5.2.2.3). Using this approach, we
predict the performance of all matrix shapes precisely. Therefore, the profiling
phase consists of two steps:

• Computing power profiling: The program runs a set of squared matrix
multiplications (using appropriate libraries like MKL, BLIS or cuBLAS).

141

5. Exploiting Accelerator-Level Parallelism

The sizes of the squared matrices are variable and adjustable depending on
the device (see Section 5.3.1.1 for more details). When all the experiments
have finished, linear regression is performed to obtain the linear function
that models the execution time of the device.

• Memory bandwidth profiling: The program runs a microbenchmark that
measures the bandwidth between the CPU and each accelerator.

5.2.2.2 Optimize (GEMM)

In the optimization phase, we formulate a constraint satisfaction problem (CSP)
that minimizes the execution time. Therefore, the goal of the solver is to find
a distribution of ops among the hardware devices such that the total execution
time is minimal.

Problem formulation. We express the execution and copy times as a mixed-
integer linear programming (MILP) problem. We define cx as the independent
variables, which represents the number of operations (ops) to be computed by
device x. We also define yx as the function that gives the time to copy A, B and
C matrices. The goal of the solver is to minimize the following objective function
(which models the total execution time of the GEMM in n devices):

max(tc1 + ty1 , tc2 + ty2 , ... , tcn + tyn) (5.1)

where:

• n is the number of devices in the system.

• tcx is a linear function in the form acx + b that models the execution time
of the device x when it computes cx operations.

• tyx is a linear function that models the copy time of the device x when it
computes cx operations (if x is a CPU, then tyx = 0).

with constraints:

c1, c2, ... , cn ≥ 0 (5.2)
n

∑
i=0

ci = N (5.3)

142

5.2. Exploiting Accelerator-Level Parallelism

where N is the total number of operations to be computed (i.e., m ∗ n ∗ k).
To calculate the copy time function (yx), we first start by computing bytes to be
transferred (B) as:

B = dtx ∗ (mk + kn + mn) (5.4)

where dtx is the data type size in bytes and m, n, k are the matrix dimen-
sions. When distributing the matrices across devices, we only vary m (see Sec-
tion 5.2.2.3). Then, we can find the relationship of bytes copied with the number
of operations (cx) by substituting m in the previous equation:

B = dtx ∗ (
cx

nk
k + kn +

cx

nk
n) (5.5)

if we simplify and account for the memory bandwidth (bwx), we get:

yx =
dtx ∗ (cx

(
1
k +

1
n

)
+ kn)

bwx
(5.6)

Equation 5.6 gives the time to copy A, B and C matrices, assuming that the
communications happen in a bus exclusively used by device x. This is true when
only one device is connected to the bus but is not realistic in a shared bus (e.g.,
in a SoC). If memory copies of different devices are serialized, the function must
take into account the time to copy the data of previous devices of A, B or C
matrices. We have more than one accelerator connected to the same bus in our
target platform, so we adapt Equation 5.6 to reflect that.

We implement the MILP problem using CPLEX 12.10 [82]. The CPLEX solver
is embedded in the framework using the CPLEX API, and the MILP formulation
is defined dynamically, depending on the devices being used. When the model
has been optimized, the output variables of the MILP solver are c1, c2, ... cn,
which represent the number of operations to compute by each device.

5.2.2.3 Adapt (GEMM)

The optimized values given by the MILP solver in the previous phase are the
number of operations, while the scheduler needs values for m, n and k. There-
fore, in this phase, the number of operations is converted into matrix shape
values, so they can be used by the scheduler. For this task, we designed an al-
gorithm called ops_to_mnk that works on both data and hardware adjustments.

143

5. Exploiting Accelerator-Level Parallelism

Data adjustments. Regarding data adjustments, the ops_to_mnk algorithm
must accomplish two tasks:

1. Find m, n and k such that the number of operations matches the operations
given by the MILP solver. This gives the m, n and k dimensions for each
device.

2. Express the global matrix product as a list of squared sub-matrices prod-
ucts (in a best-effort manner). This divides the m, n and k dimensions for
each device into sub-matrices for precise performance prediction.

For the first task, we start setting n and k to their original values. Partitioning
a matrix with a different value of n would provide partial results in the output
C matrix, so we fix n for convenience. Setting k to the original value makes the
ops_to_mnk algorithm easier since just the rows of A (m) must be distributed.
Then, to map ops to mnk, only m has to be determined, which is computed as
m = ops

n∗k .
For the second task, the algorithm must ensure that resultant matrices are

as squared as possible (best-effort). Having squared matrices is the optimal sce-
nario, as we would be performing the matrix multiplications in the same way
as the profiling phase. But it can only be accomplished if the input size is di-
visible by the sub-matrix sizes, which is not always possible. However, matrices
that are very close to being squared (e.g., m = 1.1k) can also be predicted with
very high precision. Let us denote with an apostrophe the dimensions of the
submatrix (e.g., k′) and without it, the dimensions of the original matrix (e.g.,
k). The algorithm tries to make m′ and k′ as similar as possible while keeping n′

equal to n. Our algorithm always ensures that the number of horizontal dimen-
sions in A fits perfectly (i.e., k % k′ == 0). Without such restriction, “gaps" may
appear in the last column of A. Therefore, the search space in k′ is restricted
to the divisors of k, which happens to be big enough when the input matrix is
also big. For determining m′ size, the algorithm iterates over all the possibilities,
analyzing how “squared” the resultant matrices using a simple heuristic would
be. For a given list of squared matrices with {m′1, m′2, ... , m′n} and {k′1, k′2, ... , k′n},
the squareness (sq) is computed as:

sq =
N

∑
i=0

(
min(m′i, k′i)
max(m′i, k′i)

∗m′ik
′
in
)

(5.7)

This value represents how squared the global set of sub-matrices is. Thus, to
find the best sub-matrix distribution, the algorithm chooses the one that maxi-
mizes the value of the heuristic.

144

5.2. Exploiting Accelerator-Level Parallelism

Hardware adjustments. The ops_to_mnk algorithm asserts that the matrix sizes
satisfy the requirements imposed by the hardware to achieve optimal perfor-
mance. In our case study, we consider CPUs, GPUs and tensor cores, so the
ops_to_mnk algorithm must meet two additional requirements:

• Tensor Cores: To reach optimal performance, the input sizes must meet
the following conditions: m % 8 == 0 and k % 8 == 0 [140]. To do so, the
algorithm reduces the input size until it meets the desired requirements.
In the end, this means that the tensor cores get fewer operations than the
MILP solver specified, but this is barely noticeable since the size reduction
is tiny compared to the global size.

• CPU cores: When profiling the CPU, inputs are designed to fit into cache
memory. Therefore, when a real workload arrives, the algorithm must
ensure that the generated submatrices also fit into cache.

5.2.2.4 Scheduler (GEMM)

For the scheduler, we use a static scheduling approach, as we found that gives
excellent results for our case study. In other words, the scheduler receives the
matrix sizes for each device and does not change them over time. We explore
some of the possible issues of this approach in Section 4.3.4.3.

Regarding the shared PCIe bus, we use a priority scheduling approach.
When the program reads the configuration file, it assigns a priority for each
device: the faster the device, the higher priority. Then, A and B matrices are
copied in the order established by the priority. Thus, lower-priority accelerators
remain idle while the higher-priority devices are copying the data. After the
computation, the first device (meaning the faster one) copies C to the host, and
the same order is used to copy the remaining parts of C. In this case, higher idle

0 10 20 30 40 50 60 70 80 90 100

CPU

GPU

XPU

% Time

Compute Copy Idle

Figure 5.3: Proposed scheduling communication scheme in a shared bus with
CPU+GPU+XPU.

145

5. Exploiting Accelerator-Level Parallelism

times are experienced from high-priority devices, which have to wait for the
rest of the devices to complete. Figure 5.3 shows the proposed communication
scheme.

5.2.2.5 Convolution

Predict. Similarly to how we divided matrix multiplication by the number of
rows in matrix A, we look for a way of dividing a convolution workload to
distribute it among the compute elements. We decide to divide convolutions
by the minibatch size, which is a common technique in distributed and parallel
approaches [20, 148]. Thus, in the profiling phase, convolution is measured by
varying all parameters (image sizes, number of filters, filter sizes) except for the
minibatch size, which we restrict to a reduced set. Again, we detail values for
this set in Section 5.3.1.1. We perform the profiling phase complying with the
convolution tensor core restrictions. First, C and N must be multiple of 8 [141].
Second, the 4D tensors layout must be NHWC [144]. For simplicity, we use no
padding and a stride of 1.

Optimize. We follow a similar formulation to the one shown in matrix multi-
plication, where we express the time with respect to the number of operations.
Naturally, we have to compute the number of operations for convolution, which
is [18]:

ops = Kh ∗ Kw ∗ C ∗ Hout ∗Wout ∗ K (5.8)

where Kh and Kw are the height and width of the filters, C is the number of
channels, Hout and Wout are the height and width of the output image, and K
is the number of filters. In our problem formulation, we change this formula
to fit our particular needs. First, we observed that DNN implementations are
typically parallelized over the number of filters (K), meaning that the execution
time is invariant to K (when the filter sizes are small enough). Second, we must
account for the number of minibatches in the formula. Therefore, we use the
following expression:

ops = Kh ∗ Kw ∗ C ∗ Hout ∗Wout ∗ N (5.9)

where N is the number of minibatches. Likewise, we compute the memory
copy function following the same approach as in matrix multiplication. For
example, the bytes to be copied (B) for the input image is:

146

5.3. Evaluation

B = dt ∗ N ∗ C ∗ H ∗W (5.10)

= dt ∗ cx

Kh ∗ Kw ∗ C ∗Oout ∗Wout
∗ C ∗ H ∗W (5.11)

where, again, cx and dt are the number of operations and the size in bytes of
the data type, respectively.

Adapt. In convolution, we also need to adapt the optimized values (e.g., trans-
form operations into convolution shapes). We implemented a straightforward
algorithm called ops_to_batches that simply computes the number of mini-
batches (N) of each device as:

N =
ops

Kh ∗ Kw ∗ C ∗ Hout ∗Wout

The algorithm also ensures that the XPU input sizes passed to the scheduler
have N and C multiple of 8.

5.2.2.6 Implementation Details

When tensor cores are used, the output of the matrix multiplication comes in
half-precision (FP16), while the CPU can only perform the product in FP32.
Therefore, when the results are collected in the CPU, the product has mixed-
precision results. In this work, we do not consider how to deal with this problem
as it is out of the scope of the research, but it is worth mentioning that related
work in this field has shown promising results [145].

In our POAS implementation, we copy the data between the CPU and GPU
asynchronously. However, the GPU does not start computing until the whole
data stream is copied. This simple approach could be improved using CUDA
streams and overlapping the computation with memory copies. In either case,
the performance predictor can be adapted to predict the memory copies with or
without overlap. Therefore, for our study, it is not particularly relevant whether
the implementation copies the data with or without overlap.

5.3 Evaluation

We evaluate POAS using matrix multiplication and convolution applications.
Section 5.3.1 details our hardware and software configuration. In Section 5.3.2,
we analyze the prediction accuracy of POAS. Lastly, we evaluate the perfor-
mance of POAS in Section 5.3.3.

147

5. Exploiting Accelerator-Level Parallelism

5.3.1 Test Bed

Hardware and software configuration. The evaluation platform is equipped
with mach1 and mach2, two HPC servers with a CPU+GPU+XPU configuration.
During this evaluation, we refer to an XPU as a GPU that uses the tensor cores to
perform the matrix multiplication, whereas GPU uses traditional CUDA cores.
The hardware configuration of both machines is summarized in Table 5.1, and
the specifications for each device are detailed in Table 5.2.

Both systems run CentOS 8.2 (4.18.0-193 kernel in mach1 and 4.18.0-348 in
mach2). We build POAS using g++ 8.4.1. Table 5.3 summarizes the libraries that
POAS relies on to run the workloads. Regarding the communication between
CPU and GPUs, the RTX 2080Ti’s in mach1 are connected to a PCIe 3.0 x16
bus, which peak memory bandwidth is 15.75 GB/s. In mach2, both cards are
connected to a PCIe 4.0 x16 bus, providing a peak memory bandwidth of 31.75
GB/s. Since the RTX 2080Ti supports up to PCIe 3.0, the card in mach2 works
in 3.0 mode, even though it is connected to a 4.0 slot. For the convolution, we
use the CUDNN_TENSOR_NHWC tensor format, as it is the optimal format for tensor
cores [144]. For the experiments, we reserve one physical CPU core for managing
the GPU and XPU. Henceforth, mach1 has 5 physical cores and mach2 has 23
cores to run the CPU workloads.

Table 5.1: Hardware configuration for the testbed environment.

CPU GPU XPU

mach1 Xeon v3 RTX 2080 Ti RTX 2080 Ti
mach2 AMD EPYC RTX 3090 RTX 2080 Ti

Input sizes. For matrix multiplication, we conceive six different matrix sizes
(shown in Table 5.4) sorted in descending order by the number of operations
(TOps). We are interested in evaluating relatively small matrices, like the first
two inputs, as well as squared and non-squared matrices. We also want to study
very skinny matrices like input 3, where the m dimension is much larger than
the others. The same idea is explored for n and k dimensions in inputs 4 and
5. Those inputs are useful to understand how solid the predictor is because
they allow us to see if the predictor performs well on non-square and skinny
matrices.

For convolution, we design four inputs (shown in Table 5.5) based on real
CNN workloads [183]. Inputs 1 and 3 are representative of the ResNet 50 ar-

148

5.3. Evaluation

Table 5.2: Hardware specifications for the testbed environment.

CPUs GPUs / XPUs

Model Intel Xeon
E5-2603 v3

AMD
EPYC 7413

NVIDIA
RTX 2080 Ti

NVIDIA
RTX 3090

Architecture Haswell Zen 3 Turing Ampere
Technology 22nm 7nm 12nm 8nm
CPU cores 6 24 - -
CUDA cores - - 4352 10496
Tensor cores - - 544 328
Max. Frequency 1.6 GHz 3.6 GHz 1.5 GHz 1.6 GHz
TFLOP/s (FP32) 0.307 2.76 13.45 35.58
TFLOP/s (FP16) - - 107.5 284.65
LLC 15MB 128MB 6MB 6MB
Memory size 64GB 512GB 11GB 24GB

Table 5.3: Libraries used in each platform for matrix multiplication and convo-
lution.

CPU GPU

mach1 MKL 2020.0.2 cuBLAS 11.2.0
oneDNN 1.96.0 cuDNN 8.0.5

mach2 AOCL BLIS 3.1 cuBLAS 11.8.0
oneDNN 1.96.0 cuDNN 8.4.1

chitecture, while inputs 2 and 4 are based on AlexNet.1 Due to memory size
limitations, inputs 1 and 2 are executed only in mach1, and inputs 3 and 4 are
run in mach2, which has a notably bigger GPU memory size.

For each input, we repeat the computations 50 times, therefore executing 50
matrix multiplication and convolutions over the accumulated data. We run each
input three times, and the values shown are the average over these three inde-
pendent runs. We used CUDA event sampling for precise time measurements
on the GPUs.

1In all cases, we reduced the number of filters due to GPU memory limits.

149

5. Exploiting Accelerator-Level Parallelism

Table 5.4: Matrix sizes used in the evaluation.

Input m n k TOps

1 30K 30K 30K 27.0
2 60K 20K 35K 42.0
3 130K 20K 20K 52.0
4 40K 80K 20K 64.0
5 40K 30K 60K 72.0
6 56K 40K 40K 89.6

Table 5.5: Convolution inputs used in the evaluation.

Input n c h w k kh kw

1 3500 16 224 224 16 7 7
2 4000 16 227 227 16 11 11
3 3000 32 224 224 16 7 7
4 2500 32 227 227 16 11 11

5.3.1.1 Profiling Configuration

In matrix multiplication, the profiling phase performs 30 squared matrix prod-
ucts with matrix sizes ranging between 1000 and 2000 for the CPU and between
3000 and 6000 for GPU/XPU. For the generation of the list of squared sub-
matrices, they are restricted to be of a size such that the number of operations
are between the same number of operations that were performed during profil-
ing. In other words, in the CPU, the sub-matrices are restricted to 1000 x 1000 x
1000 (109) and 2000 x 2000 x 2000 (8 ∗ 109) operations, and in GPU between 3000
x 3000 x 3000 (27 ∗ 108) and 6000 x 6000 x 6000 (216 ∗ 108) operations. Thus, sizes
are computed on the fly depending on the size of n in the original matrix.

In convolution, the profiling phase performs a set of convolutions with a
minibatch size of 8, 128 and 256 for CPU, GPU and XPU, respectively. Similarly
to matrix multiplication, those sizes are the same as the minibatch size used in
real workloads.

5.3.2 Prediction Accuracy

To evaluate the performance predictor used in POAS, we study the prediction
accuracy. We measure and compare the execution and memory copy times with
the predicted values. Then, we calculate the prediction error e as an expression

150

5.3. Evaluation

Table 5.6: Root mean square error (RMSE) and prediction error for GEMM in
mach1 and mach2. The compute (COM) error and RMSE are shown for CPU,
whereas the error and RMSE are divided into computing (COM) and memory
copy (CPY) for GPU and XPU (in parentheses), along with the global error (GLB)
and RMSE.

mach1 mach2

Input CPU GPU XPU CPU GPU XPU

COM GLB (COM, CPY) GLB (COM, CPY) COM GLB (COM, CPY) GLB (COM, CPY)

1 4.5% 1.6% (8.8%,5.3%) 0.7% (3.2%,1.2%) 1.0% 4.6% (9.1%,0.0%) 4.7% (10.1%,1.2%)
2 1.4% 2.9% (5.1%,0.6%) 3.1% (6.1%,0.1%) 0.5% 1.6% (2.9%,0.0%) 6.1% (11.6%,1.0%)
3 3.1% 0.7% (0.8%,2.0%) 3.3% (6.2%,0.6%) 0.4% 1.6 %(3.3%,0.0%) 7.4% (12.2%,0.9%)
4 4.6% 9.9% (5.3%,14.4%) 5.3% (6.1%,4.2%) 2.0% 2.0% (3.9%,0.1%) 4.6% (7.8%,1.3%)
5 2.4% 6.9% (11.9%,0.0%) 3.0% (6.6%,0.1%) 1.3% 5.8% (9.9%,0.1%) 5.4% (10.7%,1.1%)
6 0.8% 6.5% (6.7%,6.2%) 3.4% (5.0%,1.4%) 3.6% 4.1% (6.8%,0.0%) 6.7% (11.1%,1.1%)

RMSE 2.42 5.63 (3.55,3.10) 3.13 (2.64,0.76) 1.69 2.85 (2.87,1.68) 4.42 (4.73,0.32)

Table 5.7: Root mean square error (RMSE) and prediction error for convolution
in mach1 (above) and mach2 (below). The compute (Comp.) error and RMSE
are shown for CPU, whereas the error and RMSE are divided into computing
and memory copy for GPU and XPU (in parentheses), along with the global
error and RMSE.

Input CPU GPU XPU

COM GLB (COM, CPY) GLB (COM, CPY)

1 0.2% 1.7% (0.0%,2.3%) 1.2% (1.5%,1.0%)
2 6.3% 0.3% (2.9%,3.1%) 0.3% (0.4%,0.2%)

RMSE 2.19 0.36 (0.47,0.66) 0.28 (0.16,0.12)

Input CPU GPU XPU

COM GLB (COM, CPY) GLB (COM, CPY)

3 3.5% 0.0% (0.6%,0.1%) 0.5% (0.2%,0.9%)
4 1.8% 0.5% (1.9%,0.1%) 1.7% (1.8%,1.6%)

RMSE 0.87 0.16 (0.17,0.02) 0.44 (0.23,0.23)

of the relative error: e = 100 ∗ v−vpred
v , where v is the measured time in our

experiments and vpred is the value given by the predictor. We also compute
the root mean square error (RMSE), which gives a general perspective of the
prediction robustness across different inputs.

151

5. Exploiting Accelerator-Level Parallelism

Table 5.6 and 5.7 shows the prediction error and root mean square error
(RMSE) for GPU and XPU, where we show the global prediction error (and
RMSE) in the first instance, followed by the computing and memory copy pre-
diction error (and RMSE), respectively. Overall, we observe that the prediction
error is low (typically, under 5%). This is a key factor to provide high-quality
co-execution because otherwise, the load imbalance would be very high, lead-
ing to substantial performance degradation. Except for a few cases, the memory
prediction error is very low, especially for mach2, whose prediction is close to
being perfect. Some inputs are predicted with slightly higher prediction error
ratios than the mean (e.g., the latest ones in the GPU and XPU in mach1). In
fact, these “outliers” are the main fact that increases the RMSE of the whole
evaluation. We believe that these observations are caused by high temperatures,
which cause overheating. During the profiling phase, we leave all the device’s
frequencies unlocked. Because the profiling phase is relatively short, the device
does not get significantly hotter than the idle temperature. However, in real
workloads, the temperature can increase much more, downscaling the clock fre-
quency to avoid overheating. In other words, the measured frequency in the
profiling phase may not match the frequency used in real workloads. This is
especially true for mach1 since it has substantially worse heat dissipation capa-
bilities than mach2.

Regarding RMSE, POAS achieves very low values for both use cases, which
confirms the great robustness of the predictor, despite the use of static schedul-
ing. However, a more sophisticated solution could employ a dynamic scheduler
that considers the frequency in real-time of every device and dynamically bal-
ance the workload to further improve accuracy. In either case, POAS fully adapts
to the underlying hardware, properly exploiting its computing power. Based
on our results, we can confirm that POAS is able to efficiently exploit ALP in
CPU+GPU+XPU environments for matrix multiplications and convolutions.

5.3.3 Performance
We show the workload distribution used by POAS in Figure 5.4. As we can
see, the CPU provides little help in computing the matrix multiplication (espe-
cially in mach1, where it gets less than 1% of the work), while the GPU takes
between 20% and 30% of the work. Because matrix multiplication is a very
compute-intensive workload, the communication penalty between the CPU and
the accelerators is smaller than the higher computational power of the acceler-
ators. On the other hand, convolution has a lower arithmetic intensity, so it is
easier for the CPU to contribute more work than in matrix multiplication since
memory copy overhead is bigger in the accelerators. Hence, we can observe that

152

5.3. Evaluation

1 2 3 4 5 6
0%

20%

40%

60%

80%

100%

mach1
(GEMM)

CPU GPU XPU

Input

1 2 3 4 5 6

mach2
(GEMM)

Input

1 2

mach1
(CONV)

Input

1 2

mach2
(CONV)

Input

Figure 5.4: Percentage of work distribution among devices in mach1 and mach2
for GEMM and convolution.

1 2 3 4 5 6
0

20

40

60

80

100

120

0.0%

0.0%

2.1%

2.3%0.4%

1.2%

mach1
(GEMM)Time (s)

Input

1 2 3 4 5 6

0.0%

2.1%

3.7%
1.6%

0.0%

2.9%

mach2
(GEMM)

Optimal POAS

Input

1 2

0.5%

0.1%

mach1
(CONV)

Input

3 4

2.8%
2.3%

mach2
(CONV)

Input

Figure 5.5: Runtime comparison of POAS implementation for GEMM and con-
volution against optimal distribution.

the CPU participates more in both machines and the GPU participates less since

153

5. Exploiting Accelerator-Level Parallelism

the shared bus is occupied more often by the XPU, which has a higher priority
in accessing the PCIe bus.

Now, we compare POAS execution time against the optimal work distribu-
tion. To find the optimal distribution, we explore by hand all the plausible work
distributions and selected the one that resulted in the minimum execution time.
Figure 5.5 shows that POAS distribution was very close to the optimal in both
machines and both applications.

The difference between the POAS and optimal distributions comes from two
factors. The first one is prediction errors, which we already studied in depth.
The second one is load unbalance in the POAS work distribution. Even though
POAS aims to distribute evenly the work among devices, this is not always pos-
sible. Sometimes, inputs must be divided in non-even distributions to make
sure that accelerators receive the optimal input size (we discussed this in Sec-
tion 5.2.1.3). This division unbalances the distribution because other devices
must take the remainder work from the accelerator, or do less work since it is
now done by the accelerator. In any case, this second factor has less influence
than the prediction error. However, we observe that POAS tends to give exces-
sive work to the CPU in mach2. A small work excess in the CPU has a bigger
impact because it is more sensible to execution time variations. This explains
why POAS is closer to optimal in mach1.

In any case, POAS finds the optimal distribution in four cases and has a
performance loss against optimal distribution smaller than 2% for nine inputs.
It performs better in mach1, where perfectly even distributions are the norm.
Further tuning in prediction (dynamic scheduling) or work distribution might
improve overall performance, but since the limit is very close, the margin to
improve performance is quite small.

5.3.4 Performance Analysis
Compared to our previous works like HDNN or ATC, POAS unlocks a new
level of performance: Accelerator-Level Parallelism (ALP). POAS itself is not a
language, nor a compiler, so it cannot be directly compared our previous ap-
proaches. Nonetheless, POAS could be integrated within a single-source lan-
guage or as a middleware layer in the OS, providing ALP to existent works. If
we scale our previous plots to consider performance within an accelerator and
to also consider performance when exploiting ALP, POAS would perform like
shown in Figure 5.6. Again, we plot POAS with dotted lines to highlight that
POAS itself is not a language, but could be integrated with existent approaches
to provide that combined productivity, portability and performance. In this
figure we consider that POAS is paired with ATC and another state-of-the-art

154

5.4. Related Work

Portability Productivity

Performance

Performance limit
for a single device

C++

PHAST

oneAPI

HDNN

ATC

POAS

Figure 5.6: P3 analysis of POAS compared to other approaches.

language. In fact, we believe that POAS is the last piece to complete our P3 equi-
lateral triangle, providing optimal productivity, portability and performance.

5.4 Related Work

5.4.1 Scheduling

Task scheduling techniques have been proposed for OpenCL kernels in [191],
where authors use both code’s features as well as runtime ones to predict the
speedup of applications in CPU or GPU. Also in OpenCL, non-analytical meth-
ods like decision-based trees are used in [190] to schedule OpenCL kernels on
CPU/GPU platforms. Co-execution opportunities are studied in [202] on in-
tegrated CPU/GPU architectures. They also studied how to determine which
compute elements are suitable or not for a given task (in other words, when
co-execution is beneficial or not). List scheduling has been applied in both
static [206] and dynamic runtime scenarios, where new workloads arrive over
time [116]. Profiling and machine learning were combined in [66] to provide
scheduling in heterogeneous environments. Integer linear programming (ILP)
and linear regression were combined with stream graphs in [133] to efficiently
distribute workloads on multi-GPU platforms. Performance modeling has been
widely applied in many works [176, 147, 157, 61]. In a DynamIQ heterogeneous
multi-core environment, a performance model to estimate the efficient distribu-
tion of critical sections was designed [147]. Task scheduling has been often ap-
plied to CPU/GPU environments, but there are also other approaches for more
heterogeneous environments, like CPU/FPGA [167]. In [200], authors proposed

155

5. Exploiting Accelerator-Level Parallelism

a scheduling strategy for distributed accelerator-rich environments centered in
real-time applications. The predictable execution model (PREM) [157] was pro-
posed to enable time prediction on non-predictable hardware. The approach
separates programs into memory and compute phases, which can be indepen-
dently scheduled. It was proposed for CPU only, but a recent work extended
it for CPU/GPU architectures [61]. Many of these works focused primarily
on minimizing execution time, while others studied energy consumption. Al-
though the latest is often harder to predict, there are some promising works in
this field [60]. Given the heterogeneous nature of today’s computing systems,
other studies considered both execution time as well as consumption in their
scheduling decisions [158, 163].

5.4.2 Domain-Specific Scheduler Proposals

General matrix multiplication is a topic that has been deeply studied over time,
mainly due to its high relevance in many computer science applications. Recent
works have studied the performance of matrix multiplication in heterogeneous
environments [173]. Furthermore, several papers have considered the use of
different hardware devices to compute matrix multiplications to exploit hetero-
geneous systems. One of the first studies [19] already approached the problem
from an analytical point of view. The authors analyzed the computational power
of each processor in the heterogeneous system and later expressed the workload
distribution as an optimization problem. As the concept of heterogeneity has
evolved, that work was targeted to distributed systems using MPI, which im-
posed different issues to be solved. In [24], authors designed a hierarchical
approach to be able to distribute parts of the matrix multiplication to differ-
ent devices. When considering multiple accelerators and a range of n columns
to be assigned to each accelerator, the search space becomes too big. Therefore,
they proposed a hierarchical way of considering all the possibilities, significantly
reducing the search space. A new algorithm based on Strassen’s method was
presented in [97] for heterogeneous environments. To schedule the work be-
tween accelerators, a queue-based system was used, which gives blocks of the
matrices to be computed whenever a device is free. Matrix multiplication work-
load distribution has also been studied in the context of energy efficiency [25],
where authors proposed an approach for ARM big.LITTLE processors. One of
the centric ideas was to study the performance ratio between the big and the
little cores in the SoC and use such criteria to perform the scheduling. Despite
the large amount of related work in heterogeneous matrix multiplication, there
is no previous work that exploits ALP.

156

5.5. Conclusions

In the field of convolutional networks, [197] proposed a pipeline-based
scheduler for heterogeneous CPUs. The inference performance of a hybrid CN-
N/RNN model is improved in [81] also using a pipeline scheduling scheme, as
well as a fine-grained scheduling scheme in CPU-GPU environments. Pipeline
scheduling is also used in [188] to improve inference in ARM big.LITTLE sce-
narios. Lastly, [40] presented an approach to improve the energy efficiency of
neural network inference using constraint-based optimization using GPUs and
deep learning accelerators.

5.4.3 Multi-Domain Scheduler Proposals

Recently, several works have focused on designing frameworks and systems
to co-execute applications without domain-specific information. Many are of-
ten targeted to specific frameworks or languages that enable single-source cod-
ing on heterogeneous platforms. A language that is gaining influence lately
is oneAPI [87]. oneAPI, as well as other heterogeneous languages, typically
achieve good performance in relevant applications like DNNs [119, 120]. How-
ever, oneAPI does not officially provide a mechanism for scheduling or co-
execution. In a recent research [136], authors proposed a new co-execution run-
time in oneAPI based on load-balancing algorithms. Another relevant frame-
work in this context is OpenCL, which was also coupled with a co-execution
engine in [137]. In [162], authors extend the OmpSs framework to allow co-
execution of OpenCL kernels. Lastly, a Python-based heterogeneous scheduler
was proposed in [110], which objectives are similar to what POAS pursues.
It uses task parallelism and a queue-based approach to schedule programs in
multi-GPU environments.

5.5 Conclusions

Heterogeneity is becoming increasingly common in all scopes. Energy-
constrained systems benefit from accelerators thanks to their lower consump-
tion while high-performance systems also take advantage of massive perfor-
mance improvements in compute-intensive workloads. To exploit heterogeneity,
Accelerator-Level Parallelism (ALP) is a promising approach. Running concur-
rently any workload in multiple devices requires dividing the work wisely be-
tween the compute elements. As the number of applications in which accelera-
tors are used is growing quickly, we need solutions that allow this process to be
performed efficiently.

157

5. Exploiting Accelerator-Level Parallelism

This chapter has presented POAS, a framework for scheduling workloads
among the heterogeneous compute elements available within a node. The frame-
work adapts to the software libraries and hardware, maximizing resource usage.
We applied our framework to linear algebra and deep learning fields, showing
that POAS can fully exploit ALP to improve overall performance. Specifically,
our proposal has a deviation of only 1.3% and 1.4% from optimal performance
for GEMM and convolution, respectively. Furthermore, the framework is fully
extensible to other applications and domains.

In recent years, the number of accelerators within a chip is growing. Like-
wise, ALP relevance is also increasing in a similar manner. Then, we believe
that systems that exploit ALP as POAS does will be a crucial component of fu-
ture computing systems, either implemented within the OS, integrated with the
compiler, etc.

158

Chapter 6
Conclusions and Future Ways

6.1 Conclusions

Like multicores did, heterogeneous computing is increasing the complexity of
software development and making the architecture of computers more and more
complex due to the diverse hardware variety. All computer architecture ad-
vances have come with increasing hardware complexity, which we must tame
to make computers practical and useful. New architectures, different from the
long-lasting CPU, bring unprecedented levels of performance and energy effi-
ciency.

We are constantly looking for better ways of managing heterogeneity. The
first problem we have to exploit accelerators is finding a way of making soft-
ware development practical. Each accelerator needs different programming lan-
guages to be used, so developing as many code versions as accelerators is ex-
tremely costly, it is not practical. Second, even if we find a convenient way of
programming accelerators easily, there is a tremendous code base that is already
written. If new code must be developed, new languages can tackle the problem
of heterogeneity, but with written code the problem is different. Novel tech-
niques allowing the compilation of code written for CPU to accelerators could
increase performance by several orders of magnitude without user intervention.
Third and last, we are observing that computers have more and more dedi-
cated accelerators for different tasks. SoCs are populated with a great amount
of diverse hardware, and this number is expected to increase in the future. The
hard part of having many dedicated accelerators is how to use them efficiently
and how to reduce idle time. Accelerator-Level Parallelism (ALP) is said to be

159

6. Conclusions and Future Ways

the next computer architecture paradigm, facing this challenge. However, it is
not clear how ALP can be exploited to increase the overall performance and/or
energy consumption of future systems.

In this thesis, we have focused on solving these three main issues in hetero-
geneous computing. The main contributions of this thesis are:

• We have shown that performance portability is possible with single-
source languages, as well as a novel DSL for DNNs that achieves ex-
cellent performance, productivity and portability in heterogeneous en-
vironments (Chapter 3). Porting the Caffe framework with the PHAST
library and some Caffe layers with oneAPI has shown that performance
portability is achievable in real-world scenarios. Indeed, languages and
frameworks are improving, and new technologies appearing, enhancing
the portability and productivity of software development in heterogeneous
environments. However, we found that many of these technologies are of-
ten hard to use, or hard to achieve good performance portability. Thus,
we proposed Heterogeneous Deep Neural Networks (HDNN), a heteroge-
neous, Domain-Specific Language for DNNs. Compared to others, HDNN
programs are shorter. In addition, HDNN is based on MLIR and a novel
methodology for lowering the DSL code to the specific accelerators which
provide near-optimal performance and close to zero overhead.

• We have designed a novel methodology for detecting and compiling ac-
celeratable parts of CPU code to specialized hardware accelerators auto-
matically (Chapter 4). We have proposed Algebra and Tensor Compiler
(ATC), a compiler that replaces acceleratable C/C++ code with calls to
accelerators APIs, supporting matrix multiplication and convolution pro-
grams. First, the pre-trained neural classifier finds the acceleratable func-
tions of the program. Then, the compiler performs an IO-based synthesis
where all the candidates are tested against valid APIs to test for behavioral
equivalence. Because the combinatorial space is huge when mapping the
variables between two complex functions, we have proposed different tech-
niques to make this space tractable. ATC is completely automatic thanks
to a novel technique that is able to detect the livein and liveout variables
of a function, as well as the dimension of the matrices, even in complex,
non-structured codes. Besides, ATC features an SVM-based classifier used
to only offload the workload to the accelerator if it is profitable; otherwise,
the workload is executed in the CPU-optimized library. ATC is able to de-
tect between 2.6 and 7x more programs than state-of-the-art approaches,
resulting in more than an order of magnitude performance improvement.

160

6.2. Thesis Contributions

We also believe that the ATC methodology is very solid and could be easily
applied to many other domains apart from GEMM and convolution.

• We have proposed a framework for exploiting Accelerator-Level Paral-
lelism in heterogeneous environments (Chapter 5). The hardware for
exploiting ALP is already in our phones, and soon will be more common
in other devices such as laptops and servers. But the software stack needed
to exploit this new generation of hardware is not yet ready. Therefore, we
have proposed Predict, Optimize, Adapt and Schedule (POAS), a frame-
work for efficiently exploiting ALP. We assumed an environment where all
the devices are idle and do not have any other work to do. POAS is able to
run an application in all the available hardware within a system, reducing
the execution time and/or the energy consumed by the application. Our
framework divides the task of scheduling applications into four different
steps. We developed an implementation of POAS that schedules GEMM
and convolution kernels in environments with CPU, GPU and XPU (ten-
sor cores). Overall, we demonstrate that the workload distribution found
by POAS has a deviation of only 1.3% from the optimal. We believe that
POAS is an excellent candidate to reach ALP in future computer systems.

6.2 Thesis Contributions

The following subsections summarize the contributions of the thesis.

6.2.1 Productivity and Performance Portability in the
Heterogeneous Era

We explore ways to achieve performance portability with single-source pro-
gramming languages. First, we study Caffe, a machine learning framework
that is implemented in C++/CUDA. We port the whole framework to PHAST, a
single-source library for heterogeneous programming that supports CPUs and
GPUs. Second, we studied the use of oneAPI, an SYCL-based language for
single-source programming made by Intel. Instead of implementing the full
framework, we developed only some layers of the Caffe framework. We learned
that performance portability with these languages is possible, but it is very hard
for the programmer to achieve. Thus, we propose Heterogeneous Deep Neural
Network (HDNN), a heterogeneous Domain-Specific Language (DSL) for DNNs.
Our language supports CPUs, GPUs and TPUs, the accelerator for deep learning

161

6. Conclusions and Future Ways

designed by Google. Unlike PHAST and parts of DPC++, HDNN does not com-
pile the user code into the appropriate accelerator. Instead, it simply replaces
the high-level DNN intrinsics in the language with a call to the accelerator API.
The HDNN backend is implemented in MLIR and has a negligible performance
impact. Since the accelerator APIs often provide optimal performance, HDNN
achieves excellent performance on all accelerators with very little programming
effort.

6.2.2 Compiling Existent Code to Accelerators
The downside of single-source languages is that they force developers to rewrite
code which, in large code bases, is sometimes impractical. Therefore, we pro-
pose a novel technique based on program synthesis to automatically compile
C/C++ programs to hardware accelerators. Our compiler, called Algebra and
Tensor Compiler (ATC), can compile matrix multiplication and convolution pro-
grams to the tensor cores and TPU, respectively. ATC is in fact the first compiler
that can match and replace codes without regard of the code length or com-
plexity. Unlike other proposals, ATC can match GEMM programs as easy as the
naive 3-loop structure, and as complex as the Strassen matrix multiplication. We
achieve this with a novel methodology called IO synthesis. Rather than relying
on code structure to guide detection, ATC uses behavioral equivalence to de-
termine if a section of code is a linear algebra operation. ATC outperforms all
previous work in matching programs and overall performance. Furthermore, it
also presents an automatic performance predictor that decides at runtime when
the accelerator is slower than the CPU code. In that case, the accelerator is not
used, improving the program performance for small inputs.

6.2.3 Exploiting Accelerator-Level Parallelism
Once we are able to compile programs to accelerators automatically and achieve
excellent performance on them, we seek new ways of improving overall perfor-
mance. We believe that one promising way is by exploiting Accelerator-Level
Parallelism (ALP), which consists of using multiple accelerators concurrently.
We present Predict, Optimize, Adapt and Schedule (POAS), a novel framework
for exploiting ALP in heterogeneous environments. Our approach consists of an-
alyzing the application performance on a given hardware and defining a math-
ematical model that faithfully represents that behavior. The model can later be
optimized to find the optimal work distribution among different accelerators.
The work distribution can pursue two different objectives: to reduce power con-
sumption and/or to reduce execution time. Precisely, we apply POAS to matrix

162

6.3. Publications

multiplication and convolution applications using tensor cores. POAS divides
the work evenly among the CPU, GPU and GPUs with tensor cores, achieving
work distributions almost identical to optimal.

6.3 Publications

The research produced during this thesis is either published in relevant journals
and conferences or is currently under review. We present all of these works and
briefly outline them, detailing the section to which each corresponds.

6.3.1 Refereed Journals and Conferences

• Our first work [120] is published in the International Journal of High Perfor-
mance Computing Applications journal (Q2). This paper covers the use of
PHAST, a hardware-agnostic library to implement Caffe, a machine learn-
ing framework. We accomplished this research in collaboration with Biagio
Pecerilo and Sandro Bartolini, the authors of PHAST, from the University
of Siena. This work is detailed at the beginning of Chapter 3.

• Following a similar approach, we used oneAPI, a single-source language
developed by Intel to implement some layers within Caffe [119]. This work
is published in the Concurrency and Computation: Practice and Experience
journal (Q3). We summarize our findings of this paper in Chapter 3.

• Our proposal of a Domain-Specific Language for deep neural net-
works [118] is published in the Journal of Supercomputing (Q2). This work
corresponds to the end of Chapter 3.

• In the 32nd ACM SIGPLAN International Conference on Compiler Construction
(CC ’23), we presented ATC [122], our proposal for automatically compil-
ing C/C++ codes to accelerators. This work is the result of a collaboration
with Michael O’Boyle during my stay at The University of Edinburgh. We
detail this research in Chapter 4.

• Our proposal for exploiting Accelerator-Level Parallelism, called
POAS [117], is currently under review in the IEEE Transactions on Parallel
and Distributed Systems (TPDS) journal. This work is detailed in Chapter 5.

163

6. Conclusions and Future Ways

6.3.2 Other presentations
• In the 13th International Workshop on Programmability and Architectures for

Heterogeneous Multicores, which was held held in conjunction with the 15th
International Conference on High-Performance and Embedded Architectures and
Compilers (HiPEAC), we presented our first version of Caffe implemented
using the PHAST library [76].

• In the 21st Workshop on Compilers for Parallel Computing (CPC 2021), we
presented “Towards an Efficient Unified Programming Model for Hetero-
geneous Computing”, a high-level vision of a heterogeneous scheduler for
exploiting co-execution opportunities. This work presented the first ideas,
which later evolved into the POAS framework [117].

• In the 21th International Conference Computational and Mathematical Methods
in Science and Engineering (CMMSE) we presented a work called in a work
called “Achieving native performance with a simple heterogeneous pro-
gramming framework based on LLVM”. This presentation was our first
approach to heterogeneous compilation using LLVM, which was the base
for our latter work in HDNN [118].

6.4 Future Ways

We believe that the solutions proposed in this thesis can be useful for the future
of heterogeneous computing, especially for improving its usability and perfor-
mance. Besides, we envision different lines for improvements and future work.
The following are the most relevant:

• A high-level interface for HDNN. Despite the good capabilities of HDNN,
developers would have to work directly at the MLIR level and interact
with the HDNN dialect directly. It is not the ideal scenario since MLIR
programming is at a low level of abstraction, which is rare and known
by very few developers. Instead, we would like to design a high-level
language for HDNN, similar to easy-to-use languages like Python. This
high-level language on top of HDNN would facilitate the extensibility and
increase the popularity of HDNN, making it easier for the general audience
to use and expand it.

• Extending the ATC compiler for broader domains and languages. We
have proved that behavioral synthesis has great potential for replacing
CPU code with calls to optimized APIs automatically. However, the ATC

164

6.4. Future Ways

approach has only been applied to matrix multiplication and convolutions.
Long term, we would like to explore the compilation of more complex
programs and not limit the compiler to replace only one code. Ideally, we
would like to replace all the handmade implementations in a full machine-
learning framework like Caffe with optimized APIs, instead of replacing
just GEMM and convolution. Further, we wish to extend support for other
programming languages, like Python.

• A machine learning approach to find the right mapping between two
functions. In ATC, a machine learning approach is used to find the accel-
eratable candidates, and a deterministic algorithm with different heuristics
is used to find the mapping between the user code and the accelerator API.
However, machine learning could also be used to approach the latter, as
recent works show [135]. We have proposed different heuristics and tech-
niques to reduce the search space, but we also believe that a machine learn-
ing technique could be useful to find those patterns automatically. In the
case of using a neural network, valid mappings could be easily validated
using IO tests.

• Using Large Language Models (LLMs) to detect kernel types in code. To
find the acceleratable parts of the user code, ATC uses neural embeddings
to detect if a function belongs to a kernel type (e.g., whether a function
is a matrix multiplication or not). In our experience, this methodology
works well in conjunction with I/O validation. Rather than I/O testing
all the functions within a program, the neural embeddings act as a “filter”
to cut down the search space and remove functions that are clearly not
the kernel we are looking for. Then, I/O testing is used to find the right
function across the selection from neural embeddings. Recent advances in
Large Language Models (e.g., GPT-3) have shown amazing performance
detecting kernel types. Although I/O testing will probably be used to
ensure that the function is actually performing the kernel or not, we believe
that LLMs could substantially reduce the search space compared to neural
embeddings.

• Detailed analysis of scheduling techniques for exploiting ALP. We plan
to further extend POAS with more sophisticated scheduling policies. Al-
though the proposed ones provide high levels of hardware utilization in
many scenarios, we believe that exploring new approaches can enhance the
flexibility of the POAS framework to other domains. Another open topic
is how to efficiently schedule the communications between the CPU and
accelerators, which can also have a notable impact on overall performance,

165

6. Conclusions and Future Ways

especially in shared bus scenarios. Long-term, we wish to extend and ex-
plore new domains with POAS. We believe that POAS is an excellent way
of exploiting ALP in the present and next-generation computing systems.

• Design of a new scheduler for running many workloads in ALP. POAS
is a framework that allows running one application in ALP, thus running
in different accelerators concurrently. Another interesting line in ALP is
to run many applications in ALP. Rather than occupying all the hardware
with just one application (our framework POAS), we would seek to dis-
tribute all the applications, to either maximize hardware usage or mini-
mize energy consumption. It opens a fascinating challenge: discoverabil-
ity. In other words, discovering applications and hardware, and especially
understanding which accelerators are useful for which applications. This
would probably require adding new information at some point about the
accelerator capabilities, supported APIs, etc. Fortunately, part of the POAS
framework could be reused for this research since predicting performance
and or energy would also be needed for assigning workloads to acceler-
ators. We believe that this new approach could be integrated inside the
operating system to orchestrate the execution applications, much like cur-
rent process schedulers, but for accelerators.

166

Appendix A
Caffe Implementation Details

A.1 The Softmax Layer in Caffe

The softmax layer essentially applies the softmax function. This function takes
a vector of N dimensions as input and produces a vector of the same number of
dimensions. At each dimension, the output contains all the values in the input
normalized in the [0, 1] range. The total sum must be 1 so that they can be
interpreted as probabilities. Given a vector z with size i, and σ as the softmax
function, it is computed as:

σ(z)i =
ezi

∑K
j=1 ezj

This layer is usually the last one in CNNs since it computes the probabil-
ities of the classifier, that is, the probability of an image belonging to a class.
Following the formula, the Caffe code computes softmax in four differentiated
steps:

1. The max value of the first row of the cube is subtracted from all the ele-
ments. This procedure guarantees that no numerical issues arise.

2. The exponentiation of all the elements is done (ezi).

3. All the elements for a given classification are accumulated (∑K
j=1 ezj). To do

so, the cube is iterated by columns.

167

A. Caffe Implementation Details

channels

inner_num_
outer_num_

bottom and top

inner_num_

scale_data

Figure A.1: Data organization in Caffe’s original softmax layer.

4. All the elements are divided by the accumulated value (again, this is done
by columns).

Figure A.1 shows the data layout that is used by the softmax layer in the
original Caffe version.

In addition to bottom and top cubes, scale_data is an additional 1D vector
that Caffe uses to store temporal data. Figure A.1 shows bottom and top as a
3-dimension structure, instead of 4. This happens because the last dimension
stores more data, so the full input contains many 3D cubes as shown in the
figure. From an implementation standpoint, the main weakness of the Caffe
implementation in CPU is the code being sequential, and as such, it is unable to
benefit from multicores’ parallel hardware.

A.2 The Convolution Layer in Caffe

Caffe implements the convolution using general matrix multiplication (GEMM).
This approach is adopted by many deep learning frameworks due to perfor-
mance reasons. To compute the convolution using matrix multiplication, the first
thing to do is to transform the input using a method called “image to columns”
(im2col). Caffe relies on different optimized libraries to do the convolution:
openBLAS, ATLAS or MKL in the CPU and cuBLAS in the GPU. Depending on
the selected backend, the performance may vary. Some backends do not even

168

A.2. The Convolution Layer in Caffe

provide parallelization in the CPU (for example, openBLAS), in which case con-
volution will run sequentially. If MKL is used instead, parallelization and other
low-level optimizations (like vectorization) are applied. Furthermore, Intel made
its version of Caffe, which is also based on the same im2col and GEMM idea,
but it is implemented using OpenMP. Thus, we will compare the oneAPI con-
volution layer against two different approaches: the isolated convolution layer
from BVLC Caffe 1 and the one from Intel Caffe 2. While the im2col+GEMM
method is a typical way of implementing the convolution, it is not the only one.
Winograd convolution [108] and direct convolution [203] are other efficient com-
petitive approaches. Both of them are available in the oneDNN library, which we
adopt to compute the convolution using oneAPI. Another important fact to take
into account is that Caffe uses an NCHW layout for the input. During the origi-
nal Caffe layer exploration, we found three weaknesses that can be exploited to
improve the performance. First, Caffe uses its own implementation of im2col,
which is potentially slower than an optimized one. Second, Caffe expects the
selected backend to be parallelized, which is not always true. Third, Caffe im-
plementation has a lot of code that handles manually the im2col execution and
other aspects of the convolution. This handcrafted code is also potentially slower
than an optimized one, like the one in the oneDNN library.

1Available at https://github.com/BVLC/caffe
2Available at https://github.com/intel/caffe

169

https://github.com/BVLC/caffe
https://github.com/intel/caffe

Appendix B
PHAST-Caffe Implementation

B.1 Softmax (Feedforward)

In the softmax computation, Caffe works with the data structures top and
bottom and scale_data_ (see Figure A.1). The scale_data_ structure stores
temporal data for intermediate computations. In the case of the top structure, it
contains data for multiple classifications. The values for a single softmax clas-
sification are stored in the channel axis. Since the softmax function operates
in a 1D space, the remaining axis (inner_num and outer_num) store data from
different classifications. The softmax layer in the Caffe code takes several steps
to produce the output:

1. The max value of the first row of the cube is subtracted from all the ele-
ments. This procedure avoids numerical issues.

2. The exponentiation of all the elements is computed.

3. All the elements for a given classification are accumulated. This procedure
is done by iterating the cube by columns.

4. All the elements are divided by the accumulated value (column-wise too).

To implement the feedforward stage of the softmax layer, we distinguish two
approaches:

• Direct translation (v1): For each line of the code in the original Caffe im-
plementation we translate it to the PHAST library.

171

B. PHAST-Caffe Implementation

template <>
void Forward_cpu(vector <Blob <float >> bottom , vector <Blob <float >> top) {

phast::cube <float > bottom_data = bottom[0]-> getDataAsCube (...);
phast::cube <float > top_data = top[0]-> getDataAsCube (...);
phast::vector <float > scale_data = scale_.getDataAsVector (...);
(...)
for(auto it = top_data.begin_i (); it != top_data.end_i(); it++) {

(...)
// 1. subtraction
for (int j = 0; j < channels; j++) {

for (int k = 0; k < inner_num_; k++) {
scale_data[k] = phast::math::fmax(scale_data[k], this_top[j][k]);

}
}

phast:: for_each(top_data.begin_ijk (),
top_data.begin_ijk (), my_func_substract);
// 2. exponentiation
phast:: for_each(this_top.begin_ij (),
this_top.end_ij (), my_func_exp);
// 3. sum after exp
this_top.transpose ();

phast:: for_each(this_top.begin_i (),
this_top.end_i(), scale_data.begin(), my_func_sum);

this_top.transpose ();
// 4. division
phast:: for_each(this_top.begin_i (),
this_top.end_i(), my_func_div);

}
}

Listing B.1: PHAST softmax layer (v1)

• Global translation (v2): We study the layer from beginning to end and
apply the translation in a more general way. This approach enables global
optimizations and modifications to the original algorithm. However, it
requires much more development effort.

The straightforward version v1 is shown in Listing B.1 (some irrelevant parts
of the code are omitted to improve readability). The code structure looks the
same as the original Caffe. When Caffe calls a function to compute a step of
the softmax layer, the PHAST version replaces this call with a PHAST functor.
The main inefficiency is caused by the outer loop that iterates sequentially over
the faces of the top_data cube. This is also what the original Caffe does on the
CPU side, which is reasonable due to the limited parallelization opportunities
on the CPU. However, on the GPU, this approach is inefficient. By converting
that code in our implementation, the for_each algorithms inside the loop body

172

B.1. Softmax (Feedforward)

template <>
void Forward_cpu(vector <Blob <float >> bottom , vector <Blob <float >> top) {

phast::cube <float > bottom_data =
bottom[0]-> getDataAsCube(outer_num_ , channels , inner_num_);

phast::cube <float > top_data =
top[0]-> getDataAsCube(outer_num_ , channels , inner_num);

phast::matrix <float > scale_data =
scale_.getDataAsMatrix(outer_num_ , inner_num , false);

top_data.assign(bottom_data);
top_data.transpose_ikj ();

phast:: for_each(top_data.begin_ij (), top_data.end_ij (),
scale_data.begin_ij (), func_softmax <float >());

top_data.transpose_ikj ();
}

Listing B.2: PHAST softmax layer (v2)

can only work in parallel on the two remaining dimensions. Another essential
downside of the first approach is using the matrix transpose after and before step
3. The transpose is needed because the PHAST for_each algorithm works in a
row-major fashion, but Caffe iterates this structure in a column-major fashion.
Finally, the remaining four operations are partitioned into four different for_-
each algorithms, which is inefficient because the kernel launching on GPU or
thread launching on CPU and final synchronizations are paid four times at each
iteration of the outer loop.

The v2 softmax is implemented to take advantage of as much parallelism as
possible. In this new implementation (Listing B.2), we replace the outer loop
with a single for_each algorithm that processes in parallel outer_num×inner_-
num vectors of channels elements. To allow these modifications, we make two
changes:

• The top_data cube is transposed to swap the two minor dimensions;

• The scale_data container is transformed into a matrix with outer_num ×
inner_num elements.

Additionally, all the previous calculations are moved into a single for_each
algorithm that uses a single functor (not shown). Inside it, the vector is manipu-
lated taking advantage of two in-functor for_each algorithms that can leverage
an additional axis of parallelism on GPUs [153]. By moving every operation into
a single functor and eliminating the outer loop, this new version extracts much
parallelism. It is also more concise and simple.

173

B. PHAST-Caffe Implementation

B.2 Convolution (Feedforward)

Caffe uses a matrix multiplication approach for computing the convolution, ben-
efiting from high-performance matrix multiplications on both CPU and GPU us-
ing BLAS-based libraries. In PHAST, the matrix multiplication takes advantage
of cuBLAS on the GPU side, while no special-purpose library has been inte-
grated on the CPU, which leads to worse performance than the original Caffe.
Instead of improving the PHAST backend for matrix multiplication, we decide
to add a native convolution algorithm to the PHAST library. We believe that this
enhanced convolution algorithm can improve the performance of matrix multi-
plication convolutions. In this case, the re-engineering process is more relevant
on the PHAST backend than in the Caffe frontend. Hence, the convolution layer
at the Caffe level is very much simple. The main task to accomplish is to pre-
pare the data to pass to the PHAST native convolution. As happened with the
softmax layer, two different approaches are considered:

• The PHAST convolution computes one batch at a time (v1): Caffe iterates
over the batches of the input and calls the native convolution for each of
them.

• The PHAST convolution computes all the batches in parallel (v2): Caffe
calls PHAST native convolution directly with all the batches, which are
processed internally in the PHAST library.

In the v1 version, the PHAST convolution algorithm is parallelized over the
number of filters. Therefore, it calls PHAST convolution which runs in parallel.
Additionally, the PHAST convolution call also applies the bias, so the Caffe
frontend does not have to take care of it. Listing B.3 shows the implementation
code (omitted code corresponds to data preparation).

The outer loop iterates over the number of inputs to be convolved. The loop
count of the outer loop is usually one, so it is not a big concern for us from the
performance perspective. At each iteration of the outer loop we build a PHAST
grid containing the convolution data. The grid is then iterated over the number
of batches, obtaining a cube at each iteration that is computed using the PHAST
convolution algorithm.

In the second approach (v2), the PHAST library takes the full input (a PHAST
cube) and computes the convolution for all the batches. Thus, the Caffe frontend
arranges all the data as a PHAST cube container and calls the PHAST native
algorithm. In this approach, the PHAST convolution algorithm parallelizes both
the batches and the filters, so this is a coarse-grained parallelization scheme.
Listing B.4 shows this implementation.

174

B.2. Convolution (Feedforward)

// Several checks that fails if the convolution to be
// applied is not supported
(...)
phast::vector <float > bias , *bias_ptr = nullptr;
std::vector <phast::cube <float >> filters;
(...)
for (int i = 0; i < bottom.size(); ++i) { // Outer loop

phast::grid <phast ::cube <float >> grid_b(bottom_data , ...);
phast::grid <phast ::cube <float >> grid_t(top_data , ...);

phast::cube <float > b_cub;
phast::cube <float > t_cub;

// Batch loop
for (; b_it != grid_b.end(); b_it++, t_it ++) {

b_cub.set_dev(b_it.sub_size_i (), ...);
t_cub.set_dev(t_it.sub_size_i (), ...);

phast::ai:: convolution(b_cub , filters , stride , bias_ptr , t_cub);
}

}
}

Listing B.3: PHAST convolution layer (v1)

template <>
Forward_cpu(vector <Blob <float >*>& bottom , vector <Blob <float >*>& top) {

// Several checks that fails if the convolution to be
// applied is not supported
(...)

// Prepare data
phast::vector <float > bias , *bias_ptr = nullptr;
(...)

phast::cube <float > filters =
this ->blobs_[0]-> getDataAsCube (...);
for (int i = 0; i < bottom.size(); ++i) {

(...)

phast::cube <float > bottom_data = bottom[i]->getDataAsCube (...);
phast::cube <float > top_data = top[i]->getDataAsCube (...);
phast::ai:: batch_convolution(bottom_data , filters ,

num_filters , stride ,
bias_ptr , top_data);

}
}

Listing B.4: PHAST convolution layer (v2)

The new code is even more concise than before because the new PHAST
primitive (batch_convolution) contains more logic than the previous one. In

175

B. PHAST-Caffe Implementation

the re-engineered version of the convolution, the computation workload goes
directly to the PHAST library instead of relying on the Caffe front-end. Since
convolution is the heaviest layer of the convolutional networks, the performance
of the native PHAST convolution is crucial to achieving good performance in
the whole network.

B.3 Convolution (Backpropagation)

The backpropagation phase can be divided in three different steps:

1. The bias gradient calculation;

2. The weight gradient calculation;

3. The input data gradient calculation (data stored in bottom data structure)

The second and third steps require the calculation of a convolution, whereas
the bias gradient does not. Since the backpropagation phase also needs to com-
pute convolutions, it also benefits from the new PHAST convolution primitive.
Unlike the previous layers, we only propose one version in the backpropaga-
tion. The bias gradient computation is done by accumulating all the matrices
with top_x × top_y elements in the top gradient. They are stored into a tempo-
ral matrix transposed and accumulated by rows to get the conv_out_channels
values, which are as many as the filters, as shown in Listing B.5.

In the case of the weight gradient, the computation is essentially a convolu-
tion. The new PHAST native primitive is used, as shown in Listing B.6.

// Data preparation
phast::cube <float > top_diff_tmp = top[i]->getDiffAsCube(

this ->num_ * this ->conv_out_channels_ , top_x , top_y);
phast::grid <phast ::cube <float >> top_diff(top_diff_tmp , 1, top_x , top_y);
phast::vector <float > bias_diff =

this ->blobs_[1]-> getDiffAsVector(this ->num_output_);
phast::matrix <float > tmp_acc(this ->num_ , this ->conv_out_channels_);

// Computation
phast:: for_each(top_diff.begin(), top_diff.end(),

tmp_acc.begin_ij (), func_conv_bp_bias <float >());

tmp_acc.transpose ();

phast:: for_each(tmp_acc.begin_i (), tmp_acc.end_i(),
bias_diff.begin (), reduceMatrixVectors <float >());

Listing B.5: The PHAST version of the bias gradient calculation (Step 1)

176

B.3. Convolution (Backpropagation)

// Data preparation
phast::cube <float > top_diff = top[i]->getDiffAsCube(

t_shp [0]* t_shp [1], t_shp[2], t_shp [3]);
phast::cube <float > weight_diff =

this ->blobs_[0]-> getDiffAsCube(d_shp [0] * d_shp[1], d_shp [2], d_shp [3]);
phast::cube <float > images = bottom[i]->getDataAsCube(

b_shp [0]* b_shp [1], b_shp[2], b_shp [3]);

// Computation
phast::ai:: batch_convolution_channel_major(images ,
top_diff , num_filters , stride , bias_dummy , weight_diff);

Listing B.6: PHAST version of the weight gradient calculation (Step 2)

// Data prepraration
phast::cube <float > bottom_diff = top[i]->getDiffAsCube(

b_shp [0]* b_shp [1], b_shp[2], b_shp [3]);
phast::cube <float > weight =

this ->blobs_[0]-> getDataAsCube(d_shp [0] * d_shp[1], d_shp [2], d_shp [3]);
phast::cube <float > weights_t(

weights.size_i (), weights.size_j (), weights.size_k ());

// Computation
phast:: for_each(weights_t.begin_i (), weights_t.end_i (),

transposer <float >(weights , d_shp [0], d_shp [1]));

phast::ai:: rotate_and_pad(weights_t ,0,0, rotated_weights);
phast::ai::pad(top_diff , pad_h , pad_w , padded_top_);

phast::ai:: batch_convolution(padded_top_ ,
rotated_weights_ , d_shp[1], stride , bias_dummy ,
bottom_diff);

Listing B.7: PHAST version of the input data gradient calculation (Step 3)

There is an essential detail in this step: Caffe performs the convolution trans-
posing the input data, telling the underlying library to transpose the matrix after
the matrix multiplication. Under the hood, this transpose is implemented as an
implicit operation instead of transposing the data. Thanks to that, the trans-
pose operation is very efficient. We decide to do the same inside the PHAST
library, adding a new version of the convolution called batch_convolution_-
channel_major that implements the data transposition as previously explained.
Lastly, regarding the input gradient calculation, the PHAST library has to be
extended with two new primitives, phast::ai::pad and phast::ai::rotate_-
and_pad. The former is used to pad its argument, while the latter also rotates
the cube faces, which is necessary to re-use the same convolution algorithm
starting from the upper-left corner of the input instead of the bottom-right, as
required in the input-gradient calculation. Both operations can be translated to

177

B. PHAST-Caffe Implementation

classic phast::for_each algorithms, but a native port allows to achieve higher
performance. The PHAST code for this phase is given in the Listing B.7.

B.4 Adam Solver

The solver algorithm is divided into four computations:

• m = β1 ·mt−1 + (1− β1) · gt

• v = β2 ·mt−1 + (1− β2) · gt
2

• t = m/sqrt(v) + eps_hat

• np_di f f = t ∗ (local_rate · correction)

where m, v, t and np_diff are vector variables related to the Adam solver.
Those structures can be retrieved from Caffe directly.

Since np_diff is a vector, the phast::for_each algorithm iterates over its el-
ements and applies the functor to all of elements in parallel. The other vectors
(val_m, val_v, and val_t) are passed to the functor’s constructor and accessed
by index inside its body. The PHAST port of Adam solver is shown in List-
ings B.8 and B.9.

phast::vector <float > val_m = (...)
phast::vector <float > val_v = (...)
phast::vector <float > val_t = (...)
phast::vector <float > np_diff = (...)

adam_solver <float > solver(val_m , val_v , val_t , ...);
phast:: for_each(np_diff.begin(), np_diff.end(), solver);

Listing B.8: The PHAST Adam solver

_PHAST_METHOD void operator ()(
phast:: functor ::scalar <T>& np_diff) {

int i = this ->get_index ();

val_m_[i] = (1 - beta1_)*np_diff + beta1_*val_m_[i];
val_v_[i] = (1 - beta2_)*np_diff*np_diff + beta2_*val_v_[i];
val_t_[i] = val_m_[i] / (phast::math::sqrt(val_v_[i]) + a_);
np_diff = val_t_[i] * scale_;

}

Listing B.9: The PHAST Adam solver functor

178

B.5. Extended Evaluation

B.5 Extended Evaluation

For the measurement of the isolated layers we moved the relevant source files
to a different project with their dependencies. This way, a layer is completely
isolated from the rest of the framework. Besides, we added a custom C++ main
file to make it suitable for standalone execution, providing an easy interface
to test the layer with any input. To choose the input sizes, we look at standard
datasets (MNIST and CIFAR-10) at each isolated layer and choose a similar input
size. The elapsed times of each execution are shown in milliseconds. The timers’
recording starts after a warm-up phase to avoid any transitory effect due to high
cache miss rates and power-saving policies in CPU and GPU.

B.5.1 Correctness

To check the Caffe PHAST version’s correctness, we run the unit tests provided
from the Caffe framework, and we obtain the results shown in Table B.1.

The Caffe framework supports many kinds of convolutions, like dilated con-
volutions or grouped convolutions. In the PHAST version, these convolutions
fail since they are not supported. However, all the tests which evaluate basics
convolutions are successful. Our intention is not to support all types of convolu-
tions but just those needed to run the networks we want to evaluate. Therefore,
these results are what we expected. As for the remaining layers, they are work-
ing, except for accuracy. Failed accuracy tests do not affect our benchmarked
networks either, since the functionality which fails in the Caffe tests does not
affect LeNet networks. Henceforth, we can conclude that the PHAST version
works successfully for CPU and GPU.

Table B.1: Caffe test results for the preliminary PHAST implementation.

Block Passed Not Passed Total %Passed

Convolution 5 10 15 33%
Pooling 11 0 11 100%
InnerProduct 9 0 9 100%
Softmax 4 0 4 100%
Softmax Loss 4 0 4 100%
Accuracy 9 3 12 75%

179

B. PHAST-Caffe Implementation

B.5.2 Softmax

The extended softmax input includes 9 different inputs, which are detailed in
Table B.2. Execution times are shown in Table B.3.

As anticipated, v1 shows much worse results than v2. The big performance
difference is due to the fact that v1 is dominated by a sequential for loop with
4 phast::for_each and two matrix-transpose inside its body, while v2 needs
only one phast::for_each and two cube-transpose invocations. The difference
is more evident on the GPU than the CPU because in v1 the calculations are
performed on sequentially iterated matrix-shaped slices of the cube, instead of
the whole cube in parallel, with fewer opportunities for parallelism. This leads
to low utilization of the GPU. Moreover, the higher startup and synchronization
costs for the CPU play an important role.

On the CPU, PHAST v2 performs better than original Caffe in 6 tests out of 9.
The most significant difference in the elapsed times is observed in input 7, where
the PHAST version is 1.5x times faster. PHAST achieves the worst result in input
4, with a speedup of 2.60x in favor of the original implementation. Overall, the
PHAST version seems to scale better with the input size, showing better results
when the input grows.

On the GPU, PHAST v2 shows a significant improvement concerning our
first version, but it is consistently less efficient than the original version. The
original Caffe version shows little sensitivity to the input size, with small run-
ning time increases with the input. PHAST performance scores, conversely, are
more affected by the parameter size, with the performance gap that grows ac-
cordingly. This effect is due only to the two cube-transposes, which are absent
in the original Caffe code and present a higher sensitivity to the workload size.

Table B.2: Extended inputs for the isolated softmax layer.

Input HxW C N

1 32x32 32 1
2 32x32 32 3
3 32x32 32 10
4 64x64 64 1
5 64x64 64 3
6 64x64 64 10
7 128x128 128 1
8 128x128 128 3
9 128x128 128 10

180

B.5. Extended Evaluation

Table B.3: Extended execution times for the isolated softmax layer on the CPU
and GPU.

Input CPU GPU

Original PHAST v1 PHAST v2 Original PHAST v1 PHAST v2

1 1.231 73.254 2.741 0.116 515.891 0.120
2 3.019 76.437 6.228 0.118 1490.160 0.356
3 15.161 96.476 11.782 0.188 5057.560 0.359
4 8.891 151.635 23.093 0.147 4095.280 0.501
5 25.895 141.634 19.012 0.260 11977.7 0.840
6 53.485 180.858 36.303 0.272 39667.5 1.216
7 71.150 248.915 47.461 0.273 33366.3 3.831
8 71.552 255.402 67.365 0.210 33125.1 3.876
9 65.998 267.166 54.301 0.267 33125.1 3.906

B.5.3 Convolution (Feedforward)

We run 18 different tests, which are shown in Table B.4. Each test consists of
the execution of a workload characterized by five parameters. They have been
selected carefully to measure the performance of our solution in a variety of
cases. In all the tests, a value of 100 and 32, respectively, has been assigned to
the number of batches and number of filters.

Also in this case, there are significant improvements in v2 with respect to v1,
especially for small inputs. This difference is due to the new algorithm’s ability
to take advantage of the parallelism offered by multiple batches.

On the CPU, PHAST v2 performs better than the original implementation in
12 tests out of 18. These are mainly concentrated in the part of the table with
small/medium input sizes. The maximum speedup is achieved in input 10,
where performance is 2.57x that achieved in the original version. Conversely, the
test where PHAST scores the worst performance for the original version is input
12, where the speedup is 1.27x in favor of the latter. As for the best performing
parameters, the number of threads varies between 8 and 16 in the small and
medium tests and sets to 16 for the biggest ones. On the GPU, the block-size
is always 32 on the significant axis except for inputs 16 and 17, where it is 64,
while the best scheduling strategy is SATURATE in the majority of cases. Overall,
the PHAST revised implementation proves to be competitive on the CPU, and
thus the approach described in [203] could be regarded as a valid alternative to
the usual approach based on matrix multiplication.

On the GPU, the v2 implementation performs better than the original in

181

B. PHAST-Caffe Implementation

Table B.4: Extended inputs for isolated convolution layer (for both feedforward
and backpropagation).

Input Batches Image
Size

Number
of filters

Filters
Size

1 100 28x28x1 32 5x5
2 100 28x28x3 32 5x5
3 100 28x28x10 32 5x5
4 100 32x32x1 32 5x5
5 100 32x32x3 32 5x5
6 100 32x32x10 32 5x5
7 100 32x32x1 32 16x16
8 100 32x32x3 32 16x16
9 100 32x32x10 32 16x16

10 100 64x64x1 32 5x5
11 100 64x64x3 32 5x5
12 100 64x64x10 32 5x5
13 100 64x64x1 32 16x16
14 100 64x64x3 32 16x16
15 100 64x64x10 32 16x16
16 100 64x64x1 32 32x32
17 100 64x64x3 32 32x32
18 100 64x64x10 32 32x32

8 tests out of 18, which are those with the smallest sizes. This proves that
the approach described by [27] which inspired the PHAST implementation of
the convolution, is competitive for small images and small filters but loses its
advantage with increasing sizes. This is evident by comparing the achieved
performance in the smallest tests (inputs 1, 2 and 3) against the biggest ones
(inputs 16, 17 and 18). The achieved performance goes from a speedup of 18.3x
over the original Caffe implementation in input 1 to the 28.1x speedup of the
original implementation over PHAST in input 18.

It is worth noting that big filters as those in inputs 16, 17 and 18, where
PHAST library performs poorly, are uncommon in practical DNNs. In six popu-
lar DNNs reported by [183], filter sizes are significantly smaller, being 1×1, 3×3,
5×5, 7×7, and 11×11. Considered this, our PHAST native convolution proves
to be a better solution for practical DNNs.

182

B.5. Extended Evaluation

Table B.5: Extended execution times for the isolated convolution layer in feed-
forward phase on the CPU and GPU.

Input CPU GPU

Original PHAST v1 PHAST v2 Original PHAST v1 PHAST v2

1 17.562 101.772 16.216 3.745 3.013 0.204
2 38.218 110.576 30.358 3.981 3.466 0.450
3 83.515 149.402 51.854 3.665 4.951 1.280
4 22.507 99.813 23.042 3.750 3.692 0.220
5 47.931 114.776 28.226 3.998 4.315 0.523
6 99.555 174.990 64.423 3.759 7.547 1.495
7 59.693 123.567 37.889 5.105 31.193 0.544
8 108.643 191.292 62.651 6.420 32.842 1.599
9 227.076 375.883 207.972 8.088 38.298 6.299

10 81.601 127.020 31.722 4.541 12.275 1.269
11 116.201 194.849 78.562 5.842 15.919 3.366
12 222.373 409.520 282.716 6.117 30.994 9.452
13 165.880 328.035 155.146 6.298 194.490 4.558
14 375.109 666.406 451.024 8.924 204.713 13.586
15 1349.185 1688.884 1458.930 56.993 246.431 54.157
16 259.051 473.004 269.747 13.963 1319.007 94.311
17 724.254 1070.027 786.370 20.838 1334.103 283.211
18 2708.486 2976.198 2603.698 46.735 1403.413 1316.586

B.5.4 Convolution (Backpropagation)

On the CPU, the PHAST implementation proves better than the original in 11
tests out of 18. The higher speedup is achieved in the case of input 12, where
it reaches a speedup of 1.68x. On the other side, the higher speedup achieved
by the original implementation over PHAST is 1.33x, in the case of input 1.
Since the performance of each run is the effect of seven different algorithms,
the analysis of the parameters shows no clear trend in this case, except the
evidence that higher number of threads are generally selected in most expensive
algorithms. Overall, the backpropagation phase confirms the trend observed in
the feedforward case, with PHAST performing better than the original version
in the majority of cases and losing performance especially with big inputs.

On the GPU, the achieved performance shows the same as in the feedforward
case: the PHAST implementation of the convolution performs better than the
original only with small inputs, being consistently faster in the first 8 tests and

183

B. PHAST-Caffe Implementation

Table B.6: Extended execution times for the isolated convolution layer in back-
propagation on the CPU and GPU.

Input CPU GPU

Original PHAST Original PHAST

1 32.986 43.958 7.767 0.986
2 61.449 70.567 7.812 1.748
3 170.250 121.933 8.712 4.907
4 42.873 50.985 7.932 1.366
5 81.283 79.649 8.040 2.654
6 233.521 154.198 9.360 7.639
7 98.756 121.867 18.820 2.858
8 291.692 281.210 19.250 7.736
9 947.073 886.190 21.050 24.620

10 115.156 97.016 10.758 12.514
11 318.930 230.114 12.432 34.193
12 903.935 537.887 16.052 81.434
13 597.130 466.535 26.137 35.175
14 1722.433 1291.191 38.996 80.487
15 5932.176 3964.532 80.841 267.251
16 1109.800 1376.846 69.909 365.565
17 3405.712 3761.880 83.782 1098.258
18 9644.456 12418.025 194.401 3636.622

slower in the remaining 11. The test where PHAST achieves the best results is
input 1, with a speedup of 7.88x. On the other side of the spectrum, there is
input 18, where the original implementation is 18.71x faster than the PHAST
implementation. As for the parameters, the same considerations can be done on
the GPU side.

Also in this case, the performance achieved in the backpropagation shows
the same characteristics observed in the feedforward, with the PHAST imple-
mentation being faster with small inputs and slower with big inputs compared
to the original Caffe implementation. Overall, also in the backpropagation case,
PHAST loses performance on CPU and GPU with big filters, which are uncom-
mon in DNNs employed in practical cases.

184

B.5. Extended Evaluation

B.5.5 Adam solver

If we look at the input sizes for MNIST in the Adam solver, we find that it
runs the solver for 8 different sizes of vectors that range from 5000 to 400000
elements. Thus, we execute 4 tests with sizes in the same range (inputs 1-4) and
another couple with higher values to see if the performance trend continues.
Adam inputs are shown in Table B.7.

Table B.7: Input sizes for isolated Adam solver.

Input Vector Size

1 50x100
2 100x200
3 200x400
4 500x800
5 1000x1600
6 2000x3200

We find that Adam in PHAST works well out of the box on the CPU for the
inputs we tried, but it pays a higher overhead than the original solution. We
think that the latter may take advantage of thread pooling techniques, while
the former does not. Besides, the performance gap between the two implemen-
tations is reduced by increasing the vector size. The performance achieved by
both versions is almost the same (around 1.2% difference) in input 5. PHAST
becomes faster than the original version in input 6, with a 1.82x speedup. Even
with a higher startup cost, PHAST makes better use of the threads, which is
crucial for big inputs that require all the cores to be used efficiently. The best

Table B.8: Execution times for isolated Adam solver on the CPU and GPU.

Input CPU GPU

Original PHAST Original PHAST

1 0.132 21.914 220.125 214.694
2 7.007 22.962 220.913 217.499
3 8.586 26.639 220.567 217.104
4 17.246 33.971 222.024 218.645
5 47.862 48.443 222.435 218.530
6 135.164 74.157 222.221 222.519

185

B. PHAST-Caffe Implementation

performing number of threads is 2 in the first three tests, 8 in input 4 and 16 in
input 5 and 6, growing with increasing size as expected.

On the GPU, both implementations are equally valid, as they can achieve
about the same performance. The embarrassingly parallel nature of the Adam
solver makes complete utilization of the GPU in both cases. Furthermore, we
also have a very low sensitivity to the parallelization parameters: neither regis-
ters nor the shared memory utilization is limiting factors; thus, various configu-
rations are managed equally well by the hardware scheduler, leading to similar
results.

186

Appendix C
oneAPI-Caffe Implementation

To design the oneAPI version of a given layer, we first need to isolate a layer
from the Caffe framework. It allows us to run just the layer itself, filling it with
arbitrary data and content of various sizes. This means that both the input
and output of the layer are 4D tensors in the NCHW layout. In the case of
feedforward, Caffe represents the input as bottom and the output as top.

C.1 Softmax

The source code to compute the softmax layer in oneAPI is divided into four
parts for clarity:

1. Definition of the buffers that store the data to be computed by the softmax layer.
The definition code is shown in Listing C.1. SYCL buffers represent data
that can exist on the host and/or any other device. This means that if
the code is running on the host, no data copy is needed from the Caffe
data (first argument of buffer constructor) to the buffer. If the device is
not the host (e.g., a GPU with its memory), a data copy is done implic-
itly. Work items and work groups are defined in this section of the code.
SYCL provides the possibility to express the kernel in the SIMT execution
model [30]. Therefore, we have to control certain parameters in the execu-
tion of the kernel. This is the same idea of how a kernel works in CUDA.
In the context of SYCL, (as happens in CUDA) these two values control
the execution of SYCL kernels. Thus, in CUDA terminology work groups
are equivalent to blocks and work items are equivalent to threads. In the

187

C. oneAPI-Caffe Implementation

case of softmax, we set the size of work items to the minimum of 32 or the
total size of the input. We adjust the work groups so that all work items
will be working with a single data. Experienced programmers in CUDA
will find this approach straightforward since oneAPI and CUDA share the
SIMT execution model.
template <>
void SoftmaxLayer <float >:: Forward_cpu(

vector <Blob <float >*>& bottom ,
vector <Blob <float >*>& top ,
sycl::queue queue) {

...
int work_items = min(32, t_size);
int work_groups = (t_size + work_items - 1) / work_items;

sycl::buffer <float ,1> buf_t(top_ptr , sycl::range <1>(t_size));
sycl::buffer <float ,1> buf_b(bot_ptr , sycl::range <1>(b_size));
sycl::buffer <float ,1> buf_s(scale_ptr , sycl::range <1>(s_size));

Listing C.1: Init code for softmax layer

2. Exponentials computation. In SYCL, the work is described as a command
group. In Listing C.2, a command group handler (variable cgh) is passed to
the kernel. A command group encapsulates a kernel with its dependencies,
and it is processed as a single entity atomically by the SYCL runtime once it
is submitted to the queue. Inside the exponential kernel, we request access
to write in the top buffer (buf_t, the output) and read from the bottom
buffer (buf_b, the input). After that, the kernel is submitted. Inside the
kernel, each thread will compute the exponential of one element of the
input and store it in the same position on the output.
// 1. EXPONENTIAL
queue.submit ([&] (sycl:: handler& cgh) {

auto t = buf_t.get_access <sycl:: access ::mode:: discard_write >(cgh);
auto b = buf_b.get_access <sycl:: access ::mode::read >(cgh);

cgh.parallel_for <class SoftmaxExp >(sycl::nd_range <1>(work_groups *
work_items , work_items), [=] (sycl::nd_item <1> item) {

size_t local_id = item.get_local_linear_id ();
size_t global_id = item.get_global_linear_id ();

t[global_id] = sycl::exp(b[global_id]);
});

});

queue.wait();

Listing C.2: Exponential computation

3. Accumulation of the values previously computed with the exponential. Due to the
data layout adopted by Caffe, data access is more complex in this kernel,

188

C.1. Softmax

shown in Listing C.3. Fortunately, because SYCL kernels can be expressed
as SIMT, we copied the code to compute this part directly from the source
code of Caffe in GPU (source file softmax_layer.cu1). Memory is another
concept in SYCL that shares similarities with CUDA. In SYCL, there is
also a difference between local and global memory. In the kernel shown
in Listing C.1, all the accesses were performed in global memory. There
was no other choice since we need to modify the entire output structure.
However, in the case of this kernel, we can do almost all the computa-
tion in local memory. While this will likely have no impact on the CPU,
GPUs and other accelerators will probably benefit from this optimization.
To access global memory, SYCL provides a mechanism to allocate a chunk
of local memory. In this kernel, however, we do not make use of such a
mechanism. Instead, we use local memory implicitly. Local variables are
stored in local memory, so sum accumulation is done in local memory al-
though read access to t variable has to be done from global memory. After
sum is computed, we store it in the scale global memory structure (see
Figure A.1). We have to reassign the work item and work group variables
(see the first two lines in listing C.3) because the length of the data to work
with is different from the previous kernel.

work_items = min(32, s_size);
work_groups = (s_size + work_items - 1) / work_items;
...

// 2. SCALE
queue.submit ([&] (sycl:: handler& cgh) {

auto t = buf_t.get_access <sycl:: access ::mode::read >(cgh);
auto sss = buf_s.get_access <sycl:: access ::mode::write >(cgh);

cgh.parallel_for <class SoftmaxScale >(sycl::nd_range <1>(work_groups
* work_items , work_items), [=] (sycl::nd_item <1> item) {

size_t local_id = item.get_local_linear_id ();
size_t global_id = item.get_global_linear_id ();
size_t spatial_dim = height * width;
size_t n = global_id / spatial_dim;
size_t s = global_id % spatial_dim;

float sum = 0.0f;
for (int c = 0; c < channels; c++) {

sum += t[(n * channels + c) * spatial_dim + s];
}

sss[global_id] = sum;
});

});

1Available at https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax
_layer.cu

189

https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_layer.cu
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/softmax_layer.cu

C. oneAPI-Caffe Implementation

queue.wait();

Listing C.3: Accumulate

4. The division of the exponentiated values. Values are stored in top data struc-
ture, represented by the t variable in Listing C.4. This structure has to be
divided by the sum of the exponentiated values (stored in sss). Again,
the code can be easily adapted from the CUDA Caffe version, and we also
have to reassign the work item and work group variables.

// 3. DIVISION
work_items = min(32, t_size);
work_groups = (t_size + work_items - 1) / work_items;

queue.submit ([&] (sycl:: handler& cgh) {
auto t = buf_t.get_access <sycl:: access ::mode::write >(cgh);
auto sss = buf_s.get_access <sycl:: access ::mode::read >(cgh);

cgh.parallel_for <class SoftmaxDivide >(sycl::nd_range <1>(work_groups
* work_items , work_items), [=] (sycl::nd_item <1> item) {

// variable position computations ...

t[global_id] = t[global_id] / sss[n * spatial_dim + s];
});

});

queue.wait();
}

Listing C.4: Division

However, the implementation of this kernel has a little room for improve-
ment, but SYCL and DPC++ do not provide an easy approach to accom-
plish that. The problem is the usage of local memory. In the SoftmaxScale
kernel, the variable sum contains the value in local memory, which has
to be divided. However, we had to store it in global memory to be able
to read it in the SoftmaxDivide kernel. The best approach would have
been to compute the sum in local memory and then compute the division
using local memory too, but there is no way to communicate this data be-
tween different kernels (sum is unavailable from SoftmaxDivide kernel). A
tricky solution could be to calculate the division in the same kernel (the
SoftmaxScale kernel). This is not a good idea due to the different grains of
parallelism of the two kernels: SoftmaxScale kernel needs a small number
of work groups, while SoftmaxDivide kernel is capable of running a much
bigger amount of work groups.

190

C.2. Convolution

C.2 Convolution

The initialization of oneDNN is similar to the one explained in Section 3.2.2.1.
The only difference is that, instead of a device queue, the layer receives the
engine kind to be used. oneDNN engines are an abstraction of a computational
device (CPU, GPU, etc). With the engine kind, we create an engine that will be
used to compute the convolution. The engine creation is shown in Listing C.5.

template <>
void ConvolutionLayer <float >:: Forward_cpu(

vector <Blob <float >*>& bottom ,
vector <Blob <float >*>& top ,
engine ::kind engine_kind) {

dnnl:: engine engine(engine_kind , 0);
dnnl:: stream engine_stream(engine);

Listing C.5: Engine initialization in convolution layer

The goal of the initialization code is translating from the Caffe idiom to
oneDNN. After the engine creation, we populate the variables (Listing C.6)
to be used in oneDNN calls using Caffe data. With bottom[0]->shape() and
top[0]->shape(), we retrieve the shape of the tensor that represents the input
(bottom) and the output (top), which are stored in a 4D vector. With that infor-
mation, we can initialize the convolution values (batch size, number of weights,
size of the weights, etc).

std::vector <int > input_shape = bottom[0]->shape ();
std::vector <int > output_shape = top[0]->shape ();
...

const memory ::dim N = input_shape [0], // batch size
const memory ::dim IC = input_shape [1], // input channels
...

const memory ::dim OC = output_shape [1], // output channels
const memory ::dim KH = weights_shape [2], // weights height
const memory ::dim KW = weights_shape [3], // weights width
...

Listing C.6: Convolution data size initialization

To interact with memory, oneDNN has two abstractions: the memory de-
scription and the memory object itself. In Listing C.7, we show the creation of
the memory descriptor of the input data, represented by conv_src_md.

memory ::dims src_dims = {N, IC , IH, IW};
...
auto conv_src_md = memory ::desc(src_dims , dt::f32 , tag::any);

Listing C.7: Input memory description creation

191

C. oneAPI-Caffe Implementation

After the creation of the memory description, we create the memory object
(see Listing C.8), which describes not only the data layout (NCHW in this case)
but also the engine to be used and the dimensions of the tensor. Because the
memory object also contains the data to be processed, we must copy the con-
tents of the input to the memory object. The input (given by the Caffe layer)
is stored in blob structure. If the code is running in a CPU, a simple memcpy
is performed. In the case of a GPU or other device, the same idea is applied
using the appropriate functions. The data copy is wrapped inside the function
write_to_dnnl_memory.
auto conv_src_mem = memory ({src_dims , dt::f32 , tag::nchw}, engine);
write_to_dnnl_memory ((void *) bottom[0]-> cpu_data (), conv_src_md);

Listing C.8: Input memory creation

After creating the memory object and descriptors for the output, bias and
weights, we can create the forward convolution description (listing C.9), which
is needed to run the convolution. In this description, we specify which con-
volution algorithm we want. In this case, we are using direct convolution
(algorithm::convolution_direct), but the Winograd convolution is available
too in oneDNN (see https://oneapi-src.github.io/oneDNN/group__dnnl_
_api__attributes.html#ga00377dd4982333e42e8ae1d09a309640). With the
forward convolution description, we can create the oneDNN primitive, which
we named conv_prim.
auto conv_desc = convolution_forward ::desc(prop_kind :: forward_training ,

algorithm :: convolution_direct ,
conv_src_md ,
conv_weights_md ,
user_bias_md ,
conv_dst_md ,
strides_dims ,
padding_dims_l ,
padding_dims_r);

// Create primitive descriptor.
auto conv_pd = convolution_forward :: primitive_desc(conv_desc , engine);
...
// Create the primitive.
auto conv_prim = convolution_forward(conv_pd);

Listing C.9: Fordward convolution description creation

To link the memory descriptor with its memory objects, we use the convolu-
tion arguments, whose creation is shown in Listing C.10.
std:: unordered_map <int , memory > conv_args;
conv_args.insert ({ DNNL_ARG_SRC , conv_src_mem });
conv_args.insert ({ DNNL_ARG_WEIGHTS , conv_weights_mem });
conv_args.insert ({ DNNL_ARG_BIAS , user_bias_mem });
conv_args.insert ({ DNNL_ARG_DST , conv_dst_mem });

Listing C.10: Convolution arguments creation

192

https://oneapi-src.github.io/oneDNN/group__dnnl__api__attributes.html#ga00377dd4982333e42e8ae1d09a309640
https://oneapi-src.github.io/oneDNN/group__dnnl__api__attributes.html#ga00377dd4982333e42e8ae1d09a309640

C.2. Convolution

To actually run the convolution, we need the oneDNN primitive, the
oneDNN engine and the convolution arguments.
conv_prim.execute(engine_stream , conv_args);

Listing C.11: Convolution execution

After the convolution is computed, we have to read the data from the appro-
priate memory object and copy it back to the Caffe structure. We encapsulate
the data copy inside the function read_from_dnnl_memory.
read_from_dnnl_memory(top[0]-> mutable_cpu_data (), user_dst_mem);

Listing C.12: Data copy from oneDNN memory to Caffe structures

193

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al. TensorFlow: A System for Large-Scale
Machine Learning. In Proceedings of the 12th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’16, page 265–283, USA, 2016.
USENIX Association. 2.1, 2.3, 3.5

[2] S. Adve and R. Bodik. I-USHER: Interfaces to Unlock the Specialized
Hardware Revolution. Information Science and Technology (ISAT), 2019.
http://rsim.cs.illinois.edu/Talks/I-USHER.pdf. 3.5

[3] M. B. S. Ahmad, J. Ragan-Kelley, A. Cheung, and S. Kamil. Automatically
Translating Image Processing Libraries to Halide. ACM Transactions on
Graphics, 38:1–13, Nov. 2019. doi: 10.1145/3355089.3356549. 4.4

[4] U. Ahmed, J. C.-W. Lin, G. Srivastava, and M. Aleem. A load balance
multi-scheduling model for OpenCL kernel tasks in an integrated cluster.
Soft Computing, 25(1):407–420, Jan. 2021. doi: 10.1007/s00500-020-05152-8.
2.7

[5] Aksel Alpay. hipSYCL - an implementation of SYCL over NVIDIA CUD-
A/AMD HIP, 2019. https://github.com/illuhad/hipSYCL. 3.5

[6] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Suggesting accurate
method and class names. In the 2015 10th Joint Meeting. ACM Press, Aug.
2015. doi: 10.1145/2786805.2786849. 4.4

[7] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. code2vec: Learning Dis-
tributed Representations of Code. Proceedings of the ACM on Programming
Languages, 3:1–29, Jan. 2019. doi: 10.1145/3290353. 4.4

195

http://rsim.cs.illinois.edu/Talks/I-USHER.pdf
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1007/s00500-020-05152-8
https://github.com/illuhad/hipSYCL
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/3290353

Bibliography

[8] M. S. B. Altaf and D. A. Wood. LogCA: A High-Level Performance
Model for Hardware Accelerators. In Proceedings of the 44th Annual In-
ternational Symposium on Computer Architecture, ISCA ’17, page 375–388,
New York, NY, USA, 2017. Association for Computing Machinery. doi:
10.1145/3079856.3080216. 4.4

[9] V. Amaral, B. Norberto, M. Goulão, M. Aldinucci, S. Benkner, A. Brac-
ciali, P. Carreira, E. Celms, L. Correia, C. Grelck, H. Karatza, et al.
Programming languages for data-Intensive HPC applications: A sys-
tematic mapping study. Parallel Computing, 91:102584, 2020. doi:
10.1016/j.parco.2019.102584. 3.5

[10] AMD Corporation. New AMD ROCm Information Portal - ROCm v4.5
and Above, Nov. 2022. https://rocmdocs.amd.com/en/latest. 1.3

[11] M. Anders, H. Kaul, S. Mathew, V. Suresh, S. Satpathy, A. Agarwal, S. Hsu,
and R. Krishnamurthy. 2.9TOPS/W Reconfigurable Dense/Sparse Matrix-
Multiply Accelerator with Unified INT8/INTI6/FP16 Datapath in 14NM
Tri-Gate CMOS. In 2018 IEEE Symposium on VLSI Circuits, pages 39–40,
2018. doi: 10.1109/VLSIC.2018.8502333. 2.5

[12] M. Anderson, B. Chen, S. Deng, J. Fix, M. Gschwind, A. Kalaiah, C. Kim,
J. Lee, J. Liang, H. Lui, et al. First-Generation Inference Accelerator De-
ployment at Facebook. 2021. doi: 10.48550/arXiv.2107.04140. 4.1.1, 4.4

[13] J. M. Andión. Compilation techniques for automatic extraction of parallelism
and locality in heterogeneous architectures. Ph.D. Thesis, Universidade Da
Coruña, 2015. http://hdl.handle.net/2183/15854. 4.4

[14] K. Angstadt, J.-B. Jeannin, and W. Weimer. Accelerating Legacy String
Kernels via Bounded Automata Learning. ACM, Mar. 2020. doi:
10.1145/3373376.3378503. 4.4

[15] Arm. Arm Ethos-U55: microNPU, 2020. https://www.arm.com/products
/silicon-ip-cpu/ethos/ethos-u55. 4.1.1, 4.4

[16] J. Armengol-Estapé and M. F. P. O’Boyle. Learning C to x86
Translation: An Experiment in Neural Compilation. 2021. doi:
10.48550/arXiv.2108.07639. 2.6

[17] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le, and C. Sutton. Program Synthesis with
Large Language Models. 2021. doi: 10.48550/arXiv.2108.07732. 2.6

196

https://doi.org/10.1145/3079856.3080216
https://doi.org/10.1016/j.parco.2019.102584
https://rocmdocs.amd.com/en/latest
https://doi.org/10.1109/VLSIC.2018.8502333
https://doi.org/10.48550/arXiv.2107.04140
http://hdl.handle.net/2183/15854
https://doi.org/10.1145/3373376.3378503
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55
https://www.arm.com/products/silicon-ip-cpu/ethos/ethos-u55
https://doi.org/10.48550/arXiv.2108.07639
https://doi.org/10.48550/arXiv.2108.07732

Bibliography

[18] S. H. S. Basha, M. Farazuddin, V. Pulabaigari, S. R. Dubey, and S. Mukher-
jee. Deep Model Compression based on the Training History. 2021. doi:
10.48550/arXiv.2102.00160. 5.2.2.5

[19] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Matrix multiplication
on heterogeneous platforms. IEEE Transactions on Parallel and Distributed
Systems, 12(10):1033–1051, 2001. doi: 10.1109/71.963416. 5.4.2

[20] T. Ben-Nun and T. Hoefler. Demystifying Parallel and Distributed Deep
Learning: An In-Depth Concurrency Analysis. ACM Comput. Surv., 52(4),
Aug. 2019. doi: 10.1145/3320060. 3.3.2.3, 5.2.2.5

[21] S. G. Bhaskaracharya, J. Demouth, and V. Grover. Automatic Kernel Gen-
eration for Volta Tensor Cores. 2020. doi: 10.48550/arXiv.2006.12645. 4.1.1,
4.4

[22] L. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,
M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, et al. An Updated Set
of Basic Linear Algebra Subprograms (BLAS). ACM Trans. Math. Softw.,
28(2):135–151, June 2002. doi: 10.1145/567806.567807. 2.3

[23] G. H. Blindell. Universal Instruction Selection. Ph.D. Thesis, KTH Royal
Institute of Technology, 2018. 4.4

[24] J. Cámara, J. Cuenca, and D. Giménez. Integrating software and hardware
hierarchies in an autotuning method for parallel routines in heterogeneous
clusters. The Journal of Supercomputing, 76(12):9922–9941, Dec. 2020. doi:
10.1007/s11227-020-03235-9. 5.4.2

[25] S. Catalán, F. D. Igual, R. Mayo, L. Piñuel, E. S. Quintana-Ortí, and
R. Rodríguez-Sánchez. Performance and Energy Optimization of Ma-
trix Multiplication on Asymmetric big.LITTLE Processors. 2015. doi:
10.48550/arXiv.1507.05129. 5.4.2

[26] L. Chelini, A. Drebes, O. Zinenko, A. Cohen, N. Vasilache, T. Grosser, and
H. Corporaal. Progressive Raising in Multi-level IR. In 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages
15–26, 2021. doi: 10.1109/CGO51591.2021.9370332. 4.4

[27] P. Chen, M. Wahib, S. Takizawa, R. Takano, and S. Matsuoka. A
Versatile Software Systolic Execution Model for GPU Memory-Bound
Kernels. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’19, page 81,

197

https://doi.org/10.48550/arXiv.2102.00160
https://doi.org/10.1109/71.963416
https://doi.org/10.1145/3320060
https://doi.org/10.48550/arXiv.2006.12645
https://doi.org/10.1145/567806.567807
https://doi.org/10.1007/s11227-020-03235-9
https://doi.org/10.48550/arXiv.1507.05129
https://doi.org/10.1109/CGO51591.2021.9370332

Bibliography

New York, NY, USA, 2019. Association for Computing Machinery. doi:
10.1145/3295500.3356162. 3.2.1.6, B.5.3

[28] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. TVM:
An automated end-to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pages 578–594, Carlsbad, CA, Oct. 2018. USENIX Association. 3.5

[29] J. Choquette, O. Giroux, and D. Foley. Volta: Performance
and Programmability. IEEE Micro, 38(2):42–52, 2018. doi:
10.1109/MM.2018.022071134. 2.5, 4.1.1

[30] Codeplay. SYCL for CUDA developers - Execution Model, 2020. https:
//developer.codeplay.com/products/computecpp/ce/guides/sycl-for
-cuda-developers/execution-model. 1

[31] J. Coiffier. Fundamentals of Numerical Weather Prediction. Cambridge Uni-
versity Press, 2011. doi: 10.1017/CBO9780511734458. 4.1.1

[32] B. Collie. Practical Synthesis from Real-World Oracles. Ph.D. Thesis, The
University of Edinburgh, June 2022. doi: 10.7488/era/2334. 4.1.2

[33] B. Collie, P. Ginsbach, and M. F. O’Boyle. Type-Directed Program Synthe-
sis and Constraint Generation for Library Portability. In 2019 28th Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT),
pages 55–67, 2019. doi: 10.1109/PACT.2019.00013. 4.4

[34] B. Collie, P. Ginsbach, J. Woodruff, A. Rajan, and M. F. P. O’Boyle. M3:
Semantic API Migrations. In Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’20, page 90–102,
New York, NY, USA, 2021. Association for Computing Machinery. doi:
10.1145/3324884.3416618. 4.4

[35] D.-A. Constantinescu, A. Navarro, F. Corbera, J.-A. Fernández-Madrigal,
and R. Asenjo. Efficiency and productivity for decision making on low-
power heterogeneous CPU+GPU SoCs. The Journal of Supercomputing,
77(1):44–65, Mar. 2020. doi: 10.1007/s11227-020-03257-3. 3.5

[36] M. Costanzo, E. Rucci, C. García-Sánchez, M. Naiouf, and M. Prieto-
Matías. Migrating CUDA to oneAPI: A Smith-Waterman Case Study. In
I. Rojas, O. Valenzuela, F. Rojas, L. J. Herrera, and F. Ortuño, editors, Bioin-
formatics and Biomedical Engineering, pages 103–116, Cham, 2022. Springer
International Publishing. doi: 10.1007/978-3-031-07802-6_9. 3.5

198

https://doi.org/10.1145/3295500.3356162
https://doi.org/10.1109/MM.2018.022071134
https://developer.codeplay.com/products/computecpp/ce/guides/sycl-for-cuda-developers/execution-model
https://developer.codeplay.com/products/computecpp/ce/guides/sycl-for-cuda-developers/execution-model
https://developer.codeplay.com/products/computecpp/ce/guides/sycl-for-cuda-developers/execution-model
https://doi.org/10.1017/CBO9780511734458
https://doi.org/10.7488/era/2334
https://doi.org/10.1109/PACT.2019.00013
https://doi.org/10.1145/3324884.3416618
https://doi.org/10.1007/s11227-020-03257-3
https://doi.org/10.1007/978-3-031-07802-6_9

Bibliography

[37] M. Costanzo, E. Rucci, C. G. Sánchez, M. Naiouf, and M. Prieto-Matías.
Assessing Opportunities of SYCL and Intel oneAPI for Biological Se-
quence Alignment. 2022. doi: 10.48550/arXiv.2211.10769. 3.4.3.2, 3.5

[38] M. Cowan, T. Moreau, T. Chen, J. Bornholt, and L. Ceze. Automatic Gen-
eration of High-Performance Quantized Machine Learning Kernels. In
Proceedings of the 18th ACM/IEEE International Symposium on Code Genera-
tion and Optimization, CGO 2020, page 305–316, New York, NY, USA, 2020.
Association for Computing Machinery. doi: 10.1145/3368826.3377912. 4.4

[39] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, M. F. P. O’Boyle, and
H. Leather. ProGraML: A Graph-based Program Representation for Data
Flow Analysis and Compiler Optimizations. In M. Meila and T. Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 2244–2253.
PMLR, 18–24 Jul 2021. 4.1.1, 4.1.2, 4.2.1

[40] I. Dagli, A. Cieslewicz, J. McClurg, and M. E. Belviranli. AxoNN: Energy-
Aware Execution of Neural Network Inference on Multi-Accelerator Het-
erogeneous SoCs. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, DAC ’22, page 1069–1074, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. doi: 10.1145/3489517.3530572. 5.4.2

[41] A. M. Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh, M. C. Desmarais,
Z. Ming, and Jiang. GitHub Copilot AI pair programmer: Asset or Liabil-
ity? 2022. doi: 10.48550/arXiv.2206.15331. 2.6

[42] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting, V. Parikh,
J. Park, and D. Sheffield. Efficient Embedded Computing. Computer,
41(7):27–32, 2008. doi: 10.1109/MC.2008.224. 1.2

[43] W. J. Dally, S. W. Keckler, and D. B. Kirk. Evolution of the Graph-
ics Processing Unit (GPU). IEEE Micro, 41(6):42–51, 2021. doi:
10.1109/MM.2021.3113475. 2.5

[44] W. J. Dally, Y. Turakhia, and S. Han. Domain-Specific Hardware Accelera-
tors. Commun. ACM, 63(7):48–57, June 2020. doi: 10.1145/3361682. 1, 1.2,
2.5, 4.1.1

[45] D. Das. An Introduction to AMD Optimizing C/C++ Compiler. In Eu-
ropean LLVM Developers Meeting, 2018. https://llvm.org/devmtg/2018-
04/slides/Das-An Introduction to AMD Optimizing Compiler.pdf. 2.1

199

https://doi.org/10.48550/arXiv.2211.10769
https://doi.org/10.1145/3368826.3377912
https://doi.org/10.1145/3489517.3530572
https://doi.org/10.48550/arXiv.2206.15331
https://doi.org/10.1109/MC.2008.224
https://doi.org/10.1109/MM.2021.3113475
https://doi.org/10.1145/3361682
https://llvm.org/devmtg/2018-04/slides/Das-An%20Introduction%20to%20AMD%20Optimizing%20Compiler.pdf
https://llvm.org/devmtg/2018-04/slides/Das-An%20Introduction%20to%20AMD%20Optimizing%20Compiler.pdf

Bibliography

[46] J. a. P. L. De Carvalho, B. Kuzma, I. Korostelev, J. N. Amaral, C. Barton,
J. Moreira, and G. Araujo. KernelFaRer: Replacing Native-Code Idioms
with High-Performance Library Calls. ACM Trans. Archit. Code Optim.,
18(3), June 2021. doi: 10.1145/3459010. 1.3, 4.1.1, 4.1.2, 4.3.2.1, 4.3.4.1,
4.3.4.3, 4.4

[47] D. DeFreez, A. V. Thakur, and C. Rubio-González. Path-based func-
tion embedding and its application to error-handling specification min-
ing. In the 2018 26th ACM Joint Meeting. ACM Press, Nov. 2018. doi:
10.1145/3236024.3236059. 4.4

[48] M. P. Deisenroth, A. A. Faisal, and C. S. Ong. Mathematics for Machine
Learning. Cambridge University Press, 2020. doi: 10.1017/9781108679930.
4.1.1

[49] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and
A. LeBlanc. Design of ion-implanted MOSFET’s with very small physi-
cal dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974. doi:
10.1109/JSSC.1974.1050511. 1.2

[50] B. Di Martino and G. Iannello. PAP Recognizer: a tool for automatic
recognition of parallelizable patterns. In WPC ’96. 4th Workshop on Program
Comprehension, pages 164–174, 1996. doi: 10.1109/WPC.1996.501131. 4.4

[51] J. Domke, E. Vatai, A. Drozd, P. ChenT, Y. Oyama, L. Zhang, S. Salaria,
D. Mukunoki, A. Podobas, M. WahibT, et al. Matrix Engines for High Per-
formance Computing: A Paragon of Performance or Grasping at Straws?
In 2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 1056–1065, Los Alamitos, CA, USA, May 2021. IEEE Com-
puter Society. doi: 10.1109/IPDPS49936.2021.00114. 4.1.1

[52] M. Dukhan. The Indirect Convolution Algorithm. In Efficient Deep
Learning for Compute Vision (ECV) workshop, page 10, 2019. doi:
10.48550/arXiv.1907.02129. 3.2.1.6

[53] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas. OmpSs: A proposal for programming heterogeneous multi-
core architectures. Parallel Processing Letters, 21(02):173–193, 2011. doi:
10.1142/S0129626411000151. 3.5

[54] A. Dutta, S. Gupta, B. Khaleghi, R. Chandrasekaran, W. Xu, and T. Rosing.
HDnn-PIM: Efficient in Memory Design of Hyperdimensional Computing

200

https://doi.org/10.1145/3459010
https://doi.org/10.1145/3236024.3236059
https://doi.org/10.1017/9781108679930
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/WPC.1996.501131
https://doi.org/10.1109/IPDPS49936.2021.00114
https://doi.org/10.48550/arXiv.1907.02129
https://doi.org/10.1142/S0129626411000151

Bibliography

with Feature Extraction. In Proceedings of the Great Lakes Symposium on VLSI
2022, GLSVLSI ’22, page 281–286, New York, NY, USA, 2022. Association
for Computing Machinery. doi: 10.1145/3526241.3530331. 4.4

[55] H. C. Edwards and C. R. Trott. Kokkos: Enabling Performance Portability
Across Manycore Architectures. In 2013 Extreme Scaling Workshop (xsw
2013), pages 18–24, Aug. 2013. doi: 10.1109/XSW.2013.7. 1.3, 1, 3.5, 4.1.1

[56] A. Ejjeh, A. Councilman, A. Kothari, M. Kotsifakou, L. Medvinsky, A. R.
Noor, H. Sharif, Y. Zhao, S. Adve, S. Misailovic, and V. Adve. HPVM:
Hardware-Agnostic Programming for Heterogeneous Parallel Systems.
IEEE Micro, 42(5):108–117, 2022. doi: 10.1109/MM.2022.3186547. 2.1, 3.5

[57] A. C. Elster and T. A. Haugdahl. Nvidia Hopper GPU and Grace CPU
Highlights. Computing in Science & Engineering, 24(2):95–100, 2022. doi:
10.1109/MCSE.2022.3163817. 1.2

[58] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger.
Dark silicon and the end of multicore scaling. In 2011 38th Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 365–376, 2011.
doi: 10.1145/2000064.2000108. 1.2

[59] J. Flores-Contreras, H. A. Duran-Limon, A. Chavoya, and S. H. Almanza-
Ruiz. Performance prediction of parallel applications: a systematic litera-
ture review. The Journal of Supercomputing, 77(4):4014–4055, Apr. 2021. doi:
10.1007/s11227-020-03417-5. 2.7

[60] B. W. Ford and Z. Zong. A cost effective framework for analyzing cross-
platform software energy efficiency. Sustainable Computing: Informatics and
Systems, 35:100661, 2022. doi: 10.1016/j.suscom.2022.100661. 5.4.1

[61] B. Forsberg, L. Benini, and A. Marongiu. HePREM: A Predictable Exe-
cution Model for GPU-based Heterogeneous SoCs. IEEE Transactions on
Computers, 70(1):17–29, 2021. doi: 10.1109/TC.2020.2980520. 5.4.1

[62] J. Fowers, K. Ovtcharov, M. K. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, et al. Inside Project Brain-
wave’s Cloud-Scale, Real-Time AI Processor. IEEE Micro, 39(3):20–28, 2019.
doi: 10.1109/MM.2019.2910506. 4.1.1, 4.4

[63] Y. Fu, E. Bolotin, N. Chatterjee, D. Nellans, and S. W. Keckler. GPU
Domain Specialization via Composable On-Package Architecture. ACM
Trans. Archit. Code Optim., 19(1), Dec. 2021. doi: 10.1145/3484505. 1.2

201

https://doi.org/10.1145/3526241.3530331
https://doi.org/10.1109/XSW.2013.7
https://doi.org/10.1109/MM.2022.3186547
https://doi.org/10.1109/MCSE.2022.3163817
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1007/s11227-020-03417-5
https://doi.org/10.1016/j.suscom.2022.100661
https://doi.org/10.1109/TC.2020.2980520
https://doi.org/10.1109/MM.2019.2910506
https://doi.org/10.1145/3484505

Bibliography

[64] G. Führ, S. H. Hamurcu, D. Pala, T. Grass, R. Leupers, G. Ascheid, and
J. F. Eusse. Automatic Energy-Minimized HW/SW Partitioning for FPGA-
Accelerated MPSoCs. IEEE Embedded Systems Letters, 11(3):93–96, 2019.
doi: 10.1109/LES.2019.2901224. 4.4

[65] gcc documentation. 26.2 Match and Simplify: The Language, 2022. https:
//gcc.gnu.org/onlinedocs/gccint/The-Language.html. 4.4

[66] T. Geng, M. Amaris, S. Zuckerman, A. Goldman, G. R. Gao, and J.-L.
Gaudiot. A Profile-Based AI-Assisted Dynamic Scheduling Approach for
Heterogeneous Architectures. International Journal of Parallel Programming,
50(1):115–151, Feb. 2022. doi: 10.1007/s10766-021-00721-2. 5.4.1

[67] E. Georganas, S. Avancha, K. Banerjee, D. Kalamkar, G. Henry, H. Pabst,
and A. Heinecke. Anatomy of High-Performance Deep Learning Convo-
lutions on SIMD Architectures. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis, SC ’18.
IEEE Press, 2018. doi: 10.1109/SC.2018.00069. 3.2.1.6

[68] P. Ginsbach, T. Remmelg, M. Steuwer, B. Bodin, C. Dubach, and M. F. P.
O’Boyle. Automatic Matching of Legacy Code to Heterogeneous APIs:
An Idiomatic Approach. SIGPLAN Not., 53(2):139–153, Mar. 2018. doi:
10.1145/3296957.3173182. 1.3, 2.1, 4.1.1, 4.1.2, 4.3.2.1, 4.3.4.1, 4.4

[69] GitHub. Your AI pair programmer, 2022. https://github.com/feature
s/copilot. 2.6

[70] M. Goli, K. Narasimhan, R. Reyes, B. Tracy, D. Soutar, S. Georgiev, E. M.
Fomenko, and E. Chereshnev. Towards Cross-Platform Performance Porta-
bility of DNN Models using SYCL. pages 25–35. 2020 IEEE/ACM Inter-
national Workshop on Performance, Portability and Productivity in HPC
(P3HPC), 2020. doi: 10.1109/P3HPC51967.2020.00008. a, 3.5

[71] K. Goto and R. A. v. d. Geijn. Anatomy of High-Performance Ma-
trix Multiplication. ACM Trans. Math. Softw., 34(3), May 2008. doi:
10.1145/1356052.1356053. 4.3.2

[72] A. Green et al. libffi - A Portable Foreign Function Interface Library, 2022.
http://sourceware.org/libffi/. 4.2.2.1

[73] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-N.
Pouchet. Polly-Polyhedral optimization in LLVM. In Proceedings of the
First International Workshop on Polyhedral Compilation Techniques (IMPACT),
volume 2011, page 1, 2011. 2.1, 4.1.1, 4.1.2, 4.3.2.1

202

https://doi.org/10.1109/LES.2019.2901224
https://gcc.gnu.org/onlinedocs/gccint/The-Language.html
https://gcc.gnu.org/onlinedocs/gccint/The-Language.html
https://doi.org/10.1007/s10766-021-00721-2
https://doi.org/10.1109/SC.2018.00069
https://doi.org/10.1145/3296957.3173182
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1109/P3HPC51967.2020.00008
https://doi.org/10.1145/1356052.1356053
http://sourceware.org/libffi/

Bibliography

[74] S. Gulwani, O. Polozov, and R. Singh. Program synthesis. Foun-
dations and Trends in Programming Languages, 4(1-2):1–119, 2017. doi:
10.1561/2500000010. 2.6, 4.1.2

[75] T. Gysi, C. Müller, O. Zinenko, S. Herhut, E. Davis, T. Wicky, O. Fuhrer,
T. Hoefler, and T. Grosser. Domain-Specific Multi-Level IR Rewriting for
GPU. 2020. doi: 10.48550/arXiv.2005.13014. 2.1, 2, 3.5

[76] E. J. Gómez-Hernández, P. A. Martínez, B. Peccerillo, S. Bartolini, J. M.
García, and G. Bernabé. Using PHAST to port Caffe library: First experi-
ences and lessons learned. In 13th International Workshop on Programma-
bility and Architectures for Heterogeneous Multicores, page 11, 2020. doi:
10.48550/arXiv.2005.13076. 1, 3.2.1.1, 6.3.2

[77] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 5th edition, 2011. 1

[78] Hennessy, John L. and Patterson, David A. A New Golden Age for
Computer Architecture. Commun. ACM, 62(2):48–60, Jan. 2019. doi:
10.1145/3282307. 1

[79] M. Hill and V. Janapa Reddi. Gables: A Roofline Model for Mobile SoCs.
In 2019 IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA), pages 317–330, 2019. doi: 10.1109/HPCA.2019.00047. 2.7

[80] M. D. Hill and V. J. Reddi. Accelerator-Level Parallelism. Commun. ACM,
64(12):36–38, Nov. 2021. doi: 10.1145/3460970. 1.1, 5.1.1

[81] H.-R. Huang, D.-Y. Hong, J.-J. Wu, P. Liu, and W.-C. Hsu. Efficient Video
Captioning on Heterogeneous System Architectures. In 2021 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pages 1035–
1045, 2021. doi: 10.1109/IPDPS49936.2021.00112. 5.4.2

[82] IBM. IBM ILOG CPLEX Optimizer, 2022. https://www.ibm.com/analyt
ics/cplex-optimizer. 5.2.2.2

[83] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and
L. Van Gool. AI Benchmark: Running Deep Neural Networks on Android
Smartphones. 2018. doi: 10.48550/arXiv.1810.01109. 1.2

[84] Intel. oneAPI, 2021. https://github.com/intel/llvm. 3.1.1

203

https://doi.org/10.1561/2500000010
https://doi.org/10.48550/arXiv.2005.13014
https://doi.org/10.48550/arXiv.2005.13076
https://doi.org/10.1145/3282307
https://doi.org/10.1109/HPCA.2019.00047
https://doi.org/10.1145/3460970
https://doi.org/10.1109/IPDPS49936.2021.00112
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.48550/arXiv.1810.01109
https://github.com/intel/llvm

Bibliography

[85] Intel. Optimizing software for x86 Hybrid Archiecture. Intel White Paper,
2021. 5.1.2

[86] Intel. AI Hardware, 2022. https://www.intel.com/content/www/us/en/
artificial-intelligence/hardware.html. 4.1.1, 4.4

[87] Intel. oneAPI Specification, Sept. 2022. https://spec.oneapi.com/vers
ions/latest/oneAPI-spec.pdf. 1.3, 2.1, 3.1.1, 3.5, 4.1.1, 5.4.3

[88] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional Architecture for Fast Feature
Embedding. 2014. doi: 10.48550/arXiv.1408.5093. 2.3, 1, 4.3.2

[89] Z. Jia, M. Maggioni, J. Smith, and D. P. Scarpazza. Dissecting
the NVidia Turing T4 GPU via Microbenchmarking. 2019. doi:
10.48550/arXiv.1903.07486. 2.5

[90] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza. Dissecting the
NVIDIA Volta GPU Architecture via Microbenchmarking. 2018. doi:
10.48550/arXiv.1804.06826. 2.5

[91] H. Jiang. Intel’s Ponte Vecchio GPU: Architecture, System and Soft-
ware. In IEEE Hot Chips 34 Symposium (HCS), pages 1–29, 2022. doi:
10.1109/HCS55958.2022.9895631. 3.4.3.2

[92] H. Jin, C. Liu, H. Liu, R. Luo, J. Xu, F. Mao, and X. Liao. ReHy: A
ReRAM-Based Digital/Analog Hybrid PIM Architecture for Accelerat-
ing CNN Training. IEEE Transactions on Parallel and Distributed Systems,
33(11):2872–2884, 2022. doi: 10.1109/TPDS.2021.3138087. 4.4

[93] N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, et al. Ten Lessons From
Three Generations Shaped Google’s TPUv4i : Industrial Product. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 1–14, Los Alamitos, CA, USA, June 2021. IEEE Computer
Society. doi: 10.1109/ISCA52012.2021.00010. 3.4.4, 4.1.1, 4.4

[94] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon,
C. Young, and D. Patterson. A Domain-Specific Supercomputer for Train-
ing Deep Neural Networks. Commun. ACM, 63(7):67–78, June 2020. doi:
10.1145/3360307. 3.4.4

204

https://www.intel.com/content/www/us/en/artificial-intelligence/hardware.html
https://www.intel.com/content/www/us/en/artificial-intelligence/hardware.html
https://spec.oneapi.com/versions/latest/oneAPI-spec.pdf
https://spec.oneapi.com/versions/latest/oneAPI-spec.pdf
https://doi.org/10.48550/arXiv.1408.5093
https://doi.org/10.48550/arXiv.1903.07486
https://doi.org/10.48550/arXiv.1804.06826
https://doi.org/10.1109/HCS55958.2022.9895631
https://doi.org/10.1109/TPDS.2021.3138087
https://doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.1145/3360307

Bibliography

[95] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, et al. In-Datacenter
Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, ISCA ’17, pages
1–12, New York, NY, USA, 2017. Association for Computing Machinery.
doi: 10.1145/3079856.3080246. 1.2, 4.1.1

[96] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian. The Promises and Perils of Mining GitHub. In Proceedings of
the 11th Working Conference on Mining Software Repositories, MSR 2014, page
92–101, New York, NY, USA, 2014. Association for Computing Machinery.
doi: 10.1145/2597073.2597074. 4.1.1

[97] H. Kang, H. C. Kwon, and D. Kim. HPMaX: heterogeneous parallel matrix
multiplication using CPUs and GPUs. Computing, 102(12):2607–2631, Dec.
2020. doi: 10.1007/s00607-020-00846-1. 5.1.2, 5.4.2

[98] D. Kasperek, M. Podpora, and A. Kawala-Sterniuk. Comparison of the
Usability of Apple M1 Processors for Various Machine Learning Tasks.
Sensors, 22(20), 2022. doi: 10.3390/s22208005. 1.2

[99] Khronos OpenCL Working Group. SYCL Provisional Specification, version
1.2.1, Nov. 2019. https://www.khronos.org/registry/SYCL/specs/sycl
-1.2.1.pdf. 2.2.2, 3.5

[100] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, page 15, 2015. doi: 10.48550/arXiv.1412.6980. 3.2.1.5

[101] J. Klainongsuang, Y. S. Nugroho, H. Hata, B. Manaskasemsak, A. Rung-
sawang, P. Leelaprute, and K. Matsumoto. Identifying Algorithm Names
in Code Comments. 2019. doi: 10.48550/arXiv.1907.04557. 4.4

[102] K. Komisarczyk, L. Chelini, K. Vadivel, R. Jordans, and H. Corporaal.
PET-to-MLIR: A polyhedral front-end for MLIR. In 2020 23rd Euromi-
cro Conference on Digital System Design (DSD), pages 551–556, 2020. doi:
10.1109/DSD51259.2020.00091. 2.1, 2, 3.5

[103] T. Kosar, S. Bohra, and M. Mernik. Domain-Specific Languages: A System-
atic Mapping Study. Information and Software Technology, 71:77–91, 2016.
doi: 10.1016/j.infsof.2015.11.001. 3.1.1

205

https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1007/s00607-020-00846-1
https://doi.org/10.3390/s22208005
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1907.04557
https://doi.org/10.1109/DSD51259.2020.00091
https://doi.org/10.1016/j.infsof.2015.11.001

Bibliography

[104] M. Kotsifakou, P. Srivastava, M. D. Sinclair, R. Komuravelli, V. Adve, and
S. Adve. HPVM: Heterogeneous Parallel Virtual Machine. In Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’18, page 68–80, New York, NY, USA, 2018. Association
for Computing Machinery. doi: 10.1145/3178487.3178493. 2.1, 3.5

[105] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong
program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004., pages 75–86, 2004. doi:
10.1109/CGO.2004.1281665. 2.1, 4.2.2.1

[106] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pien-
aar, R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko. MLIR: A
Compiler Infrastructure for the End of Moore’s Law. arXiv, 2020. doi:
10.48550/arXiv.2002.11054. 2.1, 3.5

[107] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko. Mlir: Scaling com-
piler infrastructure for domain specific computation. In 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages
2–14, 2021. doi: 10.1109/CGO51591.2021.9370308. 2.1, 3.5

[108] A. Lavin and S. Gray. Fast Algorithms for Convolutional Neural Net-
works. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4013–4021, 2016. doi: 10.1109/CVPR.2016.435. A.2

[109] C. Leary and T. Wang. XLA: TensorFlow, compiled, 2017. https://deve
lopers.googleblog.com/2017/03/xla-tensorflow-compiled.html. 2.1

[110] H. Lee, W. Ruys, I. Henriksen, A. Peters, Y. Yan, S. Stephens, B. You,
H. Fingler, M. Burtscher, M. Gligoric, et al. Parla: A Python Orchestration
System for Heterogeneous Architectures. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC ’22, 2022. 5.4.3

[111] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. In Soviet physics doklady, volume 10, pages 707–710. Soviet
Union, 1966. 4.2.3.2

[112] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Ec-
cles, J. Keeling, F. Gimeno, A. D. Lago, et al. Competition-level code
generation with AlphaCode. Science, 378(6624):1092–1097, 2022. doi:
10.1126/science.abq1158. 1, 2.6

206

https://doi.org/10.1145/3178487.3178493
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.48550/arXiv.2002.11054
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CVPR.2016.435
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://doi.org/10.1126/science.abq1158

Bibliography

[113] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B.-
Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis.
In defense of soundiness. Communications of the ACM, 58:44–46, Jan. 2015.
doi: 10.1145/2644805. 4.1.1

[114] A. Lopes, F. Pratas, L. Sousa, and A. Ilic. Exploring GPU performance,
power and energy-efficiency bounds with Cache-aware Roofline Mod-
eling. In 2017 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 259–268, 2017. doi: 10.1109/IS-
PASS.2017.7975297. 2.7

[115] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement,
D. Drain, D. Jiang, D. Tang, et al. CodeXGLUE: A Machine Learning
Benchmark Dataset for Code Understanding and Generation. 2021. doi:
10.48550/arXiv.2102.04664. 4.4

[116] J. Mack, S. E. Arda, U. Y. Ogras, and A. Akoglu. Performant, Multi-
Objective Scheduling of Highly Interleaved Task Graphs on Heteroge-
neous System on Chip Devices. IEEE Transactions on Parallel and Distributed
Systems, 33(09):2148–2162, Sept. 2022. doi: 10.1109/TPDS.2021.3135876.
2.7, 5.4.1

[117] P. A. Martínez, G. Bernabé, and J. M. García. POAS: A framework for
exploiting Accelerator-Level Parallelism in heterogeneous environments.
Under review. 6.3.1, 6.3.2

[118] P. A. Martínez, G. Bernabé, and J. M. García. HDNN: a cross-platform
MLIR dialect for deep neural networks. The Journal of Supercomputing,
78(11):13814–13830, July 2022. doi: 10.1007/s11227-022-04417-3. 3.5, 5.1.1,
6.3.1, 6.3.2

[119] P. A. Martínez, B. Peccerillo, S. Bartolini, J. M. García, and G. Bern-
abé. Applying Intel’s oneAPI to a machine learning case study. Con-
currency and Computation: Practice and Experience, 34(13):e6917, 2022. doi:
10.1002/cpe.6917. 5.1.1, 5.4.3, 6.3.1

[120] P. A. Martínez, B. Peccerillo, S. Bartolini, J. M. García, and G. Bernabé.
Performance portability in a real world application: PHAST applied to
Caffe. The International Journal of High Performance Computing Applications,
36(3):419–439, 2022. doi: 10.1177/10943420221077107. 3.2.1, 4.1.1, 5.1.1,
5.4.3, 6.3.1

207

https://doi.org/10.1145/2644805
https://doi.org/10.1109/ISPASS.2017.7975297
https://doi.org/10.1109/ISPASS.2017.7975297
https://doi.org/10.48550/arXiv.2102.04664
https://doi.org/10.1109/TPDS.2021.3135876
https://doi.org/10.1007/s11227-022-04417-3
https://doi.org/10.1002/cpe.6917
https://doi.org/10.1177/10943420221077107

Bibliography

[121] P. A. Martínez, J. Woodruff, J. Armengol-Estapé, G. Bernabé, J. M. Gar-
cía, and M. F. P. O’Boyle. Matching Linear Algebra and Tensor Code to
Specialized Hardware Accelerators, Jan. 2023. Zenodo. doi: 10.5281/zen-
odo.7533561. 4.1.2

[122] P. A. Martínez, J. Woodruff, J. Armengol-Estapé, G. Bernabé, J. M. Gar-
cía, and M. F. P. O’Boyle. Matching Linear Algebra and Tensor Code
to Specialized Hardware Accelerators. In Proceedings of the 32nd ACM
SIGPLAN International Conference on Compiler Construction, CC 2023, page
85–97, New York, NY, USA, 2023. Association for Computing Machinery.
doi: 10.1145/3578360.3580262. 5.1.1, 6.3.1

[123] A. McCaskey and T. Nguyen. A MLIR Dialect for Quantum Assembly
Languages. 2021. doi: 10.48550/arXiv.2101.11365. 2.1, 3.5

[124] C. Mendis, J. Bosboom, K. Wu, S. Kamil, J. Ragan-Kelley, S. Paris, Q. Zhao,
and S. Amarasinghe. Helium: lifting high-performance stencil kernels
from stripped x86 binaries to halide DSL code. ACM Press, June 2015.
doi: 10.1145/2737924.2737974. 4.4

[125] W. Michael Brown, J.-M. Y. Carrillo, N. Gavhane, F. M. Thakkar, and S. J.
Plimpton. Optimizing legacy molecular dynamics software with directive-
based offload. Computer Physics Communications, 195:95–101, 2015. doi:
10.1016/j.cpc.2015.05.004. 2.7

[126] A. Mishra, A. M. Malik, and B. Chapman. Using Machine Learning for
OpenMP GPU Offloading in LLVM. In SC, 2020. 4.4

[127] G. E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), Apr. 1965. 1.2

[128] G. E. Moore. Progress in digital integrated electronics. In Electron devices
meeting, volume 21, pages 11–13. Washington, DC, 1975. 1.2, 5.1.1

[129] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional Neural Net-
works over Tree Structures for Programming Language Processing. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16,
pages 1287–1293. AAAI Press, 2016. 4.2.1

[130] A. C. Murray. Customising Compilers for Customisable Processors. Ph.D. The-
sis, The University of Edinburgh, Nov. 2012. http://hdl.handle.net/184
2/8028. 4.4

208

https://doi.org/10.5281/zenodo.7533561
https://doi.org/10.5281/zenodo.7533561
https://doi.org/10.1145/3578360.3580262
https://doi.org/10.48550/arXiv.2101.11365
https://doi.org/10.1145/2737924.2737974
https://doi.org/10.1016/j.cpc.2015.05.004
http://hdl.handle.net/1842/8028
http://hdl.handle.net/1842/8028

Bibliography

[131] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, et al. A Survey and Evaluation of FPGA
High-Level Synthesis Tools. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 35(10):1591–1604, 2016. doi: 10.1109/T-
CAD.2015.2513673. 3.1.1

[132] J. R. Neely. DOE Centers of Excellence Performance Portability Meeting.
Apr. 2016. doi: 10.2172/1332474. 1.3, 2.4

[133] D. Nguyen and J. Lee. Communication-Aware Mapping of Stream
Graphs for Multi-GPU Platforms. In Proceedings of the 2016 International
Symposium on Code Generation and Optimization, CGO ’16, page 94–104,
New York, NY, USA, 2016. Association for Computing Machinery. doi:
10.1145/2854038.2854055. 5.4.1

[134] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen. Exploring
API Embedding for API Usages and Applications. IEEE, May 2017. doi:
10.1109/icse.2017.47. 4.4

[135] A. Ni, D. Ramos, A. Yang, I. Lynce, V. Manquinho, R. Martins, and
C. Le Goues. SOAR: A Synthesis Approach for Data Science API Refac-
toring. ICSE, 2021. doi: 10.48550/arXiv.2102.06726. 4.4, 6.4

[136] R. Nozal and J. L. Bosque. Straightforward Heterogeneous Computing
with the oneAPI Coexecutor Runtime. Electronics, 10(19), 2021. doi:
10.3390/electronics10192386. 5.4.3

[137] R. Nozal, J. L. Bosque, and R. Beivide. EngineCL: Usability and Perfor-
mance in Heterogeneous Computing. Future Generation Computer Systems,
107:522–537, 2020. doi: 10.1016/j.future.2020.02.016. 5.4.3

[138] S. Numata, N. Yoshida, E. Choi, and K. Inoue. On the Effectiveness of
Vector-Based Approach for Supporting Simultaneous Editing of Software
Clones. Product-Focused Software Process Improvement, pages 560–567, Nov.
2016. doi: 10.1007/978-3-319-49094-6_41. 4.4

[139] NVIDIA. CUDA C Programming Guide, Jan. 2021. docs.nvidia.com/cu
da/pdf/CUDA_C_Programming_Guide.pdf. 1.3, 3.1.1

[140] NVIDIA. CUDA Toolkit Documentation (cuBLAS): Tensor Core Usage,
2022. https://docs.nvidia.com/cuda/cublas/index.html#tensorop-r
estrictions. 5.2.1.1, 5.2.2.3

209

https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.2172/1332474
https://doi.org/10.1145/2854038.2854055
https://doi.org/10.1109/icse.2017.47
https://doi.org/10.48550/arXiv.2102.06726
https://doi.org/10.3390/electronics10192386
https://doi.org/10.1016/j.future.2020.02.016
https://doi.org/10.1007/978-3-319-49094-6_41
docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/cublas/index.html#tensorop-restrictions
https://docs.nvidia.com/cuda/cublas/index.html#tensorop-restrictions

Bibliography

[141] NVIDIA. Guidelines For Good Performance On Tensor Cores, 2022. http
s://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.h
tml#tensor-ops-guidelines-for-dl-compiler. 5.2.2.5

[142] NVIDIA. NVDLA, 2022. nvdla.org. 4.4

[143] NVIDIA. NVIDIA Grace Hopper Superchip Architecture. NVIDIA
Whitepaper, 2022. 1.2

[144] NVIDIA. Tensor Layouts In Memory: NCHW vs NHWC, 2022. https:
//docs.nvidia.com/deeplearning/performance/dl-performance-convo
lutional/index.html#tensor-layout. 5.2.2.5, 5.3.1

[145] H. Ootomo and R. Yokota. Recovering single precision accuracy from Ten-
sor Cores while surpassing the FP32 theoretical peak performance. 2022.
doi: 10.48550/arXiv.2203.03341. 5.2.2.6

[146] OpenAI. ChatGPT: Optimizing Language Models for Dialogue, 2022. ht
tps://openai.com/blog/chatgpt/. 2.6

[147] X. Ouyang and Y. Zhu. Core-aware combining: Accelerating critical sec-
tion execution on heterogeneous multi-core systems via combining syn-
chronization. Journal of Parallel and Distributed Computing, 162:27–43, 2022.
doi: 10.1016/j.jpdc.2022.01.001. 5.4.1

[148] Oyama, Yosuke and Ben-Nun, Tal and Hoefler, Torsten and Matsuoka,
Satoshi. Accelerating Deep Learning Frameworks with Micro-Batches. In
2018 IEEE International Conference on Cluster Computing (CLUSTER), pages
402–412, 2018. doi: 10.1109/CLUSTER.2018.00058. 5.2.2.5

[149] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti, H.-
S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski. OuterSPACE: An Outer
Product Based Sparse Matrix Multiplication Accelerator. In 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pages 724–736, 2018. doi: 10.1109/HPCA.2018.00067. 4.4

[150] D.-H. Park, S. Pal, S. Feng, P. Gao, J. Tan, A. Rovinski, S. Xie, C. Zhao,
A. Amarnath, T. Wesley, et al. A 7.3 M Output Non-Zeros/J, 11.7 M Out-
put Non-Zeros/GB Reconfigurable Sparse Matrix–Matrix Multiplication
Accelerator. IEEE Journal of Solid-State Circuits, 55(4):933–944, 2020. doi:
10.1109/JSSC.2019.2960480. 2.5

210

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#tensor-ops-guidelines-for-dl-compiler
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#tensor-ops-guidelines-for-dl-compiler
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#tensor-ops-guidelines-for-dl-compiler
nvdla.org
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#tensor-layout
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#tensor-layout
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#tensor-layout
https://doi.org/10.48550/arXiv.2203.03341
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://doi.org/10.1016/j.jpdc.2022.01.001
https://doi.org/10.1109/CLUSTER.2018.00058
https://doi.org/10.1109/HPCA.2018.00067
https://doi.org/10.1109/JSSC.2019.2960480

Bibliography

[151] V. R. Pascuzzi and M. Goli. Benchmarking a Proof-of-Concept Perfor-
mance Portable SYCL-Based Fast Fourier Transformation Library. In In-
ternational Workshop on OpenCL, IWOCL’22, New York, NY, USA, 2022.
Association for Computing Machinery. doi: 10.1145/3529538.3529996. 3.5

[152] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019. 2.3

[153] B. Peccerillo and S. Bartolini. PHAST - A Portable High-Level Modern
C++ Programming Library for GPUs and Multi-Cores. IEEE Transactions
on Parallel and Distributed Systems, 30(1):174–189, 2019. doi: 10.1109/T-
PDS.2018.2855182. 1.3, 2.2.1, 1, 3.2.1.3, 3.5, 4.1.1, B.1

[154] B. Peccerillo and S. Bartolini. Task-DAG Support in Single-Source PHAST
Library: Enabling Flexible Assignment of Tasks to CPUs and GPUs in
Heterogeneous Architectures. In Proceedings of the 10th International Work-
shop on Programming Models and Applications for Multicores and Manycores,
PMAM@PPoPP 2019, Washington, DC, USA, February 17, 2019, pages 91–
100, 2019. doi: 10.1145/3303084.3309496. 2.2.1, 1

[155] B. Peccerillo and S. Bartolini. Flexible task-DAG management in PHAST
library: Data-parallel tasks and orchestration support for heterogeneous
systems. Concurrency and Computation: Practice and Experience, 2020. doi:
10.1002/cpe.5842. 2.2.1, 1

[156] B. Peccerillo, M. Mannino, A. Mondelli, and S. Bartolini. A survey on hard-
ware accelerators: Taxonomy, trends, challenges, and perspectives. Journal
of Systems Architecture, 129:102561, 2022. doi: 10.1016/j.sysarc.2022.102561.
5.1.1

[157] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Keg-
ley. A Predictable Execution Model for COTS-Based Embedded Systems.
In 2011 17th IEEE Real-Time and Embedded Technology and Applications Sym-
posium, pages 269–279, 2011. doi: 10.1109/RTAS.2011.33. 5.4.1

[158] J. Peng, K. Li, J. Chen, and K. Li. HEA-PAS: A hybrid energy alloca-
tion strategy for parallel applications scheduling on heterogeneous com-
puting systems. Journal of Systems Architecture, 122:102329, 2022. doi:
10.1016/j.sysarc.2021.102329. 5.4.1

211

https://doi.org/10.1145/3529538.3529996
https://doi.org/10.1109/TPDS.2018.2855182
https://doi.org/10.1109/TPDS.2018.2855182
https://doi.org/10.1145/3303084.3309496
https://doi.org/10.1002/cpe.5842
https://doi.org/10.1016/j.sysarc.2022.102561
https://doi.org/10.1109/RTAS.2011.33
https://doi.org/10.1016/j.sysarc.2021.102329

Bibliography

[159] S. Pennycook, J. Sewall, and V. Lee. Implications of a metric for perfor-
mance portability. Future Generation Computer Systems, 92:947–958, 2019.
doi: 10.1016/j.future.2017.08.007. 2.4, 3.4.2.1.1

[160] S. J. Pennycook, J. D. Sewall, D. W. Jacobsen, T. Deakin, and S. McIntosh-
Smith. Navigating Performance, Portability, and Productivity. Computing
in Science Engineering, 23(5):28–38, 2021. doi: 10.1109/MCSE.2021.3097276.
1.3, 2.4, 3.1.1

[161] H. D. Phan, A. T. Nguyen, T. D. Nguyen, and T. N. Nguyen. Statistical
Migration of API Usages. In 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion (ICSE-C), May 2017. doi: 10.1109/icse-
c.2017.17. 4.4

[162] B. Pérez, E. Stafford, J. Bosque, R. Beivide, S. Mateo, X. Teruel, X. Mar-
torell, and E. Ayguadé. Auto-tuned OpenCL kernel co-execution in OmpSs
for heterogeneous systems. Journal of Parallel and Distributed Computing,
125:45–57, 2019. doi: 10.1016/j.jpdc.2018.11.001. 5.4.3

[163] V. Raca, S. W. Umboh, E. Mehofer, and B. Scholz. Runtime and energy
constrained work scheduling for heterogeneous systems. The Journal of
Supercomputing, 78(15):17150–17177, Oct. 2022. doi: 10.1007/s11227-022-
04556-7. 5.1.1, 5.4.1

[164] T. Ravitch, S. Jackson, E. Aderhold, and B. Liblit. Automatic generation of
library bindings using static analysis. ACM SIGPLAN Notices, 44:352–362,
May 2009. doi: 10.1145/1543135.1542516. 4.2.2.2

[165] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kep-
ner. Survey of Machine Learning Accelerators. 2020 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), Sept. 2020. doi: 10.1109/h-
pec43674.2020.9286149. 4.4

[166] R. Rigamonti, B. Delporte, A. Convers, and A. Dassatti. Transparent Live
Code Offloading on FPGA. 2016. doi: 10.48550/arXiv.1609.00130. 4.4

[167] A. Rodríguez, A. Navarro, K. Nikov, J. Nunez-Yanez, R. Gran, D. Suárez
Gracia, and R. Asenjo. Lightweight asynchronous scheduling in heteroge-
neous reconfigurable systems. Journal of Systems Architecture, 124:102398,
2022. doi: 10.1016/j.sysarc.2022.102398. 5.4.1

[168] E. Rotem, A. Yoaz, L. Rappoport, S. J. Robinson, J. Y. Mandelblat, A. Gi-
hon, E. Weissmann, R. Chabukswar, V. Basin, R. Fenger, M. Gupta, and

212

https://doi.org/10.1016/j.future.2017.08.007
https://doi.org/10.1109/MCSE.2021.3097276
https://doi.org/10.1109/icse-c.2017.17
https://doi.org/10.1109/icse-c.2017.17
https://doi.org/10.1016/j.jpdc.2018.11.001
https://doi.org/10.1007/s11227-022-04556-7
https://doi.org/10.1007/s11227-022-04556-7
https://doi.org/10.1145/1543135.1542516
https://doi.org/10.1109/hpec43674.2020.9286149
https://doi.org/10.1109/hpec43674.2020.9286149
https://doi.org/10.48550/arXiv.1609.00130
https://doi.org/10.1016/j.sysarc.2022.102398

Bibliography

A. Yasin. Intel Alder Lake CPU Architectures. IEEE Micro, 42(3):13–19,
2022. doi: 10.1109/MM.2022.3164338. 1.2

[169] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov,
N. Gibson, J. Hegeman, M. Lele, R. Levenstein, et al. Glow: Graph
Lowering Compiler Techniques for Neural Networks. 2018. doi:
10.48550/arXiv.1805.00907. 2.1, 3.5

[170] M. Samak, D. Kim, and M. C. Rinard. Synthesizing replacement classes.
Proc. ACM Program. Lang., 4(POPL), dec 2019. doi: 10.1145/3371120. 4.4

[171] C. Schlaak, T.-H. Juang, and C. Dubach. Optimizing data reshap-
ing operations in functional irs for high-level synthesis. In Proceed-
ings of the 23rd ACM SIGPLAN/SIGBED International Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, LCTES 2022, page 61–72,
New York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3519941.3535069. 4.4

[172] C. Software. ComputeCpp, 2020. https://github.com/codeplaysoftwar
e/computecpp-sdk. 2.2.2, 3.5

[173] A. Sorokin, S. Malkovsky, and G. Tsoy. Comparing the performance of
general matrix multiplication routine on heterogeneous computing sys-
tems. Journal of Parallel and Distributed Computing, 160:39–48, 2022. doi:
10.1016/j.jpdc.2021.10.002. 5.4.2

[174] M. Steuwer, C. Fensch, S. Lindley, and C. Dubach. Generating Perfor-
mance Portable Code Using Rewrite Rules: From High-Level Functional
Expressions to High-Performance OpenCL Code. page 205–217, 2015. doi:
10.1145/2784731.2784754. 4.4

[175] M. Steuwer, T. Remmelg, and C. Dubach. Matrix multiplication beyond
auto-tuning: Rewrite-based GPU code generation. In 2016 International
Conference on Compliers, Architectures, and Sythesis of Embedded Systems
(CASES), pages 1–10, 2016. doi: 10.1145/2968455.2968521. 4.4

[176] J. D. Stevens and A. Klöckner. A mechanism for balancing accuracy and
scope in cross-machine black-box GPU performance modeling. The Inter-
national Journal of High Performance Computing Applications, 34(6):589–614,
2020. doi: 10.1177/1094342020921340. 5.4.1

[177] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems. Computing in Science
Engineering, 12(3):66–73, 2010. doi: 10.1109/MCSE.2010.69. 1.3, 2.1, 1, 4.1.1

213

https://doi.org/10.1109/MM.2022.3164338
https://doi.org/10.48550/arXiv.1805.00907
https://doi.org/10.1145/3371120
https://doi.org/10.1145/3519941.3535069
https://github.com/codeplaysoftware/computecpp-sdk
https://github.com/codeplaysoftware/computecpp-sdk
https://doi.org/10.1016/j.jpdc.2021.10.002
https://doi.org/10.1145/2784731.2784754
https://doi.org/10.1145/2968455.2968521
https://doi.org/10.1177/1094342020921340
https://doi.org/10.1109/MCSE.2010.69

Bibliography

[178] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, Aug. 1969. doi: 10.1007/BF02165411. 4.3.2

[179] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,
G. D. Liu, and W.-m. W. Hwu. Parboil: A revised benchmark suite for
scientific and commercial throughput computing. Center for Reliable and
High-Performance Computing, 127:27, 2012. 4.1.1

[180] F.-H. Su, J. Bell, K. Harvey, S. Sethumadhavan, G. Kaiser, and T. Jebara.
Code Relatives: Detecting Similarly Behaving Software. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, page 702–714, New York, NY, USA, 2016.
Association for Computing Machinery. doi: 10.1145/2950290.2950321. 4.4

[181] W. Sun, A. Li, T. Geng, S. Stuijk, and H. Corporaal. Dissecting Tensor
Cores via Microbenchmarks: Latency, Throughput and Numerical Behav-
iors. 2022. doi: 10.48550/arXiv.2206.02874. 2.5

[182] W. Sun, S. Sioutas, S. Stuijk, A. Nelson, and H. Corporaal. Efficient Tensor
Cores support in TVM for Low-Latency Deep learning. In 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 120–123,
2021. doi: 10.23919/DATE51398.2021.9473984. 4.4

[183] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer. Efficient Processing of
Deep Neural Networks: A Tutorial and Survey. Proceedings of the IEEE,
105(12):2295–2329, 2017. doi: 10.1109/JPROC.2017.2761740. 2.3, 3.1.2,
3.2.2, 3.4.3.1, 3.4.4.1, 4.1.2, 4.3.5.2, 5.3.1, B.5.3

[184] Y. Tortorella, L. Bertaccini, D. Rossi, L. Benini, and F. Conti. RedMulE:
A Compact FP16 Matrix-Multiplication Accelerator for Adaptive Deep
Learning on RISC-V-Based Ultra-Low-Power SoCs. In Proceedings of the
2022 Conference & Exhibition on Design, Automation & Test in Europe, DATE
’22, page 1099–1102, Leuven, BEL, 2022. European Design and Automation
Association. 4.4

[185] Y. Turakhia, G. Bejerano, and W. J. Dally. Darwin: A Genomics Co-
Processor Provides up to 15,000X Acceleration on Long Read Assembly. In
Proceedings of the Twenty-Third International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS ’18, page
199–213, New York, NY, USA, 2018. Association for Computing Machin-
ery. doi: 10.1145/3173162.3173193. 1.2

214

https://doi.org/10.1007/BF02165411
https://doi.org/10.1145/2950290.2950321
https://doi.org/10.48550/arXiv.2206.02874
https://doi.org/10.23919/DATE51398.2021.9473984
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1145/3173162.3173193

Bibliography

[186] R. Uhrie. Automatic Computational Domain Detection. Ph.D. Thesis, Arizona
State University, Aug. 2021. https://hdl.handle.net/2286/R.2.N.1618
94. 4.4

[187] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is All You Need. In Proceedings
of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates
Inc. 2.6

[188] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and T. Mi-
tra. High-Throughput CNN Inference on Embedded ARM Big.LITTLE
Multicore Processors. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 39(10):2254–2267, 2020. doi: 10.1109/T-
CAD.2019.2944584. 5.4.2

[189] Z. Wang, D. Grewe, and M. F. P. O’Boyle. Automatic and Portable Mapping
of Data Parallel Programs to OpenCL for GPU-Based Heterogeneous Sys-
tems. ACM Trans. Archit. Code Optim., 11(4), 12 2014. doi: 10.1145/2677036.
4.4

[190] Y. Wen and M. F. O’Boyle. Merge or Separate? Multi-Job Scheduling for
OpenCL Kernels on CPU/GPU Platforms. In Proceedings of the General Pur-
pose GPUs, GPGPU-10, page 22–31, New York, NY, USA, 2017. Association
for Computing Machinery. doi: 10.1145/3038228.3038235. 2.7, 4.4, 5.4.1

[191] Y. Wen, Z. Wang, and M. F. P. O’Boyle. Smart multi-task scheduling for
OpenCL programs on CPU/GPU heterogeneous platforms. In 2014 21st
International Conference on High Performance Computing (HiPC), pages 1–10,
2014. doi: 10.1109/HiPC.2014.7116910. 2.7, 5.4.1

[192] J. Weng, A. Jain, J. Wang, L. Wang, Y. Wang, and T. Nowatzki. UNIT: Uni-
fying Tensorized Instruction Compilation. In 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 77–89, 2021.
doi: 10.1109/CGO51591.2021.9370330. 4.4

[193] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful
Visual Performance Model for Multicore Architectures. Commun. ACM,
52(4):65–76, Apr. 2009. doi: 10.1145/1498765.1498785. 2.7

[194] S. Winograd. Arithmetic Complexity of Computations. Society for Industrial
and Applied Mathematics, 1980. doi: 10.1137/1.9781611970364. 4.3.2

215

https://hdl.handle.net/2286/R.2.N.161894
https://hdl.handle.net/2286/R.2.N.161894
https://doi.org/10.1109/TCAD.2019.2944584
https://doi.org/10.1109/TCAD.2019.2944584
https://doi.org/10.1145/2677036
https://doi.org/10.1145/3038228.3038235
https://doi.org/10.1109/HiPC.2014.7116910
https://doi.org/10.1109/CGO51591.2021.9370330
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1137/1.9781611970364

Bibliography

[195] M. Wolfe. Performant, Portable, and Productive Parallel Programming
With Standard Languages. Computing in Science Engineering, 23(5):39–45,
2021. doi: 10.1109/MCSE.2021.3097167. 1.3, 4.1.1

[196] J. Woodruff, J. Armengol-Estapé, S. Ainsworth, and M. F. P. O’Boyle.
Bind the Gap: Compiling Real Software to Hardware FFT Accelerators.
In Proceedings of the 43rd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, PLDI 2022, page 687–702,
New York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3519939.3523439. 1.3, 2.6, 4.1.1, 4.1.1, 4.1.2, 4.2.3.3, 4.3.2.1, 4.4

[197] H.-I. Wu, D.-Y. Guo, H.-H. Chin, and R.-S. Tsay. A Pipeline-Based Sched-
uler for Optimizing Latency of Convolution Neural Network Inference
over Heterogeneous Multicore Systems. In 2020 2nd IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS), pages 46–
49, 2020. doi: 10.1109/AICAS48895.2020.9073977. 5.4.2

[198] X. Xie, Z. Liang, P. Gu, A. Basak, L. Deng, L. Liang, X. Hu, and Y. Xie.
SpaceA: Sparse Matrix Vector Multiplication on Processing-in-Memory
Accelerator. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 570–583, 2021. doi: 10.1109/H-
PCA51647.2021.00055. 4.4

[199] Xilinx. triSYCL, 2021. https://github.com/triSYCL/triSYCL. 2.2.2, 3.1.1

[200] S. Yesil and O. Ozturk. Scheduling for heterogeneous systems in
accelerator-rich environments. The Journal of Supercomputing, 78(1):200–
221, Jan. 2022. doi: 10.1007/s11227-021-03883-5. 5.4.1

[201] G. Yuan, S. Palkar, D. Narayanan, and M. Zaharia. Offload Annotations:
Bringing Heterogeneous Computing to Existing Libraries and Workloads.
In 2020 USENIX Annual Technical Conference (USENIX ATC 20), pages 293–
306. USENIX Association, July 2020. 4.4

[202] F. Zhang, J. Zhai, B. He, S. Zhang, and W. Chen. Understanding
Co-Running Behaviors on Integrated CPU/GPU Architectures. IEEE
Transactions on Parallel and Distributed Systems, 28(3):905–918, 2017. doi:
10.1109/TPDS.2016.2586074. 5.4.1

[203] J. Zhang, F. Franchetti, and T. M. Low. High Performance Zero-Memory
Overhead Direct Convolutions. In J. Dy and A. Krause, editors, Proceedings

216

https://doi.org/10.1109/MCSE.2021.3097167
https://doi.org/10.1145/3519939.3523439
https://doi.org/10.1109/AICAS48895.2020.9073977
https://doi.org/10.1109/HPCA51647.2021.00055
https://doi.org/10.1109/HPCA51647.2021.00055
https://github.com/triSYCL/triSYCL
https://doi.org/10.1007/s11227-021-03883-5
https://doi.org/10.1109/TPDS.2016.2586074

Bibliography

of the 35th International Conference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pages 5776–5785, Stockholmsmässan,
Stockholm Sweden, July 2018. PMLR. 3.2.1.6, A.2, B.5.3

[204] T. Zhao, X. Huang, and Y. Cao. DeepDSL: A Compilation-
based Domain-Specific Language for Deep Learning. 2017. doi:
10.48550/arXiv.1701.02284. 3.4.4.2, 3.5

[205] H. Zhou, J. Dong, J. Cheng, W. Dong, C. Huang, Y. Shen, Q. Zhang, M. Gu,
C. Qian, H. Chen, Z. Ruan, and X. Zhang. Photonic matrix multiplication
lights up photonic accelerator and beyond. Light: Science & Applications,
11(1):30, Feb. 2022. doi: 10.1038/s41377-022-00717-8. 4.4

[206] N. Zhou, X. Liao, F. Li, Y. Feng, and L. Liu. List Scheduling Algorithm
Based on Virtual Scheduling Length Table in Heterogeneous Computing
System. Wireless Communications and Mobile Computing, 2021:9529022, Dec.
2021. doi: 10.1155/2021/9529022. 5.4.1

217

https://doi.org/10.48550/arXiv.1701.02284
https://doi.org/10.1038/s41377-022-00717-8
https://doi.org/10.1155/2021/9529022

Publications Composing the Thesis

219

This work covers the PHAST Library’s employment, a hardware-agnostic programming
library, to a real-world application like the Caffe framework. The original implementation of
Caffe consists of two different versions of the source code: one to run on CPU platforms and
another one to run on the GPU side. With PHAST, we aim to develop a single-source code
implementation capable of running efficiently on CPU and GPU. In this paper, we start by
carrying out a basic Caffe implementation performance analysis using PHAST. Then, we
detail possible performance upgrades. We find that the overall performance is dominated
by few ‘heavy’ layers. In refining the inefficient parts of this version, we find two different
approaches: improvements to the Caffe source code and improvements to the PHAST
Library itself, which ultimately translates into improved performance in the PHAST version
of Caffe. We demonstrate that our PHAST implementation achieves performance portability
on CPUs and GPUs. With a single source, the PHAST version of Caffe provides the same or
even better performance than the original version of Caffe built from two different codebases.
For the MNIST database, the PHAST implementation takes an equivalent amount of time
as native code in CPU and GPU. Furthermore, PHAST achieves a speedup of 51% and
a 49% with the CIFAR-10 database against native code in CPU and GPU, respectively.
These results provide a new horizon for software development in the upcoming heterogeneous
computing era.

High-performance computing · Performance portability · Heterogeneous computing · Ma-
chine learning.

This paper presents HDNN, a proof-of-concept MLIR dialect for cross-platform computing
specialized in deep neural networks. As target devices, HDNN supports CPUs, GPUs
and TPUs. In this paper, we provide a comprehensive description of the HDNN dialect,
outlining how this novel approach aims to solve the P 3 problem of parallel programming
(portability, productivity, and performance). An HDNN program is device-agnostic, i.e.,
only the device specifier has to be changed to run a given workload in one device or another.
Moreover, HDNN has been designed to be a domain-specific language, which ultimately
helps programming productivity. Finally, HDNN relies on optimized libraries for heavy,
performance-critical workloads. HDNN has been evaluated against other state-of-the-art
machine learning frameworks on all the hardware platforms achieving excellent performance.
We conclude that the ideas and concepts used in HDNN can be crucial for designing
future generation compilers and programming languages to overcome the challenges of the
forthcoming heterogeneous computing era.

High-performance computing · LLVM · MLIR · Heterogeneous computing · Domain-specifc
languages · Deep neural networks

Dedicated tensor accelerators demonstrate the importance of linear algebra in modern
applications. Such accelerators have the potential for impressive performance gains, but
require programmers to rewrite code using vendor APIs - a barrier to wider scale adoption.
Recent work overcomes this by matching and replacing patterns within code, but such
approaches are fragile and fail to cope with the diversity of real-world codes. We develop
ATC, a compiler that uses program synthesis to map regions of code to specific APIs. The
mapping space that ATC explores is combinatorially large, requiring the development of
program classification, dynamic analysis, variable constraint generation and lexical distance
matching techniques to make it tractable. We apply ATC to real-world tensor and linear
algebra codes and evaluate them against four state-of-the-art approaches. We accelerate
between 2.6x and 7x more programs, leading to over an order of magnitude performance
improvement.

Program synthesis · GEMM · LLVM · Offloading.

	Acknowledgements
	Extended Abstract in Spanish
	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Accelerator-Level Parallelism
	Domain-Specific Accelerators
	Productivity, Portability and Performance
	Objectives and Goals
	Thesis Organization

	Background
	Compiler Technologies
	Single-Source Languages
	The PHAST Library
	oneAPI

	A DNN Framework: Caffe
	Performance Portability
	Accelerators and Tensor Cores
	Program Synthesis and Code Generation
	Scheduling and Co-Execution

	High and Low-Level Programming Languages in the Heterogeneous Era
	Introduction
	Motivation
	Research Context

	Achieving Performance Portability
	Using PHAST
	Using oneAPI

	A Novel Heterogeneous Language for Deep Neural Networks
	HDNN Frontend
	HDNN Backend

	Evaluation
	Test Bed
	PHAST
	oneAPI
	HDNN
	Overall

	Related Work
	Conclusions

	Compiling Existent Code to Accelerators
	Introduction
	Motivation
	Research Context

	Matching Linear Algebra and Tensor Code to Accelerators
	System Overview
	Variable Matching
	Reducing the Matchings Search Space
	Automatic Profitability Detection

	Evaluation
	Test Bed
	User Code
	Neural Code Classification
	GEMM
	Convolutions
	Productivity

	Related Work
	Conclusions

	Exploiting Accelerator-Level Parallelism
	Introduction
	Motivation
	Research Context

	Exploiting Accelerator-Level Parallelism
	Predict, Optimize, Adapt and Schedule (POAS)
	Using POAS to Schedule GEMM and Convolution

	Evaluation
	Test Bed
	Prediction Accuracy
	Performance
	Performance Analysis

	Related Work
	Scheduling
	Domain-Specific Scheduler Proposals
	Multi-Domain Scheduler Proposals

	Conclusions

	Conclusions and Future Ways
	Conclusions
	Thesis Contributions
	Productivity and Performance Portability in the Heterogeneous Era
	Compiling Existent Code to Accelerators
	Exploiting Accelerator-Level Parallelism

	Publications
	Refereed Journals and Conferences
	Other presentations

	Future Ways

	Caffe Implementation Details
	The Softmax Layer in Caffe
	The Convolution Layer in Caffe

	PHAST-Caffe Implementation
	Softmax (Feedforward)
	Convolution (Feedforward)
	Convolution (Backpropagation)
	Adam Solver
	Extended Evaluation
	Correctness
	Softmax
	Convolution (Feedforward)
	Convolution (Backpropagation)
	Adam solver

	oneAPI-Caffe Implementation
	Softmax
	Convolution

	Bibliography
	Publications Composing the Thesis
	Performance portability in a real world application: PHAST applied to Caffe
	Applying Intel's oneAPI to a machine learning case study
	HDNN: a cross-platform MLIR dialect for deep neural networks
	Matching Linear Algebra and Tensor Code to Specialized Hardware Accelerators

