
Composite Instruction Prefetching
Gino Chacon∗†

ginochacon@tamu.edu
Elba Garza∗¶

elba@cs.washington.edu
Alexandra Jimborean§

alexandra.jimborean@um.es
Alberto Ros§

aros@ditec.um.es
Paul V. Gratz†‡

pgratz@gratz1.com

Daniel A. Jiménez‡
djimenez@acm.org

Samira Mirbagher-Ajorpaz∥
smirbag@ncsu.edu

∗Co-first Authors
†Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
‡Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA

§Computer Engineering Department, University of Murcia, Murcia, Spain
¶Paul G. Allen School of Computer Science, University of Washington, Seattle, Washington, USA

∥Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA

Abstract—Prefetching is a pivotal mechanism for effectively
masking latencies due to the processor/memory performance gap.
Instruction prefetchers prevent costly instruction fetch stalls by
requesting blocks of instruction memory in advance of their
use to keep the pipeline front-end busy. the rapidly increasing
instruction footprints of modern workloads have amplified the
importance of such research.

We propose a framework to leverage the complementary
prefetching behaviors of existing prefetching techniques to create
composite prefetchers. We show that recently proposed instruc-
tion prefetching techniques leverage different mechanisms from
one another and find that in many cases, different prefetchers
are complementary to each other. Composite prefetching allows
for higher performance at lower storage overheads by combining
the coverage of different complex prefetchers. We demonstrate a
framework for selecting and combining state-of-the-art complex
prefetchers, in a ”plug-and-play” fashion, to identify the best per-
forming combinations at various hardware overheads. We show
that for every storage capacity constraint analyzed, composite
prefetching outperforms prior prefetching schemes with greater
improvements shown at smaller capacity constraints.

Index Terms—instruction prefetching; hardware prefetching;
first-level caches; datacenter applications

I. INTRODUCTION

As server and data center-based computing increases, pro-
cessor microarchitecture must adapt to their workloads’ chal-
lenging behaviors. Server-based computing services are char-
acterized by deep software stacks, where even simple user
requests traverse multiple software layers, touching megabytes
of code in the process [1]. The instruction footprints of these
server workloads can quickly overburden L1 instruction (L1-
I) caches resulting in significant critical-path stalls. Recent
studies have found that large footprints are endemic to modern
server workloads and will only grow larger over time—at a rate
of 20% per year—as software stacks deepen to accommodate
more complex applications [2]. This overwhelming use of
front-end resources is a well-known phenomenon dubbed the
front-end bottleneck [1]. The front-end bottleneck challenges

hardware architects as programs’ long-term behaviors can no
longer be fully mapped in the L1-I cache nor captured by
branch prediction structures [3]. Thus, microarchitects must
limit the effects of the front-end bottleneck while keeping to
strict timing, area, and power constraints.

One tool for addressing the front-end bottleneck is prefetch-
ing, a technique that can effectively mask memory access
latencies by speculating on future memory reference streams,
to reduce costly cache misses [4], [5]. Prefetching is a viable
mechanism for reducing misses in both instruction and data
caches. Prefetching requires predicting upcoming memory ac-
cesses and issuing preemptive memory requests before explicit
requests by memory are necessary [6], [4], [7], [8], [9].

We find that, due to their independent implementations,
recently proposed instruction prefetchers [10], [11], [12], [13],
[14], [15], [16], [17] often behave differently dependent on
workload and program phase, leading to different prefetch
suggestions at different times, and thus they vary in terms
of timeliness, coverage, and accuracy. Interestingly, we also
find that as the hardware budget of each prefetcher is reduced
to make the prefetcher more practical in a production envi-
ronment, they behave more distinctively and complementarily.
This finding argues for the benefits of leveraging multiple
prefetchers in combination, particularly when implemented in
reasonable, buildable hardware budgets.

While prior work has meticulously integrated simple
prefetchers to create composite prefetchers for both instruc-
tion [18] and data [9], [19], such component-based composite
prefetchers do not allow for interchangeability of components
and must be tuned extensively to ensure each component
captures specific application behaviors. This requires in-depth
knowledge of the prefetching behavior of each component,
and an idea of how they may complement each other regarding
coverage and precision. These works also require a mechanism
to identify whether recent accesses fit a particular pattern

attributed to a specific component, increasing the likelihood
of the prefetcher misidentifying the application’s behavior.
By contrast, this work seeks to coordinate and interchange
multiple complex instruction prefetchers, allowing for broader
coverage to overcome the timing constraints of traditional
composite prefetchers.

Based on the increasing instruction footprint size of modern
server workloads and the success of individual prefetchers,
we propose a new approach to composite prefetching that
requires no knowledge of the component prefetchers and
allows for interchangeable components to enable prefetching
design space exploration. Our approach integrates preexisting
complex prefetchers as components within a single compos-
ite prefetcher. Each prefetcher design may capture different
instruction streams, and their combined prefetch behavior
results in higher coverage and performance than an individual
prefetcher at an equivalent size. Aside from varying the
metadata storage required by each prefetcher, each compo-
nent is considered a black box. This approach mitigates the
burden of creating tailor-made components to capture specific
application behavior when creating a composite prefetcher. As
a practical design methodology, our approach would enable
industry to easily interchange any desired prefetcher from the
academic literature and study them in combination without
spending valuable design time evaluating each component’s
advantages or shortcomings. In summary, our contributions in
this work are as follows:

• We characterize prior work, a selection of complex in-
struction prefetchers, to understand their complementary
nature and composability at differing sizes.

• We study the feasibility of combining a set of state-of-
the-art hardware prefetchers to better capture instruction
stream behavior.

• We identify a simple hybridization scheme for combin-
ing existing prefetchers to leverage their complementary
behavior. Our scheme can integrate multiple complex
prefetchers with no prior knowledge of function.

• We perform a full design-space exploration for the set
of hardware prefetchers to identify their best performing
combinations at various hardware budgets.

• Using our scheme, we demonstrate that a combination
of multiple state-of-the-art prefetchers can outperform its
components at the same hardware budget.

II. BACKGROUND AND MOTIVATION

This section provides a background on the component
prefetchers we consider for generating composite prefetchers,
and our motivation for exploring composite prefetching as a
solution to the front-end bottleneck.

A. Modern Instruction Prefetchers

Recently proposed instruction prefetchers speculate on fu-
ture references using varying underlying mechanisms. Due to

their differences, they each tend to be more or less efficient
at predicting future references for particular workloads and
program phases. Thus, by combining these existing prefetch-
ers, we can create a single unified prefetcher better than the
sum of its parts. Here we examine several recently proposed
prefetchers and classify them based on function.

Each class of prefetcher operates based on specific princi-
ples surrounding an application’s behavior to predict future
instructions. Recently proposed prefetchers can be classified
based on how they train, represent instruction stream behavior,
and select prefetch candidates. This is similar to recent clas-
sifications of data prefetchers [20]. Recent work we consider
for our composite prefetchers falls into the following classes
of prefetchers:

1) Control-Flow-Graph Recreation: These prefetchers
recreate an application’s control-flow graph (CFG). Nodes
represent basic blocks within a graph, with edges representing
control-flow (branch) instructions. The prefetcher uses the
address of L1-I accesses to find a starting point to traverse
the CFG to find prefetch candidates. Confidence is generally
assigned based on observations of the control flow to indicate
the application’s likelihood to take a particular execution path.

Barça: The Branch Agnostic Region Searching Algorithm,
or Barça [12], creates a control-flow graph to map regions of
instruction blocks and their relative control flow.

PIPS: Prefetching Instructions with Probabilistic Scouts, or
PIPS [17] recreates an application’s CFG using a Line-History
Table to connect cache lines recently accessed together, track-
ing the probability of traversing a particular edge.

2) Temporal Prefetchers: These prefetchers attempt to pre-
dict the future instruction stream by identifying accesses
that cause cache misses, recording the following misses, and
replaying them when a triggering access is seen. This style
of prefetcher emphasizes timeliness by prefetching misses in
an instruction stream well before the front-end requests them.
We classify the following prefetchers as temporal prefetchers:

EIP: The Entangling Instruction Prefetcher [10], [21] “en-
tangles” instructions together to provide prefetch timelines,
accounting for the prefetch latency to identify the suitable
instruction to trigger the prefetch.

FNL-MMA: FNL-MMA [13] combines a Footprint Next
Line Prefetcher (FNL) to predict the “not so distant” future,
while the Multiple Miss Ahead Predictor (MMA) takes advan-
tage of predictable cache miss sequences.

TAP: The Temporal Ancestry Prefetcher [14] augments a
next-line prefetcher with temporal-based histories leading to
a program counter (PC) based on the observation that most
cache lines are not rereferenced once they fill the cache.

MANA: MANA [15] creates spatial regions in a set-
associative table, tracking a triggering address and a footprint
to indicate which blocks within a region are accessed. MANA
traverses its table when prefetching, loading a stream address
buffer with prefetch candidates. searched to a certain depth.

3) Branch-Oriented Prefetchers: Unlike CFG-based
prefetchers, these prefetchers do not recreate the CFG but
rather use branch-related information to make predictions
about future accesses and cover branch targets. This
information includes the branch-target-buffer, the return-
address-stack (RAS), or other branch structures. We use the
following branch-oriented prefetchers in our work:

D-JOLT: D-JOLT [11] consists of multiple simple prefetch-
ers of varying characteristics. It uses a long-range prefetcher
to cover the distant future with higher coverage, a short-range
prefetcher to cover the near future with higher accuracy, and
a ”fall-back” prefetcher.

JIP: JIP [16] is composed of multiple prefetchers that
target specific instruction stream behavior, such as sequential
accesses within basic-blocks, branches with a single target,
and branches to multiple targets.

B. Complementary Prefetchers

While some prefetchers have high performance at lower
hardware budgets, they cannot leverage more storage to
achieve higher performance. Each prefetcher’s performance
varies and operates on different principles, which can be
broadly classified (Sec. IV-B), but their classification does
not predict their performance at various hardware budgets.
Figure 1 illustrates this by showing the overlap of unique
addresses targeted by each prefetcher at sizes of 10KB and
128KB. Ideally, complementary prefetchers have lower over-
lap to facilitate different instruction stream behaviors. Lower
hardware budgets limit the misses each prefetcher learns and
targets, resulting in a low overlap between most prefetchers
except for FNL+MMA and JIP, PIPS, and TAP. At higher
storage budgets, the prefetchers are less constrained, capture
more misses, and thus converge towards similar behavior. This
indicates that at different hardware budgets, a combination
of prefetchers have vastly different prefetching behavior and
potentially capture different instruction streams. However, if
prefetch streams are too dissimilar, there is a potential for
destructive interference between the prefetchers as they could
each aggressively prefetch different instruction streams, result-
ing in a high amount of thrashing in the already encumbered
L1-I. To this end, we propose a composite prefetching frame-
work and methodology for searching for the best performing
combination of prefetchers at various hardware budgets.

C. Composite Prefetching

Few composite prefetchers exist in the prior work, mainly
in the data prefetching domain. Division of Labor, or DOL [9],
attempts to exploit both simple and complex access patterns
using a collaboration of specialized subcomponents for each
pattern. DOL is extendable with additional components as
more access patterns are identified. Note that the hardware
designer must identify missing or necessary access patterns,
making DOL limited by the designer’s knowledge.

Bouquet of Instruction Pointers [19] creates a composite L1
data prefetcher that uses a “bouquet” of pointers to classify
instruction pointers and issue data requests based on the
classification. This technique covers and identifies a handful
of memory access patterns that drive prefetches.

The above works focus on data prefetching that relates
specific instructions to data they access. While instruction
prefetching and data prefetching are similar, as they attempt
to hide access latencies, their access patterns and relationships
to data diverge. Instruction prefetchers target instructions
themselves, causing control flow to be an important factor.
Divide and Conquer Frontend Bottleneck [18] warns against
BTB-directed instruction prefetches, presenting the “harmful
effects” of making instruction prefetchers dependent on BTB
content. Instead, it proposes dividing the front-end bottleneck
into a sequential prefetcher to cover sequential misses, a
discontinuity prefetcher, and pre-decoding prefetch blocks
to reduce BTB misses. This divide-and-conquer method has
the same area overhead as a BTB-directed prefetcher but
outperforms it by 5% on average for their selected workloads.

As seen by the works described above, the concept of com-
bining prefetchers, both in data and instruction prefetching,
is not novel in itself. However, these component prefetchers
are non-interchangeable and tuned for hardware size and
prefetch specialty by the designer, requiring in-depth knowl-
edge of each component.In contrast, our proposition requires
no knowledge of the prefetcher components and allows for
previously unexplored component interchangeability.

Barca D-JOLT FNL-MMA EIP JIP PIPS TAP Mana
Barca 100.0% 33.5% 34.2% 34.1% 34.2% 34.2% 34.2% 34.2%

D-JOLT 33.5% 100.0% 42.9% 42.4% 42.9% 42.9% 42.8% 42.7%
FNL-MMA 34.2% 42.9% 100.0% 48.6% 69.2% 68.8% 66.8% 51.5%

EIP 34.1% 42.4% 48.6% 100.0% 48.6% 48.6% 48.6% 47.5%
JIP 34.2% 42.9% 69.2% 48.6% 100.0% 74.4% 78.5% 51.6%

PIPS 34.2% 42.9% 68.8% 48.6% 74.4% 100.0% 71.7% 51.6%
TAP 34.2% 42.8% 66.8% 48.6% 78.5% 71.7% 100.0% 51.4%

Mana 34.2% 42.7% 51.5% 47.5% 51.6% 51.6% 51.4% 100.0%

(a) Percent overlap of unique prefetch targets between two prefetchers
sized at roughly 10KB each for a subset of CVP traces.

Barca D-JOLT FNL-MMA EIP JIP PIPS TAP Mana
Barca 100.0% 62.7% 62.7% 62.6% 63.2% 63.2% 63.0% 62.6%

D-JOLT 62.7% 100.0% 66.9% 68.1% 71.0% 70.9% 69.9% 69.1%
FNL-MMA 62.7% 66.9% 100.0% 67.1% 68.8% 68.8% 67.9% 67.4%

EIP 62.6% 68.1% 67.1% 100.0% 71.7% 71.7% 70.3% 70.0%
JIP 63.2% 71.0% 68.8% 71.7% 100.0% 99.6% 77.8% 77.2%

PIPS 63.2% 70.9% 68.8% 71.7% 99.6% 100.0% 77.8% 77.2%
TAP 63.0% 69.9% 67.9% 70.3% 77.8% 77.8% 100.0% 73.3%

Mana 62.6% 69.1% 67.4% 70.0% 77.2% 77.2% 73.3% 100.0%

(b) Percent overlap of unique prefetch targets between two prefetchers
sized at roughly 128KB each for a subset of CVP traces.

Fig. 1: The overlap between individual prefetchers at the
smallest (10KB) and largest (128KB) hardware budgets. The
higher the percentage, the more the two prefetchers overlap.

III. DESIGN AND IMPLEMENTATION

This section describes our proposed design of a composite
prefetcher, consisting of two or more prefetchers. We begin by

Prefetch Queue

Sub-prefetcher
1

Sub-prefetcher
2

Sub-prefetcher
3

Prefetch Buffer 1

Prefetch Buffer 2

Prefetch Buffer 3

Composite Prefetcher

L1 Instruction Cache

Cache Access
and

Cache Fill Metadata

Selection
Mechanism

Branch Access Metadata

Fig. 2: Overview of the composite prefetcher’s organization.

describing the hardware framework that enables the integration
of multiple prefetchers. We then discuss how the composite
prefetcher generates and issues prefetch candidates to the L1-I.

A. Composite Prefetcher Organization

A key design constraint of our composite prefetcher is
that it should be comparable to a single prefetcher using
the same hardware budget. Thus, we scale down the budget
used in the various prefetchers described in Section II to use
multiple prefetchers with a comparable total budget of a single
prefetcher. For instance, integrating two 10KB prefetchers
will have comparable hardware overhead as a single 20KB
prefetcher. A goal when integrating prefetcher components is
for their individual operation to remain intact. Thus, other than
modifying their structures to reduce their metadata state stor-
age, we make no further changes to any prefetcher component.

In this work, we explore integrating mixes of two to four
prefetchers. Figure 2 illustrates the hardware framework for
prefetchers. Each complex prefetcher component, or sub-
prefetcher, receives metadata from the L1-I cache regarding
cache accesses, misses, and fills. Following the subprefetchers,
a subprefetcher buffer (SPFB) is available to each prefetcher
that is the same size as the L1-I prefetch queue. This allows the
prefetchers to operate as they would individually without being
affected by each other’s prefetch queue’s bandwidth pressure.
Finally, a selection mechanism is placed at the head of the
buffers to select a prefetcher’s buffer based on a selection
policy. Beyond the state required per prefetcher, this buffering
and selection mechanism requires 32 entries per SPFB to
hold 56-bit prefetch cache line addresses (assuming 64B cache
lines), resulting in a 224B overhead per subprefetcher. Further
discussion on the operation of the composite prefetcher is
provided below in Section III-C.

An essential property of a composite prefetcher organiza-
tion is that although the subprefetchers are technically not
aware of each other when run in tandem, they adapt to each
others’ behavior through the misses that are covered versus
uncovered during execution. Since the majority of prefetchers
we consider are trained only on cache misses, once one
prefetcher learns to cover a given miss, other subprefetchers
can quickly adapt to disregard the metadata state needed to

cover that miss since it is no longer considered a miss from
their perspective. As we will show, this is desirable since this
allows subprefetchers to use their limited storage to focus on
the misses not covered by the accompanying subprefetchers.

B. L1-I Cache Metadata and Subprefetcher Training

We provide each prefetcher information on cache demand
accesses, prefetch hits, branch information and results, and
the effects of cache fills, such as the filling cache address and
the victim cache line’s address. Each prefetcher is treated as
a “black box” with regards to the metadata it receives and
is not tuned to cover specific instruction stream behavior, as
opposed to prior composite prefetcher work [18], [9], [19].
Each subprefetcher trains based on their individual training
policy and may disregard any provided information.

C. Composite Prefetcher Operation

Each prefetcher generates a set of prefetch candidates on a
cache access that it places in the SPFBs. Each cycle following
generation, the prefetch selection mechanism transfers the
head of a particular SPFB into the L1-I cache’s prefetch
queue using a round-robin selection mechanism. We explored
other selection mechanisms but found that round-robin was
sufficient because much of the time, only one prefetcher is
filling its SPFB while the other SPFBs are empty. If the
prefetch queue is full or there is no available Miss Status
Handling Register (MSHR), the selection mechanism does not
continue to move prefetches into the queue. When generating
a new stream of prefetches, the head of the SPFB is set to
the first free buffer entry, and new prefetches fill the buffer.
Newly generated prefetches overwrite the current contents of
the SPFB if it is full, removing stale prefetches from the
previous generation that could pollute the L1-I.

IV. EVALUATION

This section describes the design space exploration and
evaluation of a composite prefetcher. We begin by describing
our simulation environment and evaluation methodology. Next,
we evaluate composite prefetching schemes composed of two,
three, and four subprefetchers and the design space surround-
ing subprefetcher selection at different hardware budgets.
We then describe the evaluation of individual subprefetchers’
contribution to performance. Finally, we discuss the best
performing combination of subprefetchers at hardware budgets
of 20KB, 30KB, 40KB, 64KB, and 128KB.

A. Methodology

We perform design-space exploration and evaluation of the
composite-prefetcher framework using the ChampSim simula-
tor [22]. Featuring an aggressive front-end similar to Fetch-
Directed Prefetching [23], [24] and models a Branch Target
Buffer (BTB) that includes an indirect BTB and return address
stack. We configure the simulator to reflect recent Intel’s
Sunny Cove microarchitecture with the parameters in Table I.

TABLE I: Simulated Baseline System Configuration

Processor Configuration
Clock Frequency 4GHz

Fetch Queue 64 entries
Decode Queue 32 entries

Dispatch Queue 32 entries
Reorder Buffer 352 entries

Load Queue 128 entries
Store Queue 72 entries
Fetch width 6 instructions

Decode width 6 instructions
Dispatch width 6 instructions

Memory Configurations
L1 I-Cache 32KB, 8 ways, 64 sets, no prefetcher
L1 D-Cache 48KB, 12 ways, 64 sets, next line prefetcher

L2 Cache 512KB, 8 ways, 1024 sets, spp
LLC Cache 2MB, 16 ways, 2048 sets

TABLE II: Best performing prefetcher combinations for
Composite-2 for hardware budgets of 20KB, 30KB, 40KB,
64KB, and 128KB divided evenly between subprefetchers.

Hardware Budget Subprefetcher-1 Subprefetcher-2
20KB Barça FNL+MMA
30KB FNL+MMA MANA
40KB FNL+MMA EIP-ISCA
64KB D-JOLT FNL+MMA

128KB FNL+MMA EIP-ISCA

For our evaluation, we employ a subset of the traces from
the 1st Championship Value Prediction (CVP-1) [25], provided
by Qualcomm Datacenter Technologies and ported to the
ChampSim format. We selected CVP traces that showed at
least one MPKI (miss per kilo-instruction) at the L1-I and
L2C in our baseline configuration and demonstrated high
performance potential beyond a next-line L1-I prefetcher with
reference to the maximum performance as measured by an
Oracle L1-I prefetcher. The selected CVP traces demonstrate
MPKIs ranging from 3 to 48 at the L1-I cache. All benchmarks
maintain low MPKIs in the L1-D, indicating that L1-I miss
limits these workloads’ performance. As many recent works
point to the instruction cache misses becoming more critical in
cloud and server workloads, we chose this subset to represent
emerging, high instruction cache pressure applications. Each
benchmark shown is executed for 50M instructions to warm
up the predictors and caches, with another 50M instructions
executed to measure performance. Despite the short simulation
lengths, we emphasize that these traces demonstrate high L1-I
miss rates analogous to the high miss rates seen in modern
datacenter workloads.

B. Hardware Constraints and Instruction Prefetcher Perfor-
mance

Existing academic instruction prefetchers have significant
coverage when their metadata storage state is unconstrained.
However, they struggle when implemented with more realistic

1.251

1.172
1.194

1.217

1.243
1.260

0.98

1.03

1.08

1.13

1.18

1.23

1.28

1.33

0 16 32 48 64 80 96 112 128

IP
C

 Im
pr

ov
em

en
t o

ve
r B

as
el

in
e

Hardware Storage (KB)

Barça
DJOLT
FNL-MMA
EIP-IPC1
EIP-ISCA
JIP
PIPS
TAP
Mana
Composite-2
Oracle L1i

Fig. 3: Prefetcher performance versus hardware budget, includ-
ing the best performing combined prefetcher at each hardware
budget. At each budget, the composite prefetcher outperforms
not only its subprefetcher components but the best performing
single-prefetcher.

amounts of storage than industrial designs expect. Figure 3
shows the individual performance of the prefetchers described
in Section II-A as the storage budget for the prefetcher
increases. We compare each prefetcher’s performance against
a baseline system with no instruction prefetching, an SPP [26]
data prefetcher in the L2 cache, and a least-recently-used
(LRU) replacement policy used in all cache levels.

We include an Oracle instruction prefetcher that covers
all non-compulsory L1-I misses. The Oracle also fills the
unified L2 and L3 caches to mimic the data interference an
L1-I prefetch stream would have. The oracle represents a
reasonably tight upper bound on the attainable performance
from instruction prefetching. As Figure 3 shows, at the max-
imum hardware budget evaluated, EIP comes within 5% of
Oracle’s performance. As expected, all prefetchers suffer lower
performance benefits at lower hardware storage budgets and
enjoy increased performance benefits as the hardware budget
increases. Performance tends to fall significantly at hardware
budgets of 64KB and less, and several prefetchers take turns
showing the best performance at different points in the space.
In general, we observe three specific trends in Figure 3 based
on the prefetchers’ performance at various hardware budgets:
low-budget friendly, budget-sensitive, or budget indifferent.

1) Budget Sensitive Prefetchers: These prefetchers (i.e.,
EIP, D-JOLT, and TAP) experience heavy performance degra-
dation at lower hardware budgets, with performance substan-
tially increasing with the hardware budget. In particular, EIP
sees ∼20% performance improvement from increasing the
hardware budget from 15KB to 128KB. These prefetchers are

ideal for high-budget designs but may not be reasonable for
smaller designs.

2) Low-Budget Friendly Prefetchers: These prefetchers ex-
perience a drop in performance at lower hardware budgets
while still exhibiting high performance gains from increased
hardware budgets. Barça, FNL+MMA, JIP, and PIPS follow
this trend, seeing moderate performance benefits at sizes of 10-
30KB and scaling as the hardware budget increases. Though
their improvements from increasing hardware budgets are
not as drastic as EIP, these prefetchers provide consistent
performance benefits as their design scales, indicating they
are viable options for low-budget and high-budget designs.

3) Budget Indifferent Prefetchers: This trend is observed
when prefetchers perform well at lower hardware budgets, but
only experience modest benefits from an increase in hardware
budget. MANA follows this trend, being less affected by a
lower hardware budget of 10-15KB. This prefetcher is resilient
to lower storage but does not benefit significantly from an
increased hardware budget, seeing only a 5% performance
benefits from an increased budget of 15KB to 128KB, making
it better suited for low hardware budget designs with consistent
performance as the prefetcher’s hardware budget scales.

C. Selecting Composite Prefetcher Subprefetchers

3.49% 3.60% 3.50% 2.97%

9.54% 9.21% 8.43% 7.63%
10.59% 10.60% 12.41% 14.35%

0.00%

5.00%

10.00%

15.00%

20.00%

20 30 64 128
Hardware Budget (KB)

Barça FNL+MMA Barça and FNL+MMA

Fig. 4: Miss coverage, in a Composite-2 of Barça &
FNL+MMA covered by Barça, FNL+MMA or both at various
hardware budgets

The design space of exploring an N-composite scheme, with
the possibility of 8 different prefetchers filling any one slot
within an N-composite scheme, with prefetchers of various
hardware budgets to meet an overall hardware budget is
exceedingly large. Given 8 possible subprefetchers of various
sizes, the design space increases exponentially as the overall
hardware budget increases. For our experiments, each sub-
prefetcher’s size is determined by the overall hardware budget
divided evenly between the subprefetchers. For example, a
30KB composite prefetcher may be composed of two 15KB
prefetchers or three 10KB prefetchers. The results of Figure 3
direct the design exploration for the composite design based
on a prefetcher’s performance relative to its hardware budget.

For each hardware budget, we perform a design space explo-
ration for composite prefetchers composed of two, three, and
four subprefetchers. Our design space exploration combines N

1.172
1.194

1.217
1.186 1.190

1.00

1.05

1.10

1.15

1.20

1.25

CVP

Pe
rf

or
m

an
ce

 o
ve

r
B

as
el

in
e Composite-2 (20KB)

Composite-2 (30KB)
Composite-2 (40KB)
Composite-3 (30KB)
Composite-4 (40KB)

Fig. 5: Performance comparison of best composites of 2, 3
and 4 prefetchers for different metadata storage state.

of the 8 possible prefetchers and then evaluates the resultant
composite prefetcher. Each N-composite prefetcher has a range
of performance results, with the best performing combination
varying based on the hardware budget. Figure 5 shows the
performance of the best performing composite of 2, 3 and 4
prefetchers at 20KB, 30KB and 40KB.

Here, the hardware budget of the composites is divided
evenly between each subprefetchers, i.e. for Composite-2 at
20KB, each subprefetcher has roughly 10KB of state. In the
figure, we see that composites of 2 significantly outperform
composites of 3 and composites of 4 prefetchers. Even the
smaller 20KB Composite-2 prefetcher approaches the per-
formance of the Composite-3 and Composite-4 prefetchers
within ∼2%. The allocated budget per prefetcher is reduced
as the number of prefetchers increases to keep the overall
budget within limits. Thus, the effectiveness of each prefetcher
diminishes. We conclude that composing a high number of
prefetchers with a reasonable budget is not promising. As a
result, we focus on Composite-2 prefetchers for the remainder
of this work.

Table II lists the subprefetchers from the best performing
composite-2 prefetcher found in our design space exploration
at each storage size. Interestingly, the best performing com-
posite changes significantly at each hardware budget.

D. Full results comparison

Figure 3 shows the results of all prefetchers examined,
scaled to different sizes, along with the best performing
Composite-2 prefetcher combination discussed in Section IV-C
and listed in Table II. In general, the Composite-2 prefetcher
outperforms all single prefetchers at every metadata storage
size, often by significant margins. Composite-2’s performance
increases as its subprefetchers’ can capture more of the work-
loads’ behavior but see the highest performance benefits at
low hardware budgets.

Figure 4 shows the misses that Barça and FNL+MMA
cover individually and the overlap in their access coverage
when combined at varying hardware budgets in a Composite-
2 prefetcher. As Composite-2 is scaled, the coverage overlap
between the two prefetchers increases. Interestingly, for small
budgets, each subprefetcher covers a greater fraction of misses
than both cover together. This illustrates that at smaller bud-

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 32 64 96 128

Pe
rc

en
t P

re
fe

tc
h

A
cc

ur
ac

y

Hardware Storage (KB)

Barça
DJOLT
FNL-MMA
EIP-IPC
EIP-ISCA
JIP
PIPS
Mana
Composite2

Fig. 6: Accuracy vs. Hardware Storage (KB) at each metadata
storage point for all prefetchers and Composite-2.

55.57% 33.40% 50.61% 55.13% 39.54%

44.43% 66.60% 49.39% 44.87% 60.46%

0%

50%

100%

20 30 40 64 128

Pe
rc

en
t o

f P
re

fe
tc

he
s

Hardware Budget (KB)

Prefetcher-1 Issued Prefetcher-2 Issued

Fig. 7: Percentage of prefetches issued from each component
prefetcher in the best performing Composite-2 prefetcher at
each storage overhead. Generally, one subprefetcher does not
tend to dominate the prefetches Composite-2 produces.

gets, each prefetcher tends to focus on misses it is better able
to cover, yielding greater metadata storage efficiency than can
be achieved by a single prefetcher at even double the size.

E. Subprefetcher Behavior

1) Accuracy and Issued Prefetches: We evaluate the ac-
curacy of a composite-2 prefetcher compared to the potential
subprefetcher components in Figure 6. Composite-2’s accuracy
depends on its component subprefetchers’ behavior, with its
accuracy increasing as the hardware budget increases. Each
prefetcher, except DJOLT, does not train off cache accesses
that hit on a prefetched line, resulting in each prefetcher
training on misses not covered by other prefetchers. This in-
creases the orthogonality between prefetchers’ predictions, as
discussed in section IV-E2, while decreasing overall accuracy.

The round-robin selection mechanism considers each sub-
prefetcher’s prefetch stream. A more complex selection mech-
anism can be implemented to prioritize prefetches from a
particular subprefetcher. However, the selection mechanism’s
impact relies on multiple subprefetchers generating predic-
tions simultaneously. Our evaluation finds that only one sub-
prefetcher generates prefetches for 80% of demand cache
accesses at any hardware budget, indicating complex selection
mechanisms are unlikely to identify prefetching opportunities

that would benefit from prioritizing one subprefetcher over
another. Figure 7 shows the prefetches issued by each sub-
prefetcher in Composite-2. Overall, no subprefetcher domi-
nates the prefetch contributions, allowing each subprefetcher
to provide complementary prefetch candidates.

0%

5%

10%

15%

20%

25%

20 30 40 64 128

Pe
rc

en
t A

cc
es

s C
ov

er
ed

Hardware Budget (KB)

Miss PF1 PF2 Base PF1-PF2 PF1-Base PF2-Base

Fig. 8: Coverage breakdown for Composite-2 prefetchers.

2) Measuring Subprefetchers’ Individual Contributions:
Miss: A miss occurs for both prefetchers and in the baseline
cache. This is generally a small percentage of accesses (1-2%)
for any size of composite-2, indicating that the prefetchers or
the baseline cache without prefetching cover most accesses.

PF1 Hit (PF1): This is the number of misses covered by
unique prefetches from subprefetcher-1.

PF2 Hit (PF2): This represents the number of misses
covered by subprefetcher-2.

Baseline Hit (Base): A hit occurs only for the baseline,
without prefetching, indicating that the subprefetchers’ behav-
iors cause a harmful eviction resulting in a cache miss. This
scenario occurs ≤1% for all hardware budgets.

PF1 and PF2 Hit (PF1-PF2): A hit occurs for both
subprefetchers, showing an overlap between the prefetches
selected by the subprefetchers.

PF1 and Baseline Hit (PF1-Base): A hit occurs for both
the baseline and subprefetcher-1, meaning that subprefetcher-2
caused a harmful eviction otherwise covered in the baseline.

PF2 and Baseline Hit (PF2-Base): A hit occurs for
subprefetcher-2 and the baseline, indicating subprefetcher-1
caused a harmful eviction.

PF1, PF2 and Baseline Hit: A hit occurs for all three
indicating the prefetchers are retaining useful cache lines that
hit in the baseline system. This is the most common occurrence
for more than 70% of accesses. These are not included in
Figure 8 to improve the visibility of the other scenarios.

We find that the highest occurring scenario is a hit for
the baseline and both subprefetchers. This is expected as the
prefetchers generally try to cover misses with high accuracy to
avoid thrashing the L1-I cache. This is supported by the low
number of misses between the subprefetchers and baseline and
the low number of unique baseline hits, indicating that the
prefetchers avoid harmful evictions. The number of unique
hits for each subprefetcher varies at different sizes because

each size contains a different subset of prefetchers. Interest-
ingly, subprefetchers that individually perform better than their
partnered subprefetcher (i.e., FNL+MMA vs. D-JOLT) have a
higher number of unique hits than the other subprefetcher. As a
subprefetcher’s size increases to 64KB (128KB of total state),
the number of unique hits is lower since each subprefetcher has
enough storage to capture an application’s behavior resulting
in a higher number of overlapped hits between subprefetchers.

V. CONCLUSION

Instruction prefetchers’ performances are limited by hard-
ware overhead constraints but do not gain increased perfor-
mance with larger hardware budgets. Composite prefetching
allows for higher performance at lower hardware budgets by
combining the coverage of different complex prefetchers but is
challenging to design effectively without making components
targeting specific behaviors. We demonstrate a framework for
selecting and integrating state-of-the-art complex prefetchers
to find the best performing combination at various hardware
budgets in a “plug-and-play” fashion that lightens the burden
of tailor-making components for specific behaviors.

Our framework provides the basis for future work designing
composite hardware prefetchers using heterogeneously sized
components. A potential optimization is to share metadata
storage between prefetchers and dynamically allocate storage
to prefetchers that excel in predicting specific program phases.

Future work in composite prefetching may also explore
selecting subprefetchers on the fly based on an application’s
specific characteristics. Software analysis of an application
can provide hints to the hardware on the most appropriate
subprefetchers for specific hardware, such as accelerators.

VI. ACKNOWLEDGEMENTS

This work was supported in part by Semiconductor Re-
search Corporation (SRC), NSF grants CNS-193806 and
CCF-1912617, European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (grant agreement No 819134), Ramón y Cajal
Research Contract (RYC2018-025200-I), and generous gifts
from Intel Corporation.

REFERENCES

[1] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the front-
end bottleneck with shotgun,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18. New York,
NY, USA: ACM, 2018, pp. 30–42. [Online]. Available: http:
//doi.acm.org/10.1145/3173162.3173178

[2] S. Kanev, J. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-
Y. Wei, and D. Brooks, “Profiling a Warehouse-scale Computer,” in
ISCA ’15 Proceedings of the 42nd Annual International Symposium on
Computer Architecture, 2014, pp. 158–169.

[3] S. Mirbagher-Ajorpaz, E. Garza, S. Jindal, and D. A. Jiménez,
“Exploring predictive replacement policies for instruction cache
and branch target buffer,” in 45th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2018, Los Angeles,
CA, USA, June 1-6, 2018, 2018, pp. 519–532. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00050

[4] A. J. Smith, “Sequential program prefetching in memory hierarchies,”
Computer, vol. 11, no. 12, p. 7–21, December 1978. [Online].
Available: https://doi.org/10.1109/C-M.1978.218016

[5] B. Falsafi and T. F. Wenisch, A Primer on Hardware Prefetching, 2014.
[6] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The IBM

System/360 Model 91: Machine Philosophy and Instruction-Handling,”
IBM Journal of Research and Development, vol. 11, no. 1, pp. 8–24,
1967.

[7] J. Pierce and T. Mudge, “Wrong-path instruction prefetching,” in Pro-
ceedings of the 29th Annual ACM/IEEE International Symposium on
Microarchitecture, ser. MICRO 29. USA: IEEE Computer Society,
1996, p. 165–175.

[8] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, 2007, pp. 63–74.

[9] S. Kondguli and M. Huang, “Division of labor: A more effective
approach to prefetching,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 2018, pp. 83–95.

[10] A. Ros and A. Jimborean, “The entangling instruction prefetcher,” https:
//research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/eip final.pdf.

[11] T. Nakamura, T. Koizumi, Y. Degawa, H. Irie, S. Sakai, and R. Shioya,
“D-Jolt: Distant Jolt Prefetcher,” https://research.ece.ncsu.edu/ipc/wp-
content/uploads/2020/05/D-JOLT.pdf.

[12] D. A. Jiménez, G. Chacon, N. Gober, and P. V. Gratz, “Branch ag-
nostic region searching algorithm,” https://research.ece.ncsu.edu/ipc/wp-
content/uploads/2020/05/bar\%C3\%A7a.pdf.

[13] A. Seznec, “The fnl+mma instruction cache prefetcher,” https://research.
ece.ncsu.edu/ipc/wp-content/uploads/2020/05/FNLMMA-final.pdf.

[14] N. Gober, G. Chacon, D. A. Jiménez, and P. Gratz, “The temporal an-
cestry prefetcher,” https://research.ece.ncsu.edu/ipc/wp-content/uploads/
2020/05/tap final.pdf.

[15] A. Ansari, F. Golshan, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Mana:
Microarchitecting an instruction prefetcher,” https://research.ece.ncsu.
edu/ipc/wp-content/uploads/2020/05/mana.pdf.

[16] V. Gupta, N. S. Kalani, and B. Panda, “Run-jump-run: Bouquet of in-
struction pointer jumpers for high performance instruction prefetching,”
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/JIP.pdf.

[17] P. Michaud, “Pips: Prefetching instructions with probabilistic scouts,”
https://research.ece.ncsu.edu/ipc/wp-content/uploads/2020/05/pips
final.pdf.

[18] A. Ansari, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Divide and conquer
frontend bottleneck,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), 2020, pp. 65–78.

[19] S. Pakalapati and B. Panda, “Bouquet of instruction pointers: In-
struction pointer classifier-based spatial hardware prefetching,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), 2020, pp. 118–131.

[20] M. Bakhshalipour, M. Shakerinava, F. Golshan, A. Ansari, P. Lotfi-
Karman, and H. Sarbazi-Azad, “A survey on recent hardware data
prefetching approaches with an emphasis on servers,” 2020.

[21] A. Ros and A. Jimborean, “A cost-effective entangling prefetcher for
instructions,” in 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), 2021, pp. 99–111.

[22] “Champsim simulator,” http://github.com/ChampSim/ChampSim.
[23] G. Reinman, B. Calder, and T. Austin, “Fetch Directed Instruction

Prefetching,” in MICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture, 1999, pp. 16–27.

[24] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Re-establishing fetch-
directed instruction prefetching: An industry perspective,” in 2021 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2021, pp. 172–182.

[25] The 1st Championship Value Prediction Competition (CVP-1),
http://www.microarch.org/cvp1. International Symposium on Computer
Architecture, June 2018.

[26] J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and
Z. Chishti, “Path Confidence-based Lookahead Prefetching,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2016, pp. 1–12.

