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Preface

This doctoral thesis is presented as a compendium of publications in accordance with the
rules for the regulation of official doctoral studies of the University of Murcia and with the
approval of the thesis supervisors, the Academic Commission of The Doctoral Program in
Computer Science and the General Committee for Doctoral Studies. This thesis is composed
of three research studies ( [50], [53], [52]) published in three international journals indexed
in Journal Citation Reports (JCR). Additionally, this thesis provides a general introduction,
which presents the studies and justifies the scientific unity of the thesis, and an overall
summary of the aims of the research and the final conclusions along with discussion on the
obtained scientific results.



Prefacio

Esta tesis doctoral se presenta como compendio de publicaciones de acuerdo con las
normas para la regulación de los estudios oficiales de doctorado de la Universidad de Murcia
y con la aprobación de los directores de tesis, la Comisión Académica del Programa de
Doctorado en Informática y la Junta General para Estudios de Doctorado. Esta tesis está
compuesta por tres estudios de investigación ( [50], [53], [52]) publicados en tres revistas
internacionales indexadas en Journal Citation Reports (JCR). Además, esta tesis proporciona
una introducción general, que presenta los estudios y justifica la unidad científica de la tesis,
y un resumen general de los objetivos de la investigación y las conclusiones finales junto con
la discusión sobre los resultados científicos obtenidos.



Resumen en Español

Esta tesis doctoral se presenta como un compendio de publicaciones. Esta tesis se
compone de tres trabajos de investigación (1. Sensor Data Uncertainty Principled Differential
Privacy for User-controlled Privacy Preserving Model Construction for Heart Sound or
PCG signal Analysis [50], 2. AFSense-ECG for Compact Model Construction for Atrial
Fibrillation Detection Using Single Lead ECG Signals [53], and 3. When less is more
powerful: Shapley value attributed ablation with augmented learning for practical time series
sensor data classification [52]) publicados en revistas indexadas en Journal Citation Reports
(JCR). Todos los artículos juntos constituyen una unidad científica en el campo del modelado
computacional de señales de sensores. De hecho, el análisis computacional y el modelado de
las señales de los sensores es uno de los factores de mayor importancia para comprender los
eventos descritos por los sensores, así como para inculcar inteligencia en las aplicaciones que
se construyen utilizando las señales de los sensores. El objetivo general es construir modelos
de aprendizaje automático precisos para resolver desafíos prácticos como la escasez de datos
de entrenamiento, la construcción de modelos compactos y la preservación de la privacidad
de los datos para un conjunto diverso de tareas de análisis de señales de sensores. Con la
proliferación de Internet de las cosas (IoT), los avances de las tecnologías de detección, las
increíbles mejoras hacia el poder de cómputo junto con el progreso sobresaliente de los
algoritmos y herramientas de inteligencia artificial (IA), los investigadores están encontrando
nuevas vías para construir un gran número de diferentes aplicaciones útiles, así como nuevas
direcciones de investigación. En este trabajo de investigación, nuestra visión es desarrollar un
modelo único y unificado para construir un modelo de clasificación para señales de sensores
de series temporales y abordamos los siguientes desafíos de investigación que son de gran
importancia en la práctica:

• Un número menor de ejemplos de entrenamiento no tiene por qué ser un obstáculo
para generar un modelo aprendido adecuado.

• El aprendizaje computacional independiente del tipo de aplicación y sensor es factible.

• Un solo modelo puede funcionar potencialmente cerca de los resultados de referencia
(donde los resultados de referencia pueden ser aportados por una gran cantidad de
algoritmos) consistentemente sobre un conjunto diverso de tareas de clasificación de
series temporales de sensores.

Además, el modelo computacional de aprendizaje preferiblemente no debería requerir
conocimiento externo o intervención humana. Es un modelo de aprendizaje automático total-
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mente automatizado sin personalización manual de funciones o selección de hiperparámetros.
Este trabajo de investigación se centra en la construcción de modelos para el aprendizaje
computacional de tareas de análisis que involucran diferentes tipos de señales de sensores
como electrocardiograma (ECG), fonocardiograma (PCG), acelerómetro, medidor de energía,
etc. Muchos sensores pueden considerarse como la micro-representación de la fisiología
humana y la actividad humana en general, por lo que tales sensores contienen información
sensible. Por lo tanto, nuestra tarea principal es la habilitación de técnicas de preservación de
la privacidad como parte de los modelos de detección computacional que analizan las señales
de los sensores e infieren decisiones críticas. Por ejemplo, el análisis computacional de las
señales PCG puede revelar el estado de salud cardíaca de un ser humano. Se entiende que la
atención médica remota es una de las aplicaciones críticas de IoT y resolvemos el problema
de la protección de la privacidad de los datos al proponer la eliminación del riesgo de la
gestión de datos confidenciales mediante la privacidad diferencial, donde se puede emplear
la protección de privacidad controlada habilitada por el usuario en datos de atención médica
confidenciales. El método de protección de la privacidad propuesto [50] ofusca los datos
confidenciales como los datos PCG (PCG registra el sonido del corazón y puede indicar po-
tencialmente una anomalía cardíaca) para garantizar que se realice una protección aceptable
sin comprometer gravemente la utilidad, y que se realice el control de la habilitación de la
privacidad. impulsada por el usuario. Nuestra contribución novedosa es proponer el principio
de incertidumbre de los datos del sensor, de modo que se emplea la incertidumbre estadística
controlada para la información sensible con la definición de protección de la privacidad de
que las probabilidades a priori y a posteriori de encontrar información privada no cambian
más allá de un umbral predefinido y la ganancia de acceso a los datos confidenciales por
parte del adversario se vuelve insignificante. Por lo tanto, el aprendizaje computacional
propuesto en las señales de los sensores cubre el análisis de privacidad, donde el requisito
de privacidad y la cantidad de sensibilidad de las señales del sensor se estiman a partir de
estadísticas teóricas de la información y se aplican técnicas relevantes de preservación de la
privacidad para garantizar la preservación dinámica de la privacidad. Demostramos que con
el enfoque apropiado de ofuscación de datos de sensores en el proceso de preservación de
la privacidad de datos confidenciales, el rendimiento del análisis computacional se degrada
considerablemente (se convierte en casi equivalente a un resultado aleatorio) de modo que
los atacantes no obtienen ningún conocimiento al capturar dichos datos. La preservación
de la privacidad está controlada por la distribución de datos del sensor de tal manera que la
ofuscación mínima adecuada para garantizar que la protección de la privacidad se realice en
las señales del sensor, lo que garantiza una pérdida mínima de información. Sin embargo, el
motor de análisis del modelado computacional en [50] considera tres tipos de características
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hechas a mano que extraen propiedades estadísticas y de procesamiento de señales de la
señal del sensor dado a través del algoritmo de aprendizaje automático de refuerzo basado en
Adbaoost. La limitación de este trabajo [50] es que el algoritmo de aprendizaje automático
que realiza la tarea de análisis requiere una ingeniería de funciones artesanal, que no solo
restringe la escalabilidad del aprendizaje computacional, sino que también depende de lo cos-
toso (a veces, prácticamente no factible) proceso de generación y selección de características
asistida por expertos con conocimiento del dominio. De hecho, la ingeniería de requisitos
requiere un amplio conocimiento del dominio, así como una importante intervención humana
y un esfuerzo manual para generar el conjunto de características distinto y adecuado. Dichos
procesos no solo son costosos, sino que tampoco son escalables para diversas aplicaciones y
señales de sensores. Posteriormente, desarrollamos detección integrada de inteligencia que
realiza tareas de clasificación supervisadas utilizando un método novedoso de aprendizaje
profundo (DL) de red neuronal convolucional ajustada por hiperparámetros (CNN) sin necesi-
dad de un gran esfuerzo en la ingeniería de requisitos [53]. De hecho, las arquitecturas de
redes neuronales profundas exhiben excelentes capacidades de aprendizaje en aplicaciones
de visión por computadora y ya alcanzaron un nivel de rendimiento similar al humano. En
consecuencia, construimos un modelo computacional para interpretar la señal de EG para
la condición de fibrilación auricular (un tipo de enfermedad cardiovascular crítica que se
caracteriza por ritmos cardíacos irregulares, que eventualmente pueden provocar un derrame
cerebral, coágulos de sangre en el corazón, etc.). La estimación de hiperparámetros propuesta
a partir de las características de la señal de entrada facilita la construcción del modelo CNN
compacto. Ponemos especial atención al hiperparámetro de longitud de zancada de la arqui-
tectura CNN. Controles de hiperparámetro de longitud de zancada en el filtro de convolución
que se utiliza para convolucionar los datos de entrenamiento de entrada. Establecimos el
hiperparámetro de longitud de zancada de manera que se centre adecuadamente en las zonas
morfológicas significativas de las señales de ECG de una sola derivación de entrada, para así
capturar adecuadamente la región adecuada de interés clínico. De este modo, la capacidad
de aprendizaje del modelo CNN mejora significativamente al incorporar los fundamentos
morfológicos de ECG en sus amplificadores de características. Definimos el parámetro de
densidad de muestra de una señal de ECG que indica la proximidad de los complejos QRS
en las señales de ECG. La longitud de zancada del modelo se establece dinámicamente en
función de la magnitud del parámetro de densidad de la muestra. Cuando la densidad de
la muestra es alta, reducimos la redundancia en los mapas de características de la CNN al
establecer un valor de longitud de zancada mayor y cuando la densidad de la muestra es baja,
establecemos un valor bajo de longitud de zancada para capturar la información completa de
las morfologías en los mapas de características de la CNN. Demostramos que el modelo prop-
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uesto supera constantemente los algoritmos de última generación relevantes para la tarea de
aprendizaje computacional dada de detección de la condición de fibrilación auricular a partir
de grabaciones de ECG de una sola derivación. De hecho, ambos trabajos de investigación
[50] [53] resuelven los desafíos únicos del desarrollo de soluciones inteligentes para el
cuidado de la salud , particularmente como una aplicación de IoT. En [52], ampliamos [53]
para abordar el problema integral de la escasez de datos de entrenamiento en la generación
de modelos DL. Se sabe que los modelos DL exigen ejemplos de entrenamiento sustanciales
para la construcción confiable del modelo computacional. Sin embargo, las tareas prácticas
de análisis de la señal del sensor a menudo se proporcionan con un número limitado de
ejemplos de capacitación, principalmente debido a los costes asociados con la anotación de
expertos (por ejemplo, cada uno de los registros de ECG debe ser anotado por un cardiólogo),
lo que provoca un aprendizaje deficiente o una mayor generalización, lo cual supone una
pérdida cuando se construyen algoritmos de clasificación de series de tiempo. De hecho, en
una configuración de aprendizaje supervisado, la adecuación de los datos de entrenamiento
es uno de los requisitos principales para generar un modelo entrenado bueno y confiable.
En [52], proponemos un método novedoso de aprendizaje efectivo bajo la limitación de
datos de entrenamiento utilizando el descubrimiento atribuido a Shapley de un subconjunto
de entradas que influyen positivamente para construir un modelo DL basado en una red
residual (ResNet). Proponemos una arquitectura DL push-pull única con ResNet como la
arquitectura DL base. En primer lugar, se calcula la atribución del valor de Shapley para
cada una de las entradas y la selección del subconjunto de entrada se realiza en función de
esa atribución. El subconjunto de entrada, de hecho, empuja al modelo a aprender sobre
un espacio de entrada de menor dimensión. Posteriormente, realizamos un entrenamiento
contradictorio que mejora la capacidad de aprendizaje fuera de la distribución del modelo con
el supuesto de una mejor capacidad de aprendizaje cuando se encuentra con datos no vistos.
Nos basamos en la formulación de la teoría de juegos para estimar la contribución de cada
una de las entradas en la previsibilidad del modelo con el cálculo de utilidad de características
basado en el valor de Shapley para cada una de las muestras de entrenamiento de entrada
por medio de axiomas de juegos de utilidad transferibles, a saber, "eficiencia" y "nulidad".
axiomas del jugador. Además, proponemos un entrenamiento antagónico controlado del
modelo utilizando las funciones de entrada efectivas seleccionadas. Por lo tanto, el modelo
aprende con entrenamiento contradictorio de un subconjunto de entradas con la filosofía
de aprender más con mejores ejemplos de entrenamiento. Nuestra noción de capacidad de
aprendizaje mejorada y las mejoras del modelo propuesto se reflejan precisamente en los
resultados obtenidos y el estudio empírico respalda sin ambigüedades nuestra afirmación de
superioridad en el aprendizaje frente a datos de entrenamiento insuficientes. Demostramos
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un rendimiento superior para un conjunto diverso de tareas de clasificación de señales de sen-
sores de series temporales en comparación con los algoritmos de última generación actuales.
Además, representamos a través del estudio de ablación la eficacia del modelo push-pull
con el método de entrenamiento contradictorio atribuido a características con respecto a los
métodos de entrenamiento solo atribuidos a funciones y solo contradictorios. Por lo tanto,
afirmamos con seguridad que el modelo propuesto mejora significativamente el rendimiento
y que el modelo push-pull obtiene el apoyo empírico requerido.
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Abstract

Objective- The general objective is to build accurate machine learning models to solve
practical challenges like training data scarcity, compact model construction and data privacy
preservation for diverse set of sensor signal analysis tasks. With the proliferation of Internet
of Things (IoT), advancements of sensing technologies, incredible enhancements towards
computing power along with the outstanding progress of Artificial Intelligence algorithms
and tools, researchers are finding new avenues to build different useful applications and
novel research directions. The research work focuses on the construction of models for
computational learning of analysis tasks involving different types of sensor signals from
sensors like Electrocardiogram, Phonocardiogram, accelerometer, energy meter etc. In
general, we can consider sensors as the micro-representation of our ambient world. Given
that sensors capture near-human information, they usually contain sensitive data. Hence, our
foremost task is the enablement of privacy preserving techniques as part of the computational
sensing models that analyze the sensor signals and infer critical decision.
Methodology- It is understood that remote healthcare is one of the critical applications of
IoT and we solve the problem of data privacy protection by proposing de-risking of sensitive
data management using differential privacy, where user-enabled controlled privacy protection
on sensitive healthcare data can be employed. We propose a novel data privacy preservation
method that obfuscates the sensitive component of the sensor data while utility is not severely
compromised, while user controls the quantum of privacy. The proposed machine learning
algorithm requires subtly hand-crafted feature engineering, which not only restricts the
scalability of the computational learning, but also depends on the expensive process of
expert or domain-knowledge aided feature generation and selection. We develop intelligence-
embedded sensing that does supervised classification tasks using novel deep learning (DL)
method of hyperparameter-adjusted convolutional neural network without feature engineering
efforts. We extend research to address the integral problem of training data scarcity in DL
model generation. It is known that DL models demand substantial training examples for
reliable construction of the computational model. Practical sensor signal analysis tasks are
often provided with limited number of training examples mainly due to the costs associated
with expert annotation. We propose a novel method of effective learning under training data



limitation using Shapley-attributed discovery of subset of positively influencing inputs to
construct an effective Residual network-based DL model.
Results- Our novel privacy preserving method proposes sensor data uncertainty principle,
such that controlled statistical uncertainty is employed to the sensitive information with the
definition of privacy protection that the prior and posterior probabilities of finding private
information does not change beyond a pre-defined threshold and the adversary’s gain of
sensitivity data access becomes insignificant. The proposed hyperparameter estimation from
the input signal characteristics facilitates compact CNN model construction. We demonstrate
that our model consistently performs superior over the relevant state-of-the-art algorithms
for the given computational learning task of Atrial Fibrillation condition detection from
single-lead ECG recordings. We propose an unique push-pull DL architecture, where, firstly
Shapley value attributed input subset selection pushes the model parameters towards lower
dimension and subsequently, we augment the learnability of the model through adversarial
training. We demonstrate the efficacy of proposed model that empirically outperforms the
current state-of-the-art algorithms in diverse set of time series sensor signal classification
tasks.
Conclusion- We have proposed a holistic framework to solve the practical and research
challenges of computational analysis of sensor signals including the data privacy preservation,
deep learning algorithm for compact model generation, effective computational model under
training data scarcity issue. In summary, the research work provides a unified approach to
develop practical computational analysis for diverse set of sensor data.
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Chapter 1

Introduction

1.1 Presentation and Scientific Unity

This doctoral thesis is presented as a compendium of publications. This thesis is composed
of three research studies [50] [53] [52] published in Journal Citation Reports (JCR) indexed
international journals. All the articles configure a scientific unity in the field of computational
learning, particularly for the development sensor signal analysis using machine learning algo-
rithms. Our focus is to build accurate machine learning models to solve practical challenges
like training data scarcity, compact model construction and privacy preservation.
Sensor signals often being nearer to human being contain sensitive information. For ex-
ample, Electrocardiogram (ECG), Phonocardiogram (PCG) signals contain cardiac activity
signature, which is a direct health information of an individual. So, the first and foremost
critical component of computational learning that generated data-driven model using machine
learning algorithms is to ensure resistance against plausible privacy breaching attack. In
study #1 [50], data sensitivity protection by derisking with sensitive data management using
differential privacy method is employed such that strong predictive capability of machine
learning algorithm to infer sensitive condition from sensor signal does not get misused for
privacy beaching purposes. Firstly, we propose a data privacy protection scheme, which is
functionally on-demand and that employs differential privacy method [16], where the profile
of the destination is considered to ensure appropriate obfuscation on the shared sensitive data.
Our proposed feature-engineered (feature selection is done using expert domain knowledge)
Ada-boost [18]-based machine learning model infers decision from PCG signal whether the
user is suffering from cardiac ailment or not. However, such prediction is sensitive and needs
to be privacy protected. We propose sensor data uncertainty principle such that statistical
uncertainty is incorporated into the sensitive information. Our privacy protection definition
is that the prior and posterior probabilities of determining the sensitive private information
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gets restricted within a pre-defined threshold. Let the prediction from a sensor signal x be
Y. When a privacy-breach attack is suspected, Y is transformed to controlled obfuscated
form Ypriv and we have shown that the attacker receives Ypriv, which effectively provides
ransom outcome such that accuracy, sensitivity and specificity measures are → 0.5, whereas
the the prediction outcome of Y in terms of accuracy, sensitivity, specificity are more than 0.8
when validated by experimenting on large publicly available MIT Physionet Challenge 2016
database [36] containing PCG data. While the issue of privacy-preserved computational
analysis is achieved in our study #1, the main limitation of study #1 is its reliance on expert-
driven feature extraction. Human expert provided features are not only expensive, but also
not scalable. The machine learning algorithm, Ada-boost [18] requires feature engineered
inputs and classification model is generated from the provided hand-crafted features.
In study #2, [53] deep learning model based sensor signal like ECG classification algorithm
is proposed, where external, domain expert-driven feature identification and selection are
not required. Hence, we have eliminated the limitation of study #1 in study #2 by proposing
AF-Sense, a hyperparameter-tuned (such that morphological feature of sensor signal, ECG
gets incorporated into the feature maps) Convolution Neural Network (CNN) model with
adaptive learning rate control that generates the required features for performing classifica-
tion on its own. The paradigm shift from hand-coded symbolic expressions as features in
machine learning algorithms to learned distributed representations in deep learning algorithm
has not only demonstrated significant performance gain, but also eliminates the expensive
requirement of hand crafting of features [7]. We closely examine ECG signals, which are
quasi-periodic in nature with repeated QRS complexes, P-waves, T-waves that constitute
its morphology. In CNN model, the long-range dependencies within the input ECG require
larger receptive fields. We adjust the CNN receptive field with the knowledge of signal
morphology to induce the domain characteristics into the CNN-generated feature maps. In
CNN architecture, stride length hyperparameter controls how the convolution filter convolves
the input space. In AFSense-ECG [53], we hypothesis that for a good representative feature
map construction from ECG signals, the stride length hyperparameter is to be selected in
proportion to sample density. Let us denote zp as the sampling frequency and total sp be the
length of sample points that are captured by the ECG sensor. The sample density is defined as
zp
sp

. AF-Sense is an effective CNN model which outperforms the state-of-the-art models like
[22, 48, 58, 41, 25] well as efficient (when model efficiency is measured through the number
of trainable parameters or equivalently, the model size in Bytes). In study #1, 2435 number
of training examples are present, in study #2, 8,528 number of training examples are used
to model the classifier algorithm. However, in many real-world applications, the available
number of training examples are often limited and small in size, (for e.g., the total number of



1.1 Presentation and Scientific Unity 3

seen examples for the computational model is ≤ 200) mostly due to the cost associated with
obtaining labeled sensor data.
We extended study#2 by addressing the practical issue of training data scarcity in typical
sensor signal classification problem in study #3 [52] by proposing novel method of us-
ing Shapley ( [42]) attribution to discover the subset of positively-influencing features in
additively perturbed training for generating effective deep learning model using Residual
network [23] architecture. Our proposed ShapAAL study 3 [52]s is a novel push-pull
deep neural network architecture. Firstly, training augmentation aids the learn model to
get trained over unseen data. Next, subset selection through Shapley value attribution is
done that pushes the model to lower dimension so that apt selection to the augmented in-
put space is performed. ShapAAL routinely outperforms the cutting-edge algorithms like
[35, 17, 5, 45, 14, 38, 37, 55] over a variety of sensor data from a publicly available UCR
time series archive dataset [4], which is one of the most renowned time series [20]. Further,
we have established the efficacy of our proposed ShapAAL model with ablation study.
In summary, our research work starts with addressing the privacy-preservation aspect of sen-
sor data analytics task with hand-crafted feature engineering based machine learning model
(study#1). We eliminate the limitation of hand-crafting of features for machine learning by
proposing CNN-based deep learning algorithms. However, study #1 and study #2 do not
consider the practical problem of training data scarcity in developing effective classification
model for computational learning of sensor signals. In study #3, we propose ShapAAL that
addresses the problem of training data scarcity by Shapley-attributed input selection over
augmented training data. Thus, the research work has holistically solve the challenges of
computational learning of sensor signal analysis. This doctoral thesis is composed of the
following works by published (JCR) research papers-

1. Arijit Ukil, and Antonio J Jara, and Leandro Marin, "Data-driven automated cardiac
health management with robust edge analytics and de-risking," Sensors, volume 19,
number 12, 2019.
https://doi.org/10.3390/s19122733
https://www.mdpi.com/1424-8220/19/12/2733

2. Arijit Ukil, and Leandro Marin, Subhas Chandra Mukhopadhyay, and Antonio J Jara,
"AFSense-ECG: Atrial Fibrillation Condition Sensing from Single Lead Electrocardio-
gram (ECG) Signals," IEEE Sensors Journal, volume 19, number 12, 2022.
10.1109/JSEN.2022.3162691
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https://ieeexplore.ieee.org/abstract/document/9743469

3. Arijit Ukil, and Leandro Marin, and Jara, Antonio J Jara, "When less is more powerful:
Shapley value attributed ablation with augmented learning for practical time series
sensor data classification, volume 17, number 11, Plos One, 2022.
https://doi.org/10.1371/journal.pone.0277975
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277975

1.2 Motivation

The rapid evolution and adaption of different Internet of Things (IoT) applications
along side the rising deployment of sensors in the physical world are leading to an
increase in the frequency of sensor data analytics issues. One of the typical practical
challenges is to solve the classification problems, particularly that deal with time series
data. In fact, IoT applications are penetrating faster along with evolving techniques for
deploying real world solutions for different practical problems. The availability of high-
end GPU-enabled computing power [34], pervasiveness of smartphones and smart
devices, such as smart bands, smart watches, and smart gears, significant advancements
in sensing technologies, open access to helpful databases, and the emergence of potent
artificial intelligence (AI) techniques like deep learning algorithms, present us the
right opportunity to create vast pool of important applications that contain immense
possibilities in human well-being-based system development [51]. As a result, interest
in and expectations for AI are increasing more rapidly. The learning revolution
paradigm holds that a machine or computer can learn significantly enough to be
comparable to human-level abilities by being given examples or training instances.
The applications stemmed out of such learned systems are ready to be deployed
and consumed for diverse set of usages. Consequently, if we focus on developing
different important applications, sensor signals play an important role. Sensors can be
considered as a miniature depiction of our physiological and physical spaces that gather
data about the respective physiological and physical worlds from its environment and
supply the necessary inputs to the intelligent system so that it can sense the specified
information spaces and finally make various decisions. Firstly, we need to consider
the privacy preservation requirements when building computational models using
physiological marker signals that contain sensitive information like health condition.
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Owing to the close proximity of human being, sensor signal often carries sensitive
information. In order to build effective computational learning model we further
have to develop accurate models from sensor signals. The paradigm shift is from
acquiring explicit expert and domain knowledge into building an intelligent system
to learning from a given number of examples, called training datasets. Secondly,
we intend to state that an efficient yet accurate classification model has the potential
solve practical challenges For example, automated detection of atrial fibrillation, a
serious cardio-vascular abnormality condition associated with long-term health issue,
is one practical requirement that needs to be taken into account in order to show the
effectiveness of computational learning models that perform useful tasks to solve real-
world problems. Thirdly, we have observed that practical sensor datasets in supervised
learning tasks often classification tasks often experience short-supply in the number
of training examples upon which the model is trained. The issue is mostly due to the
labeling expenses and the requirements of specialized sensor hardwares and setups.
For example, classification of cardio-vascular disease detection tasks form ECG signals
require 1. ECG sensors to capture the data, 2. Identification and collection from human
subjects suffering from cardio-vascular, and 3. Cardiologists to annotate or label the
disease class from the extracted ECG data and the expenses associated with such
annotation causes scarcity in training examples in larger of instances of real-world
sensor analytics problems. While, in general, deep learning algorithms expect large set
of training examples for proper and sufficient learning. We consider the problem of
developing solution to build computational model that can effectively provide better
classification performance over diverse set of sensor datasets. Last but not the least,
Thus, a holistic approach that solves the three important aspects of computational
learning for sensor signal analysis are addressed to solve the practical challenges. In
summary, we aim for-

(a) Privacy-preserving computational model to cater the need of minimizing the
privacy breaching attacks on the sensor signal classification models that deal
with sensitive information like health information to infer health condition. For
example, an accurate machine learning model can determine the heart health
condition using Phonocardiogram (PCG) or heart sound signals. One of the
major challenges is to ensure in-built privacy protection into the computational
model that automatically infers whether the patient’s heart condition is normal
or not from the presented PCG signals. Given that the sensor signal (PCG, for
example) contains sensitive information regarding a person’s health condition,
the plausible action against privacy breaching attack is to be made part of the
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analystics system in order to ensure practical relevance and user acceptability.
Further, we need to understand that privacy preservation is a critical requirements
for systems that analyze sensitive information like sensor signals captured to
analyze health condition.

(b) Building intelligence towards automated classification of important sensor sig-
nal like a critical physiological marker, Electrocardiogram (ECG) that carries
signature of cardio-vascular activity, for example development of Atrial Fib-
rillation (AF) condition detection from single lead ECG data, where the ECG
recordings can be obtained from off-the-shelf single lead ECG sensors with-
out hand-crafted feature engineering. The computational model needs to be
self-sufficient data-driven model that can effectively generates features from
the given training datasets to construct and effective and compact model to
solve practical challenges like AF condition detection from single lead ECG
sensor. AF is presented as an irregular disorder of heart rhythms (arrhythmia),
which is mostly accompanied by rapid heart rate and the underlying condition
can be the reason of major damages to the cardiovascular systems [24], [30].
Our main focus of this particular research work is to build a reliable automated
single lead ECG classification algorithm for AF detection, which is useful in
ambulatory or in-home screening purpose so as part of an early-warning smart
healthcare system for identifying the potentially critical cardio-vascular diseases
(CVDs) of the user. Additionally, the constructed model needs to be compact in
nature in order to to get deployed in edge devices including sensing platforms or
smartphones so that the analysis can be performed locally.

(c) Solving the problem of training data insufficiency in the efforts of developing
accurate machine learning models. Owing to the issue of expert-level annotation
requirement to perform the data labeling tasks, machine learning algorithms
face insufficiency in the training data space for the construction of computa-
tional models for supervised learning tasks like classification. For instance,
Electrocardiogram (ECG) is a fundamental marker of heart health, which can
be affordably captured from human subjects that helps us to develop important
applications like automated cardio-vascular screening system as part of smart
healthcare platform. However, these critical sensor signals require experts like
cardiologists to get the annotation tasks done, which is an expensive process and
subsequently, it results in scarcity of training examples. In fact, data scarcity is a
real practical challenge [6]. In order to build such useful practical applications,
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we need to solve the problem of training data scarcity for building an accurate
computational model by analyzing sensor signals.

Time series data are employed in a wide range of real-world applications, particularly
when building intelligent systems using sensor data. As part of building intelligent
systems, time series classification is an important task owing to the fact that large
number of sensors capture signals which are temporal in nature. It is clearly evident
that time series data analysis is crucial for creating practical applications. Time series
output is provided by sensor signals that are practically crucial, such as ECG and
PCG. To incorporate trustworthy decision-making into the computational model, it
is important to examine the sensor measurements and run time series analysis on the
collected data.
We also are witness the convergence of Internet of Things (IoT), Artificial Intelligence
(AI) and advanced sensor technology is revolutionizing the consumer computing land-
scape and usher a new direction towards the research of developing computational
models, more specifically deep learning models for performing large set of tasks includ-
ing sensor signal analysis [8]. From the technical contribution point of view, we intend
to bring in novel methods for the realization of diverse set of real-world applications.
We particularly consider the time series sensor signal classification problems, where the
task is to build multi-class classification models by training time series sensor signals.
We are primarily focused on building data-centric learning models by taking the advan-
tages of the availability of benchmark time series sensor analysis classification datasets.
For instance, heart sound or PCG dataset is publicly available in [36], which contains
total 2435 number of PCG recordings, where 1297 are collected from healthy subjects
and rest are patients who are suffering from different conditions, including coronary
artery diseases and heart valve diseases. Similarly, publicly available expert-annotated
database of AF detection using single lead ECG recordings are available, where to-
tal 8,528 number of single lead ECG recordings are present with labels of normal,
AF, noisy and other rhythms are labeled [11]. We further note that an outstanding
effort has been made to archive different time series classification datasets [4], [3].
In fact, the time series archive database becomes one of most popular open-access
benchmark database that contains large set of time series classification tasks from
different types of sensors including ECG, accelerometer, energy meter etc.Large sets
of real-world time series datasets, however, frequently lack labelled training examples
due to a variety of factors, such as the niche and expensive requirements to setup
the experiments like, "SonyAIBORobotSurface1" requires a robot to walk on various
surfaces, such as cement or carpet. We also find that great amount of cost is associated
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with the human-expert-in-loop annotation process ("TwoLead ECG" requires quali-
fied medical professionals or trained cardiologists to perform the data annotation or
labeling job). “SonyAIBORobotSurface1” dataset contains mere 20 number training
examples, “TwoLead ECG” contains 23 number of training examples. Another import
dataset "ECG 200", where two classes- normal heartbeat and a Myocardial Infarction
(heart attack) are present that contains 100 training examples [4], [3]. We note that
time series sensor signal classification under training datasets scarcity is a research
challenge which needs to be solved to build useful applications with the help of gamut
of rich sensor types [49] [27] [54]. We also like to point out that the natural temporal
ordering of the attributes of a (sensor) signal in time series classification tasks makes
it different from conventional classification tasks. One of the research challenges
is to learning from the signal morphology to construct better representation. Such
approaches are distinctly useful in ECG signals, which is quasi-periodic nature with
repeated patterns.
While we are motivated by the exponential growth of AI techniques, particularly the
machine learning and deep learning algorithms fueled with large number of publicly
available standard datasets to develop effective computational models to solve diverse
practical time series classification problems involving analysis of different sensor
signals, under the user acceptability and deployment perspectives, privacy preservation
of user’s data, particularly, when healthcare recordings are concerned is of utmost
importance and needs critical attention. An effective computational model with data
privacy protection option has immense practical significance. We further attempt to
find solution for privacy preservation enabled machine learning model development.
In fact, our motivation has two major components- 1. privacy preservation of sensor
analytics tasks, 2. solution building towards development of practical sensor signal
analysis.

1.3 Problem Formulation and Solution Sketch

We primarily focus on sensor signal classification tasks and often the sensor signals
are represented as time series: x = [x1,x2,x3, ...,xT ], x ∈ RT and x is of length T and
x1,x2,x3, ...,xT are the scalar measurements at time intervals 1,2,3, ...,T from a given
sensor. Consider N number of seen examples which constitute the training dataset
XTrain = [x(1),x(2), . . . ,x(N)], XTrain consists of N number of time series sensor signals
each of which has T number of data samples and the training set also comprises of
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labels for each of the training instances:
DTrain = [XTrain,YTrain]= [{x(1),y(1)},{x(2),y(2)}, . . . ,{x(N),y(N)}]
and y(n) ∈ [1,C], ∀n, the labels correspond to one of the C classes, which are required
to generate time series classifier model. The model gets trained with seen examples
and the trained model infers or predicts the class of the given (test) sensor data set.
For instance, in AF detection problem from single lead ECG sensor data [11], the
primary task is to classify between normal sinus rhythm, AF or other heart rhythm. We
like to point out that the traditional machine learning algorithms like Ada-boost [18]
requires specific features to be extracted from the input training data or in general, the
input to the Ada-boost algorithm is a set of hand-crafted features. Let us denote the
the input hand-crafted or selected features be Ftrain and Ftest be for training and testing
purposes respectively. The trained model Mtrain learns from Ftrain and it infers I on the
test data Ftest , I= Mtrain(Ftest). Our goal is to construct a good trained model Mtrain

with accurate predictability I. The prediction accuracy I is computed by the trained
model Mtrain over the unseen test dataset Ftest . While sensor signal-based applications
possess considerable benefit ot human society and life, the sensor signals, primarily the
physiological signals like PCG carry significant sensitive information. Hence, building
of automated solutions with typical sensor signals are of little practical value if the
issue of data privacy prevention is not addressed, where the de-risking of sensitive data
analysis needs to be performed. In fact, the de-risking of sensitive data management
is to be an integral component of different sensor signal analysis solutions including
healthcare domain. However, protection data privacy has the potential side effect of
minimizing the utility of the application. Data privacy in terms of obfuscation approach
transforms the data into non-usable format. Under clinical management setting, such
approach favorably biases privacy-utility trade-off towards the user, who can enable
a user-centric privacy preservation of healthcare AI system such that the important
features are privacy-protected while sharing with the non-critical stakeholders in a
smart healthcare eco-sytem. O= (Ftest , I) are the clinical analytics outcomes from the
machine learning model over a physiological sensor signals like PCG, where (Ftest , I)
denote the important machine learning features and the prediction or inference of the
model from the test PCG signal respectively. Depending upon the user’s choice of pri-
vacy protection on O, de-risking approach is performed. When user’s choice is privacy
protection Ftest ,I→ FPrv

test ,I, the research problem is to find the transformation of Ftest

to FPrv
test that enables the development of a method for sharing of privacy-controlled

information that minimizes the privacy-breaching risk of sensitive health information.
We solve this problem with controlled differential privacy approach using the statis-
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tical distribution of Ftest such that minimum obfuscation that is suitable to ensure
the adequate privacy protection is made to warrant minimum information loss. Our
novel contribution is to define the sensor data uncertainty principle which introduces
controlled uncertainty to minimize the impact of privacy breaching attacks when the
adversary intends for sensitive summarization, performance prediction knowledge gain.
Clinical uncertainty knowledge is incorporated to appropriately introduce differential
privacy for controllable obfuscation of the sensitive data. We are primarily interested in
edge analytics-based applications with deployment architecture as per Figure 3.1. The
machine learning model and controlled privacy protection are performed at the edge
devices, where the data owner receives the analytics outcome and related information.
Our architecture controls the amount of required data privacy protection such that the
user or the data owner has the complete command on his/her data privacy and such
mechanism brings transparency of the private data flow as depicted in Figure 3.2.
Privacy preservation transforms in general, the clinical analytics outcome O = (F,
I). S is a conservative user and she does not intend to disclose her clinical outcome
O = (F, I) to clinical researcher in anonymized but raw form. Privacy preservation
module obfuscates F,I to FPrv and shares FPrv for the user S. Hence, a controlled,
user-driven, proactive privacy preservation takes place in the event of positive trigger-
ing for privacy implementation. When user S′

does not express or intend privacy risk,
then F,I corresponding to the user S′

is shared to the prospective clinical researchers.

Related publication:
Arijit Ukil, Antonio J Jara and Leandro Marin, “Data-Driven Automated Cardiac
Health Management with Robust Edge Analytics and De-Risking”, MDPI Sensors,
19:12(2733), 2019.

While privacy preservation issue is tackled in our previous research publication [50],
the expert-dependent hand-crafting of feature generation to construct the train model is
a practical constraint. For example, Atrial Fibrillation (AF) condition from ECG sensor
signal requires cardiologists’ intervention to identify the relevant features, which is
significantly expensive and limits the process of computational model development.
However, AF condition detection through automated analysis of ECG signal is one
of critical components of a smart cardio-vascular screening systems. AF condition is
a kind of highly prevalent CVD and a major healthcare burden. AF is presented as
an irregular heart rhythms and it is likely to cause severe long-term critical damages
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Fig. 1.1 Smart edge sensor analytics for inference and controlled privacy protection: Deploy-
ment architecture [50].

Fig. 1.2 Data-driven on-demand privacy preserved analytics: functional architecture [50].

to the cardiovascular systems [30] [39]. It is known that cardio-vascular diseases
(CVDs) are the leading cause of deaths worldwide [1]. ECG signal has the capability
of capturing the AF condition and when AF is detected early, prognosis is very positive
and promising. Hence, Automated detection of AF condition from off-the-shelf single
ECG sensors is of immense practical importance to build automated early warning
system for AF diagnosis.
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Fig. 1.3 Block diagram of AFSense-ECG [53].

The given problem is to build tailored or specialized computational model, prefer-
ably using deep learning technique to classify AF condition from single lead ECG
recordings. While state-of-the-art algorithms for AF detection from ECG signals
[22] [9] [57] demonstrate excellent classification performance, the models are
computationally expensive and require substantial memory budget. Such models
are not suitable to develop intelligent sensing platform with off-the-shelf single
lead ECG sensors like Alivecore (kardia.com) or AD8232 (https://www.analog.com/
media/en/technical-documentation/data-sheets/ad8232.pdf) and typical inexpensive
microcontroller like ESP32WROVERE (https://www.espressif.com/sites/default/files/
documentation/esp32-wrover-e_esp32-wrover-ie_datasheet_en.pdf).
We solve the problem of modeling without expert-intervened feature generation with
the objective of building compact yet effective model construction for problem of AF
condition detection from single lead ECG signals as depicted in 3.3. We have realized
equivalent classification performance of state-of-the-art methods while being lean with
reduced model parameter size to enable edge device deployment for off-the-shelf single
lead ECG classification that detects AF condition. We intend to introduce inferential
sensing capability to the single lead ECG sensor devices.The typical morphological
characteristics of ECG signals with of repeating P-wave, QRS complex, and T-wave
patterns [2] is captured by AFSense-ECG during feature extraction, representation
learning, which results in learning rate optimization and accurate modeling with con-
volutional neural network (CNN) construction. We are motivated by the observation
that ECG analysis using deep learning-based methods perform better than traditional
machine learning approaches with feature engineering [26]. Further, CNN is a well-
accepted and widely-used deep learning architecture, which has successfully achieved
benchmark results on diverse classification tasks including ECG classification [31]
[22] [59]. Hence, CNN turns out to be our apt choice as our deep learning model
architecture. There are total five convolution blocks in AFSense-ECG deep neural

kardia.com
https://www.analog.com/media/en/technical-documentation/data-sheets/ad8232.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad8232.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover-e_esp32-wrover-ie_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover-e_esp32-wrover-ie_datasheet_en.pdf
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architecture. Each of the convolutional layers are followed by one Rectified Liner Unit
(ReLU) activation function as well as one batch normalization function. After the final
convolution block, Global Average Pooling is used as the last layer before softmax
activation output layer. The AFSense-ECG model architecture is shown in Figure 1.4.

Fig. 1.4 Deep neural network architecture of AFSense-ECG [53].

Our novel contribution is enforcing the CNN feature maps to capture the ECG signal
characteristics such that signal morphology plays an important role in the generation
of the receptive fields. In this work, we put paramount importance to leverage the
ECG signal morphology and temporal information while modeling the deep neural
network and corresponding representation learning. Hence, the learning process gets
higher chance of capturing the required details of ECG signal by properly adjusting
the receptive field that constructs the CNN feature maps. In order to capture ECG
morphology in the CNN feature extraction process, we adjust the receptive field to
induce the domain characteristics into the feature maps. The first convolution layer
is suitable to capture the morphological features in terms of QRS-complexes from an
ECG signal.Therefore, we make an estimation of the value for the first convolution
layer stride length hyperparameter ψ1 to ensure that the clinical morphology of ECG
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in terms of QRS-complexes gets captured in the generated feature maps. We propose
our hypothesis that for a clinical morphology-induced representative feature map
construction from ECG signals, the following relationship needs to hold:
ψ1 ∝ sample density(sd), sd =

zp
sp

where, zp denotes the sampling frequency of an arbitrary pth ECG sensor. From that
ECG sensor, sp length of sample points are captured and the complete training instance
matrix sp ×N is fed to the CNN model for total N number of training instances, where
N is the total number of instances each with time steps of sp. We compute the sample
density sd =

zp
sp

. If there exists only single ECG sensor, p = 1. Let M∗ be the model of
a state-of-the-art AF classification with α∗ number of parameters with classification
performance merit (e.g., in terms of F1-score, etc.) of γ∗ over a given dataset D .
Our problem is to develop Mours with α number of parameters with classification
performance merit (e.g., in terms of accuracy, F1-score, etc.) of γ over D , such that
α ≪ α∗ and γ ∼ γ∗. We attempt to find such compact model hours which eventually
enables us to realize AF detection from single lead ECG signals deployed at low-cost
microcontrollers with off-the-shelf inexpensive ECG sensors for accomplishing local
analysis of ECG signals.

Related Publication:
Arijit Ukil, Leandro Marin, Subhas Chandra Mukhopadhyay, and Antonio J. Jara,
“AFSense-ECG: Atrial Fibrillation Condition Sensing from Single Lead Electrocardio-
gram (ECG) Signals,” IEEE Sensors Journal, March, 2022.

Currently, we are witnessing gamut of requirements and demands to use time series
signals for the development of number of useful sensor analytics applications like iden-
tification of normal and abnormal cardiac condition from the time series sensor signal
(e.g., ECG) from smart wristband or smart watch. While such kind of applications have
tremendous potential for enabling predictive analytics in remote healthcare system,
these are niche in nature and require specialized (sometimes expensive) hardware to
acquire the training set, and importantly, the annotation or labeling of training datasets
require specialized training, expert human intervention and are very much costly. Such
practical challenges demand some novel representation space enrichment principles for
the betterment of computational modeling through sophisticated deep neural network
construction. Deep neural networks often need a huge collection of training datasets
for dependable and stronger learning [27]. For instance, ImageNet 2012 classification
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dataset includes 1.28 million training datasets and the CIFAR-10 dataset contains
50,000 training photos [32], [15], [33].
Let, N be the number of seen examples, refereed to as the given training dataset
XTrain = [x(1),x(2), . . . ,x(N)], and the labelled training data
DTrain = [XTrain,YTrain]= [{x(1),y(1)},{x(2),y(2)}, . . . ,{x(N),y(N)}]
and y(n) ∈ [1,C], ∀n, the labels correspond to one of the C classes. Our focus is on
supervised classification problem solving, where the task is to generate a reliable
deep learning model without feature engineering effort from the given training dataset
DTrain. For instance, in AF detection problem from single lead ECG sensor data
[11], the primary task is to classify between normal sinus rhythm, AF or other heart
rhythm. In supervised learning setting, we attempt to find a model or function hθ (.)

parameterized by θ with joint distribution pdata(x,y).
In machine learning, the foremost important objective is to minimize the mistake of the
model function hθ (.). The corresponding objective function is called the loss function
as L(hθ (x),y). 1 Consequently, the expected risk is defined as
R(h) = E(x,y)∼pdata

[L(hθ (x),y)]

However, it is to be noted that we seldom or practically never have the full knowledge
about pdata(x,y) and we only have the given training dataset DTrain = (x(n),y(n)) and
the corresponding empirical risk minimization (ERM) is defined as:

R̂emp(h) = 1
N

N
∑

n=1
L(hθ (x(n)),y(n))).

The maximum likelihood estimation (MLE) cost function is defined as:
J(θ) = E(x,y)∼p̂data

− log pθ (y|x)
Hence, the goal of a "good" machine learning algorithm is to successfully attempt for
the minimization of the cost function J(θ) for the purpose of reliable estimation of the
model parameter θ from the empirical distribution p̂data. The optimization problem is
defined as follows:
θ ∗ = argmin

θ

J(θ)

In time series classification tasks, particularly that involve sensor signals do not enjoy
large N and T unlike the regular computer vision classification tasks [6]. Often the
number of training instances (N) in classification tasks that involve sensor data is
less than 100, while conventional computer vision classification tasks, for instance
in ImageNet 2012 there are about 1.28 million training examples [32], [15]. Thus,

1Acknowledging https://blog.christianperone.com/2020/11/optimization-deep-learning/

https://blog.christianperone.com/2020/11/optimization-deep-learning/
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we cannot reliably assume that p̂data and pdata are close. Therefore, the estimation of
the model parameters from J(θ) is bad or incomplete, which may result in learning
degradation issue. Given that limitation on number of training data is a generic problem
in time series sensor data classification tasks [54], our research problem is to ensure
better learnability under training data scarcity problem for diverse and heterogeneous
varieties of time series sensor data.
The regular solution to tackle the training data limitation challenge is to introduce
adversarial training [40], [56], [21] for augmented learning, where adversarial train-
ing examples as perturbed input forms attempt to construct a generalized model [28],
[29]. However, we are unsure about the positive impact of the adversarial examples
into the training process. Hence, finer control of creation of adversarial training plays
an important role. We solve the finer control of adversarial training by suitable feature
space or in current context, apt input space selection to enable better generalizability
capability to the trained model by identifying a subset of inputs that are important
and relevant towards model’s predictability. We consider game theoretic set up of
Shapley value [42, 44, 19]-based feature or input importance estimation to discard the
negatively contributing samples, if exist. We propose a novel deep learning method
Shapley Attributed Ablation with Augmented Learning (ShapAAL), which is a residual
network with augmented learning capability along with Shapley value-estimated input
sample ablation as depicted in Figure 1.5 and Figure 1.6.

Related Publication:
Arijit Ukil, Leandro Marin, Antonio J. Jara, "When less is more powerful: Shapley
value attributed ablation with augmented learning for practical time series sensor data
classification," PLOS One, Vol. 17, Issue. 11, Published: November 23, 2022.
https://doi.org/10.1371/journal.pone.0277975.
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Fig. 1.5 ShapAAL network architecture with residual blocks and perturbed input [52].
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Fig. 1.6 Constructing the proposed ShapAAL model Mwith additive perturbation and Shapley-
value based feature (input) attribution [52].
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Summary
Remote and automated healthcare management is a high impact application to deliver
better and on-demand monitoring as well as medical service provision which has
the potential to enhance the prognosis rate of different disease conditions, including
cardio-vascular diseases. It is to be noted that cardio-vascular diseases are the cause
of highest number of human deaths worldwide. It is understood that Internet of
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Things (IoT) can enable the development and implementation ecosystem of such
automated smart healthcare systems to attain the requirement of large number of
stakeholders. In this paper, we particularly focus on cardiac health management
system that performs clinical decision making through data-driven algorithms. We
show that the proposed method is capable of ensuring significant merit of clinical
decision making performance by employing robust machine learning methods, where
the machine learning algorithms are fed with relevant and selected signal processing
features. We consider Phonocardiogram (PCG) or heart sound, which is a fundamental
marker to capture the heart health abnormalities as the exemplary physiological or
biomedical signal. We know that PCG signal carries basic cardiac health condition
signature. Our aim is to establish data-centric clinical utility through supervised
learning to classify normal and abnormal heart conditions. Such analytics would be
performed at edge gateway. However, it is a well-known fact that analysis of healthcare
data poses with privacy breaching risk owing to the presence of different sensitive
information contained in the extracted physiological signals. Hence, privacy protection
is of clear importance for practical acceptability of such computational models. In this
paper, we additionally solve the problem of healthcare data privacy prevention issue by
de-risking of sensitive data using differential privacy, such that the controlled privacy
protection on sensitive healthcare data can be enabled to develop privacy preserved
data management. When a user sets or wishes for privacy protection, appropriate
privacy preservation is guaranteed to defend against privacy-breaching knowledge
mining attacks with differential privacy technique by estimating the distribution of
the sensitivity content of the PCG signal. Given the proliferation of IoT application
using machine intelligence techniques, we sincerely hope that the research work is
of substantial real-world importance as it enables on-demand automated screening of
cardiac health that minimizes the privacy breaching risk. We propose an integrated
method of computational analysis of cardiac health state detection along with data
privacy preservation. We conduct empirical investigation with publicly accessible,
expert-annotated MIT Physionet Challenge 2016 PCG database. The empirical study
shows substantial clinical efficacy of the proposed method and it also sufficiently
protects the sensitive data privacy when privacy preservation demand is set.
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Summary
In order to develop practical applications like disease detection using wearable technol-
ogy, local generation of sensing knowledge, or remote monitoring of health condition,
it is well understood that the augmentation of sensing capability of hardware sensors
that capture physiological signals like Electrocardiogram (ECG) with intelligence is of
the utmost importance. In this study, we present AFSense-ECG, a single lead ECG
sensor with integrated intelligence that is capable of reliable detection of the atrial
fibrillation (AF) condition, the most prevalent continuous cardiac arrhythmia and it is
known to be associated with a greater risk of stroke in sub-clinical AF patients. For
the purpose of detecting AF conditions, AFSense-ECG serves as an early-warning
sensor. A single lead ECG sensor from the market, such as the Alivecor or AD8232,
is combined with a processing unit (such as the ESP32WROVERE microcontroller)
that embeds intelligence. We proposed convolutional neural network (CNN)-based
deep learning (DL) method for supervised learning of single lead ECG signals. The
hyperparameter-tuned CNN based deep neural network model of AFSense-ECG con-
sists of an adjustable configuration for learning optimization through learning rate
regulation. The feature extraction approach and the representation learning process of
model development in AFSense-ECG takes into account the quasi-periodic character
of typical ECG data with repeating P-wave, QRS complex, and T-wave patterns. The
effectiveness of the suggested ECG signal characteristics-based hyperparameter-tuned
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ECG classification model development is supported by our empirical investigation. In
comparison to the publicly accessible single lead ECG datasets of the Physionet 2017
Challenge, AFSense-ECG reports an F1-measure of 86.13%, whereas the state-of-
the-art techniques show F1-measures of 83.70%, 83.10%, 82.90%, 82.60%, 82.50%,
and 81.00%. Also, the suggested learning model for inferential sensing is compact
(about 25 times simpler in terms of total number of trainable parameters than the
relevant state-of-the-art methods that uses more than 30 number of convolutional
neural network layers, where total 10474607 number of trainable parameters is present,
and in our proposed model, there are 433675 trainable parameters). We arrive at the
conclusion that intelligent ECG sensing is a potentially useful method for deriving
practically meaningful knowledge from physiological marker signals like the ECG,
and AFSense-ECG converts the raw ECG sensor into a medical condition monitoring
system through intelligence embedding. The single lead ECG sensors that are available
off-the-shelf can now have in-built intelligence thanks to the suggested sensing-based
CNN algorithm. The proposed deep neural network model requires a small memory
footprint that is quite effective at detecting AF condition on the analytics side from
single lead ECG signals. Although we have now tested for AF condition sensing and
detection, the methodology of the proposed data-driven computational learning for
ECG signal categorization is a generic one. While the suggested AFSense-ECG model
size is substantially smaller than the state-of-the-art, it performs better. The overpa-
rameterization of common DL models for capturing fine features in the representation
space is another point we want to make emphasis. The way input signal is presented
to the model, however, also affects the representation space. For ECG signals, we
have shown that a better result can be obtained through an efficient hyperparameter
estimation by computing the sample density of the input ECG recordings while taking
into account the distinct quasi-periodic property and related morphology of ECG
signals. Thus, the proposed model is not overparameterized. As a result, the AFSEnse-
ECG model is not only efficient but also compact with a significantly less number of
model parameters than the most recent model and we feel that compact, yet effective
models are crucially important for the realization of real-world applications. From the
standpoint of clinical utility, AFSense-ECG opens the natural path towards the creation
of an intelligent healthcare system and has the potential to greatly reduce the need
for frequent clinician intervention for on-demand assessment of the heart condition.
It in fact aids in the rapid identification of the currently present non-diagnosed or
sub-clinical AF disease from off-the-shelf single lead ECG signals.
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Summary
Due to the costs involved with the expert-intervened annotation efforts, tasks involving
time series sensor data classification frequently experience a problem with a lack
of training data. As an instance, the classification problem of Electrocardiogram
(ECG) data for the identification of Cardio-Vascular Disease (CVD) necessitates the
use of pricey labeling techniques with direct assistance of the cardiologists. Deep
learning (DL) models, one of the most cutting-edge algorithms currently available
that accurately perform different classification tasks, have demonstrated exceptional
performance when compared to other algorithms when a high sample size of training
data or seen examples is available. In this study, we propose Shapley Attributed
Ablation with Augmented Learning (ShapAAL), which shows how deep learning
algorithms with carefully chosen subsets of observed examples or by ablating the
unimportant ones from the provided small training dataset can consistently guarantee
better classification performance under augmented training principle. We choose the
crucial inputs from the given training dataset that have a beneficial influence on the
predictability of the provided model with the help of the "efficiency" and "null player"
axioms of transferable utility games, upon which Shapley value computation game
is built on. Subsequently, we perform additive perturbed training in ShapAAL to
enhance the input space that compensates the scarcity in the training examples. We use
Residual Network (ResNet) architecture. Shapley attribution first seeks the subset from
the given input training examples and then, it augments training space for improved
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learnability such that we can achieve higher accuracy in general predictive performance.
In ShapAAL, the subset of training instances that favorably affect a supervised learning
setup is created via coalition games utilizing Shapley values related to each input’s
contribution to the model prediction. In ShapAAL, a revolutionary push-pull deep
architecture, subset selection by Shapley value attribution pushes the model to a lower
dimension while enhanced training increases the model’s capacity for learning from
previously unexplored material. Our conducted ablation study provides the necessary
empirical support to substantiate our claim, and we demonstrate that the proposed
ShapAAL method consistently outperforms the current benchmarks and cutting-edge
algorithms for time series sensor data classification tasks from publicly available
UCR time series archives that include various practically important classification
problems including the detection of CVDs from ECG. Our goal is to create a solution
for the significant practical issue of training data scarcity in time series sensor data
classification tasks when implementing various types of real-world applications, such
as smart cardio-vascular disease detection using ECG data to create an efficient early-
warning, on-demand heart health monitoring eco-system. Across a variety of time
series sensor data analysis tasks, our suggested augmented learning with input subset
selection strategy using Shapley value-based attribution has exhibited considerably
correct performance. We have proposed a novel learning mechanism that first unlearns
the non-important samples by identifying their contributions to the model predictability
through Shapley value computation from coalition game setup with transferable utility,
then it re-learns with those important subset samples to make up for the inadequacy of
the training data. Our innovative, three-stage time series classification model, which
involves finding non-contributing inputs with Shapley value attribution, unlearning
those non-contributing inputs, and finally, relearning through augmentation of chosen
input features with adversarial training mechanism, has shown classification efficacy.
We demonstrate the performance of the proposed method not only through ablation
study but also through comparative state-of-the-art research. The empirical study
clearly shows that the suggested three-stage approach has a considerable favourable
influence on the model’s learnability. We experiment with diverse set of time series
classification tasks and we show that the proposed model consistently outperforms the
relevant state-of-the-art approaches, and the amount of training samples required to
develop our model is noticeably low. As a result, we claim the effectiveness of the
suggested model and identify it as the model of preference for effectively building
trained models when the amount of training data is limited.
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Conclusion

We focus on building a holistic framework for effective computational model construc-
tion for diverse set of real world sensor signal classification tasks, especially for sensor
analysis problems which often relate to human life and society. We have identified
that the impetus of the research community (more precise the machine learning and
deep learning models for supervised training). We solve the most important problem
of privacy preserving sensor signal analytics. It is understood that data privacy is of
utmost importance in building platforms or eco-system that handle sensitive data like
smart health-care management. However, privacy is an individual option. We propose
an user-controlled privacy preservation technique for heart sound-based computational
model generation. Secondly, we demonstrate that deep learning model like CNN
with appropriate hyperparameter selection can effectively create a compact model for
practical sensor signal classification tasks like AF condition detection from single
lead ECG signals without expert-intervened feature extraction and selection process.
Thirdly, we observe the generic problem of scarcity of training examples in the process
of computational model construction for sensor signal classification task. As the
classification model does not get sufficiently labeled training data, the training of the
model over such dataset may invariably rise to over-fitting issue. Hence, our endeavor
is to solve the problem owing to the incomplete learnability of classification models
due to training data insufficiency by proposing novel generic methods and models with
Shapley-value attributed adversarial training.
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3.1 Results Outline

3.1.1 Result Sketch- "Data-driven automated cardiac health man-
agement with robust edge analytics and de-risking [50]"

We conduct our empirical evaluation using publicly available, expert-annotated MIT-
Physionet Challenge 2016 PCG or heart sound database [36]. MIT-Physionet Chal-
lenge 2016 PCG contains ‘Normal’ and ‘Abnormal’ labels correspond to clinical
normal heart condition and clinical abnormal heart condition respectively. We demon-
strate accuracy, sensitivity and specificity scores >0.8 through our domain feature
engineered Adaboost [18]-based ensemble learning algorithm. In order to enable data
privacy protection, differential privacy [16]-based obfuscation technique is applied.
The obfuscation method distorts the features in a measured way such that the the
obfuscated outcome is equivalently to random outcome with accuracy, sensitivity and
specificity measures are ∼ 0.5. We depict in Figure 3.1 to demonstrate shows that
while the machine learning algorithm produces significant clinical efficacy in terms of
Accuracy, Sensitivity, Specificity values (all more than 0.8) but the obfuscation with
proposed differential privacy based method drops the clinical efficacy factors close to
0.5, which in fact renders no knowledge gain for the privacy attacker.

Fig. 3.1 Demonstrating the impact of proposed privacy preservation algorithm to nullify the
intention of clinical knowledge gain of the privacy breaching attacks.

Further, we show in Figure 3.2 that our proposed differential privacy protection obfus-
cates the distribution of the machine learning features ( f1, f2, f3) (we have demonstrated
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Fig. 3.2 Demonstrating the impact of proposed privacy preservation algorithm on the statically
significance of the obfuscated features ( f1, f2, f3).

using Box-Whisker plot) to confuse the attacker to derive any effective inference. We
conclude that user-controlled data-distribution aware privacy preservation can effec-
tively solve the privacy breaching attacks to safeguard the privacy of the sensitive
data. The proposed scheme ensures controlled privacy protection of user’s sensitive
information which enables practical deployment and acceptability of important sensor
signal analytics applications.

3.1.2 Result Sketch- "AFSense-ECG: Atrial fibrillation condition
sensing from single lead Electrocardiogram (ECG) signals [53]"

PhysioNet-Computing in Cardiology (CinC) Challenge 2017 is one of the most popular
benchmark ECG databases, which is the largest known publicly available single lead
ECG dataset for cardio-vascular disease lables (Atrial Fibrillation) with total 8,528
number of expert-labeled single lead ECG signals are available and this dataset consists
of 60.4% normal sinus rhythm diagnosis (total 5154 cases), 9.0% AF diagnosis (total
771 cases), 30.0% other cardiovascular diseases (total 2557 cases) and 0.6% noisy data
(total 46 cases) [11].



28 Conclusion

AFSense-ECG demonstrates effective classification performance to infer from sensor
signal like ECG without hand-crafted, expert-intervened feature generation and selec-
tion processes. The considered classification performance metric is F1-score (F1-score
is harmonic mean of recall and precision). The F1-measure of AF condition detection
from our method is86.13%, where as the relevant state-of-the-art methods report F1-
measures of 83.70% [22], 83.10% [48], 82.90% [12] [41], 82.60% [58], 82.50%
[25], 82.00% [59], 81.00% [10] over publicly available single lead ECG datasets
for AF condition detection from Physionet 2017 Challenge [11] as described in table
3.1. Further, our proposed learning model is lean with the proposed AFSense-ECG
model consists of about 25 times less number of model parameters than the corre-
sponding state-of-the-art model [22]. In order to deploy in edge devices, where the
computation tasks are performed by micro-controller units (MCUs), the model memory
size is an important design criterion. For example, typical representative MCU like
ESP32WROVER consists of 8MB PSRAM and 8MB flash memory. State-of-the-art
[22] algorithm model memory size is 115.6 MB, which is non-deployable in MCUs,
where as the model size of AFSense-ECG is less than 4.4 MB. In fact, using lossless
compressed file storage in .zip format, the model size becomes 3.8 MB. We have
developed TensorFlow Lite model [13] by converting the TensorFlow model of 4.4
MB size into a compressed flat buffer model of 1.43 MB size with the TensorFlow Lite
Converter for embedded micro-controller deployment.

We conclude that AFSense-ECG is an elegantly designed CNN-based deep learning
model and it is efficiently parameterized. It is much leaner model than the relevant
state-of-the-art [22] and the compactness in the design does not compromise on the
classification performance. Our proposed model not only shows better classification
performance, but also it is an efficient one to deploy in practical edge applications.
We have demonstrated that better classification results can be obtained by using novel
hyperparameter estimation to capture the morphology of ECG signals.

3.1.3 Result Sketch- "When less is more powerful: Shapley value
attributed ablation with augmented learning for practical time series
sensor data classification [52]"

We consider a generic problem in time series classification, where the model does not
have the opportunity to get trained with adequate number of training data. The training
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Table 3.1 Experimental validation of the proposed AFSense-ECG algorithm with respect to
state-of-the-art methods.

State-of-the-art method F1-measure (%)
AFSense-ECG (our method) 86.13

Hannun et al. [22] 83.70
Teijeiro et al. [48] 83.10

Datta et al. [12], [41] 82.90
Zabihi et al. [58] 82.60
Hong et al. [25] 82.50

Christov et al. [10] 81.00
Chandra et al. [9] 71.00

Zihlmann et al. [59] 82.00
Stępien [47] 75.00

Rubin et al. [43] 80.00
Baydoun et al. [11] 82.20

Bin et al. [11] 82.10
Zilhlmann et al. [11] 82.10

Xiong et al. [11] 81.80
Sodmann et al. [46] 82.00

data limitation issue is not only a practical problem, but also a research challenge given
the typical machine learning and deep learning algorithms expect sufficient number of
seen examples or training instances for better learning on the data distribution.
We have proposed ShapAAL: Shapley Attributed Ablation with Augmented Learning, a
novel residual network architecture-based deep learning model [23] with both adversar-
ial training as augmented learning process and input sample compaction with Shapley
value-based input importance estimation, where the augmented training of on the model
learning converts R(h) into adversarial risk Raug(h) =E(x,y)∼pdata

[max
δ∈∆

L(hθ (x+δ ),y)],

where ∆ represents the set of adversarial perturbations in δ . The inclusion of ∆ is
the deliberation towards inducing mis-classification of the model and eventually, the
model learns to minimize such mistakes.
It is well-accepted to consider time series classification archive- UCR [4] as the
benchmark archives [20]. We experiment with number of diverse set of sensor datasets
that fulfill the criteria of being limited in number of training instances (≤ 200). Firstly,
we conduct ablation study involving the four components of ShapAAL- M is the
base model, which is a ResNet architecture that directly gets trained only and all the
training data; MShapley is the Shapley value-based feature or input selection model
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that gets trained only by the non-negative Shapley value-attributed inputs; Maug is
the adversarially trained model; and MShapley

aug is the proposed ShapAAL model with
supposedly constructed with the best of MShapley and Maug algorithms. MShapley

aug is in
fact the proposed MShapAAL model. The ablation investigation results that demonstrate
the performances of each of the models- M, MShapley, Maug, MShapAAL are depicted in
Table 3.2, which shows that MShapAAL is consistently performing better than the rest.

Table 3.2 Ablation study depicting the performance superiority of the proposed ShapAAL
model (MShapAAL) with respect to M, MShapley, Maug.

ALGORITHM M MShapley Maug MShapAAL

CHINATOWN 0.890 0.901 0.9211 0.9722
COFFEE 0.976 1.00 0.998 1.00
ECG200 0.83 0.86 0.87 0.92
ECGFIVEDAYS 0.989 1.00 1.00 1.00
FREEZERREGULARTRAIN 0.9865 0.9901 0.9933 0.9984
FREEZERSMALLTRAIN 0.8640 0.8640 0.8613 0.9309
ITALYPOWERDEMAND 0.8910 0.8901 0.9356 0.9704
MOTESTRAIN 0.8101 0.8233 0.9087 0.9084
POWERCONS 0.8576 0.8571 0.9083 0.9633
SONYAIBO1 0.8121 0.8439 0.8907 0.9682
SONYAIBO2 0.9355 0.9451 0.9406 0.9461
TWOLEADECG 0.8860 0.9006 0.9304 0.9994

We have further performed empirical study to compare the performance of proposed
model MShapAAL over the baseline algorithms like 1NN-DTW-based model [35]
and relevant state-of-the-art algorithms like RISE [17], COTE [5], TS-Chief [45],
Time Series Forest (TSF) [14], Proximity Forest (PF) [38], Catch22 [37], and time
series ResNet [55]. The empirical study is shown in Figure 3.3 using differential
test accuracy gain, which is defined as test accuracy o f the algorithm − benchmark test accuracy

benchmark test accuracy .
When the differential test accuracy gain is positive, we understand that MShapAAL is
empirically better performing. The results in Figure 3.3 clearly indicate the superiority
of ShapAAL over the baselines and current state-of-the-art models.

The significance of proposed ShapAAL as a sensor data classification model is es-
tablished through ablation investigation and study with respect to state-of-the-art
algorithms. We conclude that ShapAAL creates new benchmark in sensor signal
classification tasks. ShapAAL demonstrates consistent performance on diverse set of
time series sensor data and the approach itself is a generic one. We claim and establish
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Fig. 3.3 Differential test accuracy gain of our proposed ShapAAL with respect to baselines
and current state-of-the-art models over diverse set of time series sensor data.

that the proposed model is a general deep learning benchmark model for time series
sensor signal classification tasks particularly in the event of training examples scarcity.

Briefly, we can state that the three research works usher a new direction towards solving
the practical challenges of sensor signal classification and constructs a holistic approach
towards the development and deployment of different sensor-centric applications which
are of immense importance. Our research outcomes are of practical relevance and will
surely enable newer and novel applications to get developed and used for the benefit of
human life and society.
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