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Modulating the Catalytic Activity by the Mechanical Bond: 

Organocatalysis with Polyamide [2]Rotaxanes bearing a 

Secondary Amino Function at the Thread 

Jesus de Maria Perez, Mateo Alajarin, Alberto Martinez-Cuezva,* Jose Berna* 

The modulation of the catalytic activity of degenerate succinamide-based [2]rotaxanes by changes at their macrocyclic 

component is disclosed herein. These systems, bearing an acyclic secondary amine function at the thread as the active site 

and incorporating different polyamide macrocycles, were evaluated as organocatalysts in an iminium- and enamine-type 

processes. The results of kinetic studies clearly show a drastic variation of their catalytic efficiency, which apparently 

correlated with the electronics and dynamics of the entwined macrocycle.

Introduction 

The integration of mechanically interlocked molecules (MIMs)1 

into the catalyst’s toolbox for homogeneous catalysis is 

attracting significant attention during the last years. Different 

research groups have disclosed different mechanized systems 

as either organocatalysts2 or ligands in metal-catalysed 

transformations,3 including their use in asymmetric 

processes.4,5 In rotaxane-based catalysts, the possibility of 

controlling the ring position along the thread by the application 

of an input enables the design of switchable rotaxane-based 

catalysts. The bulky macrocycle conceals or exposes the active 

sites placed at the thread, altering their catalytic capability in 

terms of activity (ON/OFF),6 enantio- or diastereoselectivity 

switching7 or election between activation modes.8 Thus, as a 

general trend, the free threads are usually more reactive than 

the dampened interlocked systems, although less selective.  

Notwithstanding, we have recently found that a series of 

rotaxane-based organocatalysts bearing a polyamide 

macrocyclic counterpart showed improved catalytic activities 

when compared with their non-interlocked threads (Figure 1a).9 

Such interlocked systems, having succinamides as stations and 

a secondary amine function as the active site, catalyse an 

iminium-type reaction in high conversion with low catalyst 

loading, thus showing that the effects of the mechanical bond 

on the catalyst efficiency are remarkable.  The polyamide 

macrocycle activates the catalysis, probably by the 

establishment of hydrogen bonds between the amide-NHs of 

the ring with the substrates10 as well by the intervention of a  

 
Fig. 1 Effects of the mechanical bond on mechanized aminocatalysts: a) 
Cooperative activation of the catalysis;9 b) Modulation of the catalytic activity of 
rotaxanes by the action of different macrocycles. 

zwitterionic iminium intermediate boosted by the mechanical 

bond.11 

For the optimization of an organocatalyst, a fine tuning of the 

backbone is frequently required. Thus, the activity and/or 

selectivity can be improved by changing the electronics (by 

placing electron-withdrawing or donating groups nearby the 

active center),12 or the interaction surface (e. g. increasing of π-

π interactions),13 among others. By following a similar strategy, 

we herein evaluate the capacity of the mechanical bond for 

regulating the catalytic performance of a range of rotaxane-

based organocatalysts by tuning the macrocyclic component 

(Figure 1b). It is known that the variation of the substitution 

pattern at polyamide macrocycles alters their electronics and 

thus the acidity of their amide-NHs.14 Having this in mind as well 

the foreseeable influence of the mechanical bond on the 

efficiency of this type of catalysts, we envisaged that the 

reaction rates exhibited by these rotaxanes when used as 

catalysts would be tamed when macrocycles with different 

electronics are entwined.15 Here we disclose the results of our 

studies guided by the lines above and the kinetic experiments 

we carried out with the aim of correlating the electronics of the 

ring with the catalytic outcomes.  
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Results and discussion 

The synthesis of a set of Leigh-type [2]rotaxanes 3a-f was 

achieved starting from the N-Boc protected thread 1 by 

following a five-component reaction with p-xylylenediamine 

and the suitable diacyl dichloride (Scheme 1).9,16 The further 

high-yielding N-Boc deprotection of thread 1 and rotaxanes 3a-

f respectively afforded the active thread 2 and the rotaxanes 4a-

f, ready to be tested as organocatalysts.17  

With rotaxanes 4a-f in hand, we first studied the ring-shuttling 

dynamics between the two identical succinamide stations 

placed at the threads.18 The different macrocyclic backbones 

modify the acidity of the amide-NHs, thus altering the strength 

of the intercomponent hydrogen bonds between the binding 

sites of the thread and the ring and, consequently, the internal 

dynamics of the components.14 The back and forth motion of 

the ring along the thread in rotaxanes 4 was analyzed by 

temperature-dependent 1H-NMR experiments (Table 1, Figures 

S1-4 and Table S1). At high temperatures, the macrocycle is 

moving quickly between both succinamide stations and thus an 

averaged co-conformation is observed by 1H NMR. By 

decreasing the temperature, the translational motion is 

gradually reduced. At one point, as a result of a co-

conformational freezing, the splitting into two sets of NMR 

signals occurred in various protons (Hb+c and He, see Scheme 1 

for lettering), corresponding to the two different magnetic  

   

Scheme 1 Synthesis of the interlocked systems 3 and 4.a,b,c. aReaction conditions: 

i) p-xylylenediamine (4 equiv), acyl dichloride (4 equiv), Et3N (12 equiv), CHCl3, 25 

°C, 4h; ii) TFA, CHCl3, 25 °C, 12 h.b Not isolated by column chromatography (see SI 

for further details); c Overall yield from thread 1 (2 steps). 

Table 1. Kinetic and thermodynamic parameters for macrocycle shuttling obtained from 

VT-1H NMR spectra of the degenerate [2]rotaxanes 4. 

 

entry 4 Δν (Hz) a Tc (K)b kc (s-1) ΔG‡(kcal·mol-1)c 

1d 4a 712 278 1581.7 12.2 

2 4b 578 293 1284.0 13.0 

3 4c 1120 308 2488.0 12.6 

4 4d 636 283 1412.8 12.5 

5 4e 754 248 1674.0 10.8 

6 4f 706 248 1567.2 10.8 
a Variation of the frequency of the signals related to the protons of the 

succinamide functions Hb+c (see lettering in Scheme 1). b NMR 

temperature calibration was performed using a pure methanol sample. c 

Calculated value ± 0.2. d Data taken from ref 9. 

  

environments of the empty and occupied ones. From the 

separation of these signals (Δν) at the slow dynamic regime and 

the coalescence temperature (Tc), the energy barriers (ΔG‡) for 

the macrocycle shuttling can be calculated (Table 1 and Table 

S1). We found notorious variation of the calculated energy 

barriers depending on the structure of the ring. Thus, the model 

unsubstituted rotaxane 4a, the adamantane-based 4e and the 
tBu-substituted system 4f showed the lower translational 

energies (Table 1, entries 1 and 5-6), whereas the most 

electron-deficient macrocycle 4c showed the highest one (entry 

3). The exchange rates of the protons He at different 

temperatures were also calculated by fitting the Lorentzian line 

of the peak at temperatures higher than Tc, allowing to calculate 

the exchange constants of each system 4 at 298 K (see ESI, Table 

S2 and Figures S6-12). The Hammett plot of log(k4/k4a) (k = 

exchange rate constant of the protons He at 298 K) against the 

σm values of the substituents at the aromatic rings of the 

macrocyclic moiety indicates a direct correlation between the 

shuttling dynamics and the electronics (see ESI, Figure S13).  

Next, we explored the catalytic activity of the degenerate 

rotaxanes 4 in an iminium-type transformation,19 the conjugate 

addition of acetylacetone 6 to crotonaldehyde 5 (Figure 2). The 

respective conversion towards the formation of the Michael 

adduct 7 catalysed by rotaxanes 4 was monitored by 1H NMR 

spectroscopy (Figures S14-27). In our previous study, we found 

that the rotaxane 4a ( ) was a faster catalyst than its thread 2 (

) in this transformation, with a half-life time of t1/2 ~ 1.8 h for 

4a and t1/2 ~7 h for thread 2 (Figure 2a).9 Under the same 

conditions (2 equiv of crotonaldehyde 5, 1 equiv of 

acetylacetone 6, 0.125M, 5 mol% catalyst), the catalytic 

efficiencies of the rest of rotaxanes 4 were analyzed (Figure 2b). 

Interestingly, rotaxanes with electron-deficient aromatic 

groups at the macrocycle, i. e. rotaxane 4b (pyridine core, ) and 

rotaxane 4c (NO2 substituted isophthalic moiety, ), showed to 

be the less active catalysts. Rotaxane 4d (OMe substituted, ) 

was also slower than the model catalyst 4a. In contrast, the 

adamantane-based rotaxane 4e ( ) and rotaxane 4f (tBu 

substituted, ) exhibited a reactivity similar to that of 4a. 
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Fig. 2 Plot of conversion (%) versus time of the Michael addition of acetylacetone 
6 (1 equiv) to crotonaldehyde 5 (2 equiv) catalysed by: a) thread 2 ( ) and 
rotaxane 4a ( ) (data taken from ref 9); b) rotaxanes 4a ( ), 4b (Py, ), 4c (-NO2, 

), 4d (-OMe, ), 4e (Adam core, ) and 4f (-tBu, ). The conversions were 
measured during time by 1H NMR (400MHz, 298 K, CDCl3), using CH2Br2 as internal 
standard. 

 
Fig. 3 Plot of ln(c/co) versus time for the determination of the rate constants of the 
Michael addition of acetylacetone 6 (10 equiv) to crotonaldehyde 5 (1 equiv, 
0.125M) under pseudo-first-order conditions catalysed by: rotaxane 4a ( ), 4b 
(Py, ), 4c (-NO2, ), 4d (-OMe, ), 4e (Adam core, ) and 4f (-tBu, ). The rate 
constant values (k, s-1) are the average of two independent measurements, with 
an error of less than 10%. 

We also carried out this process under pseudo-first-order 

conditions (1 equiv. of aldehyde 5 and 10 equiv. of 

acetylacetone 6) in order to obtain the respective rates for each 

rotaxane 4 (Figure 3 and Figures S28-69). The different 

macrocycles drastically modulate the efficiency of the 

interlocked systems as catalyst.21 Under pseudo-first-order 

conditions, the rotaxane 4f (tBu, ) showed a slightly superior 

rate (k = 6.76 x 10-5 s-1) than the model rotaxane 4a ( , k =  6.45 

x 10-5 s-1,) with a t1/2 = 2.99 h for 4a and 2.85 h for 4f. In contrast, 

the adamantane-based system 4e ( ) and the MeO-substituted 

rotaxane 4d ( ) were slightly slower, with a half-life time of t1/2 

= 4.99 h and 5.32 h, respectively. Finally, the rotaxanes 4b 

(pyridine core, ) and 4c (nitro substituted, ), were almost 

inactive as catalysts (t1/2 = 39.45 h for 4b and t1/2 = 93.27 h for 

4c). Again, the activity of the thread 2 halves that of rotaxane 

4a, almost doubling its half-life time (t1/2 = 5.50 h, not showed 

in Figure 3, see Figure S70). 

Interestingly, the same trend was found when the thread 2 and 

the rotaxanes 4 were tested in the Michael addition of hexanal 

8 to trans-nitrostyrene 9 towards the formation of the 

corresponding adduct 10 following an enamine-mediated 

process20 (Figure 4, and ESI, Section 6, Figures S72-86). Thread 

2 was a slower catalyst than rotaxane 4a, indicating that the 

mechanical bond also activates this addition. Moreover, the 

modulation of the activity is also possible by tuning the 

entwined macrocycle. Thus, system 4c (NO2 substituted) 

showed to be the slowest catalyst, whereas rotaxanes 4a ( ), 4e 

( ) and 4f ( ) were again the fastest ones. 

All these results clearly show that the variation of the 

macrocyclic counterpart highly influences the catalytic 

outcomes.22 Indeed, the Hammett plot of log(k4/k4a) against the 

σm constants of the substituents at the aromatic rings of the 

macrocyclic moiety demonstrates a linearity between the 

catalytic activity and the electronics (ρ = –1.97, R2 = 0.987) 

(Figure 5, rotaxane 4e was excluded in this analysis).23 This plot 

 
Fig. 4 Plot of conversion (%) versus time for the Michael addition of hexanal 8 (2 
equiv) to trans-nitrostyrene 9 (1 equiv) catalysed by: a) thread 2 ( ) and rotaxane 
4a ( ); b) rotaxanes 4a (-H, ), 4b (Py, ),4c (-NO2, ), 4d (-OMe, ), 4e (Adam 
core, ) and 4f (-tBu, ). The conversions were measured during time by 1H NMR 
(400MHz, 298 K, CDCl3), using CH2Br2 as internal standard. 
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Fig. 5 Hammett plot of log(k4/k4a) versus the substrate electronics (σm) in the 
Michael addition of acetylacetone 6 to crotonaldehyde 5.  

evidences that the presence of electron-poor aromatic groups 

at the macrocycle slows down the formation of the Michael 

adduct 7. 

Having into account that the mechanism of this type of 

organocatalysed processes is complex, the macrocyclic 

component could take part in any of the key steps of the 

catalytic cycle (iminium/enamine formation, C-C bond 

formation or hydrolysis triggering the final compound). The 

ability of the macrocycle to take part in the catalytic process is 

directly correlated with the electronics (Figure 5) and, at the 

same time, the shuttling dynamics. The correlation between the 

kinetic values of the catalysis and the exchange rates calculated 

at 298 K for the internal dynamics of each rotaxane 

corroborates this scenario (see ESI, Figure S71). In the particular 

case of the adamantane-based rotaxane 4e, considering the 

large exchange rate constant for the translational motion at 

298K when compared with its aromatic analogues (i. e. 4a and 

4f), its catalytic rate constant was not as high as expected. 

Probably the lesser acidity of the NHs of the amide groups 

precludes a most efficient participation of the mechanical bond 

on the catalytic process. Thus, the modulation of the catalysis 

by the mechanical bond described herein can be explained by 

the availability of the macrocycle. When the macrocycle is not 

strongly interacting with the succinamide stations, it could 

cooperatively assist in the catalytic process by interacting with 

the reactants24 or stabilizing key intermediates.25 This scenario 

is more feasible in the systems with lower translational energy 

barriers (faster translational motions), i. e. rotaxanes 4a and 4f, 

which in fact resulted to be the most efficient catalysts. 

Conclusions 

In conclusion, we have synthesized a series of degenerate 

molecular shuttles with a thread bearing two succinamide 

binding sites and, in between, an acyclic secondary amine 

function as the active site. The back-and-forth motion of the 

macrocycle along the thread was studied, finding a close 

relationship between the macrocycle dynamics and its 

electronics. These systems were tested as organocatalysts in 

iminium- and enamine-type processes for comparison with 

each other and also with the non-interlocked thread. The 

results show that the mechanical bond has a deep influence on 

the catalytic performance of the systems, clearly modulating 

the corresponding reaction rates, in an extent that jointly 

depends on the electronics and, at the same time, the internal 

translational dynamics of the entwined macrocycle. Systems 

with electron-deficient rings, with higher translational energy 

barriers, are shown to be the less active catalysts. Thus, the 

kinetic studies proved the active role that the mechanical bond 

plays on the catalytic processes, with the entwined macrocycle 

ring influencing the activity of the active site at the nearby 

thread. The design of new mechanized systems, including their 

asymmetric variants, is ongoing in our laboratories with the aim 

of adding value to the herein disclosed instances of 

mechanically bonded catalysts. 
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