
Flexagon: A Multi-Dataflow Sparse-Sparse Matrix Multiplication
Accelerator for Efficient DNN Processing

Francisco Muñoz-Martínez
Universidad de Murcia (Spain)
francisco.munoz2@um.es

Raveesh Garg
Georgia Tech (USA)

raveesh.g@gatech.edu

Michael Pellauer
NVIDIA (USA)

mpellauer@nvidia.com

José L. Abellán
Universidad de Murcia (Spain)

jlabellan@um.es

Manuel E. Acacio
Universidad de Murcia (Spain)

meacacio@um.es

Tushar Krishna
Georgia Tech (USA)

tushar@ece.gatech.edu

ABSTRACT
Sparsity is a growing trend in modern DNN models.

Existing Sparse-Sparse Matrix Multiplication (SpMSpM) accel-
erators are tailored to a particular SpMSpM dataflow (i.e., Inner
Product, Outer Product or Gustavson’s), which determines their
overall efficiency. We demonstrate that this static decision inher-
ently results in a suboptimal dynamic solution. This is because
different SpMSpM kernels show varying features (i.e., dimensions,
sparsity pattern, sparsity degree), which makes each dataflow better
suited to different data sets.

In this work we present Flexagon, the first SpMSpM reconfig-
urable accelerator that is capable of performing SpMSpM computa-
tion by using the particular dataflow that best matches each case.
Flexagon accelerator is based on a novel Merger-Reduction Net-
work (MRN) that unifies the concept of reducing and merging in
the same substrate, increasing efficiency. Additionally, Flexagon
also includes a new L1 on-chip memory organization, specifically
tailored to the different access characteristics of the input and out-
put compressed matrices. Using detailed cycle-level simulation of
contemporary DNN models from a variety of application domains,
we show that Flexagon achieves average performance benefits of
4.59×, 1.71×, and 1.35× with respect to the state-of-the-art SIGMA-
like, SpArch-like and GAMMA-like accelerators (265%, 67%, and
18%, respectively, in terms of average performance/area efficiency).

CCS CONCEPTS
• Hardware → Hardware accelerators; Emerging architec-
tures.

KEYWORDS
Deep Neural Network Accelerators, Sparse-Sparse Matrix Multipli-
cation, Dataflow, Merger-Reduction Network, Memory Hierarchy

ACM Reference Format:
Francisco Muñoz-Martínez, Raveesh Garg, Michael Pellauer, José L. Abellán,
Manuel E. Acacio, and Tushar Krishna. 2023. Flexagon: A Multi-Dataflow
Sparse-Sparse Matrix Multiplication Accelerator for Efficient DNN Process-
ing. In Proceedings of the 28th ACM International Conference on Architectural

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023
ACM ISBN 978-1-4503-9918-0/23/03. . . $15.00
https://doi.org/10.1145/3582016.3582069

Accelerator Architectural Features IP OP Gust
TPU [12] Dense Systolic Array N/A N/A N/A

SIGMA [28] Configurable Reduce Tree ✓ ✗ ✗
ExTensor [10] Intersection Unit ✓ ✗ ✗
MatRaptor [30] Merger ✗ ✗ ✓
Gamma [34] Fiber Cache, Merger ✗ ✗ ✓

Outerspace [23] Merger ✗ ✓ ✗
SpArch [35] Matrix condenser, merger ✗ ✓ ✗
Flexagon Flexible Merge/Reduce ✓ ✓ ✓

(This Work) tree and memory controller

Table 1: Comparison of Flexagon with prior Sparse DNN ac-
celerators in terms of supported dataflows. IP=Inner Product,
OP=Outer Product, Gust=Gustavson’s (Row-wise Product).

Support for Programming Languages and Operating Systems, Volume 3 (ASP-
LOS ’23), March 25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3582016.3582069

1 INTRODUCTION
Sparsity in tensors is an emerging trend in modern DNN work-
loads [19, 21, 29]. These workloads have diverse sparsity ratios,
ranging from 0.04% to 90%, and are used in various applications,
ranging from personalized recommendations [21] to Natural Lan-
guage Processing [3]. Sparsity in weights stems from pruning [9]
and sparsity inside activations stems from nonlinear functions
such as ReLU. As a result, exploiting the benefits of sparsity by
directly implementing sparse matrix-matrix multiplication (SpM-
SpM) has become an important target for customized DNN acceler-
ators [10, 23, 25, 28, 30, 34, 35].

The most common way for these accelerators to exploit spar-
sity is by using compressed formats like Bitmap, CSR, and CSC
to store and operate (multiply and accumulate) only the non-zero
values. This allows for a significant reduction in both the mem-
ory footprint and the number of operations, which in turn trans-
lates into significant energy savings. However, these accelerators
vary widely in their hardware implementation and in the exploited
dataflow. The dataflows used by these accelerators in terms of the
loop order of computation have been broadly classified into Inner
Product (IP), Outer Product (OP) and Row-wise-Product, often
called Gustavson’s (Gust) [7].

Table 1 shows prior sparse accelerators and the dataflows they
support.While state-of-the-art sparse accelerators such as SIGMA [28],
SpArch [35] and GAMMA [34] have been optimized for a fixed
dataflow (IP, OP and Gust, respectively), in this paper, we make
the important observation that the optimal dataflow changes from

https://doi.org/10.1145/3582016.3582069
https://doi.org/10.1145/3582016.3582069

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Muñoz-Martínez et al.

A
V

S
Q

R
S
-R

S
-M

D
B

M
B

0 10 20 30 40 50 60
Layer ID

IP
OP
Gust

Figure 1: Dataflow that obtains the best performance per
layer across some DNN models (see Table 2 that includes
their sparsity ratios). IP=Inner Product, OP=Outer Product
and Gust=Gustavson’s.

a DNN model to another, and even within a DNN model, from one
layer to another, so that contemporary fixed-dataflow accelerators
cannot adapt well to maximize DNN application performance.

To back up our observation, Fig. 1 shows the dataflow that ob-
tains the best performance per layer given the execution of 8 entire
DNN models obtained from MLPerf benchmark suite [29] as well
as some extra models (details in Table 2). Observe that we consider
heterogeneous models from different domains, sizes, and sparsity
ratios. For MB, we only show the first 60 layers, which represent
20% out of the total number of layers. To model the three dataflows,
the executions have been performed on a 64-Multiplier SIGMA-like,
SpArch-like and GAMMA-like architectures (further details in Sec-
tion 4). The NLP models DB and MB present a clear trend towards
Gust. On the other hand, extremely sparse models, such as S-R and
V, benefit from OP in 73% and 75% of the layers, respectively. The
rest of the DNN models present a high variability across layers,
and the most efficient dataflow changes given the different features
of each layer. This highlights that one dataflow does not fit all,
and so there is an opportunity to increase efficiency via dynamic
adaptation of the architectural components to the most suitable
dataflow.

The value of supporting flexible dataflows has been explored
extensively for dense DNNs [2, 15, 16, 24]. However, support for
flexible dataflow acceleration for sparse workloads is much more
challenging because of the different ways in which these acceler-
ators handle sparsity. For example, the IP dataflow implemented
in SIGMA [28] implements a reduction network called FAN to re-
duce the generated partial sums at once, as well as the capacity
to perform intersections to execute a sparse dot product. On the
contrary, the OP and Gust dataflows implemented in accelerators
like SpArch [35] and GAMMA [34] produce partial sums instead
of complete sums, and hence, require merging the non-zero partial
sums and use merger trees for this purpose. A naive implementa-
tion using separate hardware widgets for reductions and merges
would lead to significant area overhead (see Section 5.3).

To efficiently support different SpMSpM workloads to run mod-
ern sparse DNNs, we present Flexagon, the first (to our knowl-
edge) reconfigurable sparse and homogeneous DNN accelerator
that can be dynamically adapted to execute the most suited SpM-
SpM dataflow on a per DNN layer basis. Flexagon features a novel

unified Merger-Reduction Network (MRN) that supports both reduc-
tions of dot products and the merging of partial sums. We propose a
tree-based topology where the nodes are configured to act either as
accumulators or comparators, as explained in Section 3. Flexagon
also features a new L1 on-chip memory organization composed of
three customized memory structures that are able to capture the
memory access pattern of each dataflow. The first memory struc-
ture is a simple read-only FIFO, which is designed for the sequential
accesses that occur during some stages in the three dataflows. The
second one is a low-power cache used to back up the random ac-
cesses caused mainly by the Gust dataflow. Finally, a customized
memory structure called PSRAM is specifically designed to store
and read psums, which is essential for both OP and Gust dataflows.
These memory structures allow us to support all the three dataflows
with minimal area and power overheads. Further, our accelerator
also prevents the hardware from requiring explicit expensive con-
versions of compression formats (i.e., from CSR to CSC or vice-
versa) [26] between layers as it is possible to easily switch among
the most convenient dataflow given a particular compression for-
mat (details discussed in Section 3).

We summarize our key contributions:
(1) We demonstrate that each SpMSpM operation in modern

sparse DNN layers presents different memory access patterns ac-
cording to matrix dimensions and sparsity patterns. As a conse-
quence, the dataflow that maximizes the performance of a particular
SpMSpM operation not only can change between DNN models, but
also from layer to layer within a particular DNN model.

(2) We present a new inter-layer dataflow mechanism that en-
ables compression format conversions without explicit hardware
modules.

(3) We design Flexagon, which hinges on a novel network topol-
ogy (called MRN) that allows, for the first time, support for the
three dataflows, and a new L1 on-chip memory organization to
effectively capture the memory access patterns that each dataflow
exhibits for input, output, and partial sums.

(4) We extensively evaluate Flexagon using cycle-level simula-
tions of several contemporary DNN models from different applica-
tion domains, and RTL implementation of its principal elements.
Our results demonstrate that Flexagon achieves average perfor-
mance benefits of 4.59× (ranges between 2.09× and 7.41×), 1.71×
(ranges between 1.04× and 4.87×), and 1.35× (ranges between 1×
and 2.13×) with respect to the state-of-the-art SIGMA-like, SpArch-
like and GAMMA-like accelerators (265%, 67%, and 18%, respec-
tively, in terms of average performance/area efficiency).

2 BACKGROUND
2.1 Compression formats
Following the same taxonomy used in ExTensor [10], the SpMSpM
operation computes the operation𝐶𝑀,𝑁 = 𝐴𝑀,𝐾 ×𝐵𝐾,𝑁 , where the
three matrices are 2-dimensional tensors. Since these matrices are
typically sparse (see Table 2), they are compressed to encode the
non-zero values while preserving the computation intact (lossless
compression) [14]. In our work, we focus on the widely used un-
structured compression formats CSR and CSC. A matrix encoded in
CSR format employs three 1-dimensional tensors to store the non-
zero values in a row-major data layout: a data vector to represent

Flexagon: A Multi-Dataflow Sparse-Sparse Matrix Multiplication Accelerator for Efficient DNN Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

DNN Appl nl AvSpA AvSpB AvCsA AvCsB MinCsA MinCsB MaxCsA {MaxCsB Cycles(106) CPU
Alexnet (A) CV 7 70 48 0.56 13.6 0.02 0.18 1.01 63.41 3804

Squeezenet (S) CV 26 70 31 0.05 1.54 0.001 0.02 0.58 26.6 2751
VGG-16 (V) CV 8 90 80 0.55 2.90 0.02 0.15 10.42 0.90 6012
Resnets-50 (R) CV 54 89 52 0.19 1.30 0.001 0.007 1.0 26.64 4185

SSD-Resnets (S-R) OR 37 89 49 0.12 3.60 0.003 0.003 10.1 0.50 6429
SSD-Mobilenets (S-M) OR 29 74 35 0.16 0.31 0.002 0.0004 1.0 1.65 5379

DistilBERT (DB) NLP 36 50 0.04 2.25 0.35 1.12 0.23 4.5 0.94 5748
MobileBERT (MB) NLP 316 50 11 0.10 0.07 0.03 0.003 0.125 0.01 4893

Table 2: DNNmodels used in this work. Appl=Application domain (CV=Computer Vision, OR=Object Recognition, NLP=Natural
Language Processing), nl=Number of layers, AvSp{A,B}=Average sparsity of the matrices A and B (in %), AvCs{A,B}=Average
compressed matrix size for the matrices A and B (in MiB), MinCs{A,B}=Minimum compressed matrix size for the matrices A
and B (in MiB), MaxCs{A,B}=Maximum compressed matrix size for the matrices A and B (in MiB), Cycles(106) CPU = Number of
cycles obtained after running the benchmarks using MKL in a CPU system.

the non-zero values, a row pointer vector to store the index posi-
tion where each row begins within the data vector, and a column
index vector to store the column of each non-zero value. Similarly,
the CSC uses a column-major data layout: a data vector, a column
pointer vector to store the index position of the start of a column,
and a row index vector to store the row index of each non-zero data
value. Observe that both CSR and CSC employ the same compres-
sion method, and thus, can be seen as a single compression format.
This is important as an accelerator would use the same control logic
needed to handle both of them. This facilitates the implementation
of the control logic (further details in Section 3.5) in our accelerator.

As in previous works (e.g. [34]), we will use the term fiber to
denote each compressed row or column. Each fiber contains a list
of duples (coordinate, value), sorted by coordinate. We use the term
element to refer to one duple in the fiber.

2.2 SpMSpM dataflows
SpMSpM operation is based on a triple-nested for-loop that iterates
over A’s and B’s independent dimensions M and N, and co-iterates
over their shared dimension K. Depending upon the level of the
co-iteration in the loop nesting, three different dataflows have been
identified for SpMSpM computation: IP (co-iteration at the inner-
most loop), OP (co-iteration at the outermost loop) and Gust (co-
iteration at the middle loop). Additionally, these dataflows result in
six possible variants according to how the independent dimensions
(M and N) are ordered for each of them (two variants per dataflow).
Notice that each variant favors the stationarity of one of the dimen-
sions (the outermost one) over the other. This way, we distinguish
each variant by (M) if the computation isM-stationary or (N) if it is
N -stationary. Fig. 2 shows the resulting six dataflow variants. Each
dataflow defines how the elements flow during execution, and thus,
the opportunities for data reuse. Table 3 gives a detailed taxonomy
of each approach, which we summarize as follows:

Inner Product (IP): A single full sum at a time is generated, with
no merging of partial sums. This requires a hardware intersection
unit to align effectual inputs.

Outer Product (OP): A single input scalar at a time is consumed,
generating many partial sums (matrices). This requires intersection
between the stationary fiber and every element of the fiber of the
other operand. Also, it requires merging hardware of the output
partial matrices, possibly leading to extra memory traffic.

X =1 (K)

1 (K
)

2 (N)

3 (M)for m in 0 to M:
 for n in 0 to N:
 for k in 0 to K:
 C[m,n] += A[m,k] * B[k,n]

a) Inner-Product(M)
 Dataflow

X =

2 (M
)

b) Outer-Product(M)
 Dataflow

for k in 0 to K:
 for m in 0 to M:
 for n in 0 to N:
 C[m,n] += A[m,k] * B[k,n]

1 (N)3 (K) 3 (K
)

X =

c) Gustavson(M)
 Dataflow

1 (N)

for m in 0 to M:
 for k in 0 to K:
 for n in 0 to N:
 C[m,n] += A[m,k] * B[k,n]

2 (K)

3 (M)

1 (N)

2 (M)

3 (K)

1 (N)
2 (K)

3 (M)

X =1 (K)

1 (K
)

3 (N)

2 (M)for n in 0 to N:
 for m in 0 to M:
 for k in 0 to K:
 C[m,n] += A[m,k] * B[k,n]

d) Inner-Product(N)
 Dataflow

X =

1 (M
)

e) Outer-Product(N)
 Dataflow

for k in 0 to K:
 for n in 0 to N:
 for m in 0 to M:
 C[m,n] += A[m,k] * B[k,n]

2 (N)3 (K) 3 (K
)

X =

f) Gustavson(N)
 Dataflow

3 (N)

for n in 0 to N:
 for k in 0 to K:
 for m in 0 to M:
 C[m,n] += A[m,k] * B[k,n]

2 (K)

1 (M)

2 (N)

1 (M)

3 (K)

2 (N)

2 (K)

1 (M)

A01
A10 A12 A13

AMK B01 B02
B10 B12
B20
B30 B31 B32

BKN

C00 C02
C10 C11 C12

CMN

X =

Figure 2: Dataflow combinations for matrix multiplication.
For simplicity, non-compressed (dense) matrices are shown.
We use the termX(D) in thematrices to express loop ordering
(X) and traversed dimension (D).

Gustavson’s (Gust): A single input at a time is consumed, but
only to generate partial sums into the current fiber. This allows the
intersection to be done in leader-follower style, where the effectual
coordinates of the stationary tensor retrieve entire fibers of the
other operand. This requires merging hardware, but only into the
current fiber rather than entire matrices.

For the rest of the paper, we will pedagogically useM-stationary
dataflows during the explanations, although everything would ap-
ply for the N -stationary dataflows as well.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Muñoz-Martínez et al.

Dataflow Informal Name Stationary Stationary Streaming A format B format C format Intersection Merging
Tensor Fiber Tensor

MNK Inner Product(M) C A B CSR CSC CSR Scalar A vs Scalar B N/A
KMN Outer Product(M) A B C CSC CSR CSR Fiber A vs Fiber B Tensor C
MKN Gustavson’s(M) A C B CSR CSR CSR Scalar A vs Fiber B Fiber(M)
NMK Inner Product(N) C B A CSR CSC CSC Scalar B vs Scalar A N/A
KNM Outer Product(N) B A C CSC CSR CSC Fiber B vs Fiber A Tensor C
NKM Gustavson’s(N) B C A CSC CSC CSC Scalar B vs Fiber A Fiber(N)

Table 3: Taxonomy of dataflow properties. Traversal order is given outermost-to-innermost in loop order.

MS MS MS MS

Distribution Network (DN)

...

+/> +/>...

+/>

DRAM

Reduction/Merging Network (MRN)

2. Stationary Phase

3. Streaming Phase

4. Merging Phase

1. Dataflow Analysis

b) Execution flowa) Architecture

PSRAM for
matrix C

cache for
matrix B

FIFO for
matrix A

Offline

Runtime

Control logic

Figure 3: Flexagon high-level overview.

3 FLEXAGON DESIGN
Fig. 3a shows a high-level overview of the architecture of the
Flexagon accelerator. As observed, Flexagon consists of a set of
multipliers, adders and comparators, as well as three on-chip SRAM
modules specifically tailored to the storage needs of matrices A, B
and C for the three SpMSpM dataflows. In addition, in order to allow
for the highest flexibility, all the on-chip components are intercon-
nected by using a general three-tier reconfigurable network-on-chip
(NoC) composed of a Distribution Network (DN), a Multiplier Net-
work (MN), and a Merger-Reduction Network (MRN), inspired by
the taxonomy of on-chip communication flows within AI acceler-
ators [16]. These components are controlled by the control unit
which is configured by the mapper/compiler before the execution.

Flexagon’s execution phases are shown in Fig. 3b. The process be-
gins with a dataflow analysis (phase 1), which is carried out offline.
Here, a mapper/compiler examines the features of the SpMSpM
operation to be executed (i.e., matrix dimensions and sparsity pat-
terns) and decides the dataflow (between the six available described
in Section 2) that best matches the operation, generating the tiling
scheme and the particular values for the signals that configure the
operation of the accelerator for the rest of the phases.

The next three phases are performed during runtime according
to these generated signals and are repeated several times accord-
ing to the number of execution tiles. The first runtime phase is
called stationary phase (phase 2), which delivers data that will be
kept stationary in the multipliers to reduce the number of costly
memory accesses. According to the dataflows description presented
in Section 2 for M-stationary dataflows, this stationary data be-
longs to matrix A, while matrix B is streamed during the streaming
phase (phase 3). For N -stationary dataflows this happens in the

reverse order. These two phases generalize for the three dataflows.
The merging phase (phase 4) is only necessary for both OP and
Gust dataflows and is the one in charge of merging the fibers of par-
tial sums that have been previously generated during the streaming
phase. This phase is skipped in the IP dataflow as no merging is
required.

In this work, we focus our attention on the accelerator design
as well as on the way the three phases operate in order to give
support to the six possible dataflows (three SpMSpM dataflows, two
variants, M or N-stationary, each) over the same hardware substrate.
We leave the study of the tool required for dataflow analysis, tiling
selection and generation of the configuration file for the accelerator
(phase 1 in the Offline part in Fig. 3b) for future work.

3.1 On-chip Networks
One of the main novelties of Flexagon is its ability (through proper
configuration) to support the six dataflows described in Section 2
using the same hardware substrate. To do so, the accelerator is
equipped with a three-tier configurable NoC able to adapt to the
communication features of each dataflow. Next, we describe each
subnetwork in detail:

Distribution network (DN): This module is used to deliver data
from the SRAM structures to the multipliers. In order to enable the
high flexibility that the three SpMSpM dataflows require, the DN
needs to support unicast, multicast and broadcast data delivery. To
achieve this, and at the same time ensure high energy efficiency, we
utilize a Benes network similar to previous designs like SIGMA [28].
This network is an N-input, N-output non-blocking topology with
2 × 𝑙𝑜𝑔(𝑁) + 1 levels, each with N tiny 2×2 switches.

Merger-Reduction network (MRN): Previous designs like
MAERI [16] or SIGMA [28] have used specialized tree-based reduc-
tion networks (RNs) such as ART or FAN to enable non-blocking
reduction of multiple clusters of psums. These RNs provide high
flexibility for the IP dataflow as its purpose is to reduce a cluster
of psums. In the case of OP and Gust dataflows, other works such
as [34, 35] employ a tree-based topology to perform the merge
operation of the psums once they are generated. In our design, we
have, for the first time, unified this concept, and have designed a
merger-reduction network able to both reduce and merge psums.
Figure 4a shows the microarchitecture overview of a 16-wide MRN.
As it may be observed, similar to previous designs, we also employ
an augmented tree-based topology because this is the fastest way
to perform both the reduction and merging operations. Different
from previous designs, the MRN topology augments the nodes
with comparators and switching logic able to exchange the mode
of operation (see Figure 4b). This allows us to perform both op-
erations while keeping low area and power overheads (details in
Section 5.3) and, as we describe later, enables direct support for the

Flexagon: A Multi-Dataflow Sparse-Sparse Matrix Multiplication Accelerator for Efficient DNN Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

three SpMSpM dataflows. Furthermore, we employ a connection
with two links between the nodes, allowing the MRN to traverse
not only data values but also the coordinates needed in both OP and
Gust dataflows. The selection of the configuration is done by the
mapper/compiler, which generates the control signals that feed the
configuration logic module (Control Logic in Fig. 3a) of the accel-
erator, which in turn routes the appropriate signals to the nodes,
configuring its operation modes according to the dataflow and layer
dimensions.

Multiplier network (MN): Similar to other designs such as
MAERI, this network is composed of independent multipliers that
can operate in two different modes: i) Multiplier mode: the unit
performs a multiplication and sends the result to the MRN. This
mode is used during the entire execution when the IP dataflow is
configured, and during the streaming phase when either the OP or
Gust dataflows are configured; ii) Forwarder mode: the multiplier
forwards directly the input, which is typically a psum, to the MRN.
As we will clarify in the examples presented next, this mode is
essentially configured during the merging phase in both the OP and
Gust dataflows. The microarchitecture of the multipliers is depicted
in Figure 4c.

3.2 Walk-through Examples
Next, we illustrate how Flexagon works when running the three
dataflows for the multiplication of matrices A and B from Fig. 2,
considering the runtime phases explained earlier. We pedagogically
assume the IP(M), OP(M) and Gust(M) dataflows. Note that, the
IP(N), OP(N) and Gust(N) dataflows could be executed in the same
manner by exchangingmatrices A and B. To ease the explanation, we
assume a simple 4-multiplier accelerator, and we walk through the
activity of the three sub-networks. In the explanation, we mention
the on-chip SRAM modules needed for storing matrices A, B, C and
psums (see the yellow boxes in Fig. 3b). Section 3.4 provides an
in-depth description of these memory structures.

3.2.1 Example of Inner-Product dataflow. Fig. 5 shows the IP(M)
dataflow. In the figure, we represent with “*” the psums that need
to be reduced by the adders in the tree to produce the final values
for matrix C.

Stationary phase: First, during the stationary phase, the con-
troller maps as many fibers of matrix A (i.e., rows of A) as possible
to the multipliers, reading all the elements sequentially from the
dedicated SRAM structure called FIFO for matrix A. Each cluster of
multipliers will perform the dot product operation.

Streaming phase: After filling the multipliers with the fibers of
A, the controller multicasts each fiber of matrix B (i.e., each column)
to the configured clusters in theMN. To do so, the controller uses the
row coordinate of each element in the fiber of B to detect whether
it intersects with the column coordinate in the fiber of A. If this
happens, the value is sent out to the corresponding multiplier.

3.2.2 Example of Outer-Product dataflow. Fig. 6 shows the same
example as before but now assuming the OP(M) dataflow. We also
show the customized SRAM structure for C called PSRAM that is
utilized for storing the psums for matrix C. As we will explain in
Section 3.4, this structure stores blocks of elements (coordinate,
value).

Stationary phase: During the stationary phase, the fibers of
matrix A (i.e., columns of A) are delivered to the multipliers sequen-
tially following the CSC compression format. In our particular case,
the four multipliers store the elements 𝐴1,0, 𝐴0,1, 𝐴1,2, and 𝐴1,3.

Streaming phase: During the streaming phase, each multiplier
keeps stationary an element 𝐴𝑚,𝑘 , given m in the range [0,M) and
k in the range [0,K), in order to linearly combine the non-zero
elements 𝐵𝑘,0:𝑁−1, generating a psum fiber where all the elements
share the row (m) and a particular k iteration (i.e., the partial matrix
where these elements belong to). Consecutive multipliers generat-
ing psums for different rows for the same k iteration, do not need
the psum to be merged together. Thus, the generated psums must
be sent out to the SRAM structure, in order to be merged in a third
phase. Also, since multiple rows can run in parallel, the PSRAM ’s
set is indexed by rows. Furthermore, since the number of non-zeros
in matrix A is not known a priori, it might happen that multiple
fibers from matrix A may fit in a single iteration, causing that mul-
tiple partial outputs for the same row, but for different k iterations,
may run in parallel. Since the number of psums for a particular
row and for a particular k iteration is not known at runtime, we
must assign static space in the PSRAM to store the psums from
different k iterations that may be running in parallel and being
kept in the same row (i.e., set). To do so, we divide each set in the
PSRAM in blocks (i.e., lines), and each line contains a valid bit to
indicate the validity of the data, a k value, indicating the k iteration
that belongs to that group of partial sums and the block of data.
By doing this, each line can hold, at a particular time, psums for
different k iterations for a particular row. This way, if the number of
psums for a particular iteration exceeds the line size, it may use any
free line in the corresponding set of the PSRAM (not necessarily a
consecutive one). The details about the organization and operation
of the PSRAM are given in Section 3.4.

In the example of Fig. 6, we see three steps regarding the stream-
ing phase. In the first step, the controller sends the first element
of the four fibers (across the K-dimension) to its corresponding
multiplier. For example, the first multiplier which keeps stationary
the element 𝐴1,0 receives the first element of the fiber for the row
(i.e., iteration k) 0. In step 2, each multiplier generates a psum (indi-
cated by the symbol *), which is the first element for the 4 fibers
generated across the K-dimension. These psums are then stored in
the PSRAM . The first psum *𝐶1,1 is allocated in set 1, as it is indexed
by its row coordinate. Use of sets allows us to execute multiple rows
in parallel. Then, since the first line is free, the psum is stored there,
enabling the valid bit and indicating that the element belongs to K0.
Dividing rows into blocks allows holding psums corresponding to
different K for a particular row. The second psum, *𝐶0,0 is allocated
to the set 0 (its row coordinate) and since the first line is here, the
cache enables the valid bit and tags the line with K1. The last two
elements share coordinates (i.e., s *𝐶1,0), but belong to a different
partial matrix (K2 and K3). These two elements go to the same set
in the PSRAM but to different lines, each tagged with its iteration k
(i.e., K2 and K3). This allows locating the psum fibers in the correct
order during the merging phase.

In step 3, the second set of elements for the four fibers is produced,
following the same execution scheme. For the sake of brevity, we
do not show how the last element from the longest psum fiber (i.e.,
fiber K3) is produced, and directly show the contents of the PSRAM

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Muñoz-Martínez et al.

> M
U

X

Val_In_Left
Val_In_right

val_out

b) Adder/Comparator Microarchitecture

+/>

V C V C

+/>

V C V C

+/>

V C V C

+/>

V C V C

+/>

V C V C

+/>

V C V C

+/>

V C V C

+/>

V C V C

+/> +/> +/> +/>

+/> +/>

+/>
Coord_In_Left
Coord_In_right

M
U

X

coord_out

ValCoord

val_out

Sta register

Val_In

coord_out
Coord_In

M
U

X
M

U
Xx

c) Multiplier Microarchitecturea) MRN Microarchitecture

+/> Adder/Comparator

Multiplier

V Value

C Coordinate

Configuration logic (Adder/Comparator mode)

Lv 0

Lv 1

Lv 2

Lv 3

Lv 4

Tree
Level

Figure 4: a) MRN topology. b) architecture of the MRN’s nodes (Adder/Comparator nodes). c) architecture of Multipliers.

Distribution Network

Stationary phase

A01 A10 A12 A13
Distribution Network

A01 A10 A12 A13

B10 B20 B30

Streaming phase step 1

Distribution Network

A01 A10 A12 A13

Streaming phase step 2
C00

B12 B01 B31

*C10*C10*C10

Distribution Network

A01 A10 A12 A13

Streaming phase step 3

C02

B02

*C11

*C10*C10

*C11

B32
Distribution Network

A01 A10 A12 A13

Streaming phase step 4
C10

*C11*C11

*C12*C12

Distribution Network

A01 A10 A12 A13

Streaming phase step 5
C11

*C12*C12

+/>
+/> +/>

+/>
+/> +/> +/>

+/>
+/>

+/>
+/> +/>

+/>
+/> +/> +/>

+/>

+/>

+/>
Node configured

as an adder

+/>
Node configured
as a comparator

+/>
Node

not configured
Multiplier

not configured
Multiplier

keeping data

+/>
Node compares

 and adds

Figure 5: Example of Flexagon running SpMSpM using an
Inner-Product(M) dataflow. “*” indicates psums.

just before starting the merging phase (merging phase step 1). We
can see in the PSRAM figure from the merging phase step 1 that
the element has been stored in the last line within the first set, as
the third line is already full.

Merging phase: The merging phase proceeds row by row. For
each row, the controller fetches the elements for the different k-
iteration fibers from the PSRAM . These elements are stored in
different lines and can be identified by their tags, consuming the
elements and sending them to the MRN in order to be merged.
Each unit in the MRN compares the column coordinate (i.e., the
N -dimension). If the coordinates match, then the values of the
elements are accumulated. Otherwise, the node sends up the tree
the element with the lowest coordinate. The last two rows in Fig. 6
show 8 merging steps. The 4 first steps (Merging phase step 1 to
step 4) merge the first row. In the second row, there are 3 psum
fibers ready to be merged. In step 5, the first elements for the three
fibers (K0, K2 and K3) are sent to the MRN. In step 6, the psums
*𝐶1,1 and *𝐶1,0 compare their column coordinate. Since they do not
match, and element *𝐶1,0 has the lowest column coordinate, this
element is sent up to the MRN first. The same procedure is executed
in a pipelined manner for the rest of the elements in the fiber until
all the psums have been merged in a single fiber and sent to DRAM.
In case the number of fibers in a row is greater than the number of

multipliers (i.e., leaves in the tree), the controller needs to perform
multiple passes to complete the final merge.

3.2.3 Example of Gustavson’s dataflow. Finally, for the same ex-
ample matrices, Fig. 7 illustrates how Flexagon proceeds when the
Gust(M) dataflow is selected. Similarly, the operation in this case
proceeds in three well-differentiated phases.

Stationary phase: First, during the stationary phase, as many
fibers of A (i.e., rows in matrix A) as possible are mapped spatially
and sequentially in the multipliers. In the example, the multipliers,
then keep two clusters, each in charge of calculating the psums for
a different output row (i.e., rows 0 and 1 in the example).

Streaming phase: In the streaming phase, for each multiplier,
the memory controller fetches and delivers the fiber of B (i.e., row
of B) that corresponds to the column coordinate (i.e., k-iteration)
associated to the mapped element of A in the multiplier. Every
multiplier generates a partial output fiber which is merged with
the rest of partial output fibers generated by the other multipliers
allocated to the same fiber of A. An example of this generation
is shown in Fig. 7. Here, we depict 6 streaming steps. The first
multiplier keeps stationary the only one element in matrix A (𝐴0,1)
so it receives the fiber of B indexed by column 1 (i.e., row 1). The
second, third and fourth multipliers keep the elements 𝐴1,0, 𝐴1,2
and 𝐴1,3, respectively, so they receive the fibers of B 0, 2 and 3,
respectively. The first 3 steps show how the elements from the
fibers of B are delivered cycle by cycle.

Merging phase: Similar to the OP dataflow, the merging phase
combines both the accumulation and the merging operation, ac-
cumulating the elements (i.e., its values) in a certain node if their
column coordinates match, or sending the element with the lowest
column coordinate value. On the other hand, in Gust dataflow, we
can merge the psums immediately after their generation, as a clus-
ter of multipliers always generates fibers for the same row, but for
different k iterations. When the number of elements in A fits into
a cluster of multipliers, the output fiber generated by that cluster
will be a final fiber, and the outputs can be sent directly to DRAM
without being stored in the SRAM. Otherwise, when the number
of elements in A exceeds the number of multipliers, the output
fiber will be a partial fiber as multiple iterations are required, and
therefore the fiber will require to be stored in the PSRAM, similar
to what happens in the OP dataflow.

Flexagon: A Multi-Dataflow Sparse-Sparse Matrix Multiplication Accelerator for Efficient DNN Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Distribution Network
A10 A01 A12 A13

Streaming phase step 1 Streaming phase step 2

V1
K1
V1
K0

V0
K-
V1
K2

V0
K-
V1
K3

V0
K-
V0
K-

Distribution Network

A10 A01 A12 A13

B02 B12 B31

*C11 *C00 *C10 *C10

*C11

*C00

*C10 *C10

Streaming phase step 3

V1
K1
V1
K0

V0
K-
V1
K2

V0
K-
V1
K3

V0
K-
V0
K-

Distribution Network

A10 A01 A12 A13

B32

*C12 *C02 *C11

*C11

*C00

*C10
*C12 *C11

*C02
*C10

Merging phase step 1

V1
K1
V1
K0

V0
K-
V1
K2

V0
K-
V1
K3

V0
K-
V1
K3

Distribution Network
*C00 *C02

*C11

*C00

*C10
*C12 *C11

*C02
*C10 *C12

Merging phase step 2

V1
K-
V1
K0

V0
K-
V1
K2

V0
K-
V1
K3

V0
K-
V1
K3

Distribution Network

C00

*C11 *C10
*C12 *C11

*C10 *C12

Merging phase step 3

V0
K-
V1
K0

V0
K-
V1
K2

V0
K-
V1
K3

V0
K-
V1
K3

Distribution Network

C02

*C11 *C10
*C12 *C11

*C10 *C12

To DRAM

Merging phase step 4

V0
K-
V1
K0

V0
K-
V1
K2

V0
K-
V1
K3

V0
K-
V1
K3

Distribution Network

C02

*C11 *C10
*C12 *C11

*C10 *C12

To DRAM

Merging phase step 5

V0
K-
V1
K0

V0
K-
V1
K2

V0
K-
V1
K3

V0
K-
V1
K3

Distribution Network

*C11 *C10
*C12 *C11

*C10 *C12

*C11 *C10 *C10

Merging phase step 6

V0
K-
V1
K0

V0
K-
V0
K-

V0
K-
V1
K3

V0
K-
V1
K3

Distribution Network

*C12 *C11
*C12

*C11*C12

*C11 *C10
*C10

Merging phase step 7

V0
K-
V0
K-

V0
K-
V0
K-

V0
K-
V0
K-

V0
K-
V1
K3

Distribution Network

*C12

*C11

*C12

*C11

*C10 *C10

Merging phase step 8

V0
K-
V0
K-

V0
K-
V0
K-

V0
K-
V0
K-

V0
K-
V0
K-

Distribution Network

*C11

*C12

*C11

C10To DRAM

Stationary phase step 1

V0
K-
V0
K-

V0
K-
V0
K-

V0
K-
V0
K-

V0
K-
V0
K-

SRAM for matrix C

Distribution Network

A10 A01 A12 A13

B01 B10 B20 B30

V0
K-
V0
K-

V0
K-
V0
K-

V0
K-
V0
K-

V0
K-
V0
K-

C00+/>
+/> +/>

+/>
+/>+/> +/>

+/>
+/> +/>

+/>
+/>

+/>
+/>

+/> +/>
+/>

+/> +/> +/> +/>
+/>

+/>

+/>
Node configured

as an adder

+/>
Node configured
as a comparator

+/>
Node

not configured
Multiplier

not configured
Multiplier

keeping data

+/>
+/> +/>

+/>
+/> +/> +/>

+/>
+/> +/>

+/>
+/>

+/>

+/>
Node compares

 and adds

*C02

Figure 6: Example of Flexagon running SpMSpM using an Outer-Product(M) dataflow. “*” indicates that the outputs produced
by the accelerator are psums and not final outputs. “V” in the PSRAM represents the valid bit and “K” indicates the k iteration
tagged for a particular line.

Streaming phase step 1

Distribution Network

A10A01 A12 A13

B01B10 B20 B30
Distribution Network

A10A01 A12 A13

B02B12 B31

C00
*C11 *C10 *C10

To DRAM

Streaming phase step 2

Distribution Network

A10A01 A12 A13

B32

C02

*C11 *C10

Streaming phase step 3

To DRAM

*C12 *C11

Distribution Network

A10A01 A12 A13

*C11

C10

Streaming phase step 4

*C12

*C11

To DRAM

*C12

Distribution Network

A10A01 A12 A13

C11

Streaming phase step 5

*C12

To DRAM
*C12

Distribution Network

A10A01 A12 A13

C12

Streaming phase step 6
To DRAM

+/>
+/> +/> +/>

+/>
+/>

+/>
+/>+/>

+/>
+/> +/> +/> +/>

+/>
+/>+/>

+/>

+/>
Node configured

as an adder

+/>
Node configured
as a comparator

+/>
Node

not configured
Multiplier

not configured
Multiplier

keeping data

+/>
Node compares

 and adds

Figure 7: Example of Flexagon running SpMSpM using the
Gustavson(M) dataflow. “*” indicates that the outputs pro-
duced by the accelerator are psums and not final outputs.

3.3 Combinations of inter-layer dataflows
As Table 3 shows, M-stationary dataflows output the elements in
CSR format while N -stationary dataflows output the elements in

CSR

Layer 1

Matrix A

CSC
Matrix B

CSC
Matrix C/A

Inner-Product(N)

CSR
Matrix B

CSR
Matrix C/A

CSR
Matrix B

CSR
Matrix C

Outer-Product(M) Gustavson(M)

Layer 2 Layer 3

Figure 8: Example of three DNN layers being executed by
running the combination Inner-Product, Outer-Product and
Gustavson dataflows.

CSC format. Flexagon supports the six dataflows and takes advan-
tage of this observation to appropriately execute every possible
sequence of DNN layers without requiring costly explicit hardware
format conversions. This is the first work to support compressed
outputs without explicit conversions. Fig. 8 shows an example of
a DNN composed of three layers, demonstrating this feature. The
first and the second layer are configured to execute inner and outer
products respectively. Since the second layer needs activation in
CSC, the first layer is Inner Product (N). The weights are assumed
to be stored offline in both formats. The second layer produces the
matrix in CSR format if it uses M-stationary. As a result, it could
choose from inner product or Gustavson(M).

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Muñoz-Martínez et al.

IP(M) OP(M) Gust(M) IP(N) OP(N) Gust(N)
IP(M) ✓ EC ✓ ✓ EC EC
OP(M) ✓ EC ✓ ✓ EC EC
Gust(M) ✓ EC ✓ ✓ EC EC
IP(N) EC ✓ EC EC ✓ ✓
OP(N) EC ✓ EC EC ✓ ✓
Gust(N) EC ✓ EC EC ✓ ✓

Table 4: Possible dataflow transitions (EC stands for Explicit
Conversion). Different rows represent the different outputs
of the first layer and different columns represent the corre-
sponding input to the second layer.

Table 4 shows the transitions for each dataflow combination
that do not require an explicit format conversion (green tick) and
those that do (Explicit Conversion or EC). These combinations can
be utilized by the mapper/compiler to generate the best sequence of
dataflows that lead to the best performance and energy efficiency
for a particular DNN execution.

3.4 Memory organization
In order to capture all dataflows, we have designed a customized
L1 memory level specifically tailored for the common and different
patterns among the three dataflows. Fig. 9 shows a schematic design
for this L1 memory level. We use a separate memory structure and
a different buffer idiom for data movement from/to each structure.
To do so, every memory structure is operated by two controllers,
the tile filler interfacing with the DRAM, and the tile reader
interfacing with the datapath of the accelerator (i.e., the multipliers).
Next, we describe each memory structure in detail:

Memory structure for the stationary matrix (FIFO): The
elements of the stationary matrix are always read once and se-
quentially for the three dataflows, as they are kept stationary in
the multipliers. To hide the access latency, we implement a 512-
byte read-only FIFO. In order to save bandwidth and reduce the
complexity: (1) the memory structure keeps the DRAM location
of the stationary matrix in a register, so that the fibers are pushed
implicitly into the FIFO, (2) we employ a single port to read and
write.

Memory structure for the streaming matrix (Cache): The
streaming matrix presents a more heterogeneous memory access
pattern. In IP, every stationary phase (i.e., every iteration) causes
the streaming of the entire matrix. In other words, there is a signif-
icant spatial locality and temporal locality every time the matrix
is re-loaded. In the OP dataflow, the fibers of the streaming matrix
are read just once and sequentially. In Gust dataflow, every fiber
of the stationary matrix gathers F fibers of the streaming matrix, F
being the number of non-zero elements in the fiber of the stationary
matrix which are typically scattered all over the matrix, causing
an irregular and unpredictable memory access pattern. To factor
the worst-case Gust dataflow, we implement the memory structure
for the streaming matrix as a traditional read-only set-associative
cache. However, we implement this cache to operate on a virtual
address space relative to the beginning of the streaming matrix,
which lets us use shorter memory addresses and therefore save
bandwidth and reduce tag lengths.

Memory structure formatrix C (PSRAM): To store the psums,
we have designed a new buffer idiom called PSRAM , which is used

SET-ASSOCIATIVE
CACHE

 Addr STR

To DRAMR
equest

Fetch (Offset STR)

Store

Miss?

R
esponse

Read (Offset STR)

Read
Hit

Miss

Addr STA

1

To DRAM

Push ()

Pop ()

PSRAM

PartialWrite (...) Consume (...) Write (...)

To DRAM

E

 Addr C
DRAM Memory Address

Write Read

Tile reader STA Tile reader STR Tile writer C

Tile filler STA Tile filler STR

non-
lineartiy
function

Figure 9: Memory structures in Flexagon.

for both OP and Gust dataflows. Fig. 6 shows the way this memory
structure works, Fig. 9 shows a high-level diagram, and Fig. 10
delves into detail. The memory is organized into sets corresponding
to different rows, and each set into lines for different K dimension
within a row. Each line has a valid bit. Besides, we use a line tag to
keep the column coordinate (i.e., the k-iteration) assigned to that
line. Since the length of the output fiber is undetermined, it may
occupy several (and non-consecutive) lines in the same row. This is
essentially a way-combining scheme tagged by the k-iteration [31].
The tag is used by the row to locate whether a certain output fiber is
still placed in the PSRAM. In order to read several fibers in parallel
from the same set (i.e., to merge a particular row or column) we
implement a multi-bank scheme organized across the lines within
a set. Finally, we also include two fields to keep the byte location
where the first and last elements are in the line.

PartialWrite(row, k, E): This operation is used to place an
element in the PSRAM. The logic indexes the element by the row
argument and then searches in parallel the line where the output
fiber with the k identifier is being stored. If the output fiber exists
(i.e., the k tags match), the PSRAM places the new element E into the
last available position (indicated by the field Last in the metadata)
of the last line. If the fiber does not exist, the logic searches the first
available line and stores the element E in the first position of the
line, enabling the valid bit and updating the K, First and Last fields
in order to continue storing elements for the same K identifier in
future accesses.

Consume(Row, k): The elements within a partial output fiber
are placed in the PSRAM temporarily. They are read once to feed
the accelerator and are no longer used again. This allows us to
incorporate the consume operation, which reads and erases a
particular element from the memory structure. In particular, the
controller merges the partial output fibers row by row. To do so, the
controller needs to read as many fibers as possible for the same row
and for each fiber it uses the consume operation indicating the
row and the fiber k to search. If there is an active line keeping the k
fiber, the structure reads the next element from that fiber (indicated
by the field First) and consumes it by increasing this field by one
element. When the First and Last fields store the same value, the
PSRAM detects that the line has been consumed and invalidates
the line by setting the valid bit to 0.

Write(Offset, E): Apart from the PSRAM which is used to store
partial output fibers, we also augment our memory structure with a
FIFO which is used as a write buffer to hide the latency of sending
out the final output fibers to DRAM. This structure implements the
Write operation.

Flexagon: A Multi-Dataflow Sparse-Sparse Matrix Multiplication Accelerator for Efficient DNN Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Row 0

Row 1
Row ...

Row n-1

Consume (row=0, K=1)index Search

Fiber Block

K
Fibers

V
First

Last

Figure 10: PSRAM overview.

1: for (int i=0; i<p_A.size; i++) {
2: for (int j=p_A[i]; j<p_A[i+1]; j++):
3: mem.push() / mem.pop()

1: int rcv_elems=0
2: while (pck=pending_element()):
3: value=pck.data()
4: row=pck.row()
5: col=pck.col()
6: if(pck.is_partial_sum()):
7: PartialWrite(row, col, value);
8: else:
9: d_c[rcv_elems]=value
10: i_C[rcv_elems]=col
11: if(new_row(row)):
12: p_C[row]=rcv_elems

Tile Filler/Reader STA

Inputs

1: int high_L1=(gustavsons||inner_product) : p_A.size ? 1
2: for (int i=0; i<n_high_L1; i++):
3: int low_L2=(gustavsons) : p_A[i] ? 0
4: int high_L2=(gustavsons) : p_A[i+1] ? p_B.size
5: for (int j=low_L2; j<high_L2; j++):
6: curr_pointer=(gustavsons) : receive(i_A[j]) ? j
7: int low_L3 = p_B[curr_pointer]
8: int high_L3 = p_B[curr_pointer+1]
9: for (int k=low_L3; k<high_L3; k++):
10: mem.fetch[k] / mem.read[k]

Tile Filler/Reader STR

Tile Writer C

- p_A: Row Pointer Vector STA - i_A: Col Pointer Vector STA - d_A: Data Vector STA
- p_B: Row pointer vector STR
- p_C: Row pointer vector C

- i_B: Col Pointer Vector STR
- i_C: Col Pointer Vector C

- d_B: Data Vector STR
- d_C: Data Vector C

Figure 11: Pseudo-code of the tile filler STA, tile reader STA,
tile filler STR, tile reader STR and the tile writer C. We fuse
the fillers and readers in the same text box. STA: Stationary,
STR: Streaming.

3.5 Memory controllers
Having one memory controller for each combination of dataflow
and memory structure would be very costly in terms of area and
power as it would require 30 logic modules to orchestrate the data
(6 dataflows × 5 memory controllers). In our design, we have unified
the logic and each controller is able to be configured according to
the memory access pattern of each dataflow. This way, as shown in
Fig. 9, we only need two controllers to orchestrate the data for the
memory structure which is kept stationary (i.e., the tile filler STA
and the tile reader STA), two memory controllers to orchestrate the
memory structure for the streaming matrix (i.e., the tile filler STR
and the tile reader STR) and a single controller to orchestrate the
memory structure for C (i.e., the tile writer C). Fig. 11 shows the
code of these unified memory controllers.

Parameter Value
Number of Multipliers 64
Number of Adders 63

Distribution bandwidth 16 elems/cycle
Reduction/Merging bandwidth 16 elems/cycle

Total Word Size (Value+Coordinate) 32 bits
L1 Access Latency 1 cycle
L1 STA FIFO Size 256 bytes
L1 STR cache Size 1MiB

L1 STR Cache Line Size 128 bytes
L1 STR Cache Associativity 16

L1 STR Cache Number of Banks 16
PSRAM 256 KiB

DRAM size 16 GiB
DRAM access time / Bandwidth 100 ns / 256 GB/s

Table 5: Configuration parameters of Flexagon.

4 EXPERIMENTAL METHODOLOGY
Simulation Infrastructure: For a detailed evaluation of Flexagon,
we have implemented a cycle-level microarchitectural simulator
of all on-chip components of our accelerator by leveraging the
STONNE framework [20]. To faithfully model the whole memory
hierarchy including an HBM 2.0 off-chip DRAM, we have connected
the simulated accelerator to the Structural Simulation Toolkit [18].
Table 5 shows the main parameters of the architecture we have con-
figured for the rest of the evaluation.We compare our results against
three state-of-the-art accelerators: SIGMA-like as an example of an
IP accelerator, SpArch-like as an example of an OP accelerator and
GAMMA-like as an example of a Gust accelerator.

We use the term -like in GAMMA-like, SIGMA-like and SpArch-
like to reflect the fact that we capture their most relevant character-
istics (i.e., their essence) in our simulator in a fair and normalized
fashion. Specifically, we focus on the dataflow, which is a critical
part for the efficiency of the accelerator; the DN, MN and RN com-
ponents, which define the accelerator size and bandwidth; and the
on-chip memory structures, which determine the capacity of the
accelerator to store data close to the processing elements. We note
that these are given extra on-chip area as appropriate. The main
sources of efficiency in SIGMA, SpArch and GAMMA are the FAN
reduction network, merge network and the fiber cache respectively
rather than a specifically engineered design-point. Thus, we believe
that the comparison against the key features of these designs cap-
tured by SIGMA-like, SpArch-like and GAMMA-like is justifiable,
since our aim is to establish the advantages of flexibility and our
ability to achieve it without major area overhead rather than obtain
a specifically engineered design point.

For the three accelerators, we model the same parameters pre-
sented in Table 5, and we only change the memory controllers
to deliver the data in the proper order according to its dataflow.
We also compare Flexagon against the implementation from Intel
MKL [32] running on a 4-core 8-thread Intel(R) Core(TM) i5-7400
CPU @ 3.00 GHz. Each core implements a 128 KiB L1 cache, a 1
MiB L2 cache and a shared 6 MiB L3 cache. We do not include GPU
results because existing GPU SpMSpM implementations do not sup-
port sparse weights+activations natively [33, 36], thus performing
similarly to CPU MKL as reported in [34, 35].

To demonstrate the benefits of Flexagon, our evaluation method-
ology considers the following three different angles:

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Muñoz-Martínez et al.

Layer M, N, K spA spB csA csB csC
SQ5 64, 2916, 16 68 11 1.2 162 728
SQ11 128, 729, 32 70 10 4.8 82 364
R4 256, 3136, 64 88 9 7.6 709 3136
R6 64, 2916, 576 89 53 16 3086 728
S-R3 64, 5329, 576 89 46 16 6422 1332
V0 128, 12100, 576 90 61 29 21357 12321

MB215 128, 8, 512 50 0 128 16 4
V7 512, 144, 4608 90 94 921 177 288
A2 384, 121, 1728 70 54 777 373 181

Table 6: Representative DNN layers selected for the
evaluation. sp{A,B}=sparsity of matrix {A,B} (in %),
cs{A,B,C}=compressed size of matrix {A,B,C} (in KiB).

SIGMA- SpArch- GAMMA- Flexagon
like like like

DN Tree Tree Tree Tree
MN Linear Linear Linear Linear
RN FAN MergerS MergerG MRN

Table 7: Main building blocks to model the SIGMA-
like, SpArch-like, GAMMA-like and Flexagon accelerators.
DN=Distribution Network, RN=Reduction Network andMN=
Multiplier Network.

End-to-End Evaluation: To truly prove the performance ben-
efits of Flexagon, we have carried out end-to-end execution of
complete DNN models (see Table 2) in our simulated accelerators.
These models are present in the MLPerf benchmark suite [29] and
we take other models for completeness. As it may be appreciated,
we consider very diverse DNN models in terms of the number of
layers and sizes. The matrices involved in the execution of each
DNN layer range from 0.003 MiB up to 63.41 MiB (see average com-
pressed sizes in Table 2), thereby our evaluation is comprehensive
as there are many situations where matrices cannot completely fit
on chip (Flexagon uses a total of 1 MiB SRAM memory for storing
input matrices).

Layer-wise evaluation: Since explaining the results requires
delving into a finer-grained detail, we have selected 9 representative
layers extracted from the execution of the DNN models. Table 6
shows these layers together with the characteristics of each layer.

RTL results: We implemented the main building blocks (i.e., the
DN, MN, RN and the on-chip memory) of the accelerators consid-
ered in this work (shown in Table 7). For an apples-to-apples com-
parison of overheads, the four architectures use the same tree topol-
ogy for the DN, the same linear array of multipliers for the MN and
vary the RN. For the SIGMA-like architecture, we utilize the FAN
network [28] as the RN for flexible-sized reductions. For the SpArch-
like and GAMMA-like architectures, we use a merger [23, 35] to
merge the partial sums produced after the multiplications. Finally,
for Flexagon we utilize the unified MRN explained in Section 3.

For synthesis, we use MAERI BSV [1] to generate the 64-MS
distribution network and the multiplier network. In addition, we
have implemented in RTL a 64-wide merger and our MRN. We use
Synopsys Design Compiler and Cadence Innovus Implementation
System for synthesis and place-and-route, respectively, using TSMC
28nm GP standard LVT library at 800 MHz. To obtain the area and
power numbers of the memory structures, we have used CACTI
7.0 [11] for the same technology node and frequency.

0

40

80

120

160

S
p
e
e
d
-u
p

A V SQ R S-R S-M DB MB GEOMEAN

C
P
U
M
K
L

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

C
P
U
M
K
L

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

C
P
U
M
K
L

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

C
P
U
M
K
L

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

C
P
U
M
K
L

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

C
P
U
M
K
L

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

C
P
U
M
K
L

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

C
P
U
M
K
L

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

C
P
U
M
K
L

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

Figure 12: Performance comparison between CPU MKL,
SIGMA-like, SpArch-like, GAMMA-like and Flexagon archi-
tectures across the 8 DNN models (speed-up against SIGMA-
like).

5 RESULTS
5.1 End-to-end results
Figure 12 compares the performance obtained with the CPU MKL,
the three contemporary fixed-dataflow accelerators (SIGMA-like,
SpArch-like and GAMMA-like) and with Flexagon when running
the 8 DNN models (speed-ups with respect to the results obtained
with the CPU MKL). The total numbers of cycles for CPU MKL are
reported in the last column of Table 2.

The first observation is that there is no fixed-dataflow accelerator
that can obtain the highest performance for all the 8 DNN models.
In particular, for Alexnet (A), VGG-16 (V), Resnets-50 (R) and SSD-
Resnets (S-R) the SpArch-like accelerator is 5.26× and 1.49× on
average faster than the SIGMA-like and GAMMA-like architectures,
respectively. Conversely, for Squeezenet (SQ), SSD-Mobilenets (SM),
DistilBert (DB) and MobileBert (MB), the GAMMA-like accelerator
obtains the best performance (average improvements of 3.28× and
2.41× against the SIGMA-like and SpArch-like, respectively).

The second andmost noteworthy observation is that Flexagon can
outperform the other three fixed-dataflow accelerators in all cases,
attaining average speed-ups of 4.59× (vs. SIGMA-like), 1.71× (vs.
SpArch-like) and 1.35× (vs. GAMMA-like). This is due to the com-
bination of its flexible interconnects, explicitly decoupled memory
structures and unified memory controllers that enable using the
most efficient dataflow for each layer.

Finally, we observe that Flexagon significantly outperforms the
CPU MKL as the hardware is specifically designed to perform the
SpMSpM operation. Overall, we find that Flexagon obtains a speed-
up of 31× on average (benefits from 13× up to 163× are observed).

5.2 Layer-wise results
Detailing the reasons behind the benefit observed for some DNN
models for a particular dataflow requires a deeper delve into every
DNN layer execution. To make the study feasible (we run over a
hundreds of layers), next, we present a comprehensive study for
a selected set of nine representative DNN layers (Table 6). These
layers are chosen according to the dataflow fromwhich they benefit
the most –The first three layers in the table benefit from IP (SQ5,
SQ11 and R4), the second ones from OP (R6, S-R3 and V0), and the
third ones from Gust (MB215, V7 and A2).

Figure 13 shows a performance comparison running these se-
lected layers using our simulated accelerators (again, speed-ups are
computed with respect to SIGMA-like). As expected, as shown in

Flexagon: A Multi-Dataflow Sparse-Sparse Matrix Multiplication Accelerator for Efficient DNN Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0

2

4

6

8

S
p
e
e
d
-u
p

SQ5 SQ11 R4 R6 S-R3 V0 MB215 V7 A2 GEOMEAN

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

Mult
Merg

Figure 13: Performance comparison between SIGMA-like,
SpArch-like, GAMMA-like and Flexagon architectures across
our 9 DNN layers (speed-up against the SIGMA-like one).

0

100

200

300

400

O
n
-c
h
ip

m
e
m
o
ry

tr
a
ff
ic

(M
B
)

SQ5 SQ11 R4 R6 S-R3 V0 MB215 V7 A2

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n
-l
ik
e

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n
-l
ik
e

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n
-l
ik
e

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n
-l
ik
e

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n
-l
ik
e

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n
-l
ik
e

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n
-l
ik
e

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n
-l
ik
e

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n
-l
ik
e

STA matrix
STR matrix
Psums

Component

Figure 14: Memory traffic (MB) that flows through the
on-chip memory hierarchy for SIGMA-like, SpArch-like,
GAMMA-like and Flexagon architectures across our 9 DNN
layers.

the figure, in the case of the first group of IP-friendly layers, the
SIGMA-like architecture obtains average speed-ups of 1.53× and
1.40× against the SpArch-like and the GAMMA-like architectures,
respectively. The next three OP-friendly layers (i.e., R6, S-R3 and V0),
the SpArch-like architecture obtains an average increased perfor-
mance of 5.07× and 2.66× against the SIGMA-like and GAMMA-like
architectures. Finally, for the last three Gust-friendly layers, the
best performance is obtained by the GAMMA-like architecture, ex-
perimenting 4.37× and 3.19× faster executions than the SIGMA-like
and the SpArch-like architectures, respectively. More remarkable is
that Flexagon beats all of them, always reaching the performance
of the best case. Overall, by properly configuring the control logic
of Flexagon according to the most suitable dataflow for each layer,
our accelerator is able to attain 2.81×, 1.69×, and 1.55× speed-ups
against the SIGMA-like, SpArch-like and GAMMA-like accelerators.

Figures 14, 15 and 16 help us understand these results. Specifi-
cally, Figure 14 shows the amount of on-chip memory traffic (ex-
pressed in MBs) that relays between our on-chip memory hierar-
chy (i.e., the reads from the STA FIFO and from the STR cache
and the reads/writes from/to the PSRAM) and the distribution net-
work after running the SIGMA-like, SpArch-like, GAMMA-like and
Flexagon architectures across our nine DNN layers. Figure 15 plots
the cache miss rate of the STR cache after running the layers, and
Figure 16 shows the amount of off-chip traffic (expressed in KBs)
that in consequence, flows between this STR cache and the DRAM.

The first observation that we would like to make from Figure 14
is the negligible traffic that is fetched from the memory structure

for the STA matrix (inappreciable fractions of the bars in blue
color). This is basically due to the fact that the stationary data is
kept stationary in the multipliers once it is read for the rest of
the execution, as it is explained in Section 3. For this reason, this
memory structure does not have a significant impact on the final
performance of the executions regardless of the dataflow that is
configured. In contrast, the amount of traffic required to fill the
structure for the STR matrix and the PSRAM heavily varies layer
by layer and across dataflows (fractions of the bars in orange and
green colors respectively), hence determining the final performance
of the layer execution.

As we can appreciate, for every layer execution, both the SpArch-
like and GAMMA-like architectures present the same amount of
traffic for the memory structure for the STR matrix. This is so be-
cause the elements that are read are exactly the same during the
multiplying phase. On the contrary, the traffic generated for the
STR matrix in the SIGMA-like architecture may vary based on the
intersections that exist between the elements that are mapped in the
multipliers and the elements in the streaming matrix. More specifi-
cally, the matrices B of the layers that benefit from the SIGMA-like
architecture (i.e., SQ5, SQ11 and R4) are relatively small (up to 709
KB) and present a low sparsity ratio (average of 10.1%) which leads
to most of the values from matrix A to intersect and therefore
generate the same amount of traffic as the SpArch-like and the
GAMMA-like accelerators.

Since the IP dataflow does not require merging the partial sums
as they are internally accumulated (observe the number of partial
sums sent to the PSRAM for the SIGMA-like architecture is always
0) this dataflow obtains the best performance. An outlier for this
behaviour is observed for the V0 layer. Here, the traffic generated
for the STR matrix in the SIGMA-like architecture is lower than the
traffic generated in the SpArch-like and GAMMA-like architectures.
However, this workload experiences higher runtime. The reason
for this is the large size of the matrix B (21.3 MiB) which causes that
it has to be reloaded several times, experimenting an L1 miss rate
of 3.13% (see Figure 15), significantly higher than the L1 miss rates
obtained for the SpArch-like and GAMMA-like architectures (i.e.,
0.36% and 2.30%) which translates into increased off-chip memory
traffic (see Figure 16). This higher traffic provokes that the multi-
plying phase takes longer for the SIGMA-like architecture than for
both the multiplying and merging phase for the SpArch-like archi-
tecture. When the number of intersections is low, the SIGMA-like
architecture experiments higher number of cycles overheads due to
this architecture accesses to many more data elements. This is also
observed in the six layers that do not benefit from the SIGMA-like
architecture (i.e., R6, S-R3, V0, MB215, V7 and A2), experiencing on
average 5.68× and 2.27× higher on-chip traffic than the SpArch-like
and GAMMA-like architectures.

On the other hand, out of these six layers, the main difference
in performance that defines them comes from the size of matrix
B. The second group of layers (i.e., R6, S-R3 and V0) that benefit
from the SpArch-like architecture have a large size for matrix B (see
Table 6). This implies that the GAMMA-like architecture cannot
fit the rows of B entirely in the memory structure for the STR
matrix, causing higher L1 miss rates. Observed average L1 miss
rate (see Figure 15) experimented in the execution of these three
layers is 0.39% for the SpArch-like architecture and 2.43% for the

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Muñoz-Martínez et al.

0.0%

0.5%

1.0%

1.5%

2.0%
2.5%
3.0%
3.5%

S
T
R
c
a
c
h
e
M
is
s
ra
te

SQ5 SQ11 R4 R6 S-R3 V0 MB215 V7 A2

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

Figure 15: STR cache miss rate for the SIGMA-like, SpArch-
like, GAMMA-like and Flexagon architectures across 9 DNN
layers.

0.0k

1.0k

2.0k

3.0k

4.0k

O
ff
-c
h
ip

tr
a
ff
ic

(K
B
)

SQ5 SQ11 R4 R6 S-R3 V0 MB215 V7 A2

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

Figure 16: Off-chip data traffic for the SIGMA-like, SpArch-
like, GAMMA-like and Flexagon architectures across 9 DNN
layers.

GAMMA-like architecture. This translates into 6.25× more traffic
for GAMMA which causes the degradation in performance.

In the last group of layers (i.e., MB215, V7 and A2) the sizes of
matrices B are much smaller (up to 373KB as observed in Table 6)
and therefore both SpArch-like and GAMMA-like architectures
experience the same L1 miss rates and off-chip data traffic. In this
scenario, the GAMMA-like architecture is more efficient as it is
able to compute the reduction phase and the merging phase at the
same time –Observe the orange bar for the GAMMA-like cases in
the Figure 13 is not significant as the merge phase is computed in
parallel within the multiplying phase (i.e., blue bar).

5.3 RTL results
Table 8 shows a breakdown of the total amount of area (mm2)
and power (mW) obtained for the 64-MS SIGMA-like, SpArch-like,
GAMMA-like and Flexagon accelerators. For each case, we show
the results for the main architectural components: Distribution Net-
work (DN), Multiplier Network (MN), Reduction/Merger Network
(RN), the cache structure for the streaming matrix (Cache) and the
PSRAM .

In terms of area, we observe that Flexagon introduces an over-
head of 25%, 3% and 14% with respect to the area of the SIGMA-like,
SpArch-like and GAMMA-like accelerators, respectively. As we
can see, the area of the four accelerators is mostly dominated by
the memory structures. Specifically, we observe that the cache for
the streaming matrix represents 93%, 76%, 85% and 74% of the to-
tal amount of area for the SIGMA-like, SpArch-like, GAMMA-like

Component SIGMA- SpArch- GAMMA- Flexagon
like like like

Area Results
DN (mm2) 0.04 0.04 0.04 0.04
MN (mm2) 0.07 0.07 0.07 0.07
RN (mm2) 0.17 0.07 0.07 0.21

Cache (mm2) 3.93 3.93 3.93 3.93
PSRAM (mm2) - 1.03 0.51 1.03
Total (mm2) 4.21 5.14 4.62 5.28

Power Results
DN (mW) 2.18 2.18 2.18 2.18
MN (mW) 3.29 3.29 3.29 3.29
RN (mW) 248 64.48 64.48 312

Cache (mW) 2142 2142 2142 2142
PSRAM (mW) - 538 269 538
Total (mW) 2396 2750 2481 2998

Table 8: Post-layout area and power obtained for SIGMA-like
SpArch-like, GAMMA-like and Flexagon accelerators.

64-DS Distribution Network

DRAM

64-MS Multiplier Network

64-wide
Reduction
Network

64-wide
Merger S

64-wide
Merger G

64 x (1:3 Demux)

Cache + PSRAM (read)

PSRAM (write)

3 x (64:1 Mux)

To DRAM

Fl
e
x
a
g
o
n

N
a
iv

e

0

1

2

3

4

5

6

7

A
re

a
 (

m
m

²)

Mux/Demux
SRAM

Datapath

a) Naive Design b) RTL Results

mponent

Figure 17: a) High-level overview of a non-unified naive de-
sign. b) Area comparison between Flexagon and the naive
design.

and Flexagon architectures, respectively. Besides, the area of the
PSRAM represents 20%, 11% and 19% with respect to the SpArch-
like, GAMMA-like and Flexagon accelerators, respectively. Since the
SIGMA-like architecture employs an IP dataflow, this accelerator
does not need this structure, which explains the reason for having
the lowest area. Also, the area of the PSRAM in the GAMMA-like
accelerator is half the area in the SpArch-like and Flexagon acceler-
ators as it requires storing fewer partial sums, which explains the
area reduction. Obviously, Flexagon needs support for the worst-
case OP dataflow and needs the highest PSRAM overhead. Finally,
note that our MRN is 28% and 128% larger than the area of the
FAN and the merger, but this does not translate into high over-
all overhead as the MRN takes only 4% out of the total area for
Flexagon.

Figure 17 proves the area benefits of unifying the RN and the
merger into a single network (MRN). To do so, we have sketched a
64-MS naive accelerator design similar to Flexagon, but utilizing
separate networks for each dataflow (see Figure 17a). We use the
term naive here to emphasize the fact that the design simply repli-
cates the reduction network 3 times (one per dataflow). As it may

Flexagon: A Multi-Dataflow Sparse-Sparse Matrix Multiplication Accelerator for Efficient DNN Processing ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

be seen, the reduction and merger networks share the same multi-
plier and distribution networks as well as the same SRAM capacity.
The design requires extra links, muxes and demuxes to connect
the pieces. At the bottom side, the MN connects to three different
networks, and therefore, requires 64 (1:3) demultiplexers. At the
top side, each node from the merger and reduction network has
to be connected to memory requiring 3 costly (64:1) multiplexers
and connections. Figure 17b shows the inefficiencies of this naive
design. As we can see, the three separate networks (i.e., RNs and
mergers) introduce an area overhead of just 2% as the designs are
dominated by the SRAM area (e.g., 74% of area for Flexagon). The
significant area penalty introduced by the naive design comes from
the extra multiplexers, demultiplexers and corresponding connec-
tions, introducing an area overhead of 25% over Flexagon. Note
that in larger configurations (i.e., greater number of multipliers)
this area overhead would even increase.

In terms of power, we observe the same trends. We find that the
Flexagon accelerator consumes 25%, 9% and 21% more power than
the SIGMA-like, SpArch-like and GAMMA-like accelerators. The
slightly higher overhead of Flexagon against the aforementioned
area results comes mostly from the MRN as this module represents
a larger fraction of total consumption (10%, 2.34%, 2.60% and 10.41%
out of the SIGMA-like, SpArch-like, GAMMA-like and Flexagon
accelerators are observed, respectively). This, together with the
fact that the MRN consumes 25% and 284% more than the FAN
RN and the merger, explains the results. In spite of the overhead
introduced, in Figure 18 we illustrate that Flexagon is still more
performance/area efficient. Specifically, we consider both achieved
speed-ups and area requirements of each design. The area require-
ments are normalized with respect to the SIGMA-like case, which is
also the reference for the calculation of the speed-ups. Note that the
NLPmodels likeMobileBert (MB) andDistilBert (DB) achieve a better
efficiency with the GAMMA-like accelerator. Nevertheless, this is
due to as explained before, most of the layers (84% in DistilBert (DB)
and 100% in MobileBert (MB)) for these models work better with the
Gustavson dataflow, making the area overhead introduced by the
Flexagon accelerator unnecessary. Consequently, we can clearly see
that, overall, Flexagon reaches the best compromise between per-
formance and area consumption (the higher Speed-up/Area values).
In comparison, we find that, on average, our accelerator obtains
18%, 67% and 265% better performance/area efficiency across the
execution of our 8 DNN models with respect to the GAMMA-like,
SpArch-like and SIGMA-like accelerators. This makes Flexagon the
best candidate for running heterogeneous sparse DNN workloads.

6 RELATEDWORK
Sparse DNN Accelerators: Sparse matrix multiplications have
been prime targets of acceleration for AI and HPC workloads.
Several sparse DNN accelerators have been proposed for SpMM,
SpGEMM and Sparse convolution [2, 6, 8, 10, 13, 17, 23, 25, 28, 30].
These accelerators have support for sparse execution via compres-
sion of one or both operands into formats like CSR, CSC, bitmap,
CSF, etc. This reduces the memory footprint and the number of
multiplications. As Table 1 shows, prior sparse accelerators have
picked either one of IP, OP and Gust(row-wise product) dataflows.

0

1

2

3

4

5

6

P
e
rf
o
rm

a
n
c
e
/
A
re
a

A V SQ R S-R S-M DB MB GEOMEAN

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

S
IG
M
A
-l
ik
e

S
p
A
rc
h
-l
ik
e

G
A
M
M
A
-l
ik
e

Fl
e
x
a
g
o
n

Figure 18: Performance/Area obtained after running the
SIGMA-like, SpArch-like, GAMMA-like and Flexagon archi-
tectures across our 8 DNN models.

We show that flexibility to support multiple dataflows is beneficial
for performance and performance per area.

Frameworks for flexible accelerators: Prior works in the di-
rection of flexibility include hardware widgets and design-space
exploration tools for CGRAs. MINT [27] is a format converter wid-
get that supports multiple sparse formats. Prior works Garg et
al. [5], coSPARSE [4] and SparseAdapt [22] propose frameworks
for efficient sparse execution on CGRAs. However, to the best of
our knowledge, this is the first work that proposes an accelerator
for Sparse DNNs which exploits all three dataflows.

7 CONCLUSION
This work proposes Flexagon, the first SpMSpM accelerator design
that offers IP, OP and Gust dataflows on a homogeneous hardware
substrate. Flexagon revolves around a novel tree-based network
(MRN) that supports both reduction of dot products and themerging
of partial sums, and a special L1 on-chip memory organization,
specifically tailored to the different access characteristics of the
input and output compressed matrices. By using the dataflow that
best matches the characteristics of each DNN layer, we show that
Flexagon brings significant improvements in performance/area
efficiency over SOTA fixed-dataflow sparse accelerators.

ACKNOWLEDGMENTS
This work was supported by grants TED2021-130233B-C33 and
RYC2021-031966-I both funded byMCIN/AEI/10.13039/501100011033
and by the European Union NextGenerationEU/PRTR. F. Muñoz-
Martínez was supported by grant 20749/FPI/18 from Fundación
Séneca. A part of the work was supported by the ARIAA co-design
center funded by the U.S. Department of Energy (DOE) Office of
Science, Advanced Scientific Computing Research program.

REFERENCES
[1] [n. d.]. MAERI code v1. https://github.com/hyoukjun/MAERI.
[2] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A

Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (June
2019), 292 – 308.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv: 1810.04805v2 (2019) (May 2019).

[4] Siying Feng, Jiawen Sun, Subhankar Pal, Xin He, Kuba Kaszyk, Dong-hyeon
Park, Magnus Morton, Trevor Mudge, Murray Cole, Michael O’Boyle, Chaitali
Chakrabarti, and Ronald Dreslinski. 2021. CoSPARSE: A Software and Hardware

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Muñoz-Martínez et al.

Reconfigurable SpMV Framework for Graph Analytics. In 2021 58th ACM/IEEE De-
sign Automation Conference (DAC). 949–954. https://doi.org/10.1109/DAC18074.
2021.9586114

[5] Raveesh Garg, Eric Qin, Francisco Muñoz-Martínez, Robert Guirado, Akshay Jain,
Sergi Abadal, José L Abellán, Manuel E Acacio, Eduard Alarcón, Sivasankaran
Rajamanickam, and Tushar Krishna. 2022. Understanding the Design-Space of
Sparse/Dense Multiphase GNN dataflows on Spatial Accelerators. In 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).

[6] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vijaykumar.
2019. SparTen: A sparse tensor accelerator for convolutional neural networks. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-
chitecture. 151–165.

[7] Fred G. Gustavson. 1978. Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition. ACM Trans. Math. Softw. 4, 3 (sep 1978), 250–269.

[8] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. 2016.
EIE: Efficient Inference Engine on Compressed Deep Neural Network. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).
243–254. https://doi.org/10.1109/ISCA.2016.30

[9] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. arXiv preprint arXiv: 1510.00149v5 (2016) (Feb. 2016).

[10] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher. 2019. ExTen-
sor: An accelerator for sparse tensor algebra. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 319–333.

[11] HP Laboratories. [n. d.]. CACTI 7.0: A Tool to Model Caches/Memories, 3D
stacking, and off-chip IO. https://github.com/HewlettPackard/cacti.

[12] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. Proceedings of the 44th Annual International Symposium
on Computer Architecture 45, 2 (jun 2017), 1–12. https://doi.org/10.1145/3140659.
3080246

[13] Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknod-
din Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi, Juan Gomez
Luna, and Onur Mutlu. 2019. Smash: Co-designing software compression and
hardware-accelerated indexing for efficient sparse matrix operations. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
600–614.

[14] Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and Saman Ama-
rasinghe. 2017. taco: a tool to generate tensor algebra kernels. Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering (Oct.
2017), 943–948.

[15] Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar,
Vivek Sarkar, and Tushar Krishna. 2019. Understanding Reuse, Performance,
and Hardware Cost of DNN Dataflow: A Data-Centric Approach (MICRO ’52).
Association for Computing Machinery, New York, NY, USA, 754–768. https:
//doi.org/10.1145/3352460.3358252

[16] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable Inter-
connects. Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (March 2018).

[17] Ching-En Lee, Yakun Sophia Shao, Jie-Fang Zhang, Angshuman Parashar, Joel
Emer, Stephen W Keckler, and Zhengya Zhang. 2018. Stitch-x: An accelerator
architecture for exploiting unstructured sparsity in deep neural networks. In
SysML Conference, Vol. 120.

[18] Janssen Curtis Lee, Helgi Adalsteinsson, Scott Cranford, Joseph P. Kenny, Ali
Pinar, David A. Evensky, and Jackson R. Mayo. 2010. A Simulator for Large-Scale
Parallel Computer Architectures. IJDST vol.1, no.2 (2010), 57–73.

[19] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micike-
vicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,
et al. 2019. Mlperf training benchmark. arXiv preprint arXiv:1910.01500 (2019).

[20] Francisco Muñoz-Martínez, José L. Abellán, Manuel E. Acacio, and Tushar Kr-
ishna. 2021. STONNE: Enabling Cycle-Level Microarchitectural Simulation for
DNN Inference Accelerators. In 2021 IEEE International Symposium on Workload
Characterization (IISWC). 201–213. https://doi.org/10.1109/IISWC53511.2021.

00028
[21] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,

Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. CoRR abs/1906.00091 (2019).
https://arxiv.org/abs/1906.00091

[22] Subhankar Pal, Aporva Amarnath, Siying Feng, Michael O’Boyle, Ronald Dreslin-
ski, and Christophe Dubach. 2021. SparseAdapt: Runtime Control for Sparse Lin-
ear Algebra on a Reconfigurable Accelerator. InMICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (Virtual Event, Greece) (MICRO
’21). Association for Computing Machinery, New York, NY, USA, 1005–1021.
https://doi.org/10.1145/3466752.3480134

[23] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siying
Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge, and
Ronald Dreslinski. 2018. OuterSPACE: An Outer Product based Sparse Matrix
Multiplication Accelerator. In ISCA.

[24] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A. Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to
DNN Accelerator Evaluation. In 2019 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). 304–315. https://doi.org/10.
1109/ISPASS.2019.00042

[25] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An Accelerator for Compressed-sparse Convo-
lutional Neural Networks. International Symposium on Computer Architecture
(ISCA) (June 2017), 27–40.

[26] Eric Qin, Geonhwa Jeong, William Won, Sheng-Chun Kao, Hyoukjun Kwon,
Sudarshan Srinivasan, Dipankar Das, Gordon E Moon, Sivasankaran Rajaman-
ickam, and Tushar Krishna. 2021. Extending sparse tensor accelerators to support
multiple compression formats. In 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 1014–1024.

[27] Eric Qin, Geonhwa Jeong, William Won, Sheng-Chun Kao, Hyoukjun Kwon, Su-
darshan Srinivasan, Dipankar Das, Gordon E. Moon, Sivasankaran Rajamanickam,
and Tushar Krishna. 2021. Extending Sparse Tensor Accelerators to Support
Multiple Compression Formats. In 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 1014–1024. https://doi.org/10.1109/IPDPS49936.
2021.00110

[28] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. 2020. SIGMA: A Sparse
and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 58–70. https://doi.org/10.1109/HPCA47549.2020.00015

[29] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, et al. 2020. Mlperf inference benchmark. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 446–459.

[30] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.
Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise
product. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 766–780.

[31] Rubén Titos-Gil, Antonio Flores, Ricardo Fernández-Pascual, Alberto Ros, Sal-
vador Petit, Julio Sahuquillo, and Manuel E. Acacio. 2019. Way Combination for
an Adaptive and Scalable Coherence Directory. IEEE Transactions on Parallel and
Distributed Systems 30, 11 (2019), 2608–2623. https://doi.org/10.1109/TPDS.2019.
2917185

[32] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu,
and Yajuan Wang. 2014. Intel Math Kernel Library. High-Performance Computing
on the Intel Xeon Phi (June 2014).

[33] Ziheng Wang. 2020. SparseRT: Accelerating Unstructured Sparsity on GPUs for
Deep Learning Inference. arXiv preprint arXiv: 2008.11849v1 (2020) (Aug. 2020).

[34] Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. 2021. Gamma:
Leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 687–701.

[35] Zhekai Zhang, Hanrui Wang, Song Han, and William J. Dally. 2020. SpArch:
Efficient Architecture for Sparse Matrix Multiplication. International Symposium
on High Performance Computer Architecture (HPCA) (Feb. 2020), 261–274.

[36] Maohua Zhu and Yuan Xie. 2010. Taming Unstructured Sparsity on GPUs via
Latency-Aware Optimization. 2020 57th ACM/IEEE Design Automation Conference
(DAC) (Oct. 2010).

Received 2022-10-20; accepted 2023-01-19

https://doi.org/10.1109/DAC18074.2021.9586114
https://doi.org/10.1109/DAC18074.2021.9586114
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3352460.3358252
https://doi.org/10.1145/3352460.3358252
https://doi.org/10.1109/IISWC53511.2021.00028
https://doi.org/10.1109/IISWC53511.2021.00028
https://arxiv.org/abs/1906.00091
https://doi.org/10.1145/3466752.3480134
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/IPDPS49936.2021.00110
https://doi.org/10.1109/IPDPS49936.2021.00110
https://doi.org/10.1109/HPCA47549.2020.00015
https://doi.org/10.1109/TPDS.2019.2917185
https://doi.org/10.1109/TPDS.2019.2917185

	Abstract
	1 Introduction
	2 Background
	2.1 Compression formats
	2.2 SpMSpM dataflows

	3 Flexagon Design
	3.1 On-chip Networks
	3.2 Walk-through Examples
	3.3 Combinations of inter-layer dataflows
	3.4 Memory organization
	3.5 Memory controllers

	4 Experimental Methodology
	5 Results
	5.1 End-to-end results
	5.2 Layer-wise results
	5.3 RTL results

	6 Related work
	7 Conclusion
	Acknowledgments
	References

