
UNIVERSIDAD DE MURCIA 
ESCUELA INTERNACI

 

ONAL DE DOCTORADO 

Hardware Techniques for the Design of 
Efficient Inference Accelerators of Deep Neural 

Networks 

Técnicas Hardware para el Diseño de 
Aceleradores de Inferencia Eficientes de Redes 

Neuronales Profundas

D. Francisco Muñoz Martínez
2022 





Universidad de Murcia

Facultad de Informática

Departamento de Ingeniería y
Tecnología de Computadores

TécnicasHardwareparaelDiseño
deAceleradoresdeInferencia

EficientesdeRedesNeuronales
Profundas

Tesis Doctoral

Autor:
Francisco Muñoz Martínez

Directores:
Manuel Eugenio Acacio Sánchez

José Luis Abellán Miguel

Murcia, Septiembre de 2022





Resumen

Durante los últimos 50 años, la potencia de cómputo proporcionada por los
procesadores de propósito general ha experimentado un increíble incremento de
rendimiento debido principalmente a la mejora de la tecnología que se utiliza
para construir los chips, cumpliendo la ley empírica predicha por Gordon Moore
en el año 1975 [38] que indicaba que el número de transistores en un chip se
duplicaría cada dos años. Los arquitectos hardware, se han aprovechado de
este hecho diseñando cauces de procesamiento cada vez más complejos o en la
última década añadiendo más y más núcleos de procesamiento en un mismo chip.
Desafortunadamente, debido a restricciones físicas prácticamente insuperables,
el tamaño del transistor está llegando a su límite y por tanto el incremento
de la potencia de cómputo está siendo comprometida, duplicándose según las
tendencias actuales cada 20 años [59]. Además, este límite es alcanzado en el
momento más demandante de cómputo de la historia de los computadores: la
era de la inteligencia artificial, y en concreto de las redes neuronales profundas
(Deep Neural Networks o DNNs).

Estas DNNs constituyen hoy en día un avance disruptivo para un gran número
de aplicaciones de inteligencia artificial, como reconocimiento de imagen y vídeo,
conducción autónoma, reconocimiento del lenguaje natural, traducción de texto,
detección temprana de enfermedades, predicción meteorológica, etc. [117]. El
inconveniente es que estas DNNs requieren de gran cantidad de datos y realizan
millones de operaciones, demandando una masiva cantidad de cómputo, uso de
memoria y energía.

Generalmente, una DNN tiene dos fases fundamentales de operación: una
primera fase de entrenamiento, donde un conjunto de pesos son derivados para
que la DNN realice una determinada tarea, y una segunda fase de inferencia,
donde la DNN se despliega para ser utilizada en un escenario para el cual ha
sido entrenada previamente. Generalmente, la fase de entrenamiento se lleva a
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Resumen

cabo utilizando GPUs en grandes centros de datos [20], mientras que la fase de
inferencia se suele realizar in-situ, en dispositivos con fuertes restricciones en
cuanto a área y energía. Este hecho ha conllevado a la investigación y desarrollo
de un gran número de arquitecturas aceleradoras que tratan de maximizar las
demandas de eficiencia energética de estos escenarios [61], [76], [70], [31], [33].

La clave que hay detrás de todas estas arquitecturas aceleradoras ha sido
capturar los diferentes patrones de datos en lo que se conoce como flujo de datos
(dataflow) [68], y la explotación de optimizaciones arquitecturales basadas en los
datos de entrada para reducir el cómputo o el movimiento de datos [33].

La primera generación de aceleradores sistólicos del procedimiento de infe-
rencia para DNNs (e.g., la TPU de Google [61]) basaban su diseño en grupos
(clústeres) de unidades de multiplicación y suma (unidades MACs) de tamaño
fijo, interconectados mediante una red de interconexión específicamente diseñada
para soportar un flujo de datos particular [23].

Desafortunadamente, con el avance y desarrollo de nuevos modelos DNNs,
estos aceleradores sistólicos se han quedado obsoletos, debido principalmente
a su incapacidad de adaptarse a nuevas características como: i) mayor variedad
de tipos de DNNs, lo cual conlleva a mayor heterogeneidad en las demandas
de cómputo; y ii) la presencia de sparsity (gran cantidad de valores cero), que
viene siendo cada vez más notable en estos modelos. Explotar estas nuevas
características hace que los aceleradores sistólicos compuestos por topologías
rígidas no puedan adaptarse, traduciéndose en una baja utilización de las unida-
des de cómputo y en dificultad para escalar adecuadamente estas arquitecturas
aceleradoras.

Con el objetivo de superar estas limitaciones, recientemente han surgido dise-
ños de arquitecturas aceleradoras como FlexFlow [76], MAERI [70] o SIGMA [31].
Estos aceleradores utilizan topologías flexibles capaces de adaptar su sustrato
hardware a las distintas demandas computacionales requeridas por los nuevos
modelos de DNNs. Para ello, estas arquitecturas permiten configurarse para crear
cualquier número de clústeres de unidades de cómputo y de cualquier tamaño,
permitiendo una mejor adaptación a cualquier demanda en el mismo sustrato
hardware.

Naturalmente, estas arquitecturas flexibles descritas anteriormente, aunque
mejoran significativamente el aprovechamiento de las unidades de cómputo, son
bastante más complejas que una simple arquitectura sistólica. Además, el número
de mapeos que se pueden utilizar por cada capa es casi infinito y el espectro
de evaluación y mejora del diseño hardware es mucho más amplio que en una
arquitectura simple. Por este motivo, para los arquitectos de computadores es
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inviable utilizar un diseño hardware directamente escrito en HDL para realizar
pruebas o evaluaciones sobre el mismo.

Hasta ahora, los arquitectos de computadores han utilizado herramientas
analíticas para evaluar sus diseños, empleando un conjunto de fórmulas que les
permiten estimar el rendimiento y eficiencia energética en unos pocos segundos.
SCALE-Sim [30], MAESTRO [68] y TimeLoop [29] han sido propuestos recien-
temente como ejemplos de este tipo de herramientas que permiten el análisis
de diferentes flujos de datos en arquitecturas específicas para DNNs. Estas he-
rramientas son muy potentes para explorar de forma rápida los detalles de alto
nivel de la arquitectura, ya que se basan en modelos analíticos que calculan una
estimación del número de ciclos de ejecución, grado de reutilización de datos y
eficiencia energética mediante un conjunto de fórmulas sencillas. Este tipo de
herramientas funcionan con precisión cuando se trata de arquitecturas rígidas, ya
que son lo suficientemente simples como para ser representadas por un conjunto
de fórmulas. Sin embargo, cuando la complejidad del acelerador crece y/o el
cómputo no sigue patrones regulares, estos modelos arquitecturales no logran
capturar fielmente el comportamiento exacto de la arquitectura. Esto hace, como
demostramos en esta tesis, que la precisión que ofrecen estas herramientas esté
muy lejos de ser óptima, ya que no son capaces de capturar detalles microar-
quitecturales que tienen su efecto durante las ejecuciones reales. Además, estos
modelos analíticos no ejecutan realmente un modelo de DNN, por lo que no
pueden utilizar los datos de entrada (por ejemplo, el número y posición de los
valores cero) para evaluar optimizaciones basadas en datos.

Es necesario, por tanto, al igual que ha ocurrido anteriormente con la eva-
luación de diseños de CPUs [14] y GPUs [13], [115], el uso de simuladores
arquitecturales con precisión a nivel de ciclo que permitan realizar cambios en el
diseño de forma rápida y sencilla, y poder comprobar el efecto de dichos cambios
de forma precisa.

Para suplir esa demanda, como primera contribución de esta tesis diseña-
mos, presentamos y evaluamos el simulador STONNE (Simulation TOol of Neural
Network Engines), un simulador microarquitectural a nivel de ciclo para acele-
radores de inferencia de DNN liberado como código abierto bajo los términos
de la licencia MIT. Con el objetivo de permitir evaluaciones de modelos de
DNNs completos, STONNE está conectado con el conocido framework para
DNNs PyTorch [5] (además de con Caffe [2]). De esta forma, STONNE puede
ejecutar completamente cualquier modelo DNN denso y sparse soportado por el
framework de DNNs que utiliza como front-end. El simulador ha sido escrito
completamente en C++, siguiendo los conocidos principios de programación
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GRASP y SOLID del diseño orientado a objetos [79]. Esto ha simplificado su
desarrollo y facilita la implementación de cualquier tipo de módulo microarqui-
tectural de acelerador de inferencia de DNN, mapeos de configuración flexibles
o la incorporación de distintos flujos de datos.

STONNE está constituido por 3 módulos principales: una plataforma de
simulación que constituye el bloque principal, ya que incluye la implementación
de distintos bloques hardware con el objetivo de simular de forma precisa
diferentes aceleradores tanto rígidos como flexibles. Un módulo de entrada que
alimenta la plataforma de simulación utilizando cualquiera de los conocidos
frameworks de DNNs ya disponibles (e.g. PyTorch [5]). Finalmente, la plataforma
también cuenta con un módulo de salida que se utiliza para informar sobre
las estadísticas de la simulación, tales como el rendimiento, la utilización de las
unidades de cómputo, y el recuento de la actividad de los diferentes componentes
hardware, tales como cables, colas FIFO o el uso de la SRAM (es decir, el número
de accesos). Además, utilizando estas estadísticas de actividad, este módulo de
salida también informa de la cantidad de energía consumida y del área en el chip
requerida por la arquitectura simulada. Para ello, STONNE emplea un modelo
de área y energía basado en una tabla similar al de Accelergy [119], calculando la
energía total utilizando las estadísticas de actividad a nivel de ciclo para cada
módulo y una tabla particular con los diferentes costes de energía y área por
operación en cada módulo. Obviamente, estas estadísticas dependen, por ejemplo,
del formato particular de datos utilizado para representar los parámetros del
modelo DNN (por ejemplo, fp16 o int8). Así, STONNE trae consigo diferentes
tablas con costes de energía que pueden ser utilizadas por el usuario.

En la plataforma de simulación de STONNE todos los componentes en el
chip están interconectados utilizando tres redes de interconexión: 1) Red de
distribución (Distribution Network o DN); 2) Red de multiplicación (Multiplier
Network o MN); y 3) Red de reducción (Reduction Network o RN). Esta aproxi-
mación está inspirada en la taxonomía de los flujos de comunicación en el chip
de los aceleradores de DNNs [70]. Estas redes pueden ser configuradas para
soportar cualquier topología con el objetivo de modelar diversas arquiteturas
de acelerador, como la TPU [61], Eyeriss-v2 [24], ShiDianNao [28], SCNN [98],
MAERI [70] o SIGMA [31], entre otros.

Para ello, las tres redes pueden ser organizadas para modelar cualquier
acelerador mediante un flujo de datos muy sencillo. En primer lugar, para
calcular todas las operaciones MAC de una determinada capa de la DNN, la
DN distribuye los pesos, activaciones y sumas parciales requeridas desde una
memoria SRAM (Global Buffer o GB) hacia la MN. Para permitir todos los tipos
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de flujos de datos, la DN debe proporcionar soporte para la entrega de datos
unicast, multicast y broadcast. Esto se consigue a través de diferentes posibles
configuraciones de los conmutadores de distribución (Distribution Switch o DS)
que integran la DN. Tras la distribución, los multiplicadores en la MN realizan
las operaciones de multiplicación, generando un conjunto de sumas parciales a
acumular. Finalmente, la red RN está equipada con sumadores que implementan
las acumulaciones requeridas.

STONNE soporta distintas DNs como Tree-Network, Benes-Network o Point-to-
point network. De forma similar, las MNs incluidas de forma nativa son la Linear
Multiplier Network y la Disabled Multiplier Network. Finalmente, STONNE soporta
distintas RNs para poder realizar acumulaciones de sumas parciales flexibles,
lo que da soporte a distintos aceleradores. STONNE soporta una red de tipo
árbol de reducción (Reduction Tree o RT) que denominamos árbol de reducción
aumentado (ART+DIST), una red que combina ART y un buffer de Acumulación
(ART+ACC) y una red de adelantamiento sumador (Forwarding Adder Network
o FAN). Con el fin de soportar todos los tipos de aceleradores, en STONNE
también implementamos una red de reducción lineal (Linear Reduction Network
o LRN), que se utiliza en aceleradores rígidos como la TPU [61]. Esta red es
uno de los componentes clave a la hora de desarrollar un acelerador, y nuestras
contribuciones presentadas en los capítulos 3 y 4 tienen como clave el diseño de
una nueva RN.

Como demostramos en el capítulo 2 de esta tesis, nuestro simulador STONNE
obtiene un error de precisión con respecto al hardware real de tan solo entre el
0,14 % y el 3,10 % (1,53 % de media), demostrando que STONNE imita fielmente
las características de las versiones hardware.

Para demostrar la usabilidad y utilidad del simulador, hemos llevado a cabo
el desarrollo de tres casos de estudio. En el primer caso de estudio, hemos
realizado una validación de tiempos entre los aceleradores de DNN nativamente
modelados: MAERI [70], SIGMA [31] y la TPU [61]. En el segundo caso de
estudio, demostramos cómo es posible modificar la plataforma de simulación de
STONNE para añadir nuevos aceleradores. Para ello, modelamos el acelerador
SnaPEA [33] mostrando la utilidad de STONNE para modelar aceleradores cuyas
optimizaciones son dependientes de los datos de entrada. Finalmente, en el tercer
caso de estudio mostramos cómo STONNE es útil para desarrollar nuevas técnicas
a nivel de compilación. En concreto, en este caso de estudio mostramos que en
aceleradores con soporte para sparsity como SIGMA [31] es primordial tener en
cuenta el número de ceros que se encuentran en los filtros de una DNN y el orden
en el que se ejecutan estos filtros. Ejecutar una DNN comprimida con formato

9



Resumen

sparse sin tener en cuenta este hecho implica que la ejecución paralela de varios
filtros no sea balanceada. Así, aplicar una técnica de ordenamiento de los filtros
antes de la ejecución de la DNN puede tener efectos positivos significativos en el
rendimiento de su procesamiento. En este caso de estudio hemos comparado tres
técnicas de ordenamiento: Largest Filter First (LFF), el cual consiste en ejecutar los
filtros más grandes primero, Random (RDM) y sin ordenamiento (non-scheduling
o NS). Entre todos, hemos encontrado que la técnica de ordenamiento LFF es la
que mejor funciona, obteniendo mejoras de rendimiento de hasta 13 % en algunas
capas.

La segunda contribución de esta tesis se centra en la RN de aceleradores
flexibles como MAERI o SIGMA. En concreto, estos diseños proponen como
clave principal una RN específica (ART y FAN, respectivamente) para lograr
la reducción flexible de distintos grupos de sumas parciales generadas por
la MN. Estos grupos de sumas parciales pueden variar en tamaño debido al
sparsity de la capa de DNN o incluso a sus características internas como su
tamaño. En caso de que el grupo de sumas parciales pueda ser mapeado por
completo en los multiplicadores, su acumulación es muy sencilla: basta con
acumular todos los valores de forma espacial, utilizando los acumuladores
del árbol de reducción. El problema que no es abordado en estas propuestas
anteriores es lo que ocurre cuando el tamaño del grupo de sumas parciales
supera al número de multiplicadores mapeados. En este caso, sumar todos los
valores de forma espacial no es suficiente, y hay que recurrir a una suma espacio-
temporal. Es decir, dividir el grupo de sumas parciales en distintas iteraciones,
acumular espacialmente cada iteración y luego acumular de forma temporal (i.e.,
en distintos instantes de tiempo) el resultado de cada iteración. Este problema
no es abordado de forma correcta en las propuestas de MAERI y SIGMA. Para
resolverlo, una opción consiste en utilizar simplemente la RN nativa como ART
y reenviar la suma parcial obtenida espacialmente en una iteración a través
del Global Buffer hacia un multiplicador, para ser calculadas en la siguiente
iteración. Este mecanismo denominado como S-Tree tiene dos inconvenientes
principales: el primero es que impide mapeos óptimos, ya que al mapear un
grupo de sumas parciales hay que dejar espacio para un multiplicador extra
que es utilizado para reenviar la suma parcial de la iteración anterior que llega
del Global Buffer. El segundo inconveniente y principal es que se genera una
dependencia temporal entre dos iteraciones consecutivas, impidiendo que las
iteraciones puedan ser ejecutadas de forma paralela en pipeline. Esto degrada
significativamente el rendimiento. La segunda forma de resolver el problema
evitando esta degradación de rendimiento es utilizar un esquema ST-Tree que
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consiste en colocar un acumulador extra en cada nodo del árbol de reducción,
permitiendo que la acumulación de distintas iteraciones pueda ser computada en
paralelo junto con la acumulación espacial de las mismas. Esto se conoce como
un buffer de acumulación y se utiliza en arquitecturas como la TPU de Google. El
inconveniente de este esquema es que para lograr la flexibilidad que se propone
en estas arquitecturas se necesita un acumulador en cada nodo del árbol de
reducción, lo cual implica duplicar el número de unidades de suma, duplicando
el área y el consumo energético del módulo de RN, el cual constituye hasta un
25 % y 38 % en área y energía, respectivamente, en aceleradores como MAERI y
SIGMA. Esta sobrecarga es inasumible cuando el número de multiplicadores se
incrementa en la arquitectura.

En esta tesis hemos diseñado una nueva propuesta de RN para solucionar este
problema en arquitecturas flexibles. Nuestra propuesta se denomina STIFT (Spatio-
Temporal Integrated Folding Tree) y consiste en utilizar un árbol de reducción similar
a ART, pero añadiendo algunos enlaces extra entre los nodos, que aseguren que
para cada nodo del árbol, siempre habrá un nodo conectado libre para realizar
la acumulación. Esto permite aprovechar las unidades de suma ya existentes en
el árbol y la única sobrecarga se debe a algunos enlaces extras y un nodo padre
adicional en el árbol de reducción.

La evaluación de STIFT la hemos realizado desde tres ángulos diferentes:
1) una implementación RTL de S-Tree, ST-Tree y STIFT en Bluespec System
Verilog [1] con el objetivo de comparar los resultados a nivel de área y energía.
Para una evaluación exhaustiva hemos comparado los diseños para los tamaños
de 64, 128, 256, 512 y 1024 multiplicadores. Además, comparamos los diseños
para 3 tipos de datos distintos (INT16, FP16 y FP32).

Para evaluar nuestra propuesta a nivel de rendimiento, hemos implementado
S-Tree, ST-Tree y STIFT en nuestro simulador STONNE, utilizando como sistema
base la RN ART y utilizando 256 multiplicadores 108-KiB de SRAM, 128 elemen-
tos/ciclo de ancho de banda de SRAM, y dos módulos de DRAM HBM 2.0, de
512 MiB cada uno y con un ancho de banda de 256 GB/s. Con esta configuración,
hemos utilizado un estudio sintético consistente en mapear distintos tamaños de
grupos de sumas parciales, así como la ejecución de 7 modelos de DNN reales
completos extraídos de la suite de benchmarks MLPerf [107].

Los resultados obtenidos revelan que ST-Tree y STIFT obtienen el mismo
rendimiento para todas las ejecuciones sintéticas y DNNs ya que ambas son
capaces de ejecutar de forma paralela las disintas iteraciones de sumas parciales.
Ambas, obtienen una mejora de rendimiento de hasta 8× para DNNs como
VGG-16. Sin embargo, STIFT obtiene beneficios en términos de área y energía de
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hasta 32 % y 31 %, con respecto ST-Tree ya que evita la duplicidad de las unidades
de suma debido a su topología más inteligente. En otras palabras, STIFT logra
una mejora de rendimiento/energía con respecto a S-Tree de 5,13×, mientras que
ST-Tree solo logra un 3,67×.

Esta propuesta abordada en esta tesis supone un punto de inflexión en el
diseño de aceleradores flexibles para DNNs ya que permite por primera vez
ejecutar de forma eficiente grandes DNNs.

Estas propuestas anteriores como MAERI, SIGMA, nuestra propuesta STIFT
o incluso otros aceleradores con soporte para ejecución de operaciones Sparse-
Sparse Matrix Multiplication o SpMSpM (i.e., capas de DNNs cuyas matrices de
activaciones y de pesos están comprimidas para eliminar los valores cero) [97,
98, 114, 122, 124], etc., tienen un inconveniente principal: están diseñados para
ejecutar capas de DNNs utilizando un único dataflow. Por ejemplo, aceleradores como
SIGMA [31] o ExTensor [50] ejecutan la operación SpMSpM utilizando un dataflow
Inner Product (IP), requiriendo de ciertas unidades especiales para buscar los
índices de ambas matrices que intersectan. Otros aceleradores como SpArch [124]
o Outer-Space [97] están diseñados para ejecutar las capas SpMSpM utilizando
un dataflow Outer Product (OP). De forma diferente, estos diseños requieren de
estructuras tipo árbol para ejecutar una operación de ordenación (i.e., merge) entre
distintos grupos de sumas parciales generados previamente. El inconveniente de
este enfoque es que se generan una gran cantidad de sumas parciales que tienen
que ser almacenadas en una memoria temporal. Finalmente, otros aceleradores
como GAMMA [122] o MatRaptor [114] utilizan el dataflow Gustavson’s (Gust),
que de forma similar a OP generan sumas parciales y luego las ordenan, pero
en este caso la generación y ordenación se hace fila a fila, reduciendo el número
de sumas parciales temporales necesarias para ser almacenadas. Cada uno de
estos enfoques tiene sus propias ventajas e inconvenientes y el rendimiento
obtenido al ejecutar una determinada capa en un determinado dataflow depende
especialmente del tamaño, y del patrón de sparsity que presente cada capa.
Así, no existe un dataflow que se adapte bien para todos los tipos de capa y
por tanto, todos los diseños mencionados anteriormente no son óptimos para
ejecutar una DNN con cientos de capas. Para solucionar este problema, la tercera
contribución de esta tesis es el diseño, presentación y evaluación de Flexagon, el
primer acelerador específico para DNNs con soporte para la operación SpMSpM
capaz de ejecutar los tres dataflows y por tanto capaz de adaptarse a cada capa a
ejecutar. Flexagon está diseñado utilizando la estructura descrita anteriormente:
una DN para distribuir los datos con soporte para los tres dataflows, una MN
capaz de ejecutar operaciones de multiplicación y una nueva RN denominada
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Merging-Reduction Network (MRN) que sirve para ejecutar ambas operaciones
de acumulación y de ordenación, y por tanto, válida para adaptarse a los tres
dataflows descritos anteriormente. Adicionalmente, Flexagon trae consigo un
nuevo diseño de jerarquía de memoria que es capaz de adaptarse a los tres
dataflows. Para ello, el primer nivel de la jerarquía se divide en 3 bloques de SRAM.
Un primer bloque diseñado en forma de FIFO y que se utiliza para almacenar
los datos que se mantienen más tiempo on-chip. Un segundo bloque de SRAM
organizado como una caché tradicional pero utilizando tamaños de etiquetas
reducidos y cuyo objetivo es capturar los patrones de acceso de memoria de los 3
dataflows, y un tercer bloque de memoria SRAM totalmente rediseñado en esta
tesis denominado PSRAM. Esta estructura está especialmente diseñada para el
almacenamiento temporal de las sumas parciales generadas en los dataflows OP y
Gust, permitiendo un acceso eficiente en términos de energía, área y rendimiento.
Junto con estos tres bloques de SRAM, hemos diseñado un único controlador de
memoria unificado capaz de adaptarse y de generar las direcciones de memoria
adecuadas para los 3 dataflows.

Para evaluar Flexagon hemos desarrollado un simulador a nivel de ciclo
implementado en nuestro framework de simulación STONNE. En concreto,
hemos utilizado una versión del simulador conectado al simulador SST [60]
y que nos sirve para gestionar las peticiones de memoria que se generan de
manera precisa. El simulador SST trae consigo un simulador de estructuras
DRAM que nos permite conectar a nuestra jerarquía de memoria. Además,
hemos implementado los aceleradores SIGMA (i.e., dataflow IP), SpArch (i.e.,
dataflow OP) y GAMMA (i.e., dataflow Gust) en el framework de simulación.
Con el objetivo de comparar los resultados con Flexagon hemos configurado
los 4 aceleradores con 64 multiplicadores, 16 elementos/ciclo de bandwidth, un
tamaño para la estructura de memoria FIFO de 256 bytes, y un tamaño para la
estructura caché de 1 MiB. Además, modelamos un tamaño de DRAM de 16 GiB
y una latencia de 100 ns incorporando la tecnología HBM 2.0. Con estas cuatro
configuraciones acelerador hemos realizado la ejecución de todas las capas para
8 modelos de DNNs extraídos de la suite de benchmarks MLPerf [107].

Los resultados obtenidos demuestran por primera vez que, tal y como prede-
cíamos, no existe ningún dataflow que consiga el mejor rendimiento para todas
las capas. Algunas DNNs como Alexnet, VGG-16, Resnets-50 y SSD-Resnets
consiguen un 5,26× y 1,49× mejor rendimiento con una arquitectura tipo SpArch
que con una arquitectura tipo SIGMA y GAMMA, respectivamente. Sin embargo,
otras DNNs como Squeezenet, SSD-Mobilenets, DistilBert o MobileBert consiguen
mejor rendimiento con GAMMA (mejora media de 3,28× y 2,41× con respecto

13



Resumen

a SIGMA y SpArch, respectivamente). En consecuencia a este primer hecho,
Flexagon supera a todas las propuestas anteriores, ya que es capaz de adaptarse
en tiempo de ejecución a cada DNN y a cada capa de DNN. Cuantitativamente,
los resultados obtenidos para Flexagon reflejan que nuestra propuesta obtiene
beneficios de rendimiento medios de 4,59×, 1,71× y 1,35× respecto a SIGMA,
SpArch y GAMMA, respectivamente.

Además, en términos de área, Flexagon únicamente introduce un área adicio-
nal de 25 %, 3 % y 14 % con respecto a SIGMA, SpArch y GAMMA, respectivamen-
te. De forma similar, el consumo con Flexagon incrementa un 25 % con respecto a
SIGMA, un 9 % con respecto a SpArch y un 21 % con respecto a GAMMA. A pesar
de este área y consumo extra introducidos, Flexagon todavía consigue beneficios
en términos de rendimiento/área. Específicamente, los resultados revelan que
Flexagon obtiene un 18 %, 67 % y 265 % mejor balance rendimiento/area con
respecto a GAMMA, SpArch y SIGMA, respectivamente. Esto demuestra que
Flexagon puede constituir un punto de inflexion en el futuro del diseño de los
aceleradores específicos para DNNs con soporte para ejecución sparse.
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Abstract

The design of specialized architectures for accelerating the inference procedure
of Deep Neural Networks (DNNs) is a booming area of research nowadays.
While first-generation rigid accelerator proposals used simple fixed dataflows
tailored for dense DNNs, more recent architectures have argued for flexibility
to efficiently support a wide variety of layer types, dimensions, and sparsity.
As the complexity of these accelerators grows, the analytical models currently
being used for design-space exploration are unable to capture execution-time
subtleties, leading to inexact results in many cases as we demonstrate. This
opens up a need for cycle-level simulation tools to allow for fast and accurate
design-space exploration of DNN accelerators, and rapid quantification of the
efficacy of architectural enhancements during the early stages of a design. To
this end, the first contribution of this thesis is STONNE (Simulation TOol of Neural
Network Engines), a cycle-level microarchitectural simulation framework that can
plug into any high-level DNN framework as an accelerator device and perform
full-model evaluation (i.e. we are able to simulate real, complete, unmodified
DNN models) of state-of-the-art rigid and flexible DNN accelerators, both with
and without sparsity support. As a proof of concept, we use STONNE in three
use cases: i) a direct comparison of three dominant inference accelerators using
real DNN models; ii) back-end extensions and iii) front-end extensions of the
simulator to showcase the capability of STONNE to rapidly and precisely evaluate
data-dependent optimizations. Once, we have a validated simulator to perform
our evaluations, the second contribution of this thesis focuses the attention on
the flexible architectures for DNNs. DNN accelerators use three separate NoCs
within the accelerator, namely distribution, multiplier and reduction networks (or
DN, MN and RN, respectively) between the global buffer(s) and compute units
(multipliers/adders). These NoCs enable data delivery, and more importantly, on-
chip reuse of operands and outputs to minimize the expensive off-chip memory
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Abstract

accesses. Among them, the RN, used to generate and reduce the partial sums
produced during DNN processing, is what implies the largest fraction of chip
area (25% of the total chip area in some cases) and power dissipation (38% of
the total chip power budget), thus representing a first-order driver of the energy
efficiency of the accelerator.

RNs can be orchestrated to exploit a Temporal, Spatial or Spatio-Temporal
reduction dataflow. Among these, the latter is the one that has shown superior
performance. However, as we demonstrate, a state-of-the-art implementation of
the Spatio-Temporal reduction dataflow, based on the addition of Accumulators
(Ac) to the RN (i.e. RN+Ac strategy), can result into significant area and energy
expenses. To cope with this important issue, we propose STIFT (that stands
for Spatio-Temporal Integrated Folding Tree) that implements the Spatio-Temporal
reduction dataflow entirely on the RN hardware substrate (i.e. without the need
of the extra accumulators). STIFT results into significant area and power savings
regarding the more complex RN+Ac strategy, at the same time its performance
advantage is preserved.

The third contribution of this thesis increases the flexibility current sparse
accelerators by adding support for more dataflows.

Existing Sparse-Sparse Matrix Multiplication (SpMSpM) accelerators are tai-
lored to a particular SpMSpM dataflow (i.e., Inner Product, Outer Product or
Gustavson’s), that determines their overall efficiency. We demonstrate that this
static decision inherently results in a suboptimal dynamic solution. This is be-
cause different SpMSpM kernels show varying features (i.e., dimensions, sparsity
pattern, sparsity degree), which makes each dataflow better suited to different
data sets.

Motivated by this observation, we propose Flexagon, the first SpMSpM re-
configurable accelerator that is capable of performing SpMSpM computation by
using the particular dataflow that best matches each case. Flexagon accelerator is
based on a novel Merger-Reduction Network (MRN) that unifies the concept of
reducing and merging in the same substrate, increasing efficiency. Additionally,
Flexagon also includes a 3-tier memory hierarchy, specifically tailored to the dif-
ferent access characteristics of the input and output compressed matrices. Using
detailed cycle-level simulation of contemporary DNN models from a variety of
application domains, we show that Flexagon achieves average performance bene-
fits of 4.59×, 1.71×, and 1.35× with respect to the state-of-the-art SIGMA-like,
SpArch-like and GAMMA-like accelerators (265% , 67% and 18%, respectively, in
terms of average performance/area efficiency).
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Chapter 1
Introduction

Computing power has experienced tremendous performance improvements in
the last four decades mainly due to significant advances in technology. In
1974 Robert Dennard observed that power density was constant for a given
area of silicon even if the number of transistors was increased because of the
smaller dimensions of each transistor. This way, transistors could go faster
but use less power. In addition, Moore’s Law predicted by Gordon Moore in
1965 indicated that the number of transistors per chip would double every two
years. Both observations combined made possible that the performance per watt
provided by computers doubled every 18 months. Unfortunately, in 2004 Dennard
scaling ended because current and voltage were not able to keep dropping and
still maintain the dependability of integrated circuits. This slowed down the
computing power growth to about once every 2.6 years and architects started to
build multi-core systems to overcome the technology limitations. Nowadays, the
scenario is way more challenging. Moore’s Law is coming to an end and computer
architects are moving from high-performance, general-purpose computers, to
domain-specific hardware as the only path left to supply the high computing
requirements demanded by the new era of computing, which is characterized
by data processing and machine learning algorithms. The envisioned scenario
is so exciting and challenging that has been defined as the new golden age for
computer architecture [51].

39
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1.1 Towards General-Purpose Processors

The Cambridge Dictionary defines hardware as the physical and electronic parts of a
computer, rather than the instructions it follows. Given this, non-expert people tend
to think of hardware as an independent part of the system that can be touched,
while software is a completely separate part that runs on the hardware. Even
though this may be considered as true, as explained below, the hardware-software
co-design is much more closer today than what non-experts tend to believe.

Until the beginning of the 21st century, the number of computer applications
demanded by end users was exponentially growing ranging from office automa-
tion tools, client browsers, server services, or video games to high performance
scientific applications. There were some exceptions (e.g., embedded systems de-
sign, the design of some specific supercomputers to accelerate HPC workloads, or
specialized GPUs to accelerate graphic workloads), but, in general, given the wide
diversity of applications, computer architects used to design general-purpose
processors with ever-complex microarchitectural support in a best-effort attempt
to run all of them, i.e., developing specific processors specifically tailored to
accelerate some particular applications was not still profitable enough targeting
the general end user.

To develop general-purpose processors, during the semiconductor revolution
in the 1980s, computer architects took advantage of Moore’s Law [38] to transform
the increased number of transistors per chip into higher performance. To do so,
practitioners focused the attention on increasing the amount of work performed
in each cycle allowing more capability to execute multiple instructions from the
same program simultaneously, i.e., the extraction of Instruction Level Parallelism
or ILP. Exploiting techniques such as out-of-order execution [45], deeper instruc-
tion pipelines [39], highly speculative execution [95], or larger on-chip memory
hierarchies [90], among others, became the main source of improvement. This
constituted the best way to design processors able to efficiently execute a wide
variety of high performance computing applications.

Despite these tremendous advances, since year 2000 the trend towards design-
ing very aggresive and complex superscalars processors came to a stop. RAW
(read-after-write) data hazards between consecutive instructions, control hazards
due to branch instructions, as well as structural hazards which serialize the
execution of instructions that try to use the same hardware resource at the same
time, made impossible to increase performance without a considerable effort [59].
As a result, every new performance improvement has been empirically close to
the square root of the number of required transistors [59]. Besides, increasing
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the clock frequency in order to obtain a faster circuitry involves important heat
problems and high energy consumption. Moreover, the efforts to maintain man-
ageable parameters for the thermal-power issues such as increased threshold
voltage to control leakage, or limited supply-voltage scaling, decrease the per-
formance benefits of transistor scaling [58]. All above problems were identified
as the Power, Memory, and ILP Walls [62] and led to the second generation of
processors in both industry and academia.

The strategy followed by this second generation may be simply summarized
as divide and conquer. The idea was to take advantage of the Moore’s law to
introduce several simpler processors into the same chip. Systems of this type are
commonly referred to chip multiprocessors (CMPs) and their main goal is to ac-
celerate applications by exploiting Thread-Level Parallelism. CMPs have brought
important advantages over very complex, deep-pipelined general-purpose proces-
sors. In particular, they provide higher aggregate computational power, multiple
clock domains and better power efficiency. They are even able to provide simpler
designs which leads to significant reductions in the cost of design and verification
of the chips.

Due to its tremendous benefits, the current trend towards gaining better
performance has been to increase more and more the number of processor cores
per chip. As an example, the 12th-generation Intel Core i7 (i.e., i7-12800HX) and
the Intel Core i9 (i.e., i9-12950HX) features 16 cores and can execute up to 24
threads in parallel when the hyper-threading technology is enabled [57]. Even
lower-power processors like the 12th-generation Intel Core i3 (i.e., i3-122OP)
implements 10 physical cores and can run up to 16 threads.

1.2 Towards Specialized Compute Processors

Increasing more and more the number of processor cores seemed to be an endless
source of improvement during the first decade of the 2000’s. However, from 2010,
this trend started to face some challenges:

• Extracting TLP is way more challenging than extracting ILP. Whereas the
compiler and hardware can implicitly extract ILP without the programmer’s
attention, the extraction of TLP is explicit for the programmer. The creation
of parallel programming APIs such as OpenMP [94] and MPI [36] has
to some extent simplified this task, but sometimes it is still required to
restructure the program, becoming a major burden for programmers.
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Figure 1.1: Growth in processor performance over the last 40 years. Figure
extracted from [59].

• Amdahl’s Law prescribes practical limits to the number of useful cores per
chip. For example, if 40% of the program is serial and cannot be parallelized
at all, then the maximum of obtained parallelism is 60%, regardless of the
number of cores that the chip implements.

• Finally, and what is even more important, the end of Moore’s Law and
Dennard’s scaling. As described above, TLP is exploited by putting more
and more cores in the same area budget. This has been achieved so far by
doubling the number of transistors in the same area with almost constant
power density, and therefore, the performance, every 2 years, taking advan-
tage of smaller and smaller technology nodes. However, as described before,
this is coming to an end, which can be observed in Figure 1.1, where it is
shown the growth in processor performance over roughly the last 40 years.
As we can see, from 2011 and 2015, the annual performance improvement
was less than 12% which means doubling performance every 8 years. Since
2015, performance improvement has been just 3.5% per year, or doubling
every 20 years.
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As observed in Figure 1.1, the era of the CMPs has come to an end, and it is
no longer possible to produce better and better general-purpose processors.

The only path left towards supplying more an more compute power is the
architectural design strategy coined as specialization. This strategy has long been
extremely successful for efficiently developing specific computing platforms
aimed at efficiently running specific applications workloads such as scientific or
multimedia workloads. To name a few examples of these specialized designs,
already, in the early days of computing, around the last 60’s, the well-known
vector supercomputers came into light such as STAR-100 [112], TI-ASC [26] or
Illiac IV [112], which were machines equipped with a large number of functional
units specially built to handle large scientific and engineering calculations. From
1996, specialization is even present in general-purpose processors with the in-
troduction of the MMX TM Technology [99] extension to the Intel Architecture,
which was later replaced by SSE [105] and recently by AVX [10]. These extensions
were specialized instructions within Intel Architectures specifically designed to
accelerate multimedia and communications applications. Traditionally, Graphics
Processing Units (i.e., GPUs) were designed as an example of specialization to ac-
celerate graphics pipelines such as OpenGL-based or Vulkan-based video games.
Recently, and mostly since the foundation of CUDA [92] these architectures have
evolved towards the well-known General-Purpose GPUs (i.e., GPGPUs) aiming
to accelerate other domains such as scientific or engineering applications.

In the last decade, we are witnessing a new era of computing built upon
Big Data and Artificial Intelligence algorithms, being the latter dominated by
Machine Learning techniques such as Deep Learning (DL) based on Deep Neural
Networks (DNNs) as its major flagship. Given the myriad of application domains
that currently benefit from DNN techniques, and the hundreds of thousands of
end users interested in these applications alike, it is the first time when massive
development of specialized computing platforms are promptly starting to pay
off so as to being clearly profitable to industry. That is why new Client-Server
infrastructures based on Edge-, Fog- and Cloud-Computing [61] are continuously
evolving for the best user experience when running these new applications, most
of them executed over battery-operated and heavily-constrained smartphones.

To provide the highest energy-efficiency and performance to the execution
of these DNN-based workloads, an in-depth understanding of their underlying
algorithms is strictly necessary for a successful hardware-software co-design of the
specialized computing platforms. This way, for instance, it can be possible to
extract the common compute and memory access patterns covered by a range
of deep learning algorithms and design specific architectures for them. This

43



1. Introduction
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Figure 1.3: Rule-based system.

removes ineffectual hardware and brings to the chip the essential components
that meet both performance and power consumption goals. Therefore, before
describing how these specialized compute architectures are constructed, it is
needed to review how the software side works.

1.3 Machine Learning

Artificial Intelligence (AI) (see Figure 1.2) is a broad concept that encompasses
algorithms and ideas invented to solve very sophisticated problems that go
beyond of what computers were meant when they were born.

Prior to machine learning, AI systems used to solve these complex tasks by
making use of user-defined rules. In this programming paradigm, described in
Figure 1.3, programmers fed a system with data and rules that specified how to
operate with such data. The goal of this AI system is to report the right answer
for a particular question regarding the input data following pre-defined rules.

Machine learning is a field within AI that revolutionized overnight the way
computers learn. With this strategy, the rules are no longer fed by the user and
instead they are generated (i.e., learnt) by the machine learning system on its
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own. To do so, the system operates in two clearly distinguished procedures
which are shown in Figure 1.4 and described as follows:

• Training: During this phase, the ML system learns the rules to operate
within the next phase. With this aim, the system is fed with input data
examples and input correct answers –for simplicity, we assume a supervised
learning process. For every example in the dataset, the system predicts an
answer based on its internal rules. At the beginning of the training process,
these rules will be incorrect and will probably lead to wrong answers. To
solve this issue, the system calculates the distance (i.e., loss) between the
correct and the predicted answer using a loss function and uses this metric
to learn how to adjust its rules in order to be able to predict the correct
answer next time.

• Inference: After enough number of examples, the system learns how to
predict the correct answer for every single example and if the dataset is
large enough, it will be able to generalize to new examples. At this point,
the program is ready to operate in production to perform the task for which
it was trained for.

1.3.1 Deep Learning

Deep Learning (DL) is a specific subfield of machine learning that has become
extremely popular in the last decade due to the high accuracy that is able to
offer, overcoming humans in many challenging tasks. The term deep comes from
the ability of DL to hierarchically divide the learning representation in a high
number of successive layers stacked on top of each other. Thus, the depth of a DL
model indicates that big number of layers that constitute the model.

In DL, these layered representations are loosely brain-inspired algorithms
usually called Deep Neural Networks (i.e., DNNs). The term Neural Network
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Figure 1.5: Biological neuron. Figure extracted from [21].

comes from the biological neural networks as these models were an attempt to
imitate the most powerful machine-learning system ever created: the human
brain. In the biological model, a network of specialized cells called neurons is
in charge of the learning process (see Figure 1.5). Each of these units comprises
three main parts: the body which contains the nucleus, the dendrites which
act as input channels to receive information from other neurons, and the axon,
responsible for output signals to other neurons. A connection between two
neurons is called a synapse and this plays the major role in the learning process
of the network. Although the exact behaviour of a neuron is still unknown, it is
believed that the natural working process consists of receiving a set of electrical
signals called input activations. Then, these signals are manipulated through
the synapses and once the signals are within the nucleus, the neuron performs
certain biological computation and triggers an output activation signal if the
voltage of the manipulated input signals are above a certain threshold. The way
the synapses manipulate these input signals is what produces the learning of the
network.

Inspired by this natural process, in 1958 Frank Rosenblatt developed the
perceptron (see Figure 1.6), a mathematical concept that reproduces the behaviour
of a neuron [109]. To do so, a perceptron is composed of two terms: a weighted
sum of inputs, and a non-linear activation function. The relation between the
biological and the artificial computation is obvious: each input corresponds to
an activation input in the biological model and the weights correspond with the
synapses. As it can be appreciated, the model can be seen as a generalized linear
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Figure 1.6: Overview of the Perceptron. Figure extracted from [117].

classifier, being:

F(x, w) = ∑
i

xi ∗ wi

a linear combination of inputs and f a mapping function that determines the
category in which each combination of inputs falls. Based on the value of the
weights, the perceptron can learn how to classify inputs for different types
of tasks. This is the way the model learns and is the principle of the more
sophisticated neural networks: the ability to model complex behaviour is not due
to sophisticated neurons, but to aggregate behaviour of many simple parts.

Since this invention was developed, a self-reinforcing cycle (see Figure 1.7)
formed by three key factors have fueled the field of deep learning. As larger
datasets are available due to the massive usage of Internet and applications, new
techniques and algorithms are invented. These algorithms usually involve larger
and deeper models with larger number of parameters (i.e., weights) and compu-
tation which exacerbates the need for more sophisticated hardware processing
devices to keep up with the time, energy and memory requirements constrained
by the applications that utilize these models.

1.3.2 Deep Neural Networks

As previously described, DNNs take the aforementioned biological inspiration to
build complex models based on weighted sums of input values.
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Figure 1.8: High level overview of a DNN.

Figure 1.8 depicts a high level overview of a DNN. As we can see, a model is
broken down into consecutive layers. The aim of each layer is to extract features
from the input layer and propagate those features to the output layer. According
to the location of each layer in the sequence, we can differentiate between three
types of layer:

1. Input layer: Represents the input of the DNN model and it is an array of
data whose meaning depends on the domain the network is targeted at.
For instance, for the image classification domain, this array of data may
represent the pixels of an image, or for the audio recognition domain the
array of data may represent the encoded audio waves.

2. Hidden layers: These layers connect either the input layer or previous
hidden layers, and transform the input into relevant features that are used
by subsequent layers.

3. Output layer: Represents the output vector and contains the result of
the DNN model. Again, the meaning of this output vector depends on
the domain. For the image classification domain, this vector may be a
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Figure 1.9: Example of a Fully-Connected (FC) layer.

probability vector where each position indicates the probability that the
image belongs to a certain class.

Besides, according to the computation involved, we can also distinguish
between different types of DNN and layers. The most common DNN layers that
can be found in nowadays’ DNN models are briefly reviewed next.

1.3.2.1 Fully-Connected Layer

A Fully-Connected (FC) layer extends the concept of the perceptron explained in
Section 1.3.1, organizing many parallel neurons into a layer. Figure 1.9 depicts
an example of a FC layer composed of K input neurons and N output neurons.
Each neuron is represented as a node and each edge represents the weight that
connects two nodes between the inputs and outputs. A FC layer connects every
node in a layer to all the nodes in the previous layer. Given this, the computation
performed within a particular node Oj is the weighted sum of the nodes from
the previous layer and can be generalized as:

Oj =
K

∑
i=0

xi ∗ wj,i
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Figure 1.10: Matrix Multiplication operation mapping the FC layer presented in
Figure 1.9.

CPUs, GPUs and accelerators execute this layer by mapping this abstraction
into a matrix multiplication (GEMM) operation AMK × BKN = CMN where matrix
A corresponds with the inputs, matrix B maps the weights, and matrix C represents
the outputs. Figure 1.10 shows the computation involved in Figure 1.9 mapped
into a GEMM operation. The M dimension is often utilized to map the number
of input samples that are executed (i.e., batch size).

1.3.2.2 Convolutional Layer

One of the key features of the image and video processing domain is the massive
number of pixels that the inputs contain. Assigning each of these pixels to an
input neuron in a FC layer (see 1.3.2.1) would bring about an explosion of the
number of required weights in a DNN, hence making the execution unfeasible.

Besides, this assignment is against the nature of the image processing domain.
Basically, each pixel is treated as a completely independent input signal from
every other. However, neighboring pixels typically contain signals that relate to
the same object in the image. Hence, a set of nearby pixels becomes a region of
similar information that can be captured and processed together, what if properly
exploited, can lead to a reduced amount of computation and number of required
parameters by a DNN model.

This is exactly the aim of a Convolutional Neural Network (CNN), which
involves the computation of consecutive convolutional layers, and were first
introduced by Yann LeCun’s group at Bell labs and later NYU [71].

As described by Sze et al. [117], each convolution layer in a CNN involves
computation of high dimensional convolutions (2D or 3D), where an input fmap
(ifmap) consisting of a set of channels is convoluted with a different trained
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filter composed of weights, and the results of the convolution at each point are
accumulated across all the channels. The result of this computation is one channel
of the output feature map (ofmap). The computation is described as follows:

On,k,x,y =
C

∑
c=0

R

∑
r=0

S

∑
s=0

In,c,U×x+r,U×y+s × Wk,c,r,s

Here, O, I, and W are the matrices for the ofmaps, ifmaps and filters, respectively.
Furthermore, N stands for the number of ifmaps and ofmaps (i.e., batch size), C
is the number of ifmap channels and filter channels. X and Y are the ifmap plane
height and width, respectively. R and S are the filter plane height and width,
respectively. X’ and Y’ are the ofmap plane height and width, respectively. U
is the stride of the window of input values given to the convolution operation
which has typically a value of 1.

To help the reader understand the computation of a convolution layer, we
depict it in Figure 1.11 assuming a 3D convolution. First, it receives a 3D array
of values (activations), i.e. the ifmap, of size C × X × Y , where, as shown in the
figure, C is the number of channels and X × Y refers to the size of each channel.
Taking this input, the layer performs a convolution applying a C × R × S filter
to obtain as output a single ofmap channel. Notice that the number of channels
in the convolution operation (C) is the same for both filter and ifmap sets as
each filter channel is assigned to a different ifmap channel. This convolution is
often implemented as a sliding window operation which means that the filter
is shifted across the ifmap from left to right and from up to down, calculating
a different output activation for every shift. Finally, in order to calculate the
K ofmap channels, K filters are needed and applied to the very same fmap.
Similar to the FC layer described in Section 1.3.2.1, the convolution layer is also
typically mapped into a matrix multiplication operation by means of a well-
known operation called img2col [117]. Typically, the result of every convolution
layer is given as input to an activation layer such as ReLu or Sigmoid [93], which
adds non-linearity, and hence, the ineffectual output activations can be filtered
out.

Along with convolution layers, FC (Fully-Connected) layers are also part of
a typical CNN. This layer generates the class probabilities from the class scores
(a.k.a., logits). In the context of image classification problems, the highest score
represents the most likely class of an object (e.g., a dog) in the input image given
to the CNN.
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Figure 1.11: Example of a convolution layer.

1.3.2.3 Other Layers

Since convolution and fully-connected layers typically entail the 95% of the com-
putation in most of the DNNs [117], this thesis mainly focuses on the acceleration
of these layers1. In spite of this, other layers are also relevant for the community
and deserve the attention. Next we describe the principal ones:

• Pooling layer: A pooling layer [43] is used typically in CNNs to reduce
the spatial dimensions of the ofmaps through combining a set of values
into a smaller number of values by using functions such as max-pooling or
average-pooling. For example a 2 × 2 set of values can be represented by
an unique average value.

• LSTM layers: A Long Short-Term Memory (LSTM) layer [52] is commonly
used in Recurrent Neural Networks (RNNs). This popular variant of a
DNN have internal memory to allow long-term dependencies that affect
the output. The RNNs are used for sequence-based tasks that require
time dependencies among inputs such as speech recognition or natural
language processing. During this thesis we will not include any RNN in
our evaluations because these networks have been massively replaced by
the attention layers, explained as follows.

• Attention layers: Attention layers [118] are the basis of transformers which
are emerging algorithms aiming to replace the aforementioned RNNs. This

1In Chapters 2 and 4 we will also use some attention layers as part of our evaluation, since
they are gaining importance in some domains
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layer consists of a sequence of operations which can be translated into a
matrix-multiplication operation.

1.3.2.4 Computing DNN Layers

The large majority of the kernels described in Sections 1.3.2.1, 1.3.2.2 and 1.3.2.3
can be typically expressed as a massive number of multiply-and-accumulate
(MAC) operations. To compute these MACs on general-purpose CPUs, these
operations are normally mapped into a matrix-multiplication operation and
executed using some of the popular high-performance libraries such as the Intel
Math Kernel Library (MKL) [25]. However, as described in Section 1.1, this is no
longer feasible and we need specialized architectures to run these kernels. Next,
we present the state-of-the-art specific architectures for efficient DNN processing
and the challenges we will address in this thesis.

1.4 Specific Architectures for DNNs

As we have explained previously, the deployment of a DNN model comprises
two phases called training and inference. During the training phase, the DNN
model adjusts the values of its set of weights. Subsequently, during inference,
the trained DNN model is used to solve the problem it was designed for (e.g.,
image classification). Currently, training is mostly carried out using clusters of
several GPUs [20], although some proposals for customized training platforms
have also been developed by both industry (e.g. Google’s Cloud TPU [61] and
Microsoft’s Project Brainwave [37]) and academia (e.g., [31, 34]). In contrast,
the fact that the DNN inference phase must be primarily done in-situ has paved
the way for the development of a plethora of accelerator architectures so as to
maximize performance per watt while meeting their latency and energy-efficiency
demands [22, 31, 33, 61, 70, 76, 78, 98]. All these recent architectures are known
as spatial architectures and differently to traditional temporal architectures (i.e.,
general-purpose architectures such as CPUs or GPUs), they remove ineffectual
hardware that is not needed to compute DNNs, leaving space for what is really
needed, such as simpler computing elements. For example, traditional caches
are typically used in general-purpose processors to capture irregular memory
access patterns generated by general-purpose applications. Conversely, in the
case of DNN processing, since the data movement and memory access patterns
are well-known a priori (see Sections 1.3.2.2, 1.3.2.1 and 1.3.2.3), a simpler SRAM
scratchpad is sufficient to keep track of the location of the data.
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The key idea behind the design of all these recent specific architectures has
been the capture of the different patterns of data reuse in what is known as
a dataflow [23, 68]. According to the dataflow, optimizations implemented and
its flexibility, we can distinguish between three different types of architectures
for DNN inference accelerators: rigid architectures, flexible architectures and
data-dependent architectures.

1.4.1 Rigid DNN Accelerator Architectures

First-generation rigid DNN inference accelerators [28,61,78,98] focused their designs
on fixed-size clusters of multipliers-and-accumulate units interconnected by
means of a fixed tightly-integrated on-chip network fabric specifically tailored to
efficiently support a particular dataflow. This is the path that current industrial
approaches have followed because of its simplicity in terms of design. For
example, the Google TPU [61] is built by interconnecting 256×256 Multiply-
Accumulate (MAC) units to a tightly-coupled 2D grid and supports a weight-
stationary dataflow, while ShiDianNao [28] groups 8×8 MAC units supporting
an output-stationary dataflow. Other commercial design include the Cerebras
chips [108], which include a large number of configurable systolic-like arrays
within a wafer-scale.

1.4.2 Flexible DNN Accelerator Architectures

Unfortunately, as DNN models evolve at a rapid pace, these fixed designs fail to
adapt well to contemporary DNN models.

From the models observed in the MLPerf benchmark suite [107], we can
highlight two main sources of inefficiency in terms of performance and energy
that are inherent in these first-generation DNN accelerators:

• Wide range of DNN types: Practitioners adapt their DNN models to
different application budgets. This creates a large variability in terms of
DNN sizes and types of layers with diverse computing demands, which
impedes a fixed on-chip interconnect fabric to support all of them efficiently,
as rigid topologies cause low compute unit utilization [61]. Besides, this
makes imperative the need for an architecture able to scale appropriately.
However, inflexible on-chip interconnects, such as 2D systolic arrays, cause
low compute unit utilization [61] and, due to its rigid 2D shape, scale
quadratically, while it could be logarithmically using a tree-based shape,
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as [31, 70] demonstrate. DNN models are continuously evolving featuring
different sizes and types of layers, hence leading to varying computing
demands:

• Shape and type diversity: The high variability in terms of filter and input
shapes even within the same DNN impedes a fixed on-chip interconnect
fabric to support all of them efficiently, as rigid topologies cause low
compute unit utilization [61].

• Sparsity: Modern DNN workloads exhibit different degrees of weight and
input sparsity due to both network pruning and the use of the non-linear
activation functions such as ReLU, respectively.

Exploiting this large diversity in computing demands makes rigid DNN accelera-
tors, which are made up of fixed on-chip topologies, highly ineffective leading to
poor scalability, under-utilization of the computing resources, and low energy
efficiency [31, 61, 70].

To overcome these limitations, recent proposals such as FlexFlow [76],
MAERI [70] and SIGMA [31] advocate using flexible DNN accelerator fabrics,
which can be reconfigured to efficiently map different dataflows and dot product
partitions through the creation of dynamic-size clusters (i.e., a set of multipliers
computing the same output) in the same hardware substrate. These designs
advocate for physically separating the components into three different networks:
A Distribution Network (DN) that delivers the data from the SRAM structure
(e.g., what is called Global Buffer or GB in the MAERI design) to the multipliers.
A Multiplier Network (MN) that integrates a set of multipliers that perform
the multiplication operations and a Reduction Network (RN) that consists of a
tree-based topology of configurable adders and whose purpose is to accumulate
the partial sums generated by the MN. This RN is the key ingredients that enables
to configure dynamic-size clusters of multipliers in the same hardware substrate.

1.4.3 Data-Dependent DNN Accelerator Architectures

Other type of accelerators aim to optimize the processing of the DNNs by
exploiting properties inherent in the data that is computed [31, 33, 50, 97, 114,
122, 124]. Among them, the accelerators that exploit the sparsity inherent in the
DNNs have become one of the main sources of improving the processing of these
workloads.
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These accelerators have support for sparse execution via supporting an ef-
ficient processing of the sparse matrix multiplication. To do so, they utilize
compression of one or both operands into formats like CSR, CSC, bitmap, CSF
etc., which reduces the memory footprint and the number of multiplications.
Some prior works like Eyeriss [22] focus on exploiting sparsity via zero-gating of
the multiplier where multiplication by zero is skipped. This saves the number
of multiplications but does not reduce the on-chip memory footprint. Eyeriss
compresses data between the Global Buffer and the DRAM via run-length cod-
ing. Other accelerators such as ExTensor [50], SIGMA [31], GAMMA [122],
MatRaptor [114], Outer-Space [97], SpArch [124], among others employ specific
hardware structures to avoid not only the multiplication by zero, but also the
transfer of the zero values. These accelerators typically map the sparse matrix
multiplication operation into the accelerator via a specific dataflow. For example,
ExTensor [50] or SIGMA [31] implement an Inner Product dataflow. Others such
as Outer-Space [97] or SpArch [124] employ what is called an Outer Product
dataflow while other accelerators such as GAMMA [122] or MatRaptor [114]
employ a Gustavson’s dataflow. The particular dataflow implemented by the
accelerator defines the order loop of the sparse matrix multiplication operation
and in consequence, defines how the operands have to be processed during the
execution. In Chapter 4, we will analyze these three dataflows, with their pros
and cons.

1.5 Thesis Motivations and Contributions
We observe three challenges in the state-of-the-art described above.

1. Nowadays, the dominant strategy that researchers adopt for the imple-
mentation of almost any new DNN inference accelerator follows a shallow
design-space exploration, by which a single (or few) architectural design
decisions are analytically investigated before building the particular ASIC-
based or FPGA-based prototype. This strategy is acceptable as long as
we deal with simple-to-moderate architectural design complexity, as it is
the case of first-generation rigid DNN accelerators. In contrast, the higher
complexity of flexible DNN accelerators urges for exhaustive design-space
exploration to be able to identify the best architectural design decisions to
synthesize. Architectural simulators have been extensively used during the
design process of CPU and GPU architectures ( [12–15, 55, 115] are just a
few examples). Nonetheless, and quite surprisingly, the same has not taken
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place until now for DNN accelerator architectures, mostly due to the broad
variety of accelerator designs, which makes difficult the elaboration of a
tool capable of covering all of them.

2. The reduction networks currently implemented in flexible accelerators do
not support efficiently some common cases. For example, the case of folding,
in which more partial sums than multipliers are generated, is not managed
in the correct way. This leads to inefficiencies that decrease significantly the
performance of the accelerators.

3. Current accelerators for sparsity processing only implement a single
dataflow, while the diversity of the DNN layers, sizes and sparsity pat-
terns reveal that there is not a single dataflow that may work well for
all the layers. We are still missing an accelerator that supports the three
dataflows and therefore can be able to adapt its hardware substrate to the
characteristics of the DNN layer.

This thesis addresses the three challenges. In this way the main contributions
of this thesis are summarized as follows:

1. We present STONNE, a cycle-level microarchitectural simulation framework
that can plug into any high-level DNN framework as an accelerator de-
vice and perform full-model evaluation (i.e. we are able to simulate real,
complete, unmodified DNN models) of state-of-the-art rigid and flexible
DNN accelerators, both with and without sparsity support. As a proof
of concept, we use STONNE in three use cases: i) a direct comparison of
three dominant inference accelerators using real DNN models; ii) back-end
extensions and iii) front-end extensions of the simulator to showcase the
capability of STONNE to rapidly and precisely evaluate data-dependent
optimizations.

2. We demonstrate that the strategy employed by the reduction network to
support folding in state-of-the-art flexible accelerators is of paramount
importance to ensure high performance. The simplest strategy, which is the
one implemented by the current flexible accelerators, consists in sending
the different results though the Global Buffer. As we demonstrate in this
work, this breaks the computation pipeline, thus degrading performance.
On the other hand, the naive strategy of using an accumulation buffer as
done in the Google’s TPU, solves this problem, but entails significant area
and energy overheads. As the second contribution of this thesis, we present
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a novel reduction network fabric call STIFT that integrates spatio-temporal
accumulation on the same hardware substrate. This way, STIFT enables
similar performance as the accumulation buffer strategy, but keeps the area
and power in an affordable range.

3. We design and present Flexagon, the first SpMSpM reconfigurable accel-
erator that is capable of performing SpMSpM computation by using the
particular dataflow (i.e., Inner Product, Outer Product or Gustavson’s)
that best matches each case. Flexagon accelerator is based on a novel
Merger-Reduction Network (MRN) that unifies the concept of reducing
and merging in the same substrate, increasing efficiency. Additionally,
Flexagon also includes a 3-tier memory hierarchy, specifically tailored to
the different access characteristics of the input and output compressed ma-
trices. Using detailed cycle-level simulation of contemporary DNN models
from a variety of application domains, we show that Flexagon achieves
average performance benefits of 4.59×, 1.71×, and 1.35× with respect to
the state-of-the-art SIGMA-like, SpArch-like and GAMMA-like accelerators
(265% , 67% and 18%, respectively, in terms of average performance/area
efficiency).

1.5.1 Publications Derived from this Thesis

All the contributions of this thesis have been presented in relevant international
peer reviewed conferences, workshops and journals.

In particular, as for the first contribution (i.e., STONNE simulator), the follow-
ing are direct results (in terms of presentations and publications) that have been
derived from this thesis:

• A preliminar description of STONNE simulator published and presented at
the AccML workshop co-located with ISCA 2020 [80].

• A short handy description of STONNE simulator published in the CAL
journal [81].

• A detailed description of STONNE simulator published and presented at
the prestigious conference IISWC 2021 [82].

• A 4-hour tutorial of the STONNE simulator co-located with ASPLOS 2021
conference [85].
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• A description of a framework built on the top of STONNE called SST-
STONNE (see Section 2.7.2) published and presented at the ModSim 2022
conference [84].

• A description of OMEGA, a framework that builds on the top of STONNE
to model GNNs (see Section 2.7.1) published and presented at IPDPDS 2022
conference [40] and was awarded with a best paper nomination.

As for the second contribution (i.e., STIFT), two are the direct results:

• A detailed description of STIFT published and presented at the presti-
gious conference NoCs 2021 [89], and that was awarded with a best paper
nomination.

• An extended description of STIFT published in JETC journal [83].

Finally, as for the third contribution (i.e., Flexagon), the paper has been
submitted to the prestigious conference ASPLOS 2023 [86], and at the moment of
writing this document, is under review.

1.6 Thesis Organization
The rest of this thesis is organized as follows:

• Chapter 2 presents, describes and evaluates the first contribution of this
thesis (i.e., the STONNE simulator), which will be used as the reference
tool for the rest of the thesis.

• Chapter 3 presents and evaluates STIFT proposal for efficient folding in
flexible state-of-the-art accelerators.

• Chapter 4 presents and evaluates Flexagon accelerator for SpMSpM compu-
tation with respect to state-of-the-art sparse accelerators.

• Chapter 5 summarizes the main conclusions of the thesis and points out
future lines of work.
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Chapter 2
STONNE: Enabling Cycle-Level

Microarchitectural Simulation for
DNN Inference Accelerators

2.1 Introduction

Deep Neural Networks (DNNs) constitute nowadays a promising breakthrough
for a large number of artificial intelligence (AI) applications [117].

The fact that their inference phase must be primarily done in-situ has paved
the way for the development of a plethora of accelerator architectures so as to
maximize performance per watt while meeting latency and energy-efficiency
demands ( [22, 31, 33, 61, 70, 76, 78, 98] are a few examples). The key behind all of
these recent architectures has been the capture of the different patterns of data
reuse in what is known as a dataflow [23, 68] and the use of data-dependent
optimizations to reduce computation and memory footprint [33].

First-generation rigid DNN inference accelerators ( [28, 61, 78, 98]) focused
their designs on fixed-size clusters of multipliers-and-accumulate units intercon-
nected by means of a fixed tightly-integrated on-chip network fabric specifically
tailored to efficiently support a particular dataflow. For example, the Google
TPUv1 [61] is built by interconnecting 256×256 Multiply-Accumulate (MAC)
units to a tightly-coupled 2D grid and supports a weight-stationary dataflow,
while ShiDianNao [28] groups 8×8 MAC units supporting an output-stationary
dataflow.
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Unfortunately, as DNN models evolve at a rapid pace, these fixed designs fail
to adapt well to the great diversity of layer types and dimensions in contemporary
proposals. Table 2.1 shows seven popular DNN models considered in this chapter.
These models fall into three different application domains that mostly cover the
diversity of machine learning models in the MLPerf benchmark suite [106], and
represent different design tradeoffs for accuracy, memory requirements and
computational complexity. In particular, we consider Mobilenets-V1 (M) [53],
Squeezenet (S) [56], Alexnet (A) [67], Resnets-50 (R) [49], VGG-16 (V) [113],
SSD-Mobilenets (S-M) [75] and BERT (B) [27]. From the data in this table, we can
highlight two main sources of inefficiency in terms of performance and energy
that are inherent to these first-generation DNN accelerators:

1. Wide range of DNN types: Usually, AI practitioners adapt their DNN models
to different application budgets. This creates a large variability in terms
of DNN sizes and types of layers (see the forth column in Table 2.1) with
diverse computing demands, which impedes a fixed on-chip interconnect
fabric to support all of them efficiently, as rigid topologies cause low
compute unit utilization [61]. Besides, this makes imperative the need
for an architecture able to scale appropriately. However, inflexible on-
chip interconnects such as 2D systolic arrays cause low compute unit
utilization [61] and, due to its rigid 2D shape, scale quadratically, while it
could be logarithmically using a tree-based shape, as [31, 70] demonstrate.

2. Sparsity: Modern DNN workloads exhibit different degrees of weight and
input sparsity due to both network pruning and the use of the non-linear
activation functions such as ReLU, respectively. Table 2.1 shows the sig-
nificant state-of-the-art average weight sparsity ratio (from 60% to 90%)
after applying an unstructured weight pruning approach similar to that
described by Zhu et al. [126].

Exploiting this large diversity in computing demands makes rigid DNN
accelerators, which are based on fixed on-chip topologies, highly ineffective,
leading to poor scalability, under-utilization of the computing resources, and low
energy efficiency [31, 70].

To overcome these limitations, recent proposals such as FlexFlow [76],
MAERI [70] and SIGMA [31] advocate using flexible DNN accelerator fabrics,
which can be reconfigured to efficiently map different dataflows and dot product
partitions through the creation of dynamic-size clusters (i.e., a set of multipliers
computing the same output) in the same hardware substrate. Of course, this
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Domain DNN Model Sparsity Dominant Layer Types

Image
Classification

Mobilenets-V1 (M) 75% Factorized Convolution (FC)
Linear (L)

Squeezenet (S) 70% Squeeze Convolution (SC)
Expand Convolution (EC)

Alexnet (A) 78% Convolution (C)
Linear (L)

Resnets-50 (R) 89% Residual Function (RF)
Convolution (C)

VGG-16 (V) 90% Convolution (C)
Linear (L)

Object
Detection SSD-Mobilenets (S-M) 75% Factorized Convolution (FC)

Linear (L)
Language
Processing BERT (B) 60% Transformer (TR)

Linear (L)

Table 2.1: Contemporary DNN models explored in this chapter. ImageNet [110],
COCO [74] and squad-1.1 [104] dataset have been used to train the image classifi-
cation, object detection and language processing models, respectively.

flexibility comes at the cost of increased architectural complexity that urges for
a more exhaustive design-space exploration for fine tuning before building the
particular ASIC-based or FPGA-based DNN accelerator.

Additionally, other works are exploring data-dependent optimizations in DNN
accelerators that try to reduce computation and memory footprint by exploiting
hardware optimizations based on the input data.

For example, SnaPEA [33] implements a data-dependent optimization that
leverages the fact that there are no negative values in the input values of a
Convolutional Neural Network (CNN). This approach statically re-orders at
compile time the weights according to their signs, and periodically performs in
hardware a single-bit sign check on the partial sum during the execution. Once
the partial sum drops below zero, the rest of the computations are cut off, since
the output value will inevitably be zero after applying the typical ReLU activation
function in CNNs. In these cases, it is crucial to get access to the precise data
values that will be used during the inference procedure.

Microarchitectural simulators have been extensively used during the design
process of CPU and GPU architectures ( [12–15, 55, 115] are just a few examples),
albeit as we explain in Section 2.2, most recent efforts have focused on using
analytical models to describe an accelerator design by means of simple yet in-
sightful formulas. However, as we also demonstrate in Section 2.2, contemporary
analytical models, while very useful for exploring Pareto-optimal accelerator pa-
rameters [29,68] lag far behind in timing accuracy when modeling more complex
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flexible architectures, and when running non-trivial computation (e.g., sparse
computation or DNN layers that do not map well onto the accelerator substrate
and lead to compute under-utilization) or data-dependent optimizations. In
these cases, analytical models are not able to capture performance bottlenecks or
unexpected behaviors that may occur during a real DNN full-model execution.

To the best of our knowledge, there is still no detailed, cycle-level, open-source
microarchitectural simulator for extensive and accurate design-space exploration
of DNN inference accelerators (further details are given in Section 2.2 and are
summarized in Table 2.2). To bridge this gap, in this chapter we present STONNE
(which stands for Simulation TOol of Neural Network Engines), the first attempt to
derive a cycle-level, highly-modular and highly-extensible simulator for DNN
inference accelerator microarchitectural exploration1. STONNE builds on the
observation that most current DNN accelerator architectures can be logically
organized as three configurable on-chip network fabrics (distribution network,
multiplier network, and reduction network) and the corresponding memory
controller and buffers, and provides an easily expandable and configurable set of
microarchitecture modules (e.g., a tree-based distribution network or a sparse
memory controller) that, conveniently selected and combined, can faithfully
simulate both rigid DNN accelerators (e.g., the Google TPU [61]) and flexible
DNN accelerators (e.g., MAERI [70] or FlexFlow [76]), including those exploit-
ing sparsity (e.g., SIGMA [31]). Additionally, and unlike prior tools, STONNE
is directly integrated with the widely used PyTorch DL framework [5] as an
accelerator device, which enables cycle-level simulation of a wide variety of accel-
erator microarchitectures running complete DNN models and precise evaluation
of data-dependent optimizations used in a plethora of DNN accelerators (e.g.
SnaPEA [33]).

We see the following contributions in this chapter:

• We demonstrate the value of cycle-level simulation for accurate design-
space exploration of DNN accelerators (Section 2.2). Particularly, we show
that a state-of-the-art analytical model can underestimate the number of
clock cycles for the execution of certain DNN layers by more than 400%.

• We present (Sections 2.4 and 2.4) and validate (Section 2.5) STONNE,
the first simulator, to the best of our knowledge, that is connected as an
accelerator device with a contemporary DL framework (PyTorch [5]), and
enables cycle-level microarchitectural simulation of inference accelerators

1Support of training procedures in STONNE is left as future work.
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(with both dense and sparse computation support) running complete DNN
models.

• We demonstrate the usefulness, versatility and capability of STONNE via
three diverse use cases. In the first one, we perform a direct comparison
between TPU, MAERI and SIGMA type inference architectures running
the seven DNN models shown in Table 2.1. In the other two use cases, we
demonstrate the capacity of STONNE to be extended and to model data-
dependent optimizations. Particularly, the second use case considers the
modification of the back-end of the simulator by implementing SnaPEA [33],
whereas the third use case analyzes the potential of static filter scheduling
in DNN sparse accelerators, which entails modifications to STONNE’s
front-end.

We demonstrate the extensibility and usability of STONNE by presenting two
external tools called OMEGA (Section 2.7.1) and SST-STONNE (Section 2.7.2)
that have been developed to give birth to the modelling of accelerators for more
complex applications such as Graph Neural Networks (GNNs) or heterogeneous
multi-accelerator systems.

The rest of the chapter is organized as follows. First, in Section 2.2, we review
the state-of-the-art in simulation tools for DNN accelerators. Then, Section 2.4
explains the organization of the STONNE framework and Section 2.4 describes
the details of the flexible accelerator microarchitectures that STONNE simulates.
Subsequently, Section 2.6.1 and Section 2.6.2 present and evaluate the two case
studies used to demonstrate the new horizons opened by STONNE. Section 2.7
shows the description of two additional tools that are based on STONNE. Finally,
Section 2.8 outlines the main conclusions of this chapter.

2.2 Motivation and Related Work

Table 2.2 shows a qualitative comparison of STONNE with respect to contem-
porary publicly available tools for design-space exploration of DNN inference
accelerators. For the comparison, we consider five desirable features that a DNN
inference simulator should meet: 1) cycle-level simulation; 2) support for both rigid
and flexible DNN accelerator architectures; 3) support for sparse executions; 4) ability to
perform complete evaluations of deep learning models; and 5) ability to implement and
evaluate data-dependent optimizations. The rest of this section compares these tools
in detail.
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Cycle Architecture Sparsity FullModel DataDep
Level Type Support Eval Opt

MAGNet
DNNBuilder ✗ None ✗ ✗ ✗

GEMMINI D Rigid ✗ ✗ ✗

MAERI BSV D Flexible ✗ ✗ ✗

SIGMA RTL D Flexible D ✗ ✗

SCALE-Sim ✗ Rigid ✗ ✗ ✗

MAESTRO
TimeLoop ✗ Both ✗ ✗ ✗

SMAUG D Rigid ✗ D ✗

STONNE D Both D D D
Table 2.2: State-of-the-art Simulators for DNN Accelerators.

2.2.1 Analytical Modeling

SCALE-Sim [30], MAESTRO [68] and TimeLoop [29] have recently been pro-
posed as frameworks that enable the analysis of different dataflows in DNN
architectures. These tools are very powerful for fast exploration of high-level
architectural details, as they are based on analytical models that calculate the
degree of data reuse and computations using simple equations. These types of
simulators work accurately when it comes to rigid architectures as they are simple
enough to be represented by a set of formulas. However, when the complexity of
the accelerator grows and/or the computation does not follow regular patterns,
these models fail to faithful capture the exact behavior of the architecture.

Figures 2.1, 2.2 and 2.3 show this fact quantitatively. First, SCALE-Sim only
models simple rigid architectures (e.g., TPU-like systolic arrays) and do not have
support to handle sparsity. Figure 2.1 shows the number of cycles obtained with
this analytical model and with the cycle-level execution model implemented in
STONNE after running eight different representative layers (Squeeze, Expand,
Factorized and Regular Convolutions – SC, EC, FC, C; Linear – L; and Transform-
ers – TR) extracted from Squeezenet (S), Resnets-50 (R), Mobilenets (M) and BERT
(B). We have configured both models to simulate an Output-Stationary systolic
array varying the size of the array of processing elements (PEs) from 16 × 16 to
64 × 64. As we can see, we obtain for the three configurations almost the same
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Figure 2.1: Runtime for 8 DNN layers run on a rigid TPU-like inference accelerator
modeled using STONNE (ST) and an analytical model (AM). We model different
systolic 2D grid sizes (16×16, 32×32 and 128×128). We use the following notation
when plotting the results: X-Y, where X is the DNN model and Y is the layer type.

number of cycles for both alternatives, demonstrating that analytical models are
valuable tools when it comes to rigid DNN accelerator architectures.

Contrarily, we have observed that analytical models fail to faithfully capture
microarchitectural details of flexible DNN accelerator architectures, and therefore,
are not appropriate to identify many of the bottlenecks or unexpected behaviors
that may occur during a real DNN full-model execution. To demonstrate this
claim, we perform a set of experiments for a 128-multiplier flexible dense acceler-
ator simulating MAERI [70], using the detailed analytical model provided by the
authors of the MAERI paper [70].

Figure 2.2 plots the number of cycles reported by both STONNE and the ana-
lytical model for different global buffer bandwidth (i.e., number of elements that
the global buffer can deliver per cycle to the processing elements) configurations.
In both cases we modify the parameter that controls the bandwidth to consider
128 (full bandwidth), 64 and 32 elements/cycle after running on MAERI a dense
execution with the same layers extracted from the DNN models used before. As
we can see, the analytical model perfectly matches the performance obtained
with STONNE when there is full bandwidth (average difference of 1.03%), as this
ideal case can be easily represented by a set of mathematical formulas. However,
as the bandwidth decreases, STONNE begins to report a much higher number
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Figure 2.2: Runtime for 8 DNN layers run on a rigid MAERI-like inference
accelerator modeled using STONNE (ST) and an analytical model (AM). We
model a flexible 128-multiplier MAERI-like architecture with different Global
Buffer I/O Bandwidth (32, 64 and 128 elems/cycle). We use the following
notation when plotting the results: X-Y, where X is the DNN model and Y is the
layer type.

of cycles. This is due to the ability of a cycle-level simulator like STONNE to
faithfully capture the stalls produced in the architectural pipeline and that arise
as a result of the increasing number of conflicts in the MAERI’s distribution and
reduction networks. The difference between the results reported by STONNE
and the analytical model for 32 elements/cycle increases up to 400% (see M-FC
in Figure 2.2), alerting about the important limitations of the analytical models.

Furthermore, we also observe that an analytical model is not capable of
accurately representing DNN sparse executions. Figure 2.3 shows the same
executions as before, but this time we have configured STONNE to model a
sparse accelerator like SIGMA [31]. Again, we compare the results against the
analytical model provided by the authors of SIGMA [31]. This time, we assume
full bandwidth and variable sparsity ratio of the matrices between 0% and 90%.
In this case, we also observe a perfect match between both STONNE and the
analytical model when the sparsity ratio is 0%, but this similarity begins to
diverge as the sparsity ratio increases (diverging up to 92% for a sparsity ratio of
90%).

The reason for this difference is that the actual distribution of zeros in the
matrices, which affects the cluster sizes, and in the end, the performance obtained
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Figure 2.3: Runtime for 8 DNN layers run on a rigid SIGMA-like inference
accelerator modeled using STONNE (ST) and an analytical model (AM). We
model a flexible 128-multiplier SIGMA-like architecture with different sparsity
ratios (0%, 50% and 90%). We use the following notation when plotting the
results: X-Y, where X is the DNN model and Y is the layer type.

by the architecture, cannot be modeled analytically. Instead, cycle-level, full-
model evaluations with real weight values are needed to capture it.

2.2.2 Cycle-level Simulation

Cycle-accurate simulation of DNN accelerators have been adopted by just a few
simulators. First, GEMMINI [48] is a systolic-array accelerator generator based
on matrix multiplication for the investigation of SoC integration of such accelera-
tors. However, since the aim of this tool is the generation of RTL code for rigid
accelerators, it is not suitable for fast exploration of the design space. Among
all the alternatives, only the MAERI BSV [3], SIGMA RTL [6] implementations
and SMAUG [120] claim to model flexible accelerator architectures with cycle-
level precision. However, none of them really allows for efficient design-space
exploration and rapid prototyping. MAERI BSV and SIGMA RTL are just two
limited hardware implementations in Bluespec HDL [1] and Verilog, respectively,
written to demonstrate the effectiveness of these two flexible architectures. Hence,
they are not prototypes adapted to be extended or to carry out the inference
procedure of a complete DNN model or perform design-space exploration. Al-
though SMAUG is aimed to efficiently support full-model simulation of flexible
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Figure 2.4: High level overview of the STONNE framework.

architectures, actually this flexibility only means that it is able to execute any
layer with any tile configuration mapping. However, the architectures currently
being supported are a systolic array and the NVIDIA Deep Learning Accelera-
tor (NVDLA), which cannot be considered flexible accelerators. Besides, since
SMAUG is a trace-based simulator, it is unable to run whole modern DNN
models, and therefore, has to resort to a sampling approach, which impedes
its use for real full-model evaluations or examine data-dependent architectural
optimizations. To address all the above shortcomings, STONNE is able to fully
simulate all operations in a DNN in a reasonable timeframe. Besides, STONNE is
endowed with sparsity support, is capable of performing full-model evaluation
of any contemporary DNN model and as the simulator works with real data, it is
suitable to evaluate data-dependent optimizations.

2.3 STONNE Framework

STONNE is a cycle-level microarchitectural simulator for DNN inference acceler-
ators. STONNE is open-sourced under the terms of the MIT license. To allow for
full-model evaluations, STONNE is connected with a Deep Learning (DL) frame-
work (PyTorch [5] and Caffe [2] DL frameworks in the current version). Therefore,
STONNE can fully execute any dense and sparse DNN model supported by
the DL framework that uses as its front-end. The simulator has been written
entirely in C++, following the well-known GRASP and SOLID programming
principles of object-oriented design [79]. This has simplified its development and
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makes it easier the implementation of any kind of DNN inference accelerator
microarchitecture, tile configuration mapping and dataflow.

Figure 2.4 shows a high-level view of STONNE with its three major modules
for full-model simulation flows. These three components work in conjunction as
follows. First, the Input Module (see Section 2.3.2) is used to define the DNN to
be run and to load the parameters of the layer and the initial inputs and weights
onto the simulated accelerator. Once the accelerator has been configured, the
Simulation Platform module (further details in Section 2.3.1) carries out a cycle-
by-cycle microarchitectural simulation of the accelerator during the execution of
the feed-forward computation of the layer (i.e., the inference procedure), collecting
statistics during the process. After this, the results collected during the execution
of the layer are sent back to the CPU, and Finally, once the simulation of each
simulated layer is completed, the Output Module (further details in Section 2.3.3)
takes in the values of the counters collected by the simulated architecture and
produces several useful statistics of the execution, such as performance and
energy consumption. Next, we describe every module in detail:

2.3.1 Simulation Platform

The simulation platform constitutes the principal block (see the central block
in Figure 2.4), since it includes the implementation of the simulated DNN ac-
celerators (i.e., Simulation Engine) whose different internal microarchitecture
modules allow to compose and cycle-by-cycle simulate both rigid and flexible
DNN accelerators. These modules are further described in Section 2.4. The
composition of each accelerator (i.e., the selection of the microarchitecture mod-
ules) is defined by the user through a hardware configuration file given by the
input module. These modules are configured through the Configuration Unit
at runtime according to a set of signals generated by the Mapper based on the
configured microarchitectural modules and the DNN layer type and shape to be
executed.

The simulation platform is interfaced by means of a set of coarse-grained
instructions called the STONNE API (Table 2.3). This API is the manner in which the
input module (i.e., the DL framework) can interact with the simulated accelerator,
configuring its simulation engine according to the user configuration file, loading
layer and tile parameters, and configuring the weights and the inputs addresses
in the main memory. The STONNE API can be easily extended to support
new instructions. Furthermore, this API design allows to build tools upon the
Simulation engine module. Representative examples of this characteristic are
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Instruction Description
CreateInstance Creates an instance of STONNE.
ConfigureCONV Configures the accelerator to run a convolution operation.
ConfigureLinear Configures the accelerator to run a fully-connected layer.
ConfigureDMM Configures the accelerator to run a matrix multiplication.

ConfigureSpMM Configures the accelerator to run a sparse matrix
multiplication.

ConfigureMaxPool Configures the accelerator to run a max pooling layer.

ConfigureData Configure weights, inputs and outputs addresses from the CPU
to the accelerator memory.

RunOperation Launches the simulation according to the current configuration
of the architecture.

Table 2.3: STONNE API Instruction Set.

the OMEGA tool (see Section 2.7.1) and SST-STONNE (see Section 2.7.2 which
implement its own input and input modules but utilize the STONNE API to
connect to the Simulation engine and create cycle-level tools able to model more
complex applications such as GNNs or heterogeneous systems.

2.3.2 Input Module

Due to the flexibility that the STONNE API provides, the simulator can be fed easily
using a standard DL framework. To this end, we have modified the PyTorch (Caffe
is also supported) DL framework2 (see the left block in Figure 2.4) to connect
it to the simulator and to make it able to run an instance of the Simulation
Engine transparently to the user. This way, a PyTorch user just needs to select
the typical .pb file with the weights, choose the inputs (e.g., a set of images
or sentences) and briefly modify each DNN model to include the path of the
hardware configuration file with the parameters of the accelerator to simulate,
and the tile configuration for every layer.

Furthermore, since PyTorch requires a more complicated installation and
use, apart from this mode of execution, we have also enabled the STONNE User
Interface. This is basically a tool inside STONNE in which the user is presented
with a prompt and a set of well-defined commands to load any layer and tile
parameters onto a selected instance of the simulator, and run it with random

2Other DL frameworks, such as Tensorflow, can be easily integrated with STONNE using the same
STONNE API philosophy.
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weights and input values. This allows for faster executions, facilitating rapid
prototyping and debugging.

2.3.3 Output Module

Once a simulation for a certain layer has been completed, this module is used
for reporting simulation statistics such as performance, compute unit utilization,
and activity counts of different components such as wires, FIFOs or SRAM
usage (i.e., number of accesses). In particular, STONNE reports two different
output files: First, a general file in json format that includes a summary of the
statistics and facilitates their processing through user-created scripts; Second, a
counter file written in a customized format which contains the activity counts
for each component of the architecture (e.g., multiplier, wire, adder, etc). From
these activity counts, the output module is able to report the amount of energy
consumed by the simulated architecture. To do so, STONNE includes a script that
given the counter file and a table-based energy model similar to Accelergy [119],
computes the total consumed energy taking into account the cycle-level activity
stats for each module and the corresponding energy costs. Similarly, the area
numbers are obtained by employing a table-based model, calculating the final area
based on the architectural parameters and the area cost of each one. Obviously,
these statistics depend, for example, on the particular data format (e.g., FP16
or INT8) utilized to represent the parameters of the DNN model. So, STONNE
includes different energy and area tables that can be used. To derive these tables,
we ran synthesis using Synopsys Design-Compiler, and place-and-route using
Cadence Innovus on each module of the simulated accelerator (further details in
Section 2.5).

2.3.4 Walk-Through Example

This section clarifies the interaction between the Input Module (i.e., PyTorch)
and the Simulation Platform with a walk-through example illustrating the execu-
tion of a simple DNN model composed of 5 typical DNN operations: Conv2d,
MaxPool, Linear, sparse_mm and log_softmax. First, Figure 2.5 graphically shows
this interaction over time (x-axis) when running these operations. As we can
see, the execution is driven layer-by-layer by the DL framework (PyTorch in this
case) that offloads compute-intensive layers (e.g., a convolution layer) to the
simulated accelerator, and runs natively in the real CPU those layers that are not
compute-intensive enough for acceleration (e.g., a SoftMax layer).
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Figure 2.5: DNN simulation example.

a)

1: import torch
2: import torch.nn as nn
3: import torch.nn.functional as F
4:
5: class My_DNN(nn.Module):
6:   def __init__(self):
7:     super().__init__()
8:     self.conv = nn.conv2d(3, 64, 3)
9:     self.max = nn.MaxPool2d(kernel_size=3)
10:   self.fc = nn.Linear(64, 32)
11: def forward(self, x, y):
12:   x = self.conv(x) #on cpu
13:   x = self.max(x) #on cpu
14:   x = self.fc(x) #on cpu
15:   x = F.sparse_mm(x, y) #on cpu
16:   x = F.log_softmax(x, dim=1) #on cpu
17:   return x

Native PyTorch code run on CPU

1: import torch
2: import torch.nn as nn
3: import torch.nn.functional as F
4: 
5: class My_DNN(nn.Module):
6:   def __init__(self):
7:      super().__init__()
8:      self.conv = nn.Simulatedconv2d(3, 64, 3, conf='stonne_hw.cfg')
9:      self.max = nn.MaxPool2d(kernel_size=3, conf='stonne_hw.cfg')
10:    self.fc = nn.Linear(64, 32, conf='stonne_hw.cfg')
11:  def forward(self, x, y):
12:     x = self.conv(x) #simulated
13:     x = self.max(x) #simulated
14:     x = self.fc(x) #simulated
15:     x = F.simulated_sparse_mm(x,y,conf='stonne_hw.cfg')#simulated
16:     x = F.log_softmax(x, dim=1) #on cpu
17:     return x

Modified PyTorch code run on STONNE

b)

Figure 2.6: a) Native PyTorch code for CPU. b) Modified PyTorch code for
STONNE.

More specifically, for each intensive computational operation such as a con-
volution (nn.Conv2d), the DL framework configures the corresponding memory
addresses onto the simulator (using the ConfigureData instruction) and configures
the layer to be run (ConfigureCONV instruction). Then, the simulator takes control
and runs the operation on a cycle basis on the simulated accelerator. Once the
simulator finishes, it reports the statistics through the Output Module, notifies
back the DL framework and returns it control to continue with the next opera-
tions (nn.MaxPool, nn.Linear and F.sparse_mm). As shown, those operations that
are not worth for acceleration (e.g., softmax operation) are executed directly by
the DL framework (as it would be done in a real scenario), so correctness of the
entire execution is ensured.

Figure 2.6(a) shows the native PyTorch code that would be used to run
these operations on a CPU (or GPU), while Figure 2.6(b) shows the required
modifications to off-load the aforementioned intensive computational operations
onto STONNE (lines 8, 9, 10 and 15). As we can see, each operation instance to
be off-loaded is replaced by a similar operation that adds the prefix Simulated to
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its name. This allows PyTorch to distinguish when the operation has to be run on
STONNE rather than natively on the CPU (or GPU). Furthermore, the arguments
of the operations have to be extended to include the hardware configuration file
(i.e., stonne_hw.cfg) that will be used by the simulation platform to create the
instance of the simulated accelerator. As it may be appreciated, those lines that
do not change will run normally on PyTorch, maintaining the correctness of the
execution.

Note that mapping of non matrix multiplication layers on STONNE, such as
Pooling (e.g., nn.MaxPool) and batch normalization, is not a problem, as they can
be easily supported in flexible accelerator architectures without additional specific
SIMD modules (as required in some other architectures) [70]. Even crossing layers
(i.e., kernel fusion) operations could be mapped onto the processing units of
a flexible architecture. As we illustrate with use cases 2 and 3 in Section 2.5,
and in Chapters 3 and 4, the design of STONNE allows to be easily extended to
incorporate other hardware and software optimizations and even entire DNN
hardware accelerators that support other characteristics and dataflows.

2.4 STONNE Simulation Engine

STONNE builds on the observation that most current DNN accelerator architec-
tures can be logically organized as three configurable network fabrics (distribution
network, multiplier network, and reduction network) and the corresponding
memory controller and buffers [65], and provides an easily expandable and
configurable set of microarchitecture modules (for buffers, on-chip data delivery
and memory controllers) that, conveniently selected and combined, can model
both rigid and flexible DNN accelerators (see Figure 2.7).

2.4.1 On-Chip Networks

All the on-chip components are interconnected by using a general three-tier
network composed of a Distribution Network (DN), a Multiplier Network (MN),
and a Reduce Network (RN), inspired by the taxonomy of on-chip communication
flows within DNN accelerators [70]. These networks can be configured to support
any topology to model state-of-the-art accelerators such as the TPU [61], Eyeriss-
v2 [24], ShDianNao, SCNN, MAERI [70] and SIGMA [31], among others. First,
to compute all the MAC operations of a certain DNN layer, the DN distributes
the required weights, activations or partial sums from the GB towards the MN.
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Figure 2.7: Overview of the general flexible DNN inference accelerator considered
in STONNE.

To enable all types of dataflows, the DN must provide support for unicast,
multicast and broadcast data delivering. As explained in Section 2.4.1.1, this
is accomplished through different possible configurations of the Distribution
Switches (DS) shown in the figure. After the distribution, the multipliers at
the MN carry out the multiplication operations, generating the operands of
the partial sums to be accumulated. Finally, the RN network is equipped with
adders that implement the required accumulations. As we have seen, the secret
sauce of STONNE is that the code of the simulator is properly designed to
completely change or modify the networks at user preferences very easily. Next,
we describe the different topologies of the three networks (DN, MN and RN)
currently supported in STONNE that are basic building blocks of state-of-the-art
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Figure 2.8: Basic building blocks of STONNE. We illustrate how the building
blocks can be easily combined to configure four DNN inference accelerators.

accelerators such as the Google’s TPU, Eyeriss-v2, ShDianNao, SCNN, MAERI
and SIGMA, among others.

2.4.1.1 Distribution Networks (DNs)

In order to deliver the data from the Global Buffer (GB) to the MN, we implement
the next DNs:

• Tree Network (TN): A TN (illustrated in Figure 2.8(e)) is a binary-tree-
based network topology inspired by the MAERI distribution network that
is replicated as many times as the number of read ports available in the
GB, and that provides single-cycle unicast, multicast and broadcast data
delivery from the GB to the multipliers [70]. Each node of the TN is just a
low-cost bufferless Distribution Switch (DS) that selects whether to send
the input to one or both outputs using a bit vector that is set by the input
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source. Due to the simplicity of the DSs, the DN can provide single-cycle
traversals from the GB to the MN for every piece of data.

• Benes Network (BN): A BN (illustrated in Figure 2.8(f)) is an N-input
N-output non-blocking topology with 2 × log(N) + 1 levels, each with N
tiny 2×2 switches. This DN is implemented in SIGMA [31] and ensures
efficient single-cycle unicast, multicast and broadcast data delivery from
the GB to the MN. Differently from the TN, it is necessary just one BN
to connect the number of read ports available in the GB to the MN. To
do so, in this case, every DS requires two control bits, one for selecting a
vertical output and one for diagonal output. As for the DSs of the TN, these
switches are also capable of providing single-cycle traversals from the GB
to the MN for every piece of data.

• Point to Point Network (PoPN): Unlike the two DNs described above, the
PoPN (illustrated in Figure 2.8(g)) provides only unicast data delivery from
one source point (typically the GB) to a destination (typically a multiplier).
This is the basic component to build an interconnect for a systolic array
such as the TPU.

2.4.1.2 Multiplier Networks (MNs)

These networks are made up of a set of Multiplier Switches (MSs) that can be
configured to act as either forwarders or multipliers. The forwarding configu-
ration is used to forward psums from the GB to the RN so that folding3 can be
supported, whereas the multiplier configuration mode is utilized to compute a
multiplication between a weight and an input value. In case folding is needed
(further details in Section 2.4.2) and the accumulation buffer is disabled, the
architecture would need to allocate one extra MS for each cluster to perform the
forwarding of the psums calculated in the previous iterations of the same cluster.
Currently, we support two MN topologies:

• Linear Multiplier Network (LMN) (Figure 2.8(h)): This RN is capable of
leveraging the spatio-temporal data reuse (e.g., when processing the sliding
window operation of convolution DNN layers) by using forwarding links
between each pair of multipliers. This reduces the bandwidth pressure on

3Folding is utilized when a dot product needs more multiplication operations than the number of
multiplier units available in hardware. Then, the dot product is “folded” to be processed in several sequential
steps and partial results should be accumulated and taken at inter-steps boundaries.
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the memory and on the DN by reusing data across different multipliers.
The LMN is utilized in several DNN accelerators (such as MAERI and TPU).

• Disabled Multiplier Network (DMN) (Figure 2.8(i)): Removes completely
the forwarding links between the multipliers, disabling their communica-
tion, and is aimed at performing basic GEMMs. This MN is presented in
DNN accelerators such as SIGMA [31] and SpArch [124] whose basic primi-
tive is the GEMM operation, and therefore, the sliding window operation
has no longer effect.

2.4.1.3 Reduction Networks (RNs)

These networks are composed of adders whose purpose is to accumulate the
different clusters of partial sums that are generated by the MN. Currently, we
support the following RNs:

• Reduction Tree (RT) and Augmented Reduction Tree (ART+DIST) (Fig-
ure 2.8(a)): An ART integrates a tree-based topology built upon a reduction
tree but augmented with one 3:1 adder unit per node for efficiently exe-
cuting reduction operations. The tree structure is augmented with links
between the nodes of the same level (horizontal links) that do not share the
same parent. This augmented tree enables flexible support of multiple and
non-blocking virtual reduction trees over a single physical tree hardware
substrate [70]. More specifically, each node is a configurable Adder Switch
(AS) that can be statically configured as either 2:1 ADD, 3:1 ADD, 1:1 ADD
plus 1:1 forward, or 2:2 forward. This configurable capability within each
ART node along with the augmented links are key aspects to enable high
flexibility in MAERI.

• ART + Accumulation Buffer (ART+ACC) (Figure 2.8(b)): This RN is similar
to ART, but allocates a set of accumulators at the output of the reduction
network, allowing partial sums from consecutive iterations to be temporarily
accumulated in the accumulators, and enabling them to be pipelined.

• Forwarding Augmented Network (FAN) (Figure 2.8(c)): As it is demon-
strated in SIGMA [31], the ART topology is inefficient in terms of area and
power due to the 3:1 adders. SIGMA proposed a more sophisticated RN
called FAN, which equivalently to ART, allows to create any arbitrary num-
ber of dynamic-size clusters, but replaces the inefficient 3:1 adder switches
by simpler 2:1 adders t the cost of more wires.
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• Linear Reduction Network (LRN) (Figure 2.8(d)): In order to support all
types of accelerators, in STONNE we also implement a linear reduction
network which is typically used in rigid accelerators such as the TPU [61],
Eyeriss [22], Eyeriss-v2 [24] or ShDianNao [28], to perform the cluster
reductions.

Additionally, and as a part of this thesis, STONNE also implements STIFT and
MRN reduction networks which are described as thesis proposals in Chapters 3
and 4, respectively.

2.4.2 Memory Hierarchy and Memory Controllers

STONNE implements the typical configurable memory hierarchy found in most
DNN accelerators composed of local storage, some on-chip global storage (i.e.,
the Global Buffer, GB), and the off-chip DRAM memory. These three levels of the
hierarchy are configurable by the user through the STONNE configuration file,
which defines parameters such as bandwidth, different FIFO sizes, GB size or
DRAM size and technology (e.g., HBM). Data orchestration between the GB and
the distribution and reduction networks is performed by a memory controller
(i.e., control unit) which is also selected by the user based on their preferences.
As data movement differs depending on both the dataflow and whether the
execution is dense or sparse, STONNE implements different types of memory
controllers which are configurable and interact with DRAM memory assuming
double-buffering prefetching at the Global Buffer. These memory controllers use
internal counters to calculate the next addresses that the accelerator will read or
write and their implementation is inspired by Buffets [100]. We described these
memory controllers as follows:

• Dense controller (DC): it takes inspiration from mRNA [125] and hence,
orchestrates the data based on a fixed tile partition that cannot change
during the execution of the layer (see Figure 2.8(j)). First, a DNN layer is
defined with 7 parameters as Layer(R, S, C, K, N, X’, Y’) where R and S are
the number of rows and columns in a filter respectively, C is the number of
channels, K is the number of filters, G is the number of groups (i.e., to give
support for factorized convolutions), N is the batch size, and X’ and Y’ are
the number of rows and columns in the output respectively. We define a tile
as Tile(T_R, T_S, T_C, T_G, T_K, T_N, T_X’, T_Y’), where T_R × T_S × T_C
parameters are a subset of the filter dimensions, and therefore, what defines
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the size of the dot product. Similarly, T_G × T_K × T_N × T_X′ × T_Y′

parameters represent the subset of number of groups, filters per group,
input fmaps, and output dimensions, respectively, thus defining the number
of clusters that are mapped onto the architecture. Note that, if the size of the
cluster is smaller than the filter size (i.e., (T_R/R × T_S/S × T_C/C) > 1),
then the architecture will have to enable folding as it will be necessary to
iterate over the same cluster to process the entire filter.

• Sparse Controller (SC): The use of the sparse controller (Figure 2.8(k))
changes drastically the way in which the data flows throughout the ele-
ments of the architecture as when sparsity is enabled, the size of the dot
products varies according to the sparsity of the data. The sparse controller
implemented in STONNE runs GEMM operations (any CONV operation
can be mapped to GEMM using the img2col function) and supports both
bitmap and CSR formats to represent the sparsity of the MK and KN
matrices.

Obviously, the configured memory controller must always be compatible with
the hardware substrate selected to be modelled. In terms of dataflows, STONNE
implements the dense weight-stationary, output-stationary and input-stationary
dataflows. DRAM is modeled using DRAMsimv3 [32].

Other alternatives could also be easily implemented from the existing mem-
ory controllers. For example, in Chapter 4 we describe an additional memory
controller incorporated in STONNE that supports the three combination of Inner-
Product, Outer-Product and Gustavson’s dataflows for sparse GEMM computation.

2.4.3 Modeling DNN Accelerators in STONNE

2.4.3.1 Cycle-level Simulation

Figure 2.9 shows the class diagram used in the STONNE Simulation Engine
to model each component. As can be observed, all the components contain a
cycle() method which implements their behaviour during a clock cycle. To
enable the abstraction and allow the user to configure its own accelerator, we
employ a hierarchical abstract class implementation whose specific instances are
selected at runtime by the main Accelerator class. This top class iterates over
every configured component in the accelerator and runs its cycle() method,
emulating a cycle-by-cycle microarchitectural behaviour.
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Figure 2.9: Simulation Engine class diagram. Acronyms from Figure 2.8.

2.4.3.2 Variability

Using the building blocks shown in Figure 2.8(a-k), STONNE is able to model a
variety of DNN accelerator architectures. Examples of particular architectures
directly supported in STONNE and the basic building blocks used in each case
are given in Table 2.4 (also drawn in Figure 2.8(l-o)). Moreover, STONNE can
be easily extended with additional models of DNs, MNs, RNs and memory
controllers, giving rise to new accelerator architectures, as we demonstrate in
Chapters 3 and 4.

Data-dependent optimizations: Since STONNE connects with DL frame-
works, the aforementioned building blocks can be extended to precisely evaluate
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TPU-like MAERI-like SIGMA-like
Memory Controller Dense Dense Sparse

Distribution Network PoPN TN BN
Multiplier Network LMN LMN DMN

Reduce Network LRN ART FAN

Table 2.4: Modeling DNN Accelerators in STONNE.

data-dependent architectural optimizations. The last two use cases presented in
Section 2.5 showcase this.

Limitations of STONNE: In essence, STONNE is aimed to model MAC-based
accelerators. Modelling other types of accelerators (e.g., bit-wise or analog ones)
could require major changes to the Simulation Platform component of STONNE.

2.5 Validation

This section validates STONNE by approaching three different angles: First, we
perform a timing validation in which we compare the timing results (i.e., the
number of cycles) obtained with STONNE against those obtained with the real
hardware. After that, we ensure that the results obtained with STONNE are
correct. Finally, we measure the accuracy of STONNE in terms of energy and
area results.

2.5.1 Timing Validation

To validate the timing accuracy of STONNE against real hardware, we focus
on three open-source implementations of DNN accelerators: the MAERI BSV
code, the SIGMA Verilog code, and the TPU RTL implementation used to val-
idate SCALE-Sim [30] implemented in Verilog. This helps us also validate the
experimental results performed in our three use cases in Section 2.6.

For the timing validation process, we configure three instances of a
MAERI-like, a SIGMA-like and an output stationary TPU-like architecture using
their corresponding building blocks (see Figures 2.8(l), 2.8(n) and 2.8(o)). Recall
that this execution mode allows for easy configuration of the Simulation Engine
(to model a MAERI architecture in this case), DNN layer configuration and
memory/compute partition tiles.

Since these RTL versions do not provide the large flexibility of our cycle-level
architectural simulator–which can model any combination of the parameters

83



2. STONNE: Enabling Cycle-Level Microarchitectural Simulation for

DNN Inference Accelerators

Design Layer M N K RTL STONNE Error
# cycles # cycles %

MAERI
MAERI-1 6 25 54 1338 1381 3.10%
MAERI-2 20 25 180 16120 16081 0.24%
MAERI-3 6 400 54 26178 26581 1.51%

SIGMA

SIGMA-1 64 128 32 2321 2304 0.73%
SIGMA-2 256 64 64 8594 8448 1.72%
SIGMA-3 256 128 64 17192 16896 1.75%
SIGMA-4 128 1 64 139 138 0.72%

TPU

TPU-1 16 16 32 66 67 1.50%
TPU-2 16 16 16 50 51 2.00%
TPU-3 32 32 16 200 204 2.00%
TPU-4 64 64 32 1056 1072 1.50%

Table 2.5: Timing accuracy of STONNE using RTL versions of MAERI, SIGMA
and an OS-dataflow TPU.

of the accelerator (e.g., number of MSs, number of trees in the DN, number
of input/output ports in the Global Buffer)–we are heavily constrained in the
number of validation experiments that we can carry out. This way, for the
MAERI-like architecture, we have configured both STONNE and BSV versions
with 32 MSs and 4 DN/RN elements/cycle bandwidth parameters. In addition,
the MAERI BSV version can only execute the three different types of layers listed
in Table 2.5, with the tile shape: Tile(T_R=3, T_S=3, T_C=1, T_G=1, T_K=1, T_N=1,
T_X’=3, T_Y’=1). For the SIGMA-like version, we have configured both the RTL
and STONNE versions with 128 MSs and 128 DN/RN elements/cycle bandwidth
parameters running 4 layers. For the TPU-like, we have configured both the RTL
model and STONNE using a 16 × 16 PE-array and full bandwidth. Given this
set of microbenchmarks targeting specific layer types, we run STONNE using its
direct user interface (the STONNE User Interface in Figure 2.4).

To evaluate the accuracy of timing simulation, Table 2.5 shows a comparison
of the total number of executed cycles reported by the RTL versions and STONNE
after running the eleven layers supported by the RTL versions. As we can see, the
differences in the total number of executed cycles obtained with STONNE and
the RTL versions range from 0.14% to 3.10% (1.53% on average), demonstrating
that STONNE closely mimics the characteristics of the hardware versions.
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2.5.2 Functional Validation

Since STONNE simulator is a back-end compute platform of PyTorch, it also
outputs the result of the inference (the prediction) when running a particular
DNN model for certain input data. To validate the functionality of STONNE, we
have configured and run the three DNN accelerators presented in Table 2.4 with
256 processing elements and full bandwidth (i.e., 256 elements/cycle). We have
executed the seven DNN models listed in Table 2.1 with a test set of 50 samples
(e.g., an image or a sentence) from their respective datasets, and for every sample,
we have compared the output of the last DNN layer (e.g., the score digits of a
fully-connected layer) reported by PyTorch when running natively on the CPU,
with the obtained for the executions with STONNE. They perfectly match for all
cases.

2.5.3 Accuracy of Energy and Area Estimates

We ran synthesis using Synopsys Design-Compiler and place-and-route using
Cadence Innovus on each module inside the TPU, MAERI and SIGMA RTL to
obtain the real energy and area numbers. We used those numbers to derive
the energy and area models implemented in STONNE. In this way we ensure
the energy and area numbers reported by STONNE perfectly mimics the real
hardware.

2.6 Examples of Use Cases of STONNE

Through three use cases, we demonstrate how STONNE can be used to conduct
comprehensive evaluations of several DNN accelerator architectures running
complete DNN models. For the three use cases we assume the next system
parameters: 28-nm technology node, 1 GHz clock, FP8 datatype, 108-KB Global
Buffer (GB) size and two 256 GB/s 512-MB HBM2 DRAM modules. Other
relevant parameters that are specific to each use case are given below.

2.6.1 Evaluation of DNN Inference in TPU, MAERI and SIGMA

The aim of the first use case is to directly compare three different accelerator
architectures (namely, TPU, MAERI and SIGMA) considering their achievable
performance, energy consumption and required area. All the simulations were
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Figure 2.10: Number of cycles reported by STONNE after running the inference
procedure of the DNN models listed in Table 2.1 on MAERI, SIGMA and TPU.

performed considering the complete inference processing of the 7 DNN models
presented in Table 2.1.

2.6.1.1 Methodology and Configuration Parameters

We assume the next system parameters for the three architectures: For both
MAERI and SIGMA, we assume 256 multipliers and adders, and 128 ele-
ments / cycle GB read/write bandwidth. For the TPU, we have configured
256 processing elements and full bandwidth (as this architecture requires). Note
that, configuring these three architectures in STONNE does not require any modi-
fications in the simulation framework, as STONNE directly supports the required
hardware modules and dataflows for all of them (see Table 2.4). To configure
STONNE, we have used the hardware input file of STONNE to simulate the
native building blocks shown in the Table 2.4.
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Figure 2.11: Energy consumption (we use an sqrt log y-axis) in µj (b) reported
by STONNE after running the inference procedure of the DNN models listed in
Table 2.1 on MAERI, SIGMA and TPU.

2.6.1.2 Results

Figure 2.10 shows the number of cycles obtained for the three simulated architec-
tures. We observe that a MAERI-like architecture reaches average performance
improvement of 20% over the TPU-like architecture for the execution of the seven
DNN models, with a maximum of 231% for Mobilenets and a minimum of 9%
for Resnets-50. Besides, we found that a SIGMA-like architecture is 91% faster on
average than a MAERI-like one thanks to the sparsity support.

Figure 2.11 shows a breakdown of the total amount of energy consumed (µJ) in
each case, distinguishing the main architectural components: Global Buffer (GB),
Multiplier Network (MN), Distribution Network (DN) and Reduction Network
(RN). As we can appreciate, the energy consumption is dominated by the RN
as it reaches 84%, 58% and 43% of the total energy on average across the DNN
models for the TPU-like, MAERI-like and SIGMA-like architectures, respectively.
In general, STONNE finds that the SIGMA-like architecture is 70% and 54% more
energy efficient than the MAERI-like and TPU-like architectures, respectively.
This is due to the capacity of SIGMA to exploit sparsity, which reduces the
number of operations by 77%, thus bringing significant dynamic energy savings.
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Figure 2.12: Area estimations in µm2 for MAERI, SIGMA and TPU obtained with
STONNE.

Finally, in terms of area (see Figure 2.12), the SIGMA-like architecture is 13% more
efficient than the MAERI-like one, while the TPU-like architecture is 17% and
6% more efficient with respect to the MAERI-like and SIGMA-like architectures,
respectively. As we observe, the differences in area are not as noticeable as those
in the energy and runtime metrics. This is due to the area required in the three
cases is mainly dominated by the SRAM structure of the GB, which is the same
for the three architectures, and that represents 70%, 77% and 82% of the total
area of the MAERI-like, SIGMA-like and TPU-like architectures, respectively.

These results are consistent with the trends pointed in prior works [31,70] and
validate that flexible architectures can adapt much better to the current diversity
of DNN layers.

2.6.2 Back-End Extension for Data-Dependent HW
Optimizations

Data-dependent optimizations aim to reduce computation and memory footprint
during DNN inference by exploiting the characteristics of the data values being
used, such as exploiting input data repetitions or zero skipping. These techniques,
yet powerful, are very challenging to evaluate, as it is necessary to have the
exact data values that the hardware accelerator processes at all times during the
execution of a real DNN model. This second use case demonstrates how STONNE
makes this possible by acting as an accelerator device for a real DNN framework
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(like Pytorch) and by enabling cycle-level modeling of the accelerator architecture
activity under consideration. Furthermore, this use case also illustrates how
STONNE can be easily extended to model architectures that are not originally
included such as the TPU, MAERI and SIGMA.

To do so, we will use STONNE to model the data-dependent accelerator
SnaPEA [33] by extending its back-end (i.e., the simulation platform described in
Section 2.4). This architecture that aims to optimized CNN processing, exploits a
property in which all the activation values in the convolution operations are either
zero or positive. Any negative value calculated during the convolution is directly
converted into zero by the subsequent ReLU operation. This means that the
weights can be statically reordered based on their signs so that the architecture
can perform at runtime a single-bit sign check on the partial sum. Once the
partial sum drops to zero, the rest of computations and memory accesses can be
avoided, since the output value will unfailingly be zero.

2.6.2.1 Implementation

The changes that have been introduced in STONNE to model this architecture
mainly affect its back-end, and are as follows:

1. Inclusion of a prior-simulation function in the input module (see Figure 2.4a)
to reorder the weights as explained in SnaPEA [33] and that creates a table
of indexes to locate the inputs. This table is passed to the memory controller
(i.e., control unit) which will use it to match every sorted weight with its
activation.

2. A new memory controller (i.e., Control Unit) in the Simulation Engine (see
Figure 2.4a) that utilizes this table of indexes to correctly deliver the weights
and inputs to the multipliers. This unit is just an extension of the previous
dense memory controller already provided in STONNE and explained in
Section 2.4.2.

3. We use the current linear multiplier network (see MNs Section 2.4.1.2)
configured to use the output-stationary dataflow.

4. We have extended the accumulation logic in the processing units to detect
when the results are negative. As soon as this event is triggered, the data
is sent out to the Global Buffer, cutting out the computation earlier, and
thus, saving energy and time. We implement the exact mode explained in
SnaPEA.
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5. To estimate energy consumption, we have included in the Output Module a
new table with the energy model of SnaPEA based on the published energy
numbers provided in the SnaPEA paper.

2.6.2.2 Methodology and Configuration Parameters

Similar to the SnaPEA work [33], for this use case we model 64 multipliers and
adders, and 64 elements/cycle GB read/write bandwidth. We have configured
two different versions of our SnaPEA implementation: the Baseline, which
models the SnaPEA architecture but that excludes the negative detection logic,
and therefore, runs the entire execution; and the full SnaPEA architecture (we
call it SnaPEA-like) which adds this logic, cutting out the computation earlier
whenever possible. We have configured and run these two versions of the
accelerator with the aforementioned parameters and we have executed the four
purely CNN models of those listed in Table 2.1 (i.e., Alexnet, Squeezenet, VGG16,
and Resnets-50) with a set of 20 input images extracted from ILSVRC-2012
validation dataset. For each input image, we have compared the output of the last
DNN layer (e.g., the score digits of a fully-connected layer) reported by PyTorch
when running only on a CPU, with the one obtained for the executions with
STONNE simulating the two SnaPEA implementations to corroborate that they
perfectly match.

2.6.2.3 Results

Figure 2.13 plots the speedups achieved by the SnaPEA-like architecture against
the baseline for the considered four CNN models. STONNE shows that SnaPEA
can bring average speedups of 35%, closely approaching the 30% originally
reported in [33]. On the other hand, Figure 2.14 shows the energy consumed when
running the benchmarks on the two architectures. The results are normalized to
the baseline. Similarly, these numbers demonstrate that the speedups mentioned
previously translate into significant energy savings (21% on average).

These results can be explained by observing Figures 2.15 and 2.16, which
show the number of operations and memory accesses performed during the
execution of the CNN models on both the SnaPEA-like architecture and the
baseline. In particular, we can observe that on average the technique exploited
by SnaPEA is able to reduce the number of computations and memory accesses
by 30% and 16%, respectively, being Squeezenet (S) the CNN model with the
highest reductions (30% in operations and 22% in memory accesses) which
correlates with the highest improvements in energy consumption. As it can be
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Figure 2.13: Speedups of SnaPEA against the baseline after running four CNN
models using the STONNE simulator.

appreciated, these results closely follow the trend reported in [33], confirming
that SnaPEA is a promising optimization to be applied to CNN accelerators.
Obviously, we found timing and energy differences between the original paper
and the results obtained with STONNE. These differences mainly stem from
slight variances in the methodologies used in each case: older CNN models are
used in [33], potential differences in the weights of the CNN models are possible
(the SnaPEA paper does not specify how the weights of the CNN models have
been obtained), and presumably, different images are used as inputs in both cases.
More importantly, however, is that we see the same order of magnitude in the
gains that SnaPEA is able to achieve, demonstrating STONNE’s ability to quickly
and faithfully quantify the benefits of applying data-dependent optimizations to
DNN accelerators.
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Figure 2.14: Normalized energy of SnaPEA against the baseline after running
four CNN models using the STONNE simulator.

2.6.3 Front-End Extension for Filter Scheduling in Sparse
Accelerators

Through the third use case, we demonstrate that precise, full-model evaluation is
required to expose the particular values used during inference. This is needed for
some optimization techniques such as filter scheduling in flexible sparse DNN
accelerators that we present here. The modifications now focus on the front-end
of the simulator.

2.6.3.1 Motivation and Idea

In the Chapter 3 we will confirm the importance of the folding strategy imple-
mented in a dense architecture (such as MAERI) due to the large size of the
filters that are required to compute a certain output (i.e., large dot products).
When we consider the large amount of sparsity in the filters of contemporary
trained DNN models (from 60% to 90%, as shown in Table 2.1), the amount of
computation involving a certain filter can be largely reduced by only mapping
the non-zero weights onto the accelerator’s processing elements. As a result,
even more than one entire filter could be mapped at once onto different clusters
of MSs in the MN of a flexible sparse DNN accelerator. In addition to this
well-known optimization, in this use case, we demonstrate for the first time that

92



2.6. Examples of Use Cases of STONNE

0e+0

5e+9

1e+10

1.5e+10

2e+10

2.5e+10

3e+10

3.5e+10

#
 o

f 
O

p
e
ra

ti
o
n

s

A S R V

B
a
se
lin
e

S
N
A
P
E
A
-l
ik
e

B
a
se
lin
e

S
N
A
P
E
A
-l
ik
e

B
a
se
lin
e

S
N
A
P
E
A
-l
ik
e

B
a
se
lin
e

S
N
A
P
E
A
-l
ik
e

Figure 2.15: Number of computed operations during the execution of the four
CNN models using the STONNE simulator for SnaPEA and the baseline.

the way in which the filters of a sparse DNN model are scheduled onto a MN network
of a flexible DNN inference accelerator might have significant impact on performance.
A prior work [88] examined this idea, but with a focus on GPUs as the research
community lacked a simulation tool for DNN accelerators. Here, we prove that
this reordering has also significant impact on DNN accelerators. To do so, we use
STONNE to simulate a flexible and sparse 256-MS SIGMA-like architecture [31].

First, to analyze scheduling opportunities of variable size filters onto the
SIGMA’s MN fabric, we pay attention to the diversity of filter sizes for the seven
DNN models under study when sparsity is exploited. Particularly, Figure 2.17a
shows the average number of entire filters that could be mapped simultaneously
onto a 256-MS flexible architecture for every single DNN layer depending on each
DNN model. As can observed, between 4 and 8 filters can be entirely mapped
simultaneously in most cases. The only exceptions are Alexnet and BERT, that
features larger filter dimensions by design (e.g., up to 4.3× larger filters compared
to Mobilenets-V1, which comes next in terms of filter size). Moreover, we have
further looked into the size of the filters required to compute each of the DNN
layers, finding out huge variability between them. As an illustrative example,
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Figure 2.16: Number of performed memory accesses during the execution of the
four CNN models using the STONNE simulator for SnaPEA and the baseline.
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Figure 2.17: (a) Average number of entire filters that can be mapped simultane-
ously in a 256-MS flexible sparse architecture. (b) Filter sizes for the first layer of
the DNN models.

Figure 2.17b shows the size (y-axis) for every mapped filter onto the 256-MS
architecture for the first layer of each DNN model4 (x-axis).

4The maximum mapping size is 256 because of the 256-MS SIGMA architecture.
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Next, we show that the large filter size variability found in contemporary
DNN models can be exploited to optimize the DNN inference procedure. In
particular, we observe that the specific order in which the filters are scheduled to
be mapped onto the DNN accelerator can impact the overall compute utilization,
and in consequence, overall performance. Figure 2.18 illustrates this optimization
opportunity for an example 8-MS SIGMA-like architecture. At the top of the
figure, we consider an example layer composed of a 1 × 5 vector of inputs and
four 1 × 5 sparse filters (F0 and F2 have an effective size of 4, while it is 2 in
the case of F1 and F3) utilized to compute four dot products (producing the
outputs from O0 to O3). Figure 2.18a shows that computing this layer in SIGMA
completely ignoring the opportunities of scheduling the filters can lead to an
unbalanced scenario, requiring a total of 4 cycles. More specifically, in the first
step, the sparse controller maps both F0 and F1 filters onto the MN. Then, since
F2 does not fit entirely within the MN, the sparse controller cannot allocate it
and F2 has to wait for execution until the next iteration. Therefore, in the first
iteration, the dot product to calculate O1 can be completed in just 1 cycle, while
the one to calculate O0 needs 2 cycles, clearly unbalancing the computation. This
happens again in the second iteration, where the next two remaining filters are
computed after 2 additional clock cycles (i.e., 4 cycles overall). As we can see, we
show how changing the order of the filters (which could be done either statically
by the compiler or dynamically by the accelerator’s memory controller) yields a
variable number of cycles to complete the computation of the four dot products
in the example.

Figure 2.18a shows that computing this layer completely ignoring the opportu-
nities of scheduling the filters can lead to an unbalanced scenario, requiring a total
of 4 cycles. On the other hand, Figure 2.18b illustrates how faster layer processing
can be achieved if the computation of the four filters is scheduled differently.
For instance, we can consider a simple scheduling heuristic to achieve perfect
load-balancing in this example for computing the dot products. In particular, we
can rearrange the filters to be mapped at every iteration depending on filter size
following a Largest Filter First policy as follows (more details next). In the first
iteration, F0 and F2 with 4 non-zero values can be mapped together, thus taking
2 cycles to compute their two outputs. Then, in the next iteration, the 2-size
filters (F1 and F3) can also be mapped together, but in this case the computation
of their associated outputs would be completed in just 1 cycle. Therefore, after
applying this simple reordering of the filters, we can balance the computation of
the outputs and make better use of the accelerator resources, which in the end
results in fewer clock cycles required (25% less in this simple example).
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Figure 2.18: An example filter scheduling heuristic to optimize four dot products
in a SIGMA-like accelerator architecture.

This observation opens up a new avenue to optimize the inference procedure
of sparse DNN models in flexible sparse DNN accelerators. In particular, the
exploration of novel scheduling strategies for the sparse filters to better balance
the mapping of the dot products onto the DNN accelerator, so that compute unit
utilization is maximized and processing time reduced. We focus on exploring
static scheduling heuristics, where the sparse memory controller issues the filters
for execution in the same order that is determined by a certain static scheduling
strategy directly applied layer by layer to each of the DNN models. To guarantee
the correctness of the executions, a final reordering step is carried out after the
last fully-connected layer of each DNN model.

2.6.3.2 Implementation

Implementing new scheduling approaches in STONNE just requires modifica-
tions in the front-end (i.e., Input Module) of the simulator. To do so, we have
incorporated a prior-simulation function that reorders the filters based on its size
and on the scheduling technique.

2.6.3.3 Methodology and Configuration Parameters

We model and simulate a single Flexible Dot Product Engine (Flex-DPE) in a
SIGMA-like flexible architecture that supports sparse and irregular matrix formats
based on weights and/or activation sparsity. The on-chip network choices are
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Figure 2.19: Normalized runtime for the LFF static scheduling strategy with
respect to a non-scheduled execution.

shown in Table 2.4. We have run the seven DNN models whose sparsity levels
are shown in Table 2.1. We model these system parameters: 256 multipliers and
adders and 128 elements/cycle Global Buffer (GB) read/write bandwidth.

In this use case, we consider a simple static heuristic: Largest Filter First (LFF).
In LFF, the filters are reordered so that the sparse controller always selects the
largest available filter (i.e., of those not yet used for computation) that can be
mapped onto the Multiplier Network (256 MSs in this case). To cover the rest of
the available MSs, the scheduler selects as many available filters as possible in
descending size order. For the sake of completeness, we also present the results
obtained for a Random (RDM) ordering.

2.6.3.4 Results

We compare the results for LFF and RDM against those obtained when running
the sparse filters in their natural order (i.e., without performing any kind of
reordering). We call this approach the No Scheduling (NS) ordering. As ob-
served in Figure 2.19, using the random scheduling strategy does not yield any
performance improvement as the MS utilization does not increase at all. This
demonstrates that a naive strategy is not good enough to better balance the
prcoessing of the clusters. Alternatively, LFF is capable of both balancing the
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Figure 2.20: Normalized energy for the LFF static scheduling strategy with
respect to a non-scheduled execution.

processing of the clusters during most of the execution and selecting a smaller
filter when another one does not fit. This leads to increased MS utilization (2.5%
on average), which translates into performance advantages ranging between
11% for the most sensitive DNN models (Squeezenet, VGG-16, Resnets-50 and
ssd-Mobilenets) and 1% in models such as BERT, whose large filter sizes and
low sparsity ratio (60%) often prevent multiple clusters from being processed
simultaneously (see Figure 2.17a). On average, we observe a performance gain of
7% across the seven DNN models.

Figure 2.20 plots a breakdown of the total amount of energy consumed in each
case, distinguishing between the main components of the architecture: Global
Buffer, Multiplier Network, Distribution Network and Reduction Network. As
we can see, energy reductions are not very significant, ranging between 1% and
6% (4% on average). The energy consumption in this case is mainly dominated
by the number of operations carried out during the execution, which is the same
regardless of how the filters are rearranged. In this case, most of the observed
energy gains come from both the reduction of static energy due to the decrease in
execution time, and the reduction in the number of messages to be sent through
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Figure 2.21: Normalized energy for the LFF static scheduling strategy with
respect to a non-scheduled execution.

the DN (i.e., running more clusters simultaneously increases the ability to exploit
the DN’s multicast package delivery).

Another important observation that we would like to make is that we have
found out a huge difference in terms of layers sensitivity when it comes to LFF.
In particular, there are some layers that experience a large impact in terms of
energy and performance when LFF is applied, but this benefit is subsequently
hidden by other low-sensitive layers.

As an illustrative example, Figure 2.21 shows the performance and energy
gains for 14 representative layers (in terms of LFF sensitivity) of Resnets-50 when
using the LFF static filter scheduling heuristic. The results are normalized to
the obtained for the non-scheduled execution. Here, we can see how the layers
can be divided into three different groups according to their sensitivity to the
LFF scheduling heuristic. The first five layers show no benefit at all as LFF
is not capable to leverage the MSs better (gains of 0.01% on MS utilization),
so they fall into the low-sensitive layer category. Contrarily, for the next five,
significant improvements (up to 36% and 16% performance and energy gains,
respectively, in layer L6) are observed, and would therefore be those that make
up the high-sensitive layer category. These significant gains are explained by
increased MS utilization, which ranges from 9% to 13% (11% on average). Finally,
the medium-sensitive layer category would be comprised of the last five layers,
for which MS utilization benefits varying from 8% to 4% (5% on average) are
obtained, leading to lower performance advantages between 17% and 8% (energy
benefits range between 5% and 1% in this case).

The obtained results point out that more intelligent heuristics capable of
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adapting the filter scheduling strategy to the specific features of each layer could
bring large benefits in terms of performance and energy savings when running
sparse DNN models. This observation paves the way for the development of
much more sophisticated strategies aimed to improve the energy efficiency of
next-generation DNN accelerators.

2.7 External Tools based on STONNE

Although other domains such as GNNs or multi-heterogeneous systems are out
of the scope of this thesis, it is important to put emphasis on the impact the
STONNE simulator has had on the development of other tools, as well as the
impact that it might have in the future. For that reason, this section describes
OMEGA and SST-STONNE, two additional tools developed upon the STONNE
framework, which illustrates how STONNE enriches the research of not only the
DNN application domain, but also multitude of other areas of domain-specific
acceleration.

2.7.1 OMEGA

GNNs are becoming increasingly popular because of their ability to accurately
learn representations from graph structured data. GNN inference runtime is
dominated by two phases [121]: (1) Aggregation which is an SpMM (i.e., sparse-
dense matrix multiplication) computation with irregular, workload dependent
data accesses, and (2) Combination which involves computations that can be cast
as GEMMs. Prior works on DNN dataflow studies have described the data orches-
tration and data movement in DNN accelerators (see Chapter 1). However, these
works only model dense computations and model one GEMM or convolution
operation at a time. GNNs offer an additional knob of pipelining between the
two phases, which also leads to interdependence of the two dataflows.

The arrival of STONNE, has allowed to further study these dataflows. To do so,
OMEGA framework [40] (Observing Mapping Efficiency over GNN Accelerators)
is built on top of STONNE [82] which enables to model the cost of the pipelined
GNN dataflows. OMEGA instantiates two instances of the STONNE’s simulation
platform (see Section 2.3.1) and loads both SpMM and GEMM operations using
the STONNE API operations ConfigureSpMM and ConfigureDMM, respetively
(further details of these operations may be found in Section 2.4). Then, the
STONNE’s simulation platform feeds the statistics to an inter-phase cost model
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Figure 2.22: OMEGA framework toolflow.

(i.e., a specific output module for OMEGA) that returns the metrics of a pipelined
inter-phase dataflow as shown in Figure 2.22.

OMEGA framework aims to provide analysis of the design-space of GNN
dataflows over flexible accelerator [68] which captures both individual phase
dataflows (Intra-phase dataflows) and dataflows between the two phases (Inter-
phase dataflows).

OMEGA framework has gained a lot of interest by the research community
and it is publicly available under the terms of the MIT License on [4]. Currently,
OMEGA has been integrated within the STONNE ecosystem.

2.7.2 SST-STONNE

STONNE and OMEGA are tools that operate in standalone manner, which im-
pedes them from simulating interactions with other simulated architectures such
as CPUs, GPUs or other type of accelerators. To overcome this, we have also
integrated STONNE into the Structural Simulation Toolkit (SST) infrastructure [9]
(referred to as SST-STONNE). Figure 2.23 shows a high level overview of this
integration. As we can see, SST-STONNE enables the modeling of both DNN
and GNN accelerators within a larger HPC computing cluster, expanding the
edge of the exploration to borders such as multi-tenant applications running
on heterogeneous systems, scheduling techniques across different workloads or
tasks within the same workload, or even host-device interaction. Furthermore,
the SST-STONNE replaces the native STONNE memory controllers (explained
in Section 2.4.2) by custom controllers that connects STONNE to a cycle-level
memory hierarchy simulator (SST memHierarchy) able to accurately model con-
figurable memory hierarchies. In this way, the STONNE simulator sends the
memory requests to the SST memHierarchy simulator, which processes them
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Figure 2.23: High level overview of SST-STONNE.

and sends back the responses. SST-STONNE supports four key tensor operations
used in the DL domain: Convolution, GEMM, SpMSpM, and SpMM. In both
SpMSpM and SpMM operations, we support the compression formats CSR, CSC
and bitmap.

SST-STONNE has become the first simulator to integrate the three flavours of
kernel computations: CPU, GPU and domain-specific accelerators. The source
code is available on Github [7] and the tool has even been announced as an
official external component of the SST framework [9]. In Chapter 4 we will utilize
SST-STONNE to accurately model our sparse accelerator, demonstrating the
impact that this tool may have in the future of the domain-specific acceleration.

2.8 Conclusions

STONNE paves the way towards rapid and accurate prototyping of next-
generation DNN accelerator architectures. Through three use cases, we demon-
strate the huge potential of STONNE to assist the research community in the
pursuit of better DNN accelerator architectures. In the first use case we demon-
strate how the STONNE simulator can be utilized to model both rigid and flexible

102



2.8. Conclusions

accelerators by modeling and comparing state-of-the-art accelerators such as the
Google’s TPU, MAERI, or SIGMA. In the second use case, we model SnaPEA
accelerator to show the importance of having a cycle-level simulator in order to
model data-dependent architectures. Finally, in the third use case, we propose a
novel filter scheduling technique that verifies the importance of computing real
values when modeling. Furthermore, the proposed technique can be leveraged
to improve the energy efficiency of current state-of-the-art sparse accelerators.

Finally, we also demonstrate the extensibility of STONNE by presenting two
external tools called OMEGA and SST-STONNE. Both tools build on top of
STONNE to support more complex application domains, such as GNN hardware
acceleration, or even, heterogeneous systems. In this chapter, we demonstrate
that as the complexity of the microarchitecture of DNN accelerators grows, the
analytical models typically used to estimate their performance and energy figures
are not able to capture many important subtleties that simulation at cycle level
does.

Finally, STONNE simulator has become in two years one of the most popular
and utilized tools on the research of DNN accelerators. The interest can be
observed on [8] as well as among the researchers around the world that are
leveraging STONNE as the heart of their research projects.
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Chapter 3
STIFT : A novel network fabric for

efficient spatio-temporal reduction
in flexible DNN accelerators

3.1 Introduction and Motivation

As we have discussed in chapter 1, the computation of the dot products en-
tailed by the DNN inference phase requires the execution of simple Multiply-
and-Accumulation operations (i.e. MACs), albeit in a very large quantity (e.g.
15.5 billion MACs approximately for the VGG16 DNN model). In order to fulfill
the performance and energy consumption requirements of the inference pro-
cedure, the research community has embarked on the mass development of
specialized DNN accelerator architectures [22, 24, 28, 31, 61, 70, 78]. These propos-
als are usually built using a large number of connected multiplier and adder
units. The adder units massively reduce the large number of partial sums (psums)
generated by the multiplication operations.

Prior to execution of the inference procedure on a DNN accelerator, a map-
per [23, 125] (see Figure 3.1) selects, based on the hardware capabilities and the
specific characteristics of the workload (e.g., type and dimensions of the DNN
layers), the number of dot products that will be calculated in parallel, and the
group of multipliers and adders in charge of computing each dot product. In this
chapter, we will also use the term cluster to refer to a group of multiplier units in
charge of a certain dot product. Usually, the number of multipliers in the cluster
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Figure 3.1: Conceptual view of a typical DL accelerator.

is smaller than the number of products required for the assigned dot product, so
that several iterations are required. The result of each iteration is accumulated
with that of the subsequent one, and so on, until the full dot product is completed.
This process is known as folding [23], as a large dot product operation folds over a
smaller cluster of multipliers [23].

Once the hardware configuration is determined by the mapper, the processing
of each of the clusters in most recent proposals usually relies on a hardware
implementing a 3-stage pipeline based on three network fabrics [66] (see Fig-
ure 3.1): the Distribution Network (DN), a global network that connects the
global scratchpad SRAM (i.e., the Global Buffer) to the multipliers, is in charge
of distributing all the operands for each cluster; the Multiplier Network (MN), a
local network between the multipliers that enables reuse of weights (or inputs),
performs the multiplication operations; and the Reduction Network (RN), a
global network connecting the MN and the Global Buffer, carries out all the
accumulations needed for the reduction phase. The MN and RN contain all the
compute units (multipliers and adders, respectively) and along with the DN,
define all the permitted mappings, and thus, determine the dataflow [68, 117]
and the energy efficiency of the execution. These NoC-based designs have been
shown capable of reducing the expensive off-chip memory accesses, and thus, to
improve performance and energy consumption [18].

The separation between the DN, MN and RN can be physical (e.g. MAERI [70],
SIGMA [31]) or logical (e.g., Eyerissv2 [24], Google’s TPU [61]). In this chapter,
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we focus on the first type of accelerator architectures (flexible DNN accelerators),
as they have been shown to provide increased flexibility and better performance
than the second type (rigid accelerators) [31, 70].

The DN, MN and RN in these flexible accelerator designs are typically im-
plemented using lightweight (energy- and area-efficient) microswitches [19, 69],
which enable independent reconfiguration of each on-chip network in order to
efficiently map different dot product partitions through the creation of dynamic-
size clusters enabling single-cycle traversals between the transmitter (i.e., the
on-chip global buffers) and the receiver (i.e., the multipliers). Different kinds of
network topologies have been proposed for them. For example, tree-based [24,70],
Benes-based [11, 17, 31, 73] or linear-based [22, 28, 61] topologies for the DN, en-
abling single-cycle traversals between the transmitter (i.e., the Global Buffer)
and the receiver (i.e., the multipliers), 1D-linear [31, 70] or 2D-linear [22, 24, 61]
topology for the MN, and customized tree-based topologies for the RN [31, 70].
The DN, MN and the RN can be independently reconfigured to efficiently map
different dot product partitions through the creation of dynamic-size clusters.

The reduction stage through the RN is a critical part of the accelerator (it has
a computation complexity higher than O(1)–see Figure 3.1) since it determines:
(i) the flexibility of the architecture to map simultaneous variable-size cluster
reductions (unfeasible in rigid accelerators); and (ii) the reuse pattern that will de-
termine how the elements flow during the reduction, and therefore, the efficiency
of the dot product reduction. These two features constitute what in this chapter
we refer to as the reduction dataflow. To provide high energy-efficiency and low
latency when processing the reduction dataflow, flexible DNN accelerators often
dedicate a large part of the chip resources to implement the RN. For instance,
MAERI [70], which clearly distinguishes between the 3 stages mentioned above,
dedicates up to 25% and 38% of the chip area and power budget, respectively,
just for this network.

Recent proposed accelerators implement one out of the three following reuse
patterns which are directly linked to the way they manage folding situations: i)
Temporal (T) reduction, in which each unit keeps the dot product to be reduced
stationary in a register and performs a temporal accumulation of the different
psums over that register (represented in Figure 3.2a); ii) Spatial (S) reduction,
which coordinates a network of adder units, usually with a tree topology for
efficiency, to perform a spatial reduction (illustrated in Figure 3.2b); and iii)
Spatio-Temporal (ST) reduction, that combines both approaches usually performing
a spatial reduction first, followed by a final temporal one to accumulate different
folding iterations (Figure 3.2c). Among the three approaches, the latter has
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(a) Temporal 
Reduction (T)

(b) Spatial 
Reduction (S)

(c) Spatio-temporal  
Reduction (ST)

Figure 3.2: Reuse patterns implemented in DL accelerators for partial-sum
reduction.

been shown to reach better performance [68]. However, as we will demonstrate,
adding Accumulators (Ac) to the RN for the T reduction as used in ST-based
rigid accelerators, entails significant area and power when it comes to flexible
accelerators.

In this chapter, we present a new strategy for Spatio-Temporal reduction
in flexible DNN accelerator architectures that dodges the need of adding extra
accumulators while keeping performance. In particular, our proposal, that
we call STIFT (Spatio-Temporal Integrated Folding Tree), binds both spatial and
temporal reductions together in a new design of the RN. STIFT builds on the
observation that when several clusters are configured, there are some adder
units in a tree-based RN topology that go unused. By adding a second root
to the tree and additional links between the adder units, we create a new RN
topology that is able to perform both spatial and temporal accumulations for all
possible cluster configurations. This way, STIFT enables efficient and flexible dot
product reductions while reducing the area and power dissipation up to 32%
and 31%, respectively, with respect to the state-of-the-art (a RN augmented with
accumulators).

We see the following contributions in this chapter:

• We quantify, for the first time, the significant impact that different imple-
mentations of folding have on the performance, area and power of flexible
DNN accelerator architectures.
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• We propose STIFT, a new Spatio-Temporal RN fabric for flexible accelerators
that significantly improves performance over current Spatial Tree-based
RNs, while avoiding the large area and power expenses of a Spatio-Temporal
RN with accumulators.

• We present an exhaustive evaluation that includes RTL implementations
and cycle-level simulation of STIFT with DNN models.

The rest of the chapter is organized as follows. Background about contempo-
rary strategies to implement reduction dataflows and their associated RN fabrics
in both rigid and flexible accelerators are described in Section 3.2. We detail the
architecture, operation with several mapping examples, and properties of STIFT
in Section 3.3. Section 3.4 explains the evaluation methodology that involves RTL
implementations and cycle-level microarchitectural simulation with STONNE
(see Chapter 2). The experimental results showing the benefits obtained in terms
of performance, on-chip area and power consumption are exposed in Section 3.5.
Finally, Section 3.6 summarizes the main conclusions.

3.2 Background and Related Work

Reduction dataflows may be materialized in different RNs according to the flexi-
bility of the accelerator design to create a variable number of clusters of arbitrary
size to be reduced in parallel. In this section, we do a comprehensive literature
review, classifying how existing DNN accelerators give hardware support for
reduction dataflows. Thus, we distinguish between the RNs in rigid accelera-
tors, which limit the number and size of the clusters, and the RNs in flexible
accelerators, which allow to create arbitrary number of clusters of varying size.

Along this section, we will utilize the example depicted in Figure 3.3a, wherein
two groups of 8 psums (that have been previously generated by the MN to
compute two different dot products) must be accumulated to obtain two output
values. For each RN solution, we will use Table 3.1 to discuss different aspects
such as the reuse pattern employed, the configured topology, the performance
exhibited, its flexibility to map different number of dot products of arbitrary size,
and the hardware overhead required to implement the folding support.
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Acronym
Reuse

Pattern
Topology Time Flexibility

Hardware
overhead

PT T N/A O(n) Rigid Low
ST-Linear ST Linear O(n) Rigid Low

S-Tree S Tree O[(i + l)× log2(n/i)] Flexible Low
ST-Treeac ST Tree O(i × log2(n/i)) Flexible High

STIFT ST Tree O(i × log2(n/i)) Flexible Low

Table 3.1: RNs implemented in DNN accelerators. n=Elements in a dot product;
i=Folding iterations.
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Figure 3.3: Different types of reduction networks employed by state-of-the-art
accelerators.

3.2.1 Reduction Networks in Rigid Accelerators

First-generation rigid DNN accelerators build on fixed-size clusters of MAC units
interconnected by means of a fixed tightly-integrated on-chip network fabric.
This means that the distinction between the MN and RN is purely logical, but
for the sake of the simplicity, in this chapter we will focus on the accumulation
process, which is the one that dictates the behaviour of the execution, and in
the end, what defines its energy efficiency. Two RNs are typically employed
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in this type of accelerators: what we call a Purely Temporal (PT)1 RN and a
Spatio-Temporal Linear-based RN (ST-Linear)2.

A PT RN is shaped by a set of non-connected accumulators which are Adder
Units or AUs (see Figure 3.3b) augmented with a register for implementing
a temporal reuse pattern in charge of temporarily reducing a particular dot
product (see Accumulator in Figure 3.3d). This way, each accumulator has to
fold O(n) times to compute in O(n) cycles a whole dot product that requires
n multiplications, and the maximum number of dot products that may run in
parallel is dictated by the number of accumulators in the RN. Figure 3.3e shows
a 3-step walk-through example. As we may appreciate, the two dot products to
be computed are mapped onto two accumulators. In step 1, the two units are
initialized with the first psums. Then, the following steps accumulate the next
psums, performing one sum per adder every cycle. Step 4 corresponds to the
accumulation done in cycle 4, while step 8 finalizes the calculation after 8 cycles.
This approach has been used by several prior accelerators such as [28, 78].

Contrarily, some accelerators such as [16, 61], exploit spatial reduction utiliz-
ing a Spatio-Temporal Linear-based RN (ST-Linear). This RN relies on several
columns of simple AUs (see Figure 3.3b) connected vertically through a 1-D linear
array (see Figure 3.3f). Each column of the topology corresponds to a cluster of
AUs able to map and spatially reduce a single output vertically. Since it is very
common to find that the number of AUs located in a column is smaller than the
number of psums needed to be accumulated for a certain output (i.e., folding
is needed), these networks rely on a Spatio-Temporal accumulation scheme to
manage the folding accumulation process. With this aim, each column of AUs
is extended with an extra accumulator that is in charge of performing temporal
accumulation of the spatially accumulated iterations3. This way, similar to the
PT RN, the total amount of time for a cluster of adders to calculate a dot prod-
uct is O(n). Differently, the fact of employing a spatial reduction may increase
unit utilization in several occasions. Figure 3.3f depicts an example. Here, the
two outputs to be reduced are mapped onto the two first columns of the 2 × 4
topology and the reductions flow vertically during the three steps until the entire
operation is reduced.

Both PT and ST-Linear RNs exhibit two main drawbacks: First, they are com-
posed of a rigid interconnection network that makes them unable to gracefully

1Observe that this corresponds to an Output Stationary (OS) dataflow in [117].
2This could link, for example, with the Weight Stationary (WS) dataflow in [117].
3Note: accelerators such as Eyeriss [22] do not have such accumulators for folding support

and would be purely Spatial Linear.
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adapt to different dot product dimensions and sizes. This has already been
shown to lead to under-utilization of the computing units, which can significantly
impact energy efficiency [23,31,68,70]. The second drawback is that n-size reduc-
tions take O(n) cycles to complete, which can be further improved by naturally
performing the reductions in a tree-based manner

As it may be appreciated, both PT and ST-Linear RNs are composed of a rigid
interconnection network that makes it difficult adaptation to different dot product
dimensions. This leads, in general, to under-utilization of the units, which in turn
translates into significant energy inefficiency of the architecture when running
a particular DNN model [31]. To solve this problem, flexible architectures has
recently emerged which incorporate configurable RNs able to accommodate a
variable number of arbitrary-size clusters.

3.2.2 Reduction Networks in Flexible Accelerators

In order to overcome the limitations presented in rigid accelerators, recent flexible
accelerators advocate having physically separated and reconfigurable DN, MN
and RN fabrics. The RN is built from more configurable AUs called Adder
Switches (ASs). Each AS is an AU augmented with a tiny switch to enable
arbitrary cluster reductions of variable size over the same physical RN (see the
AS block in Figure 3.3d), thereby significantly increasing unit utilization [31, 70].

The type of RN that materializes this flexibility is a Spatial Reduction Tree
(S-Tree) used in both the ART and the FAN RNs proposed for MAERI [70] and
SIGMA [31] accelerators, respectively. This type of RN enables efficient reduction
by employing a binary tree-based accumulation so that an ideal whole reduction
operation should take O(log2 n) to be completed (see next for further details).
Besides, to enable the parallel execution of any number of arbitrary-size clusters,
they utilize augmented links (see the horizontal extra link between the two central
ASs in the example of Figure 3.3g) which avoid conflicts when multiple reductions
are mapped in the tree. The challenge to address, which is not analyzed with
detail in any of these works, is how to manage the common situation of folding,
in which the number of multiplications in a dot product is larger than the
number of multiplier units implemented in hardware. In this specific purely
spatial approach, which is the one implemented by these RNs [3, 6], the psum
obtained in each cluster iteration is spatially sent to the Global Buffer (GB), and
subsequently redistributed from it to a dedicated Multiplication Switch (MS) (see
Figure 3.3c to observe the microarchitecture details of an MS), responsible only
for forwarding it back to the RN. This way, the entire accumulation process is
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performed spatially. This is illustrated in Figure 3.3g. The leaves of the trees are
MSs that just generated the psums. The values for the first iteration are initially
sent and computed in steps 1 and 2. Then, for computing the second iteration,
the value of the psum calculated in step 2 is passed through the GB in step 3,
from where it is injected back into the RN by using a dedicated MS (the leftmost
one) that just acts as a forwarder. The process is repeated until the whole dot
product is spatially computed.

We observe in our evaluation (see Section 3.5) that this strategy, yet simple to
implement in hardware, has two major drawbacks:
i. Low theoretical utilization of the MSs, as the required extra MS impedes to map
efficiently some number of dot products. Note that, in our example, the extra
MS needed to forward the psum impedes using the rest of the multipliers to
calculate the other dot product, which also would need 5 multipliers.
ii. Low effective utilization of the mapped MSs as this implementation impedes
to iterate over the same dot product in a pipelined manner. In the example, the
MSs would not be able to operate in step 2, as the psum required for the second
iteration has not been calculated yet. In the general case, the time needed to
compute an entire operation is O[(i + l)× log2(n/i)] as each of the iterations (i)
will require to wait as many cycles as levels in the tree (l).

We would like to emphasize that these two drawbacks had not been observed
yet in the previous works [70], and reveal the importance of proper folding
management in flexible accelerators.

In order to overlap multiplications and sums of consecutive iterations of the
same dot product, and thus, be able to attain a seamless pipelined execution
for folding, it is necessary to break the dependency between two consecutive
iterations by composing a Spatio-Temporal Tree (ST-Tree). To this end, one
particular extension over the previous S-Tree, leveraging the design discussed
for some ST-based rigid accelerators (Figure 3.3f), could be to add a set of
accumulators, connected with the ASs, in charge of temporarily accumulating
the different psums being calculated for each cluster. We call this approach an ST-
Tree+Accumulators (ST-Treeac) RN. In this way, the time needed to complete an n-
size operation in this case is O(i × log2(n/i)). Besides, having these accumulators
would eliminate the need to allocate the additional MS in each cluster just to
forward the psum, thus making much better use of the MSs.

Figure 3.3d illustrates the microarchitectural details of an AS connected to its
corresponding accumulator, able to perform temporal accumulation for a cluster
that collapses on that particular AS. The AS just needs a control signal to diverge
the resulting psum to the accumulator rather than to the top node or the Global
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Buffer. This way, the different psums reach the accumulator, which temporarily
accumulates them by using a simple accumulation register and an extra adder
unit.

As a representative example, Figure 3.3h shows how the accumulators would
be employed with two configured clusters. In this case, there are 3 units, each of
them connected to a different AS. As it may be appreciated, the first two steps are
used to calculate the two psums of the first iteration (one per cluster). Observe
that the calculation of the products required in the second iteration starts while
the tree is computing the psums corresponding to the first one (step 2). Then,
in the third step, these two psums are stored in the two accumulators, and at
the same time, the tree of ASs computes the psums corresponding to the second
iteration. In a fourth step (not shown in the figures for the sake of brevity), the
result of the psums of the second iteration would be sent to the corresponding
accumulators, where the final outputs would be obtained.

This approach has two major inconveniences. First, and most importantly, it
entails significant area and power overhead as it requires to significantly increase
the number of adders in the RN (i.e., the extra accumulators). The second
inconvenient has to do with the resulting increased complexity of the design by
requiring the addition of this extra component.

3.3 STIFT: A Spatio-Temporal Integrated Folding
Tree

The discussion presented in the previous section reveals that Spatio-Temporal
RNs are the best match for both rigid and flexible DNN accelerators by endowing
the RN with accumulators. To avoid incurring into high on-chip area and energy
overhead due to these extra components, the number of accumulators and the
connections to the ASs should be done according to the size and number of the
clusters that are supported by the architectural design.

In the case of rigid accelerators, for example, in an R×C ST-Linear RN like
the one used in the Google’s TPU, the number of the accumulators should be
equal to the number of columns (i.e., C) of the design (see Figure 3.3f), as a whole
column is typically used to vertically reduce a cluster. This way, in this type
of architectures the accumulation units are affordable and can be implemented
without incurring significant area and energy overhead.

On the other hand, in the case of the higher-performance flexible accelerators,
since the number, size and exact location of the clusters to be mapped onto the
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architecture is undetermined, it is not known a priori the number of accumulators
that are needed to support all the configurations. Therefore, in order to support
the worst case in which every multiplier was an independent cluster, the archi-
tecture would need as many accumulators as ASs, doubling the area required
for the RN. Reducing the number of accumulators could lower this overhead,
but it would limit the number of clusters that can be accumulated in parallel,
constraining the flexibility.

This way, this approach has two major inconveniences when it comes to
flexible architectures. The first, and most important, is that this approach usually
entails significant area overheads to be able to guarantee the level of flexibility
that allows these flexible accelerator architectures maintain the promised high
efficiency and configurability. The second inconvenient has to do with the
resulting increased complexity of the design by requiring this extra component.

To ensure efficient folding support in flexible accelerator architectures and to
avoid the addition of such extra accumulators, we propose in this chapter a novel
Reduction Network fabric, specifically suited for flexible accelerator architectures.
We call our proposal STIFT which stands for Spatio-Temporal Integrated Folding
Tree. Similarly to ST-Treeac RN using accumulators, STIFT is capable of running
any number of dynamic-size clusters in a non-blocking manner, but unlike this
one, it enables efficient and flexible support to ensure full non-blocking processing
of folding.

3.3.1 STIFT Topology

The observation behind STIFT is that for the S-Tree RN employed in recent
accelerator proposals [31, 70], there are free ASs when two or more clusters are
configured (for the example in Figure 3.3h, the AS at the root of the tree is not
used as two clusters have been defined). The more (and in consequence smaller)
clusters that are formed, the more ASs go unused. So, the immediate question is:
why not dedicate these free ASs to accumulating the psums for each cluster?

To do so, we obviously need that the RN can guarantee, at least, one free
AS per each cluster. Taking a look at Figure 3.3h, we can clearly see that the
number of ASs in the tree is insufficient for our purpose (note that when the two
clusters are formed, just one AS becomes free). We can also see that we can easily
solve the problem by adding a second root to the tree, and also several links
to guarantee that every cluster, independent of its configuration (size and/or
location), can always have access to one of the free ASs that will be used to
accumulate the corresponding psums. In broad terms, this is STIFT.
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Figure 3.4: STIFT running the example shown in Figure 3.3a.

Before delving into the details of how the extra links required by STIFT are
added, Figure 3.4 shows an example of how folding would be carried out with
STIFT. In this case, the ASs have to be extended in order to be able to act either
as accumulators or ASs (further details in Section 3.3.2). We call these units
Extended Adder Switches (eASs). As we can see, the top eASs are employed to
accumulate the two dot products being calculated. This way, in this case, after
step 2, the eAS on top of each cluster sends its psum to the corresponding root
of the tree, which will be configured to accumulate the psums calculated in the
two iterations. Once the calculation of the dot products is finished (all the psums
have been accumulated in each case), these nodes will send the accumulated
values to the Global Buffer, and then, they will begin to accumulate the psums of
the next dot product assigned to each of the clusters. Note that, as with ST-Treeac,
STIFT removes the dependency among consecutive iterations, and hence, enables
fully pipelined execution in the MSs and eASs. However, unlike ST-Treeac, STIFT
does not require the addition of extra accumulation units, but instead achieves
the same goal by only requiring some lightweight extra logic to leverage the ASs
to play the role of both ASs and accumulators, one extra root node, and some
extra connections between the eASs.

A detailed view of a 16-wide STIFT topology is depicted in Figure 3.5b. All
the links that are inherited from the S-Tree RN topology that we use as base (the
ART network [70]) for building STIFT are shown either in pink or black colors.
In red, we identify the new links that STIFT requires and that we call the folding
links. We add the minimal number of links to ensure that every cluster can use an
eAS to accumulate its psums and produce its final output value. This is achieved
by using either a pink or a red link.

In Algorithm 3.1, we show how to add the extra links required by STIFT
(the red links in Figure 3.5b) for an arbitrary number of adders (numAdders).
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Figure 3.5: a) Extended adder switch microarchitecture of STIFT. b) STIFT topol-
ogy. The black and pink links are shared with ART, but the pink ones are also
used for folding purpose. The red links are additional folding links introduced
in STIFT to remove all structural hazards during the folding process.

According to this algorithm, for each of the nodes in the topology (i.e., i), we
iterate over the levels (i.e., lvl) that are below the node to connect its corresponding
pair in that level. By establishing the new links in this way, we guarantee that
every eAS in the RN can have a different associated parent eAS that would be
used to perform the accumulation process for the cluster that converge in the
first eAS.

3.3.2 Microarchitectural Implications of STIFT

Figure 3.5a shows the microarchitectural details of each of the eASs used in
STIFT. As observed, it is quite similar to the ASs of a flexible RN such as ST-
Treeac (and that we explained in Section 3.2). Since the proposed STIFT topology
enables integrated temporal accumulation, every of its eAS has an extra register

//Code to add STIFT l i n k s
//Inputs : numAdders , adderLVL
f o r ( i n t i =0 ; i < numAdders−1; i ++) :

f o r ( i n t l =1 ; l v l <adderLVL [ i ] ; l v l ++) :
connect adder i with : i − 2^( l −1)

//Connecting f i r s t with second root
i n t f i r s t R o o t I D =numAdders/2 − 1
i n t secondRootID=numAdders / 2
Connect f i r s t R o o t I D with : secondRootID

Algorithm 3.1: Pseudocode illustrating how the additional links required by
STIFT are added.
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which is used to store the accumulated partial sum in case it is needed (the eAS
acts as the accumulation point for a particular cluster). Besides, since the left
input data (see Figure 3.5b) could be injected either from the left-child eAS or
from any other lower-level eAS which sends the psum to be accumulated, it
is necessary to incorporate an extra multiplexer unit selecting this input. The
size of this multiplexer varies according to the level in which the eAS is located
in the reduction tree. In general, given an eAS at a certain level L, the size of
its multiplexer will be L-1:1, as every level in the tree will have a certain eAS
connected that will provide the psums to accumulate (when the eAS is used for
this purpose). In order to avoid the critical path delay degradation due to the long
wires connecting the different levels in the topology, all of the inter-eAS/MUX
wires are implemented in the semi-global metal layers using standard repeater
wires.

Each eAS in STIFT can act either as an AS (psum spatial generator) or as an
accumulator (psum temporal reducer). If the eAS is configured as an AS, then
it will receive the inputs from the children eASs, will calculate the psum, and
will send the output to its parent eAS (as done in S-Tree). On the contrary, if the
eAS is configured as an accumulator, the left input will be obtained from the eAS
that sends the psums, and the right input will be taken from the internal register.
Once the final accumulation has been performed, the result will be sent directly
to the Global Buffer. All the additional multiplexers, as well as the new operation
mode are configured by the mapper (see Figure 3.1) based on the size and
number of the clusters to be reduced. The benefit of this approach is that since
STIFT topology allows the eASs to operate either in psum spatial generator or
psum temporal reducer modes, they can reuse the adder unit already contained
in the eAS, reducing significantly the area overhead and power dissipation in
comparison to adding the extra accumulators required in the ST-Treeac RN (see
Section 3.5).

3.3.3 STIFT Mappings

3.3.3.1 Examples of Diverse Mapping Configurations and Reduction
Dataflows with STIFT

Figure 3.6 depicts 5 possible mapping configurations in a 16-wide STIFT RN to
perform the accumulation of 8 16-size groups of psums (that have been previously
generated by the MN to compute 8 different dot products). As we can see, the
flexibility of STIFT allows not only to map arbitrary size clusters, but also to
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perform temporal accumulation for all of them. Next, we present in detail each
mapping configuration. For ease of explanation, we have labeled each node in
the tree with a different number.

Mapping 1: This case is the simplest possible mapping configuration as an
entire group of psums is reduced by mapping it onto all the available MSs in
the MN fabric (16). As we can observe, the cluster collapses in the first root
of the tree (i.e., node 7) and the psums are forwarded to the second root (i.e.,
node 15) to be reduced in a pipelined manner. Since in this case the cluster size
equals the group size, there is just one iteration (i.e., temporal accumulation is
not required), and the only psum generated will be directly forwarded to main
memory. Subsequent groups of psums will be mapped to the MSs similarly,
generating, one after other, the eight final reductions.

Mapping 2: In this particular example, two groups of psums are mapped for
reduction onto STIFT. As mapping the entire two groups would require 32 MSs,
this reduction has to be divided into two 8-size clusters. This means that each
cluster requires 2 iterations which are temporarily accumulated by the two roots
of the tree (i.e., nodes 7 and 15), which are configured as accumulators. In this
figure, we can note the way in which eAS labeled with 11 requires the use of the
folding link to forward the generated psum to node 15. Sending the psum to any
other node would produce a structural hazard (the corresponding adder in the
eAS has to carry out two different psums) which would break the computation
pipeline.

Mapping 3: In this mapping, four groups of psums are allocated to the 16 MSs.
To do so, the computation is divided into four 4-size clusters, each performing
4 iterations in total. As it may be appreciated, the 4 clusters collapse in the 4
eASs belonging to the first level of the tree, and therefore the use of folding links
by the nodes 5 and 13 is required to avoid the kind of structural hazards in the
upper levels already illustrated in the previous mapping.

Mapping 4: This is the extreme case of mapping in which eight 2-size clusters
are configured to reduce 8 groups of psums, each requiring 8 iterations. Even in
this case in which the 8 clusters are spatially collapsing in the 8 eASs belonging
to the first level of the tree, there are always free wires and eASs to send the
corresponding psums and carry out the temporal accumulations, respectively, in
a pipelined manner.

Mapping 5: This case illustrates how STIFT can be utilized to map arbitrary
size clusters. This enables to efficiently support scenarios in which sparsity is
exploited. In these cases, the matrices are compressed (e.g., in CSR or bitmap
formats) to reduce computation and memory footprint, and the resulting dot
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products can have variable size. In this example, four groups of psums are
mapped to be reduced, but they present different sizes. As we can see, the groups
0, 1, 2, and 3, with cluster sizes of 3, 5, 2 and 6, respectively, are mapped, which
require 5, 3, 7 and 2 iterations, respectively. Like the ART, STIFT leverages the
intermediate links between eASs that do not share the same parent for mapping
irregular cluster sizes. Even in this case, STIFT supports temporal accumulation
by taking advantage of the novel folding links.

3.3.3.2 Generating Mapping Signals

Given a particular mapping, the control logic signals to be sent to STIFT RN to
route the psums can be generated either offline or at runtime by following the
steps given as follows. First, the ART routing decisions are made by applying
the particular ART algorithm (described in [70]). This algorithm ensures that
the clusters are able to reduce in a non-blocking manner for a single iteration.
Once this process is completed, the eASs where the clusters are collapsing are
configured. If the position of a particular eAS in the level of the tree is even, the
psum is configured to be sent to the parent using the ART link. Otherwise, the
eAS is configured to forward the psums to the folding link.

3.4 Experimental Methodology

To prove the benefits of STIFT as the RN of a flexible accelerator architecture, our
evaluation methodology considers the following three different angles: 1) RTL
implementation to faithfully obtain both energy and area numbers; 2) synthetic
evaluation to describe the main benefits of STIFT; and 3) end-to-end evaluation
to demonstrate how STIFT can be used to run real DNN models. Below, we
describe each of these three angles in detail.

3.4.1 RTL Implementation

We analyze the power and on-chip area overheads that the different RN solutions
entail. In particular, we have implemented both STIFT4 and ST-Treeac RNs in BSV
(Bluespec System Verilog) [1], and use Synopsys Design Compiler and Cadence
Innovus Implementation System for synthesis and place-and-route, respectively,
using TSMC 28nm GP standard LVT library at 800 MHz. For comparison, we

4STIFT is available on https://github.com/maeri-project/stift-bsv.
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Figure 3.6: Different mapping configurations to perform 8 16-size cluster accu-
mulations on a 16-wide STIFT.

also consider MAERI’s ART design [3] as an example of S-Tree RN. We study
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how the different RN fabrics scale by exploring different RN widths (number of
multiplier units) and data formats (i.e., INT16, FP16 and FP32).

3.4.2 Synthetic Evaluation

We conduct a comparison of the performance (runtime) that the three flavours of
RNs (S-Tree, ST-Treeac and STIFT) achieve for reduction operations. To do so, we
have implemented these three RNs in our STONNE simulator [82]. As described
in Chapter 2, STONNE is a cycle-level, highly-modular and highly-extensible
microarchitectural simulation framework that can be potentially plugged into
any high-level DL framework as an accelerator device. Therefore, all the activity
found during the execution of the DNN inference procedure of real, unmodified
DNN models processing real input data can be accurately simulated at cycle level.
STONNE also allows us to easily configure and implement different reduction
networks, thereby facilitating the task of evaluating and comparing our three
target RNs.

For a fair comparison, we have configured the simulator with the same DN
and MN networks in all cases. In particular, we consider a tree-based DN and
a linear-based MN to build MAERI-like flexible accelerator architectures [70].
Besides, we assume the next hardware parameters: 256 MSs, FP16 arithmetic
datatype, 108-KiB Global Buffer size, 128 elements/cycle I/O Global Buffer
bandwidth, and two 256 GB/s, 512-MiB HBM2.0 DRAM modules. For the
resulting three accelerator architectures, we run three different experiments:

1. First, to study how a single cluster behaves, we have executed seven
synthetic workloads by mapping a single cluster ranging in size from 2 to 128. To
study how each RN deals with folding, we iterate each cluster 512 times 5, which
allows us to observe how the RN topology affects performance when running a
certain representative reduction.

2. To observe the impact of mapping multiple same-size clusters in parallel
when it comes to folding, we have executed other seven synthetic workloads.
Differently, this time we have swept the number of clusters to be mapped and
its size, but keeping the number of used multipliers as 128 in all the cases. This
way, we have executed the next configurations: 64 clusters of size 2 (64C-S2),
32 clusters of size 4 (32C-S4), 16 clusters of size 8 (16C-S8), 8 clusters of size 16
(8C-S16), 4 clusters of size 32 (4C-S32), 2 clusters of size 64 (2C-64S) and 1 cluster
of size 128 (1C-128S). Note that we always use the same terminology xxC-yyS

5We observe this is a representative folding iteration number when running real DNN
workloads.
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to refer to xx mapped clusters and its size (yy). Similar to the aforementioned
experiment, we iterate each cluster 512 times.

3. Finally, we demonstrate that STIFT is able to map multiple variable-size
clusters in parallel and still perform the folding efficiently. In this way, in this
experiment we configure irregular-size clusters keeping always the utilization of
128 multipliers and iterate each cluster 512 times.

3.4.3 End-to-End Evaluation

We have determined the overall impact on performance and energy consumption
of the different RNs when running complete DNN workloads. To do so, we have
used STONNE together with its PyTorch interface [5] to execute the inference
procedure of seven full DNN models on the three resulting accelerator configura-
tions (S-Tree, ST-Treeac and STIFT). We consider Alexnet [67] (A), Mobilenets [53]
(M), Squeezenet [56] (S), Resnets-50 [49] (R), VGG16 [113] (V), ssd-Mobilenets [75]
(S-M) and BERT [27] (B), taken from MLPerf [106] benchmark suite (further
information in Table 2.1). In all the cases, we have obtained the best mapping
configurations using the mRNA tool [125]. To calculate the energy consumed
by each execution, we have fed the simulator with the energy numbers obtained
during the RTL synthesis and presented in Section 3.5.

3.5 Results

3.5.1 RTL Evaluation

Figure 3.7 shows the area (µm2) and power (mW) synthesis results for the three
evaluated RN designs: S-Tree, ST-Treeac and STIFT. For both area (top) and power
(bottom) figures, we plot three different design points varying the data type that
the RN utilizes (INT16, FP16 and FP32). For each one of them, we also show
in the x-axis the results for 5 RN sizes by scaling the number of MSs (i.e., the
leaves) from 64 to 1024. Each bar is split into two components: the amount of
area/power attributable to the Adder Units (AUs) and that corresponding to the
rest of elements of the ASs and the topology, namely switching logic, registers,
multiplexers and wires (Rest).

As it may be appreciated, for INT16 (see Figures 3.7a and 3.7d), which is
a datatype typically used in some inference accelerators (e.g. TPUv1 [61] can
operate on 8- and 16-bit data elements), we observe that STIFT saves up to 19%
and 20% power and on-chip area, respectively, as compared with ST-Treeac. In
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Figure 3.7: Area (µm2) and power (mW) synthesis results for the three evaluated
RN designs ( S-Tree, ST-Treeac and STIFT) varying RN size (64, 128, 256, 512 and
2014 MSs) and data types (INT16, FP16 and FP32).

this case, the simple INT16 AUs do not represent a significant fraction of the
logic of the RNs (see blue portion of the bars), and therefore, the elimination of
the extra AUs of the accumulators with STIFT brings modest savings. Reductions
in power and on-chip area in this case come mostly from the elimination of the
extra wires and logic needed to connect the accumulators when these units are
used.

The reduction in the number of elements can also be observed in Table 3.2,
where we show the number of wires presented in each RN and the overhead
added by ST-Treeac and STIFT with respect to S-Tree. As we can see, STIFT not
only reduces the number of AUs, but also the wires (average reduction of 20%),
making it more efficient even when the area and energy fraction represented by
the AUs is not very significant. This also demonstrates that our STIFT design
will introduce less overhead as technology shrinks. In these cases, the energy
spent in the wires becomes dominant and STIFT ensures high flexibility while
keeping the RN more efficient. Finally, we can also observe that the overhead
introduced by the muxes in the STIFT design does not translate into a scalability
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MSs AUs
S-Tree

AUs
ST-Treeac

AUs
STIFT

Wires
S-Tree

Wires
ST-Treeac

Wires
STIFT

Muxes
STIFT

64 63 126 (+100%) 64 (+2%) 152 215 (+41%) 184 (+21%) 63
128 127 254 (+100%) 128 (+1%) 311 438 (+40%) 375 (+20%) 127
256 255 510 (+100%) 256 (+1%) 630 885 (+40%) 758 (+20%) 255
512 511 1022 (+100%) 512 (+0.1%) 1269 1780 (+40%) 1525 (+20%) 511

1024 1023 2046 (+100%) 1024 (+0.1%) 2548 3571 (+40%) 3060 (+20%) 1023

Table 3.2: Number of MSs, AUs, wires and multiplexers (Muxes) required to
implement S-Tree, ST-Treeac and STIFT RNs for different RN sizes. The percentage
of extra elements added in ST-Treeac and in STIFT with respect to S-Tree is also
shown.

issue as the orange bar sizes increase linearly with the RN size for both area and
energy numbers.

Power and area reductions are more significant when it comes to the FP16
and FP32 designs, as the AUs are responsible for the most important fraction of
the chip area attributable to the RN. For example, for FP16 (mostly used in some
inference devices, such as Eyeriss [22], for better inference accuracy) the AUs
consume between 70% and 78% of the total chip area devoted to the RN. This
results in STIFT obtaining significant area (Figure 3.7b) and energy (Figure 3.7e)
reductions over ST-Treeac, which range from 28% to 30% and from 29% to 30%,
respectively. As shown in Figures 3.7c and 3.7f, these differences are even larger
for FP32 (utilized in training accelerators). In this case, 87% on average of the
chip area occupied by the RN is due to the AUs, and STIFT reduces area and
energy demands of ST-Treeac by 32% and 31%, respectively, on average.

Obviously, when compared to S-Tree, STIFT introduces area and power over-
heads, as it adds the accumulation logic needed to perform temporal reductions.
On average across all the design points, the extra power and area overheads are
17% in both cases, much lower than the 39% and 40%, respectively, added by the
accumulation buffer in ST-Treeac.

Nevertheless, as we next show, unlike S-Tree and similar to ST-Treeac, STIFT
enables pipeline execution of consecutive folding iterations, resulting in much
better performance results than S-Tree (and, also, less amount of total energy
consumed).

3.5.2 Synthetic Evaluation

Figure 3.8a shows the number of cycles (y-axis) obtained for the three RN im-
plementations to complete the reduction of a single cluster varying its size (as
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d) Number of cycles/Area Unit
 one cluster
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f) Number of cycles/Area Unit
 multiple-size clusters

Figure 3.8: a) Number of cycles for the three RNs (S-Tree, ST-Treeac and STIFT)
to complete the reduction of one single cluster varying its size. b) Number of
cycles for the three RNs (S-Tree, ST-Treeac and STIFT) to complete the reduction
of multiple same-size clusters varying both the number of clusters (C) and its
sizes (S). c) Number of cycles for the three RNs (S-Tree, ST-Treeac and STIFT) to
complete the reduction of multiple variable-size clusters varying both the number
of clusters and its sizes. d-f) Number of cycles per unit area for the experiments
performed in a-c.

described in Section 3.4.2). Across the seven considered sizes, we observe that
both ST-Treeac and STIFT are on average 3.43× faster than S-Tree, demonstrating
that when the reductions are performed purely spatially (and the psums are for-
warded through the Global Buffer for supporting folding), performance degrades
significantly due to the psum dependency between consecutive folding iterations.

The performance gap between ST-Treeac/STIFT and S-Tree is more significant
as the cluster size increases. For the smallest cluster size (i.e., 2), we appreciate
that ST-Treeac and STIFT are 2.49× faster than S-Tree, while this difference reaches
4.95× for a cluster size of 128. The reason for this is that the higher the reduction
tree, the longer it takes to produce the psum and return it to the MN via the
Global Buffer, and therefore the longer the MN will have to wait until it can start
the next folding iteration. Another important limitation to note is that when
folding is used, S-Tree must dedicate one MS per cluster to forward the psums
calculated in the previous iteration. This results in worse utilization of the MSs,
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which usually translates into a larger number of folding iterations required per
cluster (due to smaller effective cluster sizes). On the contrary, spatio-temporal
approaches like ST-Treeac and STIFT eliminate this constraint as the accumulation
of consecutive folding iterations is performed temporarily on the top of each tree,
leaving the entire MN available for effectual computation, and thus allowing for
more flexible cluster reduction mappings.

On the other hand, Figure 3.8 shows the results for the second experiment
described in Section 3.4.2 in which we sweep the number of mapped clusters
and its size (x-axis). In this case, we keep all the clusters with the same size. As
we can observe, similar to the first experiment, there is a clear gap between the
number of cycles obtained with S-Tree and the number of cycles obtained with
both ST-Treeac and STIFT, verifying that STIFT is suitable to run multiple clusters
in parallel. However, in this case the results are even more impressive with both
STIFT and ST-Treeac being 4.02× faster than S-Tree. This difference is due to
both spatio-temporal approaches keep the partial sums stationary and therefore
reduce the number of writings to memory when multiple clusters are reducing in
parallel. This alleviates the pressure on the memory hierarchy which translates
even to further performance and improvements.

The results for the third experiment described in Section 3.4.2 are shown in
Figure 3.8c. Here, we vary again the number of clusters and its size, but this
time we map variable size of clusters in parallel. The x-axis in this case shows the
largest cluster configured in each execution. This is so, because we have clearly
observed that when variable-size clusters are running in parallel, the largest one
dominates the execution time while the rest lag far behind it. In this experiment
we have observed that both STIFT and ST-Treeac are 4.07× faster than S-Tree.
Similar to the second experiment, mapping variable-size clusters when STIFT is
configured benefit from alleviating the pressure on the memory hierarchy with
respect to S-Tree. Furthermore, this effect is even exacerbated as the clusters
write at different times due to its irregular size.

Finally, it also may be appreciated that STIFT and ST-Treeac reach virtually
the same performance numbers across the three experiments. This comes as no
surprise if we take into consideration that both approaches implement spatio-
temporal reductions and behave similarly. The difference in this case is that by
integrating temporal accumulations in the RN, STIFT can save the significant area
and power overhead that the use of the accumulators add to ST-Treeac. This is
further demonstrated in Figures 3.8d-f where we show the number of cycles per
unit area obtained when running the three aforementioned experiments depicted
in Figures 3.8a-c, respectively. In this case, we have divided each number of
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Figure 3.9: Speed-up of ST-Tree and STIFT against S-Tree after running 7 DNN
models. A=Alexnet; M=Mobilenets; S=Squeezenet; R=Resnets-50; V=VGG16; S-
M=ssd-Mobilenets; B=Bert.

cycles shown in the Figures 3.8a-c by the inverse of each RN area occupation
given the results described in Section 3.5.1. We observe that on average across
the executions of the three experiments, STIFT improves the number of cycles per
unit area by 3.30× and 1.48× against S-Tree and ST-Treeac, respectively. Further
experiments in next section with real DNN models validate this claim.

3.5.3 End-to-End Evaluation

As for the performance observed for the three configurations under study with
complete DNN models, Figure 3.9 shows the speed-ups obtained by ST-Treeac
and STIFT with respect to S-Tree. Our results corroborate the trend observed
with the synthetic workloads in that we clearly see that the folding strategy of
redistributing the psums through the Global Buffer and the extra MS, results
in very poor performance, mainly due to the dependency created between
consecutive iterations.

By augmenting the S-Tree configuration with the accumulators, and therefore,
implementing spatio-temporal reductions (ST-Treeac), performance speed-up of
up to 8× for VGG-16 (5.9× on average across the 7 DNN models) are gained. It is
also interesting to appreciate how the magnitude of the gains changes from one
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DNN model to another. For instance, for the largest networks, namely Alexnet,
Resnets-50, VGG-16 and ssd-Mobilenets, the obtained speed-ups range from
5.86× to 8.03×. On the contrary, for the smallest networks, namely Mobilenets-
V1 and Squeezenet the speed-up values are 4.88× and 4.54×, respectively, as
their layers are smaller, and therefore, some of them do not make use of folding.
In particular, Mobilenets-V1 and Squeezenet require folding in 75% and 39%
of their layers, respectively, while this percentage grows to 99% for Alexnet,
Resnets-50 and VGG-16. The only exception is BERT, which despite being the
deepest network, its runtime is dominated by layers of size 768 (20% of the layers)
which barely require 3 folding iterations, and by attention layers, which represent
75% of the total number of layers and do not require folding as their size is small
(64). The achieved speed-up in this case is 4.37×.

As we explained in Section 3.2, the reason for these significant performance
improvements is that the use of the accumulators allows to break the aforemen-
tioned dependency between consecutive folding iterations, thus enabling that
the different components of the flexible ST-Treeac architecture can operate in
a pipelined manner (the DN, MN, RN and accumulators). But, what is more
important, we can observe that the more area- and power-efficient STIFT design
very closely approaches the speed-up values of ST-Treeac.

In Figure 3.10, we consider both achieved speed-ups and area requirements
of each design. The area requirements are normalized with respect to the S-Tree
case, which is also the reference for the calculation of the speed-ups. Here, we
can clearly see that in all cases, STIFT reaches the best compromise between
performance and area consumption (the higher Speed-up/Area values). This is
due to, compared with ST-Treeac, STIFT achieves virtually the same performance
but it requires significantly less area (see Figure 3.7b). Overall, we can appreciate
that on average across the seven DNN models, STIFT reaches a speed-up/area
ratio of 5.13× while this value is reduced to 3.67× in the case of ST-Treeac.

Finally, Figure 3.11 plots a breakdown of the total amount of energy consumed
(static and dynamic energy consumption) in each case, distinguishing between
the main components of the architecture. All the results have been normalized
with respect to the obtained for S-Tree. As we can see, the energy benefits are
not as impressive as the performance numbers. The reason for this is that energy
consumption in each case is mainly dominated by the dynamic component
(dynamic energy is 30× higher on average), and the number of operations
that must be carried out is the same regardless of the implemented folding
strategy. Nevertheless, the fact that the total number of execution cycles is greatly
reduced in STIFT and ST-Treeac translates into significant reductions in the static
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Figure 3.10: Speed-up/Area of ST-Tree and STIFT against S-Tree after running 7
DNN models. A=Alexnet; M=Mobilenets; S=Squeezenet; R=Resnets-50; V=VGG16;
S-M=ssd-Mobilenets; B=Bert.

component, which in turn results in average reductions of 11% and 9% in total
energy (up to 20%) for STIFT and ST-Treeac RNs, respectively.

3.6 Conclusions

In this chapter, we have demonstrated that the way the Reduction Network (RN)
of a flexible DNN accelerator architecture manages folding significantly impacts
the achievable performance, when processing the inference procedure of DNN
models. More specifically, a purely temporal approach is not able to perform the
reductions in a tree-based manner, which limits its efficiency. On the contrary, a
spatial reduction typically lacks of sufficient resources to reduce large clusters.

To overcome this, we have presented a new strategy for Spatio-Temporal
reduction–STIFT–that dodges the need of adding the extra accumulators used by
contemporary RN fabrics in flexible DNN accelerators. STIFT takes advantage
of the unused adder units that are available in a tree-based RN topology when
several clusters are configured, and adds the minimal elements required to
guarantee that for all possible cluster configurations, each one can be associated
with one adder unit for temporal accumulation of its generated psums.
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Figure 3.11: Normalized Energy of ST-Tree and STIFT against S-Tree after running
7 DNN models. A=Alexnet; M=Mobilenets; S=Squeezenet; R=Resnets-50; V=VGG16;
S-M=ssd-Mobilenets; B=Bert.

Through a comprehensive evaluation that includes RTL implementation of
different RN approaches able to operate with several data types, we have observed
that STIFT obtains area and power benefits of up to 32% and 31% respectively.
Overall, in the context of a specific flexible accelerator like MAERI, this translates
into general area and energy savings of up to 8% and 12, respectively. Note
that MAERI is an accelerator targeting inference which implements the INT16
datatype. Other accelerators targeting training and using a wider datatype may
experience larger benefits. Besides, through cycle-level simulation of complete
and synthetic DNN models, we have proven that STIFT is up to 3.67× more
efficient in terms of the balance between the performance and area requirements
for the considered alternatives.
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Chapter 4
Flexagon: A Multi-Dataflow

Sparse-Sparse Matrix Multiplication
Accelerator for Efficient DNN

Processing

4.1 Introduction

Sparsity in tensors is an emerging trend in modern DNN workloads [87, 91, 107].
These workloads have diverse sparsity ratios, ranging from 0.04% to 90%, and are
used in various applications, ranging from personalized recommendations [91]
to Natural Language Processing [27]. Sparsity in weights stems from pruning
[47] and sparsity inside activations stems from nonlinear functions such as ReLU.
As a result, exploiting the benefits of sparsity by directly implementing sparse
matrix-matrix multiplication (SpMSpM) has become an important target for
customized DNN accelerators [31, 50, 97, 98, 114, 122, 124].

The most common way for these accelerators to exploit sparsity is using
compressed formats like Bitmap, CSR and CSC to store and operate (multiply
and accumulate) only the non-zero values. This allows to significantly reduce
both the memory footprint and the number of operations, which in turn translates
into significant energy savings. However, these accelerators vary widely in their
hardware implementation and in the exploited dataflow. The dataflows used by
these accelerators in terms of the loop order of computation have been broadly
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Accelerator Architectural Features IP OP Gust
TPU Dense Systolic Array N/A N/A N/A

SIGMA Configurable Reduce Tree D ✗ ✗

ExTensor Intersection Unit D ✗ ✗

MatRaptor Merger ✗ ✗ D
Gamma Fiber Cache, Merger ✗ ✗ D

Outerspace Merger ✗ D ✗

SpArch Matrix condenser, merger ✗ D ✗

Flexagon Flexible Merge/Reduce D D D
(ours) tree and memory controller

Table 4.1: Comparison of Flexagon with prior Sparse DNN accelerators in terms
of supported dataflows. IP=Inner Product, OP=Outer Product, Gust=Gustavson’s
(Row-wise Product).

A
V

S
Q

R
S
-R

S
-M

D
B

M
B

0 10 20 30 40 50 60
Layer ID

IP
OP
Gust

Figure 4.1: Dataflow that obtains the best performance per layer across the DNN
models (see Table 4.2 that includes their sparsity ratios). Alexnet (A), VGG-16
(V), Squeezenet (SQ), Resnets-50 (R), SSD-Resnets (S-R), SSD-Mobilenets (S-M),
DistilBert (DB) and MobileBert (MB). IP=Inner Product, OP=Outer Product and
Gust=Gustavson’s. Please refer to Table 4.2 for sparsity ratios in the models.

classified into Inner Product (IP), Outer Product (OP) and Row-wise-Product,
often called Gustavson’s (Gust) [44].
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Table 4.1 shows prior sparse accelerators and the dataflows they support.
While state-of-the-art sparse accelerators such as SIGMA [31], SpArch [124] and
GAMMA [122] have been optimized for a fixed dataflow (Inner Product, Outer
Product and Gustavson’s, respectively), in this chapter, we make the important
observation that the optimal dataflow changes from a DNN model to another, and even
within a DNN model, from one layer to another, so that contemporary fixed-dataflow
accelerators cannot adapt well to maximize DNN application performance.

To back up our observation, Fig. 4.1 shows the dataflow that obtains the best
performance per layer given the execution of 8 entire DNN models obtained from
MLPerf benchmark suite [107] as well as some extra models (details in Table 4.2).
Observe that we consider heterogeneous models from different domains, sizes
and sparsity ratios. For MB, we only show the first 60 layers, which represent
20% out of the total number of layers. To model the three dataflows, the exe-
cutions have been performed on a 64-Multiplier SIGMA-like, SpArch-like and
GAMMA-like architectures (further details in Section 4.4). Overall, the results
show that there is a high variability in terms of the dataflow that obtains the
best performance across layers belonging to different models and even across the
layers within the same model. The NLP models DistilBERT (DB) and MobileBERT
(MB) present a clear trend towards Gustavson’s. Specifically, in DB, 30 out of the
36 layers works better with Gustavson’s while MB benefits from Gustavson’s in
100% of the layers. On the other hand, extremely sparse models, such as SSD-
Resnets (S-R) and VGG-16 (V), benefit from Outer Product in 73% and 75% of
the layers, respectively. The rest of the DNN models present a high variability
across layers, and the most efficient dataflow changes given the different features
of each layer. This highlights that one dataflow does not fit all, and so there is
an opportunity to increase efficiency via dynamic adaptation of the architectural
components to the most suitable dataflow.

The value of supporting flexible dataflows has been explored extensively
for dense DNNs [24, 29, 68, 70]. However, support for flexible dataflow ac-
celeration for sparse workloads is much more challenging because of differ-
ent ways in which these accelerators handle sparsity. For example, the Inner
Product dataflow implemented in SIGMA [31] implements a reduction network
called FAN to reduce the generated partial sums at once, as well as the capacity
to perform intersections to execute a sparse dot product. On the contrary, the
Outer Product and Gustavson’s dataflows implemented in accelerators like
SpArch [124] and GAMMA [122] produce partial sums instead of complete sums,
and hence, require merging the non-zero partial sums and use merger trees for
this purpose. A naive implementation using separate hardware widgets for
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DNN Appl nl spA spB csA csB
Alexnet (A) CV 7 70 48 0.56 13.6

Squeezenet (S) CV 26 70 31 0.05 1.54
VGG-16 (V) CV 8 90 80 0.55 2.90

Resnets-50 (R) CV 54 89 52 0.19 1.30
SSD-Resnets (S-R) OR 37 89 49 0.12 3.60

SSD-Mobilenets (S-M) OR 29 74 35 0.16 0.31
DistilBERT (DB) NLP 36 50 0.04 2.25 0.35

MobileBERT (MB) NLP 316 50 11 0.10 0.07

Table 4.2: DNN models used in this work. CV=Computer Vision,
OR=Object Recognition, NLP=Natural Language Processing, nl=Number of
layers, sp{A,B}=Average sparsity of the matrices {A,B} (in %), cs{A,B}=Average
compressed matrix size for the matrices {A,B} (in MiB). Appl=Application

reductions and merges would lead to large control overhead, significant area
overhead and dark silicon (see Section 4.5.4).

To efficiently support different SpMSpM workloads to run modern sparse
DNNs, we present Flexagon, the first (to our knowledge) reconfigurable sparse
and homogeneous DNN accelerator that can be dynamically adapted to execute
the most suited SpMSpM dataflow on a per DNN layer basis. Flexagon features
a novel unified Merger-Reduction Network (MRN) that supports both reduction of
dot products and merging of partial sums. We propose a tree-based topology
where the nodes are configured to act either as accumulators or comparators,
as explained in Section 4.3. Flexagon also features a new L1 on-chip memory
organization composed of three customized memory structures that are able
to capture the memory access pattern of each dataflow. The first memory
structure is a simple read-only FIFO, which is designed for the sequential accesses
that occur during some stages in the three dataflows. The second one is a
low-power cache used to back-up the random accesses caused mainly by the
Gustavson’s dataflow. Finally, a customized memory structure called PSRAM ,
is specifically designed to store and read psums, which is essential for both Outer
Product and Gustavson’s dataflows. These memory structures allow us to
support all the three dataflows with minimal area and power overheads. Further,
our accelerator also prevents the hardware from requiring explicit expensive
conversions of compression formats (i.e., from CSR to CSC or vice-versa) [102]
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between layers as it is possible to easily switch among the most convenient
dataflow given a particular compression format (details discussed in Section 4.3).

We summarize our key contributions:

We demonstrate that each SpMSpM operation in modern sparse DNN layers
presents different memory access patterns according to matrix dimensions
and sparsity patterns. As a consequence, the dataflow that maximizes
the performance of a particular SpMSpM operation not only can change
between DNN models, but also from layer to layer within a particular
DNN model.We present a new inter-layer dataflow mechanism that enables
compression format conversions without explicit hardware modules. We
design Flexagon, which hinges on a novel network topology (called MRN)
that allows, for the first time, support for the three dataflows, and a new
L1 on-chip memory organization to effectively capture the memory access
patterns that each dataflow exhibits for input, output and partial sums.
We extensively evaluate Flexagon using cycle-level simulations of several
contemporary DNN models from different application domains, and RTL
implementation of its principal elements. Our results demonstrate that
Flexagon achieves average performance benefits of 4.59× (ranges between
2.09× and 7.41×), 1.71× (ranges between 1.04× and 4.87×), and 1.35×
(ranges between 1× and 2.13×) with respect to the state-of-the-art SIGMA-
like, SpArch-like and GAMMA-like accelerators (265% , 67% and 18%,
respectively, in terms of average performance/area efficiency).

The rest of the chapter is organized as follows: Section 4.2 explains the com-
pression formats and dataflows utilize by state-of-the-art accelerators. Section 4.3
describes Flexagon and the key design aspects that enable the support of the
main dataflows. Section 4.4 explains the methodology used during this chapter
and Section 4.5 evaluates Flexagon. Finally, Section 4.6 describes the related work
and Section 4.7 concludes this chapter.

4.2 Background
4.2.1 Compression Formats
Following the same taxonomy used in ExTensor [50], the SpMSpM operation
computes the operation CM,N = AM,K × BK,N, where the three matrices are 2-
dimensional tensors. Since these matrices are typically sparse (see Table 4.2), they
are compressed to encode the non-zero values while preserving the computation
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intact (lossless compression) [64]. In our work, we focus on the widely used
unstructured compression formats CSR and CSC. Fig. 4.2 shows an example.
A matrix encoded in CSR format employs three 1-dimensional tensors to store
the non-zero values in a row-major data layout: a data vector to represent the
non-zero values, a row pointer vector to store the index position where each row
begins within the data vector, and a column index vector to store the column of
each non-zero value. Similarly, the CSC uses column-major data layout: a data
vector, a column pointer vector to store the index position of start of column, and
a row index vector to store the row index of each non-zero data value. Observe
that both CSR and CSC employ the same compression method, and thus, can
be seen as a single compression format. This is important as an accelerator
would use the same control logic needed to handle both of them. This facilitates
the implementation of the control logic (further details in Section 4.3.5) in our
accelerator.

As in previous works (e.g. [122]), we will use the term fiber to denote each
compressed row or column. Each fiber contains a list of duples (coordinate,
value), sorted by coordinate. We use the term element to refer to one duple in the
fiber.

4.2.2 SpMSpM Dataflows

SpMSpM operation is based on a triple-nested for-loop that iterates over A’s
and B’s independent dimensions M and N, and co-iterates over their shared
dimension K. Depending upon the level of the co-iteration in the loop nesting,
three different dataflows have been identified for SpMSpM computation: Inner
Product (co-iteration at the innermost loop), Outer Product (co-iteration at the
outermost loop) and Gustavson’s (co-iteration at the middle loop). Additionally,
these dataflows result in six possible variants according to how the independent
dimensions (M and N) are ordered for each of them (two variants per dataflow).
Notice that each variant favors the stationarity of one of the dimensions (the
outermost one) over the other. This way, we distinguish each variant by (M) if
the computation is M-stationary or (N) if it is N-stationary. Fig. 4.3 shows the
resulting six dataflow variants. Each dataflow defines how the elements flow
during execution, and thus, the opportunities for data reuse. Table 4.3 gives a
detailed taxonomy of each approach, which we summarize as follows:
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Figure 4.2: Example of an SpMSpM operation.

Dataflow Informal Name Sta Sta Str A format B format C format
Tensor Fiber Tensor

MNK Inner Product(M) C A B CSR CSC CSR
KMN Outer Product(M) A B C CSC CSR CSR
MKN Gustavson’s(M) A C B CSR CSR CSR
NMK Inner Product(N) C B A CSR CSC CSC
KNM Outer Product(N) B A C CSC CSR CSC
NKM Gustavson’s(N) B C A CSC CSC CSC

Table 4.3: Taxonomy of dataflow properties. Traversal order is given outermost-
to-innermost in loop order. The stationary tensor gets the most reuse, whereas
the streaming tensor has long temporal reuse distance that is difficult to exploit,
while the stationary fiber falls in between.
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Figure 4.3: Dataflow combinations for matrix multiplication. For simplicity,
non-compressed (dense) matrices are shown.

4.2.2.1 Inner Product (IP)

The order in which the M and N dimensions are traversed defines the dataflow
and the order in which the outputs are being generated. If the M dimension is
at the outermost loop –Inner Product(M) dataflow– (see Fig. 4.3a), the output
elements are generated by rows. On the contrary, the Inner Product(N)dataflow
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(see Fig. 4.3d) generates the outputs by columns as the N dimension is kept
stationary the longest. These two dataflows obtain good reuse for matrix C as
the partial outputs are kept stationary, but achieves poor reuse for matrices A
and B. Note that, when it comes to compressed matrices, these dataflows require
to perform intersections to locate the matching K coordinates, thereby leading to
ineffectual computation. Additionally, in order to traverse the A and B matrices
efficiently in the correct order, matrix A needs to be encoded in CSR format (a
row-major data layout is more efficient) while matrix B needs to be encoded in
CSC (a column-major data layout is more efficient). Note that, the encoding
of the output matrix C depends on the M and N iteration orders. As shown
in Fig. 4.3(a), the Inner Product(M) dataflow generates the outputs in an order
that is best suited for a row-major data layout, hence a CSR format is more
efficient to traverse, while the Inner Product(N) dataflow generates them in a
column-major data layout that is more appropriate for the CSC format.

4.2.2.2 Outer Product (OP)

This dataflow keeps the co-iteration at the outermost loop. This means that every
M and N traversals generates a partial matrix which is accumulated with the
rest of partial matrices (i.e., K partial matrices are accumulated) to produce the
output C matrix. The Outer Product(M) dataflow (shown in Fig. 4.3b) generates
the partial matrices by keeping the M-dimension stationary and traversing the
N-dimension (i.e., by rows), generating the partial sums (psums) in this order (i.e.,
by rows). In contrast, the Outer Product(N) dataflow (see Fig. 4.3e) exchanges
the N- and M-dimensions, keeping the N dimension stationary and traversing the
M dimension (i.e., by columns). These dataflows achieve good reuse for matrices
A and B, but very poor reuse for matrix C. Note that when it comes to sparse
computation, the number of partial sums and their coordinates are not known a
priori, meaning that they require to be merged after the generation process.

The Outer Product dataflow requires to traverse matrix A by columns and
matrix B by rows, which must be encoded in CSC and CSR formats, respectively.
Matrix C can be generated either in CSR or CSC depending on the outermost
independent dimension (i.e., M or N). As we can see in Fig. 4.3(c), the Outer
Product dataflow generates the outputs in row-major data layout, which is
more convenient to be formatted as CSR, while the Outer Product(N) dataflow
generates the elements of the output matrix in a data layout that is more efficient
for CSC encoding (see Fig. 4.3(d)).
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4.2.2.3 Gustavson’s (Gust)

In this dataflow, the co-iteration happens at the middle of the triple-nested loop.
The Gustavson’s(M) dataflow (see Fig. 4.3c) (a.k.a., row-wise product) computes
one entire row at a time, by traversing a row of A and linearly combining
the rows of B for which the row of A has non-zero coordinates. Similarly, the
Gustavson’s(N) dataflow (i.e., column-wise product) shown in Fig. 4.3f computes
one entire column at a time, by traversing a column of B and linearly combining
the columns of A for which the column of B has non-zero coordinates.

Similar to the Outer Product dataflow, Gustavson’s also requires merging
partial sums when the matrices are compressed.

Nevertheless, this dataflow still achieves good reuse for the matrix that
is kept stationary (i.e., A in the Gustavson’s(M) dataflow and B in the
Gustavson’s(N) dataflow), and reduces significantly the number of partial out-
puts generated with respect to the Outer-Product algorithm, improving the reuse
for matrix C. However, this dataflow also comes with its own inconveniences.
First, the number of partial sums generated in a particular row or column can be
still high, introducing pressure on the memory hierarchy for producing matrix
C. And second, the reuse for matrix B in the Gustavson’s(M) dataflow depends
on the particular values of matrix A, as its coordinates are used to index matrix
B. This causes that sometimes the rows of B to be fetched are too far from each
other, producing poor reuse among rows and causing a degradation on the
energy efficiency. The same happens in the Gustavson’s(N) dataflow for matrix
A, exchanging the M and N dimensions.

Finally, Gustavson’s requires different matrix encoding for both dataflows.
Gustavson’s(M) traverses both matrices A and B by rows, and also generates
matrix C by rows, requiring the CSR format for the three matrices. In contrast,
Gustavson’s(N) requires CSC encoding for the three matrices as it performs
column-wise processing.

For the rest of the chapter, we will pedagogically use M-stationary dataflows
during the explanations, although everything would apply for the N-stationary
dataflows as well.

4.3 Flexagon Design

Fig. 4.4a shows a high-level overview of the architecture of the Flexagon ac-
celerator. As observed, Flexagon consists of a set of multipliers, adders and
comparators, as well as three on-chip SRAM modules specifically tailored to
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Figure 4.4: Flexagon high level overview.

the storage needs of matrices A, B and C for the three SpMSpM dataflows. In
addition, in order to allow for the highest flexibility, all the on-chip components
are interconnected by using a general three-tier reconfigurable network-on-chip
(NoC) composed of a Distribution Network (DN), a Multiplier Network (MN),
and a Merger-Reduction Network (MRN), inspired by the taxonomy of on-chip
communication flows within AI accelerators [70]. These components are con-
trolled by the control unit which is configured by the mapper/compiler before
the execution.

Flexagon’s execution phases are shown in Fig. 4.4b. The process begins with a
dataflow analysis (phase 1), which is carried out offline. Here, a mapper/compiler
examines the features of the SpMSpM operation to be executed (i.e., matrix
dimensions and sparsity patterns) and decides the dataflow (between the six
available described in Section 4.2) that best matches the operation, generating
the tiling scheme and the particular values for the signals that configure the
operation of the accelerator for the rest of the phases. The next three phases
are performed during runtime according to these generated signals and are
repeated several times according to the number of execution tiles. The first

143



4. Flexagon: A Multi-Dataflow Sparse-Sparse Matrix Multiplication Accelerator for
Efficient DNN Processing

runtime phase is called stationary phase (phase 2), which delivers data that
will be kept stationary in the multipliers to reduce the numer of costly memory
accesses. According to the dataflows description presented in Section 4.2 for
M-stationary dataflows, this stationary data belongs to matrix A, while matrix B is
streamed during the streaming phase (phase 3). For N-stationary dataflows, this
happens in the reverse order. These two phases generalize for the three dataflows.
The merging phase (phase 4) is only necessary for both Outer Product and
Gustavson’s dataflows and is the one in charge of merging the fibers of partial
sums that have been previously generated during the streaming phase. This
phase is skipped in the Inner Product dataflow as no merging is required.

In this work, we focus our attention on the accelerator design as well as on the
way the three phases operate in order to give support to the six possible dataflows
(three SpMSpM dataflows, two variants, M or N-stationary, each) over the same
hardware substrate. We leave the study of the tool required for dataflow analysis,
tiling selection and generation of the configuration file for the accelerator (phase
1 in the Offline part in Fig. 4.4b) for future work.

4.3.1 On-chip Networks

One of the main novelties of Flexagon is its ability (through proper configuration)
to support the six dataflows described in Section 4.2 using the same hardware
substrate. To do so, the accelerator follows the three-tier configurable NoC
taxonomy described in Chapter 2. In this way, it is equiped with three-tier
subnetworks able to adapt to the communication features of each dataflow. Next,
we describe each subnetwork in detail.

4.3.1.1 Distribution Network (DN)

This module is used to deliver data from the SRAM structures to the multipliers.
In order to enable the high flexibility that the three SpMSpM dataflows require,
the DN needs to support unicast, multicast and broadcast data delivery. To
achieve this, and at the same time ensure high energy efficiency, we utilize a
Benes network similar to previous designs like SIGMA [31]. This network is an
N-input, N-output non-blocking topology with 2 × log(N) + 1 levels, each with
N tiny 2×2 switches.
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Figure 4.5: a) MRN in the multiplying phase. b) MRN in the merging phase.

4.3.1.2 Merger-Reduction Network (MRN)

Previous designs like MAERI [70] or SIGMA [31] have used specialized tree-based
reduction networks (RNs) such as ART or FAN to enable non-blocking reduction
of multiple clusters of psums. These RNs provide high flexibility for the Inner
Product dataflow as its purpose is to reduce a cluster of psums. In case of Outer
Product and Gustavson’s dataflows, other works such as [122, 124] employ a
tree-based topology to perform the merge operation of the psums once they are
generated. In our design, we have, for the first time, unified this concept, and
have designed a merger-reduction network able to both reduce and merge psums.
Figure 4.5 shows a 8-wide MRN operating on both multiplying (Figure 4.5a)
and merging (Figure 4.5b) phases. The multiplication phase shows 2 clusters of
multipliers reducing in parallel. The first cluster is shaped by 6 multipliers (i.e.,
colored by red) and the second one is composed of two (i.e., colored by blue).
As we can see, the role of the nodes is to add the value of each element into a
resulting value that is sent to the parent. Here, the coordinate field is not needed
so it is not used. In contrast, the merging phase shows 8 duples of value (i.e.,
the partial sum) and coordinate being merged into four final elements. As we
can see, our MRN employs an augmented tree with forwarding links between
nodes that do not share the parent. This helps in the multiplication phase to
create multiple non-blocking clusters of multipliers reducing in parallel. Also,
the MRN topology augments the nodes with comparators and switching logic
able to exchange the mode of operation. An example of the microarchitecture
of these nodes is shown in Figure 4.6 This allows to perform both operations
while keeping low area and power logic and enables direct support for the three
SpMSpM dataflows, as we describe later. The selection of the configuration is
done by the mapper/compiler which generates the signals to route the nodes
and its operation modes accordingly to the dataflow and layer dimensions.
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Figure 4.6: Microarchitecture of MRN’s nodes.

Multiplier network (MN): Similar to other designs such as MAERI, this
network is composed of independent multipliers that can operate in two different
modes: i) Multiplier mode: the unit performs a multiplication and sends the result
to the MRN. This mode is used during the entire execution when the Inner
Product dataflow is configured, and during the streaming phase when either the
Outer Product or Gustavson’s dataflows are configured. ii) Forwarder mode: the
multiplier forwards directly the input, which is typically a psum, to the MRN. As
we will clarify in the examples bellow, this mode is essentially configured during
the merging phase in both the Outer Product and Gustavson’s dataflows.

4.3.2 Walk-Through Examples

4.3.2.1 Example of Inner-Product Dataflow

We use the Inner Product(M) dataflow, but the Inner Product(N) could be
executed in the same manner by exchanging matrices A and B. To ease the
explanation, as illustrated in Fig. 4.7, we assume a simple 4-multiplier accelerator,
and we walk through the activity of the three sub-networks. In the explanation,
we will mention the on-chip SRAM modules needed for storing matrices A, B, C
and psums (see the yellow boxes in Fig. 4.4b). Section 4.3.4 provides an in-depth
description of these memory structures.

Stationary phase: First, during the stationary phase, the controller maps as
many fibers of matrix A as possible, reading all the elements sequentially from the
dedicated SRAM structure called FIFO for matrix A. Each cluster of multipliers
will perform the dot product operation The values (without coordinates) are
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Figure 4.7: Example of Flexagon running SpMSpM using an Inner-Product(M)
dataflow.

kept spatially in the multipliers and will be reused during each step during
the streaming phase. This way, each cluster of multipliers will perform the dot
product operation.

Streaming phase: After filling the multipliers with the fibers of A, the con-
troller multicasts each fiber of matrix B (i.e., each column) to the configured
clusters in the MN. To do so, the controller uses the row coordinate of each ele-
ment in the fiber of B to detect whether it intersects with the column coordinate in
the fiber of A. If this happens, the value is sent out to the corresponding multiplier.
As we can see, in the example, all the psums generated by the multipliers are
reduced using the MRN, producing the final output at the top of each sub-tree
and sending it out directly to memory.

4.3.2.2 Example of Outer-Product Dataflow

Fig. 4.8 shows the same example as before but now assuming the Outer
Product(M) dataflow. We also show the customized SRAM structure for C called
PSRAM and that is utilized for storing the psums for matrix C. This structure
is further described in Section 4.3.4 and stores blocks of elements (coordinate,
value).

Stationary phase: During the stationary phase, the fibers of matrix A (i.e.,
columns of A) are delivered to the multipliers sequentially following the CSC
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compression format. In our particular case, the four multipliers store the elements
A1,0, A0,1, A1,2, and A1,3.

Streaming phase: During the streaming phase, each multiplier keeps station-
ary an element Am,k, given m in range [0,M) and k in range [0,K), in order to
linearly combine the non-zero elements Bk,0−N, generating a psum fiber where
all the elements share the row (m) and a particular k iteration (i.e., the partial
matrix where these elements belong to). Consecutive multipliers generating
psums for different rows for the same k iteration, do not need the psum to be
merged together. Thus, the generated psums must be sent out to the SRAM
structure, in order to be merged in a third phase. Also, since multiple rows can
run in parallel, the PSRAM ’s set is indexed by rows. Furthermore, since the
number of non-zeros in matrix A is not known a priori, it might happen that
multiple fibers from matrix A may fit in a single iteration, causing that multiple
partial outputs for the same row, but for different k iterations may run in parallel.
Since the number of psums for a particular row and for a particular k iteration is
not known at runtime, we must assign static space in the PSRAM to store the
psums from different k iterations that may be running in parallel and storing in
the same row. To do so, we divide each row in the PSRAM in blocks, and each
block contains a valid bit to indicate the validity of the data, a k value, indicating
the k iteration that belongs to that group of partial sums and the block of data.
By doing this, each block can hold, at a particular time, psums for different k
iterations for a particular row. This way, if the number of psums for a particular
iteration exceeds the block size, it may use another block from the row, even if
the next block is already being used by another k iteration. The details about
the organization and operation of the PSRAM are given in Section 4.3.4. In the
example in Fig. 4.8, we see three steps regarding the streaming phase. In the
first step, the controller sends the first element of the four fibers (across the
K-dimension) to its corresponding multiplier. For example, the first multiplier
which keeps stationary the element A1,0 receives the first element of the fiber for
the row (i.e., iteration k) 0. In step 2, each multiplier generates a psum (indicated
by the symbol *), which is the first element for the 4 fibers generated across the
K-dimension. These psums are then stored in the PSRAM . The first psum *C1,1
is allocated in the set 1, as it is indexed by its row coordinate. Use of sets allows
us to execute multiple rows in parallel. Then, since the first line is free, the psum
is stored there, enabling the valid bit and indicating that the element belongs to
K0. Dividing rows into blocks allows holding psums corresponding to different
K for a particular row. The second psum, *C0,0 is allocated to the set 0 (its row
coordinate) and since the first line is here, the cache enables the valid bit and
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tags the line with K1. The last two elements share coordinates (i.e., s *C1,0), but
belong to a different partial matrix (K2 and K3). These two elements go to the
same set in the PSRAM but to different lines, each tagged with its iteration k (i.e.,
K2 and K3). This allows to locate the psum fibers in the correct order during the
merging phase.

In step 3, the second element for the four fibers are produced, following the
same execution scheme. For the sake of brevity, we do not show how the last
element from the longest psum fiber (i.e., fiber K3) is produced, and directly
show the contents of the PSRAM just before starting the merging phase (merging
phase step 1).

Merging phase: The merging phase proceeds row by row. For each row,
the controller fetches the elements for the different k-iteration fibers from the
PSRAM . These elements are stored in different blocks and can be identified by
their tags, consuming the elements and sending them to the MRN in order to
be merged. Each unit in the MRN compares the column coordinate (i.e., the
N-dimension). If the coordinates match, then the values of the elements are
accumulated. Otherwise, the node sends up the tree the element with the lowest
coordinate. The last two rows in Fig. 4.8 show 8 merging steps. The 4 first steps
(Merging phase step 1 to step 4) merge the first row. In the second row, there
are 3 psum fibers ready to be merged. In step 5, the first element for the three
fibers (K0, K2 and K3) are sent to the MRN. In step 6, the psums *C1,1 and *C1,0
compare their column coordinate. Since they do not match, and element *C1,0 has
a lowest column coordinate, this element is sent up to the MRN first. The same
procedure is executed in a pipelined-manner for the rest of the elements in the
fiber until all the psums have been merged in a single fiber and sent to DRAM. In
case the number of fibers in a row is greater than the number of multipliers (i.e.,
leaves in the tree), the controller needs to perform multiple passes to complete
the final merge.

4.3.2.3 Example of Gustavson’s Dataflow

Finally, for the same example matrices, Fig. 4.9 illustrates how Flexagon proceeds
when the Gustavson’s(M) dataflow is selected. Similarly, the operation in this
case proceeds in three well-differentiated phases.

Stationary phase: First, during the stationary phase, as many fibers of A
(i.e., rows in matrix A) as possible are mapped spatially and sequentially in the
multipliers. This makes this phase similar to the stationary phase for inner-
product shown in Fig. 4.7, where the A matrix is delivered in CSR traversal order.
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Figure 4.8: Example of Flexagon running SpMSpM using an Outer-Product(M)
dataflow. “*” indicates that the outputs produced by the accelerator are psums
and not final outputs. “V” in the PSRAM represents the valid bit and “K”
indicates the k iteration tagged for a particular block.

The multipliers, then keep two clusters, each in charge of calculating the psums
for a different output row (i.e., rows 0 and 1 in the example).

Streaming phase: In the streaming phase, for each multiplier, the memory
controller fetches and delivers the fiber of B (i.e., row of B) that corresponds to
the column coordinate (i.e., k-iteration) associated to the mapped element of A in
the multiplier. Every multiplier generates a partial output fiber which is merged
with the rest of partial output fibers generated by the other multipliers allocated
to the same fiber of A. An example of this generation is shown in Fig. 4.9. Here,
we depict 6 streaming steps. The first multiplier keeps stationary the only one
element in matrix A (A0,1) so it receives the fiber of B indexed by the column 1
(i.e., the row 1). The multipliers 2-4 keep the elements A1,0, A1,2 and A1,3 so they
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Figure 4.9: Example of Flexagon running SpMSpM using the Gustavson(M)
dataflow. “*” indicates that the outputs produced by the accelerator are psums
and not final outputs.

receive the fibers of B 0, 2 and 3, respectively. The first 3 steps show how the
elements from the fibers of B are delivered cycle by cycle.

Merging phase: Similar to the Outer Product dataflow, the merging phase
combines both the accumulation and the merging operation, accumulating the
elements (i.e., its values) in a certain node if their column coordinates match,
or sending the element with the lowest column coordinate value. On the other
hand, in Gustavson’s dataflow, we can merge the psums immediately after their
generation, as a cluster of multipliers always generates fibers for the same row,
but for different k iterations. When the number of elements in A fits into a
cluster of multipliers, the output fiber generated by that cluster will be a final
fiber, and the outputs can be sent directly to DRAM without being stored in
the SRAM. Otherwise, when the number of elements in A exceeds the number
of multipliers, the output fiber will be a partial fiber as multiple iterations are
required, and therefore the fiber will require to be stored in the PSRAM, similar
to what happens in the Outer Product dataflow.
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Figure 4.10: Example of three DNN layers being executed by running the combi-
nation Inner-Product, Outer-Product and Gustavson dataflows.

4.3.3 Combinations of Inter-Layer Dataflows

As Table 4.3 shows, M-stationary dataflows output the elements in CSR format
while N-stationary dataflows output the elements in CSC format. Flexagon sup-
ports the six dataflows and takes advantage of this observation to appropriately
execute every possible sequence of DNN layers without requiring costly ex-
plicit hardware format conversions and is the first work to support compressed
outputs without explicit conversions. Fig. 4.10 shows an example of a DNN
composed of three layers, demonstrating this feature. The first and the second
layer are configured to execute inner and outer products respectively. Since
second layer needs activation in CSC, first layer is Inner Product (N). The weights
are assumed to be stored offline in both formats. The second layer produces
the matrix in CSR format if it uses M-stationary. As a result it could choose
from inner product or Gustavsons(M). The first layer (i.e., the DNN input) uses
matrix A (i.e., the input activations) in CSR format. This layer is selected by the
compiler to be executed by using an Inner-Product dataflow, which requires the
weights to be fetched in CSC format. In contrast, the second layer (i.e., Layer 2)
is selected to be executed with an Outer-Product dataflow. According to this,
the dataflow selected to execute the first layer has to be Inner-Product(N) as
it directly generates matrix C in the format required for the second layer (CSC
format). The second layer is selected to be executed using the Outer-Product(M)
dataflow, for which matrix B needs to be compressed in a CSR format. However,
being matrix B the weight matrix, it could have been pre-processed offline and
stored in both formats. This dataflow generates matrix C in CSR format, which
forces the next layer to utilize either Inner Product(M), or Inner Product(N), or
Gustavson’s(M)dataflows (see Table 4.3). In this case, the compiler selects the
use of Gustavson’s(M), generating the final output in CSR format.

Table 4.4 shows the transitions for each dataflow combination that do not
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IP(M) OP(M) Gust(M) IP(N) OP(N) Gust(N)
IP(M) D EC D D EC EC
OP(M) D EC D D EC EC

Gust(M) D EC D D EC EC
IP(N) EC D EC EC D D
OP(N) EC D EC EC D D

Gust(N) EC D EC EC D D
Table 4.4: Dataflow transitions allowed without requiring Explicit format Con-
version (EC). Different rows represent the different outputs of the first layer and
different columns represent the corresponding input to the second layer.

require an explicit format conversion (green tick) and those that do (Explicit
Conversion or EC). As we can see, exploitation of the six possible dataflows
enables direct combinations of the three SpMSpM dataflows. For example, we
can always transition from/to any Inner Product dataflow to/from any Outer
Product dataflow just by modifying the order of the loops M and N. Transi-
tioning from any Gustavson’s dataflow to any Inner or Outer Product is more
complicated as it may require an intermediate transition step. For example, transi-
tioning from Gustavson’s(M)to Outer Product(M)or Outer Product(N)requires
an intermediate layer processed through Inner Product(M) as exchanging the
loop order to Gustavson’s(N) is not possible due it requires the input matrices
in a different format. These combinations can utilized by the mapper/compiler
to generate the best sequence of dataflows that lead to the best performance and
energy efficiency for a particular DNN execution.

4.3.4 Memory Organization
In order to capture all dataflows, we have designed a customized L1 memory
level specifically tailored for the common and different patterns among the three
dataflows. Fig. 4.11 shows a schematic design for this L1 memory level. We use
a separate memory structure and a different buffer idiom for data movement
from/to each structure. To do so, every memory structure is operated by two
controllers, the tile filler interfacing with the DRAM, and the tile reader interfac-
ing the datapath of the accelerator (i.e., the multipliers). Next, we describe each
memory structure in detail:

Memory structure for the stationary matrix (FIFO): The elements of the
stationary matrix are always read once and sequentially for the three dataflows,
as they are kept stationary in the multipliers. To hide the access latency, we
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Figure 4.11: Memory structures in Flexagon.

implement a 512-byte read-only FIFO. In order to save bandwidth and reduce the
complexity: (1) the memory structure keeps the DRAM location of the stationary
matrix in a register, so that the fibres are pushed implicitly into FIFO, (2) we
employ a single-port for read and write.

Memory structure for the streaming matrix (Cache): The streaming matrix
presents a more heterogeneous memory access pattern. In Inner Product, every
stationary-phase (i.e., every iteration) causes the streaming of the entire matrix.
In other words, there is significant spatial locality and temporal locality every
time the matrix is re-loaded. In the Outer Product dataflow, the fibers of the
streaming matrix are read just once and sequentially. In Gustavson’s dataflow,
every fiber of the stationary matrix gathers F fibers of the streaming matrix, F
being the number of non-zero elements in the fiber of the stationary matrix which
are typically scattered all over the matrix, causing an irregular and unpredictable
memory access pattern. To factor the worst-case Gustavson’s dataflow, we
implement the memory structure for the streaming matrix as a traditional read-
only set-associative cache. However, we implement this cache to operate on a
virtual address space relative to the beginning of the streaming matrix, which let
us use shorter memory addresses and therefore save bandwidth and reduce the
tag lengths.

Memory structure for matrix C (PSRAM): To store the psums, we have
designed a new buffer idiom called PSRAM , which is used for both Outer
Product and Gustavson’s dataflows. Fig. 4.8 shows the way this memory struc-
ture works, Fig. 4.11 shows a high-level diagram, and Fig. 4.12 delves into detail.
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The memory is organized into sets corresponding to different rows and each
set into blocks for different K dimension within a row. Each block has a valid
bit. Besides, we use a register as a line tag to keep the column coordinate (i.e.,
the k-iteration) assigned to that line. Since the length of the output fiber is
undetermined, it may occupy several (and non-consecutive) lines in the same
row. This is essentially a way-combining scheme tagged by the k-iteration. The
register is used by the row to locate whether a certain output fiber is still placed
in the PSRAM. In order to read several fibers in parallel from the same set (i.e., to
merge a particular row or column) we implement a multi-bank scheme organized
across the lines within a set. Finally, we also include two registers to keep the
byte location where the first and last elements are in the line. This metadata is
used by the next two operations which are managed by the controller tile writer
C:

PartialWrite(row, k, E): This operation is used to place an element in the
PSRAM. The logic, indexes the element by the row argument and then searches
in parallel the line where is being stored the output fiber with the k identifier. If
the output fiber exists (i.e., the k tags match), the PSRAM places the new element
E into the last available position (indicated by the register Last in the metadata)
of the last line. If the fiber does not exist, the logic searches the first available line
and stores the element E in the first position of the line, enabling the valid bit
and updating the K, First and Last registers in order to continue storing elements
for the same K identifier in future accesses.

Consume(Row, k): The elements within a partial output fiber are placed in
the PSRAM temporarily. They are read once to feed the accelerator and are no
longer used again. This allows us to incorporate the consume operation, which
reads and erases a particular element from the memory structure. In particular,
the controller merges the partial output fibers row by row. To do so, the controller
needs to read as many fibers as possible for the same row and for each fiber
it uses the consume operation indicating the row and the fiber k to search. If
there is an active line keeping the k fiber, the structure reads the next element
from that fiber (indicated by the register First) and consumes it by increasing by
one element this register. When the First and Last registers store the same value,
the PSRAM detects that the line has been consumed and invalidates the line by
setting the valid bit to 0.

Write(Offset, E): Apart from the PSRAM which is used to store partial output
fibers, we also augment our memory structure with a FIFO which is used as a
write buffer to hide the latency of sending out final output fibers to DRAM. This
structure is employed by the Write operation which receives the location of the
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Figure 4.12: PSRAM overview.

element in matrix C to be stored (i.e., address offset from the beginning of matrix
C) and the element E. We also place a look-up table between the write buffer and
the DRAM to apply the non-linearity function on the output elements.

4.3.5 Memory Controllers

As we have stated in Section 4.3.4, we employ an explicit decoupled data orches-
tration approach where the data movement for the three memory structures is
operated by independent memory controllers that interface both DRAM and the
datapath. In our design, these memory controllers are one of the key sauces to
feed the accelerator given the configured dataflow, and still preserve low area
and power overheads.

Having one memory controller for each combination of dataflow and memory
structure would be very costly in terms of area and power as it would require
30 logic modules to orchestrate the data (6 dataflows × 5 memory controllers). In
our design, we have unified the logic and each controller is able to be configured
according to the memory access pattern of each dataflow. This way, as shown in
Fig. 4.11, we only need two controllers to orchestrate the data for the memory
structure which is kept stationary (i.e., the tile filler STA and the tile reader STA),
two memory controllers to orchestrate the memory structure for the streaming
matrix (i.e., the tile filler STR and the tile reader STR) and a single controller to
orchestrate the memory structure for C (i.e., the tile writer C). Fig. 4.13 shows the
code of these unified memory controllers.
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1: for (int i=0; i<p_A.size; i++) {
2:     for (int j=p_A[i]; j<p_A[i+1]; j++):
3:         mem.push() / mem.pop() 

1: int rcv_elems=0
2:    while (pck=pending_element()):
3:        value=pck.data()
4:        row=pck.row()
5:        col=pck.col()
6:        if(pck.is_partial_sum()):
7:           PartialWrite(row, col, value);
8:        else:
9:           d_c[rcv_elems]=value
10:        i_C[rcv_elems]=col
11:         if(new_row(row)):
12:            p_C[row]=rcv_elems

Tile Filler/Reader STA

Inputs

1: int high_L1=(gustavsons||inner_product) : p_A.size ? 1
2: for (int i=0; i<n_high_L1; i++):
3:     int low_L2=(gustavsons) : p_A[i] ? 0
4:     int high_L2=(gustavsons) : p_A[i+1] ? p_B.size
5:     for (int j=low_L2; j<high_L2; j++):
6:         curr_pointer=(gustavsons) : receive(i_A[j]) ? j
7:         int low_L3 = p_B[curr_pointer]
8:         int high_L3 = p_B[curr_pointer+1]
9:         for (int k=low_L3; k<high_L3; k++):
10:             mem.fetch[k] / mem.read[k] 

Tile Filler/Reader STR

Tile Writer C

- p_A: Row Pointer Vector STA - i_A: Col Pointer Vector STA - d_A: Data Vector STA

- p_B: Row pointer vector STR

- p_C: Row pointer vector C

- i_B: Col Pointer Vector STR

- i_C: Col Pointer Vector C

- d_B: Data Vector STR

- d_C: Data Vector C

Figure 4.13: Pseudo-code of the tile filler STA, tile reader STA, tile filler STR, tile
reader STR and the tile writer C. We fuse the fillers and readers in the same text
box. STA: Stationary, STR: Streaming.
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4.4 Experimental Methodology

4.4.1 Simulation Infrastructure

For a detailed evaluation of Flexagon, we have implemented a cycle-level microar-
chitectural simulator of all on-chip components of our accelerator by leveraging
the STONNE framework [82] described in Chapter 2. To faithfully model the
whole memory hierarchy including an HBM 2.0 off-chip DRAM, we have con-
nected the simulated accelerator to the Structural Simulation Toolkit [60] which
processes the memory requests by means of its built-in memory hierarchy element
library. To do this, we have used as a development framework the SST-STONNE
version of the STONNE simulator, previously described in Section 2.7.2. Table 4.5
shows the main parameters of the architecture we have configured for the rest of
the evaluation. We compare our results against three state-of-the-art accelerators:
SIGMA-like as an example of an Inner Product accelerator, SpArch-like as an
example of an Outer Product accelerator and GAMMA-like as an example of a
Gustavson’s accelerator. For the three accelerators, we model the same parame-
ters presented in Table 4.5, and we only change the memory controllers to deliver
the data in the proper order according to its dataflow.

To demonstrate the benefits of Flexagon, our evaluation methodology consid-
ers the following three different angles:

4.4.2 End-to-End Evaluation

To truly prove the performance benefits of Flexagon, we have carried out end-
to-end execution of complete DNN models (see Table 4.2) in our simulated
accelerators. These models are present in the MLPerf benchmark suite [106]
and we take other models for completeness. Specifically, similar to the bench-
marks used in our work described in Chapter 2, we consider Alexnet [67] (A),
Squeezenet [56] (SQ), VGG-16 [113] (V), Resnets-50 [49] (R), SSD-Resnets [77]
(S-R), SSD-Mobilenets [75] (S-M), DistilBERT [111] (DB) and MobileBERT [116]
(MB). To execute every DNN model’s layer, we use the PyTorch DNN frame-
work [5] to extract the SpMSpM kernels, prune the weight matrix based on the
sparsity levels shown in the table and encode the matrices using both CSR and
CSC formats. After this, we feed our accelerator and our baselines to run the
kernels on the four simulated architectures.
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Parameter Description
Number of Multipliers 64

Number of Adders 63
Distribution bandwidth 16 elems/cycle

Reduction/Merging bandwidth 16 elems/cycle
Total Word Size (Value+Coordinate) 32 bits

L1 Access Latency 1 cycle
L1 STA FIFO Size 256 bytes
L1 STR cache Size 1MiB

L1 STR Cache Line Size 128
L1 STR Cache Associativity 16

L1 STR Cache Number of Banks 16
DRAM size 16 GiB

DRAM access time 100 ns
DRAM Bandwidth HBM 2.0

Table 4.5: Configuration parameters of Flexagon.

4.4.3 Layer-wise Evaluation

Since explaining the results requires delving into a finer-grained detail, we have
selected 9 representative layers extracted from the execution of the DNN models.
Table 4.6 shows these layers together with the SpMSpM dimensions (i.e., M, N
and K), the sparsity of the matrices A and B, and the resulting compressed size
of the matrices A, B and C expressed in KiB.

4.4.4 RTL Results

We implemented the main building blocks (i.e., the DN, MN, RN and the on-chip
memory) of the accelerators considered in this work (shown in Table 4.7) and
represent the SIGMA-like, SpArch-like, GAMMA-like and Flexagon accelerators.
For an apples-to-apples comparison of overheads, the four architectures use
the same tree topology for the DN, the same linear array of multipliers for the
MN and vary the RN. For the SIGMA-like architecture, we utilize the FAN
network [31] as the RN for flexible-sized reductions. For the SpArch-like and
GAMMA-like architectures, we use a merger [97, 124] to merge the partial sums
produced after the multiplications. Finally, for Flexagon we utilize the unified
MRN explained in Section 4.3.
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Layer M, N, K spA spB csA csB csC
SQ5 64, 2916, 16 68 11 1.2 162 728

SQ11 128, 729, 32 70 10 4.8 82 364
R4 256, 3136, 64 88 9 7.6 709 3136
R6 64, 2916, 576 89 53 16 3086 728

S-R3 64, 5329, 576 89 46 16 6422 1332
V0 128, 12100, 576 90 61 29 21357 12321

MB215 128, 8, 512 50 0 128 16 4
V7 512, 144, 4608 90 94 921 177 288
A2 384, 121, 1728 70 54 777 373 181

Table 4.6: Representative DNN layers selected for the evaluation. sp{A,B}=sparsity
of matrix {A,B} (in %), cs{A,B,C}=compressed size of matrix {A,B,C} (in KiB).

SIGMA- Sparch- GAMMA- Flexagon
like like like

DN Tree Tree Tree Tree
MN Linear Linear Linear Linear
RN FAN Merger Merger MRN

Table 4.7: Main building blocks to model the SIGMA-like, Sparch-like, GAMMA-
like and Flexagon accelerators. DN=Distribution Network, RN=Reduction
Network and MN= Multiplier Network.

For synthesis, we use MAERI BSV [3] to generate the 64-MS distribution
network and the multiplier network. In addition, we have implemented in RTL a
64-wide merger and our MRN. We use Synopsys Design Compiler and Cadence
Innovus Implementation System for synthesis and place-and-route, respectively,
using TSMC 28nm GP standard LVT library at 800 MHz. To obtain the area and
power numbers of the memory structures, we have used CACTI 7.0 [54] for the
same technology node and frequency.
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4.5 Results

4.5.1 End-to-End Results

Figure 4.14 compares the performance obtained with the three contemporary
fixed-dataflow accelerators (SIGMA-like, SpArch-like and GAMMA-like) and
with Flexagon when running the 8 DNN models (speed-ups with respecto to the
SIGMA-like accelerator).

The first observation is that there is no fixed-dataflow accelerator that can
obtain the highest performance for all the 8 DNN models. In particular, for Alexnet
(A), VGG-16 (V), Resnets-50 (R) and SSD-Resnets (S-R) the SpArch-like accelerator
is 5.26× and 1.49× on average faster than the SIGMA-like and GAMMA-like
architectures, respectively. Conversely, for Squeezenet (SQ), SSD-Mobilenets (SM),
DistilBert (DB) and MobileBert (MB), the GAMMA-like accelerator obtains the best
performance (average improvements of 3.28× and 2.41× against the SIGMA-like
and SpArch-like, respectively).

The second and most noteworthy observation is that Flexagon can outperform
the other three fixed-dataflow accelerators in all cases, attaining average speed-
ups of 4.59× (vs. SIGMA-like), 1.71× (vs. SpArch-like) and 1.35× (vs. GAMMA-
like). This is due to the combination of its flexible interconnects, explicitly
decoupled memory structures and unified memory controllers that enable using
the most efficient dataflow for each layer.

4.5.2 Layer-wise Results

Detailing the reasons behind the benefit observed for some DNN models for
a particular dataflow requires a deeper delve into every DNN layer execution.
To make the study feasible (we run over a hundred of layers), next, we present
a comprehensive study for a selected set of nine representative DNN layers
(Table 4.6). These layers are chosen according to the dataflow from which
they benefit the most –The first three layers in the table benefit from Inner
Product (SQ5, SQ11 and R4), the second ones from Outer Product (R6, S-R3 and
V0), and the third ones from Gustavson’s (MB215, V7 and A2).

Figure 4.15 shows a performance comparison running these selected layers
using our simulated accelerators (again, speed-ups are computed with respect to
SIGMA-like). Note the y-axis uses a logarithmic scale. Each bar shows a break-
down depending upon the fraction of execution time spent either on Multiplica-
tion phase and on Merging phase. First, note that there is high sensitivity in terms
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Figure 4.14: Performance comparison between SIGMA-like, SpArch-like,
GAMMA-like and Flexagon architectures across the 8 DNN models (speed-up
against the SIGMA-like one).

of layers that exist across the different models. As we can see, the results may be
divided in three different groups, each containing three layers. The first three
layers SQ5, SQ11 and R4 benefit from the Inner Product dataflow. The second
group of three layers R6, S-R3 and V0 benefit from the Outer Product dataflow
and the last group of three layers composed of MB215, V7 and A2 benefit from
the Gustavson’s dataflow. As expected, as shown in the figure, in case of the
first group of Inner Product-friendly layers, the SIGMA-like architecture obtains
average speed-ups of 1.53× and 1.40× against the SpArch-like and the GAMMA-
like architectures, respectively. The next three Outer Product-friendly layers
(i.e., R6, S-R3 and V0), the SpArch-like architecture obtains an average increased
performance of 5.07× and 2.66× against the SIGMA-like and GAMMA-like archi-
tectures. Finally, the last three Gustavson’s-friendly layers, the best performance
is obtained by the GAMMA-like architecture, experimenting 4.37× and 3.19×
faster executions than the SIGMA-like and the SpArch-like architectures, respec-
tively. More remarkable is that Flexagon beats all of them, always reaching the
performance of the best case.

Overall, by properly configuring the control logic of Flexagon according to the
most suitable dataflow for each layer, our accelerator is able to attain 2.81×, 1.69×,
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Figure 4.15: Performance comparison between SIGMA-like, SpArch-like,
GAMMA-like and Flexagon architectures across our 9 DNN layers (speed-up
against the SIGMA-like one).

and 1.55× speed-ups against the SIGMA-like, SpArch-like and GAMMA-like
accelerators.

Figures 4.16, 4.17 and 4.18 help us understand these results. Specifically,
Figure 4.16 shows the amount of on-chip memory traffic (expressed in MBs) that
relays between our on-chip memory hierarchy (i.e., the reads from the STA FIFO
and from the STR cache and the reads/writes from/to the PSRAM ) and the
distribution network after running the SIGMA-like, SpArch-like, GAMMA-like
and Flexagon architectures across our nine DNN layers. Figure 4.17 plots the
cache miss rate of the STR cache after running the layers, and Figure 4.18 shows
the amount of off-chip traffic (expressed in KiBs) that in consequence, flows
between this STR cache and the DRAM.

The first observation that we would like to make from Figure 4.16 is the
negligible traffic that is fetched from the memory structure for the STA matrix
(inappreciable fractions of the bars in blue color). This is basically due to the fact
that the stationary data is kept stationary in the multipliers once it is read for
the rest of the execution, as it is explained in Section 4.3. For this reason, this
memory structure does not have a significant impact on the final performance
of the executions regardless of the dataflow that is configured. In contrast, the
amount of traffic required to fill the structure for the STR matrix and the PSRAM
heavily varies layer by layer and across dataflows (fractions of the bars in orange
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Figure 4.16: Memory traffic (MB) that flows through the on-chip memory hier-
archy for SIGMA-like, SpArch-like, GAMMA-like and Flexagon architectures
across our 9 DNN layers.

and green colors respectively), hence determining the final performance of the
layer execution.

Since the Inner Product dataflow does not require to merge the partial sums
as they are internally accumulated (observe the number of partial sums sent to the
PSRAM for the SIGMA-like architecture is always 0) this dataflow obtains the best
performance. An outlier for this behaviour is observed for the V0 layer. Here, the
traffic generated for the STR matrix in the SIGMA-like architecture is lower than
the traffic generated in the SpArch-like and GAMMA-like architectures. However,
this workload experiences higher runtime. The reason of this is the large size
of the matrix B (21.3 MiB) which causes that it has to be reloaded several times,
experimenting a L1 miss rate of 3.13% (see Figure 4.17), significantly higher than
the L1 miss rates obtained for the SpArch-like and GAMMA-like architectures
(i.e., 0.36% and 2.30%) which translates into increased off-chip memory traffic
(see Figure 4.18). This higher traffic provokes that the multiplying phase takes
longer for the SIGMA-like architecture than for both the multiplying and merging
phase for the SpArch-like architecture. When the number of intersections is low,
the SIGMA-like architecture experiments higher number of cycles overheads due
to this architecture accesses to many more data elements. This is also observed in
the six layers that do not benefit from the SIGMA-like architecture (i.e., R6, S-R3,
V0, MB215, V7 and A2), experiencing on average 5.68× and 2.27× higher on-chip
traffic than the SpArch-like and GAMMA-like architectures.
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Figure 4.17: STR cache miss rate for the SIGMA-like, SpArch-like, GAMMA-like
and Flexagon architectures across 9 DNN layers.

On the other hand, out of these six layers, the main difference of performance
that defines them comes from the size of the matrix B. The second group of layers
(i.e., R6, S-R3 and V0) that benefit from the SpArch-like architecture have a large
size of matrix B (see Table 4.6). This implies that the GAMMA-like architecture
cannot fit the rows of B entirely in the memory structure for the STR matrix,
causing higher L1 miss rates. Observe the average L1 miss rate (see Figure 4.17)
experimented in the execution of these three layers is 0.39% for the SpArch-like
architecture and 2.43% for the GAMMA-like architecture. This translates into
6.25× more traffic for GAMMA which causes the degradation in performance.

In the last group of layers (i.e., MB215, V7 and A2) the size of matrices B
are much smaller (up to 373 KB as observed in Table 4.6) and therefore both
SpArch-like and GAMMA-like architectures experience the same L1 miss rates
and off-chip data traffic. In this scenario, the GAMMA-like architecture is more
efficient as it is able to compute the merging phase and the merging phase
at the same time –Observe the orange bar for the GAMMA-like cases in the
Figure 4.15 is not significant as the merge phase is computed in parallel within
the multiplying phase (i.e., blue bar).
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Figure 4.18: Off-chip data traffic for the SIGMA-like, SpArch-like, GAMMA-like
and Flexagon architectures across 9 DNN layers.

4.5.3 Mapper Insights

Upon our previous analysis, we expose some insights that would help a mapper
for Flexagonto quickly identify whether a layer has to be configured to execute an
Inner Product, Outer Product or Gustavson’s dataflow. Based on the previous
observations, we can see that the key is mostly the matrix B. The layers that
benefit from Inner Product are the ones that has a matrix B size inferior to
the cache size and the sparsity pattern advocate to match the elements of the
matrix A. If one these requirements is not accomplished, the layer would be
candidate either for the Outer Product or the Gustavson’s dataflow. To select
one, a mapper would have to look up the sparsity patterns of A and the size of the
matrix B. Both determine how many rows and the size of the rows to fetch during
the streaming phase. If there are too many rows or the size of them exceeds the
cache size, then using a Gustavson’s dataflow would increase the L1 miss rate
and therefore would cause a degradation of performance. Consequently, in this
case, it would be more convenient to use an Outer Product dataflow. Otherwise,
the preferable dataflow is the Gustavson’s dataflow.

Obviously, these are just superficial insights that would help a tool to take a
decision. However, the study of a mapper able to select the appropriate dataflow
given the details of a layer requires more effort and is not the focus of this work.
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Component SIGMA- Sparch- GAMMA- Flexagon
like like like

Area Results
DN (mm2) 0.04 0.04 0.04 0.04
MN (mm2) 0.07 0.07 0.07 0.07
RN (mm2) 0.17 0.07 0.07 0.21

Cache (mm2) 3.93 3.93 3.93 3.93
PSRAM (mm2) - 1.03 0.51 1.03

Total (mm2) 4.21 5.14 4.62 5.28
Power Results

DN (mW) 2.18 2.18 2.18 2.18
MN (mW) 3.29 3.29 3.29 3.29
RN (mW) 248 64.48 64.48 312

Cache (mW) 2142 2142 2142 2142
PSRAM (mW) - 538 269 538

Total (mW) 2396 2750 2481 2998

Table 4.8: Post-layout area and power obtained for SIGMA-like Sparch-like,
GAMMA-like and Flexagon accelerators.

4.5.4 RTL Results

Table 4.8 shows a breakdown of the total amount of area (mm2) and power (mW)
obtained for the 64-MS SIGMA-like, SpArch-like, GAMMA-like and Flexagon ac-
celerators. For each case, we show the results for the main architectural compo-
nents: Distribution Network (DN), Multiplier Network (MN), Reduction/Merger
Network (RN), the cache structure for the streaming matrix (Cache) and the
PSRAM .

In terms of area, we observe that Flexagon introduces an overhead of 25%, 3%
and 14% with respect to the area of the SIGMA-like, SpArch-like and GAMMA-
like accelerators, respectively. As we can see, the area of the four accelerators
is mostly dominated by the memory structures. Specifically, we observe that
the cache for the streaming matrix represents a 93%, 76%, 85% and 74% of
the total amount of area for the SIGMA-like, SpArch-like, GAMMA-like and
Flexagon architectures, respectively. Besides, the area of the PSRAM repre-
sents a 20%, 11% and 19% with respect to the SpArch-like, GAMMA-like and
Flexagon accelerators, respectively. Since the SIGMA-like architecture employs
an Inner Product dataflow, this accelerator does not need this structure, which
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explains the reason of having the lowest area. Also, the area of the PSRAM is the
GAMMA-like accelerator is half the area in the SpArch-like and Flexagon acceler-
ators as it requires to store less partial sums, which explains the area reduction.
Obviously, Flexagon needs support for the worst-case Outer Product dataflow
and needs the highest PSRAM overhead. Finally, note that our MRN is 28% and
128% larger than the area of the FAN and the merger, but this does not translates
into high overall overhead as the MRN takes only a 4% out of the total area for
Flexagon.

In terms of power, we observe the same trends. We find that the Flexagon accel-
erator consumes 25%, 9% and 21% more power than the SIGMA-like, SpArch-like
and GAMMA-like accelerators. The slightly higher overhead of Flexagon against
the aforementioned area results comes mostly from the Merger/RN as this mod-
ule represents a larger fraction of total consumption (10%, 2.34%, 2.60% and
10.41% out of the SIGMA-like, SpArch-like, GAMMA-like and Flexagon accel-
erators are observed, respectively). This, together with the fact that the MRN
consumes 25% and 284% more than the FAN RN and the merger, explains the
results.

In spite of the overhead introduced, in Figure 4.19 we illustrate that Flexagon is
still more performance/area efficient. Specifically, we consider both achieved
speed-ups and area requirements of each design. The area requirements are
normalized with respect to the SIGMA-like case, which is also the reference
for the calculation of the speed-ups. Note that the NLP models like MobileBert
(MB) and DistilBert (DB) achieves a better efficiency with the GAMMA-like
accelerator. Nevertheless, this is due to as explained before, most of the layers
(84% in DistilBert (DB) and 100% in MobileBert (MB)) for these models work
better with the Gustavson dataflow, making the area overhead introduced by the
Flexagon accelerator unnecessary.

Consequently, we can clearly see that, overall, Flexagon reaches the best
compromise between performance and area consumption (the higher Speed-
up/Area values). In comparison, we find that, on average, our accelerator obtains
18%, 67% and 265% better performance/area efficiency across the execution of our
8 DNN models with respect to the GAMMA-like, SpArch-like and SIGMA-like
accelerators. This makes Flexagon the best candidate for running heterogeneous
sparse DNN workloads.
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Figure 4.19: Performance/Area obtained after running the SIGMA-like, SpArch-
like, GAMMA-like and Flexagon architectures across our 8 DNN models.

4.6 Related Work

Sparse DNN Accelerators: Sparse matrix multiplications (SpMM, SpMSpM and
SpGEMM) have been prime targets of acceleration for AI and HPC workloads.
Several sparse DNN accelerators have been proposed for SpMM, SpGEMM and
Sparse convolution [24, 31, 42, 46, 50, 63, 72, 97, 98, 114]. These accelerators have
support for sparse execution via compression of one or both operands into
formats like CSR, CSC, bitmap, CSF etc. This reduces the memory footprint
and the number of multiplications. Some prior works like Eyeriss [22] focus on
sparsity via zero-gating of the multiplier where multiplication by zero is skipped,
this saves the number of multiplications but does not reduce the on-chip memory
footprint. Eyeriss compresses data between the Global buffer and the DRAM
via run-length coding. As Table 4.1 shows, prior sparse accelerators have picked
either one of Inner Product, Outer Product and Gustavson’s(row-wise product)
dataflows. We show that flexibility to support multiple dataflows is beneficial for
performance and performance per area over state-of-the art accelerators.

Frameworks for flexible accelerators: In order to adapt the dataflow to
the workload, prior flexible accelerators have been proposed for Dense DNNs.
Some of the state-of-the-art flexible DNN accelerators include MAERI [70] and
Flexflow [76]. Other accelerators include Reconfigurable Dataflow Accelerators
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(RDAs) [123] aka CGRAs, for example Plasticine [101]. However, flexible sparse
accelerators need to consider the ability to support multiple formats and the
ability to execute on all compressed inputs, weights or outputs depending on
the dataflow. Even though, SIGMA [31] provides flexibility in choosing arbitrary
number of reduction tile sizes, it still supports only Inner Product and we
demonstrate in this work that Outer Product and Gustavson’s can be beneficial
over Inner Product for many the workloads. Prior works in the direction of
flexibility include hardware widgets and design-space exploration tools for
CGRAs. MINT [103] is an efficient format converter widget that supports multiple
sparse formats both for storage and for compute. Prior works Garg et al. [41],
coSPARSE [35] and SparseAdapt [96] propose frameworks for efficient sparse
execution on CGRAs. However, to the best of our knowledge, this is the first
work that proposes a flexible accelerator for Sparse DNNs which has the ability
to exploit all the three dataflows.

4.7 Conclusion

This chapter proposes Flexagon, the first SpMSpM accelerator design that of-
fers Inner Product, Outer Product and Gustavson’s dataflows on a homoge-
neous hardware substrate. Our proposal revolves around a novel tree-based
network (MRN) that supports both reduction of dot products and merging of
partial sums which are the required operations for the three dataflows. To do
so, each node of the tree is composed of an adder and a comparator. For Inner
Product dataflow the tree is configured to act as a dot product engine. In contrast,
for Outer Product and Gustavson’s , the tree is configured as a merger.

On the other hand, in order to capture all dataflows, Flexagon implements a
customized L1 memory level specifically tailored for the common and different
patterns among the three dataflows. In particular, the memory is organized as
three main SRAM blocks: A memory structure for the stationary matrix (FIFO)
that stores the elements of the stationary matrix in the three dataflows, a memory
structure for the streaming matrix which is organized as a traditional cache and
is used to capture a more irregular memory access pattern generated mostly
by Gustavson’s dataflow, and a memory structure for matrix C which is called
PSRAM and is specifically designed to efficiently write and read temporal psums
that are generated during the Outer Product and Gustavson’s dataflows.

By using the dataflow that best matches the characteristics of each DNN
layer, we have shown that Flexagon brings significant improvements in per-
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formance/area efficiency over state-of-the-art fixed-dataflow sparse SIGMA-
like, SpArch-like and GAMMA-like accelerators. In particular, in our perfor-
mance/area comparison we have found that, on average, our accelerator obtains
18%, 67% and 265% better performance/area efficiency across the execution of
our 8 DNN models with respect to the GAMMA-like, SpArch-like and SIGMA-
like accelerators. This makes Flexagon accelerator the best candidate for running
heterogeneous sparse DNN workloads.
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Chapter 5
Conclusions and Future Ways

5.1 Conclusions

The last four decades have been known as the golden years of computer architec-
ture. In the last decade and a half, the trend towards designing very aggressive
and complex superscalars processors was replaced by the trend of adding more
and more simpler cores in the same chip. Regardless of the strategy followed to
leverage the transistors, architects ensured that the effect of Moore’s Law was
always accomplished, doubling the performance of processors every 2 years,
driven by the advances in technology and node shrinking.

Unfortunately, this golden age is coming to an end and the strategy of taking
advantage of putting more and more transistors in the same chip is no longer fea-
sible (at least with current technology). The transistor size is reaching its physical
limit and the only one path left to continue improving computer performance
is specialization. Architects need to find common algorithms or applications
and design specific hardware to accelerate them. This is the beginning of a new
golden age for computer architecture.

Artificial intelligence and specifically DNNs are the greatest target for special-
ization nowadays, as these algorithms constitute a promising breakthrough for a
large number of artificial intelligence applications. A common compute-intensive
algorithm that can be leveraged across multiple artificial intelligence domains.
Could we imagine a better scenario?

As expected, this has recently fueled interest in the development of specific
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accelerator architectures for DNNs capable of meeting their stringent performance
and energy consumption requirements.

The deployment of a DNN model comprises two phases called training and
inference. During the training phase, the DNN model adjusts the values of its set of
weights. Subsequently, during inference, the trained DNN model is used to solve
the problem it was designed for (e.g., image classification). Currently, training
is mostly carried out using clusters of several GPUs, although some proposals
for customized training platforms have also been developed by both industry
(e.g. Google’s Cloud TPU and Microsoft’s Project Brainwave) and academia. In
contrast, the fact that their inference phase must be primarily done in-situ has
paved the way for the development of a plethora of accelerator architectures. The
key behind all of these recent architectures has been the capture of the different
patterns of data reuse in what is known as a dataflow.

First-generation DNN inference accelerators focused their designs on fixed-
size clusters of multipliers-and-accumulate units interconnected by means of a
fixed tightly-integrated on-chip network fabric specifically tailored to efficiently
support a particular dataflow. For example, the Google TPU is built by inter-
connecting 256×256 Multiply-Accumulate (MAC) units to a tightly-coupled 2D
grid and supports a weight-stationary dataflow, while ShiDianNao groups 8×8
MAC units supporting an output-stationary dataflow. Unfortunately, as DNN
models evolve at a rapid pace, these fixed designs fail to adapt well to the partic-
ular characteristics of contemporary DNN models. The emerging of wider and
deeper models with highly heterogeneous layers in terms of sizes and types, as
well as the increased number of zeros in the DNN models (i.e., sparse models)
forced to the introduction of the next generation of architectures. Some of these
latest designs are known as flexible architectures, like MAERI or SIGMA, which
allows to the creation of multiple-number and multiple-size groups of cluster of
processing elements (i.e., multipliers). Others like ExTensor, SpArch or GAMMA
focus on the sparsity support and are capable to run the sparse kernels in the
DNNs (i.e., SpMSpM operation) in a very efficient manner.

Due to the explosion in terms of the number and type of new specific archi-
tectures, we required a way to compare all of them.

Traditionally, architectural simulators have become an integral part of com-
puter architecture research and design process, since they permit fast and accurate
design-space exploration and rapid quantification of the efficacy of architectural
enhancements in the early stages of a design. Therefore, architectural simulators
have been extensively used during the design process of CPU and GPU architec-
tures. However, and quite surprisingly, the same had not taken place until now
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for DNN accelerator architectures. To the best of our knowledge, there was no
detailed, cycle-accurate, open-source microarchitectural simulator for extensive
and accurate design-space exploration of DNN inference accelerators.

To bridge this gap, the first proposal of this thesis has been the develop-
ment and evaluation of STONNE (which stands for Simulation TOol of Neural
Network Engines), the first attempt to derive a cycle-accurate, highly-modular
and highly-extensible simulator for next-generation flexible DNN inference accel-
erator microarchitectural exploration.

STONNE framework is composed of three major modules involved in the
end-to-end simulation flow: First, the Input Module which is used to define the
DNN to be run and to load the parameters of the layer and the initial inputs and
weights onto the simulated accelerator. Once the accelerator has been configured,
the Simulation engine module carries out a cycle-by-cycle microarchitectural
simulation of the accelerator during the execution of the feed-forward compu-
tation of the layer (i.e., the inference procedure), collecting statistics during the
process. After this, the results collected during the execution of the layer are
sent back to the CPU, and finally, once the simulation of each simulated layer
is completed, the Output Module takes in the values of the counters collected
by the simulated architecture and produces several useful statistics of the exe-
cution, such as performance and energy consumption. Area numbers can also
be reported by STONNE by using a table-based scheme like the one presented
in Accelergy framework. The simulation engine is equipped with all the major
components required to construct first-generation and flexible DNN accelerators.
All these on-chip components are interconnected by using a three-tier network
fabric composed of a Distribution Network (DN), a Multiplier Network (MN),
and a Reduce Network (RN). These networks can be configured to support any
topology (and therefore any accelerator) and any configuration parameter. We
have validated STONNE against actual RTL hardware designs obtaining that the
simulator achieves an error accuracy between 0.14% to 3.10% (1.53% on average),
demonstrating that STONNE closely mimics the characteristics of the hardware
versions.

Through three use cases, we demonstrated in this thesis how STONNE can be
used to conduct comprehensive evaluations of several DNN accelerator architec-
tures running complete DNN models.

The aim of the first use case was to directly compare three different accelerator
architectures (namely, TPU, MAERI and SIGMA) considering their achievable
performance, energy consumption and required area. All the simulations were
performed considering the complete inference processing of 7 state-of-the-art

175



5. Conclusions and Future Ways

DNN models. Overall, the results of these use case showed that a MAERI-like
architecture reaches average performance improvement of 20% over the TPU-like
architecture for the execution of the seven DNN models, with a maximum of
231% for Mobilenets and a minimum of 9% for Resnets-50. Besides, we found
that a SIGMA-like architecture is 91% faster on average than a MAERI-like one
thanks to the sparsity support. In the second use case, we have used STONNE
to model the data-dependent accelerator SnaPEA. This architecture that aims
to optimized CNN processing, exploits a property in which all the activation
values in the convolution operations are either zero or positive. This use case
proved how the back-end of STONNE can be easily extended to model other
accelerators. The results obtained with STONNE showed that SnaPEA can bring
average speedups of 35%, closely approaching the 30% originally reported in the
original work, demonstrating the usability of the STONNE simulator. In the third
use case we proposed a new scheduling technique that help exploiting the filter
sparsity in a more efficient way. In particular, we observed that scheduling the
filters according to a certain heuristic such as largest filter first may improve the
performance of processing some DNN layers up to 13% (11% on average). This
case of study reveals the necessity of performing end-to-end and cycle-accurate
simulations to accurately evaluate DNN executions on sparse accelerators.

Once the STONNE simulator was completely validated, we were able to
use this tool to improve some accelerator architectures from the state-of-the-art.
With this aim, the second proposal of this thesis has been the design of a new
RN for flexible accelerators called STIFT (which stands for Spatio-Temporal
Integrated Folding Tree). Recent flexible accelerators advocated having physically
separated and reconfigurable DN, MN and RN fabrics. The RN is built from more
configurable AUs called Adder Switches (ASs). Each AS is an AU augmented
with a tiny switch to enable arbitrary cluster reductions of variable size over the
same physical RN. The type of RN that materializes this flexibility is a Spatial
Reduction Tree (S-Tree) used in both the ART and the FAN RNs proposed for
MAERI and SIGMA accelerators, respectively. This type of RN enables efficient
reduction by employing a binary tree-based accumulation so that an ideal whole
reduction operation should take O(log2 n) to be completed. Besides, to enable the
parallel execution of any number of arbitrary-size clusters, they utilize augmented
links that allows for data traversal between nodes that do not share the same
parent.

The challenge we have addressed in our second proposal, which had not been
analyzed with detail in any of the previous (i.e., MAERI and SIGMA) works,
is how to manage the common situation of folding, in which the number of
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multiplications in a dot product is larger than the number of multiplier units
implemented in hardware. In this specific purely spatial approach, which is the
one implemented by them, the psum obtained in each cluster iteration is spatially
sent to the Global Buffer, and subsequently redistributed from it to a dedicated
Multiplication Switch, responsible only for forwarding it back to the RN. This
way, the entire accumulation process is performed spatially. As we have observed
in our evaluations, this design results into low effective utilization of the mapped
MSs as this implementation impedes to iterate over the same dot product in a
pipelined manner.

In order to overlap multiplications and sums of consecutive iterations of the
same dot product, and thus, be able to attain a seamless pipelined execution for
folding, it is necessary to break the dependency between two consecutive itera-
tions by composing a Spatio-Temporal Tree (ST-Tree). To this end, one particular
extension over the previous S-Tree, leveraging the design discussed for some
ST-based rigid accelerators, was to add a set of accumulators, connected with the
ASs, in charge of temporarily accumulating the different psums being calculated
for each cluster. This approach was called ST-Tree+Accumulators (ST-Treeac)
RN. As discussed during this thesis, this approach has the major inconvenient
of entailing significant area and power overhead as it requires to significantly
increase the number of adders in the RN (i.e., the extra accumulators).

To ensure efficient folding support in flexible accelerator architectures and to
avoid the addition of such extra accumulators, we have proposed in this thesis
a novel Reduction Network fabric, specifically suited for flexible accelerator
architectures. This was called, STIFT. Similarly to ST-Treeac RN using accumu-
lators, STIFT is capable of running any number of dynamic-size clusters in a
non-blocking manner, but unlike this one, it enables efficient and flexible support
to ensure full non-blocking processing of folding. The observation behind STIFT
is that for the S-Tree RN employed in recent accelerator proposals, there are free
ASs when two or more clusters are configured. Therefore, we can use those (as
long as we add the proper links) free ASs to perform the accumulations, without
the need of duplicating the hardware. In short, STIFT network is a binary-tree
topology with horizontal links between the nodes belonging to the same level
that do not share the same parent as well as some other additional links that
ensure that every cluster can use an AS to accumulate its psums and produce its
final output value.

To prove the benefits of STIFT as the RN of a flexible accelerator architecture,
we have considered different angles for our evaluation. First, we have analyzed
the power and on-chip area overheads that the different RN solutions entail. In
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particular, we have implemented both STIFT and ST-Treeac RNs in BSV (Bluespec
System Verilog), and use Synopsys Design Compiler and Cadence Innovus
Implementation System for synthesis and place-and-route, respectively, using
TSMC 28nm GP standard LVT library at 800 MHz. For comparison, we have
also also considered MAERI’s ART design as an example of S-Tree RN. We have
studied how the different RN fabrics scale by exploring different RN widths
(number of multiplier units) and data formats (i.e., INT16, FP16 and FP32).
Second, we have conducted a comparison of the performance (runtime) that
the three flavours of RNs (S-Tree, ST-Treeac and STIFT) achieve for reduction
operations. To do so, we have implemented the three RNs in STONNE simulator
and have executed the inference procedure of seven full DNN models on the three
resulting accelerator configurations. The RTL results reveals that STIFT reduces
area and energy demands of ST-Treeac by 32% and 31%, respectively, on average.
Obviously, when compared to S-Tree, STIFT introduces area and power overheads,
as it adds the accumulation logic needed to perform temporal reductions. On
average across all the design points, the extra power and area overheads are
17% in both cases, much lower than the 39% and 40%, respectively, added by
the accumulation buffer in ST-Treeac. Nevertheless, as we showed, unlike S-Tree
and similar to ST-Treeac, STIFT enables pipeline execution of consecutive folding
iterations, resulting in much better performance results than S-Tree (and, also,
less amount of total energy consumed). Finally, we have seen that when we
consider both achieved speed-ups and area requirements of each design STIFT
reaches the best compromise between performance and area consumption (the
higher Speed-up/Area values). This is due to, compared with ST-Treeac, STIFT
achieves virtually the same performance but it requires significantly less area.
Overall, we showed that on average across the seven DNN models, STIFT reaches
a speed-up/area ratio of 5.13 while this value is reduced to 3.67 in the case of
ST-Treeac.

In the third and last proposal of this thesis, we make a step forward and we
have designed an entire specific accelerator for sparse DNNs called Flexagon.
Existing Sparse-Sparse Matrix Multiplication (SpMSpM) accelerators are tailored
to a particular SpMSpM dataflow (i.e., Inner Product, Outer Product or Gus-
tavson’s), that determines their overall efficiency. We have demonstrated that this
static decision inherently results in a suboptimal dynamic solution because dif-
ferent SpMSpM kernels show varying features (i.e., dimensions, sparsity pattern,
sparsity degree), which makes each dataflow better suited to different data sets.

Flexagon is the first SpMSpM reconfigurable accelerator that is capable of
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performing SpMSpM computation by using the particular dataflow (i.e. Inner
Product, Outer Product or Gustavson’s) that best matches each case.

Flexagon consists of a set of multipliers, adders and comparators, as well
as three on-chip SRAM modules specifically tailored to the storage needs of
matrices A, B and C for the three SpMSpM dataflows. In addition, and similar
to the previous approaches, in order to allow for the highest flexibility, all the
on-chip components are interconnected by using a general three-tier reconfig-
urable network-on-chip (NoC) composed of a Distribution Network (DN), a
Multiplier Network (MN), and a Merger-Reduction Network (MRN), inspired by
the taxonomy of on-chip communication flows within AI accelerators.

They two key sauces behind the Flexagon’s design are: 1) A novel tree-based
network (MRN) that supports both reduction of dot products and merging of
partial sums in the same hardware substrate. To do so, each node of the tree is
augmented with an adder and a comparator. In dataflows like Inner Products,
the hardware is configured to act a ST-Tree, as mentioned previously. In the
cases of Outer Product and Gustavson’s dataflows the tree is reconfigured to
perform the merging operation in a very efficient manner. 2) A special L1 on-chip
memory organization, specifically tailored to the different access characteristics
of the input and output compressed matrices. In particular, the memory structure
is divided in three main SRAM blocks: A Memory structure for the stationary
matrix (FIFO) that keeps the elements of the stationary matrix in the three
dataflows, a memory structure for the streaming matrix which is a traditional
cache used to capture a more heterogeneous memory access pattern generated
mostly by Gustavson’s dataflow, and a memory structure for matrix C which is
called PSRAM and is specifically designed to efficiently write and read temporal
psums that are generated during the Outer Product and Gustavson’s dataflows.

For a detailed evaluation of Flexagon, we have implemented a cycle-level
microarchitectural simulator of all these on-chip components of our accelerator by
leveraging the SST-STONNE framework. We have compared our results against
three state-of-the-art accelerators: SIGMA-like as an example of a Inner Product
accelerator, SpArch-like as an example of an Outer-Product accelerator and
GAMMA-like as an example of a Gustavson’s accelerator. Using our simulator,
we have executed 8 DNN models extracted from MLPerf. In addition, we have
implemented the main building blocks (i.e., the DN, MN, RN and the on-chip
memory) in RTL of the considered accelerators.

Our results have shown that there is no fixed-dataflow accelerator that can
obtain the highest performance for all the 8 DNN models. Furthermore, we have
seen that Flexagon can outperform the other three fixed-dataflow accelerators
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in all cases, attaining average speed-ups of 4.59× (vs. SIGMA-like), 1.71× (vs.
SpArch-like) and 1.35× (vs. GAMMA-like). This is due to the combination of
its flexible interconnects, explicitly decoupled memory structures and unified
memory controllers that enable using the most efficient dataflow for each layer. In
terms of area, we observe that Flexagon introduces an overhead of 25%, 3% and
14% with respect to the area of the SIGMA-like, SpArch-like and GAMMA-like
accelerators, respectively. In terms of power, we have observed the same trends,
finding that the Flexagon consumes 25%, 9% and 21% more power than the
SIGMA-like, SpArch-like and GAMMA-like accelerators.

In spite of this, Flexagon still reaches the best compromise between perfor-
mance and area consumption. In our performance/area comparison we have
found that, on average, our accelerator obtains 18%, 67% and 265% better perfor-
mance/area efficiency across the execution of our 8 DNN models with respect
to the GAMMA-like, SpArch-like and SIGMA-like accelerators. This makes
Flexagon accelerator the best candidate for running heterogeneous sparse DNN
workloads.

As a final conclusion from all above, we can affirm that our three proposals
represent a step forward towards the resolution of the challenges that specific
architectures for DNN accelerators will pose to computer architects.

5.2 Future Ways

The three proposals presented in this thesis open a large number of new research
paths to explore.

The development of the STONNE framework enables for the first first time
cycle-level modeling of specific accelerators for DNNs. However, we envision
that STONNE can be improved to explore much more:

• The current version of STONNE requires to manually configure the map-
ping of each layer to be executed. This is slow and tedious for the user
as it requires to run previously a mapper tool, such as mRNA, and then,
manually configure the simulation. One major contributions that we could
do to improve the usability of the tool is to integrate the mRNA tool within
the input module of STONNE to feed automatically the mappings.

• The current version of STONNE only supports principal kernels, such
as convolution layers, fully-connected layers and matrix multiplications
both dense and sparse. Although other types of layers are less significant
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in terms of computation, adding to STONNE the support for layers like
pooling or normalization layers may result interesting.

• STONNE could be used to explore not only DNNs, but also other specific
domains. One clear example is the OMEGA framework which is explained
in this thesis and is built on top of STONNE to explore specific architectures
for GNNs. However, why do we limit STONNE only to DNNs and GNNs? We
believe that STONNE can be extended and utilized as a reference tool to
explore new avenues such as recommendation systems, HPC applications,
attention layers, and many more domains that are emerging nowadays.

• STONNE may also enable the study of the interaction of the accelerator-
CPU interface. To do so, the STONNE framework could be connected and
integrated with some reference simulation tool for CPUs like Gem5, and
the simulated CPUs could off-load the DNN layers by using the STONNE
API already developed.

• The study of specific accelerators for DNNs within a more heterogeneous
system could also be a interesting path to follow. We envision the develop-
ment of a new programming interface that allows to divide the kernel into
smaller pieces and launch them into several simulated devices. With this
aim, the simulator SST-STONNE mentioned in this thesis could be the best
candidate tool.

The design of STIFT also opens a large number of research paths which are
described as followed:

• In this thesis, we have evaluated STIFT for designs similar to MAERI and
SIGMA. However, how could this design be integrated in other accelerators such
as the Google’s TPU, the Eyeriss design or even in sparse accelerators such as
Flexagon?

• We believe that STIFT could be used in large-scale datacenters. A com-
prehensive study in terms of scalability could be useful to understand the
behaviour of the design at this scale.

Finally, our Flexagon accelerator is an actual step forward towards the design
of efficient accelerators for sparse DNNs. In this way, we believe there are still
many aspects that may be explored:
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• The clearest path is the study of a mapper able to select the appropriate
dataflow given the details of a layer. In this thesis, we have exposed some
insights that would help a mapper for Flexagon to quickly identify whether
a layer has to be configured to execute an Inner Product, Outer Product or
Gustavson’s dataflow. However, we are still far from understanding the
actual facts that could lead to an optimal decision. This study is probably
the next research path we will take.

• A more comprehensive study of a memory hierarchy with support for the
three dataflows Inner Product, Outer Product and Gustavson’s. In this
thesis, we have briefly described three SRAM structures that enables the
support for the three dataflows. However, is this decision the optimal one?
What is the best configuration (i.e., cache size, line size, etc) that could be utilized?.
Even, Can the use of these structures be more optimized so that some dataflows
can take advantage of the otherwise non-utilized space in some of them?

• The benchmarks used to evaluate Flexagon are diverse but they are all
within the DNN domain. We envision that Flexagon can become the
reference sparse accelerator not only for DNNs, but also for other types of
applications such as HPC, GNNs or recommendation systems. Therefore,
an interesting path to take is to expand the set of benchmarks to these
domains and perform a comprehensive study to discover what are the best
configuration parameters (i.e., memory sizes and number of processing
elements) that bring to the light these domains in Flexagon.
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