
Universidad de Murcia
Department of Information and Communication Engineering

Development of distributed algorithms for data search and
content distribution in structured peer-to-peer networks

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

Presented by:

Jordi Pujol Ahulló

Directed by:

Dr. Pedro Garcı́a López

Department of Computer Science

Engineering and Maths

Universitat Rovira i Virgili

Dr. Antonio F. Gómez Skarmeta

Department of Information and

Communication Engineering

Universidad de Murcia

2009 November

http://www.um.es
http://www.diic.um.es
http://deim.urv.cat/~jordi.pujol/
http://ast-deim.urv.cat/pedro/
http://www.ami-communities.eu/wiki/User:Skarmeta

D. Pedro Garcı́a López, Profesor Titular de Universidad del Área de Te-

lemática en el Departamento de Ingenierı́a Informática y Matemáticas, de

la Universidad Rovira i Virgili, y D. Antonio F. Gómez Skarmeta, Profe-

sor Titular de Universidad del Área de Telemática en el Departamento de

Ingenierı́a de la Información y las Comunicaciones, de la Universidad de

Murcia, AUTORIZAN:

La presentación de la Tesis Doctoral titulada “Desarrollo de Algorithmos

Distribuidos para la Búsqueda de Información y Distribución de Conte-

nidos en Redes Estructuradas Peer-to-Peer”, realizada por D. Jordi Pujol

Ahulló, bajo nuestra inmediata dirección y supervisión, y que presenta pa-

ra la obtención del grado de Doctor por la Universidad de Murcia.

En Murcia, a 6 de noviembre de 2009

Pedro Garcı́a López
Antonio F. Gómez Skarmeta

D. Luis Daniel Hernández Molinero, Profesor Titular de Universidad del

área de Ingenierı́a Telemática y Director del Departamento de Ingenierı́a

de la Información y las Comunicaciones de la Universidad de Murcia, IN-

FORMA:

Que la Tesis Doctoral titulada “Desarrollo de Algorithmos Distribuidos pa-

ra la Búsqueda de Información y Distribución de Contenidos en Redes Es-

tructuradas Peer-to-Peer”, ha sido realizada por D. Jordi Pujol Ahulló, bajo

la inmediata dirección y supervisión de D. Pedro Garcı́a López y D. Anto-

nio F. Gómez Skarmeta, y que el Departamento ha dado su conformidad

para que sea presentada ante la Comisión de Doctorado.

En Murcia, a de de 2009

D. Luis Daniel Hernández Molinero

TESIS DOCTORAL: Desarrollo de Algorithmos Distribuidos para la
Búsqueda de Información y Distribución de Con-
tenidos en Redes Estructuradas Peer-to-Peer

AUTOR: D. Jordi Pujol Ahulló

CO-DIRECTORES: Dr. Pedro Garcı́a López
Dr. Antonio F. Gómez Skarmeta

El tribunal nombrado para juzgar la Tesis arriba indicada, compuesto por

los siguientes doctores:

PRESIDENTE:

VOCALES:

SECRETARIO:

acuerda otorgarle la calificación de:

En Murcia, a de 20 .

El Secretario del Tribunal

A jade stone is useless before it is processed;

a man is good-for-nothing until he is educated.

Chinese proverb

To Barbarakay Cisterna with love

i

Acknowledgements

I would like to give my sincere thanks to my advisors Prof. Pedro Garcı́a López

and Prof. Antonio F. Gómez Skarmeta for their support. They provided me a total

freedom to choose the subject of research, after which they gave me their total sup-

port and encouraged me until the conclusion of this dissertation. Their rattling good

personality has been a key stone in all the evolution of my research.

I also thank very much to all friends from our Laboratory of Architecture and

Telematic Services (ATS) at Universitat Rovira i Virgili. Before starting my PhD stud-

ies, I began working at the laboratory with Carles Pairot and Ruben Mondéjar. Since

then until nowadays I continued making good friends, like Heliodoro Tejedor, Marc

Sànchez, Gerard Parı́s, Marcel Arrufat, Lluı́s Pàmies, Marc Espelt, and all the rest. I

want to thank in particular to Marc Sànchez for our brainstormings, which have re-

sulted very interesting and useful for each other thesis.

I thank to Prof. Alberto Montresor his friendship and the opportunity he provided

me of making a research stay with him at Università degli Studi di Trento. Thanks

also to Gianluca Ciccarelly and Alessandro Russo for their friendship during my stay

at Trento. I want to thank to Juan Antonio Martı́nez his friendship and his hospitality

all the times I have been at Murcia.

I want to thank to my family for their inconditional support all the time, from the

very beginning of my university degree to this dissertation. I also thank all the support

and love from my girlfriend Barbarakay Cisterna. Thank her for her patience along all

these years. I would like to thank also the Cisterna’s family, that even in the distance

they have been thinking on me.

I would like to thank to all the people that have believed on me, that have shared

their time and their friendship with me along all these years.

I finally thank to Universitat Rovira i Virgili and to the Spanish Ministry of Ed-

ucation and Science, under the FPU National Program, ref. AP-2006-04166, which

supported this work.

Thanks to make it possible.

Jordi Pujol Ahulló

November 2009

ii

iii

Agradecimientos

Quiero agradecer sinceramente a mis directores de tesis, al Prof. Pedro Garcı́a

López y al Prof. Antonio F. Gómez Skarmeta, todo su tiempo y atención. Además,

les quiero agradecer que me hayan dado total libertad para escoger el campo de in-

vestigación, después de lo cual me han ofrecido su total soporte y me han animado

hasta la finalización de esta mi tesis. Ambos se caracterizan por ser extramadamen-

te buenas personas y unos excelentes investigadores, cosa que ha sido un factor muy

importante durante la evolución de mi investigación.

Quisiera también agradecer a todos mis amigos del Laboratorio de Arquitectura y

Servicios Telemáticos (AST) de la Universitat Rovira i Virgili. Antes de empezar mis

estudios de doctorado, empecé a trabajar en el mismo laboratorio con Carles Pairot y

Rubén Mondéjar. Desde entonces he continuado teniendo muy buenos amigos, como

Heliodoro Tejedor, Marc Sànchez, Gerard Parı́s, Marcel Arrufat, Lluı́s Pàmies, Marc

Espelt y todos los demás, que por brevedad, no listo en estas lı́neas. En particular,

quiero agradecer a Marc Sànchez por nuestras reuniones y brainstormings, que sin

duda resultaron muy interesantes, a la vez que fructı́feros, para nuestras correspon-

dientes tesis.

También quiero hacer llegar mis agradecimientos al Prof. Alberto Montresor por

su amistad y la oportunidad que me dió para realizar la estancia de investigación con

él en la Università degli Studi di Trento, Italia. Gracias también a Gianluca Ciccarelly

y a Alessandro Russo por su amistad durante mi estancia en Trento. Del mismo modo,

quiero agradecer a Juan Antonio Martı́nez su amistad y su hospitalidad durante todas

las veces que estuve en Murcia. Todo ello demuestra lo gran persona que son.

Deseo agradecer a toda mi familia su soporte incondicional durante todo este tiem-

po, desde el inicio de mis estudios en la universidad hasta la conclusión de mi doc-

torado. También quiero agradecer de todo corazón el soporte y el cariño que me ha

dado mi novia Barbarakay Cisterna, ası́ como también su paciencia durante todos

estos años. Quiero agradecer también a la familia Cisterna que, aun en la distancia,

hayan estado pensando en mi y hayan querido mi bien.

Agradezco a toda la gente que ha creı́do en mi, que ha compartido su tiempo con-

migo, ası́ como su amistad, durante todos estos años.

iv

Finalmente, quiero dar gracias a la Universitat Rovira i Virgili y al Ministerio de

Educación y Ciencia, bajo el programa nacional FPU, ref. AP-2006-04166, que han da-

do soporte a este trabajo.

Gracias a todos par hacer esto posible.

Jordi Pujol Ahulló

Noviembre 2009

v

Abstract

Peer-to-peer (P2P) networks are broadly classified into two main categories: un-

structured and structured. Unstructured P2P networks (UPNs) were the first kind to

appear and allow a great flexibility on user dynamicty, namely churn, whereas the

data search is flooded. This search mechanism is inefficient and motivated the intro-

duction of the structured P2P networks (SPNs). This new category organizes nodes

in a proper way that guarantees a great lookup time efficiency and ensures that, if the

piece of data exists, it is found.

The most relevant implementation of the structured peer-to-peer networks (SPNs)

is constituted by distributed hash tables (DHTs). This implementation provides the

same functionality than a traditional hash table, where buckets consist actually of the

interconnected nodes. DHTs are mainly characterized by providing the pair of func-

tions put(key, value) and value ← get(key). Above all, P2P networks are very attrac-

tive because they provide very interesting properties, like descentralization, by the

use of computing resources at the edges of Internet; and system scalability by service

distribution.

At a first glance this functionality could seem sufficient for a wide range of ap-

plications, but actually end-user applications require of enhanced services, such as

high-level queries (e.g., range queries or top-K queries), as well as content distribu-

tion services (e.g., publish/subscribe or application level multicast (ALM)). Since the

very beginning of SPNs, this kind of networks has been very permeable and has been

receiving an enormous effort to improve SPNs by introducing all these services.

Nevertheless, a common factor among all those approaches is that they charac-

terise a specific solution for a particular targeted system. The lack of genericity in these

solutions make them probably efficient but non portable to other systems, and so the

services constructed over them. We do believe, instead, that a SPN-generic solution

is feasible. Another common factor is that SPNs use a number-based uni-dimensional

keyspace to identify both nodes and data pieces, whilst the data domain of end-user

applications can be of any kind, most of the times multi-dimensional (e.g., list of key-

words for Information Retrieval or the pair latitude and longitude in location-based

vi

services). Each approach adopts a particular solution for the targeted system, and not

all the times a multi-dimensional scenario is reckoned with.

To this end, we propose a distributed framework of services for end-user applica-

tions. This framework is constructed by considering only the most common character-

istics of existing SPNs, in order to guarantee at a high level its portability among SPNs.

Having in mind this generic model of SPN, we define a set of distributed algorithms

which will define the main rules on how high-level services should be resolved. This

permits the flexibility of adding new services to the framework dynamically. Because

data domains of end-user application will probably not coincide with the keyspace

of the underlying SPN, we define an adaptation model for multi-dimensional data

domains to the keyspace.

The benefits of our approach are clear: Our framework can be easily deployed over

existing SPNs, guaranteeing the portability of a critical mass of services and end-user

applications; Several services can be added to the framework, so new rich services

are available for existing applications and will allow the construction of even more

complex applications over our framework; Applications do not need to deal with data

conversions when employing our services (the adaptation module deals with it trans-

parently to services and applications).

We prove that our approach is feasible by defining three service modules. Firstly,

a range query module defines the how to deal with range queries into our framework.

Secondly, a geographical information service module allows to applications to find

information by its location. Lastly, a publish/subscribe module provides to applica-

tions a way of distributing content through participant entities. A series of simulations

prove their efficiency compared to the most related existing solutions.

vii

Resumen

Las redes peer-to-peer (P2P) han sido clasificadas generalmente en dos tipos: deses-

tructuradas y estructuradas. Las redes P2P desestructuradas fueron las primeras en

aparecer y permiten una gran flexibilidad en cuanto a la dinamicidad de los usuarios

se refiere. En estos sistemas las búsquedas de información se realizaban mediante la

técnica de inundación. Este mecanismo de búsqueda es ineficiente y eso motivó la apa-

rición de las redes P2P estructuradas. Esta nueva categorı́a de redes organiza los nodos

en un modo adecuado para garantizar una alta eficiencia en el tiempo de búsqueda.

Además, garantiza que si una información existe, el sistema la encuentra, propiedad

que no se cumplı́a con la redes P2P desestructuradas.

La implementación más relevante dentro de las redes P2P estructuradas es la que

constituyen las tablas de hash distribuidas (DHTs del término anglosajón “distribu-

ted hash tables”). Esta implementación provee la misma funcionalidad que una tabla

de hash tradicional, en donde los buckets consisten en este caso en los nodos inter-

conectados en la red P2P. Las DHTs, como la hacen las tablas de hash tradicionales,

se caracterizan principalmente por proveer un par de funciones “put(key, value)” y

“valor ← get(key)”, y que se resuelven de forma eficiente. Todo esto permite demos-

trar que las redes P2P resultan muy atractivas. Por ejemplo, éstas garantizan la des-

centralización de los servicios, evitando ası́ problemas congénitos del modelo cliente-

servidor -como son el efecto cuello de botella, o el fallo del sistema en un sólo punto.

Para ello se utilizan los recursos existentes en los nodos que participan en la red. Otra

propiedad muy interesante es la consiguiente escalabilidad del sistema, debido preci-

samente a que la infraestructura del sistema ha sido distribuida.

Aunque a simple vista la funcionalidad de las DHTs pueda parecer suficiente pa-

ra un amplio rango de aplicaciones, de hecho, las aplicaciones necesitan de otro ti-

po de servicios más avanzados, como son las búsquedas de alto nivel (por ejemplo,

búsquedas de rango o búsquedas top-K), ası́ como también técnicas de distribución

de contenidos (por ejemplo, servicios de publicación/suscripción o multicast a nivel

aplicación). Por ello, desde la aparición de las redes P2P estructuradas allá por el 2001,

este tipo de redes han sido muy permeables y han recibido una gran atención para

mejorarlas mediante la inclusión y desarrollo de este tipo de servicios.

viii

No obstante, un factor común en todas las aproximaciones existentes es que sólo

ofrecen una solución particular para un escenario especı́fico. La falta de genericidad en

estas soluciones las hacen probablemente eficientes para el caso para el que fueron di-

señadas, pero no ofrecen portabilidad hacia otros sistemas y escenarios, y por lo tanto,

lo mismo ocurre con los servicios que estos sistemas incorporan. En cambio, nosotros

realmente creemos que una solución genérica con respecto a la red P2P estructurada

es factible. No obstante, otro factor común en todas estas redes es que utilizan un es-

pacio de claves uni-dimensional para identificar a los nodos y a los datos guardados

en el sistema. Esto difiere del dominio de datos que utilizan las aplicaciones, puesto

que la mayorı́a de las veces son complejos y multi-dimensionales (por ejemplo, una

lista de palabras clave para un sistema de Recuperación de Información, o el par (lati-

tud, longitud) en un servicio de localización geográfica). Es por ello que cada solución

adopta una cierta aproximación para el escenario planteado, y, aun ası́, no siempre se

da soporte para un dominio de datos de aplicación multi-dimensional.

Nosotros proponemos un marco de trabajo distribuido para el hospedaje de servi-

cios, que a su vez ofrecerán sus funcionalidades a aplicaciones de usuario. Este marco

de trabajo se construye considerando sólo las caracterı́sticas más comunes en las redes

P2P estructuradas. Con ello se quiere garantizar con alta probabilidad la portabilidad

de nuestro marco de trabajo (y sus servicios) entre diferentes redes P2P estructura-

das. El mecanismo que nos permitirá alcanzar tales objetivos tiene dos principales

componentes. Primeramente, definimos unos algoritmos distribuidos sólo teniendo

en cuenta las caracterı́sticas comunes de las redes P2P estructuradas, por lo que resul-

tan genéricos y aplicables en cualquiera de ellos. En segundo y último lugar, definimos

un modelo de adaptación de los datos multi-dimensionales de aplicación al espacio de

claves de las redes P2P estructuradas. Con todo ello, además, se abstrae y se facilita

el desarrollo de nuevos servicios para nuestro marco de trabajo, ası́ como también se

permite que nuevos servicios se vayan añadiendo a él dinámicamente.

Para demostrar que nuestro marco de trabajo es factible, definimos tres módulos

de servicios. El primero define cómo solucionar búsquedas de rango utilizando nues-

tro marco de trabajo. En segundo lugar, desarrollamos un servicio de información

geográfica que permite, a las aplicaciones que lo utilicen, encontrar objetos relevan-

tes por medio de su localización. Por último, proveemos un módulo de servicios de

publicación/suscripción, que permite distribuir contenidos en un sistema distribuido

a todos aquellos participantes que estén interesados. Validamos todos estos servicios,

ası́ como nuestro mecanismo de adaptación de datos por medio de simulaciones en

ix

cada uno de los escenarios. Los resultados demuestran que son eficientes, en compa-

ración con otros sistemas estrechamente ligados a cada escenario, ası́ como que nues-

tro marco de trabajo funciona con un buen rendimiento sobre diferentes redes P2P

estructuradas.

En particular, para facilitar que nuestro marco de trabajo pueda utilizar el sustrato

P2P como medio de comunicación, sólo utilizamos un conjunto mı́nimo de funciones

ya provistas o fácilmente suministrables por las redes P2P estructuradas. Estas fun-

ciones son sendMessage, getLinks and deliverMessage. Desde un punto de vista arqui-

tectónico, el marco de trabajo está formado por diferentes módulos, donde cada uno

es responsable de dar solución a diferentes problemas. A continuación los detallamos

para mayor detalle.

Módulo de adaptación de datos. Éste es el componente clave de nuestro marco de

trabajo. Cabe destacar que las redes P2P estructuradas que se consideran en esta tesis,

tienen un espacio de claves unidimensional. Como consecuencia, los dominios de datos

multi-dimensionales de las aplicaciones no son directamente soportados por las redes P2P es-

tructuradas. Este módulo se erige para realizar la transformación de los dominios de

datos multi-dimensionales a una única representación. Tal dominio de representación

coincide con el espacio de claves de la redes P2P estructuradas, por lo que de este mo-

do, los dominios de datos de aplicación son transparente y elegantemente soportados

por la red P2P subyacente.

Para realizar tal transformación, hemos diseñado una técnica de reducción dimen-

sional, llamada Bit Mapping (BM). Además, debido a que nuestro marco de trabajo

tiene que soportar diferentes servicios y aplicaciones al mismo tiempo, BM es genéri-

ca a cualquier dominio de datos de aplicación. El diseño y posterior desarrollo de la

función BM fueron motivados porque las funciones existentes no se adecuaban a los

requerimientos de nuestra infraestructura, tales como balanceo de carga de datos y enca-

minamiento, mientras que las operaciones garantiza que se resuelvan eficientemente.

Además, las operaciones distribuidas (como por ejemplo, inserción de datos o ope-

raciones basadas en rango) son resueltas por los servicios instalados en nuestro marco

de trabajo. En otras palabras, diseñamos los algoritmos necesarios para dar soporte

a operaciones complejas dentro de nuestra infraestructura. Para ello, no construimos

nuevas redes P2P, sino que nos basamos en la red P2P estructurada subyacente.

Estos algoritmos son formalmente evaluados por medio de un análisis teórico,

ası́ como también por medio de una evaluación por simulación (en cada uno de los

casos presentados en los demás módulos). Nuestros algoritmos de encaminamiento

x

distribuidos demuestran que son eficientes en una gran variedad de escenarios, y es-

calan en el número de nodos y en el número de dimensiones del dominio de datos de

las aplicaciones de usuario.

Módulo de gestión de datos. Este módulo presenta dos casos de uso de despliegue

de servicios en nuestro marco de trabajo. El primero es el diseño, desarrollo y eva-

luación de un servicio que provee búsquedas de rango de datos multi-dimensionales.

Los datos multi-dimensionales se almacenan en la red P2P. Para ello, se usa la función

BM para producir las correspondientes claves. Los nodos responsables de tales claves

almacenan los datos.

Lo que ofrece este módulo entonces es en primer lugar un servicio de búsquedas

de rango de datos multi-dimensionales. Su evaluación de rendimiento demuestra la

eficiencia no sólo de la función de adaptación BM, sino también de los algoritmos

descritos en el anterior módulo de adaptación de datos. Ambos conjuntamente mues-

tran un excelente balanceo de carga de datos y de encaminamiento en todo el sistema,

comparado con otras soluciones existentes.

Además del servicio anterior, este módulo también provee un servicio de infor-

mación geográfica. Caracterizamos el problema en cuestión e identificamos todos los

problemas que hay que salvar, tales como datos multi-dimensionales o cómo localizar los

datos por su zona geográfica. Para superar los retos identificados, proponemos que tan-

to los datos como los nodos se organicen en grupos según su proximidad geográfica.

Para ello, adaptamos ligeramente la función BM para poder utilizar la información

geográfica como parte en la fase de adaptación de los objetos a almacenar y buscar.

A parte de todo esto, también diseñamos una red P2P estructurada jerárquica

particular, que se beneficia de la propia agrupación geográficamente de nodos y da-

tos. Los datos, como en el caso anterior, se almacenan en los nodos responsables de

las claves producidas por la adaptación de los datos. A partir de ahı́, presentamos

cómo se pueden desarrollar búsquedas exactas, búsquedas geográficas y una nove-

dosa búsqueda llamada geocast. Aun cuando el dominio de datos de aplicación es

multi-dimensional (localización y descripción semántica), nuestra propuesta es capaz

de resolver todos estos tipos de búsquedas muy eficientemente. Cabe destacar que las

búsquedas geocast recuperan la información del mismo tipo (por descripción semánti-

ca) pero de diferentes lugares geográficos a la vez a un muy bajo coste, comparado con

otros sistemas existentes. Para concluir, nuestra agrupación de datos y nodos también

permiten aventajarnos frente a otras propuestas, puesto que garantizan localidad en

xi

el camino, además de localidad de datos, lo que lleva a que la solución sea eficiente y

escalable.

Módulo de distribución de contenidos. No sólo nuestro marco de trabajo permi-

te gestionar información en un entorno distribuido, sino que también distribuir con-

tenidos. En nuestro caso, este módulo provee servicios de publicación/suscripción

basados en el contenido. Utilizando la misma idea que antes, adaptamos eventos y

suscripciones al espacio de claves de la red P2P estructurada por medio de la función

BM. A partir de ahı́, demostramos que si un evento E es capturado por una suscrip-

ción S, la correspondiente clave de la transformación de E aparecerá en el conjunto de

claves de la adaptación de la suscripción S.

Teniendo esta propiedad en mente y que nos basamos en las capacidades de en-

caminamiento de la red P2P subyacente, la suscripciones se gestionan del siguiente

modo. Empleamos el modelo “de punto de encuentro.o rendezvous para hacer coin-

cidir los eventos con las suscripciones correspondientes en un escenario distribuido.

Para ello, las suscripciones se almacenan en todos aquellos nodos responsables de sus

claves de transformación. Entonces, los eventos (que se transforman a una sola cla-

ve) se envı́an a sus nodos responsables. En cualquier caso, utilizamos la función de

transformación BM y los algoritmos de encaminamiento del módulo de adaptación

de datos. Una vez los nodos responsables reciben un nuevo evento, los nodos escogen

aquellas suscripciones almacenadas localmente que seleccionan al evento recibido. A

partir de este momento, el nodo en cuestión inicia el proceso de notificación del evento

a todos los nodos suscriptores seleccionados en el paso anterior.

El conjunto de operaciones siempre se realizan utilizando solamente información

de estado local a los nodos. Mediante simulaciones demostramos que nuestra pro-

puesta provee satisfactoriamente los servicios de publicación/suscripción. Además,

el servicio demuestra sus grandes cualidades, tales como balanceo de carga de datos

y de encaminamiento o escalabilidad, en términos de número de nodos y de número

de dimensiones del dominio de datos de aplicación.

Por lo tanto, los beneficios de nuestra aproximación son claros: (i) Nuestro marco

de trabajo puede ser fácilmente desplegando sobre las redes P2P estructuradas exis-

tentes, garantizando de este modo la portabilidad de una masa crı́tica de servicios

y aplicaciones de usuario; (ii) Nuestro marco de trabajo puede hospedar múltiples

servicios, por lo que las aplicaciones que usen nuestro marco de trabajo se pueden

beneficiar de todos ellos y, de esto modo, permitimos que se puedan construir aplica-

ciones más complejas sobre nuestra infraestructura; (iii) Las aplicaciones no necesitan

xii

realizar ninguna conversión de datos (nuestro módulo de adaptación lo gestiona de

forma transparente tanto a servicios como a aplicaciones), ası́ como tampoco necesita

conocer las propiedades especı́ficas del sustrato P2P que se esté utilizando (nuestros

algoritmos distribuidos ya se encargan de completar las operaciones de forma eficien-

te).

Contents

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Topic and Motivation of this Thesis . 3

1.2 Contributions of this Thesis . 7

1.3 Outline of this Dissertation . 8

1.4 Selected Publications . 10

2 Background and State of the Art 11

2.1 Peer-to-peer Networks . 13

2.1.1 Common Properties of Structured Peer-to-Peer Networks 13

2.1.2 Hierarchical Structured Peer-to-Peer Networks 16

2.1.2.1 Cyclone . 17

2.1.3 Peer-to-Peer Systems: Summary 21

2.2 Data Management Services . 21

2.2.1 Use Cases: Similarity Query Applications 21

2.2.2 System Design: An Overview . 23

2.2.3 Similarity Queries: Definitions . 25

2.3 Parallel Computing on Similarity Queries 26

2.3.1 Range Query Parallelization . 27

2.3.2 k-NN Query Parallelization . 28

2.4 Evaluation Criteria . 30

2.4.1 Implementation Criteria . 31

2.4.2 Quality of Service Criteria . 35

2.4.2.1 Insertion and Search Evaluation Criteria 35

2.4.2.2 Evaluation Criteria of the Result Set 36

2.4.3 Parallel Computing Evaluation . 37

ii CONTENTS

2.4.4 Evaluation Criteria: Tuning and Terminology 38

2.5 Supporting Range Queries . 39

2.5.1 Flat Systems . 40

2.5.1.1 Ring-based Topology Systems 40

2.5.1.2 Grid-based Topology Systems 42

2.5.2 Hierarchical Systems . 43

2.5.2.1 Tree-based Topology Systems 43

2.5.2.2 Super-peer-based Topology Systems 45

2.5.3 Range Query Evaluation: Conclusions 46

2.6 Supporting k-NN Queries . 50

2.6.1 Flat Systems . 50

2.6.1.1 Ring-based Topology Systems 51

2.6.1.2 Grid-based Topology Systems 51

2.6.2 Hierarchical Systems . 52

2.6.3 k-NN Query Evaluation: Conclusions 53

2.7 Supporting Spatial Queries . 55

2.7.1 Flat Systems . 55

2.7.2 Hierarchical Systems . 56

2.7.3 Spatial Queries: Conclusions . 57

2.8 Content Distribution Techniques . 60

2.8.1 Use Case: Publish/Subscribe Application 60

2.8.2 System Design: An Overview . 62

2.8.3 Publish/Subscribe Services: Definitions 64

2.9 Parallel Computing on Publish/Subscribe Services 66

2.9.1 Parallelizing Event Dissemination 67

2.10 Evaluation Criteria for Publish/Subscribe Services 69

2.10.1 Implementation Criteria . 69

2.10.2 Quality of Service Criteria . 71

2.10.3 Parallel Computing Evaluation . 73

2.10.4 Evaluation Criteria: Tuning and Terminology 74

2.11 Supporting Publish/Subscribe Services 76

2.11.1 Topic-based Publish/Subscribe Services 76

2.11.2 Content-based Publish/Subscribe Services 80

2.11.3 Publish/Subscribe Services: Conclusions 83

2.12 Open Issues on High-level Services in Peer-to-Peer Systems 83

2.13 Summary . 86

CONTENTS iii

3 A Framework for Developing Application-level Services 89

3.1 Introduction . 89

3.2 Framework Overview . 92

3.3 Data Adaptation Module . 95

3.3.1 Bit Mapping: Adaptation Function for Data Domains 97

3.3.1.1 Object adaptation . 97

3.3.1.2 Range object adaptation. 99

3.3.2 Range-based Routing Algorithm 102

3.3.3 Data Adaptation Module: Evaluation 105

3.3.3.1 High-dimensional context property 105

3.3.3.2 Range object load . 107

3.4 Conclusions . 108

4 Multi-dimensional data management 111

4.1 Supporting range queries . 111

4.1.1 Introduction . 111

4.1.2 Related work . 114

4.1.3 SQS: the Similarity Query Scheme 115

4.1.3.1 Electing the Routing Infrastructure: Cyclone 116

4.1.3.2 SQS Services . 117

4.1.4 Similarity Query Scheme: Evaluation 120

4.1.5 Conclusions . 124

4.2 Geographical queries . 126

4.2.1 Introduction . 126

4.2.2 Related work . 129

4.2.3 Geophony: Geographical Information Services 130

4.2.3.1 The methodology . 131

4.2.3.2 A geographically clustered SPN 132

4.2.3.3 Location-based IDs over Geophony 135

4.2.4 Routing and Data Load Balancing 136

4.2.5 High-level queries . 137

4.2.5.1 Exact match queries . 137

4.2.5.2 Spatial range queries . 139

4.2.5.3 Geocast queries . 142

4.2.6 Evaluation . 143

4.2.6.1 Routing and Data Load Balancing 144

iv CONTENTS

4.2.6.2 Spatial and Geocast queries 146

4.2.7 Conclusions . 147

4.3 Summary . 147

5 Content distribution capabilities 149

5.1 Introduction . 149

5.2 The CAPS System . 152

5.2.1 System Overview . 152

5.2.2 System Implementation . 153

5.2.2.1 Subscription Management 154

5.2.2.2 Event Management . 156

5.2.2.3 Notification Management 157

5.2.2.4 Failure Recovery . 159

5.3 Evaluation . 159

5.3.1 Experimental Setup . 160

5.3.2 Subscription Assessment . 161

5.3.2.1 Bandwidth Scalability . 162

5.3.2.2 Memory Scalability . 163

5.3.3 Notification Assessment . 164

5.3.3.1 Bandwidth Scalability . 164

5.3.3.2 Memory Scalability . 165

5.4 Conclusions . 166

6 Conclusions and future work 169

6.1 Conclusions and outcomes . 169

6.2 Future research lines . 174

References 179

List of Figures

2.1 Example of a Cyclone setting, describing the location of nodes within

the clusters. The instantiated SPN is a Chord-like network. 18

2.2 Example of (bottom-up) conventional routing in Cyclone. Node N1100

sends a message with key K0011. On every cluster, the SPN’s con-

ventional routing is applied, discarding the clusterId bits accordingly at

each level. The exit points are N0000 for cluster 00 (EPK0011
00), N0010 for

cluster 0 (EPK0011
0) and N0011 for global cluster (EPK0011), which finally

corresponds to the responsible node for the key. 19

2.3 Example of (top-down) XOR routing in Cyclone. Node N1011 needs to

locate the cluster codified as 00 where to look for a key 01. Steps 1 and

2 are part of (top-down) XOR routing in order to locate the destination

cluster. Step 3 is the part of conventional routing to locate the node re-

sponsible for the key K0100 into the cluster 00, namely the EPK0100
00 20

2.4 Examples of similarity queries on a 2-dimensional scenario. In both

cases, the shadowed area represents the covered area for the given query.

In (a), the range query covers the area q = {[5..11], [5..11]}, whilst the

k-NN in (b) asks for 5 objects that lie within the query q = {p, r}. 23

2.5 Generic layered design, common components and information flow of

distributed systems providing similarity abstractions. 24

2.6 Approaches for range query algorithms according to the topology. . . . 42

vi LIST OF FIGURES

2.7 Examples of subscriptions in a 2-D scenario. In both cases, the shad-

owed area represents the covered area for the given subscription. In (a),

in the topic-based model, any event of the given topic is useful for the

application. Instead, in (b), the content-based model allows applica-

tions to filter out the events according to its content. The subscription

s = {[5..11], [5..11]}will select only the events that match the shadowed

area. The other ones will be useless for the application and, thus, they

will be discarded. 62

2.8 Generic layered design, common components and information flow of

distributed publish/subscribe systems. 63

3.1 Generic layered design, common components and information flow of

distributed systems providing (a) similarity abstractions, and (b) pub-

lish/subscribe services. 90

3.2 Structure of our framework provisioning high-level services. It also de-

tails all modules addressed in this work, as well as the information flow. 93

3.3 Example of adaptation of a range object. 101

3.4 Lower and higher bounds of keyspace coverage by range selection map-

ping. ‖ I ‖= 28. Number of mapping bits per dimension m/num. di-

mensions. 106

3.5 Lower and higher bounds of keyspace coverage by range selection map-

ping. ‖ I ‖= 160. Number of mapping bits per dimension m/num.

dimensions. 106

4.1 SQS Architecture . 115

4.2 Cyclone architecture. (a) Example of a Cyclone setting, describing the

location of nodes within the clusters. The instantiated SPN is Chord. (b)

Communication cost in a flat Chord against the 2- and 3-level Cyclone

with Chord as instantiated SPN. The simulation scenario is as follows.

GT-ITM topology with 100-node highly connected backbone. Latency

weights: 10ms for backbone edges, 100ms for backbone- stub edges and

5ms for stub-stub links. To construct the network with the desired size,

we attach a suitable number of Cyclone nodes to each stub node assum-

ing a latency of 1ms for these edges. 117

4.3 Range query analysis, comparing the number of routing nodes (i.e.,

noise) against the efficiency rate. Num. of dim.: 8. Num. of mapping

bits per dim.: 3. 122

LIST OF FIGURES vii

4.4 Range query evaluation between SQS and ZNet systems. Default sim-

ulation settings: 8-dimension data space; 8K-node network; 20% of se-

lectivity ratio. The network size ((a)), the number of dimensions ((b))

and the selectivity ratio ((c)) are considered. 123

4.5 Geophony Architecture . 131

4.6 Geophony routing. (a) Hierarchy and (bottom-up) conventional rout-

ing example when node N1100 sends a message with key K0011. On

every cluster, absolute greedy routing is performed, discarding the clus-

terId bits accordingly at each level. (b) Node N1011 needs to locate

Country C (codified as 00) where to look for a location-based service

(codified as 01). Steps 1 and 2 are part of (top-down) XOR routing in

order to locate destination cluster. Step 3 is the part of conventional

routing to locate the destination node (owner of key K0100). 133

4.7 Node identifier (ID) structure reflecting the gegrophical division. The

numbers inside the box tell the length in bits of the ID segment. The

numbers over the box specify the position of the first bit (and last one)

of each division within the ID. 136

4.8 Geophony vs SkipNet exact match query evaluation. (a) Routing hops

without caching. (b) Routing hops with at most 128 cached answers. (c)

Caching effect evaluation (4.8b vs 4.8a). (d) Number of caching copies,

fixing lookups to an average of 4 hops from all nodes within the network.145

4.9 Geophony vs SkipNet evaluation. (a) Spatial range queries: Number

of hops and improvement. (b) Geocast queries: Number of hops and

improvement. 146

5.1 CAPS system components and context. 152

5.2 Ratio of rendezvous nodes per subscription. Network size: (a) 1K nodes;

(b) 5K nodes; (c) 10K nodes. 161

5.3 Average number of hops performed per subscription. Network size: (a)

1K nodes; (b) 5K nodes; (c) 10K nodes. 162

5.4 Subscription storage analysis in 10K-node networks. (a) Average num-

ber of stored subscriptions per node. (b) Average number of nodes

a subscription is stored in. (c)(d) Distribution of subscription storage

within the network (Selectivity ratio: 25%). 163

5.5 Average number of hops performed per notification. Network size: (a)

1K nodes; (b) 5K nodes; (c) 10K nodes. 165

viii LIST OF FIGURES

5.6 Average number of events that reaches rendezvous nodes. Network

size: (a) 1K nodes; (b) 5K nodes; (c) 10K nodes. 166

5.7 Distribution of event reception at rendezvous nodes within the network

(Selectivity ratio: 25%). Network size: (a) 10K nodes; (b) 10K nodes CDF. 167

6.1 Structure of our framework provisioning high-level services. All the

modules and information flow are detailed. 171

List of Tables

2.1 Characterization of the evaluation criteria for systems providing simi-

larity queries. 32

2.2 Tuning of the evaluation criteria for systems providing similarity queries. 38

2.3 Common terminology along the evaluations of systems providing sim-

ilarity queries. 39

2.4 Evaluation of systems on range queries. 48

2.5 Evaluation of systems on k-NN queries. 54

2.6 Evaluation of systems on spatial queries. 59

2.7 Characterization of the evaluation criteria for publish/subscribe systems. 70

2.8 Tuning of the evaluation criteria for publish/subscribe systems. 74

2.9 Common terminology along the evaluation of publish/subscribe systems. 75

2.10 Evaluation of topic-based publish/subscribe systems. 79

2.11 Evaluation of content-based publish/subscribe systems. 82

4.1 Provided SQS storage and search services. 121

4.2 List of parameters of the simulation settings. 121

x LIST OF TABLES

1
Introduction

Advanced services like complex queries (e.g., range queries or spatial searches) and

content distribution services (e.g., publish/subscribe systems) are of great interest and

necessary for lots of modern end-user applications. For instance, Flikr [1] allow users

to upload and share images. Further, it allows users to geotag images, by which images

become labelled with their geographical location and can be seen in Flikr Maps [2].

This is an example of spatial search, where the images from a certain location are

selected from. In addition, users are kept up to date by the Flikr Keep in Touch ser-

vice [3]. This enables users to know what are doing the contacts that they have. This is

clearly a content distribution service, where after recording users their interests upon

other users, they are notified with the last changes and news from their contacts.

Flikr is a centralized service operating in a client/server mode though. It requires

an enormous investment (in equipment) to support the huge amount of data and traf-

fic that the public service causes. An alternate solution could turn Flikr into a dis-

tributed service. To this end, let us suppose that Flikr interconnects users by sharing

their images and related information from their Flikr’s desktop application, users’

weblog or image galleries from their personal web sites [4]. This distributed solution

would strive after cooperating and collaborating users’ applications and web services

to provide the same service as in the centralized approach. Indeed, the aforemen-

tioned advanced services should be also supported by the distributed version of Flikr.

These sophisticated services are non-trivially resolvable in a distributed, large scale

fashion. A very interesting and exciting approach comprises the use of the peer-to-

peer computing techniques to address these complex data management and content

distribution services.

Peer-to-peer (P2P) networks gained their popularity with the introduction of dis-

tributed file-sharing applications like the first Napster [5] and later Gnutella [6]. This

kind of networks provided an alternative to the traditional client/server communi-

cation model. The P2P computing provided rattling good properties, like no central

point of failure, no service bottleneks, all this by decentralizing the service among

participating nodes. That new technology appeared as the first of taking advantage of

2 1. INTRODUCTION

available resources at the edges of Internet (like free hard disk space, available compu-

tation cycles or unused main memory) for a system’s common goal. But this brought

up the necessity of a coordination mechanism between nodes.

Lots of P2P protocols provided several ways of node inter-communication and

coordination. According to the way nodes are interconnected, they are roughly clas-

sified into two categories: unstructured and structured. Unstructured peer-to-peer

networks (UPNs) (e.g., Gnutella [6]) build a networked system whose nodes are arbi-

trarily connected between each other. This model of network allows users to store an

arbitrary set of objects (i.e., files and information of any kind) into their nodes, being

shared among all the rest of users. Given this network structure, searches are flooded

with a time-to-live (TTL) counter between participants. The TTL’s goal is to prevent

the search from being flooded indefinitely. This approach does not provide a unique

view of the system though. Depending on the user’s node location into the networked

system, a user can encounter a set of objects highly probable different from a user in

another system location. Another drawback is the high cost of a search resolution,

since the query is broadcasted to all nodes.

It is clear, therefore, that this network model does not guarantee the search correct-

ness. That is, if an object exists, it is found. Structured peer-to-peer networks (SPNs)

appeared to dodge this obstacle (e.g., Chord [7], Pastry [8], Tapestry [9], Bamboo [10],

CAN [11], Koorde [12], Symphony [13], P-Grid [14], Kademlia [15]). SPN nodes are

connected in a particular way, so that every node can find a path to any other node

at a relatively low cost. To do so, every node is labelled with a value, namely nodeID,

which identifies a node uniquely within the system. In most of the SPNs, nodeIDs

are drawn from a keyspace of a single numerical value of the form [0..2m), where m is

the bit precision of the numeric value [7, 8, 9, 12, 14, 15] (except those derivative from

CAN [11], that use a numerical D-dimensional keyspace, defining a D-dimensional

torus).

Distributed hash tables (DHTs) embodies the set of SPNs. This is why most of

the times SPNs are generically called DHTs. In particular, a DHT is a distributed

data structure that provides the same functionality than a traditional hash table (i.e.,

put(key, value), value ← get(key)). The main characteristic of a DHT is that nodes

play the role of buckets of the hash tables. This way, all participating nodes share the

responsibility of storing and retrieving users’ information. To do so, a key is produced

from the user’s information. The keyspace for these keys is the same than for the

nodeIDs, so that a key uniquely identifies the node that will be responsible of it. In

most of the systems, a message can be transmitted between two nodes solely in a

1.1 Topic and Motivation of this Thesis 3

logarithmic number of hops, with respect to the number of nodes into the system.

Therefore, operations in SPNs are cheaper than in UPNs. All these properties motivate

to take only SPNs in consideration in this thesis.

A key property of a P2P setting is the dynamicity of users, namely churn, where

participants can enter and leave the network at any time. This contextual characteristic

of the P2P systems leans over the protocol design the responsibility of guaranteeing

important system’s attributes, like service reliability or data availability, even in the

presence of churn. To do so, systems improve their protocols with caching and repli-

cation techniques [16, 17, 18]. For instance, replicating objects into several specific

nodes will likely ensure a high degree of data availability, even if the node owning

those objects fails. In such a case, new operations would be directed to nodes with

object replicas. Since these techniques are intrinsically specific of the targeted P2P sys-

tem, we do not consider caching or replication mechanisms in our thesis, but as an

indivisible part of the P2P protocol.

1.1 Topic and Motivation of this Thesis

Basic SPN services (i.e., put/get) are not enough for up to date complex applications,

like a distributed Flikr, document indexing [19], geographical information services [20],

or application-level multicast [21] and publish/subscribe services [22]. These modern

applications necessitate of high-level functions that make easier to develop such sys-

tems. To do so, a candidate P2P substrate must deal with the following concerns:

service correctness and efficiency, high-level service provisioning and complex data domain

support.

• Service correctness. Correctness in a service is fundamental. Since SPNs con-

struct a global directory service (what means that for a given key, there exists a

unique node responsible for it1), this guarantees correctness to any service built

upon SPNs.

• Service efficiency. This property tells whether communications within P2P net-

work are efficient (for instance, with a low operation latency). Most of the SPNs

ensures a logarithmic cost in the worst case ([7, 8, 9, 13, 23]) in number of visited

nodes, with also a logarithmic number of entries in the routing table. This makes

the solution efficient given their distributed nature.

1Conversely, if more than one node is responsible for key, such system was designed structurally
to support replication, or such system incorporated replication techniques. Since we do not consider
replication techniques in this thesis, we reckon all nodes in the replica set as a single one.

4 1. INTRODUCTION

• High-level service provisioning. On the surface, SPNs seem to provide the

necessary functionality for modern applications. But there are lots of applica-

tions that pose more complex challenges than a simple put/get to SPNs in order

to be supported. Services focused on either distributed data management or

content distribution are roughly the two main families. For instance, k-nearest

neighbor (kNN) queries are an elementary part of document indexing applica-

tions [19]; range or window queries are the basis for geographical information

services [20]; publish/subscribe services for many-to-many communication, ei-

ther in the topic-based [21] or content-based [22] model.

• Complex data domain support. Application data domains are uneven from each

other. For instance, the data domain of a document indexing application is the

set of keywords with which documents are described [24]; image databases use

real-valued feature vectors of lenght F to identify images, where each feature

characterise a property from the image [25]. Since most of the SPNs, though,

utilize a unidimensional numerical keyspace, this poses a structural challenge

and must be tackled within the proposed solution.

Existing solutions have adopted one out of these two most common approaches:

(i) constructing an ad-hoc P2P infrastructure supporting explicitly the application

data domain [20, 26, 27, 28, 29], or (ii) adapting the data domain in order to map a

multi-dimensional data object to the unidimensional key of the SPN [30, 31, 32]. This

operation is performed by linearization functions, like Space-Filling Curves (SFC) [33]

(e.g., Z-Curve [34], Hilbert curve [35], XZ-Ordering [36]), order-preserving hash func-

tions (OPHF) or locality-preserving hash functions (LPHF). According to the specific

context, each solution selected one kind of function to fulfill the application requisites

(e.g., systems using SFCs [32], OPHF [31] or LPHF [30]). However, all these solutions

are designed to be efficient in the specified context, what brings a set of shortages to

light:

• Maintenance. A common mechanism to design new services is to build a partic-

ular P2P network (namely overlay), which facilitates the deployment of such ser-

vices. These new overlays are very often constructed over already existing over-

lays (e.g., Scribe is deployed onto Pastry, or Bayeux is settled up on Tapestry).

Since the P2P networks are dynamic, where nodes can leave and enter the net-

work at any time, P2P protocols must consider this issue. This produces sig-

naling traffic for any (overlay of) overlay, since each overlay has to maintain

1.1 Topic and Motivation of this Thesis 5

the overlay’s properties, such as network connectivity or fan-out. This effort

is invested at each (overlay of) overlay and, hence, this results in a duplicated,

non-trivial signaling traffic. Moreover, it is not fiddling how an overlay O can

deal with churn if the underlying overlay Q (which supports O) is also suffering

from churn.

• Genericity. Most of the existing P2P solutions provide interesting services and

build end-user applications employing specific P2P infrastructures. For instance,

a new service can be provided by means of an overlay construction [21], or it can

be designed to operate on a specific P2P infrastructure [30]. Therefore, this lack

of genericity on the P2P infrastructure prevents the service from being deployed

onto other P2P systems. To this end, a Common API appeared in order to de-

fine the common set of functions that high-level services and applications would

require for its construction [37]. Even though several systems implemented the

Common API (e.g., FreePastry[38], a free implementation of Pastry [8]; Bam-

boo [10], a free implementation of a DHT; PlanetSim [39], a P2P network sim-

ulator which includes Chord and Symphony), their implementation consist of

particular variations or interpretations of the Common API, so that services and

applications built onto those systems are actually not fully generic.

• Portability. As a result of the above issue, the enormous budget of interesting

and available services and applications becomes unusable for other P2P systems.

This abstraction between the service/application logic and the P2P infrastruc-

ture would reward on cost reduction of its development process, given that the

service would successfully work on a wide range of P2P systems.

• Multiplicity of services. Another common characteristic of most of the pro-

posed solutions is that the service and the P2P infrastructure is delivered into

a single building block. This way, this monolithic design precludes several ser-

vices from being deployed in a single P2P infrastructure. Very few proposals

(such as SkipIndex [28]) were structurally designed to support multiple services.

However, they fail in providing genericity, for instance.

Instead, the conducting motivation of this thesis is the construction of a generic

framework. We consider that the facets of the term genericity should be twofold:

• Extensible framework. Any kind of service developed into this framework

could be added at any time, so that new services would be available for end-

6 1. INTRODUCTION

user applications. This way, a service designed to work onto this framework

could be portable between any P2P systems that use this framework.

• SPN-generic framework. Not only should services be portable, but also the

framework should. That is, the framework should be capable of being deployed

in most of the SPNs. This is a necessary property to ensure service portability

and reuse, since they would be designed for this framework.

Distributed end-user applications demand, broadly speaking, two main types of

services: data management and content distribution services. The former can be seen

as a distributed service of data storage and/or indexing, where participants can store

information of any kind and perform complex data searches. Image database or geo-

graphical information systems are some examples. The latter provide a many-to-many

communication model, by which it makes aware of new pieces of information to an ar-

bitrary number of nodes. Application-level multicast and publish/subscribe systems

embody this kind of services.

In addition, both kind of services must tackle the definition of a distributed data

structure and the related algorithms to perform an expected set of operations with it.

This duality presents a trade-off that is not new, but it raises in the field of software

engineering: how complex the data structure is vs. how complicated the algorithms

become for accessing the given data structure.

This thesis considers this common scenario, which should serve as a basis for the

definition of the core infrastructure of the framework. If we provide a common data

structure with the framework to both data management and content distribution ser-

vices, this would facilitate the framework construction as well as it would unify the

accessing model to nodes in the SPN. In consequence, service implementation and

deployment would be easier.

The last, but not the least, issue that this thesis addresses is the data characteriza-

tion. Each end-user application works with a particular data domain. For instance, the

pair {longitude, latitude} is the main data entity for a geographical information system;

or a vector of keywords identifies a document into an Information Retrieval system.

This data domain is most of the times different from the keyspace of the SPN. The

proposed framework should tackle the adaptation of the data domain to the keyspace

too, as existing solutions do. Space-Filling Curves or order-preserving hash functions

are examples of such transformation techniques ([33, 35, 36, 40, 41]). As to guarantee

the genericity of the framework, the adaptation mechanism should face not only the

data type (e.g., strings or numbers), but also the data multi-dimensionality (e.g., the

1.2 Contributions of this Thesis 7

pair {longitude, latitude} is a data object, which is a bi-dimensional object, formed by

two single elements).

1.2 Contributions of this Thesis

We do believe that a generic framework is possible, a framework that could be de-

ployed over most of SPNs, as well as support several services necessary for end-user

applications. We begin with a study on the state of the art on the services our frame-

work will support. The idea behind that is to discover the infrastructure requirements

of such services, which are considered in the design of our framework. Afterwards,

we describe the work of this thesis as modules, each of which deals with a significant

part of the proposed framework. The first module addresses core functionalities of the

framework, and the rest of the modules depict use cases where some service is added

to the framework.

Analysis of the state of the art. Before starting on the design of our framework, we

make a concise study on the state of the art, in particular on the fields of the services

we aim at providing with our framework.

• First contribution. We realize the analysis on the state-of-the-art on the fields

of similarity queries (range queries, k-nearest neighbors queries, spatial queries)

and publish/subscribe services (topic- and content-based paradigms). To do so,

we state a common evaluation framework on each field with up to 10 quantita-

tive and qualitative properties. We conclude this analysis with some open issues

that we address in this work.

Data adaptation module. This module is the core component of the proposed

framework, since it deals with the data domain adaptation to the keyspace, as well as

proposes generic algorithms that can be used for high-level services.

• Second contribution. We provide a mapping function, namely BM, which adapts

any data domain to the keyspace. The adaptation mechanism is deterministic,

so that, given the same inputs, any node would produce the same key or keys

within the keyspace. This is a necessary property, since this determinism meets

the rendezvous model that SPNs obey.

• Third contribution. In order to allow specific services to run with this frame-

work, we provide a set of algorithms that work over most of SPNs. To do so,

we consider a minimum subset of their common characteristics, with which we

implement generic algorithms for range-based operations.

8 1. INTRODUCTION

Data management module. This module exemplifies the use of the adaptation

module to provide data management services. We have focused our research effort

on two out of the most demanded services: range query and geographical location

services.

• Fourth contribution. We introduce SQS, a module service capable of performing

multi-dimensional range queries. To do so, this module indexes the information

into the SPN in a proper way using the adaptation module, so that the proposed

search algorithms can easily deal with range queries.

• Fifth contribution. Geophony is our proposal to tackle the necessities of geo-

graphical information systems: geo-localization. We suggest a particular node

organization within a SPN, over which we realize the indexation of geograph-

ical data by applying a smooth variation to the mapping function. The same

proposed search algorithms support geographical lookups though. In addition,

we provide a new kind of lookup operation, called geocast, which is able to

discover interesting information at different geographical granularities (for in-

stance, regional, national or continental granularities).

Content distribution module. One of the most common exigencies of end-user

applications is the possibility to announce new pieces of information to several or

even thousands of users. Application-level multicast and publish/subscribe services

are clear examples in this context.

• Sixth contribution. We propose CAPS, a multi-dimensional content-based pub-

lish/subscribe service. We construct the service by employing the proposed data

adaptation module as is, and including extra algorithms to distribute the notifi-

cations to all interested participants.

1.3 Outline of this Dissertation

We detail in the following lines the structure of this dissertation. It is easy to note that

its organization mainly follows the set of modules presented in the section before.

Chapter 2: Background and State of the Art. We firstly outline some nomencla-

ture and the common properties related to SPNs. They are used along the develop-

ment of this thesis. In addition, this chapter includes an overview of a hierarchical

1.3 Outline of this Dissertation 9

SPN, namely Cyclone [42], which is used as a substrate in several evaluation scenar-

ios of our framework. In the last part of this chapter, we perform an analysis of works

in the state-of-the-art, in all the fields this thesis is involved into. This includes adap-

tation techniques (mainly linearization functions), high-level search services (range

queries or k-nearest neighbor queries), geographical location services, as well as pub-

lish/subscribe systems.

Chapter 3: A Framework for Developing Application-level Services. In this

chapter we introduce our adaptation module, including our BM function, which is

able to adapt multi-dimensional data domains to specific keyspaces, as well as suit-

able algorithms based on the properties of our adaptation technique to perform com-

plex range-based operations.

Chapter 4: Multi-dimensional data management. We introduce in this chapter

SQS and Geophony. SQS is our service module that implements range queries into

our proposed framework, using the tools provided by the adaptation module. We

also propose an underlying SPN where to settle our framework. Conversely, Geo-

phony consists of not only the service module for geographical location, but also a

proposal of a suitable P2P infrastructure where the framework should be set up to

deal more efficientlty with this kind of services. As a consequence of our approach,

Geophony also contributes with a new kind of queries called geocast. Both service

modules are then validated through significative simulation settings, and their results

establish the soundness of our approach.

Chapter 5: Content distribution capabilities. This chapter introduces the service

module for publish/subscribe services, namely CAPS. CAPS is a multi-dimensional

content-based publish/subscribe service. To develop it, we base the subscription and

notification functions in the adaptation module, incorporating a new algorithm for

the distribution of new notifications. Through simulation results, we corroborate the

effectiveness of CAPS and its efficiency.

Chapter 6: Conclusions and future work. This last chapter serves to expound the

main conclusions on the work of this dissertation, as well as to expose some future

research lines.

10 1. INTRODUCTION

1.4 Selected Publications

This thesis is based on the following publications:

• Jordi Pujol Ahulló, Pedro Garcı́a López, Marc Sànchez Artigas and Antonio F.

Gómez Skarmeta. SQS: Similarity Query Scheme for Peer-to-Peer Databases. In Pro-

ceedings of 12th IEEE Symposium on Computers and Communications (ISCC’07).

Aveiro, Portugal, July 1-4 2007, Pages 1107-1112. ISBN: 978-1-4244-1521-2. ISSN:

1530-1346. IEEE Computer Society. Los Alamitos, CA, USA

• Jordi Pujol Ahulló, Pedro Garcı́a López and Antonio F. Gómez Skarmeta. LightPS:

Lightweight Content-based Publish/Subscribe for Peer-to-Peer Systems. In Proceed-

ings of 2nd International Workshop on P2P, Parallel, Grid and Internet Comput-

ing (3PGIC-2008), held in conjunction with International Conference on Com-

plex, Intelligent and Software Intensive Systems (CISIS-2008). Barcelona, Spain,

March 4-7 2008, Pages 342-347. ISBN: 978-0-7695-3109-0. IEEE Computer Soci-

ety. Los Alamitos, CA, USA.

• Jordi Pujol Ahulló, Pedro Garcı́a López and Antonio F. Gómez Skarmeta. CAPS:

Content-bAsed Publish/Subscribe services for peer-to-peer systems. In Proceedings of

2nd International Conference on Distributed Event-Based Systems (DEBS ’08).

Short Paper. Rome, Italy, 1-4 July 2008.

• Jordi Pujol Ahulló, Pedro Garcı́a López, Marc Sànchez Artigas and Antonio F.

Gómez Skarmeta. Supporting Geographical Queries onto DHTs. In Proceedings

of 33rd IEEE Conference on Local Computer Networks (LCN ’08). Montreal,

Canada, 14-17 October 2008, Pages 435-442. ISBN: 978-1-4244-2413-9. ISSN:

0742-1303

• Jordi Pujol Ahulló, Pedro Garcı́a López and Antonio F. Gómez Skarmeta. To-

wards a Lightweight Content-based Publish/Subscribe Services for Peer-to-peer Sys-

tems. Special Issue on Efficient Resource, Service and Data Models for Grid and

P2P-Enabled Applications. International Journal of Grid and Utility Computing

(IJGUC). To be published, January 2009. ISSN: 1741-8488 (Online), 1741-847X

(Print).

• Jordi Pujol-Ahulló and Pedro Garcı́a-López. Chapter: Enhanced Lookup Queries

for Large-Scale Distributed Data Structures. Parallel Programming and Applica-

tions in Grid, P2P and Network-based Systems Series Advances In Parallel Com-

puting. May 2009 , Pages 83-117. IOS Press. Amsterdam, The Netherlands.

2
Background and State of the Art

Structured peer-to-peer networks are a class of distributed data structures that are de-

signed to provide scalability by service distribution. However, SPNs provided initially

only exact-match queries in a scalable way. Exact-match queries consist of retriev-

ing single values from the network (i.e., put(key, value)/value←get(key)) and providing

operation correctness (i.e., in such a way that if the data exists, it is found).

Unfortunately, exact-match queries are not enough for modern high-level services,

such as range queries. Broadly speaking, a range query is designed to retrieve all

objects from the specified segment or range. A first, primitive approach to provide

range queries would consists on flooding the whole network with the query, but it is

not suitable in the large scale. On the contrary, one could think that high-level services

(such as range queries) could be constructed through the use of exact-match queries.

To explain how, let q be a query that needs to retrieve all objects in the range [A..B] ⊆ I,

where I is the SPN keyspace. The result set for query q would be O′ = {o ∈ O|A ≤
FO(o) ≤ B}, where FO is the mapping function that for a given object o provides

a key k ∈ I. Let us suppose that |[A..B]| = d consists of thousands of keys. A naive

solution would be to ask for all individual keys i ∈ [A..B]. Nevertheless, this approach

would turn very inefficient for different concerns. Firstly, the whole operation would

involve thousands of individual get(i) queries. Such an effort is unfeasible, because

of the waste of resources not only in the node that performs the query, but also in

the cooperative nodes that would contribute their time and resources in the query

resolution. Secondly, there is no precondition that ensures that for a given key i would

exist (at least) an object o, which ensues in squandered system resources. Indeed,

a node p could potentially be the responsible node for lots of individual keys i, so

that lots of individual queries would target an overloaded p. It is clear, then, that

these naive approaches do not suit for high-level services, but other kind of more

efficient and (probably) complex solutions are demanded. Therefore, scalable high-

level service provisioning on SPNs is challenging.

The services that modern distributed applications ask for, comprise two main fam-

ilies: data management and content distribution services. Actually, modern applications

12 2. BACKGROUND AND STATE OF THE ART

manage user information, storing and indexing it throughout the system for global effi-

ciency. But users are not only interested in using the application as a database system,

but also for receiving notifications from other data sources (e.g, other users in appli-

catations like Facebook or Twitter). Therefore, users need to be aware whether some

set of interesting data has recently appeared (e.g., news) or has been changed (e.g.,

added new photos or changes in users’ profile). Clearly, the first kind of service al-

lows users to manage their information, whilst the second one permits the system to

distribute pieces of information to users according to their interests.

In particular, we focus on the following services, since they are tightly related to

different parts on the work of this thesis. Range queries, k-nearest neighbor queries

and spatial queries belong to the family of similarity queries and permit an enhanced

data management. As the counterpart, application-level multicast and publish/subscribe

services are the most common techniques to disseminate content among participants.

This chapter builds a portrait of the state-of-the-art, by performing a comparison

of the last and most remarkable works in the field of similarity queries and pub-

lish/subscribe services. To do so, we state an evaluation framework with which all

systems are compared to. Examples of the analysed parameters within the evaluation

framework are: overlay network topology, application domain, query correctness,

completeness, storage and time efficiency and load balancing, to say the least. The

goal, thus, is to provide an insight on peer-to-peer-enabled distributed algorithms that

support similarity queries, as well as publish/subscribe solutions, in the large scale.

The rest of the chapter is structured as follows. We firstly state the necessary

peer-to-peer background and notation for the development of this thesis. Several con-

cerns are involved. Firstly, we detail the common properties from the majority of the

SPNs (Section 2.1). Secondly, we also present a hierarchical SPN, Cyclone [42] at Sec-

tion 2.1.2, which is employed as a substrate in several services of our framework. In

addition, this chapter provides the notation set which will be used along this thesis.

Afterwards, we deal separately firstly with similarity queries and secondly with pub-

lish/subscribe techniques. This is motivated for the specific characteristics of each

scenario, imposing different requirements to the supporting system.

In Section 2.2 we introduce the data management services we will study. After-

wards, we describe in Section 2.3 how nodes cooperate by parallelizing operations, a

common feature on distributed services. In Section 2.4 we analyse the parameters we

include in the evaluation framework for the similarity queries. We then perform the

comparison study of systems providing range queries (Section 2.5), k-nearest neigh-

bors (Section 2.6) and spatial queries (Section 2.7).

2.1 Peer-to-peer Networks 13

Likewise, in Section 2.8 we present the content distribution services included in

our analysis. In Section 2.9 we introduce the parallel computing abilities of the pub-

lish/subscribe algorithms. We then elaborate on the parameters that we include in

the evaluation framework for the publish/subscribe techniques in Section 2.10. We

continue with the comparison study of systems (in Section 2.11) following either the

topic-based model (Section 2.11.1), or the content-based model (Section 2.11.2). This

chapter closes with the concluding remarks in Section 2.13.

2.1 Peer-to-peer Networks

Unstructured Peer-to-Peer Networks (UPNs) appeared earlier to bring together edge

resources. File sharing applications are predominant in this context, where Gnutella [6]

embodies UPNs. They are called unstructured because links between nodes are estab-

lished arbitrarily. Nevertheless, UPNs suffers of two main drawbacks: lack of query

correctness and overhead on communication. The former can be explained as follows:

suppose there is a file in the UPN and a user wants to retrieve it; if such a file is too

far from the user, it might not to be found by the user query. The latter occurs because

communication in UPN is performed mainly by flooding and causes a high amount of

signaling traffic in the network. Hence, such networks typically have very poor search

efficiency.

Structured Peer-to-Peer Networks (SPNs) appeared to overcome the problems ap-

peared in UPNs. SPNs are to provide correctness, a key property for modern applica-

tions, as well as routing and time efficiency. SPNs are also broadly called distributed

hash tables (DHTs) because most of them associate the data owner node by means of a

consistent hashing, in an analogous way to that of traditional hash table’s assignment

of keys to a bucket. SPNs provide exact-match queries with correctness and applica-

tions can use the API put(key, value)/value←get(key) to access to the content.

Remark 2.1 (SPNs’ correctness) SPNs guarantee operation correctness. That is, given a
key k, SPNs can always determine the responsible node p of k.

2.1.1 Common Properties of Structured Peer-to-Peer Networks

Systems like Chord [7], Pastry [8], Tapestry [9], Kademlia [15], CAN [11] or Sym-

phony [13] are clear examples of SPNs, and share a common set of properties. We

elaborate on them in the following lines, based on the description appeared at [43].

Structured peer-to-peer networks can be defined by a a set of nodes P that cooperate

together to provide access to a set of objects O (i.e., any kind of information being

14 2. BACKGROUND AND STATE OF THE ART

stored by users). The access is provided by means of a keyspace I and the func-

tion FP : P −→ I, which constructs the node identifier, and an adaptation function

FO : O −→ I, which builds a representative key for the given data object. This way,

these functions establish the assignment of objects to peers. Even though systems

like CAN and derivative ones employ a multidimensional keyspace I, the majority

of SPNs employ a single numerical dimension for its keyspace I. This motivates to

establish the following assumption without loss of generality:

Assumption 2.1 (Keyspace and ID) Nodes in SPNs are uniquely identified within the sys-
tem by a unidimensional node identifier, namely ID, drawn from the keyspace I = [0..2m),
where m specifies the keyspace precision.

The function FP : P −→ I splits I into disjoint partitions. At any instant, the cur-

rent set of identifiers defines the current set of partitions in which the identifier space

has been divided into. Each node is the responsible for a distinct partition. By re-

sponsible node we mean that each node is the manager for all objects whose identifier

is mapped into that partition according to the adaptation function FO : O −→ I. In

particular, the distributional properties of FO have a critical impact on load balancing.

And this is a factor that we will consider and analyse within our generic framework.

Assumption 2.2 (Shared responsibility of the keyspace) The keyspace responsibility is
shared among all participating nodes. That is, for any I’s disjoint partition I, there exists a
node p responsible for I, according to the SPN’s responsibility rule.

Traditionally, SPNs maximized load balancing using a hash function to map both

peers and objects into the keyspace. Cryptographic hash-functions like SHA1 are usu-

ally used to map arbitrary strings to 160-bit keys, which provide a consistent hashing

of node identifiers and keys within the keyspace. Associated to the keyspace, SPNs

define a distance metric, which is used to route greedily towards the node respon-

sible for a key. Examples of distance metrics are the Euclidean distance adopted in

CAN [11], the length of the common prefix adopted in Pastry [8], Tapestry [9], and

Kademlia [15] (also known as XOR metric), or the clockwise distance between two ids

on the circle [0, 2m) modulo 2m, specified in Chord [7].

Assumption 2.3 (Information state) Nodes in SPNs construct a routing table of a loga-
rithmic degree, namely with O(log N) entries, where N is the number of nodes in the network.

The distance metric together with SPN’s greedy routing outperform to UPNs in the

communication cost. To do so, SPNs usually construct a routing table of a logarithmic

2.1 Peer-to-peer Networks 15

length (i.e., small degree) according to N, the number of nodes in the system, with

references to other nodes from within the network. With all these ingredients, SPNs

reduce the communication cost down to a worst case O(log N) in number of visited

nodes (i.e., small diameter). As a counterexample, we illustrate CAN. CAN place

all nodes in a multi-dimensional torus, but with a constant small degree. For a d-

dimensional torus, the routing table is 2d and the communication cost grows up to

O(N1/d). Nevertheless, a later eCAN [23] improved the routing table structure by

adding short-cuts to far away nodes and improved the communication cost to a worst

case O(logN) too.

Assumption 2.4 (Routing cost) Provided the information state from Assumption 2.3, the
network diameter for a SPN is O(log N). That is, in the worst case, the number of visited
nodes between any two nodes is logarithmic in respect of the network size.

The information state of any node p consists mainly in a routing table of other

nodes, to wit neighbors. Given a message msg, the node p deterministically establishes

the neighbor t to who send the message msg, so that the node q responsible for mes-

sage msg is reached in the aforementioned routing cost. To do so, most of the SPNs

utilize a greedy routing algorithm.

Definition 2.1 (Greedy routing) A greedy routing in graph G(V, E), where vertexes V are
the nodes, and edges E the links between nodes, with distance function ω : V× V → R+

entails the following decision: Given the target node q responsible for message msg, node
p with neighbors Vp = getLinks(p) forwards msg to node n ∈ Vp such that ω(p, q) =
minn∈Vp ω(n, q).

That is, any node p consulting its local information state can discern which is the

best choice to forward a given message msg. In other words, complementary to the

above Definition 2.1, we can state the following remark.

Remark 2.2 (Keyspace addressing) Let segment(p, n) be the I’s segment that node n is
responsible for, using only the local information state of node p. Namely, if a message msg
must be forwarded to a key k ∈ segment(p, n), node p will draw n to forward msg. Let
Vp = getLinks(p) be the p’s neighbors. The local state information of any node p in an SPN
is organized so that I =

⋃
n∈Vp

segment(p, n).

Consequently, the SPN routing algorithm provides the necessary decision criteria

to draw a node’s neighbor to forward any given message, so that the network diameter

is guaranteed. In addition, most of the SPNs provide path convergence which is defined

as follows:

16 2. BACKGROUND AND STATE OF THE ART

Definition 2.2 (Path convergence) A SPN routing scheme provides path convergence when-
ever paths to a common destination intersect at a rate proportional to the distance between the
source nodes.

2.1.2 Hierarchical Structured Peer-to-Peer Networks

Most of the SPNs are flat networked structures, so that all nodes are considered to

be in the same logical plane, where all nodes share the same responsibilities. There

are other SPNs structures called hierarchical, though. A hierarchical SPN reckons that

nodes appear at different (logical) layers, building several sets of nodes, namely clus-

ters, where the set of clusters establish a tree-like network structure which gathers all

participating nodes. Marc Sanchez et al. [44] introduced the different models of con-

structing hierarchical peer-to-peer networks: super-peer-based model (like [45]) or a

homogeneous design (like [42]).

A super-peer-based hierarchical model has the ability to join (potentially different) flat

SPNs into a single system. To do so, these systems establish a set of nodes as super-

peers. The role of a super-peer is to interact with any flat SPN it lives as a normal

node, but also as a connector to other clusters of nodes through other super-peers.

The idea behind the super-peer-based model is to leverage the node heterogeneity, so

that the most powerful nodes can be elected as super-peers. This way, super-peers

would be able to process all the intra-cluster and (potential) inter-cluster traffic that

they must address. A super-peer model usually builds a two-tier hierarchy, but in

some designs the hierarchy’s height can be self-adjusted according to the number of

participants (like in ZigZag [46]). This way, the super-peers of the leaf clusters can

be selected again to play the role of super-super-peers for the immediate higher level,

and so on. Nevertheless, it is clear that the main drawback of this design is the super-

peer selection algorithm, since the system’s performance can degrade notably if wrong

candidates (e.g., nodes with little process capacity or a little bandwidth) are chosen as

super-peers.

Conversely, the main characteristic of homogeneous designs is that all peers are con-

sidered as equal. Assumptions on equality are made regarding peers characteristics,

such as available bandwidth and storage capacity. As a consequence of this assump-

tion, homogeneous designs can exploit the uniformity of load and functionality that

characterizes flat SPNs, such as Chord [7], Pastry [8] and Kademlia [15], but they en-

hance the whole solution by incorporating new features like fault isolation and path

locality. To illustrate, we elaborate on Cyclone [42], a homogeneous hierarchical de-

sign. Its matchless properties, such us genericity and flexible clusterization mechanism

2.1 Peer-to-peer Networks 17

to say the least, motivate its overall description in the following and have propelled

to be considered as a substrate in some of our services. Briefly speaking, Cyclone is

generic from the SPN viewpoint, since Cyclone is a framework targeted to construct

hierarchical versions of flat SPNs. In addition, the Cyclone’s clusterization mechanism

is flexible. That is, Cyclone uses part of the node ID to group nodes into clusters

(and sub-clusters), which is very attractive for particular self-organization of clusters

according to a certain criteria (like geographical proximity).

2.1.2.1 Cyclone

Cyclone [42] features the homogeneous hierarchical design by using a single keyspace

for all nodes in the system. In Cyclone, each node is contained in a collection of tele-

scoping clusters, rather than in a single separate cluster. The collection of clusters is

defined so that any two clusters are either disjoint or one is a proper subset of the

other. The tree-like structure if formed by a set of disjoint leaf clusters, that are joined

consecutively at higher levels, where the root is the top cluster.

Actually, Cyclone provides a framework to construct hierarchical versions of flat

SPNs, which we call instantiated SPNs. For instance, Whirl [42] instances the hierar-

chical design of Chord. The main Cyclone’s characteristics and properties are detailed

in the following. We assume flat SPNs with logarithmic node degree and network

diameter O(log N) such as Chord [7], where N is the number of nodes.

Node identifiers and keys. Having a m-bit keyspace (i.e., [0..2m)), the cluster identi-

fier clusterId is formed by a suffix of cl bits, cl < m, and cl ≥ l, where l is the cluster

level (illustrated in the Fig. 2.1). In other words, the cl bits correspond to the less

significant bits (LSB) of a key.

The node identifier nodeId for a node at l’th hierarchy level is formed by the prefix

of m− cl bits, namely the m− cl most significant bits (MSB). This nodeId is used within

the intra-cluster overlay protocol (e.g., Chord in the case of Whirl).

Remark 2.3 (Cyclone partition of the ID) The ID of a node in Cyclone is divided into two
parts, the clusterId and the nodeId. The former identifies the cluster provenance, and the nodeId
is used by the instantiated SPN to route within the cluster.

Information state. The routing table of a node p participating in Cyclone is slightly

modified, guaranteeing at any time a logarithmic degree though. To do so, the routing

table is filled in according to the algorithm of the instantiated SPN, starting from leaf

18 2. BACKGROUND AND STATE OF THE ART

Cluster 0

N0010

N1010

N0100

N0000

N1000
N0110

N1100

Global Ring

N0010

N1010
N1001

N1101 N0011

N0100

N0000

N1000 N0110

N1100

N1011

Cluster 10

N0010

N1010 N0110

0

1

2

Level

Cluster 1

N1001

N1101 N0011

N1011

N0100
Cluster 00

N0000

N1000

N1100

Figure 2.1: Example of a Cyclone setting, describing the location of nodes within the
clusters. The instantiated SPN is a Chord-like network.

cluster C and following up to higher level clusters, until the root cluster is reached.

Nevertheless, this routing table only allows a conventional routing as in the instantiated

SPN. It does not permit to route against a sibling cluster.

To this end, Cyclone constructs a particular routing table, namely XOR routing ta-

ble, which allows the communication between sibling clusters in a logarithmic cost.

The degree of this routing table is a small O(log |C|), where |C| is the number of clus-

ters. The table is filled in with nodes that suit the XOR metric, like in Kademlia [15].

The difference from Kademlia is that Cyclone only computes the XOR metric into

the clusterId. In conclusion, the total degree for a node participating in Cyclone is

O(log N + log |C|), corresponding to the conventional and XOR routing tables, respec-

tively.

Remark 2.4 (Cyclone’s information state) Any node in an instantiated SPN maintain the
conventional and the XOR routing tables.

Routing algorithm. There are two routing schemes in Cyclone: conventional and

XOR routing algorithms. The conventional routing obeys to that of the instantiated

SPN, but in a bottom-up fashion. A node p always sends a message m with target key

k into the p’s leaf cluster C, and m is routed as if only that cluster exists. The message

m arrives at k’s responsible node in C, which is called the k’s exit point in C, namely

EPk
C. At this moment, EPk

C will continue the routing process in the immediate higher

cluster C′, forwarding m through C′ until k’s exit point EPk
C′ is reached. The routing

process is repeated consecutively, concluding when the absolute responsible node for

2.1 Peer-to-peer Networks 19

1

2

3

Level

N00

N10 N01

1 0

1 01 0

N100

N110 N001

N1011

1

1

1

N01

N00

N10

N110 0
0 0

0 0

0 0

1

N001

N101

N010

N000

N100
N011

N1100

0
0

0

0

0
0

2

N1001 N1000

N0010

N1010

N1101 N0011

N0100

N0000

N0110

N1100

N1011

3Global Ring

Cluster 0 Cluster 1

Cluster 10Cluster 00

Intra-cluster hop

Inter-cluster hop

Figure 2.2: Example of (bottom-up) conventional routing in Cyclone. Node N1100 sends
a message with key K0011. On every cluster, the SPN’s conventional routing is applied,
discarding the clusterId bits accordingly at each level. The exit points are N0000 for cluster
00 (EPK0011

00), N0010 for cluster 0 (EPK0011
0) and N0011 for global cluster (EPK0011), which

finally corresponds to the responsible node for the key.

k (i.e., EPk
CR) is reached at the root cluster CR. An example is shown at Fig. 2.2. The

communication cost is bounded to O(log N).

Remark 2.5 (Cyclone’s exit point nodes) At any given Cyclone’s cluster C exist a node p
that is responsible for the key k, which is called the exit point node for k, namely EPk

C.

Complementary, the XOR routing uses the XOR routing table and allows the nav-

igation through the hierarchy of clusters, iterating against sibling clusters. To do so,

Cyclone routes greedily to the destination cluster C′, selecting the XOR entry that min-

imizes the distance to the target key k. The routing reaches C′ when the bits of the k’s

clusterId equals to the bits of a p’s clusterId from a node p, which determines that p

is a node living in C′. After reaching the destination cluster C′, the conventional rout-

ing applies until the k’s responsible node EPk
C′ is found, which concludes the routing

process. We illustrate this process in Fig. 2.3. The communication cost is yield to ∆,

where ∆ is the number of bits for the binary representation of scId× tcId, being scId

and tcId the p’s and k’s clusterIds, and × the bitwise exclusive OR. The XOR routing

is bounded then to O(log |C|).

Remark 2.6 (Cyclone’s routing algorithms) The conventional SPN routing provides a bottom-
up routing algorithm, whilst the XOR routing algorithm provides a top-down routing as well
as routing to sibling clusters.

20 2. BACKGROUND AND STATE OF THE ART

N01

N00

N10

N110 0
0 0

0 0

0 0

1

2

3

Level

N00

N10 N01

1 0

1 01 0

N100

N110 N001

N1011

1

1

1

1

N001

N101

N010

N000

N100
N011

N1100

0
0

0

0

0
0

2

N1001 N1000

N0010

N1010

N1101 N0011

N0100

N0000

N0110

N1100

N1011

3

Global Ring

Cluster 0 Cluster 1

Cluster 10Cluster 00

Intra-cluster hop

Inter-cluster hop

N1011

1: N1010

N1010

1: N1011
2: N1000

XOR Routing Tables

Figure 2.3: Example of (top-down) XOR routing in Cyclone. Node N1011 needs to locate
the cluster codified as 00 where to look for a key 01. Steps 1 and 2 are part of (top-down)
XOR routing in order to locate the destination cluster. Step 3 is the part of conventional
routing to locate the node responsible for the key K0100 into the cluster 00, namely the
EPK0100

00 .

Node organization and locality. Cyclone permits a flexible organization of nodes

into the hierarchy. Let MP : P× P −→ R be a metric function, namely metric, that

measures the proximity between any two nodes with regard to an arbitrary node’s

property. Therefore, nodes could join the system and be distributed according to met-

ric MP (such as physical-network or geographical proximity): Leaf clusters would

gather near nodes (with regard to MP), and higher level clusters would collect farther

and farther nodes, respectively.

Cyclone’s routing algorithm takes advantage of the proximity metric, firstly look-

ing up in leaf clusters and then, if necessary, forwarding greedily the query to a foreign

cluster, via the exit points, until the responsible node is reached. Irrespective of the in-

stantiated SPN, this contributes in new features like fault isolation and path locality.

Remark 2.7 (Cyclone’s node organization) The distribution of nodes in Cyclone can be
adapted to flexibly organize nodes into clusters according to an arbitrary metric MP.

Load balancing. Cyclone selects exit point nodes for data caching and replication,

achieving an efficient load balancing. Intuitively, the first lookup will retrieve the

data object from the (cluster-foreign) owner node, but extra lookups will match on

local cluster’s exit point nodes. This confers to Cyclone a natural ability for data load

balancing under repetitive data operations (like searches) and reduction of the com-

pletion time on successive data operations.

2.2 Data Management Services 21

Remark 2.8 (Cyclone’s load balancing) Exit point nodes at Cyclone can contribute on aug-
menting transparently the system load balancing.

2.1.3 Peer-to-Peer Systems: Summary

In this section we have presented the existing sorts of peer-to-peer systems. We have

motivated that structured peer-to-peer systems (SPNs) perform better than the coun-

terpart unstructured ones (UPNs), since UPNs do not provide all necessary properties

to set up high-level functionality (where query correctness embodies the set of expected

system properties). This has propelled the introduction of the common properties of

SPNs to be considered in the rest of this document. As a calculated side-effect, we

have also shown the nomenclature that will be used along this thesis.

The last part of this section details the characteristics of hierarchical peer-to-peer

systems, differing from the super-peer-based and the homogeneous model. In particular,

we have described Cyclone [42], a homogeneous design of a hierarchical peer-to-peer

system. The motivation behind that is because its good properties made Cyclone suit-

able as the substrate in some of our services.

In the following sections, we perform an analysis on the state of the art for both

similarity queries and, afterwards, publish/subscribe systems. The last concluding

remarks will close this chapter.

2.2 Data Management Services

The data management services we discuss in this chapter belong to the family of simi-

larity queries. To provide an outline on the kind of systems we consider, we introduce

in the following section a couple of scenarios where similarity queries are necessary.

Afterwards, we state in Section 2.2.2 an overview of a generic design of a system pro-

viding similarity queries (See Fig. 2.5). In addition, for the lack of clarity, we provide

in Section 2.2.3 a formal definition of the sort of similarity queries we consider: range

queries, k-NN queries and spatial queries.

2.2.1 Use Cases: Similarity Query Applications

To let the reader understand the necessity and complexity of providing similarity

queries over distributed systems based on SPNs, we explain two applications where

such a functionality is required, among scalability by service decentralization and high

performance by operation parallelization. Current real-life applications cannot be un-

derstood without such richer abstractions.

22 2. BACKGROUND AND STATE OF THE ART

The first application we consider is the document retrieval in a distributed net-

work of workstations (namely nodes). Documents consist of any kind of text docu-

ments and the goal of the application is to provide similar documents according to

the user interests. User interests are specified by means of keywords, like “Mathe-

matics” or “Computer Science”. Actually, each search is an instance of a k-nearest

neighbor query (k-NN): the system retrieves the k most similar documents to the user

interests (See Fig. 2.4b for an example). The key procedure of this kind of applications

is to treat each document as a pair of the form {< keyword− list >, < document >}.
The keyword-list is a list of keywords that contains the most representative descriptive

terms from the document. This technique is called Information Retrieval (IR), for what

several ways of parallelizing document indexation and search have been widely stud-

ied [24]. Particularly, we focus on the distributed document retrieval, so that different

networked nodes must be asked for retrieving related documents to the user query.

The second application we consider is a distributed geographical service location,

so that system participants are networked nodes that possess partial information and

help on query resolution. For simplicity and for the proposal of the analysis, we con-

sider the goal of this application is telling the services location related to the user interests

that appear in an arbitrary geographical area. This exemplifies the behavior of a range

query: retrieve all elements from the given range, that is, the geographical area. In

addition, this is also an example of spatial query, because the goal of the application

is locating information from a geographical region (See Fig. 2.4a for an example). This

case, user interests determine both the geographical area and the sort of services she is

looking for. For instance, the reader can be interested in retrieving the “Italian Restau-

rants” locations around her city. The idea of this application is to retrieve the whole set

of items that appear in a rectangular area of arbitrary size. This is however a hot topic

on the study of Geographical Information Systems, where the feasibility of the dis-

tributed resolution of the search has largely been studied for different environments

(for instance for Grid computing [47]). Clearly, distributed and parallelized queries

accelerate search operations, reducing the response time, but at the cost of a higher

use of communication bandwidth.

All these (distributed) applications present the same elements in their architec-

ture: a multi-dimensional data domain with data objects being stored and searched; a

distance function which defines the similarity between two data objects; and the algo-

rithms for storing and searching the content. For instance, IR applications characterize

each text document by a d-dimensional vector with the best descriptive terms. Ge-

ographical service location applications consider each service generically as being a

2.2 Data Management Services 23

0

13

0 17

(5,5)

(11,11)

Queried ranges

Domain values

Y

X

Data objects

(a) Range query example.

0

13

0 17

5-NN query

Domain values

Y

X

Data objects

rp

(b) k-NN query example.

Figure 2.4: Examples of similarity queries on a 2-dimensional scenario. In both cases,
the shadowed area represents the covered area for the given query. In (a), the range query
covers the area q = {[5..11], [5..11]}, whilst the k-NN in (b) asks for 5 objects that lie within
the query q = {p, r}.

d-dimensional vector, including the latitude, longitude and meta-data from the ser-

vice. In both cases, a search is processed by evaluating the similarity of various data

objects according to some distance function, e.g. Cosine distance for IR ones and Eu-

clidean distance for service location ones. Out of these three elements, we include into

the study both the multi-dimensional data domain and the algorithms. Distance func-

tions are not considered because they are tightly related to the application context,

with no effect on the distributed system.

2.2.2 System Design: An Overview

Having observed the above use cases, now it is turn to complete the view of systems

that aim at providing similarity queries. We provide an overview of a generic im-

plementation structure of such applications. As we can see from Fig. 2.5, the system

design is composed by (several or thousands of) individual instances. Each instance

(or node) is constituted by the Node and Application layers, bestowing specific function-

alities on either. The Node layer guarantees the communication within the distributed

system by means of a routing table where some neighbors appear. A message is sent

to a neighbor according to some of the available routing algorithms. A Node can man-

age different routing procedures each of which is related to a certain kind of complex

operation, such as range or k-NN query. Lastly, a Node indexes the data being stored in

order to accelerate the resolution of the enhanced queries. Upon the reception of an

24 2. BACKGROUND AND STATE OF THE ART

Application

Insertion Search

Distance
Function

Mapping Technique

Node

Neighbours

Routing
Algori thms

Network
Communicat ionSimilarity Operation

Manager

Data Object
Store

Data Indexing

Figure 2.5: Generic layered design, common components and information flow of dis-
tributed systems providing similarity abstractions.

operation message, its operation manager is drawn to help in the resolution. One of its

tasks is to decide whether the operation ends in the current instance or it must be for-

warded to other neighbors. The operation is concluded by accessing to some building

blocks in the Application layer.

The data indexation can be performed as is, which means that no adaptation is

applied to the data object, or the system can use a mapping technique, namely FO, which

adapts the object to the keyspace of the underlying SPN.

The Application layer provides local data management services, such as insertion and

search operations. The search services employ the distance function to compute the

proximity among data objects. Eventually, the Application is in charge to store the set

of data objects which a node is responsible for.

To illustrate, and recovering one of our examples, IR applications embody k-NN

query resolver systems: the application retrieves an arbitrary amount of similar doc-

uments to the user-selected keywords. The number of elements in the result set is

defined to be as maximum as a system-wide or user-modifiable property value. The

system calculates the distances from the user-selected keywords to the d-dimensional

descriptive terms of documents and builds a result set with the k closest documents.

2.2 Data Management Services 25

The idea is similar to have all documents ordered in a list from closer to farther to

the user-selected words and selecting the first k documents from the list. A central-

ized solution takes advantage of disposing locally all information, possessing a global

knowledge of the dataset, and then employing efficiently IR techniques to produce the

result set. The problem appears when the system is widely distributed among nodes

for scalability, as well as to join the efforts and resources of users. The way that doc-

uments and information are distributed through nodes will drastically determine the

system’s efficiency and response time.

2.2.3 Similarity Queries: Definitions

Broadly speaking, the similarity queries family provides a set of abstractions to (dis-

tributed) applications in order to discover alike, similar objects to user interests. Let

MQ : Q×O −→ D be the proximity metric from data items to the given query, where

Q is the query domain, O the data items domain, and D the distance domain.

Definition 2.3 (Similarity query) The result of a given similarity query q is formed by the
set A = {o ∈ O|MQ(q, o) < δ}, for a certain value δ.

A similarity query can be seen also as the set of objects contained in the interior of

a hyper-sphere, with center q and radius δ. The number of elements in the result set

will depend on δ and the similarity algorithm itself.

The range queries, also known as window queries, are a subset of the similarity

queries. In particular, range queries are to provide the whole set of elements into

the specified range. There are two approximations to it. Let us call them as sphere-

based and region-based approaches. In a sphere-based approach, the range query is

defined as a pair q = {p, r}, where p ∈ O is a point in data domain, and r is called the

radius.

Definition 2.4 (Sphere-based range query) The result set of a sphere-based range query
is formed by the objects in A ⊆ O, A = {o ∈ O|MQ(p, o) < r}.

It is easy to see that the set of objects that belong to A are objects that live in the

interior of a hyper-sphere with center p and radius r. On the contrary, in the region-

based approach, the range query for a d-dimensional data domain O is considered to

be q = {[l1, h1], [l2, h2], . . . [ld, hd]} (i.e., a hyper-region in a hypercube), where every li
and hi, 1 ≤ i ≤ d, are the lower bound and the higher bound for the i-th dimension,

respectively.

26 2. BACKGROUND AND STATE OF THE ART

Definition 2.5 (Region-based range query) The result of a region-based range query is
defined to be the set A ⊆ O, A = {o ∈ O|∀i ∈ [1, d] : li ≤ oi ≤ hi}, where oi refers to the
value of object o at the i-th dimension.

The k-NN queries are a subset of the similarity queries that aim at providing the k

nearest objects to a given query q = {p, δ∗}, where p ∈ O is a point in the data domain,

and δ∗ is an adjustable radius.

Definition 2.6 (k-NN query) A k-NN query asks for the set of objects A ⊆ O, A = {o ∈
O|MQ(p, o) ≤ δ∗}, such that |A| ≤ k, where |A| accounts the number of elements in the set
A, p is the center of the hyper-sphere, and k the number of elements to retrieve.

This case, the radius δ∗ is progressively adjusted so as to leave A with just k el-

ements. Usually δ∗ takes a little value so all k items are not retrieved at once, but

after some few repetitions of the k-NN query while incrementing the value of δ∗ until

|A| = k.

To conclude, spatial queries are a particular case of either range or k-NN queries,

depending on the application context, where one of the dimensions to be considered

is the location of the data objects.

2.3 Parallel Computing on Similarity Queries

Similarity searches onto SPNs benefit from scalability by service decentralization and

high performance by query parallelization. Since the service decentralization is clear

because they are set up onto a SPN, we delve into query parallelization in this section.

Parallel computing of queries provides high performance to the system and this de-

pends mainly on the way nodes are interconnected. For an analysis on the factors that

enable parallel computing in a distributed setting refer to Section 2.4.3.

The way that nodes are organized into the SPN is known as topology. Topology in-

fluences the communication costs between participants and the way that information

is stored into nodes for global efficiency. The most common peer organizations among

SPNs are flat topologies (e.g., rings [7, 26], torus [11]) and hierarchical topologies (e.g.,

trees [44]).

As we have detailed before, similarity queries considered into this chapter are

broadly of two types, so that we describe two generic algorithms, one for range and

another one for k-NN queries. We do not delve into spatial queries because they can

be a sub-set of any of them, according to the system’s approach. In the worst case,

2.3 Parallel Computing on Similarity Queries 27

queries are initiated by nodes (namely querying nodes) that are not responsible for re-

solving the query. This turns our algorithms to broadly describe a two-phase problem

solver. The first phase consists of routing the query until nodes responsible to an-

swer the query are reached. Afterwards, the algorithm collects all data objects that

belong to the result set during the second phase. These algorithms provide a uniform

and generic approach to solve the queries. Thus, the reader will realize that systems

considered into this study employ adapted algorithms to suit the particular systems’

architectures.

2.3.1 Range Query Parallelization

Algorithm 2.1 range query gives the details of how range queries are resolved. Their

resolution is fully parallelizable (lines 3-6), so that nodes provide to the querying

node their (partial) result sets (line 9). This algorithm employs several local functions.

Function subqueries(node) returns the (keyspace) segments that node is responsible

for. This way, lquery (line 1) takes a part of the query (namely sub-query) that node

can answer, what leaves in oquery (line 2) the part from the query that must be re-

solved by other nodes. Function subquery ∈ oquery (line 3) provides all different

subqueries from oquery, where every subquery is a sub-query that local node is able to

start in parallel. Whenever oquery = ∅, this function provides no subquery so that

the loop is never executed. Function best neighbor(node, subquery) returns the best

node’s candidate neighbor from node’s routing table to which forward the subquery.

This selection is SPN-specific and is dictated by system’s routing scheme. Function

data(node) provides the data that node possesses (line 7). Once a node has a (par-

tial) result set, it sends back to the querying node qnode by means of the function

send(node, qnode, result set) (line 9).

As it is explained before, (sub-)queries are only initially routed (lines 3-6). Once

responsible nodes are reached, lines 3-6 distributes the (sub-)queries until the whole

query is processed (query = ∅). Most of hierarchical and some of the flat topologies

provide disjoint paths (sequences of nodes) to reach other nodes, what makes Algo-

rithm 2.1 very effective. Thus, in this scenario, this algorithm parallelizes both routing

and query resolution. But most of the flat topologies usually provide path convergence

(see Definition 2.2), as well as data locality preservation (so that neighboring nodes own

close data objects). In practice, path convergence and data locality imply that the dif-

ferent (sub-)queries sent by the querying node travel the network along the same path.

Therefore, these messages waste bandwidth and computer resources until the first re-

sponsible node of the query is reached. This is why topologies with path convergence

28 2. BACKGROUND AND STATE OF THE ART

Algorithm 2.1 range query
Input: node /* node where algorithm is executed */
Input: query /* range query */
Input: qnode /* querying node */

1: lquery← query \ subqueries(node)
2: oquery← query \ lquery
3: for all subquery ∈ oquery do /* in parallel */
4: neigh← best neighbor(node, subquery)
5: range query(neigh, subquery, qnode)
6: end for
7: result set← data(node)

⋂
lquery

8: if result set 6= ∅ then
9: send(node, qnode, result set)

10: end if

and preserving data locality improve the range query algorithm (see Algorithm 2.2)

by avoiding query splitting whenever query is only routed (lquery = ∅ in line 2).

2.3.2 k-NN Query Parallelization

Algorithm 2.3 provides a big picture on the way k-NN queries are worked out. For

the sake of simplicity, this algorithm is based on a naive linear scan, even though other

approaches (e.g., space partitioning, locality sensitive hashing and other approximate

nearest neighbor search) are actually used by systems in order to improve k-NN query

performance.

The knn query algorithm is as follows. Firstly, a querying node qnode performs the

k-NN query by specifying a pair q = {p, r} and k, where p is a point or data object,

r defines an initial radius and k the number of data objects to fetch. This operation

initially consists of a single message routing (lines 1-3), which cannot be parallelized.

When the corresponding node responsible of p is reached (line 4), it initiates an expanding

ring search (lines 5-18). This search describes a linear scan through close nodes to cor-

responding node, in order to provide at most k objects that are not farther than r from

p. This algorithm though takes the assumption that closer nodes will always provide

closer data objects to p than farther nodes. Thus, the linear scan is consecutively ex-

panded in parallel to farther nodes from corresponding node, since the k-NN query is

not resolved (line 9). When no new data objects are appended to the candidate result

set (having result set = new result in line 9), the expanding ring search stops and the

k-NN query concludes (line 19).

2.3 Parallel Computing on Similarity Queries 29

Algorithm 2.2 range query with path convergence
Input: node /* node where algorithm is executed */
Input: query /* range query */
Input: qnode /* querying node */

1: lquery← query \ subqueries(node)
2: if lquery = ∅ then
3: neigh← best neighbor(node, query)
4: range query(neigh, query, qnode)
5: else
6: oquery← query \ lquery
7: for all subquery ∈ oquery do /* in parallel */
8: neigh← best neighbor(node, subquery)
9: range query(neigh, segment, qnode)

10: end for
11: result set← data(node)

⋂
lquery

12: if result set 6= ∅ then
13: send(node, qnode, result set)
14: end if
15: end if

As before, this algorithm employs some node’s local functions. The condition ‘node

is not responsible for p’ is only f alse whenever node owns p. This means that if p

existed, node would be the node to hold p. Function best neighbor(node, p) (line 2)

is the same as before, but where the neighbor is selected according to the searching

point p instead. Function knn(p, k, r, {dataset}) (lines 7, 12, 16) provides at most k data

objects from dataset that are not farther than r from p. At line 7, r has not been setup,

so that a worst case ∞ value is given. Function expanding ring(node, visited nodes)

(line 11) returns a list of nodes that should be visited in the next query’s round as the

expanding ring search dictates. Note that visited nodes holds the set of nodes close to

node that the expanding ring scan has already visited. Line 12 tells node to wait for the

results partial result from neighbor node nnode. Thus, an inter-node communication

is performed here between node and nnode. Function send(node, qnode, result set) (line

19) is the same as before, even though this function is only executed once in knn query

algorithm.

These algorithms provide a global view on how the aforementioned similarity

queries work. We provide in the following section the significant parameters with

which we will evaluate all systems considered into this study.

30 2. BACKGROUND AND STATE OF THE ART

Algorithm 2.3 knn query
Input: node /* node where algorithm is executed */
Input: p /* point of the k-NN query */
Input: k /* number of elements for the k-NN query*/
Input: qnode /* querying node */

1: if node is not responsible for p then
2: neigh← best neighbor(node, p)
3: knn query(neigh, p, k, qnode)
4: else
5: visited nodes← ∅
6: result set← ∅
7: new result← knn(p, k, ∞, data(node))
8: r ← longest distance(p, new result)
9: while result set 6= new result do

10: result set← new result
11: for all nnode ∈ expanding ring(node, visited nodes) do /* in parallel */
12: ask nnode for partial result← knn(p, k, r, data(nnode))
13: new result← new result

⋃
partial result

14: visited nodes← visited nodes
⋃{nnode}

15: end for
16: new result← knn(p, k, r, new result)
17: r ← longest distance(p, new result)
18: end while
19: send(node, qnode, result set)
20: end if

2.4 Evaluation Criteria

The systems providing similarity queries target of this study are analysed accordant

with a set of qualitative and quantitative parameters, constituting a common evalua-

tion framework (see Table 2.1). For a fair comparison, it is highly recommendable to

consider both quantitative and qualitative parameters that describe the key systems’

components. In addition, such an evaluation framework provide the systems’ por-

trayal and facilitates the comparison between systems. The considered parameters

refer to structural, efficiency, as well as behavioral properties of systems. The parame-

ters can be considered broadly of two types: a) implementation parameters, that refer

to the system design and construction, and b) quality of service parameters, that con-

sider the quality of the query resolution. An analysis of parallel computing abilities

according to these properties is also included.

2.4 Evaluation Criteria 31

2.4.1 Implementation Criteria

Which parameters do we consider for their inclusion into the evaluation framework?

Let us consider the geographical service application to this end, distributed over the

world onto an arbitrary number of nodes. As we have seen before, the way that nodes

are organized (namely the topology) dictates the communication costs between nodes

and the way that information is stored into nodes for global efficiency. This motivates

the inclusion of the topology into the evaluation framework.

32 2. BACKGROUND AND STATE OF THE ART

Table 2.1: Characterization of the evaluation criteria for systems providing similarity
queries.

Criteria Characterization

Mapping properties
Topology The topology defines a graph G(V, E), where vertexes V are

nodes, and edges E the links established between nodes. In ad-
dition, only edges E are used for node inter-communication in
normal peer-to-peer operations. The topology can be broadly
specified as structured, when the topology relies on any ge-
ometric form (e.g., ring, hypercube, tree), and unstructured,
when nodes are connected in a non predefined fashion (e.g.,
a mesh).

Dimensionality Systems that provide this kind of high-level services in a
distributed way can support either one-dimensional (1-D) or
multi-dimensional (M-D) application domains. When possi-
ble, systems will be analysed for both sorts of dimensionalities.

Mapping approach Because in most cases application domains do not correspond
to SPN keyspaces, the distributed application needs to adapt
the information in order to allow its indexation by the SPN.
This kind of data transformation is called also mapping and de-
fines exactly the way the transformation is achieved. We can
find these sorts of transformation:
1:1 (Left) One application dimension is mapped to a single

SPN keyspace (right).

M:1 The whole multi-dimensional application domain is
mapped to a value in the SPN keyspace.

M:P The whole multi-dimensional application domain is
transformed to a P-dimensional SPN keyspace.

N/M When no mapping is applied.

Continued on next page

2.4 Evaluation Criteria 33

Table 2.1 – Continued

Criteria Characterization

Insertion and search properties
Storage efficiency In a distributed or parallel system, the amount of storage used

to record information is significant to reduce notably the re-
sponse time. In general, the more copies of the same informa-
tion, the less delay on answers. We use this property to quan-
tify the overhead that different algorithms pose on storage.

Time efficiency This property measures the amount of time needed by the dis-
tributed algorithm to return the whole set of results. Because
in most of the algorithms nodes with requested information
answer directly to querying node, this time is considered to be
equivalent to the amount of time the algorithm takes for vis-
iting the last node involved in the query. When noted, it also
means the time that a first (partial) result can be provided from
the system.

Load balancing When operating in a distributed or parallel system, it is conve-
nient that all nodes have (approximately) the same amount of
load. The term load balancing here means both data and routing
load balancing: the former property tells whether all nodes (ap-
proximately) manage the same amount of information; the lat-
ter depicts that the system is able to route throughout the set of
nodes without hotspots (i.e., nodes with high routing process).

Continued on next page

34 2. BACKGROUND AND STATE OF THE ART

Table 2.1 – Continued

Criteria Characterization

Result set properties
Correctness When all elements o from the result O′ of a given query q are

all in the set A of possible answers for q (i.e., O′ ⊆ A), is said
that the result O′ is correct and, by extension, the distributed
algorithm used to resolve the query. In other words, {∀o ∈
O′|o /∈ A} = ∅. This property also means that if the system
has some possible result for the given query q, it is found.

Completeness This property is somewhat complementary to the property
above, in such a way that correctness does not ensure that all el-
ements matching the query are returned in the result set. Thus,
a distributed algorithm is said to provide completeness in its re-
sults if and only if O′ ⊇ A. Note that O′ can contain some
elements that actually are not part of the expected answer A.

Intersection On any kind of query, results provided to the querying node
can appear already selected with only those items that really
are interesting for the user. In this case, the intersection of the
found data with the query’s predicate has been done on the
system side. Otherwise, results needs a last step in the user side
to prune all items that actually are not useful to the user.

We know how nodes are interconnected, but how are nodes addressed into the

system? As we have introduced in Section 2.1.1, every SPN specifies a keyspace I from

where node identifiers (namely IDs) are drawn. This is done by the use of a function

FP, which constructs an ID ∈ I. Most of the SPNs use a unidimensional keyspace

(like in Chord [7]), but there exist another family which uses a multi-dimensional

keyspace (like in CAN [11]), where nodes are identified by a vector of values of the

form {id1, id2, ..., idM}. However, application data domains (e.g., geographical loca-

tion of services) do not resemble SPN keyspaces (e.g., Chord keyspace) with respect

to dimensionality, type of information and/or data domain.

Therefore, SPNs require mapping techniques FO to support data object indexing,

that convert and adjust application data domains to the SPN keyspace. In addition,

this mapping must be deterministic and common for all nodes, so that for the same

data object any node will produce the same key. Examples of mapping techniques

are hash functions like SHA-1, space filling curves (SFCs) like Z-curve [40] or Hilbert

Curves [35], or based on the iDistance [48]. Traditionally SPNs make use of uniform

hash functions to distribute information uniformly at random between nodes for load

balancing purposes. Their drawback is the loss of data locality. That is, two near data

2.4 Evaluation Criteria 35

objects in the application domain will be randomly placed into the system, so that

close nodes will not store similar data objects. Similarity queries cannot be efficiently

deployed in this scenario. The naive solution, thus, would be broadcasting the simi-

larity query to all nodes. Of course, this approach does not scale for large distributed

systems and motivates the application of other kind of techniques.

Order-preserving and locality-preserving hash functions, as well as SFCs, deal

with this locality problem in some degree and are the most deployed in current so-

lutions. By its utilization, indexed data by nodes retain a certain data locality, so that

the system efficiency notoriously improves. Therefore, variating either mapping tech-

nique or application data domain, the performance of the system will differ from each

other solution. This motivates the inclusion into the evaluation framework of both

dimensionality and mapping approaches. By dimensionality we refer to the ability

of the given solution to deal with either multi- or one-dimensional application data

domains, and by mapping approach the way that the dimensionality reduction is per-

formed. We do not consider the details of the mapping techniques regarding to type

of information and domain because they are application-dependant and fall out of our

study.

2.4.2 Quality of Service Criteria

Quality of service issues are differentiated into two sets. The first one considers eval-

uation parameters for the insertion and search operations. The last one considers the

quality of the result set of the query resolution.

2.4.2.1 Insertion and Search Evaluation Criteria

In order to unify the terminology along the chapter, we do not make difference be-

tween data item or index, and so they are referred to as data object or object. Let us sup-

pose now that a user is saving the information of its business and location, namely data

object, into the distributed geographical service location application. The correspond-

ing node inserts the data object into the system and, this way, it becomes available to

all nodes. By doing this, we now consider three properties related to the processes

from data insertions to query resolution. Firstly, should we consider the amount of

storage used for each data object insertion? The amount of data object copies is con-

sidered because it measures the system’s stress for data storage. Intuitively, storing

a single copy of a data object would be sufficient to find it in future searches, and

actually this is the best case. For instance, traditionally DHTs introduce data objects

36 2. BACKGROUND AND STATE OF THE ART

only once. But either the specific application data domain or the SPN design can pose

an obstacle, requiring to adopt a more complex approach. We summarize this into

the storage efficiency property. Note that we do no consider replication and caching

schemes in this study. Actually, they are applied to a wide variety of distributed and

parallel systems, what includes the systems analysed in this chapter.

Another property included in the evaluation criteria is the time efficiency. The

response time for data objects insertions and search resolutions becomes the most vis-

ible and detectable to the end user. Long-lasting operations cause desperation to hu-

man users and must be avoided. In particular, because we are evaluating similarity

queries, we only account the time required for query resolution under time efficiency.

Even when a solution reaches an adequate degree of storage and time efficiency, the

solution can be unfair among nodes. For instance, some nodes could receive a greater

amount of data objects than the rest, and some nodes could also be used for rout-

ing purposes more frequently than others. A solution will be more scalable when it

provides both data and routing load balancing.

2.4.2.2 Evaluation Criteria of the Result Set

Now, let us suppose that a user has performed a range query q in our distributed geo-

graphical service location application example from a certain node, and this querying

node is already in possession of the result set O′. Let us suppose that we also know

the exact set of data objects A expected to recover from q. How can we measure the

quality of O′? To this end we introduce two other properties: query correctness and

completeness. Broadly speaking, a query q is resolved with correctness, when the re-

sult O′ only contains data objects such that they were expected (i.e., all data objects

from O′ also appear in A). Note that a correct O′ may not contain all the expected data

objects (formally O′ ⊆ A).

As long as a query resolution provides the results with completeness, this ensures

that O′ contains at least all elements of A. This allows however that some useless data

object could be retrieved during the query resolution (formally O′ ⊇ A). In such cases,

querying node has to prune the results to leave only useful elements before passing

them to the user. This is what we call a user-side prune. Otherwise, a system-side prune

has detected all useless data objects and removed from result set (if any). We consider

the way that information is pruned into the parameter intersection.

Moreover, it is easy to demonstrate that providing both correctness and complete-

ness is a sufficient and necessary condition for a query to provide all possible results.

That is, from correctness we have O′ ⊆ A, and from completeness O′ ⊇ A (see Table 2.1).

2.4 Evaluation Criteria 37

Therefore, there is only a possibility that makes both conditions come true: O′ = A.

Nevertheless, when a system resolves queries providing both correctness and complete-

ness, the operations could become too expensive either on time or storage.

2.4.3 Parallel Computing Evaluation

Broadly speaking, the consequence of query parallelization in a distributed setting is

twofold: the query is resolved in a shorter response time, and the usage of system

resources increases. In particular, given that SPNs perform node inter-communication

by message passing, the bandwidth usage increases between all participanting nodes,

as well as the usage of nodes’ resources (e.g., computing cycles and main memory).

Given that SPNs provide an inherent way of parallelizing tasks, we provide in this sec-

tion an analysis on the parameters from the evaluation framework, which determine

the feasibility and efficiency of the parallel computing. Parameters appear detailed in

order of significance.

The most important factor is the system’s topology. The way that nodes are orga-

nized dictates if operations can be performed in parallel and how. For instance, we

have depicted two algorithms for range queries, depending on whether the topology

provides path convergence or not (see Algorithms 2.1, 2.2). Remember that topolo-

gies with path converge provides no utility on query routing parallelization, since all

sub-queries will travel along the same path.

Given a certain topology, systems can implement several algorithms to resolve

a kind of query. That is, different search algorithms provide a solution to region-

or sphere-based range queries, as well as to k-NN queries and spatial queries. It is

easy to see that algorithm’s efficiency and adequacy to the system greatly decide the

performance of the query parallelization.

Some properties of the system limit also the performance on the query resolution.

As it is stated before, path convergence prevents parallelization because it wastes use-

ful resources. The amount of data storage, like the number of object copies, can pro-

vide several ways of accessing to the data, for instance. This facilitates that queries are

parallelized. In addition, time delay in node inter-communication is not negligible.

Implementing a parallel query resolution reduces the response time and increments

the system’s performance.

The last property we consider is the system’s load balancing. The reader could

see this property as uninteresting for the object of analysis. Actually, data and routing

load balancing are very influencing. Whether data is uniformly stored into nodes or

its distribution is skewed among nodes determines the query’s response time, making

38 2. BACKGROUND AND STATE OF THE ART

it stable or highly variable, respectively. Alternatively, routing load balancing will

provide less overhead on query routing and, thus, less overhead on query processing

to participant nodes.

Summing up, the reader should expect to see systems that greatly differ from each

other. Not only the topology, but also a long list of system parameters influence the

corresponding costs as well as the performance of the system when nodes cooperate.

2.4.4 Evaluation Criteria: Tuning and Terminology

All parameters introduced before are considered within the evaluation framework for

all systems. Actually, systems considered into this chapter were designed so that,

given a kind of query and an application context, they provide a trade-off between

all these parameters. To put an example, a system that supports k-NN queries, could

incur in more storage usage in only some peers (load unbalancing), in order to provide

low response time (time efficiency) in system’s operations, while the result set turns

both correct and complete.

Table 2.2 shows the common measurements used along the analysis of systems

providing similarity queries, in order to value the considered systems. Note that in

both storage and time efficiency measurements, 1 is the best case. In other words, the

best case for data storage is when only a data copy is introduced into the system (no

replication or caching techniques are considered), and for time efficiency, when the

response is at only one overlay hop. For the sake of simplicity, the denominator is

only shown on the comparison tables.

Table 2.2: Tuning of the evaluation criteria for systems providing similarity queries.

Evaluation criteria Tuning1

Topology Descriptive name
Dimensionality 1-D |M-D
Mapping approach 1:1 | N:1 |M:P | N/M
Storage efficiency 1

Num. data copies

Time efficiency 1
Num. overlay hops

Load balancing Yes | No
Correctness Yes | No
Completeness Yes | No
Intersection System side | User side

1 The term N/A can appear elsewhere when the tuning is not applicable for a given system.

2.5 Supporting Range Queries 39

In addition, before starting with the system evaluations, let us detail the common

terminology we will use along this chapter. Note that every work uses its own nomen-

clature, but here for clarity to the reader, we unify them as much as possible to a com-

mon and simpler naming. The reader can find it in Table 2.3. Note that selectivity ratio

expression refers to the ratio of the data domain that the query is selecting from. For

instance, let us suppose an arbitrary range query with a selectivity ratio of 50% on the

application data domain or on the i-th attribute. This means that the query is demand-

ing for objects living on a half of the application data domain or the attribute domain,

respectively. In the following sections, we delve into the comparison of different dis-

tributed systems.

2.5 Supporting Range Queries

After the first SPN appeared on 2001, researchers studied ways of enhancing SPNs

by supporting high-level queries. The first kind of search abstraction we study is the

range query. We present in Table 2.4 the measurements from different remarkable sys-

tems, using the notations from Table 2.3. Systems appear in ascending order from the

publication year. This provides an outlook on the system design evolution. Hereafter

we proceed with the study by classifying their topology into two big sets, namely

flat and hierarchical SPNs. Differentiating systems from their topology will help to a

better understanding of their lookup algorithms and performances.

Table 2.3: Common terminology along the evaluations of systems providing similarity
queries.

Term Description

N Number of nodes within the network
M Number of attributes of the application data domain
MD Number of attributes included in the data object
MQ Number of attributes included in the query
S Total query’s selectivity ratio
Si Selectivity ratio of the i-th attribute
K Number of nodes to visit to complete the query
Ki Number of nodes to visit for the i-th attribute during the query resolution
k Number of data objects to retrieve in a k-NN query
f o Stands for fan-out (i.e., number of outgoing links in the routing table)

40 2. BACKGROUND AND STATE OF THE ART

As the counterpart, it is well-known from software engineering field that an algo-

rithm complexity is tightly influenced by the data structure supporting it. SPNs are

not an exception. A SPN can be seen as a distributed data structure, so that every

node is responsible of only a part of it. Thus, the way nodes are distributed within

the network and the connectivity between them will determine the cost of the query

resolution.

2.5.1 Flat Systems

The works considered here employ either a ring-based or a grid-based topology.

Thus, algorithms cannot be applied exactly to each other. This motivates their fur-

ther classification into this study.

2.5.1.1 Ring-based Topology Systems

The following systems, MAAN [30], SkipNet [26], Mercury [29] and M-Chord [49],

distribute nodes in a ring topology. Systems aim at providing a time- and resource-

efficient query resolution. This motivates that data objects should be strategically

placed within the network. Ring-based topologies (see Fig. 2.6a for an example) pro-

vide an easy way of iterating among successors and/or predecessors. This becomes

a powerful and efficient mechanism of communication whenever the system stores

data objects contiguously within the SPN keyspace I. Different mapping approaches FO

appeared to this end. Any given mapping technique has the challenge of placing con-

tiguous data objects in the data domain, contiguously within the ring. To do so, most

of mapping functions are order-preserving hash functions, so that if FO is the function

and x, y two data objects, whenever x ≤ y, FO(x) ≤ FO(y) succeeds.

A sketch of the algorithm used by all these systems is detailed in Algorithm 2.2

and depicted in Fig. 2.6a. A querying node starts the search. Let us assume that

the query q = [lb, ub], lb ≤ ub, is asking for all objects between the lower bound lb

and the upper bound ub. During the first routing phase, the query is directed to the

corresponding node that owns one of these bounds, namely FO(lb), and thereafter, the

query is spread among all nodes responsible of the range [FO(lb), FO(ub)]. For the

sake of clarity, the figure depicts a sequential order on the node visiting process, but

more complex algorithms (e.g., [50]) can be applied to achieve that in a more time-

efficient way. See Section 2.5.3 for a discussion on how it can be implemented. Now,

let us see what systems do.

The time efficiency column in Table 2.4 depicts clearly the main two phases on the

range query algorithms. SPNs studied here locate a node in a logarithmic number of

2.5 Supporting Range Queries 41

hops with regards to the number of nodes in the worst case and, so, the cost formula-

tion includes a first operand (log N). The second operand corresponds to the cost of

spreading the query within the queried range. Generically, this part is considered to

be the number of nodes (and so single hops) that are necessary to visit to answer the

range query. To put an example, SkipNet has a response time of O(log N + S × N).

The logarithmic cost is for the first part and S× N corresponds to the time needed to

visit the set of nodes responsible of the queried range. S means the selectivity ratio of

the range query, and we assume that all nodes P are uniformly distributed at random.

There are two particular systems with a ring topology, MAAN and Mercury. They

show a more complex formulation of the time efficiency. This is because both of

them map every single dimension from a M-dimensional data domain into the 1-

dimensional I. This motivates the increase on the data storage requirements. Above

all, they are in essence the same kind of approach. The difference lies in which MAAN

consists of one ring, responsible of all dimensions of the data domain. Instead, Mer-

cury employs as many rings as dimensions is considering the application data do-

main. Rings in Mercury become clusters of nodes sharing information of the same

dimension.

These systems employ an order-preserving hash function to determine the respon-

sible node for a given data object. Instead, M-Chord uses iDistance [48] and this map-

ping approach behaves in a different way. Adopting iDistance requires of few steps.

1) Data objects are sampled before the network creation in order to find out n data

clusters. And 2), for every non-overlapping data cluster, a centroid data object and the

radius to the farthest object from the same cluster are set up, and become global knowl-

edge for all nodes. Therefore, using iDistance is inappropriate in applications where

there is a little or no knowledge of the dataset, and because the system needs of global

knowledge, that should be avoided in large scale distributed systems.

In addition, by using the iDistance mapping, range queries are proceeded as in the

sphere-based approach. Given that data objects are clustered, a given range query may

overlap partially or totally areas from different data clusters. iDistance transforms

any overlapping area into a contiguous segment on I, but all partial segments may

not be contiguous among them. This motivates that the range query resolution is

parallelized in systems based on iDistance mapping, and in particular in M-Chord.

The querying node, then, identifies the queried keyspace segments and sends as many

messages as number of segments. The two phases approach still remains here, but for

any individual segment. Although M-Chord perform a parallelized range query, the

time efficiency remains similar to the rest ones (surely with a smaller hidden constant),

42 2. BACKGROUND AND STATE OF THE ART

Data objects Nodes

Queried range

(a) Ring-based range query algorithm
(adapted from [29]).

Data objects

Nodes

Queried range

(b) Tree-based range query algorithm
(adapted from shower algorithm
from [31]).

Figure 2.6: Approaches for range query algorithms according to the topology.

and in addition incurs in a greater network overhead. For further details on iDistance,

the reader is kindly forwarded to [48].

2.5.1.2 Grid-based Topology Systems

SWAM-V [27] and HyVonNe [51] are based on a grid topology. In particular, they place

nodes into a Voronoi diagram, and then the dual Delaunay triangulation organizes the

neighbors of nodes. HyVonNe selects a leader for every grid’s region in order to make it

more flexible to node movements and topology changes. Alternatively, SWAM-V adds

some other links to far away nodes to reduce the time latency down to a logarithmic

cost. Given that this routing cost is a lower bound for both systems, we only include

the full study of SWAM-V.

The key difference between SWAM-V and the other flat ones is the following:

nodes in SWAM-V share the information they have, instead of inserting it into other

nodes. This fact motivates the organization of nodes according to the content similar-

ity among nodes, and a particular design of the lookup algorithms. The two phases

lookup approach remains still valid. The difference resides in that (hyper)sphere-

based range queries are considered, instead of (hyper)rectangle or hypercube. This

way, the first step locates a node responsible for a central point p; in the second step

the query is spread to the nearest nodes (delimited by a time-to-live), and this de-

termines the queried radius. Reader may have observed that this approach does not

provide completeness to the result, given that some farther data objects can exist re-

2.5 Supporting Range Queries 43

lated to the range query. And actually this is what happens. But, by definition of the

sphere-based range query (refer to Definition 2.4), the result set is complete whenever

the whole given radius is visited.

2.5.2 Hierarchical Systems

A hierarchical system organizes nodes in the shape of a pyramid, with each row or

level of nodes linked to other nodes beneath them. For the purpose of our analysis,

we relax its definition by allowing nodes appear either at any level on the hierarchy

or only in its leaves. In fact, the hierarchy still remains even though only in a logical

level.

Compared to flat topologies, most of hierarchical ones provide a natural way of

performing lookup operations in a parallel way, instead of a sequential resolution. In

other words, the hierarchical structure provides different paths where to spread the

search operation from the very beginning, namely from the querying node (see Al-

gorithm 2.1 and Fig. 2.6b for an example). As it is stated in Section 2.4.3, there exists

a trade-off between network overhead and time efficiency: This approach incurs in

more overhead, for the greater bandwidth usage to say the least, so that the whole

result set is retrieved from the system within a shorter response time. Unless noted,

all shown time measurements for hierarchical systems consider a parallel lookup res-

olution.

The included hierarchical SPNs in this part of the study are broadly classified into

two topological groups: tree-based and super-peer-based approaches.

2.5.2.1 Tree-based Topology Systems

The tree-based topologies are the following ones: Trie-based [31], DST [52], Skip Tree

Graphs [53] and SDI [54]. These systems (except DST) place nodes into the leaves

of the tree. Then, the logical built tree specifies the interconnection between nodes

and, thus, determines the time delay for lookup operations. See Fig. 2.6b for a generic

example.

Trie-based constructs a load-balanced trie, where all nodes are responsible for the

same amount of information. The drawback here is that nodes require from prior

knowledge of the dataset distribution to correctly built the trie. One of the strengths is

that Trie-based is designed from the very beginning for a real environment, so nodes

are placed strategically within the trie to provide structurally data replication. Trie-

based provides two algorithms for range queries. The time efficiency shown is for

44 2. BACKGROUND AND STATE OF THE ART

the min-max traversal algorithm, that consists exactly in the sequential, two phases

approach explained earlier. An improved approach, called shower algorithm, is also

presented and consists in a parallel query resolution, very similar to that shown in

Fig. 2.6b. This case, the resolution time decreases down to a logarithmic cost, at the

cost of a greater network overhead.

Skip Tree Graphs become an abstraction for Skip Graphs/Nets, that provide a tree-

like navigation of the distributed data structure. Because Skip Tree Graphs are isomor-

phic to Skip Graphs/Nets, Skip Tree Graphs are considered to provide the same costs

like in SkipNet. Though the hidden constant in the time efficiency is smaller than in

SkipNet, Skip Tree Graphs suffers from greater delays at insertion times.

SDI is a particular tree-approach where the navigation, differently from the sys-

tems before, is performed in a bottom-up approach. All lookup operations in SDI are

inherently parallel, so that the time delay is reduced to a logarithmic cost. SDI, unlike

Trie-based, Skip Tree Graphs and DST, does not utilize any mapping function to data

objects, but uses the application data domain to organize information into nodes.

There exist a family of systems based on data-driven tree abstraction built upon

DHTs, where PHT [55] (Prefix Hash Tree) embodies this family. PHT builds a binary

tree link structure among nodes, so that nodes storing contiguous data appear con-

nected. Moreover, this structure is said data-driven because data insertions determine

the tree organization. PHT provides data load balancing because it is based on the

default DHT functionality (put(key, value)/value ← get(key)). But PHT’s penalty is

the great overhead in communication cost. PHT resolves range queries iterating over

a logical contiguous data domain, but actually along far away nodes from each other.

This augments the total overhead on the routing cost compared to other systems with

data locality, providing a poor solution in terms of routing efficiency.

Actually, we include the analysis of DST (Distributed Segment Trees) as a lower

bound of PHT and PHT-based systems. DST provides lower time delays than PHT

and this is because of the structural data replication performed in DST. Every object

insertion is performed in average into O(log N) nodes. This fact, in addition to the

inherent parallel lookup resolution, provides a logarithmic resolution response time

in terms of hops. The drawback is that this design clearly does not provide load bal-

ancing. Firstly, because higher nodes in the tree receive more queries because of the

top-down tree routing. In addition, DST insertion algorithms tries to balance the data

load among nodes by defining a maximum storage threshold. Unfortunately, it is easy

to see that higher nodes in the tree will reach sooner the threshold than leave nodes,

producing a data load unbalancing among nodes.

2.5 Supporting Range Queries 45

2.5.2.2 Super-peer-based Topology Systems

Three systems based on a super-peer topology [56] are considered: the work of Liu

et al. [57] (namely LET), EZSearch [58] and JXTA Search [59]. The main key on the

design of a super-peer topology is that there are two types of nodes: normal peers and

super-peers. Broadly speaking, normal peers store information and are connected to

a super-peer. The role of super-peers is indexing information of connected normal

peers, in order to speed up lookup resolutions. Super-peers are inter-connected in a

way so that super-peers can reach each other at low delay. Evaluating the fairness of

the system, it is easy to see that super-peers receive more communication than normal

peers and stored information. Thus, super-peer-based designs does not present good

qualities in terms of load balancing (as it can be seen in Table 2.4).

These systems face the problem from two different viewpoints: whilst in EZSearch

data is inserted into the system, super-peers on LET and JXTA Search (based on JXTA

[60]) build the indexes of the information that their normal peers possess. In addition,

while LET and JXTA Search present a two-tier hierarchy (normal peers below and

super-peers above), EZSearch (based on ZigZag [46]) builds a balanced tree of variable

height, so that each leave cluster has approximately the same amount of peers. Super-

peers in EZSearch (called head and associated-head), can appear in more than one level

in the hierarchy. This topological differences clearly determines the time efficiency on

range query resolutions.

In these systems, any node can start the range query, and it is directed to a corre-

sponding super-peer. In LET and JXTA Search, the node’s super-peer is the corresponding

super-peer and it is responsible of checking into its indexes whether the query can be

resolved locally in the cluster, or the super-peer needs to contact to other super-peers.

This global knowledge is updated between super-peers by exchanging periodically

summaries of their indexes. This way, the query forwarding is more efficient and

unnecessary super-peers are not visited. The operation concludes when the asked

super-peers send to the corresponding super-peer their results and then, all them are

forwarded to the querying peer. Note that in JXTA Search nomenclature, super-peer

nodes are called hubs, normal peers are differentiated between information providers

and consumers, and clusters are called groups.

In EZSearch, range queries are directed to the corresponding super-peer of the corre-

sponding cluster. Unlike LET and JXTA Search, EZSearch makes the assumption that

there is a necessary population of nodes in leave clusters, so that all data objects for

the range query will live there. This assumption is guaranteed by correctly setting up

the z-factor. This factor determines the number of nodes within clusters and, thus, the

46 2. BACKGROUND AND STATE OF THE ART

height of the tree. The goal is clear: to avoid visiting other close clusters, that would

introduce longer response times. Note that the time efficiency formulation also ac-

counts the z-factor, and that cost can be interpreted as the number of hops required to

contact the corresponding super-peer.

2.5.3 Range Query Evaluation: Conclusions

Most of systems interpret range queries as a region-based search instead of the sphere-

based approach. This is because with the first one, systems can guarantee that when-

ever there are some data objects lying within the queried range, they will be retrieved.

But, actually, these two interpretations of range queries address different problems.

For the sake of clarity, while a region-based approach is necessary for geographical

location service, in order to provide all elements from the given region, the same in-

terpretation cannot be used in the case of Information Retrieval (IR) applications, or

in scenarios where nodes contribute with their own content without inserting it into

the system.

Actually, the sphere-based range query can be seen as a k-NN query with a fixed

system-wide radius. This is very useful in certain application domains where data

object indexation is not so strict, but flexible. For instance, documents in IR applica-

tions are indexed according to document’ meta-data, and nodes supporting their own

content can provide a variable number of any kind of data objects. For these scenar-

ios, a region-based approach is not practical in terms of number of peers to be visited

and, thus, response time: Almost all nodes would be candidate for visiting along the

query resolution. This means that every query should be broadcasted to all nodes,

which is not suitable in the large scale. Thus, a sphere-based range query deals with

the uncertainty problem and provides a feasible solution.

The quality of sphere-based approach depends on two factors: 1) the quality of

information and/or node clustering achieved by the system, and 2) the query radius

that determines the area to search into. Both of them depend on the specific system

design (see SWAM-V [27] or the work of Liu et al. [57] for some examples). Unfor-

tunately, there is a factor that systems cannot govern: the dataset distribution. This

factor informs about the data clustering degree. For this kind of systems, highly clus-

tered data objects will provide inherently better results than a dataset that is uniformly

distributed within the data domain.

Most of systems, instead, insert data objects into the system and they are stored by

the responsible nodes, selected deterministically. This way, an exact match is resolved

in the same way than in the insertion case. For these systems the dataset distribution

2.5 Supporting Range Queries 47

becomes also a key issue. A uniformly distributed dataset will provide inherently

good data load balancing among nodes. Otherwise, in most of the SPNs, the system

will suffer from data load unbalancing, given that some nodes will support more data

objects than others. Actually, this problem is an open issue for most of the SPNs.

We have also explained that hierarchical systems provide in most of them a nat-

ural, inherent way of parallel lookups. What about flat topologies? There exists an

important reference in this field. The work of S. El-Ansary et al. [50] introduces a

broadcast algorithm for ring-based topologies with a total time delay of O(log N). This

algorithm takes advantage from the nodes’ knowledge. Every node in a ring topol-

ogy knows the fragment of the keyspace I it is responsible for, as well as the keyspace

fragments of its neighbors. This way, all nodes are contacted by the broadcast mes-

sage in the worst case with a time delay of O(log N). It is easy to see that a variation

of this algorithm could also be applied for the case of range queries. During the sec-

ond phase of the range query, a set of contiguous nodes are responsible of the queried

range and must be visited. Thus, the first visited node could start a range-restricted

broadcast, or multicast, based on the same technique. Actually, we will consider this

design in our proposed range query services under Chapter 4. For instance, SkipNet

has a time delay of O(log N + S×N). The SkipNet improvement would be from S×N

to log(S× N), reducing the response time down to O(log N + log(S× N)). However,

the trade-off still exists here. Less time delay means greater network overhead.

To conclude this section, it is worth noting that in last years more and more systems

aim at providing enhanced lookup services by means of hierarchical SPNs, as it can

be seen from last rows in Table 2.4. This is motivated from the fact that most of the hi-

erarchical designs provide inherently parallel query resolution. As we have discussed

early in Section 2.5.2, a parallelized algorithm is not for free, but has the cost of more

bandwidth usage and busy nodes per unit time. Nevertheless, given that nowadays

Internet connection bandwidth and computer resources are growing rapidly, band-

width and computation power are considered as not so restrictive as some years ago.

As it is seen from our analysis, this opens a door to systems that are not so efficient in

resource consumption but effective in reducing response time.

48 2. BACKGROUND AND STATE OF THE ART
Ta

bl
e

2.
4:

Ev
al

ua
ti

on
of

sy
st

em
s

on
ra

ng
e

qu
er

ie
s.

System

Topology

Dimen–
sionality

Mapping
approach

Storage
Efficiency

Time
Efficiency

Routing
Load Bal.

Data Load
Balancing

Correctness

Completeness

Intersection
(side)

JX
TA

Se
ar

ch
[5

9]
Tr

ee
(S

up
er

-p
ee

rs
[5

6]
)

1-
D

N
/M

1
Ψ

(N
,|

C
|,

S)
1

N
o

N
/A

Ye
s

Ye
s

Sy
st

em

M
A

A
N

[3
0]

R
in

g
(C

ho
rd

[7
])

1-
D

1:
1

O
(M

)
O

(l
og

N
+

K
)

N
o

N
o

N
o

N
o

U
se

r
M

-D
1:

1
O

(M
)

O
(∑

M i=
1
(l

og
N

+
S i
×

N
))

N
o

N
o

N
o

N
o

Sy
st

em

Sk
ip

N
et

[2
6]

R
in

g
(S

ki
p

G
ra

ph
[6

1]
)

1-
D

1:
1

1
O

(l
og

N
+

S
×

N
)2

Ye
s

N
o

Ye
s

Ye
s

Sy
st

em

M
er

cu
ry

[2
9]

M
ul

ti
-R

in
g

(S
ym

ph
on

y
[1

3]
)

M
-D

1:
1

O
(M

D
)

O
(∑

M
Q

i=
1
(

1 fo
lo

g2
N

+
S i
×

N
))

Ye
s

Ye
s

Ye
s

Ye
s

Sy
st

em

SW
A

M
-V

[2
7]

Sm
al

l-
W

or
ld

(V
or

on
oi

di
ag

ra
m

)
M

-D
N

/M
1

O
(l

og
N

+
S
×

N
)

N
o

N
/A

Ye
s

Ye
s

Sy
st

em

Tr
ie

-b
as

ed
[3

1]
Bi

na
ry

Tr
ie

P-
G

ri
d

[1
4]

1-
D

1:
1

1
O

(l
og

N
+

S
×

N
)3

Ye
s

Ye
s

Ye
s

Ye
s

Sy
st

em

Li
u

et
al

.[
57

]
Tr

ee
(S

up
er

-p
ee

rs
[5

6]
)

M
-D

N
/M

1
Ψ

(N
,|

C
|,

S)
1

N
o

N
/A

Ye
s

Ye
s

Sy
st

em

M
-C

ho
rd

[4
9]

R
in

g
(C

ho
rd

[7
])

M
-D

M
:1

1
O

(l
og

N
+

S
×

N
)2

N
o

Ye
s

Ye
s

Ye
s

Sy
st

em

D
ST

[5
2]

Bi
na

ry
Tr

ee
1-

D
1:

1
O

(l
og

N
)

O
(l

og
N

)4
N

o
N

o
Ye

s
Ye

s
Sy

st
em

Sk
ip

Tr
ee

G
ra

ph
s

[5
3]

Tr
ee

+
Sk

ip
G

ra
ph

[6
1]

M
-D

M
:1

1
O

(l
og

N
+

S
×

N
)

Ye
s

N
o

Ye
s

Ye
s

Sy
st

em

EZ
Se

ar
ch

[5
8]

Tr
ee

(Z
ig

Z
ag

[4
6]

)
M

-D
N

/M
1

O
(l

og
z

N
+

C
N
)5

N
o

N
o

Ye
s

Ye
s

Sy
st

em

C
on

ti
nu

ed
on

ne
xt

pa
ge

2.5 Supporting Range Queries 49

Ta
bl

e
2.

4
–

C
on

ti
nu

ed

System

Topology

Dimen–
sionality

Mapping
approach

Storage
Efficiency

Time
Efficiency

Routing
Load Bal.

Data Load
Balancing

Correctness

Completeness

Intersection
(side)

SD
I[

54
]

Tr
ee

M
-D

N
/M

1
O

(l
og

N
)4

Ye
s

N
o

Ye
s

Ye
s

Sy
st

em
1

Th
e

co
st

de
pe

nd
s

on
th

e
nu

m
be

r
of

no
de

s
in

to
th

e
sy

st
em

N
,t

he
nu

m
be

r
of

cl
us

te
rs
|C
|a

nd
th

e
qu

er
y

se
le

ct
iv

it
y

ra
ti

o
S.

2
C

os
ts

in
fe

rr
ed

fr
om

th
e

se
ar

ch
al

go
ri

th
m

/s
ys

te
m

de
sc

ri
pt

io
n.

3
Se

qu
en

ti
al

,t
w

o
ph

as
es

re
so

lu
ti

on
co

st
.T

he
co

st
of

th
e

co
rr

es
po

nd
in

g
pa

ra
lle

la
lg

or
it

hm
is

O
(l

og
N

).
4

Th
e

pr
es

en
te

d
co

st
s

ar
e

fr
om

th
e

pa
ra

lle
lr

es
ol

ut
io

n
al

go
ri

th
m

s.
5

EZ
Se

ar
ch

m
ak

es
th

e
as

su
m

pt
io

n
th

at
a

qu
er

y
is

re
so

lv
ed

by
vi

si
ti

ng
a

si
ng

le
cl

us
te

r.
H

er
e,

C
N

re
fe

rs
th

e
nu

m
be

r
of

no
de

s
in

to
th

at
cl

us
te

r.

50 2. BACKGROUND AND STATE OF THE ART

2.6 Supporting k-NN Queries

k-NN queries provide up to k data objects that are the most alike to a given object.

The reader can find its meaning at Definition 2.6 and in Fig. 2.4b an example. Besides,

the basic algorithm is detailed in Algorithm 2.3. A querying node performs the k-NN

query by specifying a pair q = {p, r} and k. p is a point or data object and r defines an

initial radius, where k sets the maximum number of objects to collect.

It is easy to see that sphere-based range queries and k-NN queries are very similar.

In fact, the difference lies with the value set to the radius r. While in sphere-based

range queries it takes a system-wide, fixed value, the value of k is readjusted in k-NN

queries (lines 8,17 of the Algorithm 2.3). In consequence, any solution that adopts a

sphere-based range query approach, can also resolve k-NN queries easily after min-

imal modifications to the range query algorithm. In particular, most of the systems

included in this section appeared also in the range query evaluation section. Some

other systems are appended.

It is worth noting that most of time efficiency measurements of Table 2.5 have the

shape O(log N + K). The first part O(log N) considers the time to reach the corre-

sponding node. From Table 2.3, K means the number of nodes required to be visited to

complete the query, but where its value is hard to quantify formally. Thus, K express

a supplement in the response time on the query resolution. Some factors influence

K’s exact value: (i) the system design, (ii) the number k of elements to retrieve, and

(iii) the specific situation of the network while the query is performed. The last factor

includes either the node organization, as well as the amount of data stored in nodes.

It is easy to see that while less data objects are stored in nodes, more nodes will likely

be visited. Similarly, when the value of k increases, the probability to visit a higher

number of nodes also augments.

Hereafter we proceed with the study of a remarkable set of systems, differenti-

ating between flat and hierarchical SPNs. The topology greatly influences into the

algorithm design and its performance.

2.6.1 Flat Systems

We broadly differentiate the systems between ring-based and grid-based topology

systems. Algorithms and techniques are different from each other.

2.6 Supporting k-NN Queries 51

2.6.1.1 Ring-based Topology Systems

We consider in this section the following systems: M-Chord [49] and AON [62]. M-

Chord has been discussed in the section before. AON (that stands from Attributed-

based Overlay Networks) supports both range and k-NN queries. The motivation to

include it into this study is for the given similarity to Mercury. Both systems have

essentially the same network structure: one ring for every dimension. The difference

lies with the data management. Data objects in AON are neither inserted nor mapped,

while nodes in Mercury insert data objects into the network after their mapping. This

provides AON for a data-driven ring construction. Nodes in AON are organized into

attribute-based rings. The data objects that nodes store locally, specify the node’s place

into the ring.

For fast navigation through the ring, AON nodes have a routing table per ring

that resembles a Chord finger table. Even though the network structure seems to pro-

vide a good infrastructure for efficient query resolution, it poses some inconvenients.

Whenever the local information of nodes become dynamic and highly variable, the

placement of nodes into the different rings they are participating in will vary accord-

ingly. To do so, nodes employ a leave-join mechanism. In consequence, not only the

network can suffer from churn (i.e., nodes leaving and joining the network), but also

along the time a node is present into the system, since node’s content will certainly

vary. Another inconvenient is the amount of node state AON and Mercury require for

an efficient routing into all rings that nodes are participating in. AON only presents

an evaluation for 1-dimensional scenario, but it is said that multi-dimensional data

domains can be also supported.

2.6.1.2 Grid-based Topology Systems

This part of the k-NN study considers SWAM-V [27], a Voronoi-based node organi-

zation. The algorithm applied here is the same like in the case of range queries, but

slightly modified to readjust the radius r in order to complete the query with k data

objects.

Besides, we study two systems based on CAN [11]. They are pSearch [19] and M-

CAN [63]. Both systems have a common design decision: reducing the data domain

dimensionality (M) to that of the underlying CAN (P). Moreover, they avoid the ap-

plication of some dimensionality reduction function FO. This makes easier the use of

CAN and accelerates all operations by preventing the use of mapping functions.

52 2. BACKGROUND AND STATE OF THE ART

pSearch is based on eCAN [23], an improved version of CAN that achieves a worst

case logarithmic communication cost between any pair of nodes. pSearch is intended

for Information Retrieval applications, and introduces two algorithms based on eCAN

and Information Retrieval techniques. One is called pVSM, for the case of Vector Space

Model, where the m most descriptive terms from documents are taken. The other one

is called pLSI, for the case of Latent Semantic Indexing, which reduces the dimension-

ality of VSM technique to l, m > l, by applying semantic reduction techniques. The

reader can observe in the time efficiency formulation a variable cost ζ(k, m). This

cost summarizes the number of nodes needed to be visited by an arbitrary k-NN

query, that highly depends on the number of elements to retrieve k and the size m

of the vector space model. When Latent Semantic Indexing is used, the delay becomes

O(log N + ζ(k, l)).

M-CAN employs the iDistance [48] mapping technique to index all data objects

into CAN. M-CAN is then analogous to M-Chord, and the whole M-Chord discussion

can be applied to M-CAN. Note that the time efficiency accounts the communication

cost based on CAN. It would be easy to replace CAN by eCAN, so that the time effi-

ciency would be reduced to a logarithmic cost O(log N + K).

2.6.2 Hierarchical Systems

Under the umbrella of hierarchical systems we look at two tree-based topology sys-

tems, PIRD [64] and SDI [54], as well as two super-peer based topology systems,

namely Liu et al. [57] and EZSearch [58]. All systems except PIRD have been dis-

cussed in the range query section. Given that these systems employ a sphere-based

range query approach, they modify the query algorithm to successively adjust the

radius r in order to support k-NN queries. Let us put the focus on PIRD.

PIRD is based on Cycloid [65] and structurally provides geographical k-NN queries,

where the result set contains indexes to data objects that are located in nodes close to

the querying node. This way, the querying peer will accelerate the last peer-to-peer

transmission. To do so, Cycloid introduces a two-layer indexation. The first layer

organizes nodes and indexes into different clusters, and the second layer (i.e., at any

of the clusters) organizes information according to the geographical proximity. The

proximity is presented as a distance vector obtained from a sampling to a set of land-

marks. This way, the distance evaluation is performed by comparing those vectors.

Nodes also use these vectors to locally cluster the indexes according to the distance.

2.6 Supporting k-NN Queries 53

The query algorithm takes advantage of this indexing to retrieve the k closest data ob-

jects to the query, and also by retrieving them from the geographically nearest nodes

to the querying node.

Nevertheless, the indexes are inserted in a system-wide number of times (L), in-

crementing the data storage on nodes. To do so, PIRD builds L different keys in a way

that similar data objects will be assigned to similar keys with high probability. This can

be seen also as to having similar data objects indexed in the same node. Queries are

spread to L different keys, and the querying node has the last responsibility to return a

valid result set of k data objects from those L partial sets received from queried nodes.

Lastly, the time efficiency shown for PIRD is the time for a single lookup operation in

Cycloid, because the k-NN query is parallelized.

2.6.3 k-NN Query Evaluation: Conclusions

It is easy to see a common denominator within the study of systems supporting k-NN

queries. Because of the nature of k-NN query algorithms, systems that also supports

range query in a sphere-based approach prevail over the others. Actually, this section

does not include any system that supported range queries in a region-based approach.

This is because both approaches are quite distant from each other, and pose different

challenges during the system design.

Another common characteristic among systems is the two phases approach. Re-

member that in the first phase the corresponding node is reached, while in the second

one close nodes are accessed, in order to build a result set. This resolution mechanism

is dictated by the definition of the k-NN query. There are only few exceptions to this

though. One example is the innovative design of PIRD [64] that, by means of several

keys per data object, the system achieves a per-node index clustering, so that the query

resolution is performed locally at several corresponding nodes.

Another family of systems that perform only data indexation are data networks.

Nodes in data networks hold their own information and only indexes are built through-

out the system. The way the indexation is realized will decide whether the two-phase

approach remains still valid, or ad-hoc algorithms will have to face the problem. An

example within the family of data networks is the work of Liu et al. [57]. Unless in

hierarchical systems supporting range queries, there is not much flexibility for sys-

tems to totally parallelize k-NN queries. That is, with a perfect knowledge of nodes’

content, querying node would be able to direct the query to the corresponding nodes.

However, this requires of global knowledge, what is not feasible on the large scale. A

slight longer response time is the low price users have to pay for.

54 2. BACKGROUND AND STATE OF THE ART
Ta

bl
e

2.
5:

Ev
al

ua
ti

on
of

sy
st

em
s

on
k-

N
N

qu
er

ie
s.

System

Topology

Dimen–
sionality

Mapping
approach

Storage
Efficiency

Time
Efficiency

Routing
Load Bal.

Data Load
Balancing

Correctness

Completeness

Intersection
(side)

pS
ea

rc
h

[1
9]

H
yp

er
cu

be
(e

C
A

N
[2

3]
)

M
-D

M
:P

1
O

(l
og

N
+

ζ
(k

,m
))

1
Ye

s
Ye

s
N

o
Ye

s
Sy

st
em

SW
A

M
-V

[2
7]

Sm
al

l-
W

or
ld

(V
or

on
oi

di
ag

ra
m

)
M

-D
N

/M
1

O
(l

og
N

+
K

)
N

o
N

/A
Ye

s
Ye

s
Sy

st
em

Li
u

et
al

.[
57

]
Tr

ee
(S

up
er

-p
ee

rs
[5

6]
)

M
-D

N
/M

1
Ψ

(N
,|

C
|,

k)
2

N
o

N
/A

Ye
s

Ye
s

Sy
st

em

M
-C

ho
rd

[4
9]

R
in

g
(C

ho
rd

[7
])

M
-D

M
:1

1
O

(l
og

N
+

K
)

N
o

Ye
s

Ye
s

Ye
s

Sy
st

em

M
-C

A
N

[6
3]

H
yp

er
cu

be
(C

A
N

[1
1]

)
M

-D
M

:P
1

O
(P

P√
N

+
K

)
Ye

s
Ye

s
Ye

s
Ye

s
Sy

st
em

A
O

N
[6

2]
R

in
g

1-
D

N
/M

1
O

(l
og

N
+

K
)

N
o

N
/A

Ye
s

Ye
s

Sy
st

em

PI
R

D
[6

4]
H

ie
ra

rc
hi

ca
l

(C
yc

lo
id

[6
5]

)
M

-D
M

-P
O

(L
)

O
(d

)3
N

o
N

o
N

o
Ye

s
U

se
r

EZ
Se

ar
ch

[5
8]

Tr
ee

(Z
ig

Z
ag

[4
6]

)
M

-D
N

/M
1

O
(l

og
z

N
+

C
N
)

N
o

N
o

Ye
s

Ye
s

Sy
st

em

SD
I[

54
]

Tr
ee

M
-D

N
/M

1
O

(l
og

N
)4

Ye
s

N
o

Ye
s

Ye
s

Sy
st

em
1

T
he

fin
al

de
la

y
is

re
la

te
d

to
ζ
(k

,m
),

w
he

re
k

is
th

e
k-

N
N

fa
ct

or
,a

nd
m

is
th

e
nu

m
be

r
of

te
rm

s
in

th
e

Ve
ct

or
Sp

ac
e

M
od

el
.

2
Th

e
co

st
de

pe
nd

s
on

th
e

nu
m

be
r

of
no

de
s

in
to

th
e

sy
st

em
N

,t
he

nu
m

be
r

of
cl

us
te

rs
|C
|a

nd
th

e
nu

m
be

r
of

ob
je

ct
s

to
re

tr
ie

ve
k.

3
Q

ue
ri

es
in

PI
R

D
ar

e
pa

ra
lle

liz
ed

,w
he

re
O

(d
)

is
th

e
co

st
of

a
si

ng
le

lo
ok

up
.

4
Th

e
pr

es
en

te
d

co
st

s
ar

e
fr

om
th

e
pa

ra
lle

lr
es

ol
ut

io
n

al
go

ri
th

m
s.

2.7 Supporting Spatial Queries 55

2.7 Supporting Spatial Queries

Spatial queries can be seen as a particular case of range queries, either in a sphere-

based or region-based approach. Supporting spatial queries means that the systems

must support operations in at least two dimensions, which specify the geographical

location of objects, for instance by a pair {latitude, longitude}. In addition, these sys-

tems can support either point data objects or rectangular data objects. The former de-

scribes the data object’s location by a single point ({x, y}), while rectangular ones are

extended objects that occupies an area. Rectangular data objects are usually specified

by a pair of points {x1, y1}, {x2, y2}which describe the minimum bounding rectangle

of the covered area. To give some examples, a restaurant’s location is seen as a point

data object, while the area where a superstore makes home deliveries can be described

by a rectangular area.

When users perform spatial searches, the systems have to provide data objects that

are located in or overlap the specified area of arbitrary size, while the search area is

usually specified by the minimum bounding rectangle {x1, y1}, {x2, y2}. It is easy to

see that the challenges of this kind of systems are particularly different from those

ones supporting range queries, what has motivated their study separately.

This section goes on with the evaluation of significant systems supporting spa-

tial queries, by differentiating between flat and hierarchical systems. All systems in-

cluded here can be found in Table 2.6, listed in ascending order of the publication

year.

2.7.1 Flat Systems

We consider two systems in this section, SDS [66] and Spatial Query [67]. SDS is a lay-

ered design, using Chord as a distributed infrastructure to support a quadtree. Given

that the emphasis is put on the quadtree design, SDS is further detailed in Section 2.7.2.

Spatial Query is designed onto CAN [11]. CAN naturally supports multi-dimensional

domains, so that little effort is required to use CAN for supporting spatial queries.

Spatial Query supports both point and rectangular data objects. Thus, the focus is

moved to guarantee data load balancing through nodes, what is addressed in two

ways. A new node selects randomly to join into an area with high data density, and

splits it into two sub-areas. Secondly, by limiting the number of times a region can be

split. This way, nodes are always responsible of a minimum area. This approach has

a double effect though. Firstly, nodes in Spatial Query are distributed more uniformly

because of the threshold. But conversely, nodes responsible of areas very populated

56 2. BACKGROUND AND STATE OF THE ART

that have reached the threshold, have no way of balancing the data load with other

nodes.

2.7.2 Hierarchical Systems

Hierarchical systems are classified in this section into two topological types: tree-

based and super-peer-based systems.

Tree-based Topology Systems

We analyse two tree-based topology systems, DHR-Tree [68] and SDS [66]. Both of

them present a distributed design of already existing tree data structure.

DHR-Tree, that stands from Distributed Hilbert R-Tree, is based on P-Tree [69]

and distributes nodes through a Hilbert R-Tree. Mainly, a Hilbert R-Tree uses the

Hilbert [35] space filling curve to produce the so-called Hilbert values, and use them to

index data objects into a B+-Tree. The idea behind this distributed design is to use the

Hilbert values also as node identifiers, thus operating as data nodes in a B+-Tree, and

to use the B+-Tree as nodes’ routing table. The B+-Tree is populated with data that

nodes locally host and the B+-Tree is partially built on every node. Thus, data updates

may alter the minimum bounding rectangle a node is responsible for, and so forth on

nodes at higher levels in the B+-Tree. The time efficiency in this scenario is tight to the

order d of the R-Tree and to the search algorithm of two phases.

SDS (Spatial Data Service) does not build an SPN, but employs Chord as its un-

derlying communication network. In addition, SDS builds multiple indexes for data

objects. Thus, the focus is put on balancing the data load among nodes and struc-

turally avoiding communication between neighboring nodes for updating minimum

bounding boxes. To do so, nodes consider the whole data domain managed by a

MX-CIF Quadtree [70]. The centroids of every region in the quadtree become, after

applying a consistent hash function FO (like SHA-1), the key to route within Chord.

This way, either rectangular data objects or spatial queries are processed locally as in

the quadtree. The result of this process is the set of regions in the quadtree where the

data object should be indexed or the search be performed, respectively. The next step

is routing the corresponding messages to the keys produced by the centroids of the set

of regions. Thereafter, nodes responsible of the keys will perform the corresponding

operation.

SDS balance the data among nodes by applying two techniques. The first one is

the use of a consistent hashing function FO to the centroids. The second one is by

2.7 Supporting Spatial Queries 57

ensuring that data objects are indexed into the quadtree only under a certain level

(so-called fmin) of the tree. Thus, fmin dictates the trade-off between load balancing

and indexing storage. When spatial queries are performed, the same data index can

be retrieved several times from SDS because there is no coordination between nodes

to collect a common result set. It is easy to see that this produces a non-negligible

network overhead. SDS faces the problem of duplicate data transmissions by limiting

at owner nodes that querying nodes could download only once each requested data

object. Further requests are discarded. Even though the approach is nice, but quite

naive, the time efficiency for spatial queries is reduced to a logarithmic cost. Nev-

ertheless, the query is parallelized into several keys per query, suffering from more

network overhead.

Super-peer-based Topology Systems

This section considers two systems: Liu et al. [57] and Globase.KOM [20]. Given that

the work of Liu et al. has already discussed in prior sections, we center the study

on Globase.KOM and the comparison between them. Both systems employ a similar

model of super-peer network, where super-peers maintain an index of all the content

that their normal peers hold. Globase.KOM defines a node identifier with three sep-

arated parts: the {lat, lng} coordinates of the node’s location, the area that the node

is responsible for, and a random part to allow several peers in the same geographical

area.

A key difference between the work of Liu et al. and Globase.KOM is the num-

ber of levels in the hierarchy. While Liu et al. define a 2-layer network structure,

Globase.KOM is organized in several layers so as not to overload super-peers. When

a super-peer sp1 is overloaded, a new sub-cluster is built under sp1 and a new super-

peer sp2 is elected. The effect is that a set of normal peers that were children of sp1 are

now children of sp2, and sp2 remains as a child of sp1, thus balancing the load among

super-peers. The network construction algorithm produces a network structure of

super-peers and normal peers that resembles to that of an R-Tree. This motivates that

the response time for query results is logarithmic in the number of clusters, plus the

cost of asking to normal peers. Note that searches are performed in parallel, thus

increasing the bandwidth usage.

2.7.3 Spatial Queries: Conclusions

Spatial queries pose additional challenges to systems, like supporting rectangular data

objects, even though not all above seen solutions support them. Actually, systems are

58 2. BACKGROUND AND STATE OF THE ART

tuned up to improve their performance in the given geographical application context.

Besides, there is an evolution on the system designs from those supporting range

queries to these ones supporting spatial queries. Even though range queries and spa-

tial queries have a lot in common, hierarchical systems are significantly predominant

in the study of spatial queries while the same is not true for the study of range queries.

This is motivated because a hierarchical approach suits better than a flat one for sup-

porting spatial queries.

Another important issue addressed by Globase.KOM is that data objects and nodes

are indexed/placed in the geographical area they belong to. This is a very interesting

approach that provides at the same time data locality and consistency to the system

against system failures. This is a property that is also considered in our geographical

information service at Section 4.2. Another consequence is that while clusters organize

the information from the same geographical area, most of the queries will have a local

effect on the cluster. This contributes in a system isolated from traffic from other parts

of the network, as well as a likely greater speedup in the network communication.

2.7 Supporting Spatial Queries 59

Ta
bl

e
2.

6:
Ev

al
ua

ti
on

of
sy

st
em

s
on

sp
at

ia
lq

ue
ri

es
.

System

Topology

Dimen–
sionality

Mapping
approach

Storage
Efficiency

Time
Efficiency

Routing
Load Bal.

Data Load
Balancing

Correctness

Completeness

Intersection
(side)

Sp
at

ia
lQ

ue
ry

[6
7]

H
yp

er
cu

be
(C

A
N

[1
1]

)
2-

D
1:

1
O

(o
S
×

O
)12

O
(√

N
+

o S
×

O
)

Ye
s

N
o

Ye
s

Ye
s

Sy
st

em

Li
u

et
al

.[
57

]
Tr

ee
(S

up
er

-p
ee

rs
[5

6]
)

M
-D

N
/M

1
Ψ

(N
,|

C
|,

S)
3

N
o

N
/A

Ye
s

Ye
s

Sy
st

em

D
H

R
-T

re
e

[6
8]

Tr
ee

(P
-T

re
e

[6
9]

)
M

-D
N

/M
1

O
(l

og
d

N
+

S
×

N
)4

Ye
s

N
/A

Ye
s

Ye
s

Sy
st

em

G
lo

ba
se

.K
O

M
[2

0]
Tr

ee
(S

up
er

-p
ee

rs
)

2-
D

M
:1

1
O

(l
og
|C
|+

S
×

C
N
)5

N
o

N
/A

Ye
s

Ye
s

Sy
st

em

SD
S

[6
6]

Tr
ee

(Q
ua

dt
re

es
[7

0]
)

2-
D

M
:1

O
(o

S
×

f m
in

)16
O

(l
og

N
+

f m
ax
−

f m
in

)6
N

o
N

o
N

o
Ye

s
N

/A

1
o S

sp
ec

ifi
es

th
e

ra
ti

o
of

th
e

co
ve

re
d

da
ta

do
m

ai
n

fo
r

re
ct

an
gu

la
r

da
ta

ob
je

ct
s.

2
O

re
fe

rs
to

th
e

ap
pl

ic
at

io
n

da
ta

do
m

ai
n.

3
Th

e
co

st
de

pe
nd

s
on

th
e

nu
m

be
r

of
no

de
s

in
to

th
e

sy
st

em
N

,t
he

nu
m

be
r

of
cl

us
te

rs
|C
|a

nd
th

e
qu

er
y

se
le

ct
iv

it
y

ra
ti

o
S.

4
d

is
th

e
or

de
r

of
th

e
R

-T
re

e.
5
|C
|i

s
th

e
nu

m
be

r
of

cl
us

te
rs

,a
nd

C
N

re
fe

rs
to

th
e

nu
m

be
r

of
no

de
s

of
th

e
ta

rg
et

cl
us

te
r.

6
f m

in
is

th
e

m
in

im
um

le
ve

li
n

th
e

qu
ad

tr
ee

fr
om

w
he

re
in

se
rt

io
ns

ar
e

do
ne

.
f m

ax
is

th
e

m
ax

im
um

le
ve

lo
ft

he
qu

ad
tr

ee
.

60 2. BACKGROUND AND STATE OF THE ART

2.8 Content Distribution Techniques

In this section we explore the most remarkable techniques for the content distribution

in a distributed system. In particular, we analyse application-level multicast and pub-

lish/subscribe services in the large scale. Briefly speaking, there have been several

attempts to provide multicast services at IP-level at the Internet scale. For instance,

HDVMRP [71], HIP [72] or GMRP [73] are cases of scalable, hierarchical systems pro-

portioning such functionality. Since they seek efficient, non-intrusive IP-level multi-

cast services, these systems consider several levels in the hierarchy (e.g., GMRP [73]),

so that each level is self-organized in the same fashion than Autonomous Systems

do at Internet scale. For efficient communication, systems construct tree-like network

structures, given that they fulfill naturally with the one-to-many communication model

of the publish/subscribe paradigm. Despite all efforts, IP-level multicast is not ubiq-

uitously deployed. This motivated that some systems (like [74]) try to complement

the existing islands where IP-level multicast services are available, spreading over

the gaps application-level multicast services, or just deploying new peer-to-peer pub-

lish/subscribe and application-level multicast services, regardless the underlying net-

work.

Actually, IP-level multicast services are out of scope of our analysis. Our particular

focus is put on peer-to-peer application-level multicast and publish/subscribe services. To

do so, we motivate the necessity of such services by an example application in the

following section. Afterwards, in Section 2.8.2 we introduce a general design for an

application providing publish/subscribe services. We then introduce the definition of

the types of publish/subscribe techniques in Section 2.8.3.

In Section 2.9 we introduce the parallel computing abilities of the publish/subscribe

algorithms. We then elaborate on the parameters that we include in the evaluation

framework for the publish/subscribe techniques in Section 2.10. We continue with the

comparison study of systems (in Section 2.11) following either the topic-based model

(Section 2.11.1), or the content-based model (Section 2.11.2).

2.8.1 Use Case: Publish/Subscribe Application

To let the reader understand the necessity and complexity of providing publish/sub-

scribe services over distributed systems based on SPNs, we explain two applications

where such a functionality is required, among scalability by service decentralization

and high performance by operation parallelization. Internet has become a tool for

2.8 Content Distribution Techniques 61

user collaboration and distribution of information, where such richer functionalities

are demanded.

The application we consider is the dissemination of pieces of information, like news

or interesting messages, for a large number of participants. The goal of this applica-

tion is that (from several to thousands of) nodes should be able to send news (namely

events) to all the system participants in an efficient and scalable way, which have reg-

istered their interest in that kind of news. This exemplifies a many-to-many communi-

cation pattern. That is, all participating nodes record their interest in the subject or

topic (or in the content) of the disseminated news. Since IP multicast is not ubiqui-

tously deployed across heterogeneous networks, like Internet, application-level multi-

cast and publish/subscribe systems are used instead. Topic-based publish/subscribe or

application-level multicast systems (namely TOPS systems) overcome the problem of

subscribing users’ interests to a certain kind of news, to wit topic, (like “sports” or “jazz

music”). Likewise, content-based publish/subscribe systems (namely COPS systems)

allow users to receive only those news that fulfill some rules imposed on their content

(like {TOPIC=“sports” AND (CONTENT has “Fernando Alonso” OR CONTENT has

“F.C. Barcelona”)}).

In particular, a subscription can be seen as a static range query, that continuously

filters the received events into two classes (See Fig. 2.7). The useful events fall down

into the subscribed area (shadowed area in the figure). Conversely, useless events fall

apart from the user interests and are discarded.

This kind of applications presents some common elements like in the case of sim-

ilarity queries. In both TOPS and COPS techniques, the (distributed) application ne-

cessitates some algorithms to disseminate new events through the nodes that are in-

terested in them. In order to decide whether an event must be communicated to a

certain participating node, these applications determine a matching rule. Whether the

matching rule is accomplished, the event is notified to the given node. But the matching

rule differs when either a TOPS or COPS technique is considered. In TOPS model,

the matching rule is whether an event refers to a certain topic (see Fig. 2.7a). Instead,

in COPS model, the matching rule analyses whether the conditions imposed on the

content of potential events are fulfilled (see Fig. 2.7b). Broadly speaking, COPS appli-

cations consider a multi-dimensional data space, where subscriptions specify ranges of

interest (i.e., the conditions) and events are datums within the given data space.

62 2. BACKGROUND AND STATE OF THE ART

Subscription

Domain values

Updates

Y

X

Topic

(a) Topic-based subscription example.

0

13

0 17

(5,5)

(11,11)

Subscription

Domain values

Y

X

Updates Topic

(b) Content-based subscription example.

Figure 2.7: Examples of subscriptions in a 2-D scenario. In both cases, the shadowed area
represents the covered area for the given subscription. In (a), in the topic-based model,
any event of the given topic is useful for the application. Instead, in (b), the content-
based model allows applications to filter out the events according to its content. The
subscription s = {[5..11], [5..11]} will select only the events that match the shadowed
area. The other ones will be useless for the application and, thus, they will be discarded.

2.8.2 System Design: An Overview

After having introduced an example of publish/subscribe system, we turn into the

description of a general design of such kind of systems. We depict the generic de-

sign in Fig. 2.8. The whole system is organized by several or thousands of instances

(or nodes), each of which is constituted by two layers: Node and Application. Each

layer has its own functionality. The Node layer is responsible of routing, whenever

necessary, new events towards other nodes that potentially are interested in them.

Moreover, subscriptions (or alternatively advertisements) can be routed to some other

node(s) in order to provide a more efficient organization of nodes within the network.

Briefly speaking, in some solutions nodes uses advertisements to notify the system the

kind of events that they will produce thereafter. The Subscription Manager entity is re-

sponsible of deciding whether to forward events, subscriptions and advertisements,

or to store subscriptions and advertisements, or notify new events, into the Applica-

tion layer. The Data Indexing store could be used to quicken these decisions, such as

calculating if the node is responsible for a given message, by avoiding to access to

the Application layer. When forwarding is necessary, the node employs the conve-

nient Routing Algorithms and selects some node(s) from the set of Neighbors where the

message (i.e., event, subscription or advertisement) should be forwarded to.

2.8 Content Distribution Techniques 63

Application

Un/Subscribe Notify

Distance
Function

Mapping Technique

Node

Neighbours

Routing
Algori thms

Network
Communicat ionSubscription

Manager

Subscription
Store

Data Indexing

Figure 2.8: Generic layered design, common components and information flow of dis-
tributed publish/subscribe systems.

The Application layer addresses the local management of events and subscriptions

instead. It stores the subscriptions for a later matching against events and, conse-

quently, to start the notification process. When applicable, it also manages advertise-

ments. The distance function helps on filtering out events and forwarding accordingly

incoming messages, such as subscriptions targeting other nodes from the system. The

Mapping technique is used in some solutions to adapt subscriptions and events (resp.

advertisements) to the SPN keyspace, so that these messages can be effectively routed

and managed by the network. The module Un/Subscribe updates the local subscription

store with new subscriptions (resp. removing them when subscriptions are cancelled

or when their leases are over). The counterpart module Notify carries out the matching

process of incoming events against the local store of subscriptions. The result of this

process is usually a list of nodes which should be notified to. To do so, the node uses

the corresponding Routing Algorithm for distributed event notification. This module

also notifies the local application when events lies on its interest.

64 2. BACKGROUND AND STATE OF THE ART

2.8.3 Publish/Subscribe Services: Definitions

Publish/subscribe systems are powerful mechanisms for information dissemination

in a distributed setting. These systems are characterized by two main actors. Publishers

are those actors who produce information. Usually, the literature denotes such pieces

of information as events. Additionally, subscribers are those actors that are interested

in receiving significant events. They employ subscriptions to define their particular in-

terests, expressing conditions on the content of events (content-based model) or just on

a category they belong to (topic-based model). In some cases, publishers inform the sys-

tem of the kind of events they will publish. To do so, publishers use advertisements. Let

us now present the matching rule definition, as well as the kind of publish/subscribe

systems.

Definition 2.7 (Matching rule) Let E and S be the set of events and subscriptions, respec-
tively. Let B be the set {true, f alse}. The function M : E× S→ B express whether an event
matches a subscription.

Given this matching rule definition, we provide the following statement for a gen-

eral publish/subscribe service:

Definition 2.8 (Publish/subscribe service) A publish/subscribe service is such that any
event E from a publisher p is delivered to any subscriber s with subscription S, such that
M(E, S) succeeds.

This definition states a many-to-many communication pattern, where useful events

must be delivered to interested subscribers, no matter which are the publishers and

subscribers nodes. Therefore, nodes must collaborate in order to disseminate events

to interested subscribers. To do so, nodes are organized in such a way that the event

distribution becomes efficient in the large scale. Nevertheless, the model of the pub-

lish/subscribe system poses different challenges in the way the network organization

is addressed. Let us introduce how events and subscriptions match in either model.

Definition 2.9 (Topic-based matching rule) Let topic(∆) denote the topic (i.e., category)
that ∆ belongs to. The matching rule in a TOPS system is as follows:

MTOPS(E, S) =

true topic(E) = topic(S)

f alse otherwise.

In the literature, the topic-based model is also referred to as application-level multi-

cast (because it allows multicasting events to different target nodes) or also as channel-

based model (since every topic virtually constitutes a channel where information flows).

2.8 Content Distribution Techniques 65

Provided the above definition, it is easy to see that any node that is interested in the

topic will receive its events, regardless the content of the events (as it can be seen

from Fig. 2.7a). That is, in TOPS systems, subscriptions and events take the form

S = {topic} and E = {topic, content}, respectively. The same is not true for COPS

systems though: In the content-based model, the event’s content matters.

Broadly speaking, one can see the data space for COPS systems as a multi-dimensional

data space O = {V1, V2, . . . , Vm}, with |O| = m dimensions, where Vi is the data do-

main for the i-th dimension, i = 1, . . . , m. Thus, an event E is a point into O. Namely,

E = {topic, {E1, . . . , Em}}, having E ∈ O and Ei ∈ Vi, i = 1, . . . , m, where Ei is the

event’s content for the i-th dimension. Conversely, a subscription is a more complex

data structure that specifies filter rules into one or more dimensions from the data

space, with the form S = {topic, {S1, . . . , Sk}}, k ≤ m, where Si denotes a filter rule for

the i-th dimension, selecting one or more values from data domain Vi. The following

function introduces the percolation process for any individual filter rule applied to the

event’s content.

Definition 2.10 (Percolation function) Let R be the set of filters for a data domain V. The
function ρ : V×R→ B tells whether a given value v ∈ V passes the filter r ∈ R.

Once we have the percolation function, we have the necessary tools to introduce

the matching rule for the content-based model. The idea behind this model is that all

filtering rules should be passed by a given event in order to notify it to the correspond-

ing subscriber.

Definition 2.11 (Content-based matching rule) The matching rule in a COPS system is
defined as follows:

MCOPS(E, S) =

true topic(E) = topic(S) ∧ k ≤ m, 1 ≤ i ≤ k : ∀i|ρ(Ei, Si) = true

f alse otherwise.

The above matching definition for the content-based model states that a more com-

plex solution is necessary to deal with a COPS service. The reason is clear, since the

same event E may not be of interest to all subscribers who matter the targeted topic,

for instance.

The existing gap from subscripting and receiving notifications of related events

is addressed in different ways in the distributed field. Namely, a publish/subscribe

system necessitates a mechanism to meet an event with subscriptions, so that all inter-

ested nodes are notified with the new information. Covering [75], epidemic-based [22,

76], summarization [77, 78], source-based [79] and rendezvous [21, 80, 81, 82, 83] are

66 2. BACKGROUND AND STATE OF THE ART

the common techniques used in peer-to-peer systems, each of which determines the

necessary kind of node organization in order to work properly. Nevertheless, the most

deployed technique in SPNs is the rendezvous model. The reason behind that is be-

cause the multi-hop routing abstraction implemented by SPNs integrates naturally

with the need for globally unique rendezvous points (i.e., nodes). To this end, events

and subscriptions are adapted to the SPN keyspace, so that they can be processed by

the SPN routing algorithms. To illustrate how, let us introduce the adaptation func-

tion of this kind of complex information. For the sake of clarity, let us refer events and

subscriptions as complex objects.

Definition 2.12 (Complex object adaptation) The function FCO : O → 2I′ , where I′ =
I \∅, adapts a complex object from the data space O to a set of keys.

Notice that the result of FCO will produce a set with at least one key k ∈ I (i.e.,

the empty set ∅ is removed at I′). This function explain in a generic way how events

and subscriptions are adapted to the SPN keyspace. For instance, FCO for a given

event E constructs the set of keys ksE where the event must be sent to (to wit ksE =

FCO(E)). Conversely, ksS = FCO(S) does the same for a subscription S. This way,

the rendezvous nodes are naturally selected to be the responsible ones of the keys in

ksE and ksS, and they will react as it was designed in the COPS system (e.g., storing

the subscription S, or matching the event E against the locally stored subscriptions, in

order to draw the nodes to notify to).

2.9 Parallel Computing on Publish/Subscribe Services

The aim of these systems is to deliver (i.e., in a push-based approach) all events from

publishers to corresponding subscribers. To do so, some of the existing publish/

subscribe systems build a specific publish/subscribe peer-to-peer overlay [22, 76, 77,

84], also called event brokering networks. Nevertheless, we focus on those solutions that

leverage SPNs [7, 8, 9, 11], like Scribe [21], Bayeoux [79] or PastryStrings [83]. The

idea behind that is to construct a descentralized service, deployable at the large scale,

and benefiting from operation parallelization, since all participating nodes collaborate

in the dissemination tasks. We ellaborate on the system properties that matter for the

process parallelization in Section 2.10.3.

Regardless of the topic- or content-based model, they employ different subscrip-

tion mechanisms in order to meet events and the corresponding subscribers. This

contributes that nodes cooperating in the distributed publish/subscribe system have

2.9 Parallel Computing on Publish/Subscribe Services 67

guarantees for publishing and subscribing at any time and concurrently. In particular, as

we have stated before, the rendezvous model is the most deployed into SPNs, since it is

naturally supported by SPNs. In addition, in some cases like [78, 85], systems employ

advertisements from publishers in order to meet both subscriptions and events. In

some other cases [85, 86], the rendezvous model helps on meeting subscriptions and

advertisements.

Since the service distribution is clearly stated by deploying it upon a peer-to-

peer system, we delve into the parallelization of dissemination tasks in the following

section. We detail some generic algorithms used to disseminate events among sub-

scribers. Actually, this is the key component on publish/subscribe systems, since an

efficient event distribution is expected and can be highly parallelized. Conversely,

we do not focus on the subscription task, because it is performed by a singular node

and takes little effect on the system. Nevertheless, existing solutions determine a spe-

cific subscription mechanism, so that further subscriptions do not shrink the event

dissemination performance. Thus, the reader should expect very odd subscriptions

techniques, but with a common goal, an efficient event publication.

2.9.1 Parallelizing Event Dissemination

For the sake of simplicity, let us consider that both publishers and subscribers par-

ticipate in the network, so that all the communication is performed within the peer-

to-peer system. Algorithm 2.4 depicts a default process for the event dissemination.

Since the role of publisher and subscriber may not coincide at each node, the algo-

rithm necessitates to check whether the visited node is subscriber for the event’s topic

(lines 2-4). Afterwards, the given node must forward the new event to other neighbors

(lines 5-8), except to that where the event was received from (line 5).

One could think that this dissemination algorithm never ends. An assumption

is taken here: Nodes are organized in such a way that no loops appear when dis-

tributing the topic’s events. That is, the publish/subscribe overlay constitutes a graph

G(V, E) with no cycles, where V is the set of nodes and E the set of edges to each

other. Some systems develop a new overlay network over an existing SPN (such as

Scribe [21]) or some other send events to one or more rendezvous nodes (like in [82]).

This means that, either explicitly (by the constructed publish/subscribe overlay net-

work) or implicitly (by the event dissemination algorithm), the existing SPN-based

solutions develop a communication tree to address the problem of an efficient one-to-

many communication pattern.

68 2. BACKGROUND AND STATE OF THE ART

Algorithm 2.4 noti f y
Input: node /* node where algorithm is executed */
Input: sender /* node who forwards the event */
Input: E /* event to disseminate */

1: Snode ← subscription of node
2: if M(E, Snode)a then
3: local noti f y(node, E)
4: end if
5: to visit← neighbors(node, E) \ {sender}
6: for all neigh ∈ to visit do /* in parallel */
7: noti f y(neigh, node, E)
8: end for

aThe matching rule M becomes MTOPS for TOPS systems or MCOPS for COPS systems.

Moreover, if we consider explicitly the rendezvous model, we obtain a two-phase

problem solver algorithm, as shown in Alg. 2.5. Along the first phase, the event is

forwarded against its rendezvous point (lines 1-8), the node which will be the respon-

sible to match it with existing subscriptions. Once the rendezvous node is reached, the

second phase starts (lines 9-11), which invokes the aforementioned noti f y algorithm

(Alg. 2.4).

Algorithm 2.5 publish in rendezvous model
Input: node /* node where algorithm is executed */
Input: sender /* node who forwards the event */
Input: E /* event to disseminate */
Input: k /* key in I from E’s adaptation; default to ∅ */

1: if k = ∅ then /* Starts routing phase */
2: for all key ∈ FCO(E) do /* in parallel */
3: neigh← best neighbor(node, key)
4: publish(neigh, node, E, key)
5: end for
6: else if node is not responsible for k then /* Routing phase */
7: neigh← best neighbor(node, k)
8: publish(neigh, node, E, k)
9: else /* Starts the notification phase */

10: noti f y(node, node, E)
11: end if

Notice that Algorithm 2.5 reflects two different stages on the routing phase along

2.10 Evaluation Criteria for Publish/Subscribe Services 69

the publication process. The first stage (lines 1-5) is addressed by the first node (i.e.,

the publisher) starting the procedure. The specific adaptation technique (FCO at line 2)

produces one or more keys which the event is directed to (lines 3-4). The second stage

(lines 6-9) is performed at intermediate nodes, whose goal is to forward the event

until the k’s responsible node is reached (i.e., the rendezvous node).

2.10 Evaluation Criteria for Publish/Subscribe Services

The systems target of this study provide publish/subscribe services either in the topic-

based or content-based model. As we presented for the systems providing similarity

queries in Section 2.4, the current systems are analysed accordant with a set of qual-

itative and quantitative parameters, constituting a common evaluation framework. We

characterize each parameter in Table 2.7. Even though some of them are the same

than in the previous study, we replicate them here for the sake of reader’s simplic-

ity. By using this framework, we construct firstly the systems’ portrayal, describing

the key components and parameters from the solutions, what facilitates a fair com-

parison among systems. The parameters can be considered broadly of two types: (i)

implementation parameters, that refer to the system design and construction, and (ii)

quality of service parameters, that consider the quality of the solution on subscrip-

tion management and event dissemination. The parameters’ definition is stated in

the following sections. An analysis of parallel computing abilities according to these

properties is also included.

2.10.1 Implementation Criteria

To decide which parameters reckon into the evaluation framework, let us consider our

application example of news dissemination. As we have seen in the Section 2.9 Par-

allel Computing on Publish/Subscribe Services, the portrayed algorithms have a key

routing component. Thus, the node organization, to wit the topology, have an im-

portant effect on the performance of the dissemination algorithm. Indeed, it also will

dictate where the information will be managed for global efficiency. This motivates

the inclusion of the topology into the evaluation framework.

As seen in the data management evaluation criteria (Section 2.4), we also consider

the dimensionality and the mapping approach. The dimensionality defines the num-

ber of attributes (or dimensions) that the application data domain consists of. Con-

versely, the mapping approach adapts the application data space to the SPN keyspace

to work properly. Even though these properties matter obviously for content-based

70 2. BACKGROUND AND STATE OF THE ART

approaches, topic-based solutions do not consider the content of events and subscrip-

tions. Therefore, the dimensionality and mapping approach will receive almost no

attention.

Table 2.7: Characterization of the evaluation criteria for publish/subscribe systems.

Criteria Characterization

Mapping properties
Topology The topology defines a graph G(V, E), where vertexes V are

nodes, and edges E the links established between nodes. In ad-
dition, only edges E are used for node inter-communication in
normal peer-to-peer operations. The topology can be broadly
specified as structured, when the topology relies on any ge-
ometric form (e.g., ring, hypercube, tree), and unstructured,
when nodes are connected in a non predefined fashion (e.g.,
a mesh).

Dimensionality Systems that provide this kind of high-level services in a
distributed way can support either one-dimensional (1-D) or
multi-dimensional (M-D) application domains. When possi-
ble, systems will be analysed for both sorts of dimensionalities.

Mapping approach Because in most cases application domains do not correspond
to SPN keyspaces, the distributed application needs to adapt
the information in order to allow its indexation by the SPN.
This kind of data transformation is called also mapping and de-
fines exactly the way the transformation is achieved. We can
find these sorts of transformation:
1:1 (Left) One application dimension is mapped to a single

SPN keyspace (right).

M:1 The whole multi-dimensional application domain is
mapped to a value in the SPN keyspace.

M:P The whole multi-dimensional application domain is
transformed to a P-dimensional SPN keyspace.

N/M When no mapping is applied.

Continued on next page

2.10 Evaluation Criteria for Publish/Subscribe Services 71

Table 2.7 – Continued

Criteria Characterization

Subscription and notification properties
Storage efficiency In a distributed or parallel system, the amount of storage used

to record information is significant to reduce notably the re-
sponse time. In general, the more copies of the same infor-
mation, the less delay on answers. As events are ephemeral
information, we use this property to quantify the overhead that
different algorithms pose on subscription storage.

Time efficiency Under this property we measure the amount of time needed
by both the distributed algorithm to perform a subscription, as
well as the dissemination process. This property accounts the
amount of time the algorithm takes for visiting the last node
involved in the procedure, either for a subscription storage or
event notification.

Load balancing When operating in a distributed or parallel system, it is con-
venient that all nodes have (approximately) the same amount
of load. The term load balancing here means both data and rout-
ing load balancing: the former property tells whether all nodes
(approximately) manage the same amount of information (i.e.,
subscriptions); the latter depicts that the system is able to route
throughout the set of nodes without hotspots, especially along
the event dissemination process.

Noise This property accounts a complementary measure to the load
balancing for the critical process of event dissemination. The
goal is the quantify the overhead put on the system, as the num-
ber of visited nodes apart from those strictly necessary. Actu-
ally, the best case for a dissemination process for an event E is
just visiting the nodes interested in E (where the system incurs
no noise).

2.10.2 Quality of Service Criteria

The goal of a publish/subscribe system is the efficient dissemination of events. To do

so, systems deploy a specific subscription management which dramatically determines

their efficiency. This way, from a system’s viewpoint, events are ephemeral data that

are not stored, but just distributed. However, publish/subscribe systems must deal

with subscriptions from nodes, storing them somewhere in the system for global effi-

ciency. Even though that a single copy of the subscriptions stored in the system would

suffice, the truth is that both the SPN network structure and the application data do-

main can pose an obstacle, so that more complex solutions are demanded. This clearly

72 2. BACKGROUND AND STATE OF THE ART

motivates the introduction of the storage efficiency into the evaluation framework.

The stress put in this property also affects the capacity of nodes, and thus the scala-

bility of the solution. We consider under this property neither replication nor caching

techniques in this study. Actually, they are applied to a wide variety of distributed

systems, what includes the systems analysed in this study.

Another important issue on the publish/subscribe services is the completion time of

all the tasks. Publish/subscribe systems deal with subscriptions and events. Firstly,

whether the subscription S is stored locally at subscriber p or it is stored in some other

node q different from p, will reflect on the completion time for the subscription pro-

cess. As we have depicted before, the idea behind the subscription storage and man-

agement is to provide an efficient event dissemination. Secondly, event distribution is

the key component of publish/subscribe systems and, therefore, the time required to

notify all interested nodes is crucial. Factors like the SPN structure or the subscription

management policy settle the completion time of the event dissemination. We sum-

marize all this into the subscription and event time efficiency properties. To do so,

we measure the number of nodes necessary to visit to conclude either operation.

Inasmuch as all nodes cooperate in some degree to provide the publish/subscribe

services, we also need to evaluate the fairness in their cooperation. We center our fo-

cus on the two most critical factors: storage and process. The former complements

the above storage efficiency property, since it considers the efficiency from a system’s

viewpoint. Instead, we here consider the fairness in storage among individual nodes

in the system. For instance, the subscription storage could be not consistent among all

nodes. The latter serves as a complement to the time efficiency. Time efficiency consid-

ers the completion time from a system’s viewpoint, while we here consider the time

dedicated by any individual node to the completion of tasks. For example, in some

cases the participation in the message passing along the routing algorithms could be

unequal, overloading some nodes. We then summarize all this factors under the terms

data and routing load balancing, with which existing inefficiencies come to light.

The last property we consider in the evaluation framework is the overhead, namely

noise, in the event dissemination process. In particular, since events have to be deliv-

ered to all interested subscribers, the network structure could necessitate not only the

targeted subscribers, but also some additional (routing) nodes to forward events to

destination nodes. We summarize under the noise property the number of routing

nodes visited by the dissemination algorithm.

2.10 Evaluation Criteria for Publish/Subscribe Services 73

2.10.3 Parallel Computing Evaluation

The reader can realise that most of the statements produced in the parallel computing

evaluation for similarity queries (Section 2.4.3) can be also applicable in this scenario.

In the following we detail the most important parameters that influences in the par-

allel computing on publish/subscribe systems. In particular, we focus on the event

dissemination parallelization, since it is the process that carries most of the process

load.

The consequence of the parallelization of the event dissemination in a distributed

setting is twofold: the completion time is shorter, and the usage of system resources

increases. In particular, given that SPNs perform node inter-communication by mes-

sage passing, the bandwidth usage increases between all participating nodes, as well

as the usage of nodes’ resources (e.g., computing cycles and main memory). Given

that SPNs provide an inherent way of parallelizing tasks, we provide in this section

an analysis on the parameters from the evaluation framework, which determine the

feasibility and efficiency of the parallel computing. Parameters appear detailed in or-

der of significance.

The most important factor is the system’s topology. The way that nodes are orga-

nized dictates if operations can be performed in parallel and how. For instance, we

have depicted an algorithm to distribute events that is fully parallelizable (see Algo-

rithms 2.4 and 2.5). Actually, the idea behind that is to disseminate events timely in the

large scale, using a one-to-may communication model. As this hints, a tree-like com-

munication pattern is mostly followed to help fostering a shorter completion time of

the event distribution. This way, an inherent goal in all the publish/subscribe designs

is to constitute a solution as much parallelizable as possible.

Nevertheless, not all systems develop the same kind of algorithms to (firstly) man-

age subscriptions, so that (secondly) the distribution of events becomes rapid and re-

source efficient. In fact, algorithms decide greatly the quality of the overall solution,

as well as their scalability. In addition, the amount of subscription storage also in-

fluences the possibility to scale. For instance, let us suppose a fixed number of nodes

N: the more subscription storage necessary is, the busier the nodes, so that the system

can manage globally less subscriptions and, thus, poses a hindrance to scalability.

Another important issue to successfully parallelize an algorithm is the load bal-

ancing property. That is, preventing that some nodes become overloaded (i.e., hot

spots), the system benefits for wider possibilities to effectively parallelize tasks. For

instance, if a node p should store a great amount of subscriptions, p will be overloaded

by the amount of managed subscriptions and by the reception of events. The former

74 2. BACKGROUND AND STATE OF THE ART

provokes a data load unbalancing, given that the data management is not fair among

nodes. The latter, also in consequence to the first point, makes p to turn a routing hot

spot, because it must receive a greater amount of events and start the corresponding

notification processes.

The last properties we consider are the time efficiency and the noise. Since the

communication between nodes is conducted by message passing, there are two el-

ements that also decides the parallelization performance. Firstly, the delay for node

inter-communication is important to shorten the completion time. In addition, the

less participating nodes, the faster the operation is concluded. This way, whether the

given solution includes some helper nodes (i.e., noise) for the event dissemination, it

also contributes on parallelization and shortening the completion time.

In conclusion, there are lots of variables that influences the quality of the publish/

subscribe service as well as the possibility to scale by parallelization. Thus, the reader

should expect to read about systems with widely different solutions.

2.10.4 Evaluation Criteria: Tuning and Terminology

All parameters introduced before are considered within the evaluation framework for

all systems. Actually, publish/subscribe systems considered into this chapter were

designed so that, given an application context, they provide a trade-off between all

these parameters. For instance, a publish/subscribe service could incur in noise in

order to provide higher possibilities to parallelize the event dissemination, as well

as for balance the routing load among nodes. For the sake of reader’s simplicity, we

show in this section the whole set of parameters, even though most of them are the

same than in the case of similarity queries.

Table 2.8: Tuning of the evaluation criteria for publish/subscribe systems.

Evaluation criteria Tuning1

Topology Descriptive name
Dimensionality 1-D |M-D
Mapping approach 1:1 | N:1 |M:P | N/M
Storage efficiency 1

Num. data copies

Time efficiency 1
Num. overlay hops

Load balancing Yes | No
Noise Yes | No

1 The term N/A can appear elsewhere when the tuning is not applicable for a given system.

2.10 Evaluation Criteria for Publish/Subscribe Services 75

Table 2.8 shows the common measurements used along the analysis of systems

providing publish/subscribe services, in order to value the considered systems. Given

that in both storage and time efficiency measurements, 1 is the best case, the denomina-

tor is only shown on the comparison tables. For storage efficiency we refer to the

number of subscription’s copies are necessary to install to receive all events that mat-

ter to the given subscriptions (i.e., M(E, S) succeeds, where E is the event and S the

subscription). Conversely, under the time efficiency we account the number of over-

lay hops last either the subscription process or the event distribution, to reach the last

participating node. In addition, notice that in the case of the noise, we only determine

whether a system suffers from it. The reason behind that is because it is difficult to

calculate and, indeed, systems usually does not measure this property, but focus on

their efficiency and short completion times. Instead, we elaborate on the risen noise in

our module providing publish/subscribe services (see Chapter 5).

In addition, before starting with the system evaluations, let us detail the common

terminology we will use in the following. As happened with the evaluation of sys-

tems providing similarity queries, every work uses its own nomenclature, but for the

reader’s clarity, we unify them as much as possible to a common and simpler nam-

ing. The reader can find it in Table 2.9. Here, the selectivity ratio expression refers to

the ratio of the data space O that the subscription is selecting from. Notice that this

only affects to COPS systems, since TOPS solutions inherently have a 100% selectivity

ratio for events from a particular topic T. For example, let us suppose an arbitrary

subscription S with a selectivity ratio of 50% on the application data space O or on the

i-th attribute data domain V. This means that S draws events living on a half of the

application data space O or the attribute data domain V, respectively. In the follow-

ing sections, we delve into the comparison of different publish/subscribe distributed

systems.

Table 2.9: Common terminology along the evaluation of publish/subscribe systems.

Term Description

N Number of nodes within the network
NT Number of nodes participating in the topic T
M Number of attributes of the application data space
MD Number of attributes included in the complex object
S Total subscription’s selectivity ratio
Si Selectivity ratio of the i-th attribute

76 2. BACKGROUND AND STATE OF THE ART

2.11 Supporting Publish/Subscribe Services

In this section we turn into the evaluation of systems providing publish/subscribe

services. At a first glance, one could suppose that most of the system would employ a

hierarchical network structure, since it naturally deals with multiplicity of paths which

would foster the parallelization of event dissemination. Surprisingly, it is worth not-

ing that the vast majority of systems supporting this kind of service leverage a flat

network structure. The reason behind that is because hierarchical systems are usu-

ally weaker than a mesh or flat network structure when guaranteeing optimal perfor-

mance in front of network changes (e.g., a node or a link fails). Actually, there are

very few examples that use a hierarchical architecture (like [22]). Broadly speaking, as

we will see in the following, the one-to-many communication model is implemented

by either (i) the construction of a new overlay network (which may overlap totally or

partially a SPN), or (ii) a specific overlay routing algorithm, leveraging the underlying

networked system properties.

There is a lot of work done in the field of publish/subscribe services, also in the

peer-to-peer paradigm. Nevertheless, for the sake of conciseness, we only consider

the most noteworthy systems under evaluation. We go on the current analysis by

introducing the comparison of the most remarkable peer-to-peer TOPS systems in the

following section, and the peer-to-peer COPS systems in Section 2.11.2. Note that all

systems appear at the end of each section in a table, ordered by the year of publication,

in order to reflect somehow the evolution on the present field.

2.11.1 Topic-based Publish/Subscribe Services

We consider into the analysis the following TOPS systems: CAN Multicast [87], Bayeux [79],

Scribe [21] and Tera [88]. To help in this analysis, the reader can find in Table 2.10 a

summary with all the properties considered in the evaluation framework.

First of all, notice that since here we analyse TOPS systems, the data space di-

mensionality does not matter (see Definition 2.9 for the event matching rule in TOPS

systems). Apart from it, a common characteristic of all included systems is that they

develop a new overlay network where to manage the publish/subscribe service. In

particular, except in Tera, all these new overlays are built atop of an already existing

SPN. Tera, instead, builds a randomized graph (i.e., a mesh) based on Cyclon [89].

Even though we focus on SPNs, we decided to consider Tera under analysis for its

similar performance to existing SPN-based TOPS systems. To further analyse these

2.11 Supporting Publish/Subscribe Services 77

systems, we delve into the two main tasks addressed by a publish/subscribe service:

subscription management and event dissemination.

The subscription mechanism employed by all these systems is very similar. Sub-

scriber nodes pack the subscription into a message and send it to some neighbor.

Actually, these systems reckon subscription messages as the tool to join the publish/

subscribe overlay which manages the target topic. This way, a node is involved in sev-

eral overlays. The underlying peer-to-peer network (namely global network) is used

as a directory service, that helps to find and join the specific publish/subscribe over-

lay. This comes validated by the subscription time efficiency shown at Table 2.10,

since it always considers N, the total number of nodes in the system. Complemen-

tary, a node participates also in as many publish/subscribe overlays as topics it is

interested in. In particular, CAN Multicast and Tera builds sub-overlays of the same

kind than the global network (CAN [11] and Cyclon [89], respectively), with only in-

terested subscribers participating in (i.e., there is no noise). Conversely, Bayeux and

Scribe build publish/subscribe tree-like overlays, over ring-based SPNs (Tapestry [9]

and Pastry [8], respectively). To do so, they require that some intermediate nodes to

collaborate in the process of the tree construction.

Additionally, it is easy to observe that this subscription approach suffers from high

signaling traffic (e.g., for node or link failures), since not only must the global net-

work self-adjust its network connections, but also potentially will the rest of publish/

subscribe overlays. Finally, notice that we have accounted the storage cost for any

subscription as unitary, considering the fact of joining the publish/subscribe overlay

as a whole.

The above subscription technique aim at boosting the performance of the event

dissemination process. And here is where we will see the major set of differences.

Bayeux and Scribe reproduce the two-phase algorithm described at Section 2.9.1, com-

posed firstly by the publish Algorithm 2.5 and afterwards the notify Algorithm 2.4.

The reason behind that is because the event has to pass through the tree-like pub-

lish/subscribe overlay, from parent to children nodes. Consequently, the event (i)

must reach the rendezvous node (namely root) for the given topic (i.e., executing the

Alg. 2.5), where (ii) the notification to all interested nodes starts (i.e., running the

Alg. 2.4) by distributing the event from the root to all its children, and every child

to its children, and continuing similarly thereafter. It is clear than this scheme suf-

fers from routing load unbalancing, given that all events have to traverse the root

node of the publish/subscribe overlay. Instead, CAN Multicast and Tera only ap-

plies the notify Algorithm 2.4 to disseminate the event from the very beginning. This

78 2. BACKGROUND AND STATE OF THE ART

comes motivated because these systems utilize efficient routing-based or gossip-based

algorithms, respectively, to broadcast events throughout the corresponding publish/

subscribe overlays. This approach is beneficial provided that it does not imposes rout-

ing hot spots.

It is worthy to see an additional system, the work of Jia Weijia et al. [90], even

though it is not included in the table due to its similarity with CAN Multicast. The

solution is a bit more sophisticated than the CAN Multicast. The key incentive is to

reduce (from the system’s viewpoint) the total completion time for the event distri-

bution, considering network latencies. To do so, [90] combines a tree-based publish/

subscribe overlay within the CAN network. More specifically, [90] builds a logical

hierarchy of CAN areas, where an area’s node is selected as the representative one.

Representative nodes are drawn in a way so that all they constitute virtually a hierar-

chy of nodes with minimal latencies among them. When disseminating the event, [90]

applies the two-phase process where (i) the event is forwarded to next representative

nodes, and (ii) each representative node notifies the event to all nodes in its area, as

well as to next representative nodes. In consequence, this solution takes the best from

both approaches: (i) it benefits from a lower-latency communication model because of

the tree-like network structure, and (ii) without suffering from routing hot spots.

2.11 Supporting Publish/Subscribe Services 79

Ta
bl

e
2.

10
:E

va
lu

at
io

n
of

to
pi

c-
ba

se
d

pu
bl

is
h/

su
bs

cr
ib

e
sy

st
em

s.

System

Topology

Dimen–
sionality

Mapping
approach

Storage
Efficiency

Subs. Time
Efficiency

Event Time
Efficiency

Routing
Load Bal.

Data Load
Balancing

Noise

C
A

N
M

ul
ti

ca
st

[8
7]

To
ru

s
(C

A
N

[1
1]

)
N

/A
N

/M
1

O
(P

P√
N

)
O

(P
P√

N
T
)

Ye
s

Ye
s

N
o

Ba
ye

ux
[7

9]
Tr

ee
(T

ap
es

tr
y

[9
])

N
/A

N
/M

1
O

(l
og

N
)

O
(l

og
N

T
)

N
o

Ye
s

Ye
s

Sc
ri

be
[2

1]
Tr

ee
(P

as
tr

y
[8

])
N

/A
N

/M
1

O
(l

og
N

)
O

(l
og

N
T
)

N
o

Ye
s

Ye
s

Te
ra

[8
8]

R
an

do
m

gr
ap

h
(C

yc
lo

n
[8

9]
)

N
/A

N
/M

1
O

(l
og

N
)

O
(l

og
N

T
)

Ye
s

Ye
s

N
o

1
P

is
th

e
nu

m
be

r
of

di
m

en
si

on
s

on
th

e
C

A
N

sy
st

em
.

80 2. BACKGROUND AND STATE OF THE ART

2.11.2 Content-based Publish/Subscribe Services

In this section we analyse the following COPS systems. Hermes [91], Meghdoot [81],

CBOVER [80], CBP2P [82] and PastryStrings [83] leverage SPNs, whilst Sub-2-Sub [76]

and DPS [22] are fully self-organized peer-to-peer solutions. This way, we elaborate on

both kinds of approaches, covering a wider field in the peer-to-peer publish/subscribe

paradigm. The reader can see the complete results of this analysis in Table 2.11. Note

that Hermes is a unique, interesting solution that develops a solution from a software

engineering viewpoint. Both events and subscriptions are translated to objects in an

object oriented language programming. In consequence, the classes and subclasses of

subscriptions define how the links into the publish/subscribe overlay are set, where

events will flow through to get to interested subscribers. As in the section before, we

illustrate the main properties of these systems delving into the subscription mecha-

nism and the event dissemination process.

From the subscription technique’s viewpoint, we can differ from two big sets. The

first set includes those systems where the subscription process is translated to join a

particular publish/subscribe overlay, which embraces Hermes, Meghdoot, PastryS-

trings, Sub-2-Sub and DPS. When joining a publish/subscribe overlay, two scenar-

ios are considered. Sub-2-Sub and DPS construct a unique overlay where any node

participates in. The node’s location within the network obeys to particular routing

algorithms. Instead, the rest of the above systems use an underlying SPN as a direc-

tory service (like in the case of TOPS systems). To complete the subscription, systems

apply no transformation to the data space, but in some cases, for a M-dimensional

data space, a subscription is completed after M operations (like in the case of Pas-

tryStrings, which also increments its complexity). Therefore, except PastryStrings and

Hermes, these systems have a unitary cost for subscription storage (accounting the

unique joining process as a whole). Notice that Hermes considers the object oriented

language programming as the data space, where from Hermes’ viewpoint there is no

transformation of the data space. However, it is easy to see that any existing applica-

tion domain must be transformed to a class in the given object oriented programming

paradigm. In addition, the subscription is completed under the expected communica-

tion time for any operation into the target system.

The second group of the subscription techniques includes CBOVER and CBP2P

that leverage the routing capacities of an underlying SPN. That is, instead of building

a new overlay, they use the SPN as a directory service where to store subscriptions. To

do so, they tightly rely on the rendezvous model to match events against subscriptions.

The idea behind this approach is that a subscription S have to be stored in all those

2.11 Supporting Publish/Subscribe Services 81

nodes where an event E matching S (i.e., M(E, S) succeeds) can be directed to. This is

demonstrated by the increment on their storage requirements. In consequence, these

systems are the unique that need to adapt the data space O to the target SPN keyspace

I. The completion time also reflects a last factor O(NS) that represents the amount of

nodes where a copy of the subscription should be stored.

When considering the event dissemination costs, the reader can observe that sys-

tems mostly demonstrate the network diameter as the primary factor on the event

dissemination cost. Notice that nothing is shown in PastryStrings, whose event distri-

bution process is not reckoned, but only the process of collecting the set of nodes to

who notify the event.

Here the task parallelization takes a principal role, though. For instance, even

though that CBOVER [80] expects a worst case O((M + α) log N) cost, we could con-

sider M + α as a constant by parallelizing tasks, so that its cost would be O(log N)

with a little hidden constant. However, M + α remains as the factor of increment on

the bandwidth usage, since for an event E of M dimensions, the dissemination pro-

cess should contact firstly with M rendezvous nodes, and, after matching E against

locally stored subscriptions, all rendezvous nodes would start the notification process

to all α subscribers interested in E. The dissemination scheme is really different in

DPS, instead. Since nodes appear in the network clustered by interests, the event dis-

semination algorithm firstly deals with discovering the cluster C of nodes interested

in the event E, and afterwards a distribution algorithm is responsible for broadcasting

E among all C’s nodes. The Sub-2-Sub approach is very similar, even though it only

considers that just cluster participants can emit events related to each other interests.

The efficiency of the event dissemination algorithms is notorious, given that all

systems with much or less success can balance the routing cost. Nonetheless, Hermes,

Meghdoot and PastryStrings always need to contact rendezvous nodes to start the

notification process, so that they turn into hot spots. The price of such an efficiency is

the noise. That is, all systems (except Sub-2-Sub) necessitate of intermediate nodes to

help on forwarding events to rendezvous nodes or target cluster of nodes.

82 2. BACKGROUND AND STATE OF THE ART
Ta

bl
e

2.
11

:E
va

lu
at

io
n

of
co

nt
en

t-
ba

se
d

pu
bl

is
h/

su
bs

cr
ib

e
sy

st
em

s.

System

Topology

Dimen–
sionality

Mapping
approach

Storage
Efficiency

Subs. Time
Efficiency

Event Time
Efficiency

Routing
Load Bal.

Data Load
Balancing

Noise

Pu
bl

is
h/

su
bs

cr
ib

e
sy

st
em

s
bu

ilt
at

op
SP

N
s

H
er

m
es

[9
1]

Tr
ee

(P
as

tr
y

[8
])

M
-D

N
/M

O
(l

og
N

)1
O

(l
og

N
)

O
(l

og
N

)
N

o
Ye

s
Ye

s

M
eg

hd
oo

t[
81

]2
To

ru
s

(C
A

N
[1

1]
)

M
-D

N
/M

1
O

(P
P√

N
)

O
(P

P√
N

)
N

o
N

o
Ye

s

C
BO

V
ER

[8
0]

R
in

g
(C

ho
rd

[7
])

M
-D

M
:1

Σ
M i=

1
N

S i
O

(l
og

N
+

N
S)

O
((

M
+

α
)l

og
N

)3
Ye

s
Ye

s
Ye

s

C
BP

2P
[8

2]
4

R
in

g
(C

ho
rd

)
M

-D
M

:1
N

S
O

(l
og

N
+

N
S)

O
(l

og
N

)
Ye

s
Ye

s
Ye

s

Pa
st

ry
St

ri
ng

s
[8

3]
6

Tr
ee

(P
as

tr
y

[8
])

M
-D

N
/M

O
(M

)
O

(M
(l

og
|S
|)

)
O

(M
(l

og
N

))
O

(M
(l

og
|S
|)

(l
og

N
))

N
/A

N
o

Ye
s

Ye
s

Pu
bl

is
h/

su
bs

cr
ib

e
sy

st
em

s
no

ta
to

p
SP

N
s.

Su
b-

2-
su

b
[7

6]
R

in
g

M
-D

N
/M

1
+

∆
5

O
(l

og
N

)
O

(l
og

N
T
)

Ye
s

Ye
s

N
o

D
PS

[2
2]

7
Tr

ee
M

-D
N

/M
1 1

O
(h

N
T
)

O
(k

N
T

k′
h)

O
(M

hN
T
)

O
(M

kN
T

k′
h)

N
o

Ye
s

Ye
s

Ye
s

1
St

or
ag

e
am

ou
nt

fo
r

ei
th

er
su

bs
cr

ip
ti

on
s

an
d

ad
ve

rt
is

em
en

ts
.

2
P

is
th

e
nu

m
be

r
of

di
m

en
si

on
s

on
th

e
C

A
N

sy
st

em
.

3
α

re
fe

rs
to

th
e

nu
m

be
r

of
su

bs
cr

ib
er

s
th

at
ar

e
ne

ce
ss

ar
y

to
no

ti
fy

.
4

Th
e

va
lu

es
sh

ow
n

co
rr

es
po

nd
to

th
e

ke
y-

sp
ac

e
sp

lit
sc

he
m

e.
5

U
nd

er
∆

w
e

ac
co

un
tt

he
am

ou
nt

of
m

em
or

y
us

ed
to

st
or

e
go

ss
ip

in
g

in
fo

rm
at

io
n.

6
Fi

rs
tr

ow
ev

al
ua

te
s

th
e

co
st

s
fo

r
st

ri
ng

da
ta

ty
pe

s,
w

hi
ls

tn
um

be
rs

in
th

e
se

co
nd

on
e.
|S
|i

s
th

e
m

ea
n

le
ng

th
of

th
e

ra
ng

e
of

va
lu

es
th

at
a

su
bs

cr
ip

ti
on

S
se

le
ct

s.
7

Th
e

fir
st

ro
w

de
pi

ct
s

th
e

co
st

s
of

th
e

le
ad

er
-b

as
ed

co
m

m
un

ic
at

io
n

sc
he

m
e,

w
hi

ls
t

go
ss

ip
-b

as
ed

is
th

e
se

co
nd

on
e.

k
an

d
k′

ar
e

th
e

nu
m

be
r

of
no

de
s

vi
si

te
d

in
th

e
fir

st
ro

un
d

an
d

th
e

se
co

nd
on

e
in

th
e

go
ss

ip
-b

as
ed

al
go

ri
th

m
,w

hi
le

h
is

th
e

he
ig

ht
of

th
e

tr
ee

.

2.12 Open Issues on High-level Services in Peer-to-Peer Systems 83

2.11.3 Publish/Subscribe Services: Conclusions

The desirable properties of publish/subscribe systems should be, among others, min-

imum signaling traffic, optimized bandwidth use and unaffected by the network dy-

namics. Nevertheless, for an efficient publish/subscribe service and given a particu-

lar application scenario, the works presented in this section assume some trade-offs

among all the expected properties.

For instance, systems that construct new overlays overlapping (partially) existing

ones have duplicated costs when dealing with network dynamics, like signaling traffic

when nodes or links fail. Conversely, these approaches become more effective when

disseminating events, since they must just forward events according to the publish/

subscribe overlay (instead of routing them into the global network).

On the other way around, systems that leverage existing SPNs have the advantage

that signaling traffic is reduced to the minimum amount. However, this kind of so-

lution has slightly higher costs when distributing events, since it has to route events,

passing through nodes that probably are not interested in them.

To conclude this section, we have been able to see that all systems without excep-

tion construct such an publish/subscribe overlay or system design so that the event

dissemination can be fully parallelized, following the one-to-many communication

pattern, from the publisher to all interested subscribers. In addition, as expected, the

key difference between TOPS and COPS solutions is that the system design in COPS

services is really more complex than in TOPS approaches, since they have only to

guarantee a channel-based communication pattern, regardless of the event’s content.

For example, we have detailed that in PastryStrings, M rendezvous nodes should be

contacted for an M-dimensional data space, before starting the event notification pro-

cess.

2.12 Open Issues on High-level Services in Peer-to-Peer Sys-
tems

Before concluding this chapter, we want to discuss about what we consider the most

important open issues in the field of high-level services in peer-to-peer-enabled dis-

tributed systems. In particular, we introduce the existing trade-off between data local-

ity and load balancing. The transverse problem of the high dimensional data domains

is also stated. And finally, we consider the study of peer-to-peer-based data networks

as the hot topic for next practical and broadly deployable distributed large scale ap-

plications.

84 2. BACKGROUND AND STATE OF THE ART

Data Locality vs Load Balancing

In dynamic environments, where users perform lots of data operations (insertions,

deletions and lookups) as well as where users remain connected only for a certain

period of time, fair data distribution in peer-to-peer systems is challenging. Indeed,

the problem in the context of this chapter is twofold. Firstly, data objects should be

placed with some data locality guarantee, so that similarity queries turn efficient. And

secondly, at the same time nodes should afford approximately the same amount of

data load. This way, note that not only nodes could be overloaded with too many data

objects, but also with lookup processing with high probability.

We can classify the SPNs into two big sets. One set formed by systems that require

of mapping techniques to support data object indexing, so as to convert and adjust

application data domains to the SPN keyspace. The other set is formed by systems

that operate with the specific application data domain. Traditionally SPNs make use

of uniform hash functions to map and distribute information uniformly at random

between nodes for load balancing. The mapping drawback is the loss of data locality

though. To guarantee a certain data locality, order-preserving or locality-preserving

hash functions appeared. For instance, space filling curves (SFCs) like Z-curve [40] or

Hilbert Curves [35] embody the set of locality-preserving hash functions.

Provided that one of the goals of this thesis is to provide a SPN-generic solution,

we do believe that systems that embrace explicitly the application data domain turn

inflexible and tied to the target application. Therefore, we will further analyse on the

field of hash functions in order to provide portable solutions, deployable on to most

of the existing SPN systems.

High-dimensional Data Domains

It has been demonstrated that the concept of proximity in high dimensional space may

not be very meaningful [92]. These results show that for certain classes of commonly

used similarity functions such as the Lp-norm in the Euclidean space, the nearest and

furthest neighbor are of the same relative distance to the query point for large classes

of data distributions. The lack of relative contrast in terms of similarity is somewhat

undesirable, since it is not clear whether the nearest neighbor is meaningful under

such circumstances. Thus, the distance function becomes unstable. Some direct con-

sequences of this instability is the inclusion of far away data objects during the query

resolution. This overloads nodes in time consumption and usage of computer resource

because of filtering far data objects, producing greater response times on data lookups.

2.12 Open Issues on High-level Services in Peer-to-Peer Systems 85

Even though this problem is not properly from SPNs, these systems experience

inefficiency when high-dimensional data domains are supported. This motivates the

adoption of advances in the similarity calculation from other data management fields,

like database systems. To put an example of SPN permeability, we have seen in this

chapter some SPNs that were based on tree data structures, like binary trees, B+-

trees and quadtrees, for node and distributed information organization. It will not

be strange to see new SPNs based on last results from the similarity field in high di-

mensional domains, like algorithms for data clustering [93] or techniques for dimen-

sionality reduction [94]. In particular, we focus on supporting high-dimensional data

domains, while services performance remain efficient.

Peer-to-Peer-based Data Networks

Instead of inserting data objects into the SPNs, Peer-to-Peer-based Data Networks

(PDN) pose the stress on distributed information indexing while data objects remain

locally stored into nodes. This is the way like most of well-known file-sharing peer-

to-peer-based applications work actually, like eMule. Thus, the indexed records in

essence consist of a pair index = {object, address}, where object is a reference to the

data object being indexed, probably with additional meta-data to help in search oper-

ations, and address refers to the node’s address storing the object. This indexing struc-

ture divides search algorithms into two steps: 1) querying peers perform the lookup

operation to the distributed indexing data structure, obtaining a set of indexes from

the system, and 2) querying nodes retrieve the related data objects from nodes whose

addresses appear in the result set.

PDN will remain the most deployed application in the future, because its design

facilitates users controlling the content stored locally. The price, though, is informa-

tion indexing in the user’s computer, which is usually a very little and reasonable

cost compared to the volume of the data objects. Indeed, we foresee that PDN will

become the hot topic for practical and broadly deployable applications. The research

focus will then be placed in efficient distributed indexing techniques. In addition,

not only should the indexation technique be time- and storage-efficient, but also it

should help in improving the efficiency of data object transmissions. This could be

achieved providing indexes of data objects that live in the surroundings of the query-

ing node, as PIRD does. The main shortcoming of PIRD is the strict network structure

and number of nodes into the system. Actually, whenever PDN designs resemble to

the Internet topology, or whenever the system takes advantage of the network infras-

tructure [95, 96], systems will then benefit from node proximity. Proximity can be then

86 2. BACKGROUND AND STATE OF THE ART

measured in any valuable metric, like latency and/or geographical distance. This is

also another key issue considered in the work of this thesis, where we believe than

intelligent node and data organization are possible, in order to feedback the system

with enhanced functionalities.

2.13 Summary

This chapter has presented an evaluation of different systems providing similarity

queries and publish/subscribe services for distributed, structured peer-to-peer sys-

tems. The evaluation is addressed to systems providing range, k-nearest neighbors

and spatial queries for similarity queries, and to topic- and content-based models for

publish/subscribe systems. Each part started with the motivation of the necessity of

the relative kind of services. A set of generic algorithms were introduced, that pro-

vide the main steps of the considered operations, emphasizing on the parallelization

of tasks. Then, we provided the definition of the evaluation framework.

After that, a total amount of 31 different systems of the last 7 years are considered

within this study. Thus, our study provides a wide overview of this kind of systems

since the introduction of first structured peer-to-peer systems in 2001. In particular,

this study focuses on the time efficiency of the given operations. To do so, a total

amount of 10 properties for every system are collected from the specific works and

discussed along this chapter. When necessary, apart from those 10 properties, addi-

tional terms are considered, like query parallelization or amount of node status, in

order to provide a big picture of systems, and to guarantee a fair comparison.

Similarity query systems evaluations

Broadly speaking, peer-to-peer-based systems that provide similarity queries provide

different search resolution performances according to three factors: the topology, the

query resolution approach and the query type. In addition, they are not independent

variables, but the topology greatly dictates the rest of the parameters .

Topology. In last years more and more systems aim at providing enhanced lookup

services by means of hierarchical SPNs, as it is seen along the chapter. This is moti-

vated from the fact that most of the hierarchical designs provide inherently parallel

query resolution. Instead, most of the flat architectures provide a two-phase search

algorithm, where the system routes the search as a single message until a first respon-

sible node is reached, and thereafter the query is parallelized among all responsible

nodes.

2.13 Summary 87

Query resolution approach. SPNs adopt two main query resolution approaches,

which range from DHTs that were redesigned to support similarity queries, to dis-

tributed data systems that structurally provide them. In general, we can see that for

the first case, systems employ order or locality preserving hash functions to map data

objects to the SPN keyspace. For the last case, most of the systems index data objects

adopting the original data domain without transformation.

Query type. The type of query also determines the reachable system performance.

As we have seen in this chapter, region-based range and spatial queries are more par-

allelizable than k-NN and sphere-based range queries. Moreover, most of the spatial

queries are constructed over hierarchical distributed systems, what nicely fits the spa-

tial query resolution algorithm. Thus, the inherent parallelization of tasks shorten the

response time, but this is not for free. It affords more bandwidth usage and busy nodes

per unit time. Nevertheless, given that nowadays Internet connection bandwidth and

computer resources are growing rapidly, bandwidth and computation power are con-

sidered as not so restrictive as some years ago.

Publish/subscribe systems evaluation

Conversely, peer-to-peer-based systems providing publish/subscribe services depends

greatly on the subscription mechanism, which will dictate how events are dissemi-

nated through the network.

Subscription mechanism. We have seen two main classes of subscription tech-

niques: joining a publish/subscribe overlay or using a publish/subscribe service (which

leverages a SPN as a directory service where to manage subscriptions). The over-

lays providing publish/subscribe services are categorized into two topologies. As before,

the topology is one of the major factors that decides how subscriptions are managed.

Most of the solutions adopt a tree-like network structure, which benefits fostering nat-

urally the event dissemination. The mesh is the other common kind of network struc-

ture where gossip-based algorithms maintain the network connectivity and construct

interest-based clusters, for a rapid and localized event distribution.

Nevertheless, building new overlays is not always feasible, and potentially less

efficient when they are develop atop other peer-to-peer networks. They incur in du-

plicated signaling traffic for the maintenance of all overlays where a node participates

in, which should be avoided. Instead, publish/subscribe services are more capable to deal

with network dynamics, since they leverage the underlying peer-to-peer network for

managing event matching and notification, as well as subscription storage.

88 2. BACKGROUND AND STATE OF THE ART

Event dissemination. In publish/subscribe overlays, events are forwarded along the

network to reach all the interested subscribers. Therefore, this scheme is very efficient,

since the publish/subscribe overlay dictates the dissemination path, but at the cost of

the maintenance of multiple publish/subscribe overlays (e.g., one for each topic that

a node is interested in, under the TOPS model).

Conversely, in publish/subscribe services,the dissemination of events is addressed by

leveraging an existing peer-to-peer infrastructure. In this case, the solutions suffer

from a slightly higher communication cost, because events are actually routed. How-

ever, the great advantage is that they have to maintain just a single overlay, greatly

reducing the signalling traffic and becoming more reactive to changes.

Challenges addressed in this thesis

To sum up, the fields of high-level queries and publish/subscribe services require of

more research in the context of scalable, distributed, peer-to-peer solutions. Some

of the open issues are described in this chapter. We mainly aim at researching new

algorithms that will lean to a generic design of high-level services. In other words,

we focus our research effort on investigating in the feasibility of constructing SPN-

generic services. The idea behind that is the development of a common infrastructure

where distributed operations are performed efficiently, no matter which SPN is sup-

porting such an infrastructure.

More concretely, we will have to tackle with the high dimensionality problem.

In addition, our proposed solution will have to provide a good data load balancing

among nodes. Conversely, our proposal will have to retain a certain data locality,

too. Specifically, the data locality will boost complex operations (such as range-based

queries) and will improve their performance, compared to significant existing solu-

tions. To prove that such infrastructure (or framework) is feasible and that all the de-

ployed operations are to be efficient, both in the number of nodes and in the number

of dimensions, we will construct the necessary distributed algorithms to build three

odd services.

In particular, we develop services providing range queries (in Section 4.1), spatial

queries (in Section 4.2) and content-based publish/subscribe services (in Chapter 5),

so that all they can coexist under the same umbrella, whilst performing efficiently. A

key point in the design of our algorithms will be to take advantage of the peer-to-

peer-based parallel computing capabilities, in order to boost the feasibility and effec-

tiveness of our solution. To start with, we elaborate on settling down the basis of our

framework in the next Chapter 3.

3
A Framework for Developing
Application-level Services in Structured
Peer-to-Peer Networks

In this chapter we state the general structure of our framework, providing a SPN-

generic infrastructure where high-level services can be deployed easily. This chapter

also presents the elements of our data adaptation module, key component in the over-

all structure.

3.1 Introduction

We have illustrated some generic designs of systems providing either similarity queries

or publish/subscribe services, which, for the sake of simplicity, we re-illustrate in

Fig. 3.1a and Fig. 3.1b, respectively. These designs presented a two-layer abstraction.

The Node layer featured the SPN state, routing capabilities and preliminary message

processing. Conversely, the upper Application layer mainly provided data storage, as

well as the business logic and the distance function tool. All this was set up in a dis-

tributed environment, where several or millions of instances of nodes were deployed

in the network. But, what should be the global structure where our framework would

be involved? To explain, we introduce an overview of the factors engaged in the deci-

sion. See Fig. 3.2 for the overall design.

The aim of this work is (i) to provide a portable framework, (ii) which should sup-

port a multiplicity of high-level services. Should we reach such a framework design,

we will construct a generic infrastructure: firstly, SPN-generic because the framework

could be deployed onto (most of) the SPNs; and secondly, generic for applications,

that require a distributed substrate to benefit from computation resources on edges

and, consequently, scalability.

To do so, we move from the above two-layer design towards a three-layer infras-

tructure (see Fig. 3.2): application layer on top, our framework in the middle, and the

90 3. A FRAMEWORK FOR DEVELOPING APPLICATION-LEVEL SERVICES

Application

Insertion Search

Distance
Function

Mapping Technique

Node

Neighbours

Routing
Algori thms

Network
Communicat ionSimilarity Operation

Manager

Data Object
Store

Data Indexing

(a)

Application

Un/Subscribe Notify

Distance
Function

Mapping Technique

Node

Neighbours

Routing
Algori thms

Network
Communicat ionSubscription

Manager

Subscription
Store

Data Indexing

(b)

Figure 3.1: Generic layered design, common components and information flow of dis-
tributed systems providing (a) similarity abstractions, and (b) publish/subscribe services.

SPN layer on the bottom. This change, visually simple but extremely powerful, al-

low us to build a framework that will deal with all the presented challenges. Let us

remember them briefly to put the reader in context:

Support of multiple applications. There are several concerns to consider from the

applications, but in particular the following ones: (i) their data domains, (ii) their

distance functions, (iii) their data storage, and (iv) the services they require.

As we have seen in the related work, applications usually are deployed directly

onto an SPN, where applications have to deal with the services implementation (ac-

cording to the underlying SPN), as well as to store the data objects locally when nec-

essary. In addition, for the service working properly, they need a distance function

tightly related to the application data domain, which tells how close are any two data

objects. Clearly, the data domain, the corresponding distance function and the data

storage should rely on the implementation of such applications. This is benefiting for

the whole solution since this stands up a separation from application specific concerns

to common concerns to several applications.

For instance, several applications could necessitate range query services or pub-

lish/subscribe services. Therefore, we move the services implementation into our

framework layer, so that any application requiring the same kind of service could

leverage our framework. More importantly, applications will not be involved imple-

menting services that already exist into our framework.

3.1 Introduction 91

Portable among SPNs. The idea behind that is to construct such a framework that

can be deployed into most of the SPNs, taking advantage from their performance, ef-

ficiency and scalability, whilst supporting several services which should also render

efficient and scalable. However, there are some other concerns to reflect in the frame-

work design due to SPNs profile. We have already addressed a characterization of

the SPNs target of this thesis in Section 2.1.1. In summary, the SPNs we will rely on,

have a one-dimensional keyspace, where nodes have a set of neighbors which they are

connected to. This connectivity guarantees that the communication between any two

nodes takes a logarithmic number of hops.

Given that our framework leverage the SPN infrastructure as a communication

framework, services included into our framework will be able to be reused among

SPNs. In consequence, this makes cheaper the development of new services into our

framework, since one service development can be reused by all applications that need

such service.

Integrating applications and SPNs. The key issue of our framework, then, is to en-

able nicely the co-existence of both applications and SPNs into the same logical unit.

In particular, note that the SPN keyspace is one-dimensional, while the application

data domains are commonly characterized as complex, multi-dimensional data struc-

tures. For instance, an image can be characterized as a M-dimensional vector of M

describing features.

Therefore, the integration problem is transformed to a data domain management

problem. That is, we need to determine how application data domains and SPN

keyspaces are both supported by our framework.

In order to support the application data domains in our framework, and conse-

quently in the underlying SPN, we could address their management in two opposed

fashions: (i) supporting directly the application data domain throughout our frame-

work, and also in the underlying SPN, or (ii) adapting the application data domain to

an application-uniform data space.

The former has the advantage that no data transformation is required to the ap-

plication data domain, accelerating the solution by requiring no pre-process in the

application data domain. However, we should set up as many different instances of

our framework as the number of different application data domains.

Alternatively, the second option has the advantage that any application data do-

main is translated to a common data space, so that a single instance of our framework

would suffice to operate with several applications and their data domains. However,

92 3. A FRAMEWORK FOR DEVELOPING APPLICATION-LEVEL SERVICES

the main drawback is that this approach necessitates a pre-process to adapt the appli-

cation data domains to a common data space. Since our goal is to provide a portable

solution, we adopt the second approach in the heart of our framework.

In addition, as we have announced in Section 2.1.1, we reckon that SPNs have a

uni-dimensional keyspace I. Consequently, the target common data space to which

transform any application data domain is going to be I. This data domain transforma-

tion allows the framework to be instantiated over any SPN easily. To do so, we design

a data adaptation module which factors the framework by concentrating and autom-

atizing all data transformations from the application (potentially) multi-dimensional

data domain to the SPN keyspace I.

Nonetheless, there is an important challenge inherent to the data transformation

technique. The adaptation technique should guarantee a necessary data load balanc-

ing, while, at the same time, place similar data relatively close after the adaptation.

This is a major requisite to enable our framework render efficiently. Otherwise, dis-

tributed operations would become inefficient in terms of communication cost, or some

nodes could be overloaded in terms of data storage.

Moreover, lots of high-level services, and in particular the services provided in

this work (range queries, spatial queries and publish/subscribe services) have range-

based operations as a key component. Since these procedures have to be deployed in

a distributed environment, we also design a generic range-based algorithm to help on

the distributed data management of complex range-based data objects (such as multi-

dimensional range queries or range objects). As we can see from Fig. 3.2, these services

are to provide some complex functionality to end-user applications.

The rest of the chapter is organized as follows. We describe the framework and

its module structure in Section 3.2. We then dive into the data adaptation module at

Section 3.3. In particular, we tackle how multi-dimensional data domains are adapted

to the SPN keyspace in Section 3.3.1, and Section 3.3.2 addresses our proposed algo-

rithm for range-based operations. We close this chapter with the concluding remarks

at Section 3.4.

3.2 Framework Overview

Our framework is motivated for the expected genericity with the underlying SPN, as

well as for the kind of featuring services. To this end, we have designed a three-layer

scenario. To illustrate, see the Fig. 3.2. From a top-down reading, we firstly observe the

application layer, our framework in the middle layer, and the SPN layer in the bottom

3.2 Framework Overview 93

sendMessage
del iverMessage

getLinks

High- level
Service

Provisioning
Framework

specific API calls
noti f icat ions

Data Adapta t ion Module

High- level Services

Rout ing
Algor i thms

Bit
Mapp ing

D a t a M a n a g e m e n t M o d u l e

Range Query
Services

Spat ia l Query
Services

Content Dist r ibut ion Module

Publish/Subscribe
Services

Over lay Network (SPN)

Applicat ions
Distance
Function

Figure 3.2: Structure of our framework provisioning high-level services. It also details all
modules addressed in this work, as well as the information flow.

layer. However, to clarify the life cycle of the whole architecture, as well as its compo-

nents, we will use an application example. We take a distributed image database as a

target application. This application characterize any image as a M-dimensional vec-

tor of numerical features. The service required is k-nearest neighbor (kNN) queries,

to find the most close images to the queried one. The Euclidean function is used to

calculate the proximity between any two data objects. Let us now introduce all layers

in the following lines.

Application layer. One could also see these end-user applications as clients of our

framework. Not only should our framework be portable, but also it should support

several end-user applications. Since the application data domain is specific for any

application, the management of the data objects (like the data storage) is addressed by

applications.

As we have seen in the state-of-the-art analysis, the distance function permits the

evaluation of the similarity and closeness of any two data objects. Given that appli-

cations have the full knowledge of their own data domain, they make their particular

distance function available to any service that requires it for its normal operation.

For instance, the image database would store locally the images that the local node

is responsible for. When the application starts a kNN query in a certain node, the

94 3. A FRAMEWORK FOR DEVELOPING APPLICATION-LEVEL SERVICES

application also provides the distance function, as well as the access to the images

stored locally. This data access makes possible to the service to proceed the operation

to the local objects. Thus, all services included in our framework are generic, so that

services operate with the specific data domain and utilize the application’s distance

function. Let us illustrate how the query is followed into our framework.

Framework layer. Our framework appears in the second layer. This framework em-

braces most of the work done in this thesis. As we have listed in the motivation at

Section 1.1, our framework should provide support for high-level services, as well as

for complex data domains. To do so, briefly speaking, we design a first module for

data adaptation, which adapts the application data domain to the SPN keyspace. This

module also provides a range-based algorithm for complex distributed operations,

benefiting to and reducing the effort put on featured high-level services.

Notice that a trade-off is presented when designing our data adaptation module

from a software engineering viewpoint. According to the designed data structure, the

necessary algorithms to resolve complex operations will become more or less expen-

sive accordingly. For instance, let us suppose that we devise an efficient data place-

ment technique (i.e., efficient data structure). Let us suppose also that the related

algorithms to perform complex operations turn in very expensive distributed compu-

tations, though, which makes the whole approach rendering ineffective. Therefore,

the aim is to equilibrate the complexity of both data placements and distributed algo-

rithms (i.e., reaching a good balance between data locality, and data and routing load

balancing), so that the distributed data structure could become efficient both in stor-

age and operation execution. We explain the adopted approach for the data placement

policy, common into the framework, in the following Section 3.3.

As part of the same layer, we include any existing high-level service. We exem-

plify the way of provisioning high-level services by developing three services. The

data management module contains two services, affording range queries and spatial

queries. We elaborate on them in Chapter 4. An additional module targeting content

distribution techniques makes available content-based publish/subscribe services.

They are illustrated in Chapter 5.

Following the image database example, the kNN query would be invoked to the

corresponding service module. This module would use the data adaptation module,

in order to adapt the query object to the SPN keyspace. After that, the service module

would employ the necessary distributed algorithms to complete the kNN query. In

3.3 Data Adaptation Module 95

other words, the algorithm would start communicating with neighbor nodes, in or-

der to distribute the kNN query. Whenever possible, the algorithm would parallelize

the query to reduce the completion time, taking advantage of the node computation

capabilities.

When a node receives the given query, the message is delivered to the same service

module, so that the search operation can be processed locally. Not only could this

process perform a search on the data objects of the local image database, but also it

could forward the query to other neighbor nodes if necessary.

SPN layer. In this thesis we assume a set of common properties as described in

Section 2.1.1. Broadly speaking, a SPN candidate has a uni-dimensional keyspace

I = [0..2m), where m is the precision in number of bits. In addition, the SPN is able to

route between any two nodes with a logarithmic cost in the worst case, while main-

taining an amount of routing state logarithmic in the number of nodes. By choosing

a SPN as a substrate, thus, the framework benefits from its operation correctness and

efficiency. In particular, in any of the three services presented in this thesis, we ac-

company our proposed solution with an instance of an SPN, suitable for the purposes

of the approach. Even though they are different, the goal is to illustrate the portability

of our framework.

To conclude with our example, the service module builds the necessary messages

to distribute the query. These messages are forwarded using the SPN as a commu-

nication and transportation infrastructure. Since the query was adapted to the SPN

keyspace, there is no difficulty to use it while the query is being processed by our

distributed framework. The kNN search concludes with the result gathering at the

querying node, using the SPN to send back as many results as necessary.

Once we have outlined the design of our framework and all its components, we

delve into the data adaptation module in the following section.

3.3 Data Adaptation Module

As we have sketched, the data adaptation module tackles both (i) the adaptation of

the application data domain to the SPN keyspace and (ii) the provisioning of a range-

based algorithm for distributed data management. We address the former problem

by the design of a novel linearization mechanism that enables structured data man-

agement without the burden of a global information maintenance scheme. The con-

sequence of applying this linearization mechanism is that the resulting system sets

96 3. A FRAMEWORK FOR DEVELOPING APPLICATION-LEVEL SERVICES

up the basis for range-based operations (like range queries), as well as individual

addressing (such as exact match queries, i.e., value ← get(key)), even for complex

multi-dimensional data objects. We detail how this data adaptation (or mapping) is

addressed in Section 3.3.1. This adaptation technique is complemented by a range-

based algorithm, whose goal is to facilitate the resolution of range-based operations

in a distributed setting. We give their details in Section 3.3.2. In addition, we realize

an analysis of the performance of this module in Section 3.3.3

Before starting with the description of the components of this module, let us intro-

duce two functions used along this text.

Definition 3.1 (Number of dimensions) The function |∆| calculates the number of dimen-
sions of ∆.

The actual value for ∆ can be either a data domain or any of the data objects from

the data domain. In addition, because we will need to perform bit-wise operations,

we introduce the following function:

Definition 3.2 (Bit precision) The function ‖ ∆ ‖ tells the number of bits necessary to
represent ∆.

This function can be only applied to uni-dimensional data domains and to their

single values. Let us now detail the two kinds of data objects that the module can

manage. Firstly, a vector of features of an image, a geographical location or an event

are classified as objects. The idea behind an object is that it defines a point into the

application data domain O.

Definition 3.3 (Objects) An object is any uni-dimensional or multi-dimensional data ob-
ject O = {o1, o2, o3, . . . , oD} in the application data domain O (i.e., O ∈ O), where D = |O|
is the number of dimensions of the data domain, and each oi is the single value for the i-th
dimension.

The second kind of object includes range query definitions and range objects, for

instance. We call them range objects. In the literature, they appear named also as rectan-

gular objects. Their main characteristic is that for any specified dimension, they define

a selection of a range of values from the application data domain. That is, range objects

defines a (hyper-)rectangle in the application data domain O.

Definition 3.4 (Range objects) A range object is any range-based data object RO = {[min1

.. max1], [min2 .. max2], . . . , [minD .. maxD] } in the application data domain O (i.e.,
RO ∈ O), where D = |O| is the number of dimensions of the application data domain O,

3.3 Data Adaptation Module 97

and each mini and maxi determines the lower and higher bound, respectively, of the range
selected on the dimension i.

In the following sections we detail our adaptation technique, the algorithm to per-

form range-based distributed procedures, as well as we illustrate on the performance

of our adaptation technique.

3.3.1 Bit Mapping: Adaptation Function for Data Domains

As a key component of the framework, we provide our adaptation function called

Bit Mapping (BM). One can see BM not only as the function FO firstly described at

Section 2.1.1 “Common Properties of Structured Peer-to-Peer Networks”, but also as

FCO introduced in the publish/subscribe analysis in the Definition 2.12 “Complex

object adaptation”. Its goal is to transform objects from a complex (potentially) multi-

dimensional data domain O to the SPN keyspace uni-dimensional I. Broadly speak-

ing, the adaptation function constitutes a two-phase process, where the first one trans-

forms objects from the application data domain O to objects from an intermediate rep-

resentation O′, with the same number of dimensions than O (i.e., |O| = |O′|). The

second stage ends the process by performing a dimensional reduction, where the in-

termediate object is transformed to a uni-dimensional value.

In addition, when designing BM, we leverage the rendezvous model from the un-

derlying SPN routing. The goal of BM is to transform single and range-based data

objects into one or more keys, whose responsible nodes will be defined as their ren-

dezvous nodes. We elaborate on the adaptation approaches for both kinds of objects

in the following lines. As we will see, BM enables to work naturally with multi-

dimensional data domains.

3.3.1.1 Object adaptation

BM maps an object into only one key. Formally, let O = {o1, o2, . . . , oD} be a D-

dimensional object, where each oi ∈ Z is represented by r bits, i = 1, 2, . . . , D. Let B =

{b1, b2, . . . , bD} be a D-dimensional natural value, where each bi defines the number

of mapping bits per dimension, where each bi ∈ N, i = 1, 2, .., D. Let K = ∑D
i=1 bi

be the sum up of the number of mapping bits. Let m =‖ I ‖ be the precision of SPN

keyspace I in bits, i.e., the SPN keyspace is of the form [0..2m) (see Assumption 2.1).

The following inequality must be true for any B: K ≤ m. This inequality ensures that

the produced key falls into the SPN keyspace I.

98 3. A FRAMEWORK FOR DEVELOPING APPLICATION-LEVEL SERVICES

Our technique maps a D-dimensional object O ∈ O into a single key k ∈ I by means

of a monotone function Pr,l . Pr,l converts an incoming number of r bits into another one

of l bits (i.e., ‖ x ‖r → Pr,l → ‖ x′ ‖l). Recall that a monotone function is defined as

follows: f : S → T is monotone, where each set S and T carries a partial order (≤),

if whenever x ≤ y then f (x) ≤ f (y). For instance, Pm,m−1(y) = y÷ 2 is a monotone

function, having S and T as N, with a precision of m and m− 1 bits, respectively. These

kinds of functions are also so-called order-preserving hash functions (OPHF).

Intuitively, Pr,l maps every oi to a natural value of bi bits, i = 1, 2, .., D, setting

l by bi correspondingly, and then we place it in the corresponding position into the

produced key. For the sake of clarity, let us present the adaptation process split into

the two stages, to afterwards present the BM formulation. Formally, let O′ = {W1, W2,

. . . , WD} be a data space where every Wi corresponds to a natural data domain N+

with precision of bi bits, i = 1, 2, . . . , D (i.e., the domain Wi takes the form [0..2bi)). Let

BM1 be the first stage in the adaptation process, which adapts the application data

domain to an intermediate one:

BM1(O) = {Pr,b1(o1), Pr,b2(o2), . . . , Pr,bD(oD)} (3.1)

Clearly, BM1 transforms an object O ∈ O to an object O′ ∈ O′, where O′ = {o′1,

o′2, . . . , o′D}, and o′i = Pr,bi(oi), ∀i = 1, 2, . . . , D. The next step is to proceed with the

dimensional reduction from D = |O| dimensions to a single one (recall that 1 = |I|). Let

’�’ be the bitwise left-shifting function. Let ci = ∑D
j=1+i bj, ∀i = 1, 2, . . . , D− 1, be the

shifting factor. Let BM2 be the second stage in the adaptation process:

BM2(O′) = (
D−1

∑
i=1

o′i � ci) + o′D (3.2)

The BM2’s result is a numerical value of K ≤ m bits, which fulfills the dimen-

sional requirements (both in number of dimensions and bit precision) of the target

SPN keyspace I (i.e., if O′′ = BM2(O′), O′′ ∈ I). Let us now join both processes BM1

and BM2 into a single formulation, which concentrates the whole adaptation process

in a unique function. To do so, let BM be our the mapping function:

BM(O) = (
D−1

∑
i=1

(Pr,bi(oi)� ci)) + Pr,bD(oD) (3.3)

Thus, we can employ BM to map any multi-dimensional object O into another

single one-dimensional key of K ≤ m bits. A direct consequence of this definition is

that BM is a deterministic function (i.e., given the same Pr,l , B and object O, BM produces

3.3 Data Adaptation Module 99

always the same key) and that the system that employs it can perform exact match queries

for multi-dimensional values.

Note also that the above definition carries some assumptions: (i) O ∈ ZD and (ii)

strict order of dimension mapping. One can overcome the former assumption eas-

ily, transforming values from other domains (e.g., floating point numbers or strings)

into an equivalent integer domain. One can remove the later assumption by defining

another D-dimensional set of numbers ORD = {ind1, ind2, .., indD} which defines an

explicit dimension mapping ordering. Therefore, ind1 will be the first dimension to

be mapped, ind2 the second one, and so forth. We do not rewrite the definition of

BM function because the addition of this explicit ordering will make its definition less

readable, but always remaining the same operation.

3.3.1.2 Range object adaptation.

In a similar way than in the object mapping, BM maps range objects into a set of keys.

Let RO = {[min1 .. max1], [min2 .. max2], . . . , [minD .. maxD]} be a D-dimensional

range object, defining the conjunctive ranges of interest. Intuitively, instead of resulting

a single mapping value per dimension, this technique will probably produce a set of

different mapped values, representing all them the mapped range object. Clearly, we

need the Cartesian product of all the sets of mapped values per dimension in order to

cover the whole set of interests. Formally, we perform the first step of the adaptation

process in the same way than before in Equation 3.1.

BM3(RO) = {[Pr,b1(min1)..Pr,b1(max1)], . . . , [Pr,bD(minD)..Pr,bD(maxD)]} (3.4)

The result of BM3(RO) is an object RO′ ∈ O′ of the form RO′ = {[min′1 .. max′1], . . . ,

[min′D .. max′D]}, where min′i = Pr,bi(mini) (resp. max′i = Pr,bi(maxi)) ∀i = 1, 2, . . . , D.

Let ROi = [mini..maxi] and RO′i = [min′i..max′i] be the range interest of the i-th dimen-

sion on the range object RO or mapped one RO′, respectively. Let |ROi| and |RO′i | be

the number of different values in the range and mapped range, respectively. Let ‘
⊗

’

be the Cartesian product. To be congruent with the before object adaptation, RO′ has

to be passed through the Cartesian product of all its sets of values as follows:

BM4(RO′) = RO′1
⊗

RO′2
⊗

. . .
⊗

RO′D (3.5)

=
{{

min′1, min′2, . . . , min′D
}

1 , . . . ,
{

max′1, max′2, . . . , max′D
}

n

}

100 3. A FRAMEWORK FOR DEVELOPING APPLICATION-LEVEL SERVICES

The result of BM4(RO′) is RO′′, a set of n single objects O′ ∈ O′. The last step in the

adaptation process is to realize the dimensional reduction to all n objects O′ from RO′′.

To do so, we employ the above function BM2 from Equation 3.2. By performing this

dimensional reduction operation, we obtain a keyset KS of n keys k ∈ I as follows:

BM5(RO′′) = {BM2(O′1), BM2(O′2), . . . , BM2(O′n)} (3.6)

Thus, KS is the set of keys built deterministically and corresponds to the original

range object. Let us join all three steps into a single function, so that the BM function

for range objects is as follows:

BM(RO) = {k = BM2(O′) | k ∈ I ∧

O′ ∈ RO′′ ∧

RO′′ = BM4(RO′) ∧

RO′ = BM3(RO)} (3.7)

From the above definition, we can also quantify the number of covered keys as

|KS| = ∏D
i=1 |RO′i |. Since the responsible nodes of the keys in KS become the ren-

dezvous nodes for the given range object RO, the |KS| factor will greatly determine

the cost of the range-based operation. We elaborate on the factors that influence in the

costs of our adaptation technique at Section 3.3.3.

Let the selectivity ratio be the ratio that the user selected from the whole data domain

(i.e., (maxi−mini)/(domain maxi−domain mini) for the i-th dimension), where 0.0 (resp. 1.0)

means that the 0% (resp. 100%) of the data domain has been selected.

Fig. 3.3 depicts a little example which explains intuitively how the keyset is ob-

tained. The example consists on a 3-dimensional domain and a keyspace [0..23),

m = 3. The first step is the specification of a user range object RO = {[145..300], [−100

..− 50], [−200..400]}. The range object at the same time defines the selectivity ratios for

each dimension, in this case 0.5, 0.5 and 1.0, respectively. Given the data domains and

the 1-bit mapping per dimension, the next step is to proceed with the mapping pro-

cess. We have designed for this example Pr,bi(y) = 2bi × (y−mini)/(domain maxi−domain mini),

which in fact is a monotone function. This function is applied as described above (e.g.,

Pr,1(−100) = 21 × (−100−(−100))/(0−(−100)) = 0), so that the range object is mapped into

the set of values RO′ = {{1}, {0}, {0, 1}}, respectively.

The next step is to make the Cartesian product of these sets of values. This inter-

mediate step constructs the set RO′′ = {{1, 0, 0}, {1, 0, 1}}. Afterwards, we perform

3.3 Data Adaptation Module 101

Application

User

1 2 3 Dimensions

0.5 0.5 1.0 Sel. Ratio

Data Domain[-10..300] [-100..0] [-200..400]

Mapping Bits1 1 1

[145..300] [-100..-50] [-200..400] Range object

Mapped Values{ 1 } { 0 } { 0 , 1 }
BM

Total Sel. Ratio: 0.5x0.5x1.0 = 0.25Keyset : {100,101}

Pr,b i

Figure 3.3: Example of adaptation of a range object.

the dimensional reduction, thus producing the keyset KS = {100, 101}, which con-

cludes the adaptation process. Broadly speaking, in this example any key is the bit

string produced by the concatenation of the mapped value from the i-th dimension

into the i-th position. In addition, this keyset reflects the total selectivity ratio tied to the

range object as the product of the given selectivity ratios (0.25), so that the final keyset

KS consists of only 2 elements (0.25× 23 = 2).

Notice that our BM function have a particular behavior when constructing the key-

set KS. Our adaptation function for range objects produces discontinuous disjoint

segments of values. Let h ≤ D be the number of dimensions of RO where its mapped

range object RO′ has multiple mapped values. Let m be the number of mapped values

of the last D-th dimension in RO′.

Remark 3.1 (BM’s discontinuity on the keyset) The BM function, when applied to range
objects, constructs a keyset KS = {k1,1, k1,2, . . . , k1,m, k2,1, k2,2, . . . , k2,m, kh,1, kh,2, . . . , kh,m}
such that it can be represented as a set of different contiguous segments, i.e., KS = {[k1,1 ..
k1,m], [k2,1 .. k2,m], . . . , [kh,1 .. kh,m]}.

This property is very interesting since it simplifies the generation of the keyset. The

reason behind that is because we do not need to calculate all different keys, but only

the minimum and maximum bounds of the included segments of keys, which can be eas-

ily obtained from the result of the first step BM3 (see Equation 3.4). This will greatly

102 3. A FRAMEWORK FOR DEVELOPING APPLICATION-LEVEL SERVICES

alleviate the pre-process load of our BM function when deployed in our framework.

This discontinuity is also useful to reduce the load when range objects have high se-

lectivity ratios. That is, as we stated in Equation 3.7, the number of keys |KS| is greater

when the selectivity ratio of the range object grows. For instance, from the example

appeared in Fig. 3.3, if the total selectivity ratio had been 1.0, the number of keys pro-

duces |KS| would have been 8, the whole keyspace. Its effect is higher when the bit

precision ‖ I ‖ of the SPN keyspace I is greater.

Remark 3.2 (Proportionally on the keyset’s size) The adaptation of a range object RO
when using the BM function produces a number of keys proportional to RO’s total selectivity
ratio.

Once we have explained how the data adaption is performed, we introduce in

the following section the range-based algorithm that will help in the resolution of

distributed operations on complex data domains.

3.3.2 Range-based Routing Algorithm

In this section we address how range objects are processed in the distributed system.

To do so, we illustrate the procedure providing an suitable algorithm to process range

objects. Note that since, for any given object O ∈ O, BM(O) produces only a single

key k ∈ I, the operations related to individual objects are strictly related to exact

match operations (i.e., put/get). Complementarily, we define the Algorithm 3.1 that

addresses the distributed process of range objects in our framework. The idea behind

this algorithm is that local process of range objects at responsible nodes should come

up with some local action, reacting to the incoming range objects (potentially sending

back some message), as well as distributing them to other responsible nodes. To do so,

Algorithm 3.1 leverages the rendezvous model broadly supported by SPNs. In other

words, the goal of this algorithm is to support high-level services and to simplify their

development by parameterizing the distributed process of range objects.

There are two important issues that we should consider while specifying this al-

gorithm: (i) the underlying SPN properties and (ii) the effort on pre-processing the

range object. We have already stated in Section 2.1.1 the characterization of the poten-

tial SPNs where our framework can be deployed in. Conversely, the second issue is

very important while dealing with range objects, especially when range objects define

high selectivity ratios. As we have outlined at Remarks 3.1 and 3.2, the adaptation of

a range object produces a keyset with discontinuous disjoint segments of keys, as well

3.3 Data Adaptation Module 103

as it creates a number of different keys proportional to the range object’s selectivity ra-

tio, respectively. In order to provide a cost-efficient process of range objects, we do not

construct the whole set of keys (i.e., the result of Equation 3.6 BM5), but we only calcu-

late the mapped values for each dimension (i.e., the result of Equation 3.4 BM3), and

proceed with the last steps Equation 3.5 BM4 and Equation 3.6 BM5 just on demand.

Let us now introduce the Algorithm 3.1 that details the distributed management of

range objects.

Algorithm 3.1 range object management
/* Distributed management of range objects. It allows to set up a particular action
when the algorithm visits a rendezvous node. */
Input: node← Reference to the local SPN node
Input: KS← Selected keyset (i.e., KS = BM(RO))
Input: RO← Range object to process
Input: origin← Reference to the node originating this process

1: localKS← segment(node, node)
⋂

KS
2: if localKS 6= ∅ then /* node is a rendezvous node */
3: do the local action /* probably sending back to origin some message */
4: end if
5: remainKS← KS \ localKS
6: neighbors← getLinks(node)
7: while remainKS 6= ∅ do
8: rnode← extract a node from neighbors
9: rnodeKS← segment(node, rnode)

⋂
remainKS

10: if rnodeKS 6= ∅ then
11: range object management(rnode, rnodeKS, subs, node)
12: remainKS← remainKS \ rnodeKS
13: end if
14: end while

Broadly speaking, this algorithm provides a way of multicasting a given informa-

tion to several nodes (similar in essence to the work of S. El-Ansary et al. [50]). Lines

1-5 correspond to the local processing of the range object. Note that the local action

(line 3) is not specified, but it is parameterized so that the high-level service could set-

tle the corresponding operation. Line 5 establishes the remaining keyset remainKS to

which distribute the range object. To do so, node’s neighbors (lines 6-14) are selected to

forward the range object so that, from node’s viewpoint (lines 9-10), they can forward

the range object or successfully process it. Note that this algorithm can visit nodes who

are not responsible nodes (i.e., rendezvous nodes) of the keyset. If so, remainKS = KS

104 3. A FRAMEWORK FOR DEVELOPING APPLICATION-LEVEL SERVICES

succeed (line 5).

The function segment(p, n) determines the segment [n min .. n max] ∈ I which

node n is responsible for, using only the local information at node p where the algo-

rithm is being executed. See Remark 2.2 for further details. The calculation of the

responsibility’s segment of the nodes (lines 1,9) helps on splitting the keyset KS into

several disjoint segments, which ensures that the range object is going to be entirely

processed.

Remark 3.3 (Multicasting service) Algorithm 3.1 range object management can serve to
distributed range objects, as well as any other objects, to a set of destinations.

This algorithm could be invoked the first time as we illustrate in the following:

range object management(origin, BM(RO), CO, origin)

which would start the whole process, where origin is the node starting the operation.

Note that CO could be any complex object that should be distributed, which usually

would contain the referred RO. In addition, since BM(RO) is actually a keyset, ser-

vices can use this algorithm if necessary to send an arbitrary object CO to a set of

destinations T (i.e., {k1, k2, . . . , kz} = T ⊆ I, where z = |T|) as undermentioned:

range object management(origin, T, CO, origin)

The most remarkable properties of this algorithm is its low pre-process load, com-

pleteness, SPN-independent resolution, genericity and the one-way resolution. In

the former, as explained before, keyset operations (lines 1,5,9, 12) turn into low cost

segment operations. By completeness we refer that the range object is completely cov-

ered by this algorithm just on the first node. The goal is to leverage the underlying

SPN routing infrastructure by parallelizing the operation from the very beginning. As

a key decision of our framework, we aim at providing a SPN-generic solution. To do

so, we ask a minimum set of the node’s local state information (such as getLinks() or

segment() functions). In addition, the path convergence property of some of the SPNs

produce no negative effect in our approach (e.g., overloading a path with copies of

the same message), since a node can contact to any neighbor directly. Conversely, our

framework also aims at supporting several services. This algorithm provides a hot-

spot by defining the local action to perform on rendezvous nodes, so that this algorithm

turns generic. The last property we consider from this algorithm is that nodes are not

re-visited. That is, the algorithm ensures naturally that the range object is covered in

3.3 Data Adaptation Module 105

a one-way fashion. The reason behind that appears in the continuous splitting of the

range object into sub-range objects (lines 5, 12), so that nodes are not re-visited.

In the following section we realize a theoretical analysis of the cost of this algo-

rithm, as well as the BM function. Experimental results by simulation are presented

within the corresponding services’ evaluation sections, which resemble to the follow-

ing analytical results.

3.3.3 Data Adaptation Module: Evaluation

This is a theoretical evaluation of our data adaptation module, that addresses the

analysis of two critical properties of the data adaptation module, namely, the high-

dimensional context property and the expected load from range objects. Roughly speaking,

the former establishes the basis that, for high-dimensional data spaces, our framework

shows a better performance. The latter specifies the number of keys a range object

is mapped into and, consequently, the amount of nodes which our algorithm must

visit. We consider the nodes’ load since, potentially, rendezvous nodes should per-

form some action on message reception, such as storing some information (e.g., the

range object itself) or realizing some complementary operation (e.g., starting a new

communication process).

3.3.3.1 High-dimensional context property

From Section 3.3.1.2, we see that BM maps a range object into |KS| number of keys. Let

si and bi be the selectivity ratio and the number of mapping bits for the i-th dimension,

respectively. Let ∑D
i=1 bi = K ≤ m =‖ I ‖ succeed. Let SR = ∏D

i=1 si be the total

selectivity ratio of the range object. Thus, we can express the value |KS| as a function

of the total selectivity ratio SR, the number of range object’s dimensions D and the

keyspace size m. Specifically, |KS| = ∏D
i=1 2bi si = (∏D

i=1 2bi)(∏D
i=1 si) ≤ 2mSR. Hence,

BM maps a range object into O(2mSR) distinct keys. It is easy to see that whenever the

total selectivity ratio or the number of mapping bits are high, |KS| can be considerably

big. In order to overcome this problem, the data adaptation module can attempt to

modify any of the three involved variables: (i) reducing the number of mapping bits,

(ii) reducing the selectivity ratio, or (iii) employing a high D-dimensional context.

The effect of reducing the number of mapping bits (i.e., K′ < K) is to concen-

trate the whole range object coverage into a reduced segment of the keyspace I and,

thus, unbalancing the load between nodes within the network. Instead, it is desirable

that the number of mapping bits K be as close as possible to m in order to balance the load

106 3. A FRAMEWORK FOR DEVELOPING APPLICATION-LEVEL SERVICES

5%
10%
25%
40%

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

 18%

2 4 7 14 28

C
ov

er
ed

 k
ey

sp
ac

e
(%

)

Num. dimensions

(a) Lower bound

5%
10%
25%
40%

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

 18%

2 4 7 14 28

C
ov

er
ed

 k
ey

sp
ac

e
(%

)

Num. dimensions

100%

(b) Higher bound

Figure 3.4: Lower and higher bounds of keyspace coverage by range selection mapping.
‖ I ‖= 28. Number of mapping bits per dimension m/num. dimensions.

5%
10%
25%
40%

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

 18%

2 4 5 8 10 16 20 32 40 80 160

C
ov

er
ed

 k
ey

sp
ac

e
(%

)

Num. dimensions

(a) Lower bound

5%
10%
25%
40%

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

 18%

2 4 5 8 10 16 20 32 40 80 160

C
ov

er
ed

 k
ey

sp
ac

e
(%

)

Num. dimensions

100%

(b) Higher bound

Figure 3.5: Lower and higher bounds of keyspace coverage by range selection mapping.
‖ I ‖= 160. Number of mapping bits per dimension m/num. dimensions.

through all nodes. The selectivity ratio is user dependant and, therefore, our framework

cannot modify this variable. Nevertheless, low total selectivity ratios produce small

sets of keys, regardless of the other factors. Instead, high total selectivity ratios pro-

duce mappings of (almost) the entire keyspace. The number of dimensions depends

on the Application context and our framework cannot alter this factor. Nonetheless,

suppose that we set every si to some selectivity ratio γ < 1.0, and that we increment

the number of dimensions D to D′ > D, the inequality γD = SRD > SRD′ = γD′

comes true. Beforehand, thus, it is desirable a high-dimensional context to maintain

the factor SR little. We call this property the high-dimensional context property. Figs. 3.4

and 3.5 depict this effect, where the keyspace covering is reduced while incrementing

the number of dimensions. The explanation of these graphs are deeply provided in

the following section.

3.3 Data Adaptation Module 107

3.3.3.2 Range object load

Let us analyse the effects of variating any of the aforementioned factors. If it is fixed

that ∑D
i=1 bi = m =‖ I ‖, the number of dimensions can be modified and, consequently,

the number of mapping bits per dimension, as we can see from Figs. 3.4 and 3.5. These

graphs depict the lower and higher bound percentages of the keyspace covering for 5%,

10%, 25% and 40% selectivity ratios, having m = 28 and m = 160 bits, respectively.

Note that the results of this coverage analysis also mean the expected amount of nodes

that will potentially become rendezvous nodes along the processing of range objects.

Additionally, note that while other systems detail their performance with very low

selectivity ratios (e.g., between 0.1% and 3% in [82]), we perform a deep analysis with

wide ranges of selection.

The lower (resp. higher) bound of |KS| occurs when for any i-th dimension, si

produces exactly Li = d2bi sie (resp. Hi = d2bi si + 1e) distinct keys. Figs. 3.4a and

3.5a show the lower bounds for m = 28 and m = 160, respectively. Even though the

covering ratio is at worst of up to 16% for the given selectivity ratios, the mappings of

range objects when D grows produce smaller covering ratios. Recall that the smaller

|KS|, the smaller amount of rendezvous nodes is required. For the sake of clarity,

let us show up an example. Let [0..3000] be the price data domain, where we define

two range objects, S1 = [0..374] and S2 = [100..474], that have a 12.5% of selectivity

ratio. Let bi = 3 be the number of bits per dimension mapping. Consequently, KS1 =

BM([0..374]) = [0..0], but KS2 = BM([100..474]) = [0..1], which are a clear example

of lower and higher bound, respectively. In such cases, BM maps the range object

into the following number of keys: |KS| = ∏D
i=1 min(2bi , (2bi si) + 1). The min function

limits the number of keys to maximum 2bi . W.l.o.g., let (2bi si) + 1 ≤ 2bi succeed ∀i =

1, 2, . . . , D. The lower and higher bounds can then be formulated as follows:

b|KS|c =
D

∏
i=1

2bi si ≤ 2m (3.8)

d|KS|e =
D

∏
i=1

(2bi si + 1) ≤ 2m (3.9)

In summary, our data adaptation module maps range objects into one or more

keys, where its selectivity ratio has a great effect. In particular, we have that the fol-

lowing inequality b|KS|c ≤ d|KS|e ≤ 2m succeeds. In other words, BM maps range

objects into Ω(∏D
i=1 2bi si) or O(∏D

i=1(2bi si + 1)) distinct keys and they express the lower

and higher bounds (i.e., the best and worst case), respectively. Figs. 3.4b and 3.5b depict

this higher bound.

108 3. A FRAMEWORK FOR DEVELOPING APPLICATION-LEVEL SERVICES

Besides, it is easy to see from the graphs that our mapping technique is indepen-

dent of m, the keyspace precision. Nonetheless, the greater m, the higher dimensional

contexts our framework supports. From another viewpoint, as announced by the high-

dimensional context property, the covered keyspace by range objects of bi ≥ 2 is very

reduced as long as the number of dimensions increases. In addition, low dimensional

contexts (D ≤ 5) experience less than 16% of keyspace covering for any of the selectiv-

ity ratios. This fact produces that, actually, very few nodes are selected as rendezvous

nodes, alleviating the overall system load.

Nevertheless, our framework would not scale generally in scenarios with 1-bit

mappings and 2-bit mappings with very high total selectivity ratios. Note that ev-

ery one-bit mapping value (i.e., 0 and 1 are the possible values) maps the 50% of the

domain to each bit value, providing poor precision. For this reason, we do not include

1-bit mappings in the simulation scenarios of our service use cases.

3.4 Conclusions

In this chapter we have introduced our framework in Section 3.2, which arranges the

basis for a high-level service provisioning, regardless of the underlying SPN. In addition, we

construct the framework in such a way that complex data domains are supported. To har-

bor complex data domains though, we settle down the BM function (in Section 3.3.1),

as well as an algorithm to support range-based operations (in Section 3.3.2), within

the data adaptation module (in Section 3.3).

As we have seen, the BM function constitutes the key element into the data adap-

tation module. BM is a deterministic mapping function. Clearly, a certain object (resp.

range object) is mapped to the same key (resp. set of keys), independently of the node

who realizes the operation. For instance, given a certain network setting and that an

object O is mapped into a key k whose owner node is p, any node n will send the object

O to the rendezvous node p, responsible node for k. The same occurs with range ob-

jects. Our Algorithm 3.1 leverages the rendezvous model to meet the keys (e.g., from

range object mappings) with their responsible nodes (i.e., rendezvous nodes), where

some local operation is requested to perform. To implement this algorithm, we use a

minimum subset of the common SPN state information, such as the set of neighbors.

Finally, we have evaluated our data adaptation module against a theoretical anal-

ysis of the critical properties that influence in the performance of our adaptation tech-

nique. These results establish the minimum bound for the results that will be depicted

in the services to be described in the following chapters. The most important property

3.4 Conclusions 109

is that our framework suits better for high dimensional data spaces, as we have seen in Sec-

tion 3.3.3.1. Even though the main two factors that limit the good performance on the

data adaptation and range-based operations are the selectivity ratio and the keyspace

precision. The former is user dependant and cannot be controlled. However, it is easy

to see that for high selectivity ratios, the number of rendezvous nodes will grow, re-

stricting the performance of our approach. The latter confines the number of adaptable

dimensions to the keyspace, yet it is not under the framework’s control. For instance,

with a 160-bit node identifier (like in Chord [7]), our framework would tolerate up to

80 dimensions. That is, the adaptation technique necessitates a minimum of 2 bits per

dimension.

With this chapter we have illustrated not only our framework, but also the data

adaptation module. This module consists the BM function and the algorithm support-

ing range-based operations, which illustrate and validate the second and third contri-

butions of this thesis. For further validation, we instance our framework and the data

adaptation module in three different services in the following chapters, establishing

the soundness of our design.

110 3. A FRAMEWORK FOR DEVELOPING APPLICATION-LEVEL SERVICES

4
Multi-dimensional data management

This chapter describes how our adaptation technique can be used to provide data

management services, constituting the core of our data management module. In par-

ticular, we detail two use cases out of most demanded services. The range query

services are presented in Section 4.1. In addition, we worked toward the provisioning

of geographical location services, illustrated in Section 4.2.

4.1 Supporting range queries

Similarity search is a hot research topic on peer-to-peer systems. In this section we

present SQS, a similarity query scheme for peer-to-peer databases. In this approach

we employ our novel linearization mechanism seen in Section 3.3, that enables struc-

tured queries without the burden of a global information maintenance scheme. The

system offers exact match and range searches of multi-dimensional data. To illustrate,

SQS is instantiated in Cyclone, a hierarchical overlay that is able to build disjoint clus-

ters in terms of network latency, and enables load balancing on searches by caching in

a per cluster scheme. We conclude this use case demonstrating the good properties of

SQS through representative simulation results.

4.1.1 Introduction

Earlier peer-to-peer proposals were unstructured overlays, like Gnutella [6]. Their

communication scheme was based on flooding mechanisms, incurring on an impor-

tant amount of overhead. Later, SPNs and the DHT paradigm emerged (e.g., CAN [11],

Chord [7], Pastry [8]), providing exact match queries with good performance qualities.

These systems perform insertion and lookup of data via consistent hash functions,

thus guaranteeing a uniform data distribution over the network.

Nevertheless, real-life applications demand more complex searches, such as range

queries. These kinds of searches enable the user retrieve related or similar data objects to

the query. Nevertheless, SPNs do not deal with these kinds of searches. Instead, due

112 4. MULTI-DIMENSIONAL DATA MANAGEMENT

to the use of consistent hash functions, we would need to flood the entire network for

retrieving all related content, which becomes unacceptable for large-scale networks.

All these (distributed) applications present the same elements in their architec-

ture: a multi-dimensional data domain with data objects being stored and searched;

a distance function which defines the similarity between two data objects; and the

algorithms for storing and searching the content. For instance, consider an image

querying system where users publish images. These images are characterized by real-

valued D-dimensional feature vectors. A query in this system consists of such a vector

and the user expects the most similar images to it. Indeed, Information Retrieval (IR)

applications work in the same manner, where each text document is characterized by

a D-dimensional vector with the best descriptive terms. In both cases, when a search is

performed, applications must evaluate the similarity of various data objects accord-

ing to some distance function, e.g., Euclidean distance for image retrieval applications

or Cosine distance for text retrieval ones, as well as each (distributed) application de-

cides how and where to store the content.

In particular, our approach aims at supporting efficiently similarity searches for a wide

range of applications in large scale peer-to-peer systems. To do so, we leverage our data map-

ping scheme and the related set of algorithms for storing and searching the content, which

operates without the burden of a global information maintenance scheme (see Sec-

tion 3.3). This work provides room for semantically different applications, to which

we provide similarity query services. Indeed, these applications can be collocated

within the same SPN and operate efficiently. It is easy to see that the users of our simi-

larity query services are the specific applications, such as image or document retrieval

applications.

Nevertheless, there are some technical challenges that we have to address prior to

constructing the similarity query services:

• Efficiency on content placement and search. Data objects must be placed taking

into account the overlay network structure to get the benefits of its routing proper-

ties, such as the network diameter.

• Latency-aware operation. Large-scale distributed systems should afford a low

communication cost, for example, in terms of latencies and number of hops. In

our opinion, an overlay network that fits better with the underlying Internet

architecture suffers from less communication penalties.

4.1 Supporting range queries 113

• Load balancing. The state information in the system must be manageable (i.e.,

list of neighbors, routing table and data indexes). In addition, both storage and

computation costs should be approximately the same for all nodes.

• Consistency. A system is data search consistent when content is always found

whenever this is available in the system. A certain level of consistency may be

guaranteed via caching and replication on any system, but then this becomes

more loaded and, hence, less efficient.

• Multi-domain support. The system has to provide transparently both multi-

domain support and space-mapping to applications. The former enables different

contexts for applications (i.e., a database for each application). The latter ad-

dresses how the application domain is mapped onto nodes; in other words, it

shows where a multi-dimensional object is placed in the network, in such a way

that the overall efficiency is guaranteed.

Our SQS system addresses all the challenges described above. In particular, we

view the following issues as the main contributions of this work:

• We provide with SQS a novel scheme for mapping the content to the nodes

within the network, based on our Bit Mapping function (BM) (see Section 3.3.1).

By this scheme we can offer a common search algorithm for answering similarity

queries efficiently, but personalized to each application.

• We use Cyclone [42] as the overlay network. Cyclone is able to build a hierarchy

of disjoint clusters of nearby nodes, for instance, in terms of latency. Besides,

we leverage Cyclone’s properties, so that we efficiently exploit its hierarchy for

guaranteeing load balancing throughout the clusters.

• SQS provides multi-domain support. That is, we offer these similarity search

services simultaneously to several applications, guaranteeing separately their

consistency.

The key issue behind SQS resides on the BM mapping scheme that defines where

to record data objects in a peer-to-peer database, and also defines a set of algorithms to

perform efficiently similarity queries. Broadly speaking, this mapping scheme builds

the key to be routed through the overlay network, having as its input the vector that

describes any multi-dimensional data object. Searches are processed in a similar way

so that related objects are found.

114 4. MULTI-DIMENSIONAL DATA MANAGEMENT

The presentation of this work is structured as follows. In the following section

we make a succinct review on the related work of our approach. In Section 4.1.3 we

introduce our range query service, with the description of the drawn SPN and the con-

struction of our high-level service. We evaluate our approach in Section 4.1.4 whose

results prove the soundness of our design. We give some concluding remarks about

SQS in Section 4.1.5.

4.1.2 Related work

There exist several works in similarity search in the P2P field. We have stated an

extended analysis in Chapter 2, where, in particular, we reviewed P2P systems pro-

viding range queries (Section 2.5). Nevertheless, for the sake of clarity, we make in the

following lines a concise review of the related work in the field of this work.

Earlier works such as PHT [55] and SkipNet [26] only offer range queries for one-

dimensional datasets. Other systems support multi-dimensional similarity searches,

even though they address partially the challenges described above. Some examples

are SkipIndex [28] and the work of Bin Liu et al. [57].

Some of existing systems operates with a multi-dimensional domain to identify

nodes and can map multi-dimensional content onto nodes with a little effort [29,

97]. Because most SPNs use one-dimensional keyspaces to identify nodes, these so-

lutions need some mechanism to map multi-dimensional content into the network.

Some works, such as [26, 29, 97], use linearization functions like SFCs [33] instead

of SPN’s consistent hash functions. This kind of linearization function, also called

order-preserving hash functions or locality-preserving hash functions, addresses get-

ting similar content distributed near the same place into the network. By distributing

the data this way, the goal is to visit only few nodes for any arbitrary search. But lin-

earization functions and related querying algorithms are oblivious to the underlying

SPN topology. Thus, semantically close nodes may be far in terms of communica-

tion cost. Our approach, however, is aware of the underlying SPN and benefits from

Cyclone’s overlay topology. By leveraging Cyclone, we are able to reduce communi-

cation costs. Above all, the most similar to this work is ZNet [32], so that we evaluate

SQS against ZNet in Section 4.1.4.

ZNet is based on Skip Graphs and uses SFCs to map multi-dimensional data ob-

jects to nodes. ZNet and this work are similar in the following terms: (i) the mapping

scheme builds a logical hierarchy, defining where to place the content; (ii) this scheme

enables nodes to easily check whether they own content related to a similarity query,

by comparing the value of their node identifier and the query; and (iii) consecutive

4.1 Supporting range queries 115

nodes in the node identifier domain have contiguous data domain fragments. In ZNet,

nevertheless, data is mapped onto a flat overlay network and data load balancing is

addressed by joining and rejoining nodes into heavily loaded network zones, which

becomes an excessive management cost. This data management mechanism prevents

from a real scalability and feasibility of the solution. Eventually, ZNet does not deal

with network communication costs and can support just one application at a time.

4.1.3 SQS: the Similarity Query Scheme

SQS aims to be a large scale system for similarity searches. As we can see in Fig. 4.1,

Cyclone appears in the bottom tier, which supports the SQS services in the upper

tier. SQS similarity services are built from two main building blocks, to wit Storage

and Search services. To provide them, SQS uses the Bit Mapping services to adapt

and process both data objects and queries. SQS differs from other systems because

it leverages the underlying overlay topology to boost the query performance. In the

top tier, specific Applications use our similarity search scheme and benefit from our

distributed, scalable solution.

sendMessage
del iverMessage

getLinks

High- level
Service

Provisioning
Framework

notif icat ions

Data Adapta t ion Module

High- level Services

Rout ing
Algor i thms

Bit
Mapp ing

SQS: Similari ty Services

Applicat ionsDistance
Function

Storage
Services

Search
Services

store , exactMatch , rangeQuery

Over lay Network (Cyclone + Chord)

Figure 4.1: SQS Architecture

116 4. MULTI-DIMENSIONAL DATA MANAGEMENT

4.1.3.1 Electing the Routing Infrastructure: Cyclone

In this work we have selected Cyclone [42] as the SPN substrate where to deploy our

range query services. Rather than a specific overlay network, Cyclone is a framework

for arranging a set of structured disjoint overlays into a hierarchy, without imposing

a specific overlay topology for the leaf clusters. In this case, as a proof of concept, we

have selected Chord [7] as the instantiated overlay within Cyclone. The reader can find

an example of a Cyclone architecture in Fig. 4.2.

An important feature of Cyclone is that it is able to organize close nodes into hi-

erarchical clusters, where the closeness can be any arbitrary node’s characteristic (see

Remark 2.7). In our approach, we leverage Cyclone’s properties to construct a SPN ef-

ficiently organized to minimize the network delay, exploiting the physical proximity

of the underlying network. Further, it also provides some fundamental features like

load balancing, replication, content caching and fault tolerance.

For the sake of clarity, we present some necessary definitions in order to facilitate

the reading and comprehension of the rest of the work:

• Having a b-bit SPN keyspace, the cluster identifier clusterId is formed by the cl

less significant bits (LSB) (i.e., a suffix of cl bits), cl < b and cl ≥ l, where l is the

cluster level (illustrated in Fig. 4.2a).

• The node identifier nodeId for a node at l’th hierarchy level is formed by the most

b− cl significant bits (MSB) (i.e., a prefix of b− cl bits). This nodeId is used within

the intra-cluster overlay protocol (Chord in this case).

• A node p is tagged “EPk
Cn

”, namely Cn’s exit point for a key k, whenever p is

responsible for k in the cluster Cn.

Indeed, the following properties are the most remarkable attributes of Cyclone:

• By organizing nodes in terms of network latency, Cyclone significantly outper-

forms a traditional flat SPN (illustrated in Fig. 4.2b).

• Cyclone enables to build a hierarchical system with manageable state informa-

tion, taking only O(log |C|) inter-cluster shortcuts, where |C| is the number of

leaf clusters present in the hierarchy.

• The diameter for accessing between any two different clusters is yield to ∆ hops,

where ∆ is the number of bits for the binary representation of scId× tcId, being

scId and tcId their clusterIds, and × the bitwise exclusive OR.

4.1 Supporting range queries 117

Cluster 0

N0010

N1010

N0100

N0000

N1000
N0110

N1100

Global Ring

N0010

N1010
N1001

N1101 N0011

N0100

N0000

N1000 N0110

N1100

N1011

Cluster 10

N0010

N1010 N0110

0

1

2

Level

Cluster 1

N1001

N1101 N0011

N1011

N0100
Cluster 00

N0000

N1000

N1100

(a)

102

103

104

105

103 104 105

M
ea

n
la

te
nc

y
tim

e
(m

s)

Number of nodes in the network

Chord
Cyclone 2 levels
Cyclone 3 levels

(b)

Figure 4.2: Cyclone architecture. (a) Example of a Cyclone setting, describing the loca-
tion of nodes within the clusters. The instantiated SPN is Chord. (b) Communication
cost in a flat Chord against the 2- and 3-level Cyclone with Chord as instantiated SPN.
The simulation scenario is as follows. GT-ITM topology with 100-node highly connected
backbone. Latency weights: 10ms for backbone edges, 100ms for backbone- stub edges
and 5ms for stub-stub links. To construct the network with the desired size, we attach a
suitable number of Cyclone nodes to each stub node assuming a latency of 1ms for these
edges.

• Cyclone’s lookup algorithm takes advantage of the network locality, firstly look-

ing up in leaf clusters and then, if necessary, forwarding greedily the query to a

foreign cluster, via the exit points, until the responsible node is reached.

• Exit point nodes are elected for data caching and replication, achieving an ef-

ficient search load balancing. Intuitively, the first lookup will retrieve the data

object from the owner (cluster-foreign) node, but extra lookups will match in the

local cluster’s exit point nodes.

For further details about Cyclone, we refer the reader to the background, in Sec-

tion 2.1.2.1, where we have described it, or to have a look at [42] for full details about

this hierarchical peer-to-peer network.

4.1.3.2 SQS Services

We have designed storage and search algorithms to provide efficiently similarity search

services for a wide range of applications. Particularly, SQS supports exact match and

range searches for multi-dimensional data, based on the Algorithm 3.1 for range-based

operations. At a glance, the entire process for an insertion or search operation is the

following.

Insertion and search operations are started at Application tier. The Application

establishes the data object and related data to be inserted or the range query to be

118 4. MULTI-DIMENSIONAL DATA MANAGEMENT

searched. Data objects must be objects, to wit point data objects. Nevertheless, range ob-

jects like (hyper)rectangles may be inserted, transforming them into high-dimensional

objects.

Afterwards, SQS firstly maps either the data object or the range query into the SPN

keyspace. We base the mapping of this multi-dimensional data on our data adaptation

module, specifically in our Bit Mapping (BM) function (see Section 3.3). Basically, BM

constructs a single key or a keyset from an object or a range query, respectively. Since

data objects are mapped into a single key, the corresponding messages are trivially

routed through the overlay routing infrastructure to the responsible node. The same

is not true for range queries though.

We define a parallelized breadth-first-like range search algorithm. This algorithm is de-

picted in Algorithm 4.1, based on Algorithm 3.1, which also takes into account the hi-

erarchical structure of Cyclone. To illustrate why, consider a range query RQ, which is

disseminated into sub-queries through neighbors of the querying node. Whenever the

sub-queries cannot be answered from within a single Cyclone’s cluster, nodes route

them through the Cyclone hierarchy. Conversely, whenever the search strictly relies

in a single cluster, nodes of this cluster take advantage of the intra-group low com-

munication cost. Remember that nodes are organized by network latency. That is,

the deeper the cluster level, the closer the nodes. Therefore, the query resolution al-

gorithm benefits from Cyclone and its latency-aware node organization to boost the

process, reducing the communication latency. This effect was already visible in the

comparison of Cyclone against a flat Chord in Fig. 4.2b.

As we can see from Algorithm 4.1, responsible nodes (i.e., rendezvous nodes) look

for objects fulfilling the range query predicates into the set of locally stored data objects

O′ (line 3). The percolation rule for objects to be selected is specified by MQ, which is

defined as follows:

Definition 4.1 (Distance function for objects and range queries) Let the application do-
main space O be D-dimensional. Let RQ be a range query defined in such a data space. Let
o be a data object to check if it fulfills the RQ’s predicates. The function MQ establishes the
distance between a range query and an object as follows:

MQ(RQ, O) =

0 i f∀i = 1, 2, . . . , D : RQi.lowerBound ≤ oi ≤ RQi.higherBound

6= 0 otherwise.

Actually, MQ is the distance function provided by the Application to our services

in order to calculate not only the containment of objects into a given range query, but

also distances between objects. Notice that when two objects are placed in MQ (i.e.,

4.1 Supporting range queries 119

Algorithm 4.1 range query
/* Distributed resolution of range queries. */
Input: node← Reference to the local SPN node
Input: KS← Selected keyset (i.e., KS = BM(RQ))
Input: RQ← Range query to process
Input: origin← Reference to the node originating this query

1: localKS← segment(node, node)
⋂

KS
2: if localKS 6= ∅ then /* node is a rendezvous node */
3: answer ← {o ∈ O′|MQ(RQ, o) = 0}
4: if answer 6= ∅ then
5: send(origin, answer, RQ, node) /* (partial) answer to the query */
6: end if
7: end if
8: remainKS← KS \ localKS
9: neighbors← getLinks(node)

10: while remainKS 6= ∅ do
11: rnode← extract a node from neighbors
12: rnodeKS← segment(node, rnode)

⋂
remainKS

13: if rnodeKS 6= ∅ then
14: range query(rnode, rnodeKS, subs, node)
15: remainKS← remainKS \ rnodeKS
16: end if
17: end while

MQ(o1, o2)) the same rules applies (having RQi.lowerBound and RQi.higherBound been

replaced by o1i, so that the condition comes as o1i = o2i). When an object o is not se-

lected by a range query RQ (resp. does not equal another object o2), the distance func-

tion determines numerically in an Application-specific fashion the closeness between

them. Note that we only use MQ as a boolean function, even though other services like

top-K queries or k-nearest neighbors would rely on the differences to locally classify

objects for the given query.

Storage and Search Services

Specific Applications have their multi-dimensional data domain and must provide

to SQS the monotone mapping functions and the set of mapping bits B, which are

necessary for our BM function to work properly. SQS then employs the BM function to

adapt objects and queries into the SPN keyspace, so that SQS is able to provide storage

and search services. The reader can observe the relation of the provided services in

120 4. MULTI-DIMENSIONAL DATA MANAGEMENT

Table 4.1.

Storage service. We provide to Applications the function:

store(appName, attributeName, dataObject[, relData])

This function enables to store content related to each appName Application individu-

ally. Further, we provide flexibility to applications letting them to store as many kinds

of content as they need, easily specifying different attributeNames. In the end, this

function applies the BM function to the multi-dimensional dataObject, resulting in a

mapped key k = BM(dataObject). A message is built with all this information and

routed through Cyclone. The Application standing on the Cyclone node responsible

for k will store dataObject and the related content relData if present. The idea behind

relData is to allow the Application to associate any kind of data to a given data ob-

ject for a later lookup. Recall that the total number of mapping bits is desirable to be

(nearly) the same than the number of bits of the node identifier domain in order to

balance the data storage load.

Search services. We provide both exact match and range searches within SQS. The

exact match search:

lookup(appName, attributeName, dataObject)

operates like the store service, but retrieving the dataObject and the related information

relData if available. The main focus of these services relies on the range query, via the

function:

rangeQuery(appName, attributeName, predicates)

where predicates are expressed as {[min1..max1], . . . , [minD..maxD]} for a D-dimen-

sional data space. We employ the tree-based BM search algorithm described above

and applied onto the hierarchical Cyclone. Each node that has data objects selected

by the range search answers with all records of the form {dataObject[, relData]}. We

adopt individual instead of cumulated results from nodes to build manageable mes-

sages in terms of their size, as well as to provide promptly search results.

4.1.4 Similarity Query Scheme: Evaluation

In this section we conduct the evaluation of SQS. The goal of this analysis is to show

the feasibility of our distributed approach, as well as the suitability of our distributed

algorithms for the range query resolution. To do so, we present two separated evalu-

ations of our approach. The first one introduces the efficiency and scalability of SQS.

4.1 Supporting range queries 121

Table 4.1: Provided SQS storage and search services.

Storage services
store(appName, attributeName, dataObject [, relData])

Search services
lookup(appName, attributeName, dataObject)
rangeQuery(appName, attributeName, predicates)

Afterwards, we compare SQS against ZNet [32]. As we have seen in the related work

(Section 4.1.2), ZNet is the most similar work to our solution. In both cases, we reckon

the number of routing nodes as the main property for the scalability of the given ap-

proach, since it is strictly tied to the distributed solution design. Recall that routing

nodes are such nodes that are visited as part of the query routing process, but that

they do not contribute with results to the query. We refer to this overhead as noise.

We obtained the evaluation results by simulation means. The default simulation

settings, otherwise noted, are as follows:

Table 4.2: List of parameters of the simulation settings.

Parameter Value [default]

|I| 24 bits
N 1K..100K nodes [8K]
Num. dimensions 2..20 [8]
Num. mapping bits 12..1 [3]
Dataset size 300K data objects
Num. queries 20K

We have set up the size of keyspace I to |I| = 24 bits to get the simulation results in

a suitable response time. Given the 24 bits of the keyspace I, we set up the number of

mapping bits as the maximum value mb that accomplishes the following inequality:

num.dimensions× mb ≤ |I|. For instance, in an 8 dimensional data space, the corre-

sponding mb value is 3 (as seen in Table 4.2). We have conducted the simulation by

using synthetic datasets from 2 to 20 dimensions with two different data distributions:

a uniform and a skewed one, based on a normal distribution. We have addressed the

simulation by realizing 20K queries, where 100 randomly selected nodes performed

200 range queries. Since the results were very similar for both data distributions, we

only present the results from the uniform one.

122 4. MULTI-DIMENSIONAL DATA MANAGEMENT

Efficiency and suitability of SQS We address the SQS performance evaluation mea-

suring the number of routing nodes (i.e., the noise). In addition, we also account the

algorithm efficiency ratio, which exhibits the ratio of routing nodes related to the to-

tal number of visited nodes:

efficiency ratio =
num. rendezvous nodes

num. rendezvous nodes + num. routing nodes

This evaluation is addressed via simulations with up to 100K nodes. As depicted in

Fig. 4.3, the number of routing nodes grows logarithmically with the network size.

Conversely, the algorithm efficiency ratio is kept almost constant in the little range

78%..88%. In other words, our range query algorithm only reports from 22% down to

12% of noise in terms of routing nodes. This occurs because both the mapping scheme

and the query distribution scheme of the algorithm nicely fit the Cyclone architec-

ture. Otherwise, the presented routing efficiency ratio would be worse. However, the

efficiency does not grows linearly, but sublinearly, because our range-based routing

algorithm requires a minimum set of nodes to reach rendezvous nodes. This is not

only a proper issue of our range query algorithm, but also a tightly related one to the

underlying SPN routing scheme (Cyclone in this case).

 50

 100

 200

 300

 400
 500

103 104 105

 0.8

 0.83

 0.86

 0.89

 0.92

M
ea

n
nu

m
be

r o
f r

ou
tin

g
no

de
s

R
ou

tin
g

ef
fic

ie
nc

y
ra

tio

Number of nodes in the network

Mean routing nodes
Efficiency ratio

Figure 4.3: Range query analysis, comparing the number of routing nodes (i.e., noise)
against the efficiency rate. Num. of dim.: 8. Num. of mapping bits per dim.: 3.

SQS vs. ZNet evaluation. To evaluate both systems we consider the four factors

that are involved in range queries and that should be analysed: data dimensionality

4.1 Supporting range queries 123

 50

 75

 100

 125

 150
 175
 200

2×103 4×103 6×103 8×103 1×104

M
ea

n
nu

m
be

r o
f r

ou
tin

g
no

de
s

Number of nodes in the network

ZNet
SQS

(a)

 10

 100

 1000

2 4 8 12 16 20

M
ea

n
nu

m
be

r o
f r

ou
tin

g
no

de
s

Number of dimensions

ZNet
SQS

(b)

 10

 25

 50

 75
 100

 150
 200

0.05 0.1 0.15 0.2 0.25

M
ea

n
nu

m
be

r o
f r

ou
tin

g
no

de
s

Selectivity

ZNet
SQS

(c)

Figure 4.4: Range query evaluation between SQS and ZNet systems. Default simulation
settings: 8-dimension data space; 8K-node network; 20% of selectivity ratio. The network
size ((a)), the number of dimensions ((b)) and the selectivity ratio ((c)) are considered.

and distribution, range selectivity and network size. To do so, we evaluate our so-

lution SQS against ZNet [32] in a common evaluation scenario with up to 10K-node

networks. The results of this evaluation appear in Fig. 4.4 and present the number of

routing nodes according to the simulation settings.

Since uniformly distributed datasets presented similar behavior to skewed ones,

we only include the results from the first datasets in Fig. 4.4. Therefore, we only con-

sider into analysis the network size, data dimensionality and range selectivity in Fig. 4.4.

We can observe in Fig. 4.4a that in both systems the number of routing nodes in-

creases with network size. While in ZNet the noise raises almost linearly to the net-

work size, SQS suffers from a logarithmic increase as depicted in Fig. 4.3. The reason

behind that is because of our BM function and the range query algorithm. Since we

assume a uniform distribution of nodes within the keyspace, and considering that the

BM function maps a range query into discontinuous disjoint segments of keys, more

rendezvous nodes lie in the same segment than in ZNet, so that the number of routing

nodes remains almost unaffected in our approach.

124 4. MULTI-DIMENSIONAL DATA MANAGEMENT

In Fig. 4.4b we can observe that as long as the number of dimensions rapidly in-

creases, so does the number of routing nodes in ZNet. Conversely, due to the high di-

mensional effect, the range queries deployed on SQS on higher data spaces are mapped

to smaller keysets. This way, reducing the mapped keyset size, we also decrement the

number of potential rendezvous nodes, so that the total cost of the resolution of range

queries in SQS notoriously decreases. For the same reason, SQS does not suit for very

low dimensional data spaces (see dimensionality 2 from the graph).

The last Fig. 4.4c analyses the effect of the selectivity ratio on the range query.

SQS outperforms ZNet in all cases. In fact, given a network size and incremental

range selectivity, SQS does not increase the number of routing nodes in the same order

of magnitude than ZNet, due to the SQS tree-based search algorithm. To illustrate,

notice that the effect of augmenting the selectivity ratio in SQS is the definition of

wider segments of keys. In consequence, visiting neighbor nodes of a rendezvous

node within a certain segment do not incur on additional routing nodes, as long as

they are also rendezvous nodes.

Load balancing. In this analysis we have not addressed the issues related to the

data distribution, such as the data distribution and the corresponding data load into

nodes. In addition, we have deployed no caching nor replication technique into the

simulation. Nevertheless, note that SQS would benefit from data caching by placing

the copies into exit points, so that the first query within a cluster C1 would retrieve

the results from the target cluster Ct and would store a copy of the results into the exit

point at cluster C1, namely EPQ
C1

for a query Q. However, any further query Q from

another node from cluster C1 would match the copy at exit point node EPQ
C1

. This way,

the solution would drastically reduce the response time, since the query would have a

latency of O(log |C|) instead of a O(log N), where |C| is the number of nodes at cluster

C. This is a benefit of employing Cyclone as our underlying SPN.

4.1.5 Conclusions

In this work we have addressed the problem of a similarity query scheme for dis-

tributed peer-to-peer databases, namely SQS. We have proposed a latency-aware ap-

proach leveraging Cyclone SPN, that boosts the SQS Storage and Search Services, en-

abling similarity searches for multi-dimensional data spaces. As depicted in the API

we provide along with SQS, we enable the coexistence of a wide variety of applica-

tions, where each of which can store different kinds of data, with no limitation on

the data dimensionality. We have preferred to provide a generic range query system,

4.1 Supporting range queries 125

enhanced with global low communication cost, than to maintain data strictly contigu-

ous as occurs in ZNet. To do so, SQS employs the data adaptation module, in particular

the Bit Mapping function to adapt multi-dimensional objects to the SPN keyspace. In

addition, SQS has based its range query algorithm on the generic range-based opera-

tion algorithm introduced along with the BM function in the data adaptation module

(see Section 3.3). By doing so, our approach SQS has demonstrated its good qualities,

such as the low communication cost and efficient query processing, all this through

representative evaluations.

Summing up, with SQS we have presented the range query services of our frame-

work. These services present the properties that we expect for any service being

deployed in our framework, such as service efficiency, providing high-level (range

query) services to a wide assortment of applications, as well as supporting their com-

plex, multi-dimensional data spaces. In addition, by leveraging the data adaptation

module in SQS, we have constructed a SPN-generic service. Therefore, we conclude

with the fourth contribution of our thesis.

126 4. MULTI-DIMENSIONAL DATA MANAGEMENT

4.2 Geographical queries

Location-based services (LBS) receive world-wide attention as a consequence of the

massive usage of mobile devices, but such location services require scalable distributed

infrastructures in order to resolve spatial queries efficiently. We propose a novel meth-

odology to enable geographical query support to distributed hash tables (DHTs), that

was presented in our article [98]. To do so, we employ our framework and contribute

with a new geographical information system service. In particular, the contributions

of our methodology are the following ones: (a) our technique is SPN-generic, (b) it

makes an effective clusterization of nodes and information into geographical areas, (c)

providing data locality without sacrificing routing and data load balancing, (d) it is

able to answer classical spatial range queries, as well as (e) a new kind of queries we

call geocast, all of them in a distributed, scalable way. The feasibility and soundness

of our approach are demonstrated through representative simulations.

4.2.1 Introduction

The importance of geographical information systems and location-based services has

considerably increased in the last years [99]. This boom is a direct consequence of

the proliferation of mobile devices, ubiquitous networking and positioning systems.

Examples of such location-aware services include querying for specific resources in

a geographic area or even integrating information collected by sensors in a given re-

gion [100], what are called geographical range queries. In this line, Google Local or

Yahoo Local are centralized repositories that store location information and permit

spatial queries using visual map interfaces. But we are interested in achieving a scal-

able, distributed solution.

It has been widely demonstrated that structured peer-to-peer systems (SPNs) [7,

8, 9, 13]) are suitable in the large scale. These systems perform lookups in an efficient

logarithmic cost in terms of node hops, according to the number of nodes in the net-

work. Moreover, SPNs provide lookup correctness, so that if a certain object ob exists in

the system, it will be found. It is clearly a necessary property in modern (distributed)

applications.

Nevertheless, supporting geographical range queries over structured peer-to-peer

overlays is still an open research problem that implies strong challenges and a trade-

off between them: geographic information organization, multi-dimensional indexing, data

locality, and data and routing load balancing.

4.2 Geographical queries 127

Geographical information organization. Geographical information is a clear exam-

ple of (semantically) structured information. For instance, we can define that world

geographical information is categorized within continent (disjoint) geographical ar-

eas; continent information is itself organized into country (disjoint) geographical ar-

eas; and so on until the necessary level of geographical precision is reached. Hence,

we believe that a hierarchical substrate of clusters will greatly deal with the related

complexity on hierarchical information organization in distributed systems. Thus, be-

cause we are interested in giving a generic solution to SPNs, instead of solving it for

specific SPNs, we introduce in this work a SPN-generic methodology to get geographical in-

formation efficiently clustered and, this way, perform efficiently spatial range queries over the

system. We have also designed a new kind of aggregated lookup so-called geocast, that

retrieves efficiently related information from the different local geographic levels leveraging

the clustered peer-to-peer substrate.

Multi-dimensional indexing. We assume a geographical information system as a

two-dimensional problem solving: Geographical location, defining the geographical area

where the information is related to, and keywords, describing the kind of resource

made available. We generically call these two variables geotags and tags, respectively.

< geotag : Spain, tag : capital >: Madrid is an example of geographical data, formed

by a pair of the form < key >: value. Thus, the system must perform in an efficient

way insertions and searches of information by declaring both geotag and tag. To give

an example, one can imagine a Google Local user looking for (tag:) Italian restaurants

in (geotag:) Madrid. And the user wants a delay-less answer with related results.

Data locality and data load balancing. Furthermore, as the uniform hashing func-

tions employed in SPNs (e.g., SHA-1) destroy the semantic proximity, a trade-off is

presented to the designer: how much data locality is preserved versus how much

data load balancing is retained. If the adopted solution retains the data locality (e.g.,

by means of Space Filling Curves (SFCs) [33]), then there will not be data load balanc-

ing between nodes and, therefore, some external technique must be applied to balance

the data load. Instead, if the solution ensures data load balancing (e.g., [31]), then this

solution will not preserve the semantic proximity and performing higher level opera-

tions (like range queries) will be very expensive [55] in terms of communication cost.

128 4. MULTI-DIMENSIONAL DATA MANAGEMENT

Routing load balancing. This property enables the distributed system to route effi-

ciently without hotspots. As conventional SPNs define the number of outgoing con-

nections to other nodes, we measure the routing unbalancing in terms of the number

of node incoming connections. To achieve routing load balancing, nodes should have

the same number of incoming connections in average. Let us show a counterexample.

Suppose a ring topology (like in Chord [7]) where most of the nodes are concentrated

in a relative little ring sector, and few nodes are distributed throughout the rest big

ring sector. In most of conventional SPNs, and in particular in Chord, it is completely

an undesirable situation. Structurally such few nodes will be true hotspots, with a

huge number of incoming connections and traffic. Instead, the concentrated nodes

will receive very few incoming connections.

To the best of our knowledge, this work is the first in such a SPN-generic clustered

proposal for an efficient organization of geographical information into a distributed

peer-to-peer system, where we believe our work contributes in the following issues:

• We map the location information into the suffix of the node identifier (ID), leav-

ing the ID prefix available for application-specific uses and providing at the same

time efficient routing through the different geographical clusters (geoclusters). We

call this suffix part the clusterId. Since our approach is based on the information

mapping into the ID, regardless the specific SPN routing tables, we promote a

SPN-generic approach.

• On the contrary to what could be initially expected, our approach provides data

locality without sacrificing the overall node load balancing and SPN routing

properties for skewed IDs. Furthermore, our system provides data load balanc-

ing, enhanced by the use of efficient cluster-based caching schemes that cannot

be achieved in flat-based overlays.

• Our system supports efficiently geographical range queries combining both geo-

tags and tags. Geotags are encoded in the clusterId and tags are stored in the

appropriate cluster.

• Finally, we also present a novel search abstraction named geocast query. Inspired

in the anycast proximity primitive, we enable efficient local-to-global queries (e.g.,

geocast tag:java) that returns information in increasing order of geographical

area (specifically region, country, continent and world), leveraging the clustered

peer-to-peer substrate and obtaining better performance results than in other flat

approaches.

4.2 Geographical queries 129

4.2.2 Related work

Geographical information systems have attracted researchers from very odd fields,

included from the distributed system field. Moreover, we presented in Chapter 2 a

review of peer-to-peer systems supporting spatial queries (Section 2.7). However, for

the sake of clarity, we develop a little review in the following lines on the related work

in the current field.

Geographical queries are in fact a special case of multidimensional data indexing,

where existing structured peer-to-peer systems adopt any of the following two alter-

natives. One option is based on the use of multidimensional structures like R-trees

and KD-trees like [101], but they do not properly scale for big networks. The second

alternative consists in performing a reduction of the multidimensionality by means of

linearization techniques, like Space Filling Curves (SFCs). SFCs have been intensively

used in distributed geographical infrastructures, enabling the use of unidimensional

structures like distributed hash tables (DHTs).

As data structures like R-trees do, the natural way of storing and managing spatial

information is into a hierarchy. This way, hierarchical peer-to-peer systems [20, 42, 102,

103] arise to naturally provide this kind of geographical queries. In PlaceLab [102]

and Brushwood [103] authors build a logical tree (Prefix Hash Tree (PHT) [55]) onto

the DHT, but losing data locality in the system and, thus, resulting in very high costs

of O(log2(n)) or O(log log(n) · log(n)) for structures with balanced depth. Some other

work like Globase.KOM [20] build a hierarchical superpeer-based overlay. Nonetheless,

a scheme based on superpeers forces some selected peers to have more responsibility,

what is not always suitable [104].

Instead, Cyclone [42] is a technique for building homogeneous hierarchical DHTs [44]

from their flat representation, and can be applied to existing structured peer-to-peer

networks ([42] includes the Chord’s case study). In this kind of hierarchical systems,

there is no super-peer, but nodes participate in all levels they are present in (for fur-

ther details see Section 4.2.3.2). Therefore, this approach makes no difference between

peers, balancing the responsibility (and thus the load) through all peers.

Many authors have proposed to gain data locality using specific location-based

node identifiers. Similarly in essence to IP subnetting, that partitions the IP address

into network and node bits, in [105] authors embed location information in the ID

prefix. This is however a risky approach, because not applying the consistent hashing

for a random ID assignment will lead to non-uniform distribution of nodes and thus

load unbalancing in the overlay. In the same line, TOPLUS [106], eCAN [23] and

SCAN [107] achieve node and data locality taking advantage of IDs. Like before, in

130 4. MULTI-DIMENSIONAL DATA MANAGEMENT

a geographically uneven node distribution, these systems balance neither data nor

routing load.

Overlays based on data-centric Skip Graphs/Nets [61] provide data locality while

ensuring at the same time routing load balancing. SkipNet [26] achieves that using

two IDs: a randomly selected numericID and a contiguous nameID. It is thus possible

to use location-based IDs in Skipnet’s nameID. In fact, we will compare our approach

against SkipNet employing this location-based nameID, in order to take advantage of

the SkipNet routing. The major drawback of such approaches is data load balancing:

neither virtual node nor constrained load balancing techniques do really solve the

aforementioned problem for skewed data sets.

Unfortunately, the above data-centric Skip Graph/Nets and tree-based approaches,

which guarantee in some way data load balancing, leave unattended some of the chal-

lenges presented in this section: geographic information organization, multi-dimensional

indexing, data locality, and data and routing load balancing. Furthermore, remember that

our approach is SPN-generic and, thus, leverages the peer-to-peer substrate proper-

ties.

As for the term geocast, in mobile ad-hoc networks, geocast defines a geographi-

cally localized multicast. In other words, “geocast aims to send a message to some or

all nodes within a geographic region.” [108]. However, we see geocast as a geograph-

ically localized lookup, retrieving information from different geographical locations

with a single operation.

4.2.3 Geophony: Geographical Information Services

We call Geophony to our geographical information services, that is included in our

services framework. Geophony aims at providing geo-localization at the large scale.

As we can see in Fig. 4.5, we use Cyclone [42] as the underlying SPN, over which our

services rely on. In this case, we employ Symphony [13] as the instantiated SPN into

Cyclone. We call Geophony to the resulting homogeneous hierarchical SPN, which by

abuse of notation also names the geographical information services presented in this

chapter.

Geophony services presented in the central tier are built by two main blocks: (i)

the Storage Services that are responsible to record new information into the system,

and (ii) the Search Services which provide exact match lookups, spatial queries and also

our new primitive geocast search. Since the store function is very similar to the exact

match query, we will only delve into the search services in the following sections.

4.2 Geographical queries 131

As for adapting both data and queries to the underlying SPN keyspace, we base

the new geographical information mapping approach on our aforementioned Bit Map-

ping services. In particular, we differentiate between the location mapping and the

semantic information mapping when producing new IDs, so that these IDs get em-

bedded both kinds of information and will benefit for node and data clusterization in

terms of geographical proximity.

Lastly, in the top tier Applications are present, which employ our geographical

information services in a distributed, scalable way. With Geophony services we aim at

providing seamlessly geographical location services, boosting the query performance

even in the presence of nodes non uniformly distributed into the SPN architecture.

sendMessage
del iverMessage

getLinks

High- level
Service

Provisioning
Framework

notif icat ions

Data Adapta t ion Module

High- level Services

Rout ing
Algor i thms

Bit
Mapp ing

Geophony: Geographical Informat ion Services

Applicat ionsDistance
Function

Storage
Services

Search
Services

store , exactMatch, spat ia lQuery, geocast

Over lay Network (Cyclone + Symphony)

Figure 4.5: Geophony Architecture

4.2.3.1 The methodology

The idea behind our methodology consists in grouping nodes and information ac-

cording to their geographical location. To do so, we define a hierarchy of disjoint

geographical areas, which is traduced in a bit string and then embedded into the ID.

132 4. MULTI-DIMENSIONAL DATA MANAGEMENT

Doing so, not only does our methodology group nodes by their location, but also it

guarantees that data is stored into the related geographical area.

Specifically, we propose to employ a suffix-based assignment scheme to embed loca-

tion information into the ID. The novel contribution of our approach is that our design

leverages the structural properties of the peer-to-peer substrate and, while embed-

ding such location information into the suffix ID part (clusterId), our design supports

geographical queries at distinct granularities, grouping nodes on successively more

specific geographical areas, and sacrificing neither routing nor data load balancing.

We believe that homogeneous hierarchical peer-to-peer systems, like the provided

by Cyclone [42], are necessary to deal with the current problem. This is why we have

employed Cyclone into our approach. In particular, Cyclone nicely fits not only the

hierarchical nature of a geographical information space, but also our suffix-based as-

signment scheme. As a case study, we detail how we apply the Cyclone algorithm onto

Symphony [13] to produce what we call Geophony. We have selected Symphony as the

Cyclone’s instantiated SPN for its flexible selection of long links, that also enables an

efficient routing in large scale networks with nodes non-uniformly distributed within

the keyspace. Nevertheless, our approach is SPN-generic and, thus, other SPNs like

Chord can be used instead of Symphony. We describe Geophony in the following sec-

tion and how location information is embedded into the ID in Section 4.2.3.3.

4.2.3.2 A geographically clustered SPN

We apply Cyclone [42] algorithm to Symphony [13], producing a system we call Geo-

phony [98], to reflect the hierarchical organization that naturally emerges in any geo-

graphical information system. Let us refer to Symphony as conventional, in clear refer-

ence to the conventional operation of the SPN which Cyclone is applied to. To explain

Geophony, we describe in the following lines the clusterization mechanism, its routing

table, routing algorithms and main properties. Even though we have already broadly

introduced Cyclone in Section 2.1.2.1, we ellaborate on Geophony since it is part of

our contributions.

Clusterization mechanism. As we have seen in Section 2.1.2.1, Cyclone is a generic

technique to construct a homogeneous hierarchical SPN from a flat one, so that every

node participates in all levels it pertains to (see Fig. 4.6a). This way, one can obtain

the best of both worlds, without inheriting the disadvantages of either. This means

that with the same number of links per node as in the flat SPN, the routing between

any two nodes can be performed as efficiently as in the flat version. Its major virtue,

4.2 Geographical queries 133

1

2

3

Level

N00

N10 N01

1 0

1 01 0

N100

N110 N001

N1011

1

1

1

N01

N00

N10

N110 0
0 0

0 0

0 0

1

N001

N101

N010

N000

N100
N011

N1100

0
0

0

0

0
0

2

N1001 N1000

N0010

N1010

N1101 N0011

N0100

N0000

N0110

N1100

N1011

3World
(Global Ring)

Continent A
(Cluster 0)

Continent B
(Cluster 1)

Country D
(Cluster 10)

Country C
(Cluster 00)

Intra-cluster hop

Inter-cluster hop

(a)

N01

N00

N10

N110 0
0 0

0 0

0 0

1

2

3

Level

N00

N10 N01

1 0

1 01 0

N100

N110 N001

N1011

1

1

1

1

N001

N101

N010

N000

N100
N011

N1100

0
0

0

0

0
0

2

N1001 N1000

N0010

N1010

N1101 N0011

N0100

N0000

N0110

N1100

N1011

3

 World
(Global Ring)

Continent A
 (Cluster 0)

Continent B
 (Cluster 1)

 Country D
(Cluster 10)

 Country C
(Cluster 00)

Intra-cluster hop

Inter-cluster hop

N1011

1: N1010

N1010

1: N1011
2: N1000

XOR Routing Tables

(b)

Figure 4.6: Geophony routing. (a) Hierarchy and (bottom-up) conventional routing ex-
ample when node N1100 sends a message with key K0011. On every cluster, absolute
greedy routing is performed, discarding the clusterId bits accordingly at each level. (b)
Node N1011 needs to locate Country C (codified as 00) where to look for a location-based
service (codified as 01). Steps 1 and 2 are part of (top-down) XOR routing in order to lo-
cate destination cluster. Step 3 is the part of conventional routing to locate the destination
node (owner of key K0100).

however, lies in the utilization of IDs to represent real-world hierarchies. To explain

how, suppose each node is assigned an ID from the range [0, 2b) so that the cl (cl <

b) rightmost bits of its ID (expressed in binary form) are used to encode its clusterId

at level l. Recursively applying this strategy in all levels, one can easily produce a

hierarchy, where all nodes are organized into disjoint clusters at every level, having

on level 1 a universal cluster with all nodes. Hence, each peer belongs simultaneously

to at most η telescoping clusters (i.e., clusters of clusters of peers), with one in each

level, where η denotes the hierarchy depth (e.g., depth 3 in Fig. 4.6a).

Routing table. In particular, Geophony is similar to Symphony. Each node n cre-

ates O(log N) + K links (for some little constant K and the number of nodes in the

system N) to other nodes. The two operands O(log N) and K in the cost evaluation

are necessary to reflect the two types of routing a geographical information system

has to provide. We call the former (bottom-up) conventional routing and the latter

(top-down) XOR routing, in clear reference to the way the routing is performed, re-

spectively. The first O(log N) conventional links enables conventional SPN routing,

forwarding queries to those nodes responsible of performing such operations; The

last K XOR links are selected by the XOR metric and are necessary to locate a cluster

of a certain geographical area (namely, geocluster) where to perform the user’s opera-

tion. In other words, the localization of a cluster would be equivalent to zoom in/out

134 4. MULTI-DIMENSIONAL DATA MANAGEMENT

a map. Given that K is constant and that some of these links can coincide with those

of O(logN), we can consider that each node maintains O(log N) different links.

Routing algorithms. Conventional routing in Geophony is identical to routing in Sym-

phony, namely, absolute greedy routing, but operating in loops. In the first loop, a node

that wishes to route a query for a key k, it initially routes the message to the closest

node p of k within its lowest cluster C′ (i.e., p is the exit point node EPk
C′). In the second

loop, p switches to the next higher cluster and continues routing on that cluster. The

same operation is repeated in each layer until the node responsible for k is reached.

As the routing procedure goes up, more and more peers are included and the message

is closer to the destination. At the last loop, routing is executed on the global cluster,

which includes all peers in the system. It can be verified without much difficulty that

Geophony achieves logarithmic routing when each node has degree O(log N) (as in

Symphony). Fig. 4.6a depicts an example.

Note that this conventional routing enables to look up the responsible node of a

query, but it is unable to locate a sibling cluster, in order to perform there some op-

eration (e.g., a geographical query). XOR routing appears to deal with this challenge.

XOR routing employs only the K XOR links and is similar to that in [15]. Node n

routes greedily a query q to its i-th XOR node link p that minimizes the XOR distance

between query q and node p, from all the XOR link set. This process is repeated until

an arbitrary node m and query q share exactly the K rightmost bits. This means that

the query has reached successfully the destination cluster. It is easy to demonstrate

that with an amount of CL clusters, XOR routing reaches the destination cluster in

O(log CL) ≤ K node hops. Finally, conventional routing is employed to reach exactly

the node responsible of query q within the destination cluster. The reader can observe

in Fig. 4.6b an example of XOR routing.

Geophony properties. As noted in [42], a direct consequence of using suffixes as

clusterIds is that Cyclone’s performance is not affected by imbalances on clusters pop-

ulation, since Cyclone distributes uniformly the nodes within each cluster. Note that

routing efficiency is based on the assumption that nodes are uniformly distributed

along the keyspace I = [0, 2b). To see why, consider that nodes in a lowest cluster

C use the cl rightmost bits of their IDs to represent C’s clusterId. Then, it is easy to

see that by assigning the b − cl leftmost bits of their IDs uniformly at random, these

nodes become evenly distributed within C. In consequence, it results in routing load

4.2 Geographical queries 135

balancing over the whole set of nodes, what is one of the important features of our

approach.

Consistent with the previous discussion, Geophony provides another two key ben-

efits. On the one hand, it makes sure that the path from a node to another never leaves

the lowest cluster which contains both nodes, property known as path locality. On the

other hand, it allows to store (resp. retrieve) information into (resp. from) a specific

cluster representing a real geographical area, property known as content locality. Path

locality provides fault isolation and security, since interactions between nodes within a

cluster are not interfered with by node failures outside the cluster.

4.2.3.3 Location-based IDs over Geophony

As seen before, we propose to divide the ID into two fragments. The suffix part is the

clusterId and identifies a cluster. The prefix part is the nodeId and determines a node

within a cluster. It is easy to see that this ID structure nicely fits the Geophony hierar-

chy. Let us denote |nodeId| and |clusterId| as the precisions of these parts measured

in number of bits, respectively.

Now, how nodeId and clusterId are defined for every node in the system? The

nodeId is drawn uniformly at random from the keyspace [0, 2b−cl), thus guaranteeing a

uniform load distribution within every cluster. The clusterId gets a value representing

its geographical location, given by the administrator in the joining process. Its bit size is

flexible according to the application requirements. For instance, if we fix |clusterId| to
64 bits, we will obtain a region precision of millimeters [99].

To put a detailed example, we define in this work a clusterId based on political

organization of nodes. To do so, we fix |clusterId| to 40 bits and the clusterId is par-

titioned in 3 geocluster levels, from right to left: continent (3 bits), country (7 bits) and

region (30 bits) divisions; See Fig. 4.7 for this ID structure. Consequently, if one chooses

160-bit IDs like in Chord (i.e., |nodeId| = 120), every subarea supports up to 2120

nodes. We believe that these bit precisions are necessary and sufficient for the present

and long time. Note that the region level guarantees a correct geographic precision,

and that the ID partition cannot be dynamically configured because it must be con-

sistent within all nodes. By obeying the partitioning to the political organization, we

provide additional semantic information to the division of nodes into clusters. Com-

plementary, the last region division enables the system to offer the necessary level of

geographical precision to the solution. In addition, note that we place the most general

concept (continent) into the rightmost part of the clusterId, and more specific concepts

136 4. MULTI-DIMENSIONAL DATA MANAGEMENT

(country and region) appear in its left side consecutively. This is not an arbitrary deci-

sion, but it enables the natural division of nodes and information into disjoint clusters.

That is, in this case, nodes from different region clusters constitute a single country clus-

ter, and in a similar way, several country clusters appear in the same continent cluster,

where all continent clusters form a single universal cluster (see Fig. 4.6a).

3730120

nodeId clusterId

0159 31040

cont inent
country

region

Figure 4.7: Node identifier (ID) structure reflecting the gegrophical division. The numbers
inside the box tell the length in bits of the ID segment. The numbers over the box specify
the position of the first bit (and last one) of each division within the ID.

We employ SFCs to guarantee a certain geographical contiguity. Therefore, this

enables to perform queries for local information and aggregated information for all these

geocluster levels. We set the codes for each geocluster level recursively. Thus, firstly,

we apply the SFC on the {latitude, longitude} centroid coordinates to set the code for

the continent division; secondly the country division code and, lastly, the region code

is set accordingly to the specific {latitude, longitude} coordinates. For the simplicity of

the algorithm, we have employed Z-curve [34] SFC, but other SFCs are also applica-

ble (e.g., Hilbert Curve [35]). The region code is computed online by each node when

joining or inserting data into the system. It is easy to see that all nodes belonging to

different regions but to the same country, will appear merged in the country geoclus-

ter. Thus, we fix the number of XOR links K to be 10 (3+7), the number of necessary

links to locate a country geocluster. Nonetheless, if we set K = 40, Geophony is able

to address a region geocluster. Note that this ID construction is static (will not variate

over the time) and independent of the peer-to-peer substrate instance, thus promoting

a SPN-generic approach.

4.2.4 Routing and Data Load Balancing

As our methodology is SPN-generic, we do not evaluate how good is the specific SPN

routing. Instead, we believe that we must analyse how the resulting homogeneous

4.2 Geographical queries 137

hierarchical SPN can achieve routing and data load balancing and, moreover, given

that actually information is not uniformly spread over the world.

In a ring-based overlay, the arc length defines both the incoming connectivity de-

gree and the keyspace segment responsible for every node. Because nodes appear

uniformly distributed at random within the leaf clusters, Geophony does not impose

any responsibility unbalancing on the arc length and, in consequence, enables rout-

ing and data load balancing. Nevertheless, Geophony suffers from hotspots for skewed

datasets in the same way that Symphony or other SPNs like Chord.

To almost mitigate the effects of this situation, caching and replication techniques ap-

pear in structured peer-to-peer systems. Given that queries for the same key always

exit a cluster through the same node, which we call exit point, Geophony defines in-

herently a caching technique based on the query path. Thus, caching requested in-

formation on these nodes will mitigate drastically the query load on the responsi-

ble node. Moreover, within every cluster one can define a replication algorithm and,

therefore, mitigate even more the incoming traffic of the responsible node. With both

data caching and replication techniques, we believe that load balancing in the overall

system is successfully addressed even for skewed datasets.

4.2.5 High-level queries

Our system provides three kind of queries: exact match queries combining tag and geotag

information, spatial range queries over geographical coordinates and a novel proximity

abstraction entitled geocast query. As explained before, geotags are encoded in the

clusterId and tags are stored accordingly in the cluster, i.e., the nodeId.

4.2.5.1 Exact match queries

Insertion (put) and search (get) of information in Geophony combining a geotag (lat,long,

geocluster) and a tag (semantic information) simply implies calculating the appropri-

ate ID. As explained before, the geotag is encoded using SFCs in the suffix, and the

tag is encoded in the remaining prefix. As a consequence, the information will be

stored in the cluster specified by the geotag (i.e., clusterId) and in the node responsible

for storing the key (i.e., nodeId) inside that cluster. Therefore, we can efficiently store

and retrieve multidimensional data combining both tags and geotags. Algorithm 4.2 details

how this operation is performed by Geophony. For adapting tags into the nodeId we

use the lexicographic order (like in SkipNet). By doing this, we provide data locality

138 4. MULTI-DIMENSIONAL DATA MANAGEMENT

inside each cluster. It is obvious that skewed datasets can imply load balancing prob-

lems, but the cluster-based caching techniques presented in the previous section can

almost overcome those problems.

Algorithm 4.2 exact match
/* Directs the query combining the tag and geotag to the responsible node. */
Input: n← current node
Input: geotag← geocluster where search is directed to
Input: tag← keyword for filtering
Input: level ← current geocluster level (default to REGION)
Input: querying node← the query originator node

1: key.pre f ix ← encode tag
2: key.su f f ix ← encode geotag /* End BM adaptation */
3: if n is responsible for key then /* n is the key’s exit point at this cluster */
4: if level 6= WORLD then
5: level ← higher(level)
6: neighbors← getLinks(n)
7: next node ← draw best node from neighbors according to the conventional

routing for level level
8: exact match(next node, geotag, tag, level, querying node)
9: end if

10: result set ← {o ∈ O′ | MQ({geotag, tag}, o) = 0} /* n is the responsible node
for key */

11: send(n, result set, querying node)
12: else /* Forwarding the query into the actual cluster */
13: neighbors← getLinks(n)
14: next node← draw best node from neighbors according to the conventional rout-

ing for level level
15: exact match(next node, geotag, tag, level, querying node)
16: end if

In Algorithm 4.2 is depicted how the exact match query is processed by nodes

along the query path. The idea behind this algorithm is to route the query in loops

(line 4) along all participating clusters as Geophony establishes. When the query is

forwarded at the immediate higher level (line 8), the node n is routing up to the next

higher, geographically wider cluster. Instead, the forwarding process of line 15 is

due to a routing within the current cluster. Note that only exit point nodes execute

lines 3-9, while the responsible node for key key executes the lines 10-11. In other

words, this last node n will provide directly to the querying node the results matching

4.2 Geographical queries 139

to the exact match query. When changing of geographical precision, we designed the

function higher(level) that returns just the immediate higher geographical level ac-

cordingly, i.e., COUNTRY ← higher(REGION), and so on, where the possible results

are COUNTRY, CONTINENT and eventually WORLD.

Searching for information like <geotag:lat,long, tag:jazz> involves a simple lookup

operation in the overlay with optimal logarithmic routing cost. Additionally, we can also

perform queries using wildcards like in <geotag:lat, long, tag:*> and <geotag:*, tag:jazz>

at the same cost. Specifically, the first wildcard enables the user to retrieve any sort

of information existing in a certain place (geocluster). The second wildcard enables to

retrieve any information related to jazz stored at the global ring.

4.2.5.2 Spatial range queries

A spatial range query is understood as a search of any kind of information located in

a specific geographical area. For simplicity1, we describe this area by means of the

rectangular region defined by (latMin, longMin) and (latMax, longMax). Traditional

spatial databases store geographical data using hierarchical structures (R-tree, KD-

tree) by defining Minimum Bounding Rectangles (MBRs). Leaf nodes in the R-tree

contain entries of the form (data, mbr) and non-leaf nodes contain entries of the form

(ptr, rect), where ptr is a pointer to a child node in the R-tree and rect is the MBR that

covers all the MBRs in the child node. Unfortunately, adapting these algorithms to a

distributed way is a very complex problem in the big scale.

Like in PlaceLab [102], our system can be seen also as a trie-based topology that

partitions the space and thus permits to have implicit knowledge about key loca-

tions in the hierarchy. This clearly fits the SPN lookup mechanisms and it avoids

the fragility of distributed tree topologies.

Geophony provides enhanced spatial range queries. In addition to the traditional

ones, our system enables to combine the query with tags (keywords) to further fil-

ter search information on the system side, instead of on the user side. To achieve

that, the spatial range query is defined as follows. We must calculate the linearized

suffix that minimally encompasses the entire query zone. Using Z-curve, we first ob-

tain the longest common prefix of minimum and maximum ranges for this query, i.e.,

(zMin, zMax). Then we invert this prefix and we encode it in the clusterId. Now, we

can use this suffix to traverse the tree until we reach the responsible node(s) of the

specified bounding rectangle, based on our Algorithm 3.1 for range-based operations.

1In cases when applications use the pair Global Positioning System (GPS) coordinate and a radius, it
can be easily provided as a rectangular region, by calculating its minimum bounding rectangle.

140 4. MULTI-DIMENSIONAL DATA MANAGEMENT

In this situation, a total of O(log CL + log |(zMin, zMax)|) hops are needed to deliver

the query to the responsible node(s), where CL is the total number of clusters and

|(zMin, zMax)| is the number of nodes into the search area of the responsible cluster

Ci. Note the upper bound |(zMin, zMax)| ≤ |Ci|, when search area overlaps the whole

geocluster area. We forward the query through Geophony XOR routing to locate the

target cluster, employing O(log CL) number of hops to realize such an operation. Af-

terwards, conventional routing delivers the query to the responsible node(s) in that

cluster with O(log |(zMin, zMax)|) hops. Algorithms 4.3 and 4.4 details how this op-

eration is performed, and Fig. 4.6b depicts an example of this combination of routing

schemes.

Algorithm 4.3 spatial range query
/* Starts the operation, directing the query to the requested geocluster. */
Input: n← the query originator node
Input: locMin, locMax ← define the area covered by the query
Input: zMin, zMax ←mapped area covered by the query, calculated as:

zMin← Zcode(locMin.lat, locMin.lng)
zMax ← Zcode(locMax.lat, locMax.lng)

Input: tag← keyword for filtering purposes
Input: querying node← the query originator node

1: clusterId← longest common pre f ix(zMin, zMax)
2: if n.clusterId = clusterId then
3: process spatial query(n, (locMin, locMax), (zMin, zMax), tag, querying node)
4: else /* XOR routing to reach target cluster */
5: XORneighbors← getLinksXOR(node)
6: next node← ∃q ∈ XORneighbors : q.clusterId = clusterId,

∀p ∈ XORneighbors \ {q},
MXOR

P (q.clusterId, clusterId) < MXOR
P (p.clusterId, clusterId)

7: spatial range query(next node, (locMin, locMax), (zMin, zMax), tag,
querying node)

8: end if

This Algorithm 4.3 performs the XOR routing to reach the target cluster where to

realize the spatial query. The searched area covers the region within the rectangle de-

fined by the two points (locMin.lat, locMin.lng) and (locMax.lat, locMax.lng). This

information is encoded using the Zcode() function, that calculates the Z-code accord-

ing to the Z-curve linearization function. When a node pertaining to the target cluster

is reached (line 2), this makes to start the spatial query within that cluster (line 3). See

Algorithm 4.4 to see how the spatial query is eventually developed. Conversely, the

4.2 Geographical queries 141

query is forwarded using only the XOR routing table (lines 4-8). As outlined before,

we use the greedy XOR routing similar to Kademlia one [15]. Line 6 depicts the selec-

tion of the XOR link that is closer numerically to the target cluster, where MXOR
P (a, b)

evaluates the XOR distance between clusterIds a and b.

Algorithm 4.4 process spatial query
/* Parallelize the spatial range query for those nodes responsible of a (sub)area of the
query. */
Input: n← current node, responsible of a part of the area
Input: locMin, locMax ← total area covered by the query
Input: zMin, zMax ←mapped (sub)area covered by the (sub)query
Input: tag← keyword for filtering
Input: querying node← the query originator node

1: localKS← clusterId(segment(n, n)) ∩ [zMin..zMax]
2: if localKS 6= ∅ then
3: result set← {o ∈ O′ |MQ({(locMin, locMax), tag}, o) = 0}
4: send(n, result set, querying node)
5: end if
6: node set← {node ∈ getLinks(n) | node.clusterId ∈ [zMin..zMax]}
7: for all node in node set do
8: nodeKS← clusterId(segment(n, node)) ∩ [zMin..zMax]
9: process spatial query(node, (locMin, locMax), (nodeKS.min, nodeKS.max), tag,

querying node)
10: end for

Algorithm 4.4 concludes the spatial query by visiting all nodes that are responsible

for the area (locMin, locMax). All nodes responsible for a query’s subarea (lines 2-5)

retrieve all objects matching both the spatial as well as the tag premises (line 3). In

addition, every participating node will forward the query to its neighbors that poten-

tially are responsible for part of the covered area (lines 6-10). Since the covered area

for every forwarding node is calculated and adapted (line 8), this algorithm ensures

that nodes will be visited only once and that the whole area covered by the spatial

query is traversed.

Summing up, we take advantage of suffixes (i.e., clusterId in Geophony) to effi-

ciently locate multidimensional data in specific clusters. In addition, we combine these

spatial range queries with semantic keywords (tags) to further filter the results in the

system side.

142 4. MULTI-DIMENSIONAL DATA MANAGEMENT

4.2.5.3 Geocast queries

The geocast query presented in this work is a new primitive which permits a user to

recover information associated with an arbitrary tag (in a similar way to the anycast

in [109]) in all user’s geoclusters very efficiently: starting from user’s region, continu-

ing on user’s country and so on until the global owner of the tag is found.

For example, consider a Spanish SUN researcher that wishes to retrieve the in-

formation about the projects in which it participates at all scales. That is, the SUN

projects that are being developed in Spain, the European ones, and finally the world-

wide SUN projects. Using a geocast query for the tag SUN, our system guarantees

that all the above information can be recovered within O(log N) routing hops, in

stark contrast to a conventional SPN, in which typically four queries of O(log N) hops

each would be required (informally, one query for each pair <geotag:region, tag:SUN>,

<geotag:country, tag:SUN>, <geotag:continent, tag:SUN> and <geotag:world, tag:SUN>).

Algorithm 4.5 geocast
/* Recursively, nodes at geocluster’s exit points for the given tag answer to the geocast
query. The operation starts with the following call:
geocast(querying node, tag, REGION, querying node) */
Input: n← current node
Input: tag← searched keyword in geocast
Input: level ← current geocluster level (default to REGION)
Input: querying node← the query originator node

1: if n is responsible for tag at level level then /* n is the EPtag
level */

2: result set← local search(n, tag, level)
3: if result set 6= ∅ then
4: send(n, result set, querying node) /* direct sending */
5: end if
6: if level 6= WORLD then
7: geocast(n, tag, higher(level), querying node)
8: end if
9: else

10: neighbors← geLinks(n)
11: next node← draw best node from neighbors according to the conventional rout-

ing for level level
12: geocast(next node, tag, level, querying node)
13: end if

As described in Alg. 4.5, the idea is to iterate the geographical hierarchy, routing

4.2 Geographical queries 143

the geocast query for tag T using the conventional routing, starting from the lowest

geocluster in which the querying node lives. This is done by setting the level to the

REGION level. This way, the geocast algorithm benefits from the hierarchical greedy

routing described above. See Fig. 4.6a for an example.

Once the node pT responsible for T in the regional geocluster CREGION is found in

line 1 (i.e., the exit point EPT
CREGION

for tag T in this cluster), pT returns the result for the

pair <geotag:region, tag:T> if any (lines 3-5), and continues routing on the next higher

geocluster (lines 6-8), known as country geocluster. This operation is repeated for

each geocluster until the owner for T is reached in the world geocluster. Conversely,

whenever a node p is visited and is not responsible for the tag T at the current level

level, node p just forwards the query according to the conventional routing algorithm

(lines 9-13).

Our system guarantees that all the above information can be recovered within

O(log N) routing hops, in stark contrast to a conventional flat SPN, in which typi-

cally four queries of O(log N) hops each would be required, one for every geocluster

level. To see effectively how this algorithm is processed, Fig. 4.6a depicts an exam-

ple. In this case, N1100 is the querying node, N0000 the country exit point, N0010 the

continent exit point and N0011 the world owner node. Furthermore, after every step

an answer to node N1100 is sent. In particular, we view our geocast abstraction as a

typical get() operation, which is optimal in number of routing hops (O(log N) routing

hops on average). To the best of our knowledge, we do not know of any other system

that offers such functionality as efficiently as our approach.

4.2.6 Evaluation

We present here some simulation results to validate and illustrate the contributions we

achieve with our methodology. As we have seen, Skip Graphs/Nets have been hav-

ing a lot of interest lastly for their properties, capabilities and above all for providing

nicely range queries. For this reason, we compare Geophony against SkipNet [26].

To make a fair comparison, we assume that in both systems each node maintains

O(log N) neighbours as we discussed above (in this scenario the other K XOR links are

useless). For simplicity in the simulation scenario, we choose b = 24, so IDs are binary

strings of 24 bits. In addition, we varied the number of levels from 1 (Symphony) to 4,

with K = |clusterId| of 0, 3, 5 and 7 bits, respectively. We also assume a Normal dis-

tribution assignment of each node to any of the 2K geoclusters, with σ = 0.125 and a

distributed uniformly at random µ. The reason why we use such skewed distribution

144 4. MULTI-DIMENSIONAL DATA MANAGEMENT

is to emphasize the fact that Geophony, similar to that happens in SkipNet, is insen-

sitive to the local distribution of nodes in each cluster. We vary the number of nodes

between 1K and 20K, and, for each network size, we run at least 10 differently seeded

experiments, consisting of 10K random requests each.

For the sake of clarity, we will refer as latency to the number of visited nodes by the

execution of a distributed query. When necessary, we will specify the kind of nodes

that the latency property refers to.

4.2.6.1 Routing and Data Load Balancing

Let us first evaluate numerically the average latency (in terms of number of rout-

ing hops) of Geophony vs. Skipnet (Fig. 4.8a). Note that a lower average latency

means lower network delays experienced by an end user that frequently performs ex-

act match queries. To that effect, in Fig. 4.8a we plot the routing latency averaged over

all nodes and all requests. Although the number of links per node is O(log N) for

both geometries, the figure shows that Geophony provides a lower average latency

than SkipNet, irrespective of the number of levels in the hierarchy. However, it is im-

portant to note here that the average latency increases slightly when the number of

levels in the hierarchy increases. We note, besides, that this increase is at most 2 hops.

The reason for this increase lies in Geophony hierarchical routing. While in Symphony

every node has all links available to route a query, Geophony forces a query to cross

the exit points at each level, inducing a path that is not always the optimal route (no-

tice that a node does not have available all links until level 1). In addition, although

the number of hops increases, these hops should be faster than hops in the flat SPN,

since they are inside a cluster of potentially closer nodes.

We next evaluate the performance of both systems assuming that all nodes are able

to cache answers (Fig. 4.8b, 4.8c and 4.8d). We assume that both geometries use path

caching that consists in caching the answer on all nodes through which the query is

routed. We use path caching since it is considered the most deployed caching tech-

nique for overlay networks [110]. Although at first glance it may seem inappropriate

to use caching as metric to compare both systems, we argue that it is important to

measure the potential reduction in latency a system can experience in the face of reit-

erative queries. We point out that this evaluation is somewhat complementary to that

in Fig. 4.8a, but remarking the fact that a hierarchical substrate is ideal to handle geo-

graphical information. Our motivation stems from the observation that caching, and

more generally, content delivery networks, are one of the most deployed applications

of network overlays.

4.2 Geographical queries 145

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 18 20

A
V

G
. l

at
en

cy
 (h

op
s)

Network Size (103)

Symphony
Geophony (2 levels)
Geophony (3 levels)
Geophony (4 levels)

Skipnet

(a)

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16 18 20

A
V

G
. l

at
en

cy
 (h

op
s)

Network Size (103)

Symphony
Geophony (2 levels)
Geophony (3 levels)
Geophony (4 levels)

Skipnet

(b)

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30

C
D

F
N

um
be

r L
oo

ku
ps

Number of Hops

SkipNet improvement

Geophony improvement

Geophony (4 levels)
Cached Geophony (4 levels)

SkipNet
Cached Skipnet

(c)

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12 14 16 18 20

A
V

G
. N

um
be

r c
ac

he
d

co
pi

es

Network Size (103)

Geophony (4 levels)
SkipNet

(d)

Figure 4.8: Geophony vs SkipNet exact match query evaluation. (a) Routing hops without
caching. (b) Routing hops with at most 128 cached answers. (c) Caching effect evaluation
(4.8b vs 4.8a). (d) Number of caching copies, fixing lookups to an average of 4 hops from
all nodes within the network.

Firstly, we perform the following two simulations. In the first simulation, we eval-

uate the latency reduction that the geometries experience when the maximum number

of answers to be cached for a given query is set to 128 (Fig. 4.8b). Geophony, which

takes advantage of exit points, experiences a reduction in latency greater than in Skip-

Net, which stores answers at nodes that might not be on the route to the destination.

We can see also from Fig. 4.8c that, on the existence of caching in both systems, Geo-

phony achieves clearly a reduction of the number of hops per query (almost the 95%

in 4 hops).

In the second simulation, taking the opposite view, we investigate how many

caching copies are required to store an answer A, so that the average latency to ac-

cess A does not exceed a total amount of 4 hops (Fig. 4.8d). To that effect, we assume

that all nodes perform the same query. For the sake of clarity, in this plot we only

include the results corresponding to a 4-level Geophony, which is the worst setup for

this experiment (recall that the average latency increases with the hierarchy depth). As

146 4. MULTI-DIMENSIONAL DATA MANAGEMENT

expected, SkipNet requires to cache more answers than Geophony to maintain an ex-

pected latency of just 4 routing hops. Also, notice that the number of cached answers

remains nearly constant, irrespective of the number of nodes in the system, thus prov-

ing the intuition that with our methodology and, in particular, using exit points nodes

as rendezvous where to store data caching copies the efficacy of caching is greater.

4.2.6.2 Spatial and Geocast queries

As SkipNet is a data-centric Skip Graph-based overlay, where range queries are per-

formed efficiently, we foresee that both systems will perform in a similar operation

cost on spatial range queries. On the other hand, we foresee that Geophony will clearly

outperform SkipNet in the geocast evaluation. We employ the same mapping mech-

anism on both systems, but in SkipNet it appears as a prefix-based mapping, as we

have announced in Section 4.2.2, in order to take advantage of the SkipNet routing.

We evaluate the performance of both kind of queries by the average latency.

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

A
V

G
. N

um
. h

op
s

Geophony (4 levels)
Skipnet

 1.1

 1.12

 1.14

 1.16

 1.18

 2 4 6 8 10 12 14 16 18 20

S
pe

ed
up

Network Size (103)

Mean Speedup
Geophony vs Skipnet

(a)

 5
 10
 15
 20
 25
 30
 35

A
V

G
. N

um
. h

op
s

Geophony (4 levels)
Skipnet

 3

 3.5

 4

 4.5

 5

 2 4 6 8 10 12 14 16 18 20

S
pe

ed
up

Network Size (103)

Mean Speedup
Geophony vs Skipnet

(b)

Figure 4.9: Geophony vs SkipNet evaluation. (a) Spatial range queries: Number of hops
and improvement. (b) Geocast queries: Number of hops and improvement.

Since SkipNet was designed to enable nicely range queries with a logarithmic cost,

both systems result nearly equivalent in spatial range queries, with a little improve-

ment ratio from 12% to 14% of Geophony vs. SkipNet (see Fig. 4.9a). Moreover, by

means of SkipNet’s double routing (by nameID and numbericID), SkipNet and Geo-

phony have routing and data load balancing.

Conversely, as it can be seen from Fig. 4.9b, in the geocast query evaluation our

expectations come true. Geophony improves nearly 3 times in average over SkipNet

(namely, SkipNet number of hops are 4 times greater than those of Geophony). It is

easy to see that geocast queries in Geophony nicely fit the hierarchical overlay struc-

ture, but SkipNet, a flat data-centric SPN, is penalized by performing as many queries

4.3 Summary 147

as geographical levels appear embedded into the ID (4 in our case: region, country,

continent and world).

4.2.7 Conclusions

With this work we have introduced our fifth contribution, a novel SPN-generic meth-

odology to support geographical queries onto existing SPNs. This work is based on

the results published in our article [98]. Using the Cyclone algorithm, we have cre-

ated Geophony, a hierarchical version of Symphony. We propose a novel suffix-based

location ID assignment in order to map geographical areas (i.e., continent, country

and region) and coordinates (using SFCs) to the suffix ID (i.e., clusterId). On the con-

trary to what could be initially expected, our approach provides data locality without

sacrificing the overall routing and data load balancing properties for skewed IDs. Fur-

thermore, our system supports spatial range queries combining location information

(geotags) and semantic keywords (tags). We also have presented the geocast search

abstraction, enabling efficient local incremental queries over geoclusters. We have

provided clear validation results that demonstrate that our approach outperforms flat

data-centric overlays (SkipNet) in data load balancing and geocast queries. This is a

consequence of the hierarchical clustered architecture of our model.

4.3 Summary

In this chapter we have presented two out of our contributions, which constitute to-

gether the two module services of our data management module. First, the SQS simi-

larity services are presented in Section 4.1. SQS represents the module service capable

of performing multi-dimensional range queries. Second, Geophony services follow

in Section 4.2, which forms our proposal to tackle the geo-localization necessities of

geographical information systems.

In this case, both module services rely on hierarchical SPNs based on Cyclone [42],

with different instantiated SPNs in each (Chord in the case of SQS and Symphony in

Geophony). Even though we use Cyclone as the methodology to construct hierarchical

versions of flat SPNs, the resulting hierarchical SPNs have the proper characteristics

of the instantiated SPN (Chord and Symphony, respectively). Therefore, we proved

that our framework can be successfully deployed onto different SPN infrastructures.

Consistent with our initial design, the two module services utilize the services

provided by our framework and, in particular, our Bit Mapping techniques to adapt

data to the specific SPN keyspace. In Geophony services, though, we apply a smooth

148 4. MULTI-DIMENSIONAL DATA MANAGEMENT

variation to the standard mapping function, differentiating between the location in-

formation (embedded into the suffix part) and the semantic information (embedded

into the prefix part).

Indeed, we addressed a fair evaluation of our module services against other works,

where we have proven the feasibility, soundness and efficiency of our approaches, im-

proving the performance of existing solutions. In addition, we presented new primi-

tives such as the geocast query, which allows users to retrieve information from several

geographical granularities at once. As for geocast queries, we proved that Geophony

clearly outperforms to flat SPN architectures when processing geocast searches, due

to the hierarchical nature of the query as well as the Geophony’s node structure.

In the future, top-k queries and other searches based on data aggregation could

be developed as new module services in our framework, taking advantage of all the

existing services.

5
Content distribution capabilities

This chapter introduces the content distribution module, which leverage our services

framework, and in particular our adaptation technique, to provide content-based pub-

lish/subscribe services. Content-based publish/subscribe services are more complex

to design, develop and deploy than those topic-based ones, given that users can es-

tablish predicates over the data flowing into the information system, to filter out the

information that users are not interested in. The undermentioned publish/subscribe

module service is based on the work published in [111].

5.1 Introduction

Publish/subscribe (pub/sub) systems are powerful mechanisms for information dis-

semination. These systems are characterized by two main actors. Publishers are those

actors who produce information either periodically or sporadicly. Usually, the litera-

ture denotes such pieces of information as events. Additionally, subscribers are those

actors that are interested in receiving significant events. They employ subscriptions

to define their particular interests, expressing conditions on the content of events

(content-based model) or just on a category they belong to (topic-based model).

The aim of these systems is to deliver all events from publishers to corresponding

subscribers. To do so, most of the existing pub/sub systems build a specific pub/sub

peer-to-peer overlay [22, 76, 77, 84], also called event brokering networks. In some

other cases, these solutions are constructed onto other overlay networks, called dis-

tributed hash tables (DHTs) [7, 8, 9, 11], like Scribe [21], Bayeoux [79] or PastryS-

trings [83]. This kind of approximations incur additional management costs, con-

cerning the pub/sub overlay, given that the underlaying SPN also performs the same

tasks. The tasks we are referring to are related to the overlay maintenance; for instance,

setting up recently joined nodes or guaranteeing the correct overlay connectivity, even

in the presence of node failures.

SPNs were introduced as scalable data structures for building large distributed

applications. Peter Triantafillou and Ioannis Aekaterinidis in [80] introduced one

150 5. CONTENT DISTRIBUTION CAPABILITIES

of the first content-based approximations where Chord [7] is employed as reliable

routing infrastructure. Therefore, they do not build a specific pub/sub overlay. To

do so, they employ the rendezvous model. The motivation behind that is because the

multihop routing abstraction implemented by SPNs integrates naturally with the need

for globally unique rendezvous nodes in these rendezvous-based routing approaches.

Nevertheless, when these approaches perform a SPN communication for each event’s

attribute mapping (as applied in [80]), such systems suffer lack of scalability on high-

dimensional contexts.

Later, [82] perform a similar approach but, in this case, they perform a particular

mapping of events and subscriptions to keys from the SPN keyspace, instead of per-

attribute mappings. Even though their approximation is quite interesting, their system

requires some sort of primitive multicast provided by the SPN in order to obtain good

performance.

In summary, the design of event dissemination in content-based pub/sub systems

working onto SPNs has to take into account different factors:

• Lighweight and portable proposal. The goal behind the idea of building the pub/

sub system onto SPNs is twofold: (i) leverage the SPN routing infrastructure

and, thus, avoiding to build a pub/sub overlay protocol over an existing SPN,

and (ii) operate suitably onto (most of) current SPNs, without requiring ad-hoc

functionalities to the SPN. Nevertheless, important properties like load balanc-

ing and low local state information maintenance must be retained.

• Multiple sources. Nodes cooperating in this distributed pub/sub system should

have guarantees for publishing and subscribing at any time and concurrently.

• Multi-attribute data. Usually content-based systems support applications whose

information is defined in terms of different parameters or attributes. Therefore,

events contain a value per attribute, and subscriptions specify range of values of

interest for each attribute. In consequence, the system needs some mechanism

to route multi-dimensional events and subscriptions throughout the network,

while SPNs operates with one-dimensional keyspaces.

As seen before, current systems (e.g., [80, 82]) do not deal with all the factors above

described. For this reason, we introduce in this work a novel system, called CAPS, that

builds content-based event dissemination infrastructures onto SPNs in a scalable, efficient

way. To do so, we employ the rendezvous model in order to meet both events and

subscriptions. For this reason, the system defines a certain set of nodes from the SPN

5.1 Introduction 151

as rendezvous nodes, being responsible of matching events against subscriptions and

start then the notification process. Additionally, these rendezvous nodes are selected

deterministically, so that the node in the SPN responsible for a given key then becomes

the rendezvous node. Due to the SPN properties, the chosen node will be globally

agreed upon by all nodes and, this way, every node can use the peer-to-peer routing

substrate to send messages to this rendezvous node.

In summary, this work introduces the following contributions that will be dis-

cussed along this chapter:

• The rendezvous model enables the system to avoid the construction of a specific

overlay to disseminate events in a proper way. In fact, CAPS leverages the SPN

routing properties to set rendezvous nodes every time, therefore achieving a

lightweight pub/sub system. Unlike other pub/sub systems, CAPS does not

need advertisements to meet both events with subscriptions, proportioning even

a more lightweight solution. We also design SPN-generic subscription and noti-

fication algorithms that allow CAPS to work onto different SPNs, making the

whole solution portable.

• CAPS employs a hash function to map every subscription into a set of keys and

every event into a key, deterministically, in order to deal naturally with multi-

dimensional domains, and multiple sources cooperating within the system.

• We realize a complete analysis both theoretical (seen in Section 3.3.3) and exper-

imental (later in this chapter) on high-dimensional scenarios and with a wide range

of selectivity ratios, which define the ranges of interest of subscriptions against

events. This evaluation demonstrates that CAPS has better performance on

high-dimensional contexts, requiring low memory capacity and hops to perform

event disseminations and subscriptions. To the best of our knowledge, this is the

first formal performance study of this kind of event dissemination based on the

rendezvous model working onto SPNs.

The system is presented by introducing (i) a completed related work (previously

in this section, as well as in Section 2.8), (ii) a deeper formal analysis, formerly in

Section 3.3.3, (iii) the design of our proposal in Section 5.2, and (iv) the performance

evaluation through simulation on relevant scenarios in Section 5.3.

152 5. CONTENT DISTRIBUTION CAPABILITIES

5.2 The CAPS System

In this section we describe the CAPS architecture and operation, including subscrip-

tion setup and event dissemination.

5.2.1 System Overview

The CAPS goal is to provide content-based event dissemination from publishers to

subscribers. From an architectural viewpoint, CAPS provides this functionality to

Applications in the upper layer and, to do so, the system is settled down into our

framework, as we can see in Fig. 5.1.

sendMessage
del iverMessage

getLinks

High- level
Service

Provisioning
Framework

notif icat ions

Data Adapta t ion Module

High- level Services

Rout ing
Algor i thms

Bit
Mapp ing

CAPS

Applicat ionsDistance
Function

subscribe, unsubscribe, publ ish

Noti f icat ion
M a n a g e m e n t

Event
M a n a g e m e n t

Subscript ion
M a n a g e m e n t

Over lay Network (SPN)

Figure 5.1: CAPS system components and context.

In this context, Applications can behave as publishers and subscribers at the same

time, and CAPS will notify them with all events that match their particular interests.

By employing CAPS into our framework, CAPS benefits from the data adaptation

module, and in particular from the BM function, to adapt events and subscriptions

5.2 The CAPS System 153

to the SPN keyspace. In addition, the provided range-based routing algorithms will

contribute in maintaining the system consistency, as we will detail later in this chapter.

As before, our framework employs a SPN as its routing infrastructure, leveraging

the proper SPN’s properties. In this line, CAPS will use the three basic functions that

SPNs provide to our framework as follows. sendMessage enables the system to send

a CAPS message employing the SPN infrastructure. The SPN node provides to the

framework (as well as to CAPS) the whole set of links from its local routing table,

when is called the getLinks function. Finally, deliverMessage function is called when the

SPN node has to deliver a message to our service. Given that our framework employs

an arbitrary SPN as routing substrate, the system design and analysis are focused on

the subscription and event notification management.

As CAPS is based on the rendezvous model, the system employs a hash function

in order to map subscriptions and events into keys within the SPN keyspace. This

way, CAPS determines the rendezvous nodes as the owner nodes of the given keys.

All these operations together with the subscription installation and event notification

appear defined in the following functional blocks.

The first we find is the data adaptation module (see Fig. 5.1). The transformation of

multi-dimensional events and subscriptions into one or more keys is described in Sec-

tion 3.3, taking events as objects and subscriptions as range objects, respectively. These

keys allow the message routing through the SPN transparently. Subscription manage-

ment block realizes the Applications’ subscription and unsubscription tasks. Any sub-

scription and unsubscription is packed into a message, that is delivered to the SPN

infrastructure according to the CAPS subscription’s routing algorithm and the keys

obtained from the above mapping. On the other hand, when one particular node

becomes rendezvous for a given subscription, this block also stores it locally. Event

management block receives recently published events from the Applications and de-

livers them to the rendezvous nodes individually, employing the SPN infrastructure.

Finally, notification management block is responsible in rendezvous nodes of matching

events against the locally stored subscriptions and to start then the notification pro-

cess. Additionally, when necessary, this block locally notifies Applications of events

matching their interests.

5.2.2 System Implementation

Given that Applications operate with multi-dimensional data and the SPN keyspace is

one-dimensional, CAPS defines a dimensional reduction operation in order to deliver

154 5. CONTENT DISTRIBUTION CAPABILITIES

events and subscriptions to rendezvous nodes. This section details the design of the

mapping procedure and the routing algorithms.

5.2.2.1 Subscription Management

Intuitively, the key idea behind the subscription management based on the rendezvous

model is to install subscriptions in those nodes who will be the rendezvous nodes for

future events matching these subscriptions. Thus, when Applications perform sub-

scriptions, CAPS has to install the given subscriptions to rendezvous nodes.

There are two subscription/unsubscription schemes available: (i) stateful sub-

scription scheme in what a subscription will remain in the system until it is removed

(unsubscribed) or the subscriber fails, and (ii) stateless subscription scheme in what

subscriptions are removed after a lease and, therefore, they must be re-subscribed to

continue present in the system. One of the most important goals of such an election is

to reduce the overall subscription and unsubscription communication, always main-

taining up-to-date subscriptions. Thus, we have chosen the stateful approach because

we consider that nodes are quite stable. If nodes are relatively unstable, the stateless

approach is recommended. We detail the subscription procedure by the following

steps: subscription mapping, installation, storage and unsubscription.

Subscription mapping. When an Application performs a subscription, this take the

form {[min1..max1], [min2..max2], .., [minD..maxD]}, where every [mini..maxi], i = 1, 2, .., D,

defines the subscriber’s interest for the i-th dimension. Such interests may coincide

with the entire dimension domain, but also it can occur that mini = maxi, for an arbi-

trary i-th dimension. In the last case, the subscriber is only interested in only a certain

value. The result of this operation is a set of keys as described in Section 3.3.1.2.

Subscription installation. The subscriber CAPS node, subscriber for the rest of the

chapter, is now ready to install the subscription into the system. Briefly, the subscriber

starts the process employing the Algorithm subscribe (see Alg. 5.1) and ends when all

rendezvous nodes of keys within the keyset KS store the subscription. Subscriptions

are sent together with the subscriber ID, in order to be notified when necessary. Note

that even when |KS| > 1, only one node can be the owner of the entire keyset.

Instead of building the whole set of keys (note that can be a considerable amount

of keys and thus unscalable), we have defined an algorithm that builds the necessary

keys on demand when inter-node communication occurs. This design decision stands

because a node can be the owner of various keys at the same time. Moreover, this

5.2 The CAPS System 155

algorithm enables to parallelize the routing process in a tree-based way (performing

a somehow similar process than in [50]). To do so, CAPS only employ local routing

information leveraging the underlying SPN.

Algorithm 5.1 subscribe
/* Subscription installation. Parallelize the process given the subscription subs, in-
stalling it on rendezvous nodes defined by the corresponding keyset KS. */
Input: n← current node
Input: KS← selected keyset (for simplicity [lowerBound .. higherBound])
Input: subs← subscription to install, including the subscriber ID

1: localKS← segment(n, n)
⋂

KS
2: if localKS 6= ∅ then /* n is a rendezvous node */
3: store subs in n
4: end if
5: remainKS← KS \ localKS
6: neighbors← getLinks(n)
7: while remainKS 6= ∅ do /* parallelize the subscription installation */
8: neigh← extract a node from neighbors
9: neighKS← segment(n, neigh)

⋂
remainKS

10: if neighKS 6= ∅ then
11: subscribe(neigh, neighKS, subs)
12: remainKS← remainKS \ rnodeKS
13: end if
14: end while

Algorithm subscribe (see Alg. 5.1) presents the parallelized breadth-first-like routing

algorithm, employed in all subscription installations. Note that the function segment(n,

p) shows the owned keyspace segment for node p, employing only local routing in-

formation of node n. The subscriber starts the subscription installation by calling to

subscribe(n, BM(subs), subs), where subs is the subscription and BM(subs) produces

the initial keyset KS. This call makes the node to send a set of sub-keysets (line 11)

directly to node’s neighbors, parallelizing the process from the very beginning. Upon

reception of these messages, nodes employ the same algorithm to (i) store the given

subscription iff they become rendezvous nodes (lines 1-4) and (ii) forwarding the sub-

scription to the given sub-keyset (lines 7-14). There are no more forwardings when

the sub-keysets are empty. As the sub-keysets become disjoint between them, this

algorithm guarantees that the subscription installation is performed visiting the nodes

involved in the operation at most once. In addition, as stated in Remark 2.2 at page 15,

for any given key there will be one link in node’s routing table that will be used to

156 5. CONTENT DISTRIBUTION CAPABILITIES

forward to a given message. This means that for any remaining sub-keyset remainKS

(line 5) there will be at least one link that would be used to forward to all keys in

remainKS. This way, remainKS will be forwarded to through at least one link. This

property ensures that the keyset is covered entirely and, thus, the algorithm always

ends.

As aforementioned, this algorithm avoids building the whole keyset, which for

high selectivity ratios would be unscalable. Instead, the processing node only builds

the lower and higher bounds of the keyset: [lowerBound .. higherBound]. Note that

these values are the result of applying the BM function to the lower and higher bounds

per dimension of the subscriptions, respectively. Therefore, all keyset operations (i.e.,

difference ‘\’ and intersection ‘
⋂

’) are actually translated to low-cost keyspace segment

operations. In consequence, the information sent between nodes is reduced to the sub-

scription, the subscriber ID and two keys for the segment definition.

The whole operation takes O(log N + α) hops, with a maximum cost on message

delivery dilation of O(log N), where N is the number of nodes within the network and

α is the number of rendezvous nodes for the given subscription. Therefore, the inher-

ent communication costs are reduced to the minimum expression and, consequently,

this demonstrates the routing efficiency of our algorithm.

Subscription storage. Rendezvous nodes for any given subscription must store it

locally for a later event matching. Depending on the context, note that nodes can store

a notably amount of subscriptions. Thus, it is necessary to have an efficient local sub-

scription index for, given an event, decide which is the set of matching subscriptions.

Unsubscription. In CAPS, subscriber is responsible of maintaining registered all Ap-

plication current interests and unregister removed interests. Note that our system

does not limit the number of subscriptions a subscriber maintains. Unsubscription

process is realized in the same way than the subscription, but removing any locally

stored subscription iff (i) the subscription (if present) matches the current unsubscrip-

tion message, and (ii) the subscriber ID coincides.

5.2.2.2 Event Management

When Applications publish events, they are processed by the Event management block.

Intuitively, given the Application’s event, this block realizes the event mapping as

seen in Section 3.3.1.1 and sends it to the rendezvous node. As CAPS maps an event

into a single key, CAPS sends the event in a single message directly to the rendezvous

5.2 The CAPS System 157

node, leveraging the underlying SPN routing infrastructure and, consequently, with

a communication cost of O(log N) hops. The dissemination of the event through the

corresponding subscribers is performed by the Notification management block.

5.2.2.3 Notification Management

The management of notifications involves two main operations: event matching and

event notification to subscribers, which are detailed as follows.

Event matching. When a rendezvous node receives an event from a publisher, this

node performs the event matching against the locally stored subscriptions. Some use-

ful matching techniques appear summarized in [112], like decision trees or binary

decision diagrams. For the sake of clarity, given a subscription selection [0..14] in an

attribute price with a domain of values [0..3000], the given selection can also be defined

as a filter price < 15. In consequence, decision trees or binary decision diagrams can

be included in CAPS to perform efficiently the event matching. However, for simplic-

ity of its implementation, we have used the brute force technique [112]. This technique

tests the given event sequentially against all subscriptions. This has the advantage that

this technique can be used with any kind of subscription. Regardless of the technique,

the result of this operation is a list of subscriber IDs that are interested in the event

and must be notified.

Given that both subscriptions and events are mapped into the SPN keyspace, it

is not clear how the matching process could be accomplished in a distributed setting.

Let us now put some light into that. Regardless of the mapping technique, whenever a

subscription depicts interest in a given event, the mapping should guarantee that the

given subscription is to be included into the matching process against such an event.

As previously explained, the result of this process should be the list of subscriber IDs.

Let us now clarify the way events can be matched through suitable subscriptions.

Let S and E be a subscription and an event, respectively, so that E ∈ S. This means

that the subscription S covers the values specified in the event E (i.e., event E matches

against subscription S). Let n be the rendezvous node for event E (i.e., the owner

node of the mapped event key kE = BM(E)), and let ksS = BM(S) be the mapped

subscription keyset. Since E ∈ S, it is true that kE ∈ ksS, so that node n will store the

subscription.

Upon reception of the event E, the node n will successfully match E against the

locally stored subscriptions, particularly against S, and node n will include the sub-

scriber of S into the list of subscriber IDs of nodes to be notified. For the sake of clarity,

158 5. CONTENT DISTRIBUTION CAPABILITIES

let us propose a counterexample. Suppose that an event F is delivered to the owner

node of its key kF = BM(F) and there is no subscription installed in that node. Clearly,

this means that there is no subscriber interested in this kind of events. In this case, the

costs of this event delivery is a negligible amount of O(log N) hops.

Algorithm 5.2 noti f y
/* Parallelized event notification. */
Input: n← current node
Input: n.app← current application using the pub/sub services of node n
Input: ids← list of subscribers interested in the event
Input: event← event to disseminate

1: local Ids← segment(n, n)
⋂

ids
2: if local Ids 6= ∅ then /* n is the owner of some ID(s) */
3: if node.id ∈ local Ids then /* n is a subscriber */
4: notify event matching for n.app application
5: end if
6: end if
7: remIds← ids \ local Ids
8: neighbors← getLinks(n)
9: while remIds 6= ∅ do /* parallelize event notification */

10: neigh← extract a node from neighbors
11: neighIds← segment(n, neigh)

⋂
remIds

12: if neighIds 6= ∅ then
13: noti f y(neigh, neighIds, event)
14: remIds← remIds \ neighIds
15: end if
16: end while

Event notification. CAPS performs the event notification process similarly to that of

subscription installation. Specifically, Algorithm notify (see Alg. 5.2) realizes the event

notification, starting the process from the event’s rendezvous node. Instead of having

a keyset KS, the algorithm uses the list of subscribers ids obtained from the step before.

Besides, notifications will only reach those Applications (line 4) whose local node ID

coincides with some ID from ids (line 3). Other IDs present in local Ids become, in fact,

failed nodes that are not present in the SPN. Specifically, this design of the algorithm

enables CAPS to recover from node failures (see Section 5.2.2.4). In summary, event

notification inherits the same cost, i.e., O(log N + α) hops, with a maximum cost on

message delivery dilation of O(log N). As mentioned previously in the subscription

5.3 Evaluation 159

installation, the communication cost of our SPN-generic algorithm represents the min-

imum number of routing hops. The reason behind that is because there is no specific

overlay to directly disseminate events, but we leverage an underlying peer-to-peer

routing infrastructure, performing as efficiently as the SPN lets.

5.2.2.4 Failure Recovery

When nodes fail unexpectedly, CAPS must continue with all the system information

consistent and up-to-date in order to operate correctly. As CAPS nodes can adopt the

subscriber, publisher and rendezvous roles at the same time, we detail the tasks to be

perform in every situation as follows.

If a publisher fails, it does not produce any effect into the system in terms of con-

sistency. Clearly, the consequence is that new events will not be published, but the

system itself remains consistent.

If a subscriber fails, the system contains with high probability (w.h.p.) some orphan

subscriptions. It is easy to see that if we add extra functionality in Algorithm notify

(see Alg. 5.2) between the lines 5 and 6, CAPS can send back a failure message to

rendezvous nodes to mark all the subscribers present in the set local Ids \ {node.id} as

failed. To do so, rendezvous nodes increment by one a per-subscriber failure counter.

Later on, rendezvous nodes will remove all locally stored subscriptions from nodes

with ≥ E failure marks. Moreover, this counter guarantees that subscriptions will re-

main in the system after little temporary disconnections. This mark counter is reseted

when an event notification is performed successfully.

If a rendezvous node fails, CAPS would potentially lose the subscriptions the node

stores, as well as future events will not be notified to all the expected subscribers.

Given that CAPS leverages the SPN infrastructure for routing purposes, the system

takes also advantage of SPN replication algorithms in order to place subscriptions

copies in the corresponding nodes. For instance, replicas are usually placed in the fol-

lowing r successors in the SPN Chord [7]. This way, when a rendezvous node fails, all

future events will arrive at the failed node’s successor and, thus, no event notification

is lost.

5.3 Evaluation

The theoretical analysis of the event (object) and subscription (range object) mapping

was already addressed in Section 3.3. This analysis showed a good performance on

160 5. CONTENT DISTRIBUTION CAPABILITIES

high-dimensional data domains. Let us now demonstrate its effectiveness by experi-

mentation. To do so, the results of significant simulations will exhibit the good perfor-

mance of CAPS in high-dimensional content-based event dissemination contexts, and

in a wide variety of subscription selectivity ratios.

5.3.1 Experimental Setup

We implemented a prototype of CAPS, and we simulated it employing Chord [7] pro-

tocol as the SPN routing infrastructure. Chord nodes IDs are picked up uniformly

distributed at random within the keyspace, and we built networks of up 1K, 5K and

10K nodes. For this prototype of CAPS, we built all node IDs of 28 bits (i.e., m = 28)

in order to obtain time-efficient simulations.

Concerning the workload model, there is currently no publicly available data traces

of real pub/sub applications [88]. Consequently, we tested CAPS with various syn-

thetic datasets. Particularly, we characterize the sets of subscriptions with the follow-

ing properties: number of dimensions, selectivity ratio and subscription overloading.

The number of dimensions vary from 2 to 14 and the corresponding number of

mapping bits per dimension from 14 to 2 (i.e., m/num. dimensions). Recall that we

do not simulate 1-bit mappings scenarios (i.e., 28 dimensions in this case), because

of their poor precision. We specify a total selectivity ratio of 5%, 10%, 25% and 40%,

taking the same ratio for every subscription’s attribute. By subscription overloading

we define the number of attributes from a subscription that must be mapped taking

the higher bound of number of mapped values. We selected this number uniformly at

random per subscription from [1..D], where D is the number of dimensions. The rest

of attributes are mapped having the lower bound on the number of mapped values.

We then characterize the sets of events with the following properties: number of

dimensions and matching ratio. As before, the number of dimensions ranges from 2 to

14. Conversely, the matching ratio defines the probability of an event to match an arbi-

trary subscription. During the event set construction, we fixed this probability in such

a way that (i) every event matches at least a subscription and (ii) every subscription is

matched at least once.

As for the amount of events and subscription, we built 1K subscriptions for every

number of dimensions and selectivity ratio (i.e., a total of 16 sets of 1K subscriptions

each), and 1K events with the above properties for every subscription dataset. Even

though these datasets could seem little, the performance evaluation of CAPS does

not require bigger datasets. That is, bigger datasets would neither become more rep-

resentative nor contribute in providing more insights of our approach. Subscribers

5.3 Evaluation 161

and publishers in every test are selected randomly from the network. For the sake of

correctness, the results shown in this section correspond to an average of at least 10

executions.

We address the subscription and notification analysis through two main proper-

ties: bandwidth scalability and memory scalability. The bandwidth scalability evaluates the

routing costs of the CAPS algorithms. To do so, we differ from routing hops, which are

forwarding hops on non-rendezvous nodes, and subscription or notification hops, which

are visited rendezvous nodes or visited subscribers receiving an event notification, re-

spectively. We analyse in memory scalability the feasibility and load balancing of our

system in terms of memory usage.

5%
10%
25%
40%

 0%

 20%

 40%

 60%

 80%

 100%

2 4 7 14

S
ub

sc
rip

tio
n

ov
er

la
pp

in
g

Num. dimensions

(a)

5%
10%
25%
40%

 0%

 20%

 40%

 60%

 80%

 100%

2 4 7 14

S
ub

sc
rip

tio
n

ov
er

la
pp

in
g

Num. dimensions

(b)

5%
10%
25%
40%

 0%

 20%

 40%

 60%

 80%

 100%

2 4 7 14

S
ub

sc
rip

tio
n

ov
er

la
pp

in
g

Num. dimensions

(c)

Figure 5.2: Ratio of rendezvous nodes per subscription. Network size: (a) 1K nodes; (b)
5K nodes; (c) 10K nodes.

5.3.2 Subscription Assessment

This section details the evaluation of CAPS regarding to the subscription installation

process.

162 5. CONTENT DISTRIBUTION CAPABILITIES

Routing hops
Subscription hops

 0

 100

 200

 300

 400
5 10 25 40 5 10 25 40 5 10 25 40 5 10 25 40

A
V

G
. N

um
. h

op
s

pe
r s

ub
sc

rip
tio

n

1,000

2−D 4−D 7−D 14−D

(a)

Routing hops
Subscription hops

 0

 500

 1,000

 1,500

 2,000

5 10 25 40 5 10 25 40 5 10 25 40 5 10 25 40

A
V

G
. N

um
. h

op
s

pe
r s

ub
sc

rip
tio

n

5,000

2−D 4−D 7−D 14−D

(b)

Routing hops
Subscription hops

 0

 1,000

 2,000

 3,000

 4,000

5 10 25 40 5 10 25 40 5 10 25 40 5 10 25 40

A
V

G
. N

um
. h

op
s

pe
r s

ub
sc

rip
tio

n

10,000

2−D 4−D 7−D 14−D

(c)

Figure 5.3: Average number of hops performed per subscription. Network size: (a) 1K
nodes; (b) 5K nodes; (c) 10K nodes.

5.3.2.1 Bandwidth Scalability

As it is depicted in the Fig. 5.3, the Alg. 5.1 subscribe reports almost no overhead in terms

of routing nodes, becoming a reduced ratio of the visited nodes. To evaluate more

precisely this operation, we include in Fig. 5.2 the average (AVG) ratio of Nr/Ns,

where Nr refers to the amount of rendezvous nodes per subscription and Ns sets the

number of nodes laying between [KS.lowerBound..KS.higherBound], i.e., laying be-

tween the keyset’s minimum and maximum keys once the subscription is mapped.

For instance, Fig. 5.2c depicts that more than 80% of nodes laying between the range

[KS.lowerBound..KS.higherBound] are not rendezvous nodes. Nevertheless, our sub-

scription installation algorithm is not affected by this fact. Moreover, this results fits

the estimated routing cost O(log N + α) hops, where the routing nodes appear to be

the factor log N and rendezvous nodes the term α.

In addition, the high-dimensional context property is also present in Fig. 5.3. In any

network size, CAPS demonstrates the best performance on high-dimensional contexts,

specially on the 14-D scenario (i.e., bi = 2 bits) where very few nodes appear as ren-

dezvous. For the same reason, under 2-D scenarios the selectivity ratio coincides with

5.3 Evaluation 163

5%
10%
25%
40%

 0

 100

 200

 300

 400

2 4 7 14

A
V

G
. N

um
. s

ub
sc

rip
tio

ns
 p

er
 n

od
e

Num. dimensions

1,000

(a)

5%
10%
25%
40%

 0

 100

 200

 300

 400

2 4 7 14

A
V

G
. N

um
. n

od
es

 p
er

 s
ub

sc
rip

tio
n

Num. dimensions

10,000

(b)

 0

 200

 400

 600

 800

 1000

N
um

. s
ub

sc
rip

tio
ns

 p
er

 n
od

e

Nodes in the network

2-D
7-D

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

C
D

F
su

bs
cr

ip
tio

ns
 p

er
 n

od
e

Percentage of nodes

Uniform distribution
2-D
7-D

(d)

Figure 5.4: Subscription storage analysis in 10K-node networks. (a) Average number of
stored subscriptions per node. (b) Average number of nodes a subscription is stored in.
(c)(d) Distribution of subscription storage within the network (Selectivity ratio: 25%).

the ratio of rendezvous nodes within the network, defining CAPS as a non proper

solution for low-dimensional scenarios (D < 4).

5.3.2.2 Memory Scalability

We analyse now the memory usage by subscriptions once all they have been installed,

focusing on the number of subscriptions a node stores, load balancing through the net-

work, and the number of nodes a subscription is installed in. As long as the behavior

shown in all network sizes were very similar, we only include the results for the 10K-

node network.

Fig. 5.4a depicts the average number of installed subscriptions per node. As ex-

pected, the greater dimensionality of subscriptions, the less amount of subscriptions

are stored at rendezvous nodes. The slight increase in the amount of subscriptions for

14 dimensions appears because of the dataset instead of the algorithm. Specifically,

the randomly built subscription datasets for 14 dimensions experience a great over-

lapping ratio (see Fig. 5.2). For instance, for 1K nodes and 14 dimensions (Fig. 5.2a),

164 5. CONTENT DISTRIBUTION CAPABILITIES

more than 80% of nodes are rendezvous, regardless of the selectivity ratio. This will

be clearly translated to more nodes storing the same subscriptions. However, we pre-

ferred do not change these datasets in order to present more realistic results.

Complementary to the above analysis, Fig. 5.4c and Fig. 5.4d present the distribu-

tion of subscriptions through the network. In Fig. 5.4c there exists a clear difference

on the behavior of the 2-D scenario (upper curve) and the 7-D scenario (lower zigzag).

While almost all nodes in the 2-D scenario are storing the same considerable amount

of subscriptions in a continuous way, the 7-D scenario presents a discontinuous stor-

age which enables CAPS to load the balancing through all nodes. Moreover, if SPN

replication mechanisms are applied into CAPS, immediate neighbours of the corre-

sponding SPN nodes appear to be memory-available and, thus, replication does not

overload them. Fig. 5.4d depicts the cumulative distribution function (CDF) on the

amount of installed subscriptions, having the theoretical Uniform distribution as the

upper bound on both cases. For instance, the 20% of the nodes (i.e., 2K nodes) in a

7-D scenario are rendezvous nodes for almost the 45% of the subscriptions. This fact

enables CAPS to support a great amount of subscriptions within the system, without

overloading the whole system.

The number of keys a subscription is mapped into, greatly concerns the system

load induced by a single subscription. As expected, the greater the subscription di-

mensionality, the smaller number of keys a subscription is mapped into. Moreover,

since nodes are uniformly distributed at random along the SPN keyspace, when the

mapping produces less number of keys, the number of nodes that become rendezvous

is also reduced, as Fig. 5.4b depicts. CAPS benefits also from high-dimensional con-

texts so as to produce small global subscription load and, therefore, to support a high

number of subscriptions.

5.3.3 Notification Assessment

As long as event delivery takes a single SPN message routing in order to reach the

rendezvous node, this is a straightforward and lightweight operation and we include

this cost as part of the analysis of the overall notification process (i.e., from rendezvous

nodes to subscribers), which is presented in the following.

5.3.3.1 Bandwidth Scalability

Fig. 5.5 depicts the close behavior of the Alg. 5.2 notify in all scenarios. Firstly, we can

observe the completeness of the algorithm, given that the same amount of subscribers

5.3 Evaluation 165

Routing hops
Notification hops

 0

 200

 400

 600

 800

 1,000

5 10 25 40 5 10 25 40 5 10 25 40 5 10 25 40

A
V

G
. N

um
. h

op
s

pe
r n

ot
ifi

ca
tio

n

2−D 4−D 7−D 14−D

(a)

Routing hops
Notification hops

 0

 200

 400

 600

 800

 1,000

5 10 25 40 5 10 25 40 5 10 25 40 5 10 25 40

A
V

G
. N

um
. h

op
s

pe
r n

ot
ifi

ca
tio

n

5,000

2−D 4−D 7−D 14−D

(b)

Routing hops
Notification hops

 0

 200

 400

 600

 800

 1,000

 1,200

5 10 25 40 5 10 25 40 5 10 25 40 5 10 25 40

A
V

G
. N

um
. h

op
s

pe
r n

ot
ifi

ca
tio

n

10,000

2−D 4−D 7−D 14−D

(c)

Figure 5.5: Average number of hops performed per notification. Network size: (a) 1K
nodes; (b) 5K nodes; (c) 10K nodes.

are notified (i.e., notification hops) in all scenarios, but varying only the network size.

Remember that for all scenarios there exist 1K subscriptions performed by different

nodes. Secondly, the total number of hops increases logarithmically when the network

size increases. To understand why, we have to consider that IDs from subscribers are

not correlated, in clear contrast with what occurred with subscriptions. Given that

CAPS leverages the SPN routing infrastructure, there is no way to improve these re-

sults. Nevertheless, as long as links on SPN nodes can be selected in terms of proxim-

ity (e.g., latency [8]), the response time experienced by this routing cost can be greatly

mitigated by selecting the SPN properly and its configuration.

5.3.3.2 Memory Scalability

We analyse now the memory usage by notifications, focusing on the CAPS load in

terms of number of event matchings per rendezvous node and load balancing. From

Fig. 5.6 we can see that, while network size increases and, then, more nodes share the

rendezvous responsibility for any given segment of the keyspace, the average number

of events arrived at rendezvous nodes decreases notoriously, providing an implicit

load balancing mechanism behind the CAPS design.

166 5. CONTENT DISTRIBUTION CAPABILITIES

5%
10%
25%
40%

 0

 50

 100

 150

 200

 250

 300

2 4 7 14A
V

G
. N

um
. e

ve
nt

s
pe

r r
en

de
zv

ou
s

no
de

Num. dimensions

1,000

(a)

5%
10%
25%
40%

 0

 10

 20

 30

 40

 50

 60

2 4 7 14A
V

G
. N

um
. e

ve
nt

s
pe

r r
en

de
zv

ou
s

no
de

Num. dimensions

5,000

(b)

5%
10%
25%
40%

 0

 5

 10

 15

 20

 25

 30

2 4 7 14A
V

G
. N

um
. e

ve
nt

s
pe

r r
en

de
zv

ou
s

no
de

Num. dimensions

10,000

(c)

Figure 5.6: Average number of events that reaches rendezvous nodes. Network size: (a)
1K nodes; (b) 5K nodes; (c) 10K nodes.

Complementarily, Fig. 5.7 depicts, for a 10K-node network and 25% of selectiv-

ity ratio, the event reception at rendezvous nodes throughout the system. We omit

other network sizes because the results were very similar. It can be seen from Fig. 5.7a

than for the 2-D scenario, almost all nodes have between 40 and 120 event receptions,

while in the 7-D scenario almost every node has less than 5 receptions. Given that ren-

dezvous nodes have also less stored subscriptions in high-dimensional contexts, CAPS

gains event matching speedup and reduction on memory consumption. In addition,

as seen in Fig. 5.7b, the system experiences a high degree of event reception fairness (i.e.,

so that the amount of event receptions at rendezvous nodes is shared equitably).

5.4 Conclusions

In this work we have presented CAPS, the design and evaluation of a service for multi-

dimensional content-based event dissemination pub/sub systems for our framework,

which, therefore, validates our sixth contribution of our thesis. This work was out-

lined in [113] and then the whole work was introduced in [111].

5.4 Conclusions 167

 0

 40

 80

 120

 160

N
um

. a
rr

iv
ed

 e
ve

nt
s

at
 re

nd
ez

vo
us

 n
od

es

Nodes in the network

1000
2-D
7-D

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100C
D

F
ar

riv
ed

 e
ve

nt
s

at
 re

nd
ez

vo
us

 n
od

es

Percentage of nodes

Uniform distribution
2-D
7-D

(b)

Figure 5.7: Distribution of event reception at rendezvous nodes within the network (Se-
lectivity ratio: 25%). Network size: (a) 10K nodes; (b) 10K nodes CDF.

As it was outlined, the key pub/sub service design relies on the data adaptation

module, and with the algorithms (based on the data adaptation technique) to set up

subscriptions and disseminate new events. In particular, our framework and CAPS

are lightweight because our approach does not need to build specific pub/sub overlays

onto SPNs. Instead, our system employs the generic algorithms presented in the data

adaptation module. They are actually based on the rendezvous model and leverage the

underlying SPN routing infrastructure. This guarantees that the service, as well as our

framework, is SPN-generic and portable.

Additionally, the CAPS evaluation has been addressed through a formal analysis of

the performance and necessary trade-offs, for a correct performance of this rendezvous-

based approach. Both theoretical and experimental results demonstrate that our sys-

tem is efficient in terms of communication cost and with low memory usage, selecting very

few nodes as rendezvous nodes. The results also show that CAPS provides its best

performance on low selectivity ratios for any dimensionality and especially on high-

dimensional contexts, thanks to the BM function of our data adaptation module.

Above all, this work demonstrates that deploying odd, complex, high-level ser-

vices into our framework is feasible. In the present case, CAPS has shown extensively

its good properties, such as efficiency, scalability to big peer-to-peer networks and to high-

dimensional data domains, as well as a good data and routing load balancing throughout

the network. One aspect does not treated in this work, though, is the effect in our

system of nodes joining and leaving the network. This will be one point to address in

our future work.

168 5. CONTENT DISTRIBUTION CAPABILITIES

6
Conclusions and future work

Finally in this thesis, we present some concluding remarks and the results of this thesis

in the following section. In addition, we detail some future research work in the field

of this thesis in Section 6.2.

6.1 Conclusions and outcomes

This thesis has been motivated by the lack of genericity on the way services, such as

data management services (e.g., range queries or spatial queries), or content distribu-

tion services (e.g., publish/subscribe services), are currently designed and deployed

into structured peer-to-peer networks (SPNs). To properly evaluate how, we have pre-

sented a complete analysis on the state of the art in both data management and con-

tent distribution peer-to-peer-based services (see Chapter 2). We have constructed

an evaluation framework with up to 10 properties in order to build an objective and

fair comparison among the presented systems. In addition, this analysis has provided

the necessary insights and has brought to light the shortages of the existing solutions:

maintenance overhead, lack of generic solutions, non portable services and applications, and

lack of structural support for multiple services at the same time. Let us now explain what

these issues imply for a system.

• Maintenance overhead. This is one of the first shortages we detected in existing so-

lutions. Building new SPNs for new services (usually over already existing P2P

substrates) is a common practice. However, when nodes join or leave, or when

nodes and links fail, all the overlays experience an important cost on signaling

traffic due to overlay maintenance (such as fixing the routing table or looking

for new neighbors to replace the failed ones), which (on the whole) leans to du-

plicated costs.

This motivated us to look for an alternative. Some other works favored the reuti-

lization of existing SPNs, by adapting the application data domain to the keyspace of

the SPN. Clearly, this kinds of solutions introduced a certain genericity. That is, we

170 6. CONCLUSIONS AND FUTURE WORK

could see that several applications could be deployed onto a single SPN. However, all

these applications and services are designed to work specifically over the given SPN,

so that the genericity is partially truncated. We believe that applications should be eas-

ily deployed over most of the SPNs without much modification or knowledge of the

underlying SPN, while keeping the efficiency and scalability of the solution.

To reach such a genericity, two other shortages come to light:

• Lack of application and service portability. In other words, existing solutions do not

guarantee a full genericity and portability of applications among SPNs.

• Non coexistence of multiple services. Complementary to the above issue, the ap-

proach we are looking for, should promise that different applications and ser-

vices could be deployed over the same SPN instance.

We have addressed this lack of genericity and all the aforementioned shortages

by defining a framework which (i) can be deployed in most of the SPNs (i.e., SPN-

generic), and (ii) provides a set of tools to design and deploy new services, so that

these services are thereafter offered to any end-user application. That is, since services

are deployed into our framework, which is fully portable among SPNs, these services

become portable and can be utilized by most of the SPNs.

To do so, we firstly determined the common set of properties of the targeted SPNs

in this thesis (see Section 2.1.1). With these details kept in mind, as well as with the

analysis of the data management and content distribution services (see Chapter 2), we

then defined the whole framework structure at Chapter 3.

In particular, to facilitate the distributed communication of our framework, it only

requires a minimum set of functionality (easily or already) provided by SPNs, which

is composed by sendMessage, getLinks and deliverMessage functions. From an architec-

tural point of view, the framework is composed by several modules (see Fig. 6.1),

each of which is responsible for addressing specific challenges. Let us introduce them

in the following lines.

Data adaptation module. This is the key component of our framework. It is worth

noting that the considered SPNs have one-dimensional keyspaces, so that the multi-

dimensional data domains of the applications are not directly supported. This module ad-

dresses the transformation of the multi-dimensional data domain to a unique repre-

sentation. The representation domain coincides with the keyspace of the SPN, so that

it can be processed transparently and elegantly by the SPN.

6.1 Conclusions and outcomes 171

sendMessage
del iverMessage

getLinks

High- level
Service

Provisioning
Framework

specific API calls
noti f icat ions

Data Adapta t ion Module

High- level Services

Rout ing
Algor i thms

Bit
Mapp ing

D a t a M a n a g e m e n t M o d u l e

Range Query
Services

Spat ia l Query
Services

Content Dist r ibut ion Module

Publish/Subscribe
Services

Over lay Network (SPN)

Applicat ions
Distance
Function

Figure 6.1: Structure of our framework provisioning high-level services. All the modules
and information flow are detailed.

To deal with this data transformation, we constructed a dimensionality reduction

technique, namely Bit Mapping (BM) –see Section 3.3. Note that BM is generic to

any kind of application data domain, motivated by the fact that our framework must

support multiple services and applications at the same time. In particular, the BM

design and development was due to that the existing hash functions do not fulfill all

the requirements expected by our approach, such as data and routing load balancing,

while range-based operations are efficiently supported.

In addition, we outlined how distributed operations (e.g., insertions or complex

range-based operations) are to be addressed by the services settled down in our frame-

work. In other words, we designed the necessary algorithms to support complex

operations into our framework. To do so, we do not build new overlays, but leverage

the underlying SPN and its routing capabilities to complete such operations.

These algorithms are then formally evaluated through a theoretical analysis, as

well as by an experimental assessment (in the use cases presented by the other mod-

ules). Our routing algorithms demonstrated to perform efficiently in a wide variety

of scenarios, and to scale in the number of nodes, as well as in the number of dimen-

sions of the application data domain.

172 6. CONCLUSIONS AND FUTURE WORK

Data management module. This module presents two use cases of service deploy-

ment into our framework. The first is the design, development and evaluation of a

service that provides multi-dimensional range queries. Multi-dimensional data is

stored into the SPN. To do so, we use the BM function to produce the related keys.

The nodes responsible for these keys store the data.

We then evaluated the performance of our multi-dimensional range query service

through representative simulations, demonstrating the efficiency not only of the BM

adaptation function, but also of the algorithms described in the data adaptation mod-

ule. They together depict an excellent data and routing load balancing throughout

the network of nodes, compared to existing solutions.

A geographical information service is the second use case presented in this mod-

ule. We categorize the problem and all the challenges to be addressed, such as multi-

dimensional data or data location. To successfully address this geographical location

service, we introduce a novel approach where both nodes and data are organized

into clusters of nearby items. To do so, we slightly alter the BM adaptation function

to encode the geographical information.

In addition, we also present a particular SPN hierarchical structure, which benefits

to the clusterization of nodes and data. Data is indexed in the same way as before;

that is, data is stored in the nodes responsible for the produced keys after the data

adaptation. Exact match queries, spatial queries and a novel geocast query are in-

troduced. Even though the application data domain is multi-dimensional (location

and semantic description), our approach is able to answer to exact match queries very

efficiently. Actually, an exact match can be seen as a get operation in a DHT. Spatial

queries are deeply analysed, demonstrating the efficiency of our approach. Instead,

the geocast queries retrieve the same kind of information from several locations at the

same time with a very low cost, compared to other systems. To conclude with, the

clusterization of nodes and information also benefits providing path locality, as well

as content locality, which lean to boost the scalability of our approach. The reader

can find all these results in Sections 4.1.4 and 4.2.6, respectively.

Content distribution module. Not only is our framework capable of managing data

in a distributed setting, but also it can distribute content. In particular, the use case

addressed in this module is a multi-dimensional content-based publish/subscribe

service. Employing the same idea as before, we adapted events and subscriptions to

the SPN keyspace by means of the BM function. Consequently, we demonstrated that

6.1 Conclusions and outcomes 173

if an event E matches a subscription S, the corresponding E’s transformation key will

appear in the set of keys from the S’s adaptation keys.

The subscription management is addressed as follows. Since we leverage the rout-

ing capabilities of the underlying SPN, we employ the rendezvous model to meet

events with subscriptions in the distributed setting. In particular, subscriptions are

stored in all nodes responsible for their adaptation keys, employing the same routing

algorithms from our data adaptation module. Thereafter, events are merely routed

to their rendezvous nodes. These nodes will match the incoming events with the lo-

cally stored subscriptions and, afterwards, they will start the notification phase. In

this phase, employing a slight modification of the routing algorithms, all interested

subscribers will receive the new events.

The whole set of operations are always performed with only the local knowledge

of the nodes, with the adaptation technique and routing algorithms presented in the

data adaptation module. By experimentation conduced by simulations, we demon-

strate that our approach successfully address this challenge. Indeed, the service de-

picted good data and routing load balancing properties, as well as a scalability in

terms of number of nodes and the number of dimensions of the application data do-

main, as described and extensively shown in Section 5.3.

Concluding remarks. To sum up with this thesis, we detail the set of good qualities

of our framework and the services deployed upon it:

• Generic. We provide two ways of genericity. Several services can be deployed

into our framework. Since our framework is portable among SPNs, the services

become SPN-generic. Conversely, by employing a minimum set of functions,

our framework can be deployed onto most of the SPNs.

• Portable. As a consequence of the above point, our framework, as well as all ser-

vices and the end-user applications become portable among SPNs. This should

facilitate building largest communities of users collaborating in the system, so

that more data and process resources will be made available.

• Lightweight. All the distributed functions employ only local state information

of nodes (i.e., no global data structure is required), what leans to a lightweight

approach. Indeed, since we do not construct further overlays to implement our

services, we remove duplicated complexities and costs related to the overlay

maintenance, favoring again a lightweight solution.

174 6. CONCLUSIONS AND FUTURE WORK

• Support of different high-level services. At the same time, we have demon-

strated that our framework can support several services. At the same time, these

services provide their functionality to end-user applications.

• Complex data domain support. We have presented three use cases with odd ap-

plication data domains. They had in common that all they were multi-dimensional,

so that any data object is formed by a list of terms or attributes. Conversely, they

differed in the data type that the objects consists of (e.g., numerical or string).

• Efficient data adaptation. The data transformation from a multi-dimensional

domain to a uni-dimensional one could present several issues, such as poor bal-

ancing of data storage among nodes. However, all the services presented in this

thesis demonstrate an excellent data load balancing throughout the network, im-

proving the results of other existing systems. It is worth noting that we did not

use data load balancing techniques, such as caching or replication.

• The higher dimensionality, the better. In all the studied scenarios, we have

compared and evaluated different dimensionalities. We have demonstrated that

our data adaptation technique performs better (i.e., it has lower overheads) when

the dimensionality is greater. This comes in strong contrast with other existing

systems, which their performance decreases as long as the number of dimen-

sions increases.

• Complex operation support. We have addressed complex operations into our

services, mainly range-based operations. To do so, we have designed some SPN-

generic routing algorithms that successfully deal with such kind of operations.

Since they are generic of the SPN, we did not evaluate the absolute number

of visited nodes, but the ratio of routing nodes (i.e., the nodes that are visited

merely as operation forwarders), with respect to the number of targeted nodes.

We have demonstrated that our generic algorithms perform well, inducing a

very low overhead in terms of routing nodes, as well as good routing load bal-

ancing.

6.2 Future research lines

The work of this thesis has started a promising path through a high-level service stan-

dardization for peer-to-peer networks, unique in its design to the best of our knowl-

edge. Actually, there are lots of systems deploying such kinds of services onto dif-

ferent SPNs. However, there is not a clear will in the research community to make

6.2 Future research lines 175

standardizations to facilitate an extensive use of the overlay networks. Only very few

examples appears in our every-day experience, such as BitTorrent.

Initially, there were some attempts of building SPN-generic services, such as PHT

(which built a trie over a DHT), SkipIndex (which supported several services onto it)

or the Common API (which was addressed on providing the set of functions that any

key based routing peer-to-peer infrastructure should provide to applications). How-

ever, none of the existing approaches provided the degree of genericity illustrated in

our thesis, as well as the rest of properties on the whole. For instance, PHT had a

high cost when iterating over consecutive values, whilst SkipIndex supported this op-

eration efficiently for several services, but only tied to SkipIndex itself. The Common

API, though, makes applications to know how the overlay works to efficiently de-

velop services onto it. In addition, it rapidly became unused and there exist only few

testimonials (such as FreePastry or PlanetSim).

We envision a stronger effort from the community for building standards for dis-

tributed services and applications (maybe de facto), that will help to all partners in

the play. For instance, end-user applications could have more stable services with a

reduced API, common to all services of the same kind (e.g., range queries or pub-

lish/subscribe services). However, in clear difference from the services developed up

to now, designers of such applications would have to consider only the functional-

ity they get from the services, but none of the insights from any different underlying

peer-to-peer network. As another example, let us consider the actual tendency where

any new distributed application is deployed with its own overlay infrastructure (i.e.,

one overlay per service). In the standardized scenario, end users would benefit from

the fact that they would not need up to tens of overlays, since a single overlay would

support several applications at the same time.

Other strengths come to light too. Since the number of overlays would be reduced,

the users would become more stable, because the same overlay would be utilized for

several purposes. Therefore, overlays would become as an almost permanent dis-

tributed communication infrastructure. In consequence, the communities of users

would be larger, where more resources of any kind (e.g., files, CPU cycles, memory)

and information would be shared among users. In addition, network providers would

benefit because the bandwidth due to the overlay maintenance and specific overlay

signaling traffic would be drastically reduced.

As a more close challenges, though, we detail in the following lines some of the

issues to be addressed, in order to construct a further generic and usable framework.

We classify them into two big sets: research and development tasks. The former has a

176 6. CONCLUSIONS AND FUTURE WORK

proper scientific value so as to address its research. Conversely, the latter would help

to add new functionalities to our framework.

Research lines:

• New algorithms. The presented distributed algorithms deal with range-based

operations. To prove them, we have evaluated them into three different use

cases. However, other kind of services (such as information aggregation func-

tions or k-nearest neighbors) will require new algorithms to successfully address

them.

In particular, information aggregation services (like MIN, MAX, AVG or VAR)

necessitate a somehow global knowledge of the existing data distributed among

nodes. But, there are alternatives to calculate them efficiently in a parallel, dis-

tributed way. Even though that the algorithms will have to be SPN-generic, their

performance will vary depending on the underlying SPN. For instance, our hi-

erarchical SPNs presented in Chapter 4 could greatly help to reduce the SPN

communication effort when designing the algorithms to implement such func-

tions.

The key idea behind these new services is to develop new communication mech-

anisms that, based on the local state of nodes, will construct a consecutively

more global knowledge system. Gossip-inspired algorithms could successfully

address (at least partially) these new challenges. However, the data load balanc-

ing and data locality presented by our data adaptation technique, will boost its

design and development, as well as the efficiency of such new algorithms.

• Validation in real systems. The use cases presented in our thesis are evalu-

ated through simulation results of synthetic datasets with different distributions.

Even though the distributions employed (like Zipf) correspond to real-life event

distributions, they are not evaluated with real-life information.

We believe that an extensive validation through (i) deployment in real testbeds

(such as Planetlab), and (ii) simulation using traces of existing applications, will

probably provide more insights of our solution, and will strongly demonstrate

the feasibility and efficiency of our data adaptation technique, as well as of all

the shown algorithms.

6.2 Future research lines 177

Development focus:

• High-level abstractions. We have demonstrated it is feasible that several ser-

vices can be deployed into our framework. However, any different service pro-

vides its own particular API to end-user applications. In addition, different im-

plementations of the same kind of service can offer (slightly) different APIs. In

consequence, this motivates that there is almost no guarantee of the portability

of the end-user applications among services. In the same line that was designed

our framework, we foresee that a minimum set of functions could provide the

whole set of operations, in an extensible and flexible way.

To address this issue, some parameters will be necessary to consider, such as

the durability of the information, the kind of information, or the model of infor-

mation retrieval (e.g., pull for traditional queries, or push for publish/subscribe

services). After this analysis, two basic functions would be clearly identified: in-

sertion and retrieval, which will take all the detected parameters. The idea behind

these parameters is that different configurations will behave as, for example, an

exact match query or a range query. Moreover, a certain parameter setting for

a retrieval operation in a pull mode would work as a range query; however, the

same setting in a push mode would behave as a publish/subscribe system, so

that nodes would be notified by the system when new data was available.

We believe that this further abstraction for end-user applications will be very

beneficial. Applications will be designed assuming the same kind of abstrac-

tions, what will ensure their genericity and portability among lots of architec-

tures.

• Network churn. From the analysed systems, we have motivated the use of the

underlying SPN to support our framework, instead of building new overlays for

any new service. However, this thesis did not consider the effect of nodes joining

and leaving the network. Thus, properties such as data consistency or durability

are one of the following issues to address within our framework.

The services presented in this thesis are based in the same family of algorithms.

The same thing will happen for other new services. Therefore, the set of tech-

niques to guarantee (for instance) data availability could be common for sev-

eral services. Caching and replication techniques are traditionally the way that

peer-to-peer data networks secure data availability, durability and consistency.

In consequence, according to our data adaptation mechanism, new caching and

replication services could be deployed into our framework.

178 6. CONCLUSIONS AND FUTURE WORK

Thanks to these services, for instance, end-user applications could specify a de-

gree of data availability when interacting with our framework. In other words,

applications could tell whether the information being stored is critical (where

data should become durable and consistent with very high probability) or is not

essential (i.e., stateful only at a certain degree).

We have demonstrated that our framework is feasible. However, the addition of

caching and replication services into our framework, would make our approach

more practical and deployable into a real-life system.

References

[1] Flikr. http://www.flickr.com/, 2009.

[2] Flikr: Maps. http://www.flickr.com/

tour/maps/, 2009.

[3] Flikr: Keep in touch. http://www.flickr.
com/tour/keepintouch/, 2009.

[4] Open photo community: Breaking beyond
flickr. http://www.hockleyphoto.com/

open-photo-community-distributed-

flickr/, 2009.

[5] Napster. http://free.napster.com/,
2009.

[6] Gnutella. http://en.wikipedia.org/

wiki/Gnutella, 2009.

[7] Ion Stoica, Robert Morris, David Karger,
M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. In Proceed-
ings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM ’01),
pages 149–160, 2001.

[8] Antony I. T. Rowstron and Peter Druschel.
Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-
to-peer systems. In Proc. IFIP/ACM In-
ternational Conference on Distributed Sys-
tems Platforms, volume 2218, pages 329–350,
November 2001.

[9] Ben Y. Zhao, John D. Kubiatowicz, and An-
thony D. Joseph. Tapestry: An infrastruc-
ture for fault-tolerant wide-area location
and routing. Technical Report UCB/CSD-
01-1141, UC Berkeley, Berkeley, CA, USA,
April 2001.

[10] Bamboo Distributed Hash Table. http://

bamboo-dht.org/, 2009.

[11] Sylvia Ratnasamy, Paul Francis, Mark Han-
dley, Richard Karp, and Scott Schenker. A
scalable content-addressable network. In
Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and pro-
tocols for computer communications (SIG-
COMM ’01), pages 161–172, New York, NY,
USA, 2001. ACM Press.

[12] M. Frans Kaashoek and David R. Karger.
Peer-to-peer Systems II, volume 2735/2003
of Lecture Notes in Computer Science, chap-
ter Koorde: A Simple Degree-Optimal
Distributed Hash Table, pages 98–107.
Springer Berlin / Heidelberg, 20-21 Febru-
ary 2003.

[13] G. Manku, M. Bawa, and P. Raghavan.
Symphony: Distributed hashing in a small
world. In Proceedings of the 4th USENIX
Symposium on Internet Technologies and Sys-
tems (USITS ’03), pages 10–10, Seattle, WA,
USA, March 2003.

[14] Karl Aberer, Philippe Cudré-Mauroux, An-
witaman Datta, Zoran Despotovic, Man-
fred Hauswirth, Magdalena Punceva, and
Roman Schmidt. P-grid: A self-organizing
structured p2p system. SIGMOD Record,
32(3):29–33, September 2003.

[15] Petar Maymounkov and David Mazières.
Kademlia: A peer-to-peer information sys-
tem based on xor metric. In Electronic Pro-
ceedings for the 1st International Workshop
on Peer-to-Peer Systems (IPTPS ’02), March
2002.

[16] Venugopalan Ramasubramanian and
Emin Gün Sirer. Beehive: O(1) lookup
performance for power-law query dis-
tributions in peer-to-peer overlays. In
Proceedings of the 1st conference on Sym-
posium on Networked Systems Design and
Implementation (NSDI ’04), pages 8–8,
Berkeley, CA, USA, 29-31 March 2004.
USENIX Association.

http://www.flickr.com/
http://www.flickr.com/tour/maps/
http://www.flickr.com/tour/maps/
http://www.flickr.com/tour/keepintouch/
http://www.flickr.com/tour/keepintouch/
http://www.hockleyphoto.com/open-photo-community-distributed-
http://www.hockleyphoto.com/open-photo-community-distributed-
flickr/
http://free.napster.com/
http://en.wikipedia.org/wiki/Gnutella
http://en.wikipedia.org/wiki/Gnutella
http://bamboo-dht.org/
http://bamboo-dht.org/

180 REFERENCES

[17] Michael J. Freedman, Eric Freudenthal, and
David Mazières. Democratizing content
publication with coral. In Proceedings of
the 1st conference on Symposium on Net-
worked Systems Design and Implementation
(NSDI’04), pages 18–18, Berkeley, CA, USA,
2004. USENIX Association.

[18] Emil Sit, Andreas Haeberlen, Frank Dabek,
Byung-Gon Chun, Hakim Weatherspoon,
Robert Morris, M. Frans Kaashoek, and
John Kubiatowicz. Proactive replication for
data durability. In 5th International Work-
shop on Peer-to-Peer Systems (IPTPS 2006),
February 27-28 2006.

[19] Chunqiang Tang, Zhichen Xu, and Mallik
Mahalingam. psearch: Information re-
trieval in structured overlays. ACM SIG-
COMM Computer Communication Review,
33(1):89–94, 2003.

[20] Aleksandra Kovacevic, Nicolas Liebau, and
Ralf Steinmetz. Globase.kom - a p2p
overlay for fully retrievable location-based
search. In Proceedings of the Seventh IEEE
International Conference on Peer-to-Peer Com-
puting (P2P ’07), pages 87–96, Washington,
DC, USA, September 2-5 2007. IEEE Com-
puter Society.

[21] M. Castro, P. Druschel, A. Kermarrec, and
A. Rowstron. Scribe: A large-scale and de-
centralized application-level multicast in-
frastructure. IEEE Journal on Selected Areas
in communications (JSAC), 20(8):1489–1499,
2002.

[22] E. Anceaume, M. Gradinariu, A. K. Datta,
G. Simon, and A. Virgillito. A seman-
tic overlay for self-* peer-to-peer pub-
lish/subscribe. In Proceedings of the 26th
IEEE International Conference on Distributed
Computing Systems (IDCDS’06), page 22,
2006.

[23] Zhichen Xu and Zheng Zhang. Building
low-maintenance expressways for p2p sys-
tems. Technical Report HPL-2002-41, HP,
2002.

[24] Fidel Cacheda, Vassilis Plachouras, and
Iadh Ounis. A case study of distributed
information retrieval architectures to index
one terabyte of text. Information Processing
and Management: An International Journal,
41(5):1141–1161, 2005.

[25] Odej Kao. A prototype for a distributed im-
age retrieval system. In Proceedings of the 9th
International Conference on High-Performance
Computing and Networking (HPCN Europe
’01), pages 579–582, London, UK, 2001.
Springer-Verlag.

[26] Nicholas Harvey, Michael B. Jones, Stefan
Saroiu, Marvin Theimer, and Alec Wolman.
Skipnet: A scalable overlay network with
practical locality properties. In Proceedings
of the 4th USENIX Symposium on Internet
Technologies and Systems (USITS ’03), pages
113–126, March 26-28 2003.

[27] Farnoush Banaei-Kashani and Cyrus Sha-
habi. Swam: A family of access methods
for similarity-search in peer-to-peer data
networks. In Proceedings of the 13th ACM
International Conference on Information and
Knowledge Management (CIKM’ 04), pages
304–313, New York, NY, USA, November
08-13 2004. ACM.

[28] Chi Zhang, Arvind Krishnamurthy, and
Randolph Y. Wang. Skipindex: Towards a
scalable peer-to-peer index service for high
dimensional data. Technical Report TR-
703-04, Princeton University, May 2004.

[29] Ashwin R. Bharambe, Mukesh Agrawal,
and Srinivasan Seshan. Mercury: support-
ing scalable multi-attribute range queries.
ACM SIGCOMM Computer Communications
Review, 34(4):353–366, 2004.

[30] M. Cai, M. Frank, J. Chen, and P. Szekely.
Maan: a multi-attribute addressable net-
work for grid information services. In Pro-
ceedings of Fourth International Workshop on
Grid Computing, pages 184–191, November
2003.

[31] Anwitaman Datta, Manfred Hauswirth,
Renault John, Roman Schmidt, and Karl

REFERENCES 181

Aberer. Range queries in trie-structured
overlays. In Proceedings of the Fifth IEEE
International Conference on Peer-to-Peer Com-
puting (P2P’05), pages 57–66, Washington,
DC, USA, August 31 - September 2 2005.
IEEE Computer Society.

[32] Yanfeng Shu, Beng C. Ooi, Kian-Lee Tan,
and Aoying Zhou. Supporting multi-
dimensional range queries in peer-to-peer
systems. In Proceedings of Fifth IEEE Inter-
national Conference on Peer-to-Peer Comput-
ing (P2P ’05), pages 173–180, Washington,
DC, USA, 2005. IEEE Computer Society.

[33] H. Sagan. Space-filling curves. In Springer-
Verlag, 1994.

[34] J. A. Orenstein and T. H. Merrett. A class
of data structures for associative search-
ing. In Proceedings of the 3rd ACM SIGACT-
SIGMOD symposium on Principles of database
systems (PODS ’84), pages 181–190, New
York, NY, USA, 1984. ACM Press.

[35] D. Hilbert. Ueber stetige abbildung einer
linie auf ein flashenstuck. mathematishe
annalen. Mathematishe Annalen, pages 459–
460, 1891.

[36] Christian Bohm, Gerald Klump, and Hans-
Peter Kriegel. Xz-ordering: A space-filling
curve for objects with spatial extension.
In SSD’99: Proceedings of the 6th Inter-
national Symposium on Advances in Spatial
Databases, volume 1651 of LNCS, pages 75–
90. Springer-Verlag, July 1999.

[37] F. Dabek, B. Y. Zhao, P. Druschel, J. Kubia-
towicz, and Stoica I. . Towards a common
api for structured peer-to -peer overlays. In
Proc. IPTPS’03, February 2003.

[38] Freepastry. http://freepastry.org/

FreePastry/, 2009.

[39] Jordi Pujol-Ahulló, Pedro Garcı́a-López,
Marc Sànchez-Artigas, and Marcel Arrufat-
Arias. An extensible simulation tool for
overlay networks and services. In Pro-
ceedings of 24th Annual ACM Symposium on

Applied Computing (SAC’ 09), pages 2072–
2076, New York, NY, USA, March 8-12 2009.
ACM.

[40] G. M. Morton. A computer oriented geode-
tic data base and a new technique in file se-
quencing. Technical Report Technical Re-
port, IBM Ltd., Ottawa, Canada, 1966.

[41] Edward A. Fox, Qi Fan Chen, Amjad M.
Daoud, and Lenwood S. Heath. Order-
preserving minimal perfect hash func-
tions and information retrieval. ACM
Transactions on Information Systems (TOIS),
9(3):281–308, 1991.

[42] Marc Sànchez Artigas, Pedro Garcı́a López,
Jordi Pujol Ahulló, and Antonio F.
Gómez Skarkemta. Cyclone: a Novel
Design Schema for Hierarchical DHTs. In
Proceedings of The Fifth IEEE International
Conference on Peer-to-Peer Computing, pages
49–56, August-September 2005.

[43] Marc Sànchez-Artigas. A Hierarchical
Framework for Peer-to-Peer Systems: Design
and Optimizations. PhD thesis, Universitat
Pompeu Fabra, January 2009.

[44] Marc Sànchez Artigas, Pedro López Garcı́a,
and Antonio F. G’omez Skarmeta. A com-
parative study of hierarchical dht systems.
In Proceedings of the 32nd IEEE Conference
on Local Computer Networks, 2007 (LCN ’07),
pages 325–333, 15-18 October 2007.

[45] Luis Garces-Erice, Ernst W. Biersack,
Keith W. Ross, Pascal A. Felber, and Guil-
laume Urvoy-Keller. Hierarchical p2p
systems. In Harald Kosch, Laszlo Boszor-
menyi, and Hermann Hellwagner, editors,
Proceedings of ACM/IFIP International Con-
ference on Parallel and Distributed Computing
(Euro-Par), volume 2790 of LNCS, pages
1230–1239, Klagenfurt, Austria, August
2003. Verlang.

[46] D. A. Tran, K. A. Hua, and T. T. Do. A
peer-to-peer architecture for media stream-
ing. IEEE Journal on Selected Areas in Com-
munications, 22(1):121–133, Jan. 2004.

http://freepastry.org/FreePastry/
http://freepastry.org/FreePastry/

182 REFERENCES

[47] Yincui Hu, Yong Xue, Jianqin Wang, Xi-
aosong Sun, Guoyin Cai, Jiakui Tang, Ying
Luo, Shaobo Zhong, Yanguang Wang, and
Aijun Zhang. Feasibility study of geo-
spatial analysis using grid computing. In
4th International Conference on Computational
Science (ICCS’ 04), pages 956–963, June 6-9
2004.

[48] H. V. Jagadish, Beng Chin Ooi, Kian-Lee
Tan, Cui Yu, and Rui Zhang. idistance: An
adaptive b+-tree based indexing method
for nearest neighbor search. ACM Transac-
tions on Database Systems (TODS), 30(2):364–
397, 2005.

[49] David Novak and Pavel Zezula. M-chord:
A scalable distributed similarity search
structure. In Proceedings of the 1st Interna-
tional Conference on Scalable Information Sys-
tems (InfoScale ’06), page 19, New York, NY,
USA, May 30 - June 01 2006. ACM.

[50] S. El-Ansary, L. Alima, P. Brand, and
S. Haridi. Efficient broadcast in structured
p2p networks. In Proceedings of Second In-
ternational Workshop on Peer-to-Peer Systems
(IPTPS’03), 2003.

[51] Vittoria Gianuzzi, Alessio Merlo, Andrea
Clematis, and Daniele D’Agostino. Manag-
ing networks of mobiles entities using the
hyvonne p2p architecture. In Proceedings of
the 2008 International Conference on Complex,
Intelligent and Software Intensive Systems (CI-
SIS ’08), pages 335–341, Washington, DC,
USA, March 4-7 2008. IEEE Computer So-
ciety.

[52] C. Zheng, G. Shen, S. Li, and S. Shenker.
Distributed segment tree: Support of range
query and cover query over dht. In Proceed-
ings of 5th International Workshop on Peer-
to-peer Systems (IPTPS’ 06), February 27-28
2006.

[53] A. González-Beltrán, P. Milligan, and
P. Sage. Range queries over skip
tree graphs. Computer Communications,
31(2):358–374, 2008.

[54] Rong Zhang, Weining Qian, Aoying Zhou,
and Minqi Zhou. An efficient peer-to-
peer indexing tree structure for multidi-
mensional data. Future Generation Computer
Systems, 25(1):77–88, 2009.

[55] Sriram Ramabhadran, Sylvia Ratnasamy,
Joseph M. Hellerstein, and Scott Shenker.
Prefix hash tree: An indexing data struc-
ture over distributed hash tables. In Pro-
ceedings of the twenty-third annual ACM sym-
posium on Principles of distributed computing
(PODC ’04), pages 368–368, New York, NY,
USA, 2004. ACM Press.

[56] Beverly Yang and Hector Garcia-Molina.
Designing a super-peer network. In Pro-
ceedings of 19th International Conference on
Data Engineering (ICDE’03), pages 49–60, 5-
8 March 2003.

[57] Bin Liu, Wang-Chien Lee, and Dik Lun Lee.
Supporting complex multi-dimensional
queries in p2p systems. In Proceedings of
the 25th IEEE International Conference on
Distributed Computing Systems (ICDCS ’05),
pages 155–164, Washington, DC, USA, June
10 2005. IEEE Computer Society.

[58] D. A. Tran and T. Nguyen. Hierarchi-
cal multidimensional search in peer-to-
peer networks. Computer Communications,
31(2):346–357, 2008.

[59] Sherif Botros and Steve Waterhouse. Search
in jxta and other distributed networks. In
Proceedings of the First International Con-
ference on Peer-to-Peer Computing (P2P’01),
pages 30–35, Washington, DC, USA, Au-
gust 27-29 2001. IEEE Computer Society.

[60] Li Gong. Jxta: A network programming
environment. IEEE Internet Computing,
5(3):88–95, 2001.

[61] James Aspnes and Gauri Shah. Skip
graphs. In 14th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 384–393,
January 2003.

[62] Ming-Tsung Sun, Chung-Ta King, Wen-
Hung Sun, and Chiu-Ping Chang.

REFERENCES 183

Attribute-based overlay network for
non-dht structured peer-to-peer lookup.
In Proceedings of the 2007 International
Conference on Parallel Processing (ICPP ’07),
page 62, Washington, DC, USA, September
10-14 2007. IEEE Computer Society.

[63] Fabrizio Falchi, Claudio Gennaro, and
Pavel Zezula. Nearest neighbor search in
metric spaces through content-addressable
networks. Information Processing and Man-
agement, 43(3):665–683, 2007.

[64] Haiying Shen, Ze Li, Ting Li, and Yingwu
Zhu. Pird: P2p-based intelligent resource
discovery in internet-based distributed sys-
tems. In Proceedings of the 28th International
Conference on Distributed Computing Systems
(ICDCS ’08), pages 858–865, Washington,
DC, USA, June 17-20 2008. IEEE Computer
Society.

[65] Haiying Shen, Cheng-Zhong Xu, and Gui-
hai Chen. Cycloid: A constant-degree and
lookup-efficient p2p overlay network. Per-
formance Evaluation, 63(3):195–216, 2006.

[66] Egemen Tanin, Aaron Harwood, and
Hanan Samet. Using a distributed quadtree
index in peer-to-peer networks. The VLDB
Journal, 16(2):165–178, 2007.

[67] Roger Zimmermann, Wei-Shinn Ku, and
Haojun Wang. Spatial data query support
in peer-to-peer systems. In Proceedings of the
28th Annual International Computer Software
and Applications Conference - Workshops and
Fast Abstracts - (COMPSAC’04), pages 82–
85, Washington, DC, USA, September 28-30
2004. IEEE Computer Society.

[68] Xinfa Wei and Kaoru Sezaki. Dhr-trees:
A distributed multidimensional indexing
structure for p2p systems. In Proceedings of
the Proceedings of The Fifth International Sym-
posium on Parallel and Distributed Comput-
ing (ISPDC ’06), pages 281–290, Washing-
ton, DC, USA, 2006. IEEE Computer Soci-
ety.

[69] Adina Crainiceanu, Prakash Linga, Jo-
hannes Gehrke, and Jayavel Shanmugasun-

daram. Querying peer-to-peer networks
using p-trees. In Proceedings of the 7th Inter-
national Workshop on the Web and Databases
(WebDB ’04), pages 25–30, New York, NY,
USA, June 17 - 18 2004. ACM.

[70] Gershon Kedem. The quad-cif tree: A
data structure for hierarchical on-line algo-
rithms. In Proceedings of the 19th conference
on Design automation (DAC ’82), pages 352–
357, Piscataway, NJ, USA, 1982. IEEE Press.

[71] Ajit S. Thyagarajan and Stephen E. Deering.
Hierarchical distance-vector multicast rout-
ing for the mbone. In Proceedings of the Con-
ference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communi-
cation (SIGCOMM ’95), pages 60–66, New
York, NY, USA, August 28 - September 01
1995. ACM.

[72] Clay Shields. Secure Hierarchical Multicast
Routing and Multicast Internet Anonymity.
PhD thesis, University of California, June
1998.

[73] G. Agrawal and J. Agrawal. The global
multicast routing protocol - a new archi-
tecture for hierarchical multicast routing.
In IEEE International Conference on Commu-
nications (ICC ’03), pages 1770–1774. IEEE
Press, May 2003.

[74] Tao Xue and Boqin Feng. An efficient and
self-configurable publish-subscribe system.
In Proceedings of the Third International Con-
ference Grid and Cooperative Computing (GCC
2004), pages 159–163. Springer, 2004.

[75] Zhenhui Shen and Srikanta Tirthapura.
Approximate covering detection among
content-based subscriptions using space
filling curves. In Proceedings of the 27th Inter-
national Conference on Distributed Computing
Systems (ICDCS’07), page 2, June 2007.

[76] Spyros Voulgaris, Etienne Rivière, Anne-
Marie Kermarrec, and Maarten van Steen.
Sub-2-sub: Self-organizing content-based
publish subscribe for dynamic large scale

184 REFERENCES

collaborative networks. In Proceedings of In-
ternational Workshop on Peer-to-Peer Systems
(IPTPS’06), February 2006.

[77] Peter Triantafillou and Andreas Econo-
mides. Subscription summarization:
A new paradigm for efficient pub-
lish/subscribe systems. In Proceedings
of the 24th IEEE International Conference on
Distributed Computing Systems (IDCDS’04),
pages 562–571, 24-26 March 2004.

[78] Antonio Carzaniga, David S. Rosenblum,
and Alexander L. Wolf. Design and eval-
uation of a wide-area event notification ser-
vice. ACM Transactions on Computer Sys-
tems, 19(3):332–383, 2001.

[79] Shelley Q. Zhuang, Ben Y. Zhao, An-
thony D. Joseph, Randy H. Katz, and
John D. Kubiatowicz. Bayeux: an archi-
tecture for scalable and fault-tolerant wide-
area data dissemination. In Proceedings of
the 11th International Workshop on Network
and Operating Systems Support for Digital Au-
dio and Video (NOSSDAV ’01), pages 11–20.
ACM Press, June 2001.

[80] Peter Triantafillou and Ioannis Aekaterini-
dis. Content-based publish-subscribe over
structured P2P networks. In Proceedings of
International Workshop on Distributed Event-
based Systems (DEBS’04), pages 104–109,
May 2004.

[81] Abhishek Gupta, Ozgur D. Sahin, Di-
vyakant Agrawal, and Amr El Ab-
badi. Meghdoot: content-based pub-
lish/subscribe over p2p networks. In
Proceedings of the 5th ACM/IFIP/USENIX
International Conference on Middleware (Mid-
dleware ’04), pages 254–273, 18-22 October
2004.

[82] Roberto Baldoni, Carlo Marchetti, An-
tonino Virgillito, and Roman Vitenberg.
Content-based publish-subscribe over
structured overlay networks. In Proceedings
of the 25th IEEE International Conference on
Distributed Computing Systems (ICDCS’05),
pages 437–446. IEEE Computer Society,
6-10 June 2005.

[83] Ioannis Aekaterinidis and Peter Triantafil-
lou. Pastrystrings: A comprehensive
content-based publish/subscribe dht net-
work. In Proceedings of the 26th International
Conference on Distributed Computing Systems
(ICDCS’06), page 23, 2006.

[84] G. Mühl, L. Fiege, and A. P. Bruchmann.
Filter similarities in content-based pub-
lish/subscribe systems. In Proc. Interna-
tional Conference on Architecture of Comput-
ing Systems (ARCS), volume 2299, pages
224–238, 2002.

[85] Peter R. Pietzuch and Jean Bacon. Peer-to-
peer overlay broker networks in an event-
based middleware. In Proceedings of the 2nd
International Workshop on Distributed Event-
Based Systems (DEBS ’03), pages 1–8, 2003.

[86] Liping Chen and Gul Agha. State aware
data dissemination over structured over-
lays. In Proceedings of the Sixth IEEE Inter-
national Conference on Peer-to-Peer Comput-
ing (P2P ’06), pages 145–152, 2006.

[87] Sylvia Ratnasamy, Mark Handley,
Richard M. Karp, and Scott Shenker.
Application-level multicast using content-
addressable networks. In Proceedings of
the Third International COST264 Workshop
on Networked Group Communication (NGC
’01), pages 14–29, London, UK, 2001.
Springer-Verlag.

[88] Roberto Baldoni, Roberto Beraldi, Vivien
Quema, Leonardo Querzoni, and Sara
Tucci-Piergiovanni. Tera: topic-based event
routing for peer-to-peer architectures. In
Proceedings of 1st International Conference on
Distributed Event-Based Systems (DEBS ’07),
pages 2–13, 20-22 June 2007.

[89] Spyros Voulgaris, Daniela Gavidia, and
Maarten Steen. Cyclon: Inexpensive mem-
bership management for unstructured p2p
overlays. Journal of Network and Systems
Management, 13(2):197–217, June 2005.

[90] Weijia Jia, Wanqing Tu, and Jie Wu. Dis-
tributed hierarchical multicast tree algo-

REFERENCES 185

rithms for application layer mesh net-
works. IEICE Transactions, 89-D(2):654–662,
2006.

[91] Peter R. Pietzuch and Jean Bacon. Hermes:
A distributed event-based middleware ar-
chitecture. In Proceedings of the 22nd Inter-
national Conference on Distributed Computing
Systems (ICDCS ’02), pages 611–618, Wash-
ington, DC, USA, July 2-5 2002. IEEE Com-
puter Society.

[92] Kevin S. Beyer, Jonathan Goldstein, Raghu
Ramakrishnan, and Uri Shaft. When is
”nearest neighbor” meaningful? In Pro-
ceedings of the 7th International Conference on
Database Theory (ICDT ’99), pages 217–235,
London, UK, 1999. Springer-Verlag.

[93] Chi-Hoon Lee, Osmar R. Zaı̈ane, Ho-
Hyun Park, Jiayuan Huang, and Russell
Greiner. Clustering high dimensional data:
A graph-based relaxed optimization ap-
proach. Information Sciences: an International
Journal, 178(23):4501–4511, 2008.

[94] Alexander Thomasian, Yue Li, and Lijuan
Zhang. Optimal subspace dimensional-
ity for k-nearest-neighbor queries on clus-
tered and dimensionality reduced datasets
with svd. Multimedia Tools and Applications,
40(2):241–259, 2008.

[95] Haiyong Xie, Y. Richard Yang, Arvind Kr-
ishnamurthy, Yanbin Grace Liu, and Abra-
ham Silberschatz. P4p: Provider portal for
applications. ACM SIGCOMM Computer
Communication Review, 38(4):351–362, 2008.

[96] David R. Choffnes and Fabián E. Busta-
mante. Taming the torrent. a practical ap-
proach to reducing cross-isp traffic in peer-
to-peer systems. In Proceedings of the 2008
Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Com-
munications (SIGCOMM ’08), New York,
NY, USA, August 17-22 2008. ACM Press.

[97] O.D. Sahin, S. Antony, D. Agrawal, and
A. El Abbadi. PRoBe: Multi-dimensional

Range Queries in P2P Networks. In Proceed-
ings of 6th International Conference on Web In-
formation Systems Engineering (WISE ’2005),
pages 332–346, Munich, Germany, Novem-
ber 20-22 2005. Springer-Verlag Berlin Hei-
delberg.

[98] Jordi Pujol Ahulló, Pedro Garcı́a López,
Marc Sànchez Artigas, and Antonio F.
Gómez Skarmeta. Supporting Geograph-
ical Queries onto DHTs. In Proceedings of
33rd IEEE Conference on Local Computer Net-
works (LCN’08), pages 435–442, 14-17 Octo-
ber 2008.

[99] Minsoo Lee, Yoonsik Uhm, Zion Hwang,
Yong Kim, Joohyung Jo, and Sehyun Park.
A ubiquitous computing network frame-
work for assisting people in urban areas.
In Proceedings of the 32nd IEEE Conference
on Local Computer Networks, 2007 (LCN ’07),
pages 215–216, 15-18 October 2007.

[100] Sylvia Ratnasamy, Brad Karp, Scott
Shenker, Deborah Estrin, Ramesh Govin-
dan, Li Yin, and Fang Yu. Data-centric
storage in sensornets with ght, a geo-
graphic hash table. Mobile Networks and
Applications, 8(4):427–442, 2003.

[101] Roger Zimmermann et al. Efficient query
routing in distributed spatial databases. In
Proc. GIS’04, pages 176–183, New York, NY,
USA, 2004. ACM Press.

[102] Yatin Chawathe, Sriram Ramabhadran,
Sylvia Ratnasamy, Anthony Lamarca, Scott
Shenker, and Joseph Hellerstein. A case
study in building layered dht applications.
In Proc. SIGCOMM ’05, volume 35, pages
97–108, New York, NY, USA, October 2005.
ACM Press.

[103] Chi Zhang, Arvind Krishnamurthy, and
Randolph Y. Wang. Brushwood: Dis-
tributed trees in peer-to-peer systems. In
Proc. IPTPS’05, volume 3640. Springer,
February 2005.

[104] Bivas Mitra, Fernando Peruani, Sujoy
Ghose, and Niloy Ganguly. Analyzing

186 REFERENCES

the vulnerability of superpeer networks
against attack. In Proc. CCS ’07, pages 225–
234, 2007.

[105] Shuheng Zhou, Gregory R. Ganger, and Pe-
ter Steenkiste. Location-based node ids:
Enabling explicit locality in dhts. Techni-
cal Report CMU-CS-03-171, Carnegie Mel-
lon University, September 2003.

[106] Luis Garces-Erice, Keith W. Ross, Ernst W.
Biersack, Pascal A. Felber, and Guillaume
Urvoy-Keller. Topology-centric look-up
service. In Proc. of COST264 Fifth Interna-
tional Workshop on Networked Group Commu-
nications (NGC), Munich, Germany, 2003.

[107] Xiaoping Sun. Scan: A small-world struc-
tured p2p overlay for multi-dimensional
queries. In Proc. WWW’07, pages 1191–
1192, New York, NY, USA, May 2007. ACM
Press.

[108] Christian and Maihöfer. A survey of geo-
cast routing protocols. IEEE Communica-
tions Surveys & Tutorials, 6(2), 2004.

[109] Tim Stevens, Joachim Vermeir, Marc De
Leenheer, Chris Develder, Filip De Turck,
Bart Dhoedt, and Piet Demeester. Dis-
tributed service provisioning using stateful
anycast communications. In Proceedings of
the 32nd IEEE Conference on Local Computer
Networks, 2007 (LCN ’07), pages 165–174,
15-18 October 2007.

[110] Peter Druschel and Antony Rowstron. Past:
A large-scale, persistent peer-to-peer stor-
age utility. In Proc. HotOS-VIII, Schloss El-
mau, Germany, May 2001.

[111] Jordi Pujol Ahulló, Pedro Garcı́a López,
and Antonio F. Gómez Skarmeta. To-
wards a lightweight content-based pub-
lish/subscribe services for peer-to-peer
systems. Special Issue on Efficient Re-
source, Service and Data Models for Grid and
P2P-Enabled Applications. International Jour-
nal of Grid and Utility Computing (IJGUC),
1(3):239–251, January 2009.

[112] Gero Mühl, Ludger Fiege, and Peter Piet-
zuch. Distributed Event-Based Systems.
Springer-Verlag Berlin Heidelberg New
York, 2006.

[113] Jordi Pujol Ahulló, Pedro Garcı́a López,
and Antonio F. Gómez Skarmeta.
LightPS: Lightweight Content-based
Publish/Subscribe for Peer-to-Peer Sys-
tems. In Proceedings of 2nd International
Workshop on P2P, Parallel, Grid and Internet
Computing (3PGIC-2008), held in conjunction
with International Conference on Complex,
Intelligent and Software Intensive Systems
(CISIS-2008), pages 342–347, Los Alamitos,
CA, USA, March 4-7 2008. IEEE Computer
Society.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Topic and Motivation of this Thesis
	1.2 Contributions of this Thesis
	1.3 Outline of this Dissertation
	1.4 Selected Publications

	2 Background and State of the Art
	2.1 Peer-to-peer Networks
	2.1.1 Common Properties of Structured Peer-to-Peer Networks
	2.1.2 Hierarchical Structured Peer-to-Peer Networks
	2.1.2.1 Cyclone

	2.1.3 Peer-to-Peer Systems: Summary

	2.2 Data Management Services
	2.2.1 Use Cases: Similarity Query Applications
	2.2.2 System Design: An Overview
	2.2.3 Similarity Queries: Definitions

	2.3 Parallel Computing on Similarity Queries
	2.3.1 Range Query Parallelization
	2.3.2 k-NN Query Parallelization

	2.4 Evaluation Criteria
	2.4.1 Implementation Criteria
	2.4.2 Quality of Service Criteria
	2.4.2.1 Insertion and Search Evaluation Criteria
	2.4.2.2 Evaluation Criteria of the Result Set

	2.4.3 Parallel Computing Evaluation
	2.4.4 Evaluation Criteria: Tuning and Terminology

	2.5 Supporting Range Queries
	2.5.1 Flat Systems
	2.5.1.1 Ring-based Topology Systems
	2.5.1.2 Grid-based Topology Systems

	2.5.2 Hierarchical Systems
	2.5.2.1 Tree-based Topology Systems
	2.5.2.2 Super-peer-based Topology Systems

	2.5.3 Range Query Evaluation: Conclusions

	2.6 Supporting k-NN Queries
	2.6.1 Flat Systems
	2.6.1.1 Ring-based Topology Systems
	2.6.1.2 Grid-based Topology Systems

	2.6.2 Hierarchical Systems
	2.6.3 k-NN Query Evaluation: Conclusions

	2.7 Supporting Spatial Queries
	2.7.1 Flat Systems
	2.7.2 Hierarchical Systems
	2.7.3 Spatial Queries: Conclusions

	2.8 Content Distribution Techniques
	2.8.1 Use Case: Publish/Subscribe Application
	2.8.2 System Design: An Overview
	2.8.3 Publish/Subscribe Services: Definitions

	2.9 Parallel Computing on Publish/Subscribe Services
	2.9.1 Parallelizing Event Dissemination

	2.10 Evaluation Criteria for Publish/Subscribe Services
	2.10.1 Implementation Criteria
	2.10.2 Quality of Service Criteria
	2.10.3 Parallel Computing Evaluation
	2.10.4 Evaluation Criteria: Tuning and Terminology

	2.11 Supporting Publish/Subscribe Services
	2.11.1 Topic-based Publish/Subscribe Services
	2.11.2 Content-based Publish/Subscribe Services
	2.11.3 Publish/Subscribe Services: Conclusions

	2.12 Open Issues on High-level Services in Peer-to-Peer Systems
	2.13 Summary

	3 A Framework for Developing Application-level Services
	3.1 Introduction
	3.2 Framework Overview
	3.3 Data Adaptation Module
	3.3.1 Bit Mapping: Adaptation Function for Data Domains
	3.3.1.1 Object adaptation
	3.3.1.2 Range object adaptation.

	3.3.2 Range-based Routing Algorithm
	3.3.3 Data Adaptation Module: Evaluation
	3.3.3.1 High-dimensional context property
	3.3.3.2 Range object load

	3.4 Conclusions

	4 Multi-dimensional data management
	4.1 Supporting range queries
	4.1.1 Introduction
	4.1.2 Related work
	4.1.3 SQS: the Similarity Query Scheme
	4.1.3.1 Electing the Routing Infrastructure: Cyclone
	4.1.3.2 SQS Services

	4.1.4 Similarity Query Scheme: Evaluation
	4.1.5 Conclusions

	4.2 Geographical queries
	4.2.1 Introduction
	4.2.2 Related work
	4.2.3 Geophony: Geographical Information Services
	4.2.3.1 The methodology
	4.2.3.2 A geographically clustered SPN
	4.2.3.3 Location-based IDs over Geophony

	4.2.4 Routing and Data Load Balancing
	4.2.5 High-level queries
	4.2.5.1 Exact match queries
	4.2.5.2 Spatial range queries
	4.2.5.3 Geocast queries

	4.2.6 Evaluation
	4.2.6.1 Routing and Data Load Balancing
	4.2.6.2 Spatial and Geocast queries

	4.2.7 Conclusions

	4.3 Summary

	5 Content distribution capabilities
	5.1 Introduction
	5.2 The CAPS System
	5.2.1 System Overview
	5.2.2 System Implementation
	5.2.2.1 Subscription Management
	5.2.2.2 Event Management
	5.2.2.3 Notification Management
	5.2.2.4 Failure Recovery

	5.3 Evaluation
	5.3.1 Experimental Setup
	5.3.2 Subscription Assessment
	5.3.2.1 Bandwidth Scalability
	5.3.2.2 Memory Scalability

	5.3.3 Notification Assessment
	5.3.3.1 Bandwidth Scalability
	5.3.3.2 Memory Scalability

	5.4 Conclusions

	6 Conclusions and future work
	6.1 Conclusions and outcomes
	6.2 Future research lines

	References

