An illustration using the SF-6D value set.

Ildefonso Méndez Martínez. José María Abellán Perpiñán. Fernando Ignacio Sánchez Martínez. Jorge E. Martínez Pérez.

Documento investigación ESYEC 15/2010

Semiparametric Estimation of Social Tariffs An illustration using the SF-6D value sets

Ildefonso Mendez, Jose M. Abellan, Fernando I. Sanchez, Jorge E. Martinez

Universidad de Murcia

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● � � � �

Introduction Modelling Data Estimation results Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

How best to estimate values for health states

from direct observations on a subset of those states.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ■ つへで

How best to estimate values for health states

- from direct observations on a subset of those states.
- Standard model of health state valuations
 - 1. Data are skewed, truncated, non-continuous and hierachical (Brazier et al., 2003).
 - 2. How to control for individual characteristics?.
 - 3. Preferences of the whole population (NICE, 2003).
 - 4. Representative estimates and corrective weights.

▲圖▶ ▲ 臣▶ ▲ 臣▶ - 臣| 曰 - '이�()?

How best to estimate values for health states

- from direct observations on a subset of those states.
- Standard model of health state valuations
 - 1. Data are skewed, truncated, non-continuous and hierachical (Brazier et al., 2003).
 - 2. How to control for individual characteristics?.
 - 3. Preferences of the whole population (NICE, 2003).
 - 4. Representative estimates and corrective weights.

Alternative approach: semiparametric estimator.

The semiparametric estimator

- Eschews parametric assumptions on the relationship between the outcome and the regressors.
- No assumption on the distribution of health state values.
- Allows for an undetermined amount of heterogeneity.
- Accomodates covariates in a flexible way.

The semiparametric estimator

- Eschews parametric assumptions on the relationship between the outcome and the regressors.
- No assumption on the distribution of health state values.
- Allows for an undetermined amount of heterogeneity.
- Accomodates covariates in a flexible way.
- Theoretical requirement: intercept equal to unity.
- Tests and corrects for sample selection.
- Easier to implement than the nonparametric estimator in Kharroubi et al. (2005).
- Provides the user with a table of estimated coefficients.

Introduction Modelling Data Estimation results Conclusions

The standard approach

$$Y_{ij} = \alpha + \beta' Z_j + \varepsilon_{ij}$$
, by OLS or RE.

Introduction Modelling Data Estimation results Conclusions

The standard approach

$$\mathsf{Y}_{ij} = lpha + eta' Z_j + arepsilon_{ij}$$
, by OLS or RE.

$$\beta_{kw}(x, z_{k'w'}) = E[Y/Z_{kw} = 1, x, z_{k'w'}] - E[Y/Z_{kw} = 0, x, z_{k'w'}]$$

$$\beta_{kw} = E[\beta_{kw}(h)] = E[Y/Z_{kw} = 1] - E[Y/Z_{kw} = 0]$$

Modelling Data Estimation results Conclusions

The estimators

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The estimators

Treatment Effects (TE) and Missing Data (MD) estimators.

The estimators

- Treatment Effects (TE) and Missing Data (MD) estimators.
- Inverse Probability Weighting (IPW) estimator:
 - 1. Easy to implement.
 - 2. Consistent and in some cases aymptotically efficient.
 - 3. Best overall finite sample perfomance (Busso et al., 2008).
 - Allows to assess the effect of changes in the distribution of X on Y (DiNardo et al., 1996).

The estimators

- Treatment Effects (TE) and Missing Data (MD) estimators.
- Inverse Probability Weighting (IPW) estimator:
 - 1. Easy to implement.
 - 2. Consistent and in some cases aymptotically efficient.
 - 3. Best overall finite sample perfomance (Busso et al., 2008).
 - Allows to assess the effect of changes in the distribution of X on Y (DiNardo et al., 1996).
- The propensity score: $p_{kw}(h) = P(Z_{kw} = 1/H = h)$.

Introduction Modelling Data Estimation results Conclusions

The overlap assumption

•
$$0 < P(Z_{kw} = 1/H) < 1.$$

No regressor predicts treatment status perfectly.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The overlap assumption

•
$$0 < P(Z_{kw} = 1/H) < 1.$$

- No regressor predicts treatment status perfectly.
- Implications on the number and selection of health states being valued.

The overlap assumption

•
$$0 < P(Z_{kw} = 1/H) < 1.$$

- No regressor predicts treatment status perfectly.
- Implications on the number and selection of health states being valued.
- ► The standard model is a regression model: extrapolation.
 - 1. EQ-5D tariffs for Holland (Lamers et al. (2006)) and Japan (Tsuchiya et al. (2002)): in one out of ten coefficients.
 - 2. EQ-5D tariff for the UK (Dolan (1997)): in six out of ten coefficients.

Introduction Modelling Data Estimation results Conclusions

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The IPW1 estimator

The quantity of interest:

$$\beta_{kw} = E\left[\beta_{kw}\left(h\right)\right] = E\left[Y/Z_{kw} = 1\right] - E\left[Y/Z_{kw} = 0\right]$$

Introduction Modelling Data Estimation results Conclusions

The IPW1 estimator

The quantity of interest:

$$\beta_{kw} = E\left[\beta_{kw}\left(h\right)\right] = E\left[Y/Z_{kw} = 1\right] - E\left[Y/Z_{kw} = 0\right]$$

► By definition:

$$g(H) = \frac{g(H/Z_{kw} = t) P(Z_{kw} = t)}{P(Z_{kw} = t/H)}, \text{ for } t = \{0, 1\}$$

Introduction Modelling Data Estimation results Conclusions

The IPW1 estimator

The quantity of interest:

$$\beta_{kw} = E\left[\beta_{kw}\left(h\right)\right] = E\left[Y/Z_{kw} = 1\right] - E\left[Y/Z_{kw} = 0\right]$$

By definition:

$$g(H) = \frac{g(H/Z_{kw} = t) P(Z_{kw} = t)}{P(Z_{kw} = t/H)}, \text{ for } t = \{0, 1\}$$

Thus:

$$\widehat{\beta}_{kw, \ IPW1} = n^{-1} \sum_{i=1}^{n} \frac{Z_{kw} Y_{j}}{\widehat{p}_{kw}} - n^{-1} \sum_{i=1}^{n} \frac{(1 - Z_{kwi}) Y_{ij}}{1 - \widehat{p}_{kwi}}$$
(1)

◆□ ▶ < @ ▶ < @ ▶ < ■ ■ ● 9 Q @</p>

Introduction Modelling Data Estimation results Conclusions

▲□▶▲□▶▲□▶▲□▶ 三日= のQ@

The IPW2 estimator

 IPW1 does the job if the sample is representative for the population of interest.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The IPW2 estimator

- IPW1 does the job if the sample is representative for the population of interest.
- ► External representative sample with information on *X*.
- D_s equals one if the individual is in the estimation sample and zero if he/she is in the external sample.
- Propensity score: $p_s(x) = P(D_s = 1/X = x)$.

The IPW2 estimator

- IPW1 does the job if the sample is representative for the population of interest.
- ► External representative sample with information on *X*.
- D_s equals one if the individual is in the estimation sample and zero if he/she is in the external sample.
- Propensity score: $p_s(x) = P(D_s = 1/X = x)$.

$$\widehat{\beta}_{kw, \ IPW2} = n^{-1} \sum_{i=1}^{n} \frac{Z_{kwi} Y_{ij}}{\widehat{p}_{kwi} \widehat{p}_{si}} - n^{-1} \sum_{i=1}^{n} \frac{(1 - Z_{kwi}) Y_{ij}}{(1 - \widehat{p}_{kwi}) \widehat{p}_{si}}$$
(2)

▲ロト▲聞と▲臣と▲臣と 副目 わらの

Introduction Modelling Data Estimation results Conclusions

The IPW2 estimator

The IPW2 estimator that we implement is:

$$\widehat{\beta}_{kw, \ IPW2} = \left(\sum_{i=1}^{n} \frac{Z_{kwi}}{\widehat{p}_{kwi} \widehat{p}_{si}}\right)^{-1} \sum_{i=1}^{n} \frac{Z_{kwi} Y_{ij}}{\widehat{p}_{kwi} \widehat{p}_{si}} - \left(\sum_{i=1}^{n} \frac{(1 - Z_{kwi})}{(1 - \widehat{p}_{kwi}) \widehat{p}_{si}}\right)^{-1} \sum_{i=1}^{n} \frac{(1 - Z_{kwi}) Y_{ij}}{(1 - \widehat{p}_{kwi}) \widehat{p}_{si}}$$
(3)

 Weights for individuals of a given treatment status add up to one (Imbens, 2004).

The SF-6D

- Preference based measure of health. 18000 health states.
- Six dimensions of health each with between four to six levels of severity.
- Country-specific SF-6D value sets to date: UK (Brazier et al., 2002), Hong-Kong (Lam et al., 2008).
- Abellan et al. (2009) derive the Spanish SF-6D value set according to the standard model.

The data

- 78 health states: orthogonal design in Brazier et al. (2002) augmented to ensure common support condition.
- A lottery equivalence method was used for the valuation.
 - 1. Biases caused by the overweighting of the certainty are minimized.
 - 2. State the probability *p* that makes you indifferent between prospects (FH, *p*, Death) and (FH, 0.5, h).
 - 3. Multiple sequence of choices to search for indifference.
 - 4. Theoretical and empirical arguments that support this lottery method in Abellan et al. (2009).
- 17 subsamples (n=60 each) valuing a different subset of 5 health states.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Computer assisted personal interviews.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Main findings

 Values are correlated with some individual characteristics: age, household income, marital status and number of children at home.

Main findings

- Values are correlated with some individual characteristics: age, household income, marital status and number of children at home.
- Substantial differences between the parametric and semiparametric estimates.
 - 1. Semiparametric estimates are always significant.
 - 2. Semiparametric estimates are higher in absolute value.
 - 3. The magnitude of the discrepancy is negatively related to the severity of the departure.
 - 4. The effect of a departure from full health is heterogeneous in the respondent's characteristics.

Introduction Modelling Data Estimation results Conclusions

	OLS	RE	IPW1	IPW2
с	1.000	1.000	1.000	1.000
PF2	-0.016*	-0.025	-0.069	-0.045
PF3	-0.031	-0.054	-0.091	-0.085
PF4	-0.088	-0.118	-0.134	-0.142
PF5	-0.103	-0.106	-0.171	-0.156
PF6	-0.332	-0.333	-0.300	-0.336
RL2	-0.014*	0.005*	-0.062	-0.078
RL3	-0.041	-0.046	-0.102	-0.133
RL4	-0.078	-0.091	-0.156	-0.182
SF2	-0.036	-0.070	-0.055	-0.066
SF3	-0.063	-0.079	-0.079	-0.071
SF4	-0.203	-0.194	-0.222	-0.249
SF5	-0.210	-0.240	-0.236	-0.249

	OLS	RE	IPW1	IPW2
PAIN2	-0.016*	-0.043	-0.109	-0.137
PAIN3	-0.033	-0.048	-0.074	-0.039
PAIN4	-0.202	-0.174	-0.206	-0.241
PAIN5	-0.208	-0.232	-0.284	-0.327
PAIN6	-0.318	-0.342	-0.361	-0.403
MH2	-0.064	-0.025	-0.100	-0.063
MH3	-0.080	-0.050	-0.164	-0.184
MH4	-0.096	-0.073	-0.141	-0.071
MH5	-0.226	-0.197	-0.315	-0.350
VIT2	-0.055	-0.042	-0.097	-0.121
VIT3	-0.120	-0.094	-0.188	-0.207
VIT4	-0.154	-0.155	-0.268	-0.285
VIT5	-0.197	-0.180	-0.239	-0.281

Main findings (II)

- Differences between the IPW1 and the IPW2 estimators.
 - 1. The distribution of *X* is imbalanced in the population and the estimation sample.
 - 2. No evidence of sample selection bias when *X* is restricted to sex and age intervals.

▲□▶▲□▶▲■▶▲■■ ののの

- Standard model + corrective weights = population valid estimates?.
- The estimated tariffs.

	Estimated tariffs			
	OLS	RE	IPW1	IPW2
Mean	0.445	0.444	0.293	0.168
St. Dev.	0.215	0.214	0.223	0.252
Percentiles				
10	0.158	0.158	-0.002	-0.162
25	0.302	0.302	0.140	-0.006
50	0.456	0.461	0.297	0.171
75	0.601	0.604	0.449	0.345
90	0.716	0.717	0.582	0.495
Negative values (%)	2.63	2.53	10.19	25.76
MAE	0.174	0.176	0.238	0.299
pred.error <0,01	4.48	3.86	3.76	1.83
pred.error <0,05	20.56	20.16	13.86	10.60
pred.error <0,10	39.82	38.10	26.91	18.39

Conclusions

- 1. A new approach to model health state values.
- 2. No assumption on the distribution of health states values, accomodates covariates, heterogeneous returns, tests and corrects for sample selection.
- 3. Highlights the importance of the number and selection of health states valued in the sample.
- 4. Its technical complexity is only slightly higher than that of the standard regression model.
- 5. Easier to implement and interpret than the nonparametric method in Kharroubi et al. (2005). We provide a table of estimated coefficients.

Introduction Modelling Data Estimation results Conclusions

Future/current research

1. Cross-country differences in preference-based tariffs.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Introduction Modelling Data Estimation results Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Future/current research

- 1. Cross-country differences in preference-based tariffs.
- 2. Tariffs for population subgroups.

Thanks!!!