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Abstract—Feature selection for deep learning prediction mod-
els is a difficult topic for researchers to tackle. Most of the ap-
proaches proposed in the literature consist of embedded methods
through the use of hidden layers added to the neural network
architecture that modify the weights of the units associated
with each input attribute so that the worst attributes have less
weight in the learning process. Other approaches used for deep
learning are filter methods, which are independent of the learning
algorithm, which can limit the precision of the prediction model.
Wrapper methods are impractical with deep learning due to their
high computational cost. In this paper, we propose new attribute
subset evaluation feature selection methods for deep learning
of the wrapper, filter and wrapper-filter hybrid types, where
multi-objective and many-objective evolutionary algorithms are
used as search strategies. A novel surrogate-assisted approach is
used to reduce the high computational cost of the wrapper-type
objective function, while the filter-type objective functions are
based on correlation and an adaptation of the reliefF algorithm.
The proposed techniques have been applied in a time series
forecasting problem of air quality in the Spanish south-east
and an indoor temperature forecasting problem in a domotic
house, with promising results compared to other feature selection
techniques used in the literature.

Index Terms—Feature selection, deep learning, surrogate-
assisted, multi-objective evolutionary algorithms, time series
forecasting, air quality, indoor temperature.

I. INTRODUCTION

THE increase in the amount and complexity of available
data leads to an increase in the dimensionality of the in-

formation. Feature selection (FS) [1] is a process that reduces
the dimensionality of the input data, as well as the complexity
of the models created from the input data. However, very few
works focus on FS in deep learning. Most of them consist of
embedded methods that integrate FS into the training process
of deep learning models. Other FS methods widely used
with deep learning are filter-type. They are fast methods, but
independent of the learning algorithm, so they are good in
general but not so accurate for a given learning algorithm. On
the other hand, wrapper methods are very accurate but very
expensive, especially when the learning algorithm is slow and
dataset contains a large number of input attributes. For this
reason, little research has been carried out. There are also
wrapper-filter hybrids and ensembles for FS.

Therefore, we propose different multi-objective optimiza-
tion models for FS both wrapper and filter type, and also hy-
brid wrapper-filter models. The proposed optimization models
contain 2, 3 or 4 objectives, which are solved with multi-
objective evolutionary algorithms (MOEAs) [2]. For the eval-

uation of the objective functions of the wrapper-type, the root
mean squared error (RMSE) of a surrogate for a long short-
term memory (LSTM) [3] artificial recurrent neural network
is used. Filter-type objectives are based on correlation metrics
and an adaptation of the reliefF method for evaluating subsets
of attributes. All the proposed optimization models contain an
objective for minimizing the number of attributes.

The proposed methods have been applied to a time se-
ries forecasting problem of air quality. In particular, to the
prediction of the concentration of nitrogen dioxide (NO2)
in the town of La Aljorra, Region of Murcia, Spain. NO2

is a noxious gas that is produced in combustion processes
such as vehicle engines or some industries. In addition, NO2

interacting with other chemicals in the air like water or oxygen
can cause acid rain. Prolonged exposure to this chemical
compound can lead to respiratory [4] and cardiovascular
[5] diseases. Additionally, a problem of indoor temperature
forecasting in a domotic house in Valencia (Spain) has also
been analyzed to strengthen the conclusions.

The main contributions of this work are, in summary, the
following:
• We propose new multi-objective FS methods of wrapper,

filter and hybrid types based on LSTM recurrent neural
networks, correlation, the reliefF algorithm and the min-
imization of the number of attributes.

• We propose a novel surrogate-assisted MOEA to solve
the proposed wrapper and hybrid FS methods.

• We apply the proposed FS methods to the forecast of time
series for air quality in the city of La Aljorra (Spain),
and in a problem of indoor temperature forecasting in
a domotic house in Valencia (Spain), using a future
prediction horizon to h-step ahead.

• We propose a decision-making mechanism for choosing
the non-dominated solution from the Pareto front, specific
for time series forecasting problems.

• We propose a methodology to compare multi-objective
optimization models for FS, time series forecasting mod-
els, and multi-objective and many-objective evolutionary
algorithms, based on non-parametric statistical tests on
appropriate performance metrics and multi-criteria aggre-
gation functions at h-step ahead prediction horizons. Our
models are compared with the models obtained using
other FS techniques used in literature, such as linear
regression based wrapper FS methods, random forest
based wrapper FS methods, correlation based feature
ranking methods, reliefF, and embedded FS methods.
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• The proposed method reduces the run time of the FS
process, allows dealing with high dimensional problems
and reduces the complexity of the prediction models. This
reduction in computing time implies a reduction in the
carbon footprint, helping to deal with climate change.
From a social and economic point of view, our proposal
is in line with the objectives of the Paris Agreement
on climate change (https://www.un.org/en/climatec
hange/paris-agreement), the Sustainable Development
Goals (https://sdgs.un.org/) and the European Green
Deal (https://ec.europa.eu/info/strategy/priorities-
2019-2024/european-green-deal). On the other hand,
reducing the number of attributes in prediction models
contributes to Explainable Artificial Intelligence (XIA)
[6], which is currently in great social demand and is
part of the objectives of, among others, the White Paper
on Artificial Intelligence of the European Commission
(https://ec.europa.eu/info/publications/white-paper-artific
ial-intelligence-european-approach-excellence-and-trust)
and the Executive Order 13960 on Promoting the Use
of Trustworthy AI in the Federal Government of USA
(https://www.federalregister.gov/documents/2020/12/08/2
020-27065/promoting-the-use-of-trustworthy-artificial-
intelligence-in-the-federal-government).

The rest of the article is organized as follows. Section 2
presents some background for FS, surrogate-assisted evolu-
tionary computation and air quality; Section 3 describes the
materials and methods used in this work; Section 4 presents
the performed experiments and shows the results obtained;
Section 5 analyses and discusses the results; Section 6 draws
conclusions and future work; finally, Appendixes A to C
show abbreviations, deep learning architectures and tables that
reinforce the results.

II. BACKGROUND

Section 2 presents the background and describes some of
the works that relate FS to deep learning and multi-objective
metaheuristics, as well as work related to surrogate-assisted
evolutionary algorithms and air quality time series forecasting.

A. Feature selection

FS is the process of removing irrelevant and redundant
attributes from a database [7]. The goal of FS is to find the
best subset of attributes, reducing the cost and computational
time required for model learning. Another interesting property
is that it can improve the interpretability of the models by
making them less complex and therefore easier to understand
and interpret. A FS process can be either an attribute subset or
an attribute evaluation process. The former searches for subsets
of attributes using some search strategy. Their advantage is that
they consider the interaction between attributes (multivariate
methods), but the search requires a number of steps that
is O(2n) (NP-hard problem) with n being the number of
attributes. The latter evaluates attributes in order to assign them
a ranking or importance, thus they are called Feature Ranking
(FR) methods [8]. These methods are usually univariate,
although there are a few multivariate methods, such as reliefF

[9]. FR techniques can also be treated as FS techniques if a
subset with the best attributes in the ranking, or those above
a certain threshold of importance, is selected. As shown in
[10], where Zhang et al. propose a l0,2 − norm based FS
method to select the top k features in various scenarios. The
subset evaluation FS process has several stages. First, from
the initial database, a subset of attributes is selected with a
search strategy. Some of the most popular search strategies are
forward feature selection [11], recursive feature elimination
[12] or multi-objective evolutionary search [13]. The subsets
generated by the search strategy are evaluated with some
evaluation function. If after evaluation a stop criterion is
satisfied, the process is terminated and moves to a validation
phase. If the stop criterion is not satisfied, a new subset is
generated again until the stop criterion is satisfied.

FS methods can typically be classified into three types: filter,
wrapper and embedded. Filter methods evaluate attributes
through statistical functions such as correlation [14], consis-
tency [15], redundancy [16], information gain [17], χ2 [18],
etc. They are the fastest and simplest. Wrapper methods build
machine learning models whose performance is evaluated us-
ing some metric, such as accuracy and area under the receiver
operating characteristic (ROC) curve for classification tasks,
or RMSE and mean absolute error (MAE) for regression.
Therefore, the computational cost is usually high, although
they are, in general, more accurate than filter FS methods.
Embedded methods perform FS within the model training
process. Examples of this can be least absolute shrinkage and
selection operator (LASSO) [19], C4.5 [20] or classification
and regression trees (CART) [21]. Ensembles can also be
used as an FS technique [22]. They are a combination of
the results obtained by multiple techniques. Ensembles try to
achieve better outcomes than would be expected using only
one method. Finally, there are hybrid methods that generally
combine filter and wrapper. The purpose of this is usually
to improve the prediction error of the filters and reduce the
computational cost of the wrapper.

FS in deep learning models is less common than in machine
learning. However, in the literature, we can find several articles
on FS with deep learning. Embedded methods tend to be the
most common when performing FS with deep learning, as
a layer can be added to the neural network to perform this
process. For example, Borisov et al. [23] have developed a
new input layer for artificial neural networks (ANN), called
CancelOut, for FS in deep learning models. Other examples
of neural networks that integrate FS are NeuralFS [24], based
on DNN, and CNN-FS [25], based on convolutional neural
networks (CNN) [26]. Wang et al. [27] combines CNN for
feature extraction with χ2 for FS, along with ensemble learn-
ing based on extreme machine learning (EML) and weighted
voting. Attention-based methods are another effective method
for handling features that have different importance in deep
learning. Yuan et al. [28] propose a spatio-temporal attention-
based LSTM network which can identify important input
variables at each time step and adaptively discover hidden
quality-related states at all time steps. Wang et al. [29]
propose an integrated FS scheme based on a neural network
with redundancy control and Group Lasso Regularization to

https://www.un.org/en/climatechange/paris-agreement
https://www.un.org/en/climatechange/paris-agreement
https://sdgs.un.org/
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal
https://ec.europa.eu/info/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust
https://ec.europa.eu/info/publications/white-paper-artificial-intelligence-european-approach-excellence-and-trust
https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-the-use-of-trustworthy-artificial-intelligence-in-the-federal-government
https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-the-use-of-trustworthy-artificial-intelligence-in-the-federal-government
https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-the-use-of-trustworthy-artificial-intelligence-in-the-federal-government
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produce sparsity.
There are also modifications of embedded FS methods to

consider discarded features such as the work of Zheng et al.
[30], who propose an embedded framework for FS where
an unselected feature classifier to find an optimal subset of
attributes is added. In this line of research, there are other
methods to retain more statistical and structural information
about the features such as the case of Wu et al. [31] where
an orthogonal least square regression model with feature
weighting for FS is proposed.

FS has been successfully applied in environments where
features are not previously known to the learner, but are
streams whose information is increasing over time, as is the
case in [32], where Zhou et al. propose a streaming feature
selection considering feature interaction.

B. Multi-objective meta-heuristics for feature selection based
deep learning

For the design of FS methods, the use of MOEAs is
very popular. MOEAs simultaneously optimize several con-
flicting objective functions. This gives rise to the set of
Pareto optimal solutions, i.e. solutions where one objective
cannot be further improved without making another objective
worse. The optimal solutions in a multi-objective optimization
problem are called non-dominated solutions, and they form
the Pareto front. Evolutionary algorithms are well suited for
multi-objective optimization because they allow multiple non-
dominated solutions to be captured in a single run of the algo-
rithm, in addition to their ability to solve complex problems.
MOEAs are called many-objective evolutionary algorithms
[33] when solving optimization problems of more than three
objectives.

Some works use multi-objective optimization algorithms
based deep learning to perform FS. For example, the one
proposed by Al-Tashi et al. [34] who present a wrapper based
on ANN for FS in classification, with the multi-objective grey
wolf optimizer (BMOGW) as the search strategy. Within the
hybrid methods with deep learning, we can find combinations
of filters and wrappers. For financial prediction, Niu et al.
[35] combines reliefF filter and a wrapper based on EML,
and BMOGW combined with cuckoo search to perform FS.
Although multi-objective optimization is the most common,
there are also studies focusing on many-objective optimization.
Recently, Shu et al. [36] have proposed a 5-objective optimiza-
tion model with non-dominated sorting genetic algorithm III
(NSGA-III) [37], of which four are filters and the remaining
one is a wrapper based on EML.

C. Surrogate-assisted evolutionary algorithms

Surrogate-assisted evolutionary computation attempt to ap-
proximate the fitness function in evolutionary algorithms
through a more computationally efficient model [38]. This
technique is especially useful when dealing with high-
dimensional problems and has proven to be effective in multi-
objective optimization problems [39], [40].

An example of a surrogate-assisted method with deep
learning and multi-objective meta-heuristics used to perform

FS is shown in the work of Jiang et al. [41]. They propose
an ensemble method based on a two-layer surrogate-assisted
mechanism called multi-surrogate-assisted dual-layer ensem-
ble feature selection (MDEFS). To select the most relevant
features in large datasets, a subset with the most representative
samples is selected with three strategies based on surrogate-
assisted models: k-means, density-based spatial clustering of
applications with noise and random sub-sampling. Then, a
particle swarm-based algorithm is used to select the best
attributes.

D. Air quality

Air quality forecasting with multi-objective evolutionary
computation combined with deep learning is a field that is
still under explored. However, there are already some papers
that address this issue. Most of them are focused on the
predictions of PM2.5 in different areas of China, such as Liu
et al. [42], that introduce a multi-resolution ensemble model
based on wavelet packet decomposition, bidirectional LSTM
and nondominated sorting genetic algorithm II (NSGA-II)
[43], which tries to minimize bias and variance, to obtain
deterministic forecasts. Zhang et al. [44] propose an ensemble
model based on multi-objective ensemble pruning with multi-
population NSGA-II and MLP, CNN and LSTM for stable
PM2.5 time series forecasting. Wang et al. [45] developed
a hybrid system based on two-step FS with correlation, re-
liefF and a modified quantum fuzzy neural network for air
quality forecasting. The relevance of the selected attributes
is determined through a multi-objective chaotic map-based
algorithm called multi-objective chaotic bonobo optimizer. Du
et al. [46] propose a hybrid model, in this case to predict
PM2.5 and PM10 concentrations. Forecasts are made using
multi-objective Harris hawks optimization and EML. The two
objectives to optimize are prediction accuracy and stability of
forecasting errors.

E. Conclusion of the related works

The study of the state of the art reveals that, although
currently the subject of FS for deep learning is being of interest
to researchers, it is necessary to deepen in certain aspects. For
example, few studies have been carried out on the application
of multivariate methods of filter-type FS for deep learning,
both for search strategies and evaluators. Regarding wrap-
per methods for deep learning, although some studies have
proposed approaches to reduce the computational cost, this
remains a challenge for researchers. Finally, the embedded FS
methods for deep learning have been compared fundamentally
with other embedded methods such as LASSO or decision
trees, but not so much with other powerful multivariate FS
methods of filter, wrapper, hybrid or surrogate-assisted type.
Therefore, in this paper we propose and discuss different FS
multivariate hybrid methods for deep learning that combine
filter methods with wrapper surrogate-assisted methods, using
multi-objective evolutionary computation as a search strategy.
The proposed methods are compared with a wide range of FS
methods that include univariate, multivariate, filter, wrapper
and embedded methods.
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The authors of this paper have extensive experience in
the fields of FS, multi-objective evolutionary computation,
time series forecasting and air quality prediction. In [13]
we proposed a MOEA, called ENORA, for FS in regression
problems. ENORA was used as a search strategy in a wrapper
method based on random forest. It was necessary to reduce
the number of trees of the random forest algorithm during
the optimization process to reduce the computational time
of the method. In [47] and [48], MOEAs were used for FS
with time series data applied to the prediction of antibiotic
resistance outbreaks and the forecast of energy consumption
in smart buildings, respectively. In these works, FS wrapper
methods based on deep learning were prohibitive due to the
excessive computational time required. In [49] deep learning
techniques, particularly LSTM, GRU and CNN, are used for
air quality forecasting with time series data. However, in
this work FS was not performed, being proposed for future
work. Finally, in [50] a MOEA was proposed for the spatio-
temporal forecast of air pollution. The proposed technique
builds a model based on ensemble learning with the multiple
linear regression models found with the MOEA, which is
compared with quasi-recurrent neural networks, among other
models. Again, FS was raised for future work. Therefore, this
paper is proposed as a continuation of the previous research,
avoiding the inconvenience of computational costs required by
deep learning-based FS techniques, by using surrogate-assisted
MOEAs.

III. MATERIALS AND METHODS

In this section, the FS problem is formalized as a multi-
objective Boolean optimization problem. The proposed multi-
objective optimization models are mathematically defined and
the main components of the surrogate-assisted evolutionary
algorithm that solve them are described.

A. Feature selection as a multi-objective boolean optimization
problem

FS can be formulated as a multi-objective boolean optimiza-
tion problem as follows:

Min./Max. fk (x) , k = 1, . . . , l (1)

where fk (x) are objective functions (wrapper type or filter
type), x = {x1, x2, . . . , xw} ∈ Bw represents the set of
decision variables, and B = {true, false} is the domain for
each variable xi, i = 1, . . . , w. In problem (1), xi = true
represents that attribute i is selected, and xi = false represents
that attribute i is not selected, for all i = 1 . . . , w. Let
X = {x ∈ Bw} be the search space of the problem (1).
We want to find a subset of solutions Ψ ⊆ X called non-
dominated set (or Pareto optimal set). A solution x ∈ X
is non-dominated if there is no other solution x′ ∈ X that
dominates x, and a solution x′ dominates x if and only if
there exists k (1 ≤ k ≤ l) such that fk (x′) improves fk (x),
and for every k (1 ≤ k ≤ l), fk (x) does not improve fk (x′).
In other words, x′ dominates x if and only if x′ is better
than x for at least one objective, and not worse than x for

any other objective. For minimization problems, the set Ψ of
non-dominated solutions of (1) can be formally defined as:

Ψ = {x ∈ X | 6 ∃ x′ ∈ X | D (x′,x)}

where D (x′,x) is equivalent to:

∃k, 1 ≤ k ≤ l, fk (x′) < fk (x) ∧ ∀k, 1 ≤ k ≤ l, fi (x′) ≤ fi (x)

Once the set of optimal solutions is available, the most satis-
factory one can be chosen by applying a preference criterion.
Search space X = {x ∈ Bw} of problem (1) contains 2w

solutions (NP-hard problem). Metaheuristics methods such as
evolutionary algorithms are typically used to find approximate
solutions for NP-hard class problems, including FS problems
[51], and they are particularly appropriate for multi-objective
optimization.

B. Proposed multi-objective optimization models for feature
selection

Let D = {d1, . . . ,ds} be a normalized dataset with s
instances. Each instance dt = {d1

t , . . . , d
w
t , ot}, t = 1, . . . , s,

has w input attributes of any type, and one output attribute
ot ∈ R. In this approach, the initial dataset D is divided
into three partitions R, V and T for training, validation
and test with 60%, 20% and 20% of the data respectively.
Then these three partitions are normalized. We consider multi-
objective boolean optimization models for FS defined as in
(1). Let FΦ

R,V (x) be a performance measure, e.g. RMSE,
MAE, correlation coefficient (CC), etc., of a regression model
built with a learning algorithm Φ trained with dataset R ⊂ D
and evaluated with validation dataset V ⊂ D using only the
selected attributes xi = true, i = 1, . . . , w. Let C (x) be a
function that measures the number of selected attributes of x,
i.e.:

C (x) =

w∑
i=1

N (xi) (2)

where N is a function that transforms a boolean value into
numeric (true = 1 and false = 0).

Let PR(x) be a function that measures the sum of correla-
tion between each selected attribute xi = true, i = 1, . . . , w,
and the output attribute in dataset R, defined as follows:

PR (x) =

w∑
i=1

xi=true

ρRi (3)

where ρRi is the normalized Pearson’s correlation coefficient
between the selected attribute i and the output in dataset R.

Let SR (x) be a function that calculates the sum of reliefF
scores of the selected attributes of x in dataset R, i.e.:

SR (x) =

w∑
i=1

xi=true

σR
i (4)

where σR
i is normalized reliefF score of attribute i in dataset

R. In view of this, we consider the next four objectives:
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Objective O1. Minimize the RMSE of the regression model
built with learning algorithm Φ trained with dataset R and
evaluated with validation dataset V :

Minimize O1 ≡ FΦ
R,V (x)

Objective O2. Minimize the number of selected attributes:

Minimize O2 ≡ C (x)

Objective O3. Maximize correlation between the selected
attributes and the output variable in dataset R:

Maximize O3 ≡ PR (x)

Objective O4. Maximize sum of reliefF scores of the selected
attributes in dataset R:

Maximize O4 ≡ SR (x)

The following multi-objective boolean optimization prob-
lems for modelling wrapper-filter FS methods in regression
tasks are instances of problem (1) and have been proposed to
optimize the objectives defined previously:
• 2-objective optimization model for wrapper FS method.

Objectives to optimize are O1 and O2. This problem will
be called O1O2.

Minimize O1 ≡ FΦ
R,V (x)

Minimize O2 ≡ C (x)
(5)

• 3-objective optimization model for filter FS method based
on correlation and reliefF. Objectives to optimize are O2,
O3 and O4. This problem will be called O2O3O4.

Minimize O2 ≡ C (x)
Maximize O3 ≡ PR (x)
Maximize O4 ≡ SR (x)

(6)

• 3-objective optimization model for wrapper-filter FS
method based on correlation. Objectives to optimize are
O1, O2 and O3. This problem will be called O1O2O3.

Minimize O1 ≡ FΦ
R,V (x)

Minimize O2 ≡ C (x)
Maximize O3 ≡ PR (x)

(7)

• 3-objective optimization model for wrapper-filter FS
method based on reliefF. Objectives to optimize are O1,
O2 and O4. This problem will be called O1O2O4.

Minimize O1 ≡ FΦ
R,V (x)

Minimize O2 ≡ C (x)
Maximize O4 ≡ SR (x)

(8)

• 4-objective optimization model for wrapper-filter FS
method based on correlation and reliefF. Objectives to
optimize are O1, O2, O3 and O4. This problem will be
called O1O2O3O4.

Minimize O1 ≡ FΦ
R,V (x)

Minimize O2 ≡ C (x)
Maximize O3 ≡ PR (x)
Maximize O4 ≡ SR (x)

(9)

C. Surrogate-assisted multi-objective evolutionary algorithm

The function FΦ
R,V (x) measures the performance (we use

RMSE) of a prediction model training with learning algorithm
Φ (we use LSTM) on dataset R with attributes of x and
evaluated on validation dataset V . FΦ

R,V (x) can be used as
evaluator in a wrapper FS method. As is well known, the
drawback of wrapper methods for FS is the computational
time required by the learning algorithm to built the models
with the attribute subsets explored with the search strategy.
This disadvantage is increased in the presence of large datasets
or when the learning algorithm is particularly expensive, as is
the case with deep learning. To take advantage of the good
properties of wrapper methods without the need to train the
model on each subset of candidate attributes, in this paper we
propose a surrogate-assisted approach. The set of attributes
selected by the surrogate-assisted MOEA proposed in this
paper is finally evaluated on the test set T , which has not
been seen by the MOEA. Figure 1 shows the flowchart of the
proposed surrogate-assisted MOEA, and its main components
are shown below.

1) Representation of solutions: Our MOEA uses a fixed-
length representation, where each individual consists of a bit
vector for attribute selection. Therefore, an individual I is
represented as:

I =
{
bI1, . . . , b

I
w

}
where bIi ∈ {0, 1} for i = 1, . . . , w. Each bit bIi ∈ {0, 1}
represents an attribute in the dataset (1 for selected, and 0 for
non-selected attributes).

2) Initial population: The initial population is randomly
generated with a Bernoulli distribution with probability 0.5.

3) Fitness function: We use the surrogate function
QΦ

R,V (x) as an approximation to the function FΦ
R,V (x)

for the calculation of the objective function O1. QΦ
R,V (x)

is the RMSE of a surrogate prediction model MΦ
R trained

with learning algorithm Φ (we use LSTM) and dataset R
considering all w attributes, and evaluated with a dataset V ′

which consists of the validation dataset V where attribute
values xi = false, i = 1, . . . , w, are set to a constant value
α in all s instances (we used α = 0 in the experiments,
although other values can also be used). Note that surrogate
model MΦ

R does not depend on the set x of decision variables,
so it is trained only once in off-line mode. Note also that
QΦ

R,V (xD) = FΦ
R,V (xD), where xD is the solution vector

with xi = true, for all i = 1, . . . , w. Algorithm 1 shows the
calculation of the fitness function for objective O1. The fitness
functions for the rest of the objective functions O2, O3 and
O4 correspond to the mathematical formulations described in
equations (2), (3) and (4) respectively.

4) Variation operators: The variation operators used are
half uniform crossover [52] and bit flip mutation [53]. We
have chosen these operators since they are the ones used by the
Platypus platform (https://platypus.readthedocs.io/en/latest/)
for MOEAs with binary representation.

5) Decision process to choose the final non-dominated solu-
tion: For each non-dominated individual in the last population,
an LSTM model m is trained on dataset R with the attributes
selected in the individual, and a recursive multi-step strategy

https://platypus.readthedocs.io/en/latest/
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Fig. 1: Flowchart of the proposed surrogate-assisted multi-
objective evolutionary algorithm.

Algorithm 1 Fitness function for objective function O1

Require: I = {bI1, . . . , bIw} {Individual}
Require: MΦ

R {Surrogate prediction model built with learning
algorithm Φ and trained with dataset R with all attributes}

Require: V ⊂ D {Validation dataset}
Require: α {Imputation constant}

1: V ′ ← V
2: for i = 1 to w do
3: if bIi = 0 then
4: for dt ∈ V ′ do
5: dit = α
6: end for
7: end if
8: end for
9: return RMSE(MΦ

R , V
′) {RMSE of surrogate prediction

model MΦ
R evaluated in dataset V ′}

[54] is performed for h-steps ahead. Although there are other
strategies for multi-step ahead time series forecasting [55],
[56], in this research we have decided to use the recursive
strategy. The recursive strategy constrains all the horizons to be
forecasted with the same model structure, and can suffer from
poor performance in multi-step forecasting tasks, especially
if the forecast horizon h exceeds the window size l, since
at some point all the inputs are forecast values rather than
actual observations. Nevertheless, this does not occur in our
research since we use h ≤ l. In spite of these drawbacks,
we have preferred to adopt the recursive strategy as a first
approximation of our work since it is not computationally
expensive and can be implemented in all the forecasting
methods compared in this paper.

The non-dominated individual are evaluated on dataset V
using a performance measure H. The chosen non-dominated
individual will be the one with the lowest value of H.
Therefore, an ideal solution is one with H = 0. Algorithm 2
calculates the performance measure H of a solution x on a test
dataset E, which is particularly used to evaluate of the non-
dominated individuals for MOEA decision making by setting
E = V .

IV. EXPERIMENTS AND RESULTS

This section describes the air quality dataset used in the
experiments and its preprocessing. The experiments have been
established for the comparison of the different multi-objective
optimization models for FS proposed in this paper, the com-
parison of the MOEAs that solve them, the identification and
adjustment of the best prediction model and the comparison
with other FS techniques.

A. Air quality dataset

Data are extracted from the Autonomous Community of the
Region of Murcia, Spain (https://sinqlair.carm.es/calidadaire/r
edvigilancia/redvigilancia.aspx), which provides information
on air quality in the Region of Murcia thanks to Consejerı́a
de Agua, Agricultura, Ganaderı́a, Pesca y Medio Ambiente.

https://sinqlair.carm.es/calidadaire/redvigilancia/redvigilancia.aspx
https://sinqlair.carm.es/calidadaire/redvigilancia/redvigilancia.aspx
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Algorithm 2 Evaluation H of a solution on a dataset E

Require: x = {x1, . . . , xw} {Solution}
Require: m {Prediction model trained with the attributes

selected in the solution x}
Require: E {Dataset for evaluation}
Require: h {Number of steps-ahead}
Require: w1, w2, w3, 0 ≤ w1, w2, w3 ≤ 1, w1 +w2 +w3 = 1
{Weights}

1: E′ ← E
2: for i = 1 to w do
3: if xi = 0 then
4: remove(E′, i) {Remove attribute i from dataset E′}
5: end if
6: end for

7: RMSE← 1

h

h∑
j=1

RMSE(m, j,E′)

8: MAE← 1

h

h∑
j=1

MAE(m, j,E′)

9: CC← 1

h

h∑
j=1

∣∣1− CC(m, j,E′)
∣∣

10: H ← w1 · RMSE + w2 ·MAE + w3 · CC
11: return H {Evaluation of a solution}

Fig. 2: Photograph of the air quality measurement station in
La Aljorra. Google image.

All the collected data comes from La Aljorra station (Figure
2), taken daily for four years, from 2017 to 2020. In total,
there are 1461 instances. The initial dataset consisted of 17
columns: Date, NO, NO2, SO2, O3, TMP (temperature),
HR (relative humidity), NOX , DD (wind direction), PRB
(atmospheric pressure), RS (solar radiation), VV (wind speed),
C6H6, C7H8, XIL, PM10, Noise. Table I shows a summary
of the values of all attributes.

B. Data preprocessing: missing values imputation and sliding
window transformation

The proposed dataset is used for NO2 prediction. For the
initial preprocessing of the data, those columns with more
than 25% missing values were removed. These columns were:
C6H6, C7H8, XIL and Noise. Date column has also been
eliminated, as it does not provide any relevant information to

TABLE I: Summary of initial attributes.

Name Units Count Mean Std Min Max

Date - 1461 - - - -
NO µg/m3N 1272 4.38 2.43 1.00 31.00
SO2 µg/m3N 1299 9.21 3.45 2.00 23.00
O3 µg/m3N 1403 57.94 15.25 19.00 112.00

TMP ºC 1409 19.59 5.74 4.00 32.00
HR % R.H. 1409 69.21 14.09 27.00 100.00
NOX µg/m3N 1272 21.21 11.20 3.00 104.00

DD degrees 1409 192.11 104.45 0.00 360.00
PRB mb 1409 1017.81 6.41 991.00 1033.00
RS W/m3 1409 182.32 82.74 13.00 338.00
VV m/s 1409 1.22 0.43 1.00 3.00
C6H6 µg/m3N 410 0.65 0.51 0.10 3.40
C7H8 µg/m3N 410 0.93 0.40 0.30 3.10

XIL µg/m3N 410 1.40 0.68 0.10 3.00
PM10 µg/m3N 1381 26.27 12.98 5.00 168.00
Noise dBA 0 - - - -

NO2 (target) µg/m3N 1272 14.64 8.19 2.00 58.00

the treated problem. The remaining missing values have been
imputed with linear interpolation.

Lagged transformation of the input variables has to be done
with sliding window method [57] in order to remove time
dependencies in the data. Let l be the window size (WS),
i.e., the number of previous time steps. The sliding window
transformation process builds the following dataset Dl:

Dl =
{
{d1

t−1, . . . , d
1
t−l}, . . . , {d

w
t−1, . . . , d

w
t−l}, {ot−1, . . . , ot−l}, ot

}
,

t = 1, . . . , s
(10)

Note that dit, i = 1, . . . , w, and ot values with t ≤ 0
do not exist and are therefore considered missing values.
The new attributes are named <Lag> <name of the original
attribute> <number of previous time step>. For example, NO
attribute with 1 previous time step will be called Lag NO 1.
A window size of 7 has been selected, representing one
week. The rows with missing values resulting from the sliding
window transformation have been removed. Note that the
original variables dit, i = 1, . . . , w, of the input attributes have
been removed, as it is not correct to use the future value of an
attribute to obtain future predictions. The only original variable
held is the output. Therefore, our dataset with WS 7 has 1454
rows and 85 columns. Finally, the dataset has been split into
60% for training, 20% for validation and 20% for testing,
preserving the order of the instances and then normalized.

C. Multi-objective optimization models comparison

This section describes the process of searching for the best
hyper-parameters of the surrogate deep learning model, the
evaluation of the prediction models for each multi-objective
optimization model and the statistical tests applied to select
the best model.

1) Hyper-parameter tuning of the surrogate-assisted model:
For the creation of the MΦ

R surrogate prediction model used
in the evolutionary multi-objective algorithm we have selected
LSTM. Our previous study [49] showed that an LSTM with
one hidden layer with rectified linear unit [58] activation
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function and a dense layer with a linear activation as the output
layer can obtain good results in time series forecasting applied
to air quality prediction, over other learning algorithms such
as 1D-CNN, random forest, SVM or LASSO regression. In
order to optimize this model, we first search for the best hyper-
parameters. For this purpose, a 3-fold cross-validation with one
repetition was used. A grid search has been carried out with: 1,
2 and 3 hidden layers; 50, 100, 150, 200, 250 and 300 neurons;
a batch size of 32, 64, 128, 512 and 1024; and 100, 500
and 1,000 epochs. Therefore, 270 possible combinations have
been performed. The best combination of hyper-parameters
obtained an RMSE of 0.07877 with a standard deviation of
0.01339 and was 1 hidden layer, 200 neurons, batch size of
128 and 100 epochs. The LSTM architecture used as surrogate
model in this paper consists of an input layer, a hidden layer
with 200 neurons and relu activation function, a layer with a
dropout of 0.2 and an output layer with one neuron and linear
activation function.

A surrogate LSTM model MΦ
R has been trained with all

attributes, a 60% of the instances and with the best hyper-
parameters, and tested with 20% of the validation instances.
The RMSE in training dataset is 0.0515 and the RMSE in
validation dataset is 0.1795.

2) Prediction model evaluation for each multi-objective
optimization model: For our dataset, the proposed multi-
objective optimization problems (5), (6), (7), (8) and (9) have
been solved with NSGA-II. NSGA-II is widely recognized
by the scientific community as representative algorithm for
solving multi-objective optimization problems. This MOEA
is used in this initial phase of the experiments to compare
the different multi-objective optimization models, although
in a later experimentation phase (section IV-D) NSGA-II is
compared with a broader set of MOEAs. It has been run 10
times for each problem, with population size of 100, 1,000
generations (100,000 evaluations of the objective functions)
and crossover and mutation probabilities of 1.0. Experiments
were run on a computer with an AMD Ryzen 7 5800X 8-Core
Processor with 3.80 GHz using 16 GB of RAM and Windows
10 Pro. We use RMSE as performance metric QΦ

R,V (x). For
the decision making process in order to choose the best non-
dominated solution (Algorithm 2 with the validation dataset
V ) we have used multi-step ahead predictions and normalized
weights w1 = w2 = w3. Finally, the best model obtained with
NSGA-II is evaluated by using Algorithm 2 with the (unseen)
test dataset T .

Table II shows for each optimization problem, the results
of the best solution including the evaluation H on training,
validation and test datasets (HR,HV andHT respectively) and
the number of selected attributes. Therefore, we will have 6
datasets: 5 reduced datasets selected by the NSGA-II algorithm
and the original dataset.

3) Statistical tests for performance prediction models:
Once the best reduced dataset for each optimization problem
has been found, 3 repetitions of 10-fold cross-validation with
the training dataset R (a total of 30 prediction models) are
performed using the Algorithm 2 for evaluation. In order to
apply statistical tests, first, we check whether the conditions of
normality and sphericity of the samples are met. For normality,

TABLE II: Prediction model evaluation with NSGA-II for the
air quality problem, 100,000 evaluations and 10 runs, sorted
from best to worse evaluation of HT .

Optimization
model QΦ

R,V (x)
Number of

selected attributes HR HV HT
Run time
(minutes)

O1O2O3 0.1939 16 0.0807 0.2182 0.1298 15.76
O1O2 0.2403 2 0.1234 0.2328 0.1442 9.80
O1O2O3O4 0.2006 4 0.1210 0.2347 0.1447 28.41
O1O2O4 0.2462 6 0.0928 0.2447 0.1647 18.33
O2O3O4 – 19 0.1006 0.2746 0.1965 7.65

Shapiro-Wilks test was used, if p-values are greater than 0.05
then it can be assumed that the values come from a normal
distribution. For sphericity we used Mauchly’s test, if p-values
are greater than 0.05 then the sphericity condition is satisfied.
Then, tests are applied to check if there are statistically sig-
nificant differences between the models. Parametric ANOVA
test in case the normality and sphericity conditions are met
and non-parametric Friedman test in case they are not met.
If Friedman test is applied, Nemenyi post hoc test is also
used to determine where the significant differences between
the models are (those with a p-value less than 0.05).

In order to summarize results and determine the best and
worst models, method-dataset pairs have been ranked accord-
ing to the difference between wins and losses obtained by
Wilcoxon signed-rank test. Every time one method-dataset pair
tests statistically significantly better than another, it counts as
a win and otherwise as a loss. Table III shows the ranking of
every multi-objective optimization model.

TABLE III: Ranking of multi-objective optimization models,
10 folds cross-validation, 3 repetitions, sorted from best to
worse.

Optimization model Win Loss Win-Loss
O1O2O3 4 0 4
O1O2O4 3 1 2
O1O2 1 2 -1
O2O3O4 1 2 -1
O1O2O3O4 0 4 -4

D. Multi-objective evolutionary algorithms comparison

1) MOEAs performance evaluation: Once the best op-
timization model has been identified, the best MOEA is
determined in this new phase of experiments. We have se-
lected the MOEAs implemented in the Platypus platform that
allow binary representations, which are NSGA-II, NSGA-III,
multi-objective evolutionary algorithm based on decomposi-
tion (MOEA/D) [59], indicator-based evolutionary algorithm
(IBEA) [60], ε-MOEA [61], strength pareto evolutionary al-
gorithm 2 (SPEA2) [62] and ε-NSGA-II [63]. Each algorithm
is run 30 times with the best multi-objective model (O1O2O3)
with 100,000 evaluations and probability 1.0 of crossover
and mutation. Afterwards, hypervolume metric is calculated.
A set of reference points is required for the calculation
of hypervolume metric. For the multi-objective optimization
model O1O2O3, the set of reference points consists of 84
points (as many as attributes in the original dataset) in a
three-dimensional space (one dimension for each objective).
Dimension O1 with 0 attributes is the value of QΦ

R,V (xD)
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model when no attribute is selected, i.e. 0.2647 in our case.
All other values of that dimension are 0. Dimension O2
indicates the number of attributes, so it will range from 0
to 84. Dimension O3 is the sum of the list ordered from best
to worst correlation. That is, for 0 attributes it will be 0, for 1
attribute it will be the best correlation, for 2 attributes it will
be the sum of the two best correlations and so on.

2) Statistical tests for MOEA’s performance: The statistical
test Mann-Whitney U rank is applied in order to rank the
algorithms and select the best. Table IV shows the win-loss
ranking for MOEAs.

TABLE IV: Ranking of the optimization algorithms with
hypervolume metric, 100,000 evaluations, 30 runs, sorted from
best to worse.

MOEA Win Loss Win-Loss
NSGA-II 6 0 6
IBEA 4 1 3
ε-MOEA 4 1 3
ε-NSGA-II 3 3 0
NSGA-III 2 4 -2
SPEA2 1 5 -4
MOEA/D 0 6 -6

E. Final prediction model identification and adjustment

For each metric, those MOEAs that have never lost in any
of the statistical tests are selected. The chosen algorithm is
NSGA-II. Therefore, the best model is found with O1O2O3
optimization model with NSGA-II algorithm with crossover
and mutation probabilities 1.0.

1) Hyper-parameter tuning of the MOEA: A hyper-
parameter tuning is carried out on NSGA-II to establish the
best crossover and mutation probabilities. The probabilities of
both crossover and mutation on which the search has been
performed have been 0.2, 0.5, 0.8 and 1.0 with 10 runs and
10,000 evaluations. The best combination was a crossover
probability of 0.2 and a mutation probability of 0.2 for the
hypervolume metric.

2) Model adjustment: The best MOEA (NSGA-II) is rerun
for the best optimization model (O1O2O3) with the seed that
produced best result in the previous phase of experiments,
and the best probabilities obtained for the hypervolume metric
(crossover probability 0.2 and mutation probability 0.2) with
1,000,000 evaluations. From the last population, the non-
dominated solutions are obtained, the models are trained with
LSTM and the average of the 7-steps ahead predictions are
calculated. The evaluation H on the training dataset R, the
validation dataset V and the test dataset T are HR = 0.1234,
HV = 0.2328 and HT = 0.1441, respectively. Note that
the prediction model obtained using crossover probability 0.2
and mutation probability 0.2 does not improve the prediction
model obtained using crossover and mutation probability 1.0.
This is because the hypervolume metric measures the optimal-
ity and diversity of the MOEA based on the ideal population,
but this metric do not explicitly measure the performance
of the individuals as defined in Algorithm 2. Therefore, the
best model with probability 1.0 of crossover and mutation is
considered.

F. Comparison with other FS techniques
In this section, we compare our proposed solution with

other FS techniques of different types. Among them, there are
two filter-wrapper hybrid FS methods that combine attribute
evaluation methods with LSTM and deterministic search,
based on correlation and the reliefF algorithm respectively. We
also compare our method with two wrapper multi-objective
evolutionary FS methods (without surrogates) based on linear
regression and random forest respectively, which solve the
O1O2 multi-objective optimization model using NSGA-II.
Finally, we compare two embedded FS methods: CancelOut,
implemented in an LSTM, and random forest.

M1) Hybrid filter-wrapper FS method based on correlation
and LSTM with deterministic search: This method , also
proposed by the authors of this paper, uses the normalized
Pearson’s correlation coefficient between the selected attribute
i and the output to sort all attributes from highest to lowest
correlation. Then, w LSTM models are built with the i best
attributes in the ranking, for all i = 1, . . . , w. The attribute
subset that produces the LSTM model with the lowest RMSE
is selected (Algorithm 3). This method is a hybrid between
filter and wrapper since it uses together a correlation filter and
an LSTM-based learning algorithm. It is also a multivariate
FS method since although the attributes are ordered by their
individual correlation with the output, attribute subsets are then
formed with the most correlated attributes, in a deterministic
way with a total of w candidate subsets, which are evaluated by
means of an LSTM detecting, therefore, interactions between
factors. Note that this method is equivalent to solving the
multi-objective optimization problem formed by objectives O2
and O3, whose Pareto front consists of the set of solutions
Ψ = {si ∈ Bw, i = 1, . . . , w} obtained with Algorithm 3,
to finally select the solution si that builds the best prediction
model mbest. However, the O2O3 multi-objective optimization
problem can be solved deterministically in this case with
Algorithm 3 without resorting to approximate probabilistic
methods such as MOEAs.

M2) Hybrid filter-wrapper FS method based on reliefF and
LSTM with deterministic search: This method is similar to the
previous one except that it uses the multivariate reliefF filter
instead of the univariate correlation filter, and has also been
proposed by the authors of this paper. Algorithm 3 therefore
also serves to describe this FS method. This method also uses
a hybrid wrapper-filter technique, but in this case, it can be
considered a fully multivariate method. This method is equiv-
alent to solving the multi-objective optimization problem with
the objectives O2 and O4 and selecting the best solution from
the Pareto front, which can also be solved deterministically
with Algorithm 3.

M3) Wrapper multi-objective evolutionary FS method based
on linear regression: This is a multivariate wrapper method,
for evaluating subsets of attributes, that uses NSGA-II with
search strategy and a linear regression algorithm as evaluator
together with the RMSE metric. The multi-objective optimiza-
tion model O1O2 described in equation (5) is solved. This
method does not use surrogates but rather a linear regression
model is trained for each candidate attribute subset. It has been
evaluated with 10 runs, 100,000 evaluations and 1.0 crossover
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Algorithm 3 Hybrid filter-wrapper FS method based on
correlation/reliefF and LSTM with deterministic search
Require: r = {r1, . . . , rw}, 1 ≤ ri ≤ w | ρRri−1

≥
ρRi ,∀i = 2, . . . , w {σR

ri−1
≥ σR

i , ∀i = 2, . . . , w, for re-
liefF}

Require: R ⊂ D {Training dataset}
Require: V ⊂ D {Validation dataset}
Require: h {Number of steps-ahead}
Require: w1, w2, w3, 0 ≤ w1, w2, w3 ≤ 1, w1 +w2 +w3 = 1
{Weights}

1: for i = 1 to w do
2: xi = 0
3: end for
4: for i = 1 to w do
5: xri ← 1
6: mi ← LSTM(R,x){Prediction model built with LSTM

in data set R with the attribute subset x}
7: si ← x
8: end for
9: best ← arg min

i=1,...,w
H(si,mi, V, h, w1, w2, w3) {Using Al-

gorithm 2}
10: return mbest

and mutation probabilities. Each set of selected attributes is
evaluated with a linear regression model.

M4) Wrapper multi-objective evolutionary FS method based
on random forest: This FS method is similar to the previous
one except that the random forest learning algorithm is used
for the evaluation of attribute subsets.

M5) CancelOut: CancelOut [23] is an embedded method
that adds new input layer for ANNs. Each neuron in this layer
is connected to an input variable. The weights are updated dur-
ing a training stage so that irrelevant features are “cancelled”
and those that do provide information are maintained. The
CancelOut layer has three parameters: an activation function,
λ1 and λ2. λ1 and λ2 are two regularization terms to speed
up the FR process. The values of both lambdas are between 0
and 1. A search has been performed to find the best CancelOut
hyper-parameters. For this purpose, the CancelOut layer has
been added to the previously described LSTM architecture.
The values of λ1 and λ2 on which the search will be done
are: 0, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.
The best value for λ1 was 0.5 and for λ2 was 0.05. The
activation function will always be the sigmoid, which is the
default parameter proposed by the authors of the layer. The
LSTM architecture consists of an input layer, followed by a
CancelOut layer, a hidden layer with 200 neurons and relu
activation function, a layer with a dropout of 0.2 and an output
layer with one neuron and linear activation function.

M6) Random Forest: Random forest is also an embedded
method that performs feature selection internally. To do so,
random forest considers how each attribute affects the impurity
of the nodes.

In Table V, the compared FS techniques are sorted from
best to worst evaluation of H on the test dataset T (HT ).
The run times are in minutes. In addition, the original LSTM

model trained with all attributes has also been included in
the comparison. Table VI shows the RMSE, MAE and CC
of the 7-steps ahead predictions of the best prediction model
(O1O2O3-NSGA-II) evaluated on the training dataset R and
the test dataset T .

TABLE V: Comparison of feature selection methods for the
airquality problem, sorted from best to worse evaluation of
HT .

Method HR HT
Number of

selected attributes
Run time
(minutes)

O1O2O3-NSGA-II 0.0807 0.1298 16 15.76
M1 0.1246 0.1437 2 3.93
M2 0.1246 0.1437 2 4.09
M4 0.1235 0.1876 6 22.60
M6 0.1701 0.2069 1 2.16
M3 0.1227 0.2243 14 5.45
M5 0.0602 0.2452 84 0.07

All attributes 0.0560 0.2763 84 0.01

TABLE VI: Results of the best prediction model (obtained
with O1O2O3-NSGA-II method) for the air quality problem
evaluated on R and T datasets.

Set Metric 1-step
ahead

2-steps
ahead

3-steps
ahead

4-steps
ahead

5-steps
ahead

6-steps
ahead

7-steps
ahead

RMSE 0.0761 0.0744 0.0749 0.0751 0.0755 0.0758 0.0773
R MAE 0.0533 0.0529 0.0534 0.0535 0.0537 0.0538 0.0548

CC 0.8892 0.8916 0.8900 0.8885 0.8861 0.8846 0.8805
RMSE 0.0814 0.0819 0.0822 0.0829 0.0832 0.0848 0.0873

T MAE 0.0494 0.0498 0.0503 0.0505 0.0507 0.0517 0.0537
CC 0.7535 0.7508 0.7507 0.7478 0.7467 0.7380 0.7257

G. Additional experiments: indoor temperature forecasting in
a domotic house

In this section we analyze a second forecasting problem
in order to strengthen the conclusions about the proposal.
The forecast of the indoor temperature in a domotic house
in Valencia (Spain) is now considered. The dataset (SML2010)
has been extracted from the UCI Machine Learning Repository
[64]. In its original version [65], the dataset contains times
series with a total of 24 attributes and 4137 instances, with data
acquired in Valencia (Spain) from 03/13/2012 to 05/02/2012,
each 15 minutes. In this study we have set the indoor tempera-
ture of the dining room as the target. After removing date and
time attributes, useless attributes, and attributes related to the
indoor temperature of another room, the set of 15 attributes
shown in Tables VII and VIII is obtained.

Applying the methodology followed in this paper with a
WS of 4, we obtain that the best optimization model has
been O1O2O3O4 in this case (Table IX). Note that the sliding
window has not been applied to the DW variable, due to
its categorical character. The best MOEA has turned out to
be NSGA-II also in this problem. The O1O2O3O4-NSGA-II
prediction model has been the best compared to the rest of
the models obtained with the FS methods described in section
IV-F. Table X shows the results of the comparison. Table
XI shows the RMSE, MAE and CC of the 4-steps ahead
predictions of the O1O2O3O4-NSGA-II model evaluated on
the training dataset R and the test dataset T .
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TABLE VII: Attributes in SML2010 dataset used in this paper.

Short name Description
WT Weather forecast temperature, in oC
CO2 Carbon dioxide, in ppm (dinning room)
RH Relative humidity (dinning room), in %
L Lighting (dinning room), in Lux
R Rain, in range [0, 1]

SD Sun dusk
W Wind, in m/s

SLW Sun light in west facade, in Lux
SLE Sun light in east facade, in Lux
SLS Sun light in south facade, in Lux
SI Sun irradiance, in W/m2

OT Outdoor temperature, in oC
ORH Outdoor relative humidity, in %
DW Day of the week, 1 = Monday, 7 = Sunday

IT (target) Indoor temperature (dinning-room), in oC (target)

TABLE VIII: SML2010 attribute statistics.

Name Mean Std Min Max
WT 15.09 4.38 0.00 29.00
CO2 206.60 22.76 187.34 594.39
RH 42.39 7.22 26.17 60.96
L 28.97 25.68 10.74 111.80
R 0.04 0.19 0.00 1.00

SD 335.09 304.51 0.61 625.00
W 1.30 1.22 0.00 6.32

SLW 14749.15 25306.45 0.00 95278.40
SLE 13566.28 23311.85 0.00 92367.50
SLS 19857.18 29494.60 0.00 95704.40
SI 232.20 312.46 -4.16 1094.66
OT 18.02 4.29 9.22 29.91

ORH 53.25 13.51 22.25 83.81
DW 3.96 1.99 1.00 7.00

IT (target) 20.49 3.31 11.35 28.92

TABLE IX: Prediction model evaluation with NSGA-II for
the indoor temperature problem, 100,000 evaluations, 10 runs,
sorted from best to worse evaluation of HT .

Optimization
model QΦ

R,V (x)
Number of

selected attributes HR HV HT
Run time
(minutes)

O1O2O3O4 0.0364 10 0.0061 0.0091 0.0115 38.03
O1O2O3 0.0449 21 0.0075 0.0105 0.0130 27.18
O1O2 0.0659 4 0.0114 0.0126 0.0136 13.24
O1O2O4 0.0659 4 0.0114 0.0126 0.0136 32.34
O2O3O4 – 26 0.0062 0.0101 0.0149 14.43

TABLE X: Comparison of feature selection methods for
the indoor temperature problem, sorted from best to worse
evaluation of HT .

Method HR HT
Number of

selected attributes
Run time
(minutes)

O1O2O3O4-NSGA-II 0.0061 0.0115 10 38.03
M6 0.0079 0.0130 6 2.87
M1 0.0075 0.0141 28 5.08

All attributes 0.0112 0.0168 57 0.10
M5 0.0112 0.0168 57 0.09
M2 0.0089 0.0219 9 5.13
M4 0.0321 0.0394 1 29.44
M3 0.0321 0.0394 1 9.12

V. ANALYSIS OF RESULTS AND DISCUSSION

This section provides an analysis of the results presented
above attending to the comparison of the multi-objective
optimization models and the MOEAs that solve them, as well
as the identification and adjustment of the final prediction

TABLE XI: Results of the best prediction model (obtained
with O1O2O3O4-NSGA-II method) for the indoor temperature
problem evaluated on R and T datasets.

Set Metric 1-step
ahead

2-steps
ahead

3-steps
ahead

4-steps
ahead

RMSE 0.0079 0.0094 0.0108 0.0126
R MAE 0.0052 0.0064 0.0075 0.0089

CC 0.9993 0.999 0.9987 0.9983
RMSE 0.0129 0.016 0.0194 0.0235

T MAE 0.0112 0.0139 0.0169 0.0204
CC 0.9994 0.9991 0.9988 0.9983

model and its comparison with prediction models obtained
with other FS techniques.

A. Analysis of the multi-objective optimization models

The experiments aimed at identifying the best multi-
objective optimization model have been based on the eval-
uation of the prediction models obtained and on statistical
tests to discard those models that have presented statistically
significant differences. We have used the performance measure
H, proposed in this paper, to evaluate the prediction models
on a dataset E (Algorithm 2, where E has been the dataset
R, V or T ) taking into account the RMSE, MAE and CC
indicators in multi-step ahead predictions. For the statistical
tests, the prediction models have been evaluated by means of
3 repetitions of 10-fold cross-validation, therefore using a total
of 30 prediction models for each multi-objective optimization
model. The following analysis can be derived:

• The combination of the evaluation of the surrogate model
together with the correlation filter (multi-objective opti-
mization model O1O2O3) produces the best prediction
model (evaluated on the T dataset) in the air quality prob-
lem, while in the indoor temperature problem, the best
resulting optimization model combines the evaluation of
the surrogate model with the correlation and reliefF filters
(multi-objective optimization model O1O2O3O4). This
indicates that all the objective functions defined in this
paper can be important in the multi-objective search for
attribute subsets in the problems under study. Statistical
tests have confirmed the superiority of these optimization
models in their respective application problems.

• The O1O2O3 optimization model for air quality forecast-
ing has selected 16 attributes, and thus has removed 68
attributes from the original dataset (out of 84 attributes),
as well as improving the performance of the LSTM
neural network. The O1O2O3O4 optimization model for
indoor temperature forecasting has selected 10 attributes,
removing 47 attributes from the original dataset (out of
57 attributes) and also improved the performance of the
LSTM neural network.

• With the O1O2 optimization model, which does not
contain the correlation filter or the reliefF filter, a lower
number of attributes is selected than in the rest of
the optimization models, in both air quality and indoor
temperature problems. However, the performance of the
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prediction model obtained deteriorates with respect to
other models that do contain some of these filters.

• The multi-objective optimization models O1O2 and
O2O3O4 have the shortest run times, while the multi-
objective optimization model O1O2O3O4 containing all
objectives has, as expected, the longest run time.

B. MOEAs comparison

In order to identify which MOEA has better performance,
several outstanding MOEAs from the literature have been
compared using optimality and diversity metrics used in multi-
objective optimization. The multi-objective optimization mod-
els O1O2O3, for the air quality problem, and O1O2O3O4,
for the indoor temperature problem, have been used in the
comparison of MOEAs. Again, statistical tests have been
performed to select, in this case, those MOEAs that have
never lost in any of the statistical tests. For both multi-
objective optimization models O1O2O3 and O1O2O3O4 in
their respective application problems, the NSGA-II algorithm
turned out to be the best. Figures 3 and 4 show the Pareto
fronts found with O1O2O3-NSGA-II for air quality dataset and
O1O2O3O4-NSGA-II for indoor temperature dataset, marking
in red the solution selected by the decision-making process.

Fig. 3: Pareto front found with O1O2O3-NSGA-II (air quality
dataset), best run, 100,000 evaluations. Red point represents
the model with best average RMSE of 7-steps ahead predic-
tions.

C. Analysis of the final prediction model

The performance measureH proposed in this paper has been
used finally to evaluate the prediction models on datasets R
and T . We can highlight the following observations about the
best prediction models found in this phase of experimentation:
• We can estimate the overfitting ratio of a model with the

formula HR/HT . A rate greater than 1 indicates that the
model is overfitting the training data, and a rate less than

Fig. 4: Parallel coordinates plot of the Pareto front found with
O1O2O3O4-NSGA-II (indoor temperature dataset), best run,
100,000 evaluations.

1 indicates that the model is under-fitting. The closer the
rate is to 1, the better, since it implies that the results of
training and testing are similar. The overfitting ratio of
the prediction model found with O1O2O3 and NSGA-
II for the air quality problem is HR/HT = 0.6217,
while the overfitting ratio of the prediction model found
with O1O2O3O4 and NSGA-II for the indoor tempera-
ture problem is HR/HT = 0.5304. This indicates that
the proposed surrogate-assisted approach is not prone
to overfitting, since there is no model training during
the optimization phase, but rather an evaluation of the
surrogate model on the validation dataset V .

• The prediction model found in this research with
O1O2O3 and NSGA-II for the air quality problem is,
not only accurate but also stable, in the sense that the
h-steps ahead predictions suffer only a small increase in
the prediction error between one step and the next. The
prediction model found with O1O2O3O4 and NSGA-II
for the indoor temperature problem is also accurate but
suffers from less stability, mainly because the window
size has been smaller in this case.

D. Comparison with other FS approaches

The following analysis can be derived from the comparison
with the FS methods described in Section IV-F:

• None of the compared FS methods beats the
O1O2O3-NSGA-II method nor the O1O2O3O4-NSGA-II
method in their respective application problems.

• The M1 and M2 methods based on correlation and reliefF
have performed better than the wrapper methods M3 and
M4 based on linear regression and random forest. The
M1 and M2 methods, in addition to using the correlation
and reliefF filters respectively, build LSTM neural net-
works with the subsets of attributes, which can make a
difference with respect to the M3 and M4 methods.

• The embedded method M5 (based on the cancelOut layer)
has not shown good performance, even after adjusting its
hyperparameters. The M5 method is the only FS method
that has not selected any attributes.
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• The embedded method M6 (based on random forest)
selects few attributes but performs worse than the best
FS methods found in this paper.

• With regard to run times, the FS method
O1O2O3-NSGA-II found in this work, which has
evaluated 100,000 subsets of attributes (using the
surrogate model) and has built a maximum of 100 LSTM
neural networks (maximum number of non-dominated
solutions in the last population), consumes less
computational time than the M4 wrapper method based
on random forest, which builds and evaluates 100,000
prediction models. However, the O1O2O3O4-NSGA-II
method has taken longer than the M4 method due to
the presence of 4 objective functions. The M3 wrapper
method based on linear regression, although it also
builds 100,000 prediction models, consumes a similar
run time to the M1 and M2 methods, since the linear
regression learning algorithm is a really fast method. The
embedded methods M5 and M6 based on cancelOut and
random forest respectively are the least time consuming
methods. The M5 method consumes similar to the time
required to train an LSTM neural network with all 84
attributes.

E. Interpretation of the selected attribute subsets

In this section we show the features that each model has
selected for forecasting and discuss whether they really are
important features from a domain perspective. This analysis
strengthens the interpretability aspects of the models. Table
XII shows the attributes selected by the O1O2O3-NSGA-II and
O1O2O3O4-NSGA-II methods in the air quality and indoor
temperature problems, respectively.

TABLE XII: Selected attributes in air quality an indoor tem-
perature problems

Problem Method Selected Attributes

Air quality O1O2O3-NSGA-II

Lag NO 1, Lag NO 4,
Lag HR 7, Lag NOX 1,
Lag NOX 2, Lag NOX 3,
Lag NOX 4, Lag NOX 6,
Lag NOX 7, Lag DD 2,
Lag NO2 2, Lag NO2 3,
Lag NO2 4, Lag NO2 5,
Lag NO2 6, Lag NO2 7’

Indoor
temperature O1O2O3O4-NSGA-II

Lag CO2 2, Lag W 4,
Lag SLS 4, Lag OT 1,
Lag OT 2, Lag OT 4,
Lag IT 1, Lag IT 2,
Lag IT 3, Lag IT 4

In the air quality problem, lagged variables of the attributes
NO, NOX , DD and HR were selected. The attributes NO
and NOX are closely related to the attribute NO2 in their
chemical composition, and therefore there is a high (Pearson’s)
correlation between these attributes and the target attribute
NO2. Climate also influences NO2 concentrations, according
to a study by the Leibniz Institute for Tropospheric Research
(Germany) [66] commissioned by the State Office for En-
vironment, Agriculture and Geology (LfULG). In this study
was shown that wind speed and the height of the lowest
air layer are the most important factors that determine how

much pollutants can accumulate locally. Moreover, it has long
been known that weak winds can cause high concentrations of
pollutants. The study also showed that high humidity can also
reduce the concentration of NO2, which could be due to the
fact that the pollutants deposit more strongly on moist surfaces.
The FS method has selected the first 6 lagged variables (out
of 7), which may imply a low incidence in the prediction of
the last day of the established time window.

In the indoor temperature problem, lagged variables of the
attributes CO2, W, SLS and OT have been selected. The
presence of a high concentration of CO2 generated by the
occupants of the room through breathing is a consequence of
a poor ventilation system that leads to an increase in indoor
temperature. On the other hand, it is evident that the external
wind, the sunlight on the south facade (in areas of the northern
hemisphere, as is the case) and the external temperature are
factors that affect the indoor temperature of a room. With
respect to the lagged variables of the target, all of them have
been selected, which indicates a dependency of the entire time
window on the model forecast.

F. Summary of analysis results

In summary, the results of the analysis are as follows:
• All the objectives O1, O2, O3 and O4 proposed in this

research for multi-objective evolutionary feature selection
have proven to be important in the identification of good
forecasting models in the cases under study. Particularly,
the combinations O1O2O3 and O1O2O3O4 have turned
out to be the best in the problem of air quality and indoor
temperature, respectively.

• The NSGA-II algorithm has shown the best performance,
in terms of hypervolume, than the rest of the MOEAs
in solving the multi-objective optimization problems pro-
posed for FS in this paper.

• The prediction models found in this study with the
proposed techniques present low overfiting rates and are
stable with respect to multi-step ahead predictions.

• The proposed FS methods outperform other powerful
filter-wrapper FS methods based on correlation, reliefF
and LSTM, wrapper FS methods based on linear regres-
sion and random forest, and embedded FS methods based
on cancelOut and random forest.

• The models found in this study for air quality prediction
and indoor temperature prediction contain a relatively
low number of attributes that are easy to interpret in the
problem domain.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed new feature selection meth-
ods that are particularly appropriate for building prediction
models that require a high computational training cost, such
as models based on deep learning. The proposed methods
search for subsets of attributes by means of a multi-objective
evolutionary strategy and using an LSTM neural network
which acts as a surrogate model to evaluate candidate subsets
of attributes, together with correlation and reliefF filters and
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cardinality minimization of attribute subsets. In the experi-
mentation process, different optimization models of 2, 3 and
4 objectives have been tested, which combine the evaluation
by means of the surrogate model with the correlation and
reliefF filters. Different state-of-the-art multi-objective and
many-objective evolutionary algorithms have also been tested,
and the algorithm NSGA-II has shown the best performance.
Two datasets has been used in the experiments, the first with
air quality time series data in south-eastern Spain with data
measured daily for 4 years, and the second with time series
data related to the indoor temperature of a home domotic
house. The data was divided into train, validation and test sets.
To measure the performance of the prediction models, a perfor-
mance measure multi-criteria metric has been proposed, which
takes into account the average RMSE, MAE and CC in a multi-
step ahead prediction horizon. In the air quality forecasting
problem, the best FS method found was O1O2O3-NSGA-II,
selecting 16 attributes out of a total of 84 and considerably
improving the predictive capacity of the LSTM neural network
with the complete set of attributes. In the indoor temper-
ature forecasting problem, the best FS method found was
O1O2O3O4-NSGA-II, which selected 10 attributes out of a
total of 57, also improving the performance of the LSTM with
all the attributes. They also show stability in the predictions
without the presence of overfitting. The investigated FS meth-
ods O1O2O3-NSGA-II and O1O2O3O4-NSGA-II outperform,
in their respective application scenario, FS methods of the
wrapper, hybrid filter-wrapper, and embedded types. Finally,
we have verified the importance of the selected attributes with
the O1O2O3-NSGA-II and O1O2O3O4-NSGA-II methods in
the expert context.

Future works will include the use of this novel approach
with other deep learning algorithms such as GRU and CNN
as well as other multi-step ahead forecasting strategies. In
addition, predictions can be made for other harmful chemi-
cal compounds such as NOX , PM2.5, PM10, etc. Besides,
this approach can be applied to classification problems and
imaging processing [67]. We are currently working on a new
many-objective evolutionary algorithm based on decomposi-
tion, performance indicators and reference points sampled on
the Pareto front, and on the development of a novel multi-
surrogate assisted multi-objective evolutionary algorithm for
feature selection method in order to improve the generalization
error applied to time series forecasting problems. Finally, we
are considering the application of the proposed technique in a
spatio-temporal forecast scenario.
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[11] E. Schaffernicht, C. Möller, K. Debes, and H.-M. Gross, “Forward
Feature Selection Using Residual Mutual Information,” in ESANN, 01
2009, pp. 583–588.

[12] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Machine Learning,
vol. 46, pp. 389–422, 2004.
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