
Summary. Colorectal cancer (CRC) is one of the
leading causes of death in the civilized world. Transient
receptor potential channels (TRPs) are a heterogeneous
family of cation channels that play an important role in
gastrointestinal physiology. TRPs have been linked with
carcinogenesis in the colon and their role as potential
therapeutic targets and prognostic biomarkers is under
investigation. 
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Introduction

Colorectal cancer (CRC) is one of the most
diagnosed types of cancer, affecting over one million
people per year worldwide. Diet, western lifestyle habits,
obesity (Dai et al., 2007; Hong et al., 2012; Ma et al.,
2013), genetic factors (Wong and Xie, 2017; Xie et al,
2018), and inflammatory bowel disease (Herszenyi et al.,
2015; Keller et al., 2019) seem to contribute to CRC
pathogenesis. The key to its treatment is early diagnosis
since patients may not manifest any remarkable
symptoms. Colonoscopy is an important tool for primary
prevention of the leading gastrointestinal tract cancer but
many patients, even those with positive family history of
colorectal cancer, do not cooperate, which leads to CRC
diagnosis at advanced stage with metastasis for a
significant number of patients. Therapy includes surgical
resection, chemotherapy, radiotherapy, and
immunotherapy but the five-year survival rate of patients
with advanced CRC with metastasis has not changed
dramatically over years and is less than 10% (Siegel et
al., 2011). 

The dysregulation of intracellular Ca2+ homeostasis

has been correlated with colon tumorigenesis and with
other gastrointestinal tract cancers (Villalobos et al.,
2017). Store-operated Calcium entry (SOCE), transient
receptor potential (TRP) channels, L-type Ca2+ channels,
sarco/endoplasmic reticulum calcium-ATPases
(SERCAs), and Na+/Ca2+ exchanger seem to be involved
in cells’ proliferation, apoptosis and differentiation but it
remains unclear whether the channels functional
properties or the cellular Ca2+ concentration is the main
mediator of tumorigenesis. Thus, SOCE is a novel key
player in CRC therapeutic approach (Villalobos et al.,
2017; Yang et al., 2019b).

The Transient Receptor Potential family (TRP) of
selective and non-selective cation channels consists of
TRPC (Canonical), TRPV (Vanilloid), TRPM
(Melastatin), TRPA (Ankyrin), TRPP (Polycystin),
TRPML (Mucolipin) and TRPN (no mechanoreceptor
potential C-NOMPC) channels, serving as cellular
sensors for a wide range of stimuli and signal
transducers. The last subfamily of channels is not
represented in mammals and includes the recently
introduced subfamilies of TRPVL (vanilloid-like), TRPS
(soromelastin) and TRPF (fungus specific) channels
(Pedersen et al., 2005; Himmel and Cox, 2020;
Sakaguchia et al., 2020). Structurally, all members of the
TRP family are tetramers consisting of subunits which
include six putative transmembrane domains, cytosolic
N- and C-terminal and a pore between transmembrane
domains 5 and 6. Tridimensional diagrams of one
member representative of each subfamily, namely
TRPC5, TRPV1, TRPM4, TRPA1, TRPP2, and
TRPML1 are demonstrated in Fig. 1 (Liao et al., 2013;
Paulsen et al., 2015; Schmiege et al., 2017; Hulse et al.
2018; Duan et al., 2018, 2019). 

Members of mammalian TRP subfamilies have been
investigated in numerous diseases (channelopathies)
(Kaneko and Szallasi, 2014; Dietrich, 2019) e.g.
neurodegenerative (Nilius et al., 2005), cardiovascular
(Inoue et al., 2019), and metabolic diseases (Zhu et al.,
2011; Vasconcelos et al., 2016) whereas there is growing
evidence supporting their role in carcinogenesis
(Prevarskaya et al., 2007; Bernardini et al., 2015; Park et
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al., 2016; Shapovalov et al., 2016; Canales et al., 2019).
In this context, some TRP members may be promising
targets for novel chemotherapeutic drugs as they are
involved in processes like tumor invasion, migration,
and angiogenesis (Gkika and Prevarskaya, 2009). Novel
chemotherapeutics targeting TRPs have already been
tested in gliomas and prostate adenocarcinomas, breast,
small cell lung tumors and in bladder cancer with

promising results, while some TRPs, such as TRPP1
have predictive and prognostic significance for kidney
cancer (Lee et al., 2011; Santoni and Farfariello, 2011;
Vay et al., 2012; Gautier et al., 2014; Leanza et al., 2016;
Bishnoi et al., 2018; Santoni et al., 2019).

TRPs participate in numerous gastrointestinal tract
functions such as taste, mucosal function and
homeostasis, intestinal motility, visceral sensation and
visceral hypersensitivity, while changes in TRP levels
have been associated with a variety of gastrointestinal
tract disorders, such as gastro-esophageal reflux disease,
dyspepsia, irritable bowel syndrome (Boesmans et al.,
2011; Holzer, 2011), inflammatory bowel disease
(Zielinska et al., 2015; Rizopoulos et al., 2018) and
several types of tumors including CRC (see reviews
Alaimo and Rubert, 2019; Anderson et al., 2019; Yang et
al., 2019b; Stokłosa et al., 2020). Thus, new
pharmacologic strategies targeting TRP dysfunction
have been proposed for gastrointestinal tract disorders
(Vay et al., 2012; Alvarez-Berdugo et al., 2018; Bishnoi
et al., 2018).
TRPC channels (TRPCs) 

TRPCs is a group of calcium-permeable non-
selective cation channels which exhibit the highest
protein sequence similarity to the Drosophila
melanogaster TRP channels and consists of seven
members that are divided into four subgroups (TRPC1,
TRPC2, TRPC4/5, and TRPC3/6/7) based on their
amino acid sequences and functional similarities.
Forming homo- and heteromeric complexes, TRPCs
contribute to a broad spectrum of cellular functions like
cell proliferation and migration, synaptic plasticity and
neurite extension, through regulation of membrane
potential and calcium signaling and “sensing” different
environmental cues, and seem to regulate various
physiological processes such as neural development,
vascular smooth cell tone, hormone and neurotransmitter
secretion, kidney function and immune function, as they
participate in mast cells degranulation and T-cell
activation (Freichel et al, 2004; Nilius and Owsianik,
2011; Chen et al., 2020; Wang et al., 2020). Differences
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Fig. 1. a. Diagram of TRP channels subunit containing six
transmembrane segments (S1–S6), a hydrophobic pore loop linking
transmembrane S5 and S6, and large cytoplasmic N- and C-terminals.
Four such subunits consist of TRP channels. Ankyrin domains (number
variable) are present in the N-terminal region of TRPV, TRPA, TRPC
subfamilies. The TRP domain (well-conserved region) and protein
kinase domain are present in the C terminus region. b. Ribbon
representation of the structure in perspective horizontal to the plane of
the membrane, with four subunits colored differently of TRP channels
exemplified by the TRPV1 atomic model (PDB 3J5Q), TRPM4 atomic
model (PDB 6BWI), TRPML1 atomic model (PDB 5WJ9), TRPC5
atomic model (PDB 6AEI), TRPA1 atomic model (PDB 3J9P), and
TRPP2 atomic model (PDB 6DU8) (Liao et al., 2013; Paulsen et al.,
2015; Schmiege et al., 2017; Hulse et al., 2018; Duan et al., 2018,
2019).



in the localization and regulation of TRPCs result from
their interaction with regulatory and scaffolding proteins
(Ambudkar et al., 2006). The role of TRPCs and their
interacting molecular partners in the biology of cancer,
particularly in regulating migration and invasion and
thus in the process of metastasis has been extensively
investigated (Asghar and Törnquist, 2020).
TRPCs and intestine

TRPCs have been detected in intestinal neurons,
smooth muscle, and interstitial cells of Cajal implying
their involvement in muscle excitability and intestinal
motility (Walker et al., 2002; Tsvilovsky et al., 2009;
Boesmans et al., 2011; Dwyer et al., 2011). According to
the study of Pérez-Riesgo et al. (2017), human colonic
cells express only TRPC1 channels. Additionally,
experimental data has shown that induced TRPC1
expression increases apoptosis of intestinal epithelium,
through inhibition of NF-kB activation (Marasa et al.,
2008) and TRPC1 may be involved in intestinal
epithelial restitution as it seems to regulate capacitive
and intracellular cytosolic Ca2+ entry, and cell migration
after wounding (Rao et al., 2006). The role of TRPCs in
inflammatory bowel disease has not been elucidated yet
but there is data indicating that TRPC6 upregulation in
myofibroblasts may promote fiber formation in Crohn’s
disease patients (Kurahara et al., 2015; Inoue, 2019).
TRPCs and colorectal cancer

Colon cancer cells display enhanced store operated
Ca2+ entry (SOCE) compared with their non-cancer
counterparts due to an abnormal expression of SOCE
molecular players including TRPC1 channels (Villalobos
et al., 2017, 2019). Furthermore, there is evidence that
TRPC1 may contribute to the hallmarks of various types
of cancer (Elzamzamy et al., 2020). Indeed, TRPC1
expression has been found to be significantly enhanced
in CRC patients (Pérez-Riesgo et al., 2017; Ibrahim et
al., 2019) which has been associated with poor prognosis
(Ibrahim et al., 2019). It has also been reported that a
reciprocal shift in TRPC1 and stromal interaction
molecule 2 (STIM2) contributes to Ca2+ remodeling and
cancer progression in colon (Sobradillo et al., 2014). In
accordance with these findings, further results indicate
that a decrease of TRPC1 expression inhibits migration
of the HT-116 colon cancer cells towards EGFR
deactivation (Guéguinou et al., 2016) implying a novel
therapeutic strategy for metastatic CRC. 

As regards the other members of the TRPC family,
through a study of a large cohort of CRC patients, high
expression of TRPC5 channels was associated with
tumor grade and poorer disease-free and overall survival
(Chen et al., 2017a). Experimental data has shown that
overexpression of TRC5 induces the epithelial-to-
mesenchymal transition (EMT) through the HIF-1α-
Twist signaling pathway and promotes tumor metastasis
in colon cancer (Chen et al., 2017b). Notably, patients

with advanced CRC high expression of TRPC5
displayed chemoresistance which was GLUT1
dependent (Wang et al., 2017, 2018). Additionally,
TRPC5 mRNA overproduction has been correlated with
5-Fluoruracil chemo-resistance in human CRC cells, via
glucose regulation, while TRPC5 suppression ends in a
remarkable reversal of 5- Fluoruracil resistance cancer
cells (Wang et al., 2015). On the other hand, Sozucan et
al. (2015) have shown lower levels of TRPC6 mRNA in
CRC patients compared with controls. Added to TRPC
properties in CRC is that 20-O-β-D-glucopyranosyl-
20(S)-protopanaxadiol (20-GPPD), via TRPC activation,
reduces tumor burden addressing interest in TRPCs to
their usage as chemotherapeutic targets (Hwang et al.,
2013). Furthermore, as aspirin and other NSAIDs have
been reported to prevent CRC acting on remodeled Ca2+
entry pathways through TRPCs, the role of these
channels in the pathophysiology of the gastrointestinal
tract may be further clarified (Villalobos et al., 2017,
2019).
TRPV channels (TRPVs)

TRPVs are a well-studied subfamily of TRPs. It
consists of six non-selective calcium channels forming
homo- or hetero-tetramers, TRPV1 to TRPV6 which are
mostly located on cells plasma membrane. Besides,
TRPV1-4 channels were shown to be expressed in the
endoplasmic reticulum and their modulation by
activators and/or inhibitors was demonstrated to be
crucial for intracellular signaling (Haustrate et al., 2020).
Some of these channels are named also thermo ion
channels as they are expressed in primary sensory nerve
terminals where they provide information about thermal
changes in the environment (Vay et al., 2012).
Furthermore, TRPVs serve as sensors of chemical,
osmotic, and mechanical stimuli (Liedtke and Kim,
2005). Apart from the peripheral nerve terminals,
expression of TRPVs is detected in neurons of PNS
ganglia and brain (TRPV1-4), skin (TRPV1, TRPV3,
TRPV4), pancreas (TRPV1, TRPV5, TRPV6), bladder
(TRPV1), gastro-intestinal tract (TRPV1-6), spleen,
mast cells, smooth, cardiac and skeletal muscle cells
(TRPV2), tongue (TRPV3), testis, (TRPV3, TRPV4,
TRPV6), kidney (TRPV4, TRPV5, TRPV6), heart, liver,
osteoblasts, endothelium, urothelium, and cochlea
(TRPV4), as well as prostate, brain and salivary gland
(TRPV5, TRPV6) (Lee and Caterina, 2005; Nilius and
Owsianik, 2011) and T cells (TRPV1,4), where an
immunoregulatory role for these channels has been
elucidated by Majhi et al. (2015). TRPV1 dysfunction
has been correlated with various pathophysiological
conditions and disorders such as inflammatory pain,
thermal hyperalgesia, hippocampal long-term
depression, diabetes, obesity, hyperactive bladder
syndromes, hypertension, hypothermia and, renal
excretory function (Liedtke and Kim, 2005; Nilius et al.,
2005; Vay et al., 2012; Bujak et al., 2019). TRPV2
alterations have been investigated in muscular dystrophy
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Duchenne, cardiac hypertrophy, and myocarditis (Zanou,
2009; Iwata and Matsumara, 2019) whereas skin
disorders have been related to TRPV3 dysfunction
(Nilius et al., 2014). Mutations in the TRPV4 gene are
causative for several human diseases, which affect the
skeletal and the peripheral nervous system (Nilius and
Voets, 2013) while glomerular acidosis, osteoporosis and
osteomalakia have been correlated with TRPV5 and
TRPV6 levels of expression (Nilius et al., 2005) since
these channels are implicated in bone metabolism and
osteoclast function (van Goor et al., 2017).
TRPVs and intestine 

TRPVs are expressed in many parts of the
gastrointestinal tract, serving a broad spectrum of
functions from taste and fluid secretion to Ca2+
absorption (Holzer, 2011). TRPV1, 2, 4 have been
detected in visceral afferents. Intestinal epithelium
demonstrates expression of all members of TRPVs.
TRPV4 is mainly localized in the superficial mucosal
cells. TRPV1,2 channels are also expressed by subtypes
of enteric neurons in both the myenteric and submucosal
plexus and TRPV3 is detected also in muscularis mucosa
(Boesmans et al., 2011; Rizopoulos et al., 2018).
Previous studies have correlated increased TRPV1
expression in sensory fibers with visceral
hypersensitivity and hyperalgesia and neurogenic
inflammation in inflamed bowel (Dömötör et al., 2005;
Yu et al., 2010; Vinuesa et al., 2012; Vermeulen et al.,
2013; Csekő et al., 2019). TRPV2 seems to be involved
in colitis attenuation (Issa et al., 2014) while TRPV4
exerts a pro-inflammatory role in the intestine
(Vergnolle, 2014). TRPV4 expression is significantly
increased in the colonic epithelium of ulcerative colitis
(UC) patients compared to controls (Rizopoulos et al.,
2018) and a very recent gene expression study revealed
that TRPV4 is higher in colonic tissue from patients with
remission UC compared with active UC patients (Toledo
Mauriño et al., 2020). In the same study, TRPV5 was
demonstrated to have significantly higher mRNA levels
in the control group compared with active UC patients
whereas TRPV6 was significantly higher in the colonic
tissue from patients with active UC compared with the
control group (Toledo Mauriño et al., 2020).
TRPVs and Colorectal Cancer

Increasing evidence suggests that TRPVs are
implicated in the pathogenesis of CRC. Hou et al. (2019)
report that TRPV1 serves as a tumor suppressor in CRC.
Particularly, TRPV1 expression was found to be
significantly decreased in CRC tissues, compared with
CRC-adjacent tissues and normal tissues. However,
other studies showed no significant difference of TRPV1
expression between CRC and control tissues (Sozucan et
al., 2015; Pérez-Riesgo et al., 2017). Experimental data
have demonstrated inhibition of CRC growth and
induced apoptosis by activating P53 in HCT116 cells

treated with TRVP1 agonist capsaicin (Jin et al., 2014).
In a recent study, the expression of fibulin-5, a
multifunctional extracellular matrix (ECM) protein
which regulates metastasis and invasion in many
malignant tumors and contributes to colorectal cancer
cell apoptosis via the ROS/MAPKand Akt signal
pathways by downregulating TRPV1 was detected in
lower levels in CRC tissues compared with peritumoral
tissues (Chen et al., 2019). Additionally, capsazepine, a
synthetic analogue of capsaicin with properties of
TRPV1 antagonism has been proposed as a novel
pharmacological tool for various tumors including CRC
(Yang et al., 2019a). Indeed, Sung et al., 2012 have
shown that capsazepine sensitizes colorectal cancer cells
to apoptosis by TRAIL through ROS-JNK-CHOP-
mediated upregulation of death receptors. There is little
information regarding expression levels of TRPV2 in
CRC. mRNA levels of TRPV3 were revealed to be lower
in CRC tissues as compared with normal tissues by
Sozucan et al. (2015) whereas no difference was
detected by Pérez-Riesgo et al. (2017).

TRPV4 is upregulated in colon cancer and is
associated with poor patient prognosis, and TRPV4
silencing induces apoptosis and autophagy of colon
cancer cells and suppresses human colon cancer
development via activation of the PTEN pathway (Liu et
al., 2019). Interestingly, recent data from a mouse model
for colitis suggests that TRPV4, expressed in both
vascular endothelial cells and bone marrow-derived
macrophages, plays a significant role in colitis-
associated tumorigenesis (Matsumoto et al., 2020).
TRPV5 in CRC has been demonstrated to have lesser
gene expression as compared with normal tissues
(Sozucan et al., 2015). Finally, TRPV6 expression is
significantly enhanced in CRC compared to controls
(Pérez-Riesgo et al., 2017). It is worthy of mention that
TRPV6 correlates with the pathogenesis of many tumors
(Lehen’kyi et al., 2012). TRPV6 mutants, S692D and
T702D could predispose to CRC, whereas the S824D
TRPV6 mutant has been associated with increased
invasion properties of CRC (Arbabian et al., 2020).
Overexpression of TRPV6 was associated with early-
stage colon cancer, and inhibition of TRPV6 expression,
by small interfering RNA, inhibited proliferation, and
induced apoptosis in colon carcinoma cells (Peleg et al.,
2010). It has also been reported that the suppression of
TRPV6 activity by a high calcium diet could have
protective effects against CRC (Peleg et al., 2010).
Interestingly, data from gastric cancer cells shows that
TRPV6, rather than TRPV1, mediates capsaicin-induced
apoptosis in these cells which is dependent on an
abundance of TRPV6, suggesting that capsaicin may be
a promising dietary candidate for cancer
chemoprevention (Chow et al., 2007). Considering that
TRPV6 is overexpressed in CRC further studies would
elucidate this hypothesis. Recently, it has been found
that drug-like dietary vanilloids induce anticancer
activity through proliferation inhibition and regulation of
bcl-related apoptotic proteins introducing the
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chemopreventive properties of foods that contain
vanilloids (Mai et al., 2018).
TRPM channels (TRPMs) 

TRPMs consist the largest TRP subfamily, divided
phylogenetically into four subgroups, TRPM1/3,
TRPM6/7, TRPM4/5, and TRPM2/8. The TRPM
subfamily includes members with completely diverse
properties, forming homo- or hetero- meric channels
(Huang et al., 2020). The diverse functional properties of
these channels have a profound effect on the regulation
of ion homoeostasis by mediating direct influx of Ca2+,
controlling Mg2+ entry, and determining the potential of
the cell membrane (Fleig and Penner, 2004). TRPMs
demonstrate a polymodal nature: they are regulated by
stimuli including voltage, temperature, and the binding
of ions, lipids, or other ligands. Additionally, TRPM2,
TRPM4 and TRPM7, are modulated by oxidative stress
(Simon et al., 2013) whereas TRPM2 and TRPM7 are
implicated in cell death responses under stress (McNulty
and Fonfria, 2005). TRPMs demonstrate a wide
distribution in cells and organs (Nilius and Owsianik,
2011) but the tissues demonstrating highest expression
for individual family members are brain (TRPM1,2,3,6),
bone marrow (TRPM2), pituitary (TRPM3,7), intestine
(TRPM4,5,6), prostate (TRPM4,5,8), pancreas
(TRPM5), heart, bone, and adipose tissue (TRPM7), and
liver (TRPM8) (Fonfria et al., 2006). The growing
interest in these channels is raised due to their pivotal
roles in diabetes, smooth muscle cell regulation,
immunological responses, and cancer (Farooqi et al.,
2011; Tabur et al., 2015; Trapani and Wolf, 2019; Wong
et al., 2019). TRPMs have been proposed as potential
therapeutic targets against pro-inflammatory diseases
(Zierler et al., 2017), vascular diseases (Zholos, 2010)
and cancer (Santoni and Farfariello, 2011; Gautier et al.,
2014).
TRPΜs and intestine

TRPM expression and function have been described
in the gastrointestinal tract. Particularly, TRPM4
channels are localized in mast cells and modulate their
migration and degranulation. TRPM5 channels have
been detected in enteroendocrine cells and brush cells
and are responsible for nutrient sensing and release of
endogenous opioids. TRPM6 and TRPM7 are important
for Mg2+ absorption across intestinal epithelial cells
whereas TRPM7 was suggested to be also involved in
the pacemaker current of interstitial cells of Cajal
(Holzer, 2011). Additionally, TRPM6 seems to be
important for mucosal integrity since the reduction of
TRPM6 expression is alleviated with Mg2+
supplementation which reduces the inflammatory status
and fastens the mucosal healing in an experimental
model of colitis (Luongo et al., 2018; Trapani et al.,
2018). Apart from epithelial cells, TRPM7 channels are
found in circular muscle. TRPM8 channels are expressed

in primary extrinsic afferent nerves and participate in
cold and menthol-induced sensory transduction. TRPM8
expression has been found to be increased in biopsies
from IBD patients and has been correlated with higher
TNFα levels. Added to those, TRPM2 channels have
been found to participate in IBD development in a
mouse model of colitis (see review papers Boesmans et
al., 2011; Zielinska et al., 2015; Zierler et al., 2017)
while TRPM2 levels were higher in peripheral blood
mononuclear cells of ulcerative colitis and Crohn disease
patients (Morita et al., 2020). 
TRPΜs and colorectal cancer

Accumulating evidence indicates that TRPMs may
be oncogenes involved in the regulation of cancer cell
growth, proliferation, autophagy, invasion, and EMT
(Wong et al., 2019). Analysis of tumor tissue
microarrays from 379 CRC patients has shown that high
TRPM4 protein expression was associated with
unfavorable tumor features characteristic for EMT and
infiltrative growth patterns while results from cancer cell
cultures indicate the pivotal role of TRPM4 in cancer
cells’ invasive properties. Additionally, TRPM4 was
found to be highly expressed in tumor buds (Kappel et
al., 2019). However, data from mRNA analysis are
contradictory. In one study by Sozucan et al. (2015)
mRNA levels of TRPM4 in 93 patients were
significantly lower in CRC tissues compared to normal
tissues whereas in another study by Pérez-Riesgo et al.,
(2017), using transcriptomic analyses, TRPM4 levels
were equal between normal and CRC cells. In the same
study, TRPM5 levels were lower in CRC compared to
normal tissue samples (Pérez-Riesgo et al., 2017). Xie et
al. (2018) identified 10 tumorigenesis-related genes for
CRC in a microarray dataset containing 566 colon
cancer samples and 19 non tumoral colorectal mucosae.
Among them, TRPM6 was confirmed to be
downregulated in 16 (80%) of 20 colon cancer tissues
using quantitative polymerase chain reaction (qPCR)
technology whereas high expression of TRPM6 was
indicative of a prolonged overall survival (OS) in CRC
patients. Since TRPM6 along with TRPM7 are the
unique ion channels that mediate Mg2+ homeostasis, the
above data indicate that Mg2+ intake may be associated
with CRC pathogenesis. Indeed, Dai et al. (2007) have
found that total magnesium consumption was linked to a
significantly lower risk of colorectal adenoma,
particularly in those subjects with a low Ca: Mg intake
and TRPM7 polymorphisms are related with enhanced
risk for adenomas. However, Huang et al. (2017) have
shown that TRPM7 drives colon cancer cell proliferation
in human HT-29 cells independently of systemic Mg2+
status. Su et al. (2019) have reported a markedly
increased TRPM7 expression in CRC tissues which was
associated with deeper tumor infiltration, positive lymph
node metastasis, distant metastasis, and advanced
clinical stage. Importantly, downregulated TRPM7 in
vitro suppressed CRC cell proliferation, migration, and
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invasion, reversed EMT, accompanied by down-
regulation of N-cadherin and upregulation of E-cadherin,
triggered cell cycle arrest at the G0/G1 phase, reduced
the S phase, and promoted apoptosis. In a small scale
study comparing TRPM6 and TRPM7 expression
between human IBD-related and sporadic colorectal
cancer with the adjacent non-neoplastic tissue the levels
of TRPM6 and TRPM7 in both IBD and non-IBD
patients were increased in malignant tissues without any
statistically significant difference between IBD- and non
IBD- tissue samples, although only TRPM7 expression
was positively correlated with tumor grade (Pugliese et
al., 2020). On the contrary, similar levels in normal
colonic and CRC cells for TRPM7 have been reported
by Pérez-Riesgo et al. (2017). Regarding TRPM8 there
is evidence supporting its role in initiation and
progression of tumors (Liu et al., 2016) including CRC,
where a significant increase in its expression was found
compared to normal tissues (Tsavaler et al., 2001).
Finally, Sozucan et al. (2015) found similar levels for
TRPM1 expression in cancerous and normal intestinal
cells. As for TRPM3, an increased rate of mutated non-
coding regions has been related to higher risk for CRC
metastasis (Ishaque et al., 2018).

Referring to TRPMs as novel chemotherapeutic
targets it has been published that the apoptotic effects of
cyclophosphamide, 5-fluorouracil and leucoverin on
human colon cancer cell lines Caco-2 were directly
related to TRPM2 channels and that TRPM2 channels
play an important role in the whole molecular pathway
of apoptosis, leading to increased intracellular Ca2+
levels and mitochondrial depolarization (Guler and
Ovey, 2018, 2020). Two different studies revealed that
TRPM6 and TRPM7 levels are lower in LoVo resistant
to doxorubicin cells than in LoVo sensitive to
doxorubicin cells and this difference accounts for the
different proliferation rate of sensitive and resistant
colon carcinoma cells (Castiglioni et al., 2015;
Cazzaniga et al., 2017). Thus, LoVo cell drug resistance
is associated with alterations of magnesium homeostasis
through modulation of TRPM7. Therefore, TRPM7
expression may be an additional undisclosed player in
chemoresistance of CRC. Interestingly, cannabigerol
(CBG), a non-psychotropic cannabis-derived
cannabinoid with properties of TRPM8 blocker and
TRPA1, TRPV1 and TRPV2 agonist, which inhibits
CRC cell growth, is not effective in TRPM8 silenced
cancer cells (Borrelli et al., 2014).
TRPA channels

The transient receptor potential Ankyrin 1 channel
(TRPA1), the single member of the TRPA subfamily in
humans, was initially identified as a temperature
activated TRP channel but it is now known to be also a
stress sensor (Himmel and Cox, 2020). TRPA1 is found
in hair cells, sensory dorsal root and trigeminal ganglia
neurons, fibroblasts,  periodontal ligament and
epithelial cells of the intestine, lungs, and urinary

bladder (Nilius and Owsianik, 2011; Tsutsumi et al.,
2013). An increased activity of TRPA1 channel has
been linked with neurogenic inflammation and pain,
thus TRPA1 is now considered as one of the targets for
developing new anti-inflammatory and analgesic drugs
(Logashina et al., 2019). Additionally, there is data
indicating that TRPA1 antagonism could alleviate
anxiety and depression (de Moura et al., 2014) but
great interest in this channel was raised by its possible
contribution in chemotherapy-induced peripheral
neuropathy prevention (Trevisan et al., 2013). TRPA1
gene polymorphisms (SNPs) may augment the
possibility of childhood asthma development as TRPA1
participates in the pathogenesis of airway constriction
(Gallo et al., 2017).
TRPA and intestine

TRPA1 is expressed in epithelial cells of the small
intestine and colon, muscularis externa and colonic
myenteric neurons.  Notably,  TRPA1 is highly
expressed in enterochromaffin (EC) cells, which are 5-
hydroxytryptamine (5-HT)-releasing cells (Holzer,
2011). There is data showing that TRPA1 is implicated
in intestinal inflammation and its role in colitis has
been investigated in multiple ways (Boesmans et al.,
2011). TRPV1 and TRPA1 levels were found to be
increased in T-cells in the colon of patients with IBD,
and TRPA1 silencing had protective effects against T-
cell mediated colitis (Bertin et al., 2017). Activation
and sensitization of TRPA1 and release of substance P
induced and maintained colitis in mice (Engel et al.,
2011). Furthermore, exposing rats to water avoidance
resulted in upregulation of TRPV1 and TRPA1 in the
colonic afferent dorsal root ganglia and stress-induced
visceral hyperalgesia (Yu et al., 2010). It is well
known that in the gastrointestinal tract TRPA1 is often
co-expressed with TRPV1 in capsaicin-sensitive
extrinsic sensory nerves, especially in the primary
sensory neurons of the dorsal root ganglia, providing
potential therapeutic value of TRPV1 and TRPA1
antagonists in colitis and visceral hypersensitivity
(Vermeulen et al., 2013; Csekő et al., 2019). In
addition to its role in inflammation, TRPA1 has been
demonstrated to protect against intestinal fibrosis
through its activation with steroids and pirfenidone in
a mouse model of colitis (Kurahara et al., 2017)
whereas TRPA1 agonists could also be helpful for
patients with constipation and abdominal pain (Kojima
et al., 2014). 
TRPA and colorectal cancer

Two studies have investigated TRPA1 expression in
human colorectal cancer. In one study, TRPA1 is
expressed in normal colonic cells but not in colon cancer
cells (Pérez-Riesgo et al., 2017). In the other study, there
is no discrimination between normal and colon cancer
regarding TRPA1 expression (Ibrahim et al., 2019).
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TRPP channels (TRPPs)

The polycystine family of transient receptor
potential channels, named by their causative role in
polycystic kidney disease (Qamar et al., 2007), is formed
by a group of highly conserved channels serving cell
mechanosensation and follicle maturation and
differentiation, usually located in intracellular
membranes (Himmel and Cox, 2020). It is formed by
TRPP1 (polycystin-1, PC1), TRPP2 (polycystin-2, PC2),
which are widely expressed in human tissues as well as
by TRPP3 and TRPP5, which are incompletely
characterized (Pedersen et al., 2005). TRPP1 and TRPP2
are physically coupled and act as a signaling complex
which is necessary for localization of TRPP2 to the
plasma membrane. TRPP2 is a Ca2+ regulated, non-
selective channel, which was identified to be mutated in
autosomal dominant polycystic disease (Arif Pavel et al.,
2016). It is localized in motile and primary cilia of renal
epithelium and multiple subcellular compartments
including the endoplasmic reticulum, Golgi apparatus,
mitotic spindles, and the plasma membrane (Giamarchi
et al., 2006). TRPP1 is expressed in renal tubular
epithelial cells as well as a variety of other cell types
during development and growth but is absent or weakly
expressed in adult kidney and liver (Griffin et al., 1996).
TRPP1 participates in cell proliferation, sperm
fertilization and mating behavior in laboratory animals.
TRPP3 and TRPP5 are Ca2+ permeable channels,
participating in retinal and hair cell development and
fertilization, respectively (Pedersen et al., 2005). Besides
their role in polycystic kidney disease, alterations in
expression profile of TRPP1 and TRPP2 may induce
altered mechanotransduction which has been implicated
in the pathogenesis of various diseases like cancer,
cardiovascular defects, bone loss, and deformations, as
well as inflammatory diseases (Gargalionis et al., 2019).
TRPPs and intestine

TRPP1 and TRPP2 are localized in the cytoplasm of
epithelial cells of intestine (Pérez-Riesgo et al., 2017).
Particularly, TRPP1 is implicated in the establishment of
cell-cell junctions in absorptive intestinal epithelial cells
and exploits the microtubule-based machinery to be
transported to the plasma membrane (Basora et al.,
2010). TRPP3 is not expressed in human colon (Pérez-
Riesgo et al., 2017). Through research in databases, no
evidence exists referring to TRPP5 expression in human
intestine. 
TRPPs and Colorectal Cancer

Recent knowledge implicates TRPP1 and TRPP2 in
CRC pathogenesis. Gargalionis et al. (2015) found that
TRPP1 and TRPP2 overexpression is associated with
aggressive phenotypes in colorectal cancer and poor
prognosis of the patients. Moreover, experimental data in
colorectal (HT29) cancer cell lines have shown that

TRPP1 regulates signaling pathways that are
constitutively activated in cancer such as mTOR and
JAK pathways (Papavassiliou et al., 2019). In contrast,
expression of TRPP1 in CRC tissues was found to the
same extent with normal colon by Pérez-Riesgo et al.,
2017. In the same study, TRPP2 was not expressed in
colon cancer cells and TRPP3 was absent from both
normal and colon cancer cells. Nevertheless, TRPP1 and
TRPP2 are considered as novel biomarkers and putative
targets of selective treatment in CRC cells (Gargalionis
et al., 2018).
TRPML channels (TRPMLs)

TRPML1, TRPML2 and TRPML3 form the
mucolipin family of transient receptor potential channels
which participate in pH control, membrane trafficking,
signal transduction, cellular autophagy, exocytosis, and
vesicular transport (Cheng et al., 2010). TRPML1 is
widely expressed and appears to reside in late
endosomes/lysosomes and is found in brain, adrenal
gland, lung, heart, bladder, placenta, thymus, kidney, liver
and spleen and immune cells, with a prominent role in
lymphocyte regulation (Schmiege et al., 2018). TRPML1
channels, which homo- or multimerize, were the first
members of the subfamily discovered when loss of
functional mutations in the TRPML gene were identified
as responsible for a neurodegenerative disorder,
mucolipidosis type IV, which is characterized by mental
retardation, retinal degeneration, iron deficiency,
achlorhydria and gastrointestinal abnormalities. (Sun et
al., 2000; Curcio-Morelli et al., 2010). TRPML1 is also
implicated in immune response (Spix et al., 2020).
TRPML3 is localized in vesicle rich region of cochlea
cells, early endosomes, and it is distributed in organs of
the endocrine system, eye, thymus, kidney, spleen,
intestine and lungs (Cheng et al., 2010; Grimm et al.,
2014). TRPML2, which is expressed similarly to
TRPML3 particularly in endosomes and lysosomes, has
been detected in immune cells, thymus, heart, kidney, and
spleen (Quian and Noben-Trauth, 2005; Spix et al., 2020).
TRPML2 levels seem to be regulated by TRPML1 in
lymphoid organs and kidney (Samie et al., 2009).
TRPMLs and intestine

Expression of TRPML1 and TRPML2 has been
reported in colonic cells (Pérez-Riesgo et al., 2017). 
TRPMLs and Colorectal Cancer

Although there is evidence implicating TRPMLs in
cancer (Santoni et al., 2020), little information regarding
the role of TRPMLs in CRC is provided. In the single
published study, the first two members of TRPML,
specifically TRPML1 and TRPML2, are significantly
decreased in CRC cells compared with normal colon
according to a transcriptomic analysis (Pérez-Riesgo et
al., 2017).
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Conclusions

CRC is a leading cause of death in the civilized
world and the need for new diagnostic and prognostic
markers is continuous. TRPs could be possibly used as
novel biomarkers and may be promising therapeutic
targets for CRC along with chemotherapeutic agents. For
example, capsaicin combined with sorafenib in human
hepatocellular carcinoma cells had better results on cell
growth than either drug alone (Bort et al., 2017)
indicating that chemotherapy along with agonists of
TRPs have synergistic effects against tumorigenesis.
Additionally, as some TRP channels are dietary players,
chemoprevention of CRC through specific compounds
of food e.g. vanilloids could be a novel era of
investigation. The fact that the vast majority of TRPs are
expressed in colonic cells and much more these channels
display multiple functions and participate in several
signal transduction pathways that are dysregulated in
CRC, makes the issue more complex, which is poorly
understood and thus, further study is required.
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