

UNIVERSIDAD DE MURCIA

ESCUELA INTERNACIONAL DE DOCTORADO

Contribución de la Metabolómica en el Diagnóstico Histopatológico de la Hepatitis C y de las Hepatopatías Autoinmunes

> D. José Ramón Vizcaíno Vázquez 2022

Contribución de la Metabolómica en el Diagnóstico Histopatológico de la Hepatitis C y de las Hepatopatías Autoinmunes

Tesis doctoral presentada por

D. José Ramón Vizcaíno Vázquez

Dirigida por

Dr. D. José Antonio Pons Miñano

UNIVERSIDAD DE MURCIA

Doctorado en Ciencias de la Salud

Murcia 2022

"Pereat trístítía, Pereant osores, Pereat díabolus, Quívís antíburschíus"

Fuente: Anónimo. De brevitate vitae. s.f.

Agradecimientos

Este es el culminar de un largo recorrido efectuado por el nieto de un herrero de una aldea recóndita de Galicia llamada Pidre y del hijo de unos padres que tuvieron que cruzar el "charco" hace más de 50 años para dedicarse al mundo de la hostelería y restauración, fuente de sustento con la que criaron tres hijos que les deben todo. No fue un viaje en solitario y ¡qué gran desgracia sería si así fuese!

Mirando hacia atrás, recuerdo con ternura las veces que insistentemente mi madre me preguntaba una y otra vez: "¿para cuándo el doctorado?, voy a morirme sin verte sacar el doctorado". Le explicaba, a veces con poca paciencia, que para comenzar un proyecto de esa naturaleza tenía que encontrar "la pregunta" y que esa pregunta la tenía que formular yo, pues no estaba dispuesto a responder a preguntas formuladas por otros, eso no me estimulaba. Su persistencia me mantuvo en alerta en la búsqueda de "la pregunta" y durante mi recorrido profesional asistencial como patólogo en el Centro Hospitalar do Porto fueron muchas las preguntas que fueron apareciendo, pero por las más variadas razones consideré que ninguna de ellas debía ser respondidas por mí. En este punto quiero agradecer con todo mi amor a mis padres, Fernando y Emilia, su apoyo efectivo y constante que me han dado desde que era niño. La interacción regular y las buenas vías de comunicación con los clínicos, en particular con los médicos internistas, gastroenterólogos y pediatras que se dedican a los pacientes con enfermedades hepáticas, fue fundamental para formular la pregunta que sería el punto de partida de un proyecto arduo, estimulante y sin lugar a duda, emocionante. Si dos enfermedades hepáticas pueden coexistir,

¿cuál de ellas es la que predomina en la biopsia? La respuesta a esa pregunta es muy difícil en situaciones donde los aspectos morfológicos de ambas enfermedades puedes ser indistintos. Por esas reuniones y esas preguntas difíciles que no conseguía responder, quiero agradecer a los médicos del Centro Hospitalar do Porto, Prof.^a Doctora Helena Pessegueiro Miranda, Dr. Vitor Lopes, Dr.^a Sofía Ferreira, Dr.^a Judit Gándara, Dr.^a Ermelinda Santos, Dr. José Manuel Ferreira y al grupo de cirujanos dedicados al trasplante hepático liderados por el Dr. Jorge Daniel. Igualmente quiero agradecer la contribución de los pacientes y los donantes para dar respuesta a este desafío. En ese momento, era para mí evidente, que la respuesta no estaba en las técnicas complementarias que habitualmente se utilizan en un laboratorio de anatomía patológica convencional. Así que, para responder a los clínicos, tenía que responder a otra pregunta, ¿cuál será la técnica más adecuada y promisora que me permita discriminar entre enfermedades hepáticas que comparten aspectos morfológicos idénticos en la microscopía de luz de la biopsia? Al compartir esta inquietud y esta pregunta con la Doctora Nelma Pértega Gomes, con la que tuve el privilegio de colaborar en su tesis doctoral titulada "ROLE OF MONOCARBOXYLATE TRANSPORTERS IN PROSTATE CARCINOMA", surgió la palabrota "metabolómica". Nuestra experiencia en el estudio del perfil metabólico del cáncer de próstata y los descubrimientos que de ahí surgieron, nos llevó a investigar esta posibilidad en el campo de la enfermedad hepática y nuestra búsqueda en la literatura resultó muy alentadora. Agradezco con especial cariño este y todos los momentos compartidos con la Doctora Nelma Pértega Gomes. Echo mucho de menos aquellas "scientific/speculative talks" que teníamos en aquel local situado entre el Servicio de Anatomía Patológica y la "Casa Mortuária". El paso siguiente no

se hizo esperar. Después de escribir un esbozo de proyecto de investigación hablé con mi colega y amigo, el Doctor Jesús de la Peña Moral que se dispuso, sin ambages, a leer el documento. Sus diligentes comentarios fueron muy estimulantes y sabiendo de mi intención, sugirió que la persona ideal para dirigir esta tesis es el Prof. Doctor José Antonio Pons Miñano. ¡Qué gran consejo y acierto! Por esto, por nuestra amistad y su apoyo desinteresado, agradezco al Doctor Jesús de la Peña Moral. Los comentarios del Prof. Doctor José Antonio Pons Miñano después de leer el proyecto, fueron una inyección de adrenalina. Aceptó dirigir la tesis y si yo tenía alguna duda sobre la pertinencia de este proyecto, el entusiasmo manifestado por el Prof. Pons despejó para siempre esa incógnita. Estaba en el camino correcto. Admiro en él numerosas cualidades, pero su paciencia, educación, saber hacer y bagaje científico sobrepasaron cualquier expectativa. Estuvo siempre disponible, presionando sólo lo justo y en el momento adecuado siempre que lo entendió necesario, y lo era. ¡Muchísimas gracias, Profesor! Llegado el momento de poner manos a la obra, fue necesaria la intervención de profesionales a los que respeto mucho y que contribuyeron con alegría a este proyecto que se inició como un proyecto del Servicio de Anatomía Patológica del Centro Hospitalar do Porto. A todos ellos transmito aquí mis agradecimientos, especialmente al Prof. Doctor Nuno Lamas, Dr. ^a Ana Patrícia Rodrigues, Dr. ^a Francisca Costa y el Técnico Superior de Diagnóstico y Terapéutica Carlos Azevedo. Así llegamos al momento en que, después de todas las autorizaciones pertinentes, la casuística fue construida y era necesario diseñar el ensayo del análisis metabolómico. Si alguien tiene dudas sobre la existencia de Dios, debo decirles que Él puso en mi camino al Dr. Lolo Aira. El Dr. Lolo es químico de formación y experto en espectrometría de masas. Fundó

un laboratorio, AmsLab, localizado en Lugo y cuya fortaleza es el análisis de compuestos a través de cromatografía y espectrometría. Pero lo fundamental, ¡fue mi compañero en el Seminario Diocesano de Lugo cuando éramos niños y estudiábamos la EGB! Una gran coincidencia, ¿no? Le presenté el proyecto y lo encontró desafiante. A pesar del insignificante financiamiento disponible, aceptó el reto. Él y su equipo fueron impecables. Muchísimas gracias al Dr. Lolo Aira y al magnífico equipo de AmsLab (Dr. José Carlos González y Dr. Mario Fernández) por todo lo que habéis hecho. A la Dirección del Departamento de Patología, Dr. ^a Graça Henriques y Dr.^a Ana Paula Guimarães, debo agradecer su apoyo incondicional durante este camino. Al Prof. "Pezão" y al equipo de GAS Porto que me han ayudado mucho a mantener mi sanidad mental, enfrentar la angustia y mejorar mi condición física, fundamental en la recta final. ¡A todos ellos digo OSS! A mi amigo el Dr. Guilherme Rocha agradezco de todo corazón sus consejos y su permanente disponibilidad. Al Dr. Enrique Carro por sus atentas y pertinentes observaciones. Al lector que llegó a este parágrafo le doy mi enhorabuena y le pido clemencia en la crítica y exuberancia en el elogio. Como goloso que soy, mi plato favorito es el último. Por eso dejo aquí el más sentido agradecimiento a mi bella esposa Fernanda y a mi hijo José Sebastián ("meu Titirititiri").

RESUMEN

El diagnóstico histopatológico de la hepatitis C (VHC) y de las hepatopatías autoinmunes como la colangitis biliar primaria (CBP) y la hepatitis autoinmune (HAI) requiere la integración de datos bioguímicos, serológicos, inmunológicos y moleculares, porque no hay aspectos morfológicos patognomónicos en la biopsia que caractericen estas entidades diagnósticas. Ante la ausencia de datos que favorezcan una entidad, la biopsia es un elemento esencial para auxiliar en el diagnóstico que en estos casos es de presunción. Fueron seleccionados 62 pacientes distribuidos en cuatro grupos: control (n=13); CBP (n=11); VHC (n=21); HAI (n=17). El producto de extracción de metabolitos a partir de tejido de biopsia hepática parafinada, analizado en HPLC-MS/MS, reveló 95 metabolitos de los que 53 cumplían el requisito de precisión impuesto (35%). Los modelos predictivos generados, con estos 53 metabolitos para los diferentes grupos diagnósticos, mostraron una capacidad de discriminación buena para Control vs VHC (AUC= 0.88), Control vs HAI (AUC=0.81), VHC vs HAI (AUC=0.88) y excelente para Control vs CBP (AUC=0.96), VHC vs CBP (AUC=0.97), HAI vs CBP (AUC=0.92). El estudio de vías metabólicas a partir de los módulos generados en la red de correlaciones perturbadas entre los diferentes grupos diagnósticos sugiere una perturbación en el metabolismo de los carbohidrato en los grupos Control vs VHC y VHC vs CBP, del metabolismo de los aminoácidos en los grupos VHC vs HAI y HAI vs CBP, del metabolismo de nucleótidos en los grupos VHC vs HAI, HAI vs CBP y control vs CBP, del metabolismo energético en el grupo control vs CBP. La baja capacidad discriminativa de las variables morfológicas no contribuye a mejorar el poder discriminativo de los modelos generados con los metabolitos. No encontramos un conjunto de metabolitos lo suficientemente discriminativos para construir un modelo de predicción del grado de fibrosis y de actividad necroinflamatoria. En resumen, en esta tesis hemos demostrado que la metabolómica podría constituir la base de una técnica complementaria extremadamente relevante para el diagnóstico histopatológico de la hepatitis C y la hepatopatías autoinmunes. El conjunto de conocimientos que se exponen en esta tesis debería ser de interés general para los investigadores que utilizan tecnologías de vanguardia, incluida la metabolómica, para el perfeccionamiento del diagnóstico histopatológico en el siglo XXI.

ABSTRACT

The histopathological diagnosis of hepatitis C (HCV) and autoimmune hepatopathies such as primary biliary cholangitis (PBC) and autoimmune integration of biochemical, (AIH) requires the hepatitis serological. immunological, and molecular data, because there are no pathognomonic morphological aspects in the biopsy that characterize these diagnostic entities. In the absence of data favoring an entity, biopsy is an essential element to assist in the diagnosis, which in these cases is presumptive. Sixty-two patients were selected and divided into four groups: control (n=13); PBC (n=11); HCV (n=21); HAI (n=17). The metabolite extraction product from paraffin-embedded liver biopsy tissue, analyzed by HPLC-MS/MS, revealed 95 metabolites of which 53 met the imposed precision requirement (35%). The predictive models generated, with these 53 metabolites for the different diagnostic groups, showed good discriminatory ability for Control vs HCV (AUC= 0.88), Control vs HAI (AUC=0.81), HCV vs HAI (AUC=0.88) and excellent for Control vs CBP (AUC=0.96), HCV vs CBP (AUC=0.97), HAI vs CBP (AUC=0.92). The study of metabolic pathways from the modules generated in the network of perturbed correlations between the different diagnostic groups suggests a perturbation of carbohydrate metabolism in the Control vs HCV and HCV vs CBP groups, of amino acid metabolism in the HCV vs HAI and HAI vs CBP groups, of nucleotide metabolism in the HCV vs HAI, HAI vs CBP and control vs CBP groups, of energy metabolism in the control vs CBP group. The low discriminative capacity of the morphological variables does not contribute to improve the discriminative power of the models generated with the metabolites. We did not find a set of metabolites sufficiently discriminative to build a model to predict the degree of fibrosis and

necroinflammatory activity. In summary, we demonstrated in this thesis that metabolomics might constitute an extremely relevant basis to perform adjunct technique to the histopathological diagnosis of hepatitis C and autoimmune hepatopathies. The body of knowledge reported in this thesis should be of general interest for researchers using cutting edge technologies, including metabolomics, for the refinement of histopathological diagnosis in the 21st century.

ÍNDICE

Res	umen			1-8
Abs	stract.			1-10
Índ	ice de	Figu	ras	1-15
Índ	ice de	tabla	as	1-18
List	a de a	cróni	imos	1-21
1	Intro	oduco	ción	1-1
1	1	Epid	lemiologia de las enfermedades hepáticas: VHC, HAI, CBP	1-2
	1.1.1	L	VHC	1-2
	1.1.2	2	HAI	1-3
	1.1.3	3	СВР	1-5
1	2	Histo	oria natural de las enfermedades hepáticas: VHC, HAI, CBP	1-10
	1.2.1	L	VHC	1-10
	1.2.2	2	HAI	1-13
	1.2.3	3	СВР	1-16
1	3	El di	agnóstico de las hepatitis crónicas: VHC, HAI, CBP	1-20
	1.3.1	L	VHC	1-20
	1.3.2	2	HAI	1-28
	1.3.3	3	СВР	1-35
1	4	Met	abolómica	1-42
	1.4.1	L	Conceptos y Generalidades	1-42
	1.4.2	2	Preparación de la muestra	1-47
	1.4.3 tánd	3 em	Cromatografía líquida de alta eficacia acoplada a espectrometría de masa 1-54	is en
	1.4.4	1	Metabolómica en la HAI	1-56
	1.4.5	5	Metabolómica en la CBP	1-60
	1.4.6	5	Metabolómica en la VHC	1-63
2	Hipó	tesis	s y Objetivos	2-69
2	2.1	Hipć	ótesis	2-70
2	.2	Obje	etivos	2-70
	2.2.1		Objetivo principal	2-70
	2.2.2	2	Objetivos secundarios	2-71
3	Mate	erial	y Métodos	3-72
З	8.1	Sele	cción y descripción de los casos	3-73
3	3.2	Tabl	la de variables	3-75

3.3	Preparación de la muestra	3-84
3.3.	1 Fase de validación del ensayo	3-84
3.3.	2 Fase de análisis	3-86
3.4	Condiciones cromatográficas y del espectrómetro de masas	3-87
3.5	Tratamiento de datos del HPLC/MS/MS	3-89
3.6	Análisis estadístico	3-90
3.6.	1 Generación del modelo predictivo	3-90
3.6.	2 Red de correlaciones perturbadas	3-92
3.6.	3 Análisis de correlaciones parciales	3-93
3.6.	4 Principios de la red de correlaciones perturbadas	3-94
3.6.	5 Correlaciones parciales y diferencias entre correlaciones	3-95
3.6.	6 Correlación diferencial media	3-97
3.6.	7 Links de cada nodo	3-97
3.6.	8 Red de correlaciones perturbadas	3-98
3.6.	9 Interpretación biológica	3-98
3.7	Poder discriminativo de las variables morfológicas	3-99
3.8	Fibrosis y actividad necroinflamatoria	3-101
4 Res	ultados	4-102
4.1	Modelo predictivo	4-103
4.1.	1 Control vs VHC	4-103
4.1.	2 Control vs HAI	4-112
4.1.	3 Control vs CBP	4-121
4.1.	4 VHC vs HAI	4-130
4.1.	5 VHC vs CBP	4-139
4.1.	6 HAI vs CBP	4-148
4.1.	7 Resumen del modelo predictivo	4-156
4.2	Correlación diferencial media, red de correlaciones perturbadas y "links".	4-158
4.2.	1 Control vs VHC	4-158
4.2.	2 Control vs HAI	4-160
4.2.	3 Control vs CBP	4-164
4.2.	4 VHC vs HAI	4-170
4.2.	5 VHC vs CBP	4-173
4.2.	.6 HAI vs CBP	4-174
4.3	Capacidad discriminativa de las variables morfológicas	4-177
4.3.	1 Control vs VHC	4-177
4.3.	2 Control vs HAI	4-185

	4	1.3.3	3 Control vs CBP	4-194	
	4	1.3.4	4 VHC vs HAI	4-203	
	4	1.3.5	5 VHC vs CBP	4-214	
	4	1.3.6	5 HAI vs CBP	4-224	
	4	1.3.7	7 Resumen de la capacidad discriminativa de las variables morfológicas	4-233	
	4.4		Fibrosis y actividad necroinflamatoria	4-233	
5	D	Discu	usión	5-251	
	5.1		Relevancia de la cantidad de la muestra y el método de extracción	5-252	
	5.2		Objetivo principal	5-255	
	5.3		Objetivo secundario a)	5-263	
	5.4		Objetivo secundario b)	5-273	
	5.5		Objetivo secundario c)	5-274	
6	С	Conc	clusiones	6-275	
7	7 Perspectivas de futuro				
8	D	Decla	aración de conflicto de intereses	8-281	
9	9 Autorizaciones				
1(0	An	nexo I	10-285	
1	11 Anexo II				
Bi	ibliog	graf	fia	11-299	

ÍNDICE DE FIGURAS

Figura 1.3.1 Secuencia del proceso diagnóstico de la hepatitis C	1-22
Figura 1.4.1 Relación entre genómica, transcriptómica, proteómica y metabolómica	1-43
Figura 4.1.1 Metabolitos ordenados en función de su FC. Control vs VHC	-105
Figura 4.1.2 Frecuencia de selección y parámetro de importancia de los metabolitos Contro	ol vs
VHC4	-106
Figura 4.1.3 Curva ROC Control vs VHC para los cinco metabolitos más discriminativos4	-108
Figura 4.1.4 Curvas ROC para múltiples modelos generados Control vs VHC	-109
Figura 4.1.5 Exactitud predictiva para los diferentes modelos generados Control vs VHC4	-109
Figura 4.1.6 Curva ROC y AUC del modelo seleccionado Control vs VHC4	-110
Figura 4.1.7 Probabilidades predichas para cada paciente del modelo Control vs VHC4	-110
Figura 4.1.8 Exactitud predictiva del modelo Control vs VHC4	-111
Figura 4.1.9 Metabolitos ordenados en función de su FC. Control vs HAI4	-114
Figura 4.1.10 Curva ROC Control vs HAI para los cinco metabolitos más discriminativos4	-116
Figura 4.1.11 Frecuencia de selección y parámetro de importancia de los metabolitos Contr	ol vs
HAI	-117
Figura 4.1.12 Curvas ROC para múltiples modelos generados Control vs HAI	-117
Figura 4.1.13 Exactitud predictiva para los diferentes modelos generados Control vs HAI4	-118
Figura 4.1.14 Curva ROC y AUC del modelo seleccionado Control vs HAI	-119
Figura 4.1.15 Probabilidades predichas para cada paciente del modelo Control vs HAI4	-120
Figura 4.1.16 Exactitud predictiva del modelo Control vs HAI	-121
Figura 4.1.17 Metabolitos ordenados en función de su FC. Control vs CBP	-123
Figura 4.1.18 Frecuencia de selección de los diferentes metabolitos. Control vs CBP4	-125
Figura 4.1.19 Curva ROC Control vs CBP para los cinco metabolitos más discriminativos 4	-126
Figura 4.1.20 Curvas ROC para múltiples modelos. Control vs CBP	-127
Figura 4.1.21 Exactitud predictiva para los diferentes modelos generados Control vs CBP .4	-127
Figura 4.1.22 Curva ROC y AUC del modelo seleccionado Control vs CBP	-129
Figura 4.1.23 Probabilidades predichas para cada paciente del modelo Control vs CBP4	-129
Figura 4.1.24 Exactitud predictiva del modelo Control vs CBP	-130
Figura 4.1.25 Frecuencia de selección y parámetro de importancia de los metabolitos VHC	vs
HAI	-132
Figura 4.1.26 Curva ROC VHC vs HAI para los tres metabolitos más discriminativos	-134
Figura 4.1.27 Frecuencia de selección y parámetro de importancia de los metabolitos VHC	vs
HAI	-135
Figura 4.1.28 Curvas ROC para múltiples modelos generados VHC vs HAI	-136
Figura 4.1.29 Exactitud predictiva para los diferentes modelos generados VHC vs HAI4	-136
Figura 4.1.30 Curva ROC v AUC del modelo seleccionado Curva ROC v AUC del modelo	
seleccionado VHC vs HAI	-137
Figura 4.1.31 Probabilidades predichas para cada paciente del modelo VHC vs HAI	-138
Figura 4 1 32 Exactitud predictiva del modelo VHC vs HAI	-139
Figura 4.1.33 Metabolitos ordenados en función de su EC. VHC vs CBP	-141
Figura 4.1.34 Curva ROC VHC vs CBP para los cinco metabolitos más discriminativos 4	-143
Figura 4 1 35 Frecuencia de selección y parámetro de importancia de los metabolitos VHC	<u>+</u> +J
CBP	-144
Figura 4.1.36 Curvas ROC para múltiples modelos generados VHC vs CRP 4	-144
- Or a manufactor para manufactor Pericing on Ano Ano Ano an aminimum	- · ·

Figura 4.1.37 Curva ROC y AUC del modelo seleccionado Curva ROC y AUC del modelo	
seleccionado VHC vs CBP	.4-145
Figura 4.1.38 Exactitud predictiva para los diferentes modelos generados VHC vs CBP	.4-145
Figura 4.1.39 Probabilidades predichas para cada paciente del modelo VHC vs CBP	.4-146
Figura 4.1.40 Exactitud predictiva del modelo VHC vs CBP	.4-148
Figura 4.1.41 Metabolitos ordenados en función de su FC. HAI vs CBP	.4-150
Figura 4.1.42 Curva ROC HAI vs CBP para los cinco metabolitos más discriminativos	.4-151
Figura 4.1.43 Frecuencia de selección y parámetro de importancia de los metabolitos HA	l vs
СВР	.4-152
Figura 4.1.44 Curvas ROC para múltiples modelos generados HAI vs CBP	.4-153
Figura 4.1.45 Exactitud predictiva para los diferentes modelos generados HAI vs CBP	.4-153
Figura 4.1.46 Curva ROC y AUC del modelo seleccionado Curva ROC y AUC del modelo	
seleccionado HAI vs CBP	.4-154
Figura 4.1.47 Probabilidades predichas para cada paciente del modelo HAI vs CBP	.4-155
Figura 4.1.48 Exactitud predictiva del modelo VHC vs CBP	.4-156
Figura 4.2.1 Análisis de vías metabólicas Control vs VHC.	.4-160
Figura 4.2.2 Análisis de vías metabólicas Control vs HAI. Primer módulo	.4-162
Figura 4.2.3 Análisis de vías metabólicas Control vs HAI. Segundo módulo	.4-163
Figura 4.2.4 Análisis de vías metabólicas Control vs HAI. Tercer módulo	.4-164
Figura 4.2.5 Análisis de vías metabólicas Control vs CBP. Primer módulo	.4-166
Figura 4.2.6 Analisis de vias metabólicas Control vs CBP. Segundo módulo	.4-167
Figura 4.2.7 Análisis de vias metabólicas Control vs CBP. Tercer módulo	.4-168
Figura 4.2.8 Analisis de vias metabólicas Control vs CBP. Cuarto módulo	.4-168
Figura 4.2.9 Analisis de vias metabolicas Control vs CBP. Quinto modulo	.4-169
Figura 4.2.10 Analisis de vias metabolicas Control vs CBP. Sexto modulo	.4-169
Figura 4.2.11 Analisis de vias metabolicas VHC vs HAI. Primer modulo	.4-1/1
Figura 4.2.12 Analisis de vias metabolicas VHC vs HAI. Segundo modulo	.4-1/1
Figura 4.2.13 Analisis de vias metabolicas VHC vs HAI. Tercer modulo	.4-1/2
Figura 4.2.14 Analisis de vias metabolicas VHC vs HAI. Cuarto modulo	.4-1/2
Figura 4.2.15 Analisis de vias metabolicas HAI vs CBP. Modulo identificado	.4-1/4
Figura 4.2.16 Red de correlaciones perturbadas. A mayor diametro del nodo, mayor grad	0
(numero de links) tiene ese nodo. El color representa la diferencia absoluta media en la	(1:
correlación de cada nodo y va desde el gris (menor) al rojo (mayor). El color de las líneas	(IINKS)
representa ganancia de correlación entre la condición 1 y la 2 si són rojas y perdida de la	
Control vs CDP: E. LIALue CDP	
E-VIIC VS CBP; F- IIAI VS CBP.	.4-1/0
Figura 4.3.1 Boxplot >>control vs VHC mostrando la distribución del parametro de impor	
para cada una de las variables moriologicas (en verde las variables consideradas importa	111es, y
El TOJO las Techazadas.	.4-104
rigura 4.3.2 Granco de calibración del modelo control vs vinc estimado en base a las var	
Figure 4.2.2 Gráfice de calibración del modelo estimado en base a las variables seleccion	.4-104
194	aua.4-
Figura 4.3.4 Gráfico de calibración del modelo estimado en base a las variables selecciona 203	adas4-
Figura 4.3.5 Gráfico de calibración del modelo VHC vs HAI para variables morfológicas	
estimado en base a las variables seleccionadas	.4-214

Figura 4.3.6 Gráfico de calibración del modelo VHC vs CBP para variables morfológicas
estimado en base a las variables seleccionadas4-223
Figura 4.4.1 Gráfico mostrando los metabolitos ordenados en función de su FC (FC positivo
(verde) indica que la concentración en la condición 1 (F0) es superior a la concentración en la
condición 2 (F1), y FC negativo (morado) indicando mayor concentración en la condición 2.
Estadio de Fibrosis4-237
Figura 4.4.2 Frecuencia de selección de los diferentes metabolitos. Fibrosis
Figura 4.4.3 Curvas ROC para los distintos modelos con orden creciente de metabolitos
incluidos. Fibrosis
Figura 4.4.4 Curva ROC, AUC e intervalos de confianza al 95% obtenida a partir de 500
muestras de validación cruzada. Fibrosis4-242
Figura 4.4.5 Probabilidades predichas por el modelo para cada uno de los pacientes. Se incluye
el identificador de los pacientes mal clasificados. Fibrosis
Figura 4.4.6 Exactitud predictiva del modelo estimada en base a 100 muestras de validación
cruzada. Fibrosis
Figura 4.4.7 Gráfico mostrando los metabolitos ordenados en función de su FC (FC positivo
(verde) indica que la concentración en la condición 1 (control) es superior a la concentración
en la condición 2 (VHC), y FC negativo (morado) indicando mayor condición 2. Actividad 4-247
Figura 4.4.8 Frecuencia de selección de los diferentes metabolitos. Actividad4-250
Figura 4.4.9 Curvas ROC para los distintos modelos con orden creciente de metabolitos
incluidos Actividad

ÍNDICE DE TABLAS

Tabla 1.1.1 Datos epidemiológicos de la CBP en 12 publicaciones, entre 2015 y 2021 .	1-7
Tabla 1.1.2 Fuentes y tipo de estudio de 12 publicaciones entre 2015 y 2021	1-8
Tabla 1.3.1 Algoritmo METAVIR para actividad	1-26
Tabla 1.3.2 Algoritmo METAVIR para fibrosis	1-26
Tabla 1.3.3 Algoritmo diagnóstico de HAI del IAHG	1-31
Tabla 1.3.4 Criterios simplificados para el diagnóstico de HAI	1-32
Tabla 1.3.5 Sistema de estadificación de Scheuer modificado de la CBP	1-38
Tabla 1.4.1 Trabajos publicados de metabolómica en HAI	1-59
Tabla 1.4.2 Trabajos publicados de metabolómica en CBP	1-62
Tabla 1.4.3 Trabajos publicados de metabolómica en hepatitis C	1-65
Tabla 1.4.4 Metabolitos reiteradamente publicados en contexto de VHC	1-67
Tabla 3.1.1 Descripción sumaria de los casos seleccionados	
Tabla 3.2.1 Variables morfológicas	
Tabla 3.2.2 Variables bioquímicas	
Tabla 3.2.3 Variables inmunológicas	
Tabla 3.2.4 Variables serológicas y microbiológicas	
Tabla 3.2.5 Variables Cínicas (tratamientos y enfermedades en el momento de la bio	psia). 3-82
Tabla 3.2.6 Metabolitos	
Tabla 3.2.7 Variables del hemograma	
Tabla 3.4.1 Condiciones cromatográficas del espectrómetro de masas empleadas en	la
separación y detección de los metabolitos extraídos (HPLC-ESI-MS/MS)	
Tabla 3.6.1 Tabla con las diferentes clases en función del signo de la correlación y de	la
significación (Extraido de McKenzie et al., 2016).(272)	
Tabla 4.1.1 Valor estimado del AUC para cada uno de los metabolitos, el p-valor corre	egido del
test t, y el log2FC estimado. Control vs VHC	4-103
Tabla 4.1.2 Parámetro de importancia, y el ranking de la frecuencia con la que son	
seleccionados cada uno de los metabolitos para el grupo control y VHC	4-107
Tabla 4.1.3 Matriz de confusión del modelo Control vs VHC	4-111
Tabla 4.1.4 Valor estimado del AUC para cada uno de los metabolitos, el p-valor corre	egido del
test t, y el log2FC estimado. Control vs HAI	4-112
Tabla 4.1.5 Parámetro de importancia, y el ranking de la frecuencia con la que son	
seleccionados cada uno de los metabolitos para el grupo control y HAI	4-115
Tabla 4.1.6 Matriz de confusión del modelo Control vs HAI	4-120
Tabla 4.1.7 Valor estimado del AUC para cada uno de los metabolitos, el p-valor corre	egido del
test t, y el log2FC estimado. Control vs CBP	
Tabla 4.1.8 Frecuencias de selección de metabolitos Control vs CBP	4-124
Tabla 4.1.9 Matriz de confusión Control vs CBP	4-130
Tabla 4.1.10 Valor estimado del AUC para cada uno de los metabolitos, el p-valor cor	regido del
test t, y el log2FC estimado. VHC vs HAI	
Tabla 4.1.11 Parámetro de importancia, y el ranking de la frecuencia con la que son	
seleccionados cada uno de los metabolitos para el grupo VHC y HAI	4-135
Tabla 4.1.12 Matriz de confusión del modelo VHC vs HAI	4-138
Tabla 4.1.13 Valor estimado del AUC para cada uno de los metabolitos, el p-valor cor	regido del
test t, y el log2FC estimado. VHC vs CBP	

Tabla 4.1.14 Parámetro de importancia, y el ranking de la frecuencia con la que son
seleccionados cada uno de los metabolitos para el grupo VHC y CBP4-142
Tabla 4.1.15 Matriz de confusión del modelo VHC vs CBP
Tabla 4.1.16 Valor estimado del AUC para cada uno de los metabolitos, el p-valor corregido del
test t, y el log2FC estimado. HAI vs CBP4-148
Tabla 4.1.17 Parámetro de importancia, y el ranking de la frecuencia con la que son
seleccionados cada uno de los metabolitos para el grupo HAI vs CBP
Tabla 4.1.18 Matriz de confusión del modelo HAI vs CBP4-155
Tabla 4.1.19 Tabla resumen del modelo predictivo entre Control, VHC, HAI y CBP4-156
Tabla 4.2.1 Metabolitos del módulo de correlaciones perturbadas Control vs VHC
Tabla 4.2.2 Metabolitos que constituyen los módulos Control vs HAI.
Tabla 4.2.3 Metabolitos que constituyen los módulos Control vs CBP4-165
Tabla 4.2.4 Metabolitos que constituyen los módulos VHC vs HAI
Tabla 4.3.1 Tabla descriptiva Control vs VHC para variables morfológicas
Tabla 4.3.2 Importancia de las variables morfológicas Control vs VHC obtenida a partir del
algoritmo de BORUTA y decisión (confirmación de su importancia/rechazo) tomada por el
algoritmo respecto a cada una de las variables
Tabla 4.3.3 Índices de discriminación y calibración del modelo Control ys VHC para variables
morfológicas, y sus intervalos de confianza bootstrap al 95%
Tabla 4.3.4 Tabla descriptiva Control vs HAI de las variables morfológicas
Tabla 4.3.5 Importancia de las variables morfológicas Control vs HAI obtenida a partir del
algoritmo de BORUTA y decisión (confirmación de su importancia/rechazo) tomada por el
algoritmo respecto a cada una de las variables
Tabla 4.3.6 Índices de discriminación y calibración del modelo. y sus intervalos de confianza
bootstrap al 95%
Tabla 4.3.7 Tabla descriptiva Control vs CBP de las variables morfológicas
Tabla 4.3.8 Importancia de las variables morfológicas Control vs CBP obtenida a partir del
algoritmo de BORUTA y decisión (confirmación de su importancia/rechazo) tomada por el
algoritmo respecto a cada una de las variables
Tabla 4.3.9 Índices de discriminación y calibración del modelo Control vs CBP para las variables
morfológicas, v sus intervalos de confianza bootstrap al 95%
Tabla 4.3.10 Tabla descriptiva VHC vs HAI de las variables morfológicas
Tabla 4.3.11 Importancia de las variables morfológicas VHC vs HAI obtenida a partir del
algoritmo de BORUTA y decisión (confirmación de su importancia/rechazo) tomada por el
algoritmo respecto a cada una de las variables
Tabla 4.3.12 Índices de discriminación y calibración del modelo VHC ves HAI para variables
morfológicas, y sus intervalos de confianza bootstrap al 95%
Tabla 4.3.13 Tabla descriptiva VHC vs CBP de las variables morfológicas
Tabla 4.3.14 Importancia de las variables morfológicas VHS vs CBP obtenida a partir del
algoritmo de BORUTA y decisión (confirmación de su importancia/rechazo) tomada por el
algoritmo respecto a cada una de las variables 4-221
Tabla 4.3.15 Índices de discriminación y calibración del modelo VHC ys CBP para variables
morfológicas y sus intervalos de confianza bootstran al 95% 4-223
Tabla 4.3.16 Tabla descriptiva HAI vs CBP para variables morfológicas 4-224
Tabla 4.3.17 Importancia de las variables obtenida a partir del algoritmo de BORLITA y decisión
(confirmación de su importancia/rechazo) tomada por el algoritmo respecto a cada una de las
variables morfológicas

Tabla 4.4.1 Tabla con el valor estimado del AUC para cada uno de los metabolitos, el p-	valor
corregido del test t, y el log2FC estimado. Fibrosis	4-233
Tabla 4.4.2 Tabla con el parámetro de importancia, y el ranking de la frecuencia con la	que son
seleccionados cada uno de los metabolitos. Fibrosis	4-237
Tabla 4.4.3 Tabla con el valor estimado del AUC para cada uno de los metabolitos, el p-	valor
corregido del test t, y el log2FC estimado. Actividad	4-244
Tabla 4.4.4 Tabla con el parámetro de importancia, y el ranking de la frecuencia con la	que son
seleccionados cada uno de los metabolitos	4-247

LISTA DE ACRÓNIMOS

Ácido etilendiaminotetraacético	
EDTA	
Ácido Peryódico de Shiff	
PAS	
Alanina aminotransferasa	
ALT	1-11
Anti-actina filamentosa	
E actin	1 1 /
F-dulli	
Anti-antigeno microsomai nepatico y renal 1	
LKM1	
Anti-antigeno soluble hepático y pancreático	
SLA/LP	
Anticuerpo tipo 1 del citosol hepático	
anti-LC1	
Anticuerpos antimitocondriales	
AMA	
Anticuerpos anti-músculo liso	
SMA	
Anticuernos antinucleares	
	1 1/
Áraa haia la surva	
	2.00
AKN mensajero	
ARNm	
Aspartato aminotransferasa	
AST	
Calcinosis, Raynaud, disfunción esofágica, esclerodactilia y teleangiectasias	
CREST	
Carnitinapalmitoiltransferasa 2	
CPT2	
Célula del lunus eritematoso	
cólula I F	1-13
Citomogolovirus	
Charles	1 01
CIVIV.	
Colangitis Biliar Primaria	
(СВР)	
Cromatografía de gases acoplada a espectrometría de masas	
GC/MS	
Cromatografía líquida acoplada a espectrometría de masas	
LC-MS	1-45
Cromatografía líquida de alta eficacia	
HPLC	
Deoxyribonucleic acid (Ácido Desoxirribonucleico)	
ΟΝΔ	1-8
Desviación Estándar Relativa	
	2 00
Caferra de da se se se se situa de 2010	
Enfermedad por coronavirus de 2019	4.50
COVID19	
Epstein Barr Virus	
EBV	1-31
Espectrometría de masas en tándem	
MS/MS o MS2	
Espectroscopia por resonancia magnética nuclear	
NMR espectroscopy	1-46
Fosfatasa alcalina	

FA	1-31
Ganmaglutamiltransferasa	
GGT	
Hazard ratio	
HR	
Hematoxilina v eosina	
H&F	3-76
Henstitic A	
	1-10
Honotitis Autoinmuno	
	1 1
(RAI)	
	1.10
	1-10
(VHC)	1-1
Hepatitis Cronica Activa	
НСА	1-13
Instrumentos de tiempo de vuelo	
TOF	1-56
International Autoimmune Hepatitis Group (Grupo Internacional de Hepatitis Autoinmunes)	
IAHG	1-15
Ionización por electrospray	
ESI	1-55
Ionización química a presión atmosférica	
APCI	1-55
Isotiocianato de fluoresceína	
FITC	1-31
log2-fold-change	
FC	
Metabolic Associated Fatty Liver Disease (enfermedad metabólica asociada a hígado graso)	
MAELD	1-24
Metil tert-hutil éter	
MTRF	1_/19
N-acetil.n henzoquinona iminina	
	5 27O
NAFQI	
	1 74
NAFLD	1-24
organización Mundial de la Salud	4.2
Receptores de celulas I	
TCR	5-258
Ribonucleic acid (Acido ribonucleico)	
RNA	1-11
Selected Reaction Monitoring	
SRM	3-87
Severe acute respiratory syndrome coronavirus 2	
SARS-CoV-2	1-50
Subunidad E2 del complejo piruvato deshidrogenasa	
PDC-E2	1-19
Ursodeoxycolic acid (ácido ursodeoxicólico)	
UDCA	1-9
Virus de la Inmunodeficiencia Humana	
VIH	

1 INTRODUCCIÓN

En este capítulo de "Introducción" se expondrán los argumentos que fundamentan la idea y la razón de ser de este estudio titulado "Contribución de la Metabolómica en el Diagnóstico Histopatológico de la Hepatitis C y de las Hepatopatías Autoinmunes".

Para ayudar al lector, se propone una exposición estructurada en cuatro subcapítulos que son:

- Epidemiologia de las enfermedades hepáticas: Hepatitis C (VHC, Hepatitis Autoinmune (HAI) y Colangitis Biliar Primaria (CBP)
- Historia natural de las enfermedades hepáticas: VHC, Hepatitis Autoinmune y Colangitis Biliar Primaria
- El diagnóstico de las hepatitis crónicas: VHC, Hepatitis Autoinmune y Colangitis Biliar Primaria
- 4. Metabolómica

1.1 Epidemiologia de las enfermedades hepáticas: VHC, HAI, CBP

1.1.1 VHC

El virus de la hepatitis C es un virus hepatotrópico que representa un importante problema de salud con una seroprevalencia global estimada en 2.5% (177.5 millones de adultos infectados) que varía substancialmente entre regiones (África Central y Asia Central >3.5%; Norteamérica, América Central y Andina, Sudáfrica, Asia Pacífico y Europa Central y Occidental <1.5%).(1)

Según la OMS, entre un 15% y un 45% de los infectados sufren una infección autolimitada en el tiempo siendo en los que, pasados 6 meses de la infección, no se verifica rastro del virus.(2) Entre el 85% y el 55% de los casos restantes desarrollaron infección crónica con un riesgo de cirrosis, a los 20 años de la infección, que varía entre 15% y 30%.(2)

En pacientes infectados de forma crónica, el virus C es el agente causal de la evolución a cirrosis y del desarrollo de hepatocarcinomas, incluso en pacientes portadores asintomáticos con edades igual o superiores a 40 años. (3)

La prevalencia global de la cirrosis y enfermedades hepáticas por el virus C aumentó ligeramente desde el año 2016 hasta el año 2019 pasando del 1.44% al 1.48%, siendo que en Europa la tendencia fue a disminuir del 0.8% al 0.78%.(4) España y Portugal presentan valores muy similares con 0.74% y 0.72% respectivamente. (4)

El factor de riesgo de transmisión de la infección más importante está relacionado con los comportamientos de riesgo, principalmente aquellos

comportamientos que favorecen la transmisión de sangre contaminado. (5) Las personas que se inyectan droga demuestran una prevalencia elevada de infección por el virus C con valores que rondan en Portugal el 83,5% y en España el 66,6%.(5) Al mismo tiempo, este grupo de riesgo tiene una variabilidad de la prevalencia si tenemos en cuenta otras variables coexistentes como el VIH (89.5-91.4% en España), presos (84.9% en España), personas sin hogar (69.9% en España), trabajadores sexuales (84.4% en España).(5) La incidencia de la infección por el virus de la VHC en el grupo de personas que se inyectan droga es muy elevada en España y está entre 25.1-52.9 nuevos infectados por cada 100 personas al año.(5)

Los nuevos tratamientos disponibles con acción antiviral directa, cuyos buenos resultados en el tratamiento de la VHC son conocidos desde el año 2014, son curativos y fundamentales para reducir la mortalidad relacionada con el virus de la VHC y reducir la necesidad de trasplante hepático.(6) Sin embargo, la cantidad de pacientes con infección crónica y asintomática que desconocen su estado en relación con este virus es muy significativa. Se estima que sólo el 20% de los individuos con VHC conoce su situación de infectados.(7)

1.1.2 HAI

La HAI es una inflamación crónica autoinmune dirigida contra el tejido hepático y que normalmente va acompañado de un aumento de las transaminasas, hipergammaglobulinemia y presencia de autoanticuerpos.(8)

Su incidencia global agrupada se estima 1.37 casos por 100.000 habitantes y su prevalencia global se estima en 17.44 casos por cada 100.000 habitantes. En la

población europea la incidencia y la prevalencia estimada es de 1.37 casos y 19.44 casos por cada 100.000 habitantes respectivamente.(9)

Los valores de incidencia y prevalencia son superiores en el grupo de mujeres que en el de hombres, niños y ancianos, principalmente en casos en los que hay alguna enfermedad autoinmune previa.(9, 10)

Parece haber una asociación familiar, siendo significativo el riesgo familiar de desarrollar una HAI entre hermanos. El muy elevado riesgo observado entre esposos apoya el factor ambiental como factor de riesgo.(11)

La tendencia observada apunta para un aumento progresivo de la prevalencia y de la incidencia de la HAI en las poblaciones estudiadas.(10, 12-14)

A pesar de estos datos, se verifica una gran variabilidad en la incidencia y la prevalencia de la HAI en diferentes regiones, alguna de ellas muy llamativa como el caso de Canadá con una incidencia de 0.23 casos por 100.000 habitantes por año cuando comparado con Estados Unidos con una incidencia de 2.88 casos por 100.000 habitantes por año.(15) Esto puede ser atribuible a diferencias ambientales, socioeconómicas, raciales, patrones migratorios, alteraciones del microbioma intestinal, agentes infecciosos o químicos o a fármacos como es el caso de los "biológicos".(15, 16)

En España, los datos disponibles arrojan una incidencia de 1.07 casos por 100.000 habitantes en el año 2003, superior a la incidencia anual media de 0.83 del periodo 1990-2003, reforzando la idea de una tendencia de un incremento progresivo de esta enfermedad en los últimos años.(15)

En Portugal, no hay de momento datos epidemiológicos sobre esta enfermedad.

1.1.3 CBP

La CBP es una enfermedad autoinmune que afecta de forma selectiva los pequeños ductos biliares intrahepáticos llevando, en una buena parte de los casos, a ductopenia, fibrosis portal y cirrosis. (17)

La incidencia anual agregada global tiene una elevada variabilidad en función de la región del planeta. Así, Norte América tiene la mayor incidencia anual estimada en 2.75 casos nuevos por 100.000 habitantes, seguida de Europa con 1.86 casos nuevos por 100.000 habitantes y de Asia-Pacífico con 0.84 nuevos casos por 100.000 habitantes.(18) La prevalencia agregada de la CBP en la región de Asia-Pacífico se estima entre 9.82 y 11.8 casos por 100.000 habitantes con una acentuada variabilidad entre países como muestra la prevalencia elevada de China y Japón (19.12 casos por 100.000 habitantes) si la comparamos con la prevalencia de Corea del Sur y Australia (3.9 casos por 100.000 habitantes). (18, 19)

En Europa occidental, la incidencia estimada es de 2.26 casos nuevos por 100.000 habitantes con una prevalencia de 12.88 casos por 100.000 habitantes. (18)

Los datos epidemiológicos de España reflejan bien la variabilidad de los datos epidemiológicos dentro del territorio nacional, tal y como observado en la literatura, que en el caso de la CBP su incidencia es estimada en de 2.2 casos por 100.000 habitantes, variando entre los 0.51 casos por 100.000 habitantes de Extremadura y los 3.86 casos por 100.000 habitantes de las Islas Canarias.(20) Lo mismo ocurre con la prevalencia, que varía desde los 11.79 casos por 100.000 habitantes de Asturias, hasta los 37.99 casos por 100.000 habitantes de Cataluña. (20)

Una búsqueda en la base de datos Pubmed por los términos *"incidence and prevalence of primary biliary colangitis"* en el periodo comprendido entre el año 2015 y abril de 2021, nos permitió obtener 532 resultados de los que fueron seleccionados 16 publicaciones y recogidos los datos epidemiológicos en la Tabla 1.1.1. Algunos artículos refieren la incidencia y prevalencia al inicio y al final del periodo en estudio, otros refieren apenas una incidencia y prevalencia al final o apenas incidencia o apenas prevalencia. En algunos casos la ausencia de estos datos se debe a los objetivos del estudio que pretende mostrar la prevalencia por regiones geográficas del territorio diana del estudio, en otros simplemente no fue el objetivo del estudio obtener ese parámetro.

Exceptuando el caso de Italia, el resto de los estudios son coincidentes al afirmar que existe un aumento de la prevalencia de la CBP.(21) También son coincidentes en referir que hay una gran variabilidad entre regiones y dentro de una misma región. En la región de Lombardía (Italia), Lleo *et al.* (22) revelan que la prevalencia aumentó en el periodo en estudio coincidiendo con una disminución de la incidencia, contradiciendo en parte los datos arrojados por Manno *et al.*(21)

Las incidencias más bajas las observamos en Corea del Sur y Hong Kong. (23,

24)

Si atendemos a las fuentes de estos estudios (Tabla 1.1.2), podemos deducir que parte de la variabilidad observada puede deberse al método de obtención de los datos.

Este sesgo se podría resolver a través de una adecuada base de datos nacional que obedeciese a normas internacionales que permitiese la uniformización de los datos.(21)

Autor /Año	País /Región	Años	Ν	Prev. Inicial	Prev. Final	Incid Inicial	Incid Final
Marschal H /2019 (25)	Suecia	1987-2014	5350	5	34,6	2,6	2,6
French J/2020(26)	Australia/ Victoria	1991-2013	1012	4,5	18,9	N/A	N/A
Tanaka A/2019(14)	Japón	2005, 2016	10847	11,6	33,8	N/A	N/A
Drazilova S/2020(27)	Eslovaquia	1999-2019	256	10,2	14,9	0,7	1,5
Marzioni M/2018(28)	Italia	2014-2015	693	N/A	27,9	N/A	5,31
Kanth R/2017(29)	USA/Midwestern	1992-2011	79	N/A	N/A	N/A	4,9
Madir A/2019(30)	Croacia	2007-2018	83	N/A	11.5-12.5	0,79	0,89
Gatselis N/2017(31)	Grecia	2000-2015	482	N/A	58,2	N/A	N/A
Lv T/2020(9)	Global	1973-2018	N/A	N/A	14,6	N/A	1,76
Sebode M/2020(32)	Alemania	2011-2014	2495	8,9	12,4	N/A	N/A
Manno V/2019(21)	Italia	2011-2015	5533	3,85	2,94	1,71	1,33
Parés A/2018(20)	España	2018	9400	N/A	20,2	N/A	2,2
Lleo A/2016(22)	Italia/Lombardia	2000-2009	2970	0,36	16	3,91	1,26
Lleo A/2016(22)	Dinamarca	2000-2009	722	10,7	11,5	1,07	0,91
Cheung K/2017(23)	China/Hong Kong	2000-2015	1016	N/A	10,9	N/A	0,89
Jeong SH/2018(24)	Corea del Sur	2009-2013	2824	N/A	4,75	N/A	0,86
Webb G/2021(33)	Inglaterra	2002-2016	1314	N/A	N/A	N/A	2,47

Tabla 1.1.1 Datos	epidemiológicos d	le la CBP en	12 publicaciones,	entre 2015 y 2021
10.0.0.0 11111 0 0.000	epideimeiogiece a	C 10 0D1 011	passioned of office)	0.1.0 2020 / 2022

Autor/Año: nombre del autor y año de publicación; **País/Región**: el país y la región donde se centra el estudio; **Años**: el año o periodo que engloba el estudio; **N**: el número de pacientes que identifica el estudio; **Prev. Inicial**: prevalencia al inicio del periodo estudiado por cada 100.000 habitantes; **Prev. Final**: prevalencia más actual o al final del periodo estudiado por cada 100.000 habitantes; **Incid Inicial**: incidencia al inicio del periodo estudiado por cada 100.000 habitantes; **Incid Inicial**: incidencia al inicio del periodo por cada 100.000 habitantes; **Incid Inicial**: incidencia al inicio del periodo por cada 100.000 habitantes; **Incid Inicial**: incidencia al final del periodo estudiado por cada 100.000 habitantes; **Incid Final**: incidencia al final del periodo estudiado por cada 100.000 habitantes; **Incid Final**: incidencia al final del periodo estudiado por cada 100.000 habitantes; **Incid Final**: incidencia al final del periodo estudiado por cada 100.000 habitantes; **Incid Final**: incidencia al final del periodo estudiado por cada 100.000 habitantes; **Incid Final**: incidencia al final del periodo estudiado por cada 100.000 habitante; **Incid** estudiado por cada 100.000 habitante;

Sin embargo, parece ser consensual que esta variabilidad verificada en los datos epidemiológicos de los diferentes países soporta la importancia de los factores ambientales en el aparecimiento de la enfermedad.(14, 33, 34) Parece posible que los avances en la facilidad al acceso de los medios diagnósticos y la terapéutica jueguen un papel importante en el aumento verificado de la prevalencia.

Autor /Año	País /Región	Fuente
Marschal H /2019(25)	Suecia	Base de datos
French J/2020(26)	Australia/ Victoria	Encuestas y bases de datos
Tanaka A/2019(14)	Japón	Encuestas
Drazilova S/2020(27)	Eslovaquia	Encuestas
Marzioni M/2018(28)	Italia	Base de datos
Kanth R/2017(29)	USA/Midwestern	Registro clínico electrónico
Madir A/2019(30)	Croacia	Registro clínico electrónico
Gatselis N/2017(31)	Grecia	Base de datos
Lv T/2020(9)	Global	Metanálisis
Sebode M/2020(32)	Alemania	Bases de datos
Manno V/2019(21)	Italia	Bases de datos
Parés A/2018(20)	España	Encuesta
Lleo A/2016(22)	Italia/Lombardia	Base de datos
Lleo A/2016(22)	Dinamarca	Base de datos
Cheung K/2017(23)	China/Hong Kong	Base de datos
Jeong SH/2018(24)	Corea del Sur	Articulos
Webb G/2021(33)	Inglaterra	Base de datos

Tabla 1.1.2 Fuentes y tipo de estudio de 12 publicaciones entre 2015 y 2021

Entre otros factores de riesgo, a parte de los factores ambientales(34) y genéticos,(35) parece haber un papel importante de los mecanismos epigenéticos a través de las alteraciones en las histonas, la metilación del DNA y la inactivación del cromosoma X, generalmente afectando a los linfocitos T.(34) (35) Esto puede contribuir a explicar la gran variabilidad de la incidencia y la prevalencia de esta enfermedad y su predominio en mujeres que supone el 90% de los casos.(36)
La presencia de síntomas y manifestaciones clínicas extrahepáticas de la CBP, generalmente de tipo autoinmune, ocurre entre el 32% y el 63% de los pacientes con CBP.(37)

La asociación familiar de la CBP parece existir. El riesgo es elevado en el caso de descendientes y en los hermanos de pacientes, pero este riesgo sólo es significativo en el caso de las mujeres.(11)

El hábito de fumar tabaco parece aumentar el riesgo de desarrollar CBP, atribuyéndose efectos inmunomoduladores y citotóxicos al tabaco. (38)

Si tenemos en cuenta la edad, según un estudio sueco de Marschall *et al* (25) los individuos jóvenes (15-39 años) tienen un riesgo o *hazard ratio* (HR) de muerte aumentado (HR 12.7) cuando son comparados con los restantes grupos etarios, HR 4.1 para el grupo 40-59 años, HR 3.7 para el grupo de mayores de 60 años. Este mismo estudio refiere que los varones tienen también un riesgo relativo de mortalidad aumentado siendo que los pacientes jóvenes del sexo masculino tienen un peor pronóstico.

Mujeres jóvenes menores de 45 años responden peor a la terapéutica con ácido ursodeoxicólico (UDCA). (27)

1.2 Historia natural de las enfermedades hepáticas: VHC, HAI, CBP

1.2.1 VHC

A finales de 1960 se conocían dos agentes causales de la hepatitis viral cuyo diagnóstico se realizaba, a falta de ensayos microbiológicos y serológicos, a través de una buena historia clínica y el reconocimiento de los síntomas buscando una relación con las vías de transmisión.(39) La confirmación de una vía de transmisión feco-oral y un período corto de incubación sugería una hepatitis A (VHA), mientras que una vía de transmisión percutánea con período largo de incubación sugería una hepatitis B (VHB).(39) A finales de los años 1960 e inicio de 1970 se hicieron estudios de casos de hepatitis relacionadas con transfusiones donde se llegó a la conclusión que, si los pacientes desarrollaban hepatitis, muy probablemente sería hepatitis B.(40). Mientras que estos estudios se desarrollaban, se descubrieron los agentes causales y enseguida se desarrollaron las pruebas serológicas para el virus de la hepatitis A(41) y hepatitis B(42) que permitieron identificar, en el suero congelado de los pacientes del estudio, casos de hepatitis anictérica con periodos de incubación prolongado que no se encajaban con las características clínicas de la hepatitis A y de la hepatitis B y que además eran negativos para las pruebas serológicas por lo que a estos casos se les comenzó a llamar hepatitis no A no B.(43) Las dudas de la naturaleza infecciosa de esta hepatitis no A no B fueron despejadas cuando se replicó el cuadro bioquímico en cobayas a partir de sangre contaminado y cuando se identificó el virus quince años más tarde.(43)

El virus de la VHC es un virus RNA de cadena simple encapsulado descrito en el año 1989.(44) Pertenece al género Hepacivirus de la familia Flaviviridae y del cual hay descritos ocho genotipos y noventa subtipos.(45) La cápsula del virus es constituida principalmente por lípidos de la membrana del huésped y por una estructura compleja de heterodímeros denominados E1 y E2 que junto con la proteína central ("core") constituyen el grupo de proteínas estructurales, siendo que E2 se sitúa más externamente y es la diana de los anticuerpos neutralizantes que impedirán la unión de la cápsula a la membrana celular y la liberación del virión, sin embargo esta glicoproteína E2 tiene una región hipervariable que permite la fuga del virus a la acción neutralizante del sistema inmunitario.(46) Otras siete proteínas no estructurales que conforman un complejo de membrana indispensable para la replicación viral, estarán presentes en las membranas intracelulares y serán las dianas de los nuevos fármacos antivirales de acción directa cuyo objetivo es la cura de la enfermedad, una vez que no hay reservatorio latente en el huésped como ocurre con otros virus.(47)

Una buena parte de los casos de infección por el virus de la VHC es asintomática, siendo que los casos sintomáticos manifiestan habitualmente síntomas en los que se incluyen náuseas, dolor abdominal o síntomas gripales.(48)

A las dos semanas de la infección, en la mayoría de los casos, se puede detectar RNA viral en sangre periférico y a las doce semanas aparecen los anticuerpos anti-VHC, al mismo tiempo, las enzimas hepáticas aumentan entre la semana ocho y diez con picos de alanina aminotransferasa (ALT) entre diez y veinte veces el límite superior del normal; sin embargo, los niveles de RNA del virus en sangre periférico suelen variar acentuadamente e incluso llegan a ser negativos/indetectables transitoriamente, lo que indica, en este último caso, que estamos ante una infección aguda.(48) Entre un 20% y un 40% de las infecciones se curarán sin dejar rastro con carga viral indetectable y en muchos casos se ha relacionado esta respuesta deseable del huésped a factores genéticos como los polimorfismos IL28B, al genotipo 1 del virus de la VHC y al sexo del paciente.(49) Los esquemas disponibles, antes de la generalización de los nuevos fármacos antivirales, eran el interferón, ribavirina e interferón pegilado siendo que el esquema de interferón pegilado con o sin ribavirina durante veinticuatro semanas, o más, resultaba en tasas del 45-50% de *"clearance"* (aclaramiento) viral.(50) Después del tratamiento con éxito de la hepatitis aguda o de su espontánea resolución prevalece aún el riesgo de reinfección, particularmente alto en los casos de personas que se inyectan drogas y en los hombres que tienen sexo con hombres, que no lo resuelven los nuevos fármacos antivirales porque no inciden en la modificación del comportamiento de riesgo.(51)

Si la infección permanece después de la fase aguda con viremia más de seis meses, hablamos de VHC crónica. La inflamación crónica del hígado provoca fibrosis que evolucionará a cirrosis a los 20 años de enfermedad entre el 15% y el 30% de los casos.(2)

Factores como coinfección con otros virus hepatotrópicos, genotipo 3 del virus de la VHC, diabetes y esteatosis, aceleran la fibrosis hepática y su evolución a cirrosis.(52-55)

La descompensación de la cirrosis por aparición de complicaciones como ascitis, hemorragia de varices esofágicas y encefalopatía hepática dependerá en gran medida de la respuesta al tratamiento antiviral; así, los pacientes cirróticos que mostraron una respuesta virológica sostenida después del tratamiento tienen una incidencia reducida de complicaciones comparado con aquellos pacientes que no tuvieron una respuesta virológica sostenida.(56)

Los pacientes con cirrosis descompensada tienen mayor riesgo de muerte y de desarrollar hepatocarcinoma; se estima que la tasa media de desarrollo de hepatocarcinoma en los pacientes cirróticos es del 7% en 4.8 años.(51, 56) Los mecanismos por los que la VHC estimula la formación de hepatocarcinomas (hepatocarcinogénesis)(57, 58) incluyen:

- la liberación de citoquinas;
- factores epigenéticos como los microRNA (miRs);

 las propias proteínas estructurales y no estructurales del virus a través de su acción sobre el substrato del receptor de insulina 1 y 2 y/o de su acción activadora a nivel transcripcional del c-Kit.

1.2.2 HAI

Al inicio de los años 1950 se describió un cuadro de hepatitis de carácter subagudo afectando principalmente a mujeres, con características clínicas distintas a las hepatitis virales conocidas y que se les denominó Hepatitis Crónica Activa (HCA).(59) La hipótesis de una infección viral persistente o una secuela de una infección viral prevalecía en ese momento hasta que Waldestrom describe en 1950 la presencia de hipergammaglobulinemia en muchos de esos pacientes y sin abandonar la hipótesis viral, reconoce que la etiología es aún desconocida y justifica este hallazgo como un probable síntoma de hiperinmunización contra un virus.(60, 61) El descubrimiento en 1948 de la célula del lupus eritematoso (célula LE), (62) permitió la descripción de una entidad

provisional publicada en 1956 en la revista Lancet, (63) y que denominaron "hepatitis lupoide". Al relacionar ciertas hepatitis crónicas activas con el lupus se tuvo la idea de que había un mecanismo inmunológico que destruía los hepatocitos, por lo que recomendaban el tratamiento con corticoides; sin embargo, había hepatitis crónicas activas en las que fallaba la demostración de células LE pero que tenían un cuadro clínico, bioquímico, histológico y de respuesta a la terapéutica indistinguible de las "hepatitis lupoides". Más tarde, con el desarrollo de las técnicas de inmunofluorescencia para los anticuerpos antinucleares (ANA) y su aplicación a las enfermedades hepáticas en el año 1963, permitió detectarlos con mayor precisión. (63, 64) Durante los años 1960 parecía claro el carácter autoinmune de este tipo de hepatitis y en 1965 se sugiere el término "hepatitis autoinmune", que sería formalmente aprobado en 1993. (65, 66)

El tratamiento con corticoides producía una mejoría clínica, bioquímica e histológica importante y rápida; no obstante, la retirada de la corticoterapia en los casos no cirróticos con regresión clínica e histológica completa de la enfermedad resultó en una probabilidad de recidiva a los cinco años de seguimiento de 28%.(67) En el caso de los cirróticos que fueron tratados, con una mejoría del cuadro a una cirrosis inactiva, la probabilidad de recidiva a los seis meses de abandono de la terapéutica fue del 79%.(67)

La sobrevida de los pacientes tratados comparada con el grupo control (no tratados) fue muy superior con una diferencia de mortalidad estadísticamente significativa entre los grupos. (68)

Con el desarrollo de los ensayos de inmunofluorescencia para los anticuerpos anti-músculo liso (SMA), anti-actina filamentosa (F-actin), anti-antígeno

microsomal hepático y renal 1 (LKM1), anti-antígeno soluble hepático y pancreático (SLA/LP), los pacientes con HAI clásica que corresponde a la descrita como "hepatitis lupoide", mostraban con su suero un patrón de inmunorreacción consistente para ANA, SMA y actina F mientras que había un grupo de HAI que eran apenas inmunorreactivas para LKM1 mostrando un perfil inmunológico excluyente; al patrón clásico se le denominó HAI tipo 1 y al segundo patrón se le denominó HAI tipo 2, este último con una progresión más rápida para cirrosis comparado con el tipo 1.(69) Un tercer tipo de HAI con expresión de anti-SLA/LP fue descrito e inicialmente propuesto como siendo el tercer tipo de HAI; sin embargo, a pesar de ser un marcador altamente específico de HAI, es considerado como un marcador más que aparece frecuentemente asociado al perfil inmunológico típico de la HAI tipo 1 y ocasionalmente sólo o en casos con perfil inmunológico de la hepatitis tipo 2. (70)

A pesar de que la mayoría de los casos de HAI se presentan como una enfermedad hepática crónica, cerca del 24% se manifiestan como un evento agudo grave y es interesante que aproximadamente el 50% de estos casos graves revelan un perfil inmunológico negativo para los autoanticuerpos descritos en la HAI (HAI seronegativa), lo que dificulta el diagnóstico según los criterios "clásicos" del Grupo Internacional de Hepatitis Autoinmunes (*IAHG*). (71, 72) Como se estima que cerca del 10-20% de las HAI son seronegativas, la *IAHG* en su revisión publicada en 1999, contempló los criterios que se deben aplicar para el diagnóstico de estos casos cuya respuesta a la terapéutica no difiere de la HAI seropositiva.(72, 73)

1.2.3 CBP

Antes que René Théophile Hyacinthe Laenec acuñase el término "cirrosis" en el año 1819, aparece lo que para algunos fue quizás la primera aproximación a la descripción de la cirrosis biliar secundaria, cuya autoría se atribuye a Jean Baptiste Morgagni, el cual describió que en presencia de litiasis, el hígado puede ser de consistencia firme, verde y fibroso; sin embargo, el primero a reconocer la relación entre la obstrucción de la vía biliar principal y la cirrosis fue, muy probablemente, Rudolph Virchow en 1857.(74) Las manifestaciones cutáneas bajo la forma de xantelasmas relacionadas con la enfermedad hepática con ictericia fueron avanzadas por Addison y Gull en 1857, pero su relación con la estenosis del ducto hepático fue descrita por Moxon en 1873 y que describe la cirrosis biliar secundaria como una cirrosis en presencia de una obstrucción macroscópica de la vía biliar extrahepática con frecuente asociación a xantomatosis y aterosclerosis prematura.(74) Pero fue Victor Charles Hanot en 1876 guien describió, en su tesis presentada en la Universidad de Paris y titulada "Estudio sobre una forma de Cirrosis Hipertrófica del Hígado -cirrosis hipertrófica con ictericia crónica", la enfermedad que posteriormente fue conocida como cirrosis biliar primaria. (75) A diferencia de la cirrosis biliar secundaria, este tipo de cirrosis biliar no presenta una causa macroscópica obstructiva extrínseca de causa litiásica, tumoral u otra, de la vía biliar principal y Hanot describe que, en este tipo de cirrosis biliar el hígado es grande, en parte debido a la extensa fibrosis, siendo que la ascitis y las complicaciones de la hipertensión portal aparecen tardíamente. (75) Él defiende que la causa es también obstructiva pero que afecta apenas a los pequeños canales biliares intrahepáticos que se obstruyen en la secuencia de una inflamación "catarral".(75)

Desde 1950 los criterios clínicos y patológicos de la cirrosis biliar primaria fueron consensuados. El perfil típico es de pacientes jóvenes o de media edad, mayoritariamente del sexo femenino que piden asistencia médica por prurito generalizado sin ictericia o con sólo ictericia y simultáneamente a la aparición de la ictericia, aparecen heces claras y la orina se torna oscura. (76) Normalmente estos pacientes tienen un excelente apetito y los casos en los que hay pérdida de peso se atribuyen a una falta de reabsorción de grasas.(76) La piel frecuentemente presenta hiper-melanosis que aparece con o sin ictericia y después de meses o años de los síntomas iniciales, aparecen los xantomas cutáneos, más frecuentemente en los párpados (xantelasma), precedidos por un aumento sérico de lípidos. (76) Con la progresión de la enfermedad los síntomas y señales de obstrucción biliar van desapareciendo a medida que se instala la clínica asociada a la fibrosis hepática; en esta fase final de la enfermedad es frecuente que desaparezcan los xantomas cutáneos y pronto la cirrosis portal se instala y las complicaciones derivadas de ella: ascitis, edema, fatiga, hemorragias, hipocoagulabilidad o coma hepático.(76) Estas complicaciones surgen años después del establecimiento de la enfermedad y el curso inexorable hasta la muerte se produce entre 2 y 11 años desde el establecimiento del diagnóstico.(76)

Alterar el futuro sombrío de estos pacientes en estadio terminal de la enfermedad fue posible con el trasplante hepático, pero sólo se consiguió alterar el curso natural de la enfermedad y aumentar el tiempo de sobrevida sin trasplante cuando en 1987 se introdujo el ácido ursodeoxicólico como tratamiento de la CBP.(77-79) La utilización del ácido ursodeoxicólico para el tratamiento de las afecciones hepáticas remonta varios siglos y hace parte de la medicina tradicional china bajo el nombre de "yutan" y que consiste en unos polvos extraídos de la bilis seca del oso adulto.(80) En 1927 se definió por primera vez la fórmula química del principio activo de la bilis del oso negro chino y Shoda la denominó ácido "ursodeoxicólico", en honor a la proveniencia de su descubrimiento una vez que oso en latín es "ursus".(81) Pero fue en 1937 que Iwasaki definió la estructura química del ácido ursodeoxicólico que permitió su síntesis para la investigación clínica.(81) El ácido ursodeoxicólico constituye hasta el 4% de los ácidos biliares en el humano y a diferencia de los restantes, no es sintetizado por los hepatocitos sino por bacterias del colon, pasando a la circulación portal después de ser absorbido por la mucosa del colon.(80) Los mecanismos de acción del ácido ursodeoxicólico incluyen la disminución de los ácidos biliares hidrofóbicos tóxicos para el hepatocito por desplazamiento, efecto colerético,(82) propiedades inmunomoduladoras de la inmunidad humoral,(83) citoprotección gracias a la estabilizaciçon de estructuras celulares previniendo la acción de los ácidos biliares hidrofóbicos e inhibiendo la apoptosis bloqueando la vía Fas-Bid/Bax.(84)

Desde 1957 la cirrosis biliar se conoce que primaria presenta característicamente, en más del 95% de los casos, autoanticuerpos contra proteínas mitocondriales que son conocidos como anticuerpos V antimitocondriales (AMA).(85, 86)

La implementación de este examen en la batería de ensayos disponibles para el estudio de las enfermedades hepáticas en la rutina de la práctica clínica permitió el diagnóstico cada vez más precoz de la enfermedad.(87) Así, muchos de estos

pacientes no se presentaban con cirrosis y se veían etiquetados con una palabra, estigmatizante para muchos, que llevó a las asociaciones de pacientes a sugerir un cambio en la denominación de una enfermedad cuya nomenclatura original no fue consensual por lo menos desde 1959, habiendo en el transcurso del tiempo varias tentativas infructíferas para alterar su nombre.(88-90) Después de varias encuestas impulsadas por organismos nacionales e internacionales que se encargan de la normalización de los criterios y elaboración de las guías para el diagnóstico y tratamiento de las enfermedades hepáticas, el nombre de CBP se impuso a las alternativas que fueron propuestas y, desde el año 2015, se altera la nomenclatura de la cirrosis biliar primaria, pasando a denominarse CBP. (91)

La fisiopatología y el papel de los autoanticuerpos antimitocondriales fue durante mucho tiempo una incógnita y a pesar de ser altamente específicos para esta enfermedad, no hay evidencias suficientes para afirmar que sean directamente patogénicos.(92) Parece ser que su unión con su antígeno correspondiente crea un inmunocomplejo capaz de activar las células dendríticas locales y regionales dando lugar a un aumento de citoquinas y estimulando la inmunidad celular contra la subunidad E2 del complejo piruvato deshidrogenasa (PDC-E2).(93) A pesar de la especificidad del cuadro inmunológico de la CBP, existen pacientes que presentan aspectos clínicos idénticos, pero con anticuerpos específicos indetectables.(94) Estos casos, denominados CBP AMA negativos, responden a la terapéutica con ácido ursodeoxicólico de forma similar a los pacientes AMA positivos.(95) Sin embargo, suelen presentar infiltrado de plasmocitos más intenso en el estudio histológico de la biopsia hepática y peor pronóstico que los casos AMA positivos.(96) Otros casos de pacientes con CBP AMA positivos

desarrollan o presentan simultáneamente aspectos de HAI, situación comúnmente denominada síndrome de sobreposición (*overlap*). Son casos raros que representan menos de 1% de todos los casos de CBP los que reúnen criterios definitivos de HAI; sin embargo, entre el 8% y el 19% reúnen criterios de probable HAI según el IAHG.(97)

De las neoplasias primarias del hígado la más frecuente, el hepatocarcinoma, tiene una incidencia media calculada en pacientes con CBP de 4.17 por 1000 personas-año, ligeramente más elevada que en la HAI (3.06 por 1000 personas-año).(98) El factor de riesgo más importante en estos pacientes fue el estado avanzado de la enfermedad y a pesar de ser una enfermedad que afecta predominantemente a mujeres, el sexo masculino es un factor de riesgo.(98)

1.3 El diagnóstico de las hepatitis crónicas: VHC, HAI, CBP

1.3.1 VHC

1.3.1.1 Manifestaciones clínicas

La mayor parte de los casos la infección aguda pasa desapercibida o si hay síntomas, estos son generalmente inespecíficos; motivo por el cual estos pacientes no son diagnosticados en la fase aguda.(99) Algunos síntomas relatados incluyen fatiga, náuseas, dolor abdominal, pérdida de apetito, fiebre ligera, prurito, ictericia y mialgias.(100) La hepatitis fulminante o insuficiencia hepática aguda en contexto de infección aguda por el virus de la VHC es

inusual.(100-102) Si la infección persiste más de seis meses hablamos de VHC crónica que, a pesar de ser mayoritariamente asintomática, cuando es sintomática se manifiesta con fatiga (es el síntoma más frecuente), dolor abdominal, pérdida de apetito y de peso.(99)

Por su prevalencia, la depresión es la manifestación extrahepática más frecuente seguida de la diabetes mellitus tipo 2; ambas representan elevados costes adicionales y que son soportados por los pacientes o por los respectivos sistemas de salud, siendo que en Estados Unidos de América se estimaron estos costes en 443.4 millones de dólares para la diabetes mellitus tipo 2 y 430.7 millones de dólares para la depresión.(103)

1.3.1.2 El diagnóstico:

A través de ensayos inmunoenzimáticos es posible detectar anticuerpos contra proteínas estructurales y proteínas no estructurales del virus ("*core*", E1, E2, NS3, NS4 y NS5) y permiten apenas saber si el paciente estuvo en contacto con el virus o no; no permite saber si el paciente está recuperado de la infección, si está padeciendo una infección aguda o crónica.(104) Los pacientes recuperados mantienen niveles de anticuerpos específicos elevados durante años y van disminuyendo con el tiempo hasta ser indetectables en algunos casos.(105) Los síntomas, cuando están presentes, aparecen y persisten mientras los niveles de ALT están por encima de los límites de la normalidad, entre la séptima semana de la infección y el quinto mes.(105) El RNA viral puede ser detectado desde la segunda semana de la infección y si desaparece antes de los seis

meses coincidiendo con niveles normales de ALT, se puede asumir que la infección es aguda y que se resolvió.(105)

Figura 1.3.1 Secuencia del proceso diagnóstico de la hepatitis C.

Si hay persistencia de niveles detectables de RNA viral con niveles oscilantes de ALT después de los seis meses de la infección, se asume que estamos ante una VHC crónica.(105) La técnica PCR cuantitativa es una técnica muy sensible que permite determinar el número de copias del virus en pacientes anti-VHC positivos, con límites inferiores de detección entre 10 y 15 UI/mL y es utilizada para monitorizar la respuesta al tratamiento.(106) La PCR cualitativa refleja un resultado positivo o negativo para la presencia de RNA del virus, por lo que es un buen ensayo para confirmación junto con el ensayo *inmunoblot* recombinante (RIBA), pero no tiene utilidad para monitorizar la respuesta al tratamiento.(106, 107) La secuencia del proceso diagnóstico de la VHC está reflejada en la Figura 1.3.1.(105)

1.3.1.3 La biopsia:

En el contexto de la VHC aguda, es muy raro que el momento del diagnóstico clínico coincida con la fase aguda de la enfermedad permitiendo la realización de la biopsia, una vez que la fase aguda de la infección pasa habitualmente desapercibida.(99)

No hay ningún aspecto o conjunto de lesiones que, al ser observadas en la microscopía de luz, sean patognomónicas de VHC; sin embargo, hay un conjunto de aspectos que son característicos, como la presencia de esteatosis, espacios porta con infiltrado inflamatorio predominantemente linfocítico, del que habitualmente también hacen parte plasmocitos y eosinófilos, agregados linfoides nodulares y folículos linfoides con centro germinativo (folículos terciarios) en los espacios porta, linfocitos en los sinusoides, presencia de cuerpos acidófilo o cuerpos de Councilman, la actividad necroinflamatoria de la interfaz y la fibrosis portal siendo la presencia de necrosis confluyente o panlobular, así como actividad necroinflamatoria de interfaz severa, poco frecuente.(108)

Aunque se puede observar en la biopsia la presencia de linfocitos intraepiteliales en los ductos portales y en algunos casos la ausencia de ductos en algunos espacios porta que fueron destruidos y sustituidos por infiltrado inflamatorio, esto no significa que necesariamente habrá un curso hacia un cuadro clínico colestático o ductopénico, aunque hayan sido descritos algunos casos.(109) La presencia de granulomas epitelioides o no epitelioides, en contexto de VHC es posible; en estos casos y después de excluir otros eventuales agentes o situaciones clínicas causales, se puede asumir con tranquilidad la VHC.(110) La enfermedad hepática grasa no alcohólica (NAFLD), o más recientemente denominada enfermedad metabólica asociada a hígado graso (MAFLD), (111) en contexto de VHC ocurre con una frecuencia dos a tres veces superior de lo que sería esperado apenas por el azar.(112) Esto puede atribuirse a la consecuencia de la diabetes como manifestación extrahepática de la VHC, así como a mecanismos de efecto directo del virus en el metabolismo lipídico que lleva a una acumulación de triglicéridos en el hepatocito por inhibición de las proteínas exportadoras necesarias para el ensamblaje de las lipoproteínas de baja densidad y su secreción.(113, 114) El genotipo del virus de la VHC que está más frecuentemente relacionado con esteatosis es el genotipo 3 y probablemente será por acción directa de las proteínas virales de este genotipo, mientras que la esteatosis en los restantes genotipos se debe a la insulinoresistencia.(115) Esta insulino-resistencia disminuye mejorando de forma importante la sensibilidad global a la insulina después del tratamiento exitoso con las drogas de acción directa.(116) La esteatosis contribuye a la progresión de la fibrosis en la hepatitis crónica por virus C con un patrón semejante al que ocurre en la NAFLD o en la esteatohepatitis por mecanismos atribuibles al estrés oxidativo y el daño mediado por citoquinas.(112)

Una vez que la actividad inflamatoria en la VHC es predominantemente portal con escasa o ligera expresión en la región intralobular, la fibrosis inicialmente es portal y a medida que progresa la enfermedad, los efectos reparativos de la inflamación, a través de la formación de septos y puentes de fibrosis, van alterando la arquitectura lobular hepática hasta la configuración nodular típica del estadio final de cirrosis.(117) Actualmente es una práctica generalizada graduar la actividad necroinflamatoria y estadificar la fibrosis en la hepatitis crónica.(118, 119) Esto se realiza a través de un análisis semicuantitativo de los aspectos observados en la microscopía de luz de las diferentes técnicas histoquímicas de la biopsia hepática, para evaluar el estado del hígado antes del tratamiento, monitorizar el tratamiento o para estimar los efectos de un nuevo tratamiento en contexto de un ensayo clínico.(118, 119) Existen varios sistemas que, al sumar la puntuación de cada ítem dentro de cada categoría, permiten estratificar el grado de la actividad necroinflamatória y el estado de la fibrosis.(120)

Los sistemas más utilizados en la práctica de rutina son habitualmente los menos complejos y citando algunos de menor a mayor grado de complejidad tenemos: el sistema de Knodell (Índice Histológico de Actividad), el sistema METAVIR y el de Ishak.(121-123) Todos ellos son altamente sensibles a la subjetividad del observador por lo que su reproductibilidad intra-observador e inter-observador es baja si no hay un previo consenso entre observadores.(124, 125) Sin embargo, parece que para algunas categorías cada sistema tiene ventajas en términos de reproductibilidad y menor variabilidad inter-observador. (126)

El sistema METAVIR utiliza un algoritmo (Tabla 1.3.1) que evalúa la actividad necroinflamatória en la región de interfaz (0-3) y la zona intralobular (0-2) aplicando a cada ítem un valor cuya combinación dará como resultado un valor del Índice de Actividad Media (0-3).(121) En el caso de la fibrosis (Tabla 1.3.2), la evaluación es directa desde F0 a F4 expresando en cada valor el grado de fibrosis desde la ausencia de fibrosis (F0) hasta la cirrosis (F4).(121)

El resultado se expresa con una formulación alfanumérica constituida por dos letras y dos números donde "A" se refiere a la actividad, seguida del valor atribuido por el algoritmo y la "F" que se refiere a la fibrosis seguida del valor

atribuido por el observador.(121)

Tabla 1.3.1 Algoritmo METAVIR para actividad

Hepatitis de interfaz	Hepatitis intralobular	Actividad Histológica Media				
0 +	0	= 0				
0 +	1	= 1				
0 +	2	= 2				
1 +	0	= 1				
1 +	1	= 1				
1 +	2	= 2				
2 +	0	= 2				
2 +	1	= 2				
2 +	2	= 3				
3 +	0	= 3				
3 +	1	= 3				
3 +	2	= 3				
Puntuación hepatitis de interfaz: 0 (ausencia), 1 (ligera), 2 (moderada), 3 (severa)						
Hepatitis intralobular: 0 (ausencia o ligera), 1 (moderada), 2 (severa)						
Actividad Histológica Media: 0 (ausencia), 1 (ligera), 2 (moderada), 3 (severa)						

El resultado final de la graduación de la inflamación y estadificación de la fibrosis

nos daría una idea de la severidad de la enfermedad hepática.

Tabla 1.3.2 Algoritmo METAVIR para fibrosis

F0	Ausencia de fibrosis
F1	Expansión fibrosa irregular de los espacios porta sin formación de septos fibrosos
F2	Expansión fibrosa irregular de los espacios porta con formación de algún septo fibroso
F3	Numerosos septos fibrosis sin presencia de cirrosis
F4	Cirrosis

Fuente: Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology. 1996 Aug;24(2):289-93. doi: 10.1002/hep.510240201. PMID: 8690394.

Sin embargo, hay factores que interfieren en la precisión de estos métodos semicuantitativos, como por ejemplo la dimensión del fragmento de biopsia y la región del hígado donde la biopsia ha sido tomada. Se estima que la dimensión longitudinal mínima que debe tener la biopsia hepática para representar once espacios porta completos, los necesarios para graduar y designar la estadificación de forma fiable, es de 20mm.(127) Este resultado raramente ocurre en la práctica clínica y la repetición de la biopsia en el mismo acto para alcanzar los 20mm conlleva el aumento del riesgo de complicaciones

relacionadas con el procedimiento.(128) Al mismo tiempo, se pone en duda que el producto de biopsia sea representativo de todo el hígado, una vez que la actividad y la fibrosis pueden ser diferentes a la hora de hacer la graduación y la estadificación en función de si la biopsia se realiza en el lóbulo derecho o en el izquierdo del hígado.(128, 129)

Por estas razones hubo una tentativa de desarrollar métodos no invasivos que permitiesen un análisis global del hígado evitando las complicaciones asociadas a la biopsia y al mismo tiempo eliminar la variabilidad intra e inter-observador. Para ello se desarrollaron ensayos utilizando algoritmos de inteligencia artificial para medir o hacer la estadificación de la fibrosis (Fibrotest®) y la actividad (Actitest®).(128) Estos ensayos son dependientes de la variabilidad interobservador y necesitan datos bioquímicos para hacer funcionar el algoritmo, y una vez que cerca de un 30% de los pacientes con hepatitis crónica C pueden presentar niveles de ALT normales o padecer otra enfermedad hepática no fibrosante, la precisión diagnóstica de estos ensayos disminuve dramáticamente.(128, 130) Otro ensayo que mide la elasticidad del hígado, el Fibroscan®, apenas aporta datos sobre la actividad inflamatoria y se centra más en la fibrosis hepática.(131) Este tipo de pruebas no invasivas tienen un error diagnóstico estimado en cerca de 15-20%, lo que hace que no se prescinda en muchos casos de la biopsia hepática.(130)

Una prueba no invasiva de carácter funcional que mide un metabolito en aire expirado, a través de un algoritmo que incluye la edad y otros datos del paciente, es la prueba de la metacetina en aire expirado o BreathID®¹³.(130) Es una prueba que mide la actividad del citocromo P4501A2 hepático después de la administración oral de un substrato marcado con isótopos (metacetina) y cuyos

metabolitos son captados e identificados en el aire expirado a través de espectrometría de masa.(130) Los datos arrojados de esta prueba que incluyeron pacientes con hepatitis crónica C con niveles normales de ALT, reflejan que el algoritmo utilizado consiguió un área bajo la curva de 0.92 con una sensibilidad del 91% y una especificidad del 88%, de tal forma que 67% de las biopsias realizadas en el estudio podrían ser evitadas.(130)

1.3.2 HAI

1.3.2.1 Manifestaciones clínicas:

La forma de presentación clínica típica consiste en pacientes, en su gran mayoría del sexo femenino (70%-80%), que de forma insidiosa presentan síntomas cuya intensidad y frecuencia fluctúan en el tiempo, refiriendo que aparecieron meses o incluso años antes de ser observadas por el médico.(132) La queja más comúnmente referida es la fatiga.(132) Otras quejas habituales son malestar general, náuseas, anorexia, pérdida de peso, prurito leve, malestar o dolor abdominal, oligomenorrea, artralgias, *rash* cutáneo y febrícula, frecuentemente en un contexto de alergia u otras enfermedades autoinmunes previas del propio paciente o de sus familiares en primer grado.(132) El 25% de estos pacientes no refiere episodios de ictericia y el 30% se presentan con cirrosis.(132) La ascitis y los edemas periféricos pueden estar presentes incluso en la ausencia de cirrosis.(132)

Existen formas de presentación "atípicas" como puede ser la hepatitis aguda seronegativa o una hepatitis crónica completamente asintomática detectada

incidentalmente a raíz de resultados anormales de pruebas bioquímicas del perfil hepático en sangre periférico o en el transcurso del estudio de hematemesis y/o melenas como única manifestación inicial.(71, 72, 132)

1.3.2.2 El diagnóstico:

En 1999 el grupo internacional de HAI publica los criterios diagnósticos de la HAI, resultado de la revisión de los primeros criterios establecidos en la reunión de Brighton, publicados en 1993 y que fue conocido como "informe Brighton" (Brighton report).(66) Este informe recomienda la utilización de un algoritmo que evalúa y puntúa parámetros clínicos, microbiológicos (marcadores virales), bioquímicos, inmunológicos (autoanticuerpos e inmunoglobulinas séricas), histológicos y otros factores etiológicos, atribuyendo valores positivos o negativos de tal forma que el resultado final permitiese establecer un punto de corte que fuese discriminativo. (66) Esta primera tentativa se realizó mediante un sistema de análisis de tipo "ensayo/error" sin validación definitiva, por lo que se estableció como un sistema sujeto a validación prospectiva.(66) El resultado de la suma de los puntos atribuidos determinaría dos categorías diagnósticas: HAI probable o HAI definitiva.(66) La revisión de 1999 intentó mejorar la especificidad y simplificar el uso del algoritmo (Tabla 1.3.3) ajustando la puntuación de algunos ítems de forma a aumentar la especificidad de este algoritmo diagnóstico principalmente en enfermedades de la vía biliar como la colangitis esclerosante primaria que consiguen puntuaciones que las sitúan como "probable HAI".(72) En el año 2008 se publican los "criterios simplificados" para el diagnóstico de la HAI (Tabla 1.3.4) con el aval del IAHG.(133)

Este sistema recoge apenas variables como la gammaglobulina, autoanticuerpos, exclusión de hepatitis viral y la biopsia hepática.(133) A cada variable atribuye una puntuación y al probar el algoritmo con un grupo de entrenamiento y un grupo de validación, el área bajo la curva fue del 0.946 y 0.91 respectivamente, con una sensibilidad de 88% y una especificidad de 97% para un punto de corte \geq 6 y una sensibilidad de 81% y una especificidad de 99% para un punto de corte \geq 7.(133)

La hipergammaglobulinemia se transforma en una variable de extrema importancia para el diagnóstico en las situaciones de HAI seronegativas y la correcta ejecución técnica de los ensayos para la detección de autoanticuerpos es fundamental.(72) La determinación de autoanticuerpos no sólo auxilia en el diagnóstico de la HAI, sino que la clasifica.(69)

Existen varias técnicas para la determinación de autoanticuerpos, pero la más recomendada en el estudio de la HAI es la inmunofluorescencia indirecta.(134) Esta técnica se basa en la exposición de los anticuerpos circulantes del paciente, presentes en plasma obtenido a partir de una muestra de sangre, a los antígenos específicos y, a través de un anticuerpo secundario conjugado con un fluorocromo, determinar si hay inmunofluorescencia.(135)

El fluorocromo es una pequeña molécula unida al anticuerpo secundario por un enlace covalente (anticuerpo conjugado) y cuando es sometido a una luz con una longitud de onda de excitación adecuada para ese fluorocromo, se libera energía en forma de luz con una longitud de onda diferente a la de excitación.(135)

Parámetros/ Aspectos	Puntuación	Explicación
Sexo femenino	+2	
Relación FA: AST (o ALT)		
<1.5	+2	Relación FA:AST (o ALT) se refiere al grado de aumento de los niveles
1.5-3.0	0	por encima de los límites superiores de la normalidad (Isn)para estas
>3	-2	enzimas, ej. (IU/I FA÷lsn FA)÷(IU/I AST÷lsn AST)
	+3	
1.5-2.0	+2	
1.0-1.5	+1	
<1.0	0	
ANA, SMA o LKM-1		
>1:80	+3	Títulos determinados por inmunofluorescencia indirecta en tejido de
1:80	+2	roedor o, para ANA, en celulas HEp-2. Títulos bajos (especialmente
1:40	+1	de LKM-1) son significativos en ninos y debería ser puntuado por lo
<1.40	0	menos como +1.
Marcadores de henatitis viral	-4	
Positivo	-3	Puntuación para marcadores de hepatitis A B v C (Fi
	0	positivo/negativo para IgM anti-VHA, HBsAg, IgM anti-HBc, anti-VHC
	0	y VHC-RNA. Si se sospecha de una etiología viral a pesar de la
Negativo	+3	seronegatividad para estos marcadores, las pruebas para otros virus
		hepatotrópicos pueden ser relevantes como CMV y el EBV.
Historia de medicamentos		
Positivo	-4	Historia reciente o actual de uso de drogas conocidas o sospechosas
Negativo	+1	de hepatotoxicidad
Ingestión media de alcohol	_	
<25g/dia	+2	
>60g/dia	-2	
Histologia nepatica	12	"Altorogionos hilioros" os refiero o altorogionos de los dustos hilioros
Infiltrado linfonlasmocitario predominante	+3 ±1	Alleraciones billares se renere a alleraciones de los ductos billares
Rosetas benatocitarias	+1 +1	(Fi colangitis granulomatosa o fibrosis periductular severa con
Ninguno de los anteriores	-5	ductopenia, establecido en una muestra de biopsia adecuada) v/o
Alteraciones biliares	-3	reacción ductular periportal (también llamada proliferación marginal de
		ductos biliares con colangiolitis)
Otras alteraciones	-3	Cualquier otro aspecto prominente o combinación de aspectos
		sugestivos de una etiología diferente
Otras enfermedades autoinmunes	+2	Puntuación para cualquier otra enfermedad autoinmune en el paciente
		o en un familiar en primer grado
		Los puntos adicionales para otros autoanticuerpos "definidos" y el
Parámetros opcionales adicionales:		HLA DR3 0 DR4 (si estan disponibles estos datos) deberan ser
		Otros autoanticuerpos "definidos" son aquellos de los que hav datos
Seropositividad para otros autoanticuerpos definidos	+2	publicados relacionado la metodología de detección y la relevancia
		para la hepatitis autoinmune
		HLA DR3 y DR4 son principalmente relevantes en el norte de la
		Europa caucásica y población japonesa. Puede ser atribuido un punto
HLA DR3 o DR4	+1	para otros antígenos clase 2 HLA para aquellos hay evidencia
		publicada de su asociación con hepatitis autoinmune en otras
		poblaciones.
		Confirmente reconvecto o la terranávitica (como definido en la table 7)
Respuesta a la teranéutica:		Commar la respuesta a la terapeutica (como delinido en la tabla 7)
Nespuesta a la terapeutica.		sumados a aquellos atribuidos por los aspectos en la presentación
		inicial
Completa	+2	
Booidivo	+3	
REGIQIVA		
Interpretación de la puntuación agregada		
Antes del tratamiento:	. –	
HAI definitiva	>15	
HAI probable	10-15	
Despues del tratamiento:	. 17	
HAL DETINITIVA	>1/ 12-17	
ו והו או שמשופ	1411	

El fluorocromo más utilizado en el ámbito de la inmunofluorescencia indirecta es el isotiocianato de fluoresceína (FITC), comúnmente conocida como fluoresceína, que al ser sometida a una luz con longitud de onda de 480nm que corresponde al espectro visible del azul, la molécula se excita y emite luz en el espectro del verde (518nm).(135)

Así, la imagen que vemos en el microscopio de fluorescencia es la forma indirecta de detectar el anticuerpo circulante de interés, que sería el anticuerpo primario utilizando un anticuerpo marcado "contra" el anticuerpo primario, conocido como anticuerpo secundario.(136).

Variable	Punto de corte	Puntos			
ANA o SMA	≥1:40	1			
ANA o SMA	≥1:80				
o LKM	≥1:40	2*			
o SLA	Positivo				
IgG	>superior al límite de lo normal	1			
	>1.10 vezes el límite superior de lo normal	2			
Histología hepática (evidencia de hepatitis es	Compatible con HAI	1			
	HAI típica	2			
Ausencia de hepatitis viral	Sí	2			
*Puntuación máxima alcanzable para todos los autoanticuerpos					
		≥6: HAI probable			

Tabla 1.3.4 Criterios simplificados para el diagnóstico de HAI

≥7: HAI definitiva

Fuente: Hennes EM, Zeniya M, Czaja AJ, Parés A, Dalekos GN, Krawitt EL, *et al.* Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology. 2008;48(1):169-76.

La mayor parte de los autoanticuerpos relacionados con la HAI son el ANA (anticuerpos anti-nucleares), SMA (anti-actina músculo liso), SLA/LP (anticuerpo contra la proteína soluble hepática/pancreática), anti-LKM1 y anti-LC1 (anticuerpo tipo 1 del citosol hepático).(137) La interpretación de los patrones es, en muchas ocasiones, difícil y subjetiva lo que coloca el problema de la falta de normalización.(137)

1.3.2.3 La biopsia:

El algoritmo diagnóstico de la IAHG contempla la necesidad de la biopsia para el diagnóstico, sin embargo, no hay ningún aspecto histológico patognomónico de HAI.(66, 133)

Hay autores que defienden el diagnóstico de HAI apenas con el perfil bioquímico e inmunológico, no obstante, la información que se obtiene de la biopsia no se limita a su utilidad diagnóstica y permite tener una noción del grado de severidad y tiene valor pronóstico.(138)

El estudio histológico de la biopsia hepática muestra infiltrado inflamatorio portal constituido por linfocitos, plasmocitos y puede haber participación de granulocitos eosinófilos, con acentuada actividad de interfaz que se extiende al interior del lóbulo e integrando imágenes de necrosis hepatocitaria en puente.(138) La presencia de linfocitos en el citoplasma de hepatocitos, aspecto conocido como emperipolesis, y la presencia de rosetas hepatocitarias han sido descritos como aspectos clásicos de la HAI, pero esto no es patognomónico, una vez que estos aspectos pueden ser vistos en otras hepatitis crónicas.(139) Las rosetas hepatocitarias no son más que el aspecto histológico de un grupo de hepatocitos aún viables en medio de una zona de necrosis en contexto inflamatório y que por tanto están rodeados de fibrosis o de la red reticulínica colapsada, permitiendo así diferenciarlas de las rosetas colestáticas. (140) A raíz de la limitada especificidad de este aspecto histológico, han surgido propuestas para considerar como aspectos clásicos o de HAI típica, la presencia de infiltrado linfoplasmocitario con más de 20% de plasmocitos o presencia de agregados de plasmocitos y la detección de glóbulos hialinos en células de Kupffer, aumentando la especificidad, pero con reducción de la sensibilidad para el diagnóstico.(139) Los glóbulos hialinos no son más que acúmulos de inmunoglobulinas en el citoplasma de las células del sistema fagocítico mononuclear de los sinusoides hepáticos conocidas como células de Kupffer.(141) Estos glóbulos son positivos para el PAS (Ácido Peryódico de Shiff) y resistente a la acción de la diastasa, igual que en el caso del pigmento ceroide que es un producto de la fagocitosis de restos celulares, por lo que, en la rutina diagnóstica, la diferencia sólo se puede hacer por la morfología siendo los glóbulos de aspecto redondo y de contornos bien definidos y el pigmento ceroide de aspecto granular y fino.(139)

Aunque raro, es posible encontrarnos con la presencia de células gigantes ("multinucleadas") en la biopsia de una HAI.(142) Estas células no son más que hepatocitos multinucleados y reflejan apenas un espectro de regeneración celular ante el daño.(142) La hepatitis de células gigantes pos-infantil tiene causa autoinmune hasta en un 40% de los casos.(142)

Los granulomas epitelioides en contexto de hepatitis crónica nos llevan siempre a considerar como primera hipótesis, el diagnóstico de CBP, no obstante, pueden estar presentes en la HAI.(143)

Aunque la HAI ha sido descrita como una hepatitis crónica y por tanto con inflamación predominantemente portal, la necrosis peri-centrovenular puede ser la manifestación predominante en el estudio histológico de la biopsia.(144)

A veces, en el contexto de otra enfermedad autoinmune como puede ser la CBP, la biopsia puede mostrar aspectos atípicos como una actividad de interfaz intensa que no sería esperable en el contexto de una fase florida de la CBP. En estos casos hay una sobreposición de aspectos que nos llevaría a hablar de síndrome de sobreposición; sin embargo, los criterios de la IHAG manifiestan sus reservas para aceptar esta condición, aunque reconocen que es un hecho excepcional.(66, 72)

Los aspectos morfológicos de la VHC y hepatitis B pueden ser indistinguibles de una HAI y estos casos pueden presentarse con hipergammaglobulinemia y autoanticuerpos.(145) Determinar cuál es el proceso patológico predominante puede ser extremadamente difícil en estos casos controvertidos y el diagnóstico definitivo se realiza en función de la respuesta a la terapéutica junto con los restantes datos clínicos, analíticos e inmunológicos.(142)

Un aspecto que puede ser observado en biopsias hepáticas realizadas en el contexto de HAI, es un fenómeno de localización preferencial del infiltrado inflamatorio alrededor de los ductos biliares de los espacios porta.(146) El daño en los ductos biliares puede llevar a una pérdida de estos ductos en los espacios porta (ductopenia) y colocar la hipótesis de una colangiopatía autoinmune del tipo CBP o colangitis esclerosante. (142, 146)

1.3.3 CBP

1.3.3.1 Manifestaciones clínicas:

Actualmente, la mayoría de las pacientes con CBP se diagnostican de forma casual, ante la elevación de FA y GGT junto con discreta elevación de transaminasas. Aunque los dos síntomas principales son el prurito y la fatiga, la fatiga acaba por ser un síntoma incapacitante constante o progresivo casi siempre presente en la gran mayoría de los casos mientras que el prurito es menos común actualmente, en gran parte debido al diagnóstico precoz en fase

asintomática.(97) Otro síntoma, menos frecuente, es el dolor abdominal. Normalmente inespecífico y no progresivo.(97)

El examen físico es habitualmente normal, aunque cierta hepatomegalia y presencia de excoriaciones cutáneas pueden ser observadas.(97) Hipermelanosis, xantelasmas y xantomas cutáneos también son hallazgos comunes, mientras que la ictericia y las manifestaciones de la hipertensión portal son eventos tardíos.(74)

Otras enfermedades autoinmunes que ocurren con frecuencia en pacientes con CBP son el Síndrome de Sjögren, tiroiditis de Hashimoto, Enfermedad de Grave, escleroderma y el Síndrome CREST (calcinosis, Raynaud, disfunción esofágica, esclerodactilia y teleangiectasias).(37)

1.3.3.2 El diagnóstico:

Para efectos de diagnóstico, un aumento de 1.5 veces el límite normal de FA sérica y valores inferiores a 5 veces el límite normal de aspartato aminotransferasa, con prueba inmunológica positiva para AMA. Los pacientes precisan la realización de biopsia hepática que tiene una elevada especificidad diagnóstica para la CBP.(147)

Actualmente la mayor parte de los casos son diagnosticados en fase asintomática por la facilidad de acceso a las pruebas de detección del autoanticuerpo específico AMA.(85, 86) En casos AMA negativos, la realización de pruebas para la detección de otros autoanticuerpos específicos es aconsejada, como el sp100 y el gp210.(148, 149) Si los esfuerzos para detectar autoanticuerpos específicos son infructuosos, la biopsia hepática es necesaria para demostrar el daño en los ductos biliares y realizar el diagnóstico.(147) Una buena parte de los casos de CBP AMA negativos probablemente serán falsos negativos o serán resultado de las limitaciones de las técnicas para detectar los autoanticuerpos.(150) Dado que una buena parte de estos casos presentan otros autoanticuerpos como los ANA y SMA, a veces se plantea el dilema de diferenciar de una HAI.(150) Se sabe que los títulos de AMA fluctúan a lo largo de la enfermedad y la seroconversión ocurre con frecuencia en ambos sentidos.(150)

El perfil bioquímico hepático en sangre periférico presenta típicamente un aumento acentuado de la FA, ligero aumento de las transaminasas y un aumento de las inmunoglobulinas, más frecuentemente IgM.(97) Algunos pacientes presentan una elevación acentuada de las transaminasas е hipergammaglobulinemia.(97) Estos perfiles bioquímicos están relacionados con la severidad de la enfermedad, de tal forma que la hipergammaglobulinemia y el aumento de las transaminasas se relaciona con la actividad necroinflamatoria periportal e intralobular mientras que el aumento de la FA está relacionado con la inflamación ductal y la ductopenia, en pacientes no cirróticos.(97)

1.3.3.3 La biopsia:

El aspecto histológico de la biopsia depende del estadio en el que se encuentra el paciente. La estadificación, que se realiza en la biopsia, se basa en los criterios de Scheuer y su relevancia está en su significado clínico porque permite predecir el curso de la enfermedad e incluso el riesgo de desarrollo de un hepatocarcinoma.(151-153) Se han propuesto otros sistemas para la estadificación e incluso sistemas mixtos como la estadificación de Scheuer y Ludwig que modifica el estadio 2 de Scheuer que contempla apenas la existencia de proliferación ductular mientras que Ludwig contempla la hepatitis periportal (154, 155)

Tabla 1.3.5).(117) En este sistema mixto atribuyen el estadio 2 si se verifica cualquiera de las dos situaciones. Sin embargo, el sistema de Scheuer es el más extendido y siempre tomado como referencia a pesar de que todos los sistemas presentan debilidades derivadas del hecho constatado de que la CBP afecta al hígado de forma heterogénea y la biopsia es una pequeña parte de un todo.(154, 155)

Tabla 1.3.5 Sistema de estadificación de Scheuer modificado de la CBP

Estadios de la CBP

- 1. La lesión ductal florida; hepatitis portal
- 2. Reacción ductular y hepatitis periportal
- 3. Fibrosis cicatricial; necrosis en puente; fibrosis septal
- 4. Cirrosis

Fuente: MD JHL. Scheuer's Liver Biopsy Interpretation. 10th ed. MD JHL, editor: Elsevier; 2021

En la fase ductal florida el daño de los ductos ocurre principalmente en los grandes ductos interlobulares y septales permaneciendo los pequeños ductos intactos hasta las fases más avanzadas de la enfermedad.(151) El infiltrado inflamatorio es predominantemente linfoide, frecuentemente con formación de agregados linfoides con centro germinativo y presencia de plasmocitos que ocasionan la ruptura y destrucción del ducto. (151) Parece que los eosinófilos, también elementos frecuentemente presentes, tienen un papel relevante en el

proceso destructivo de los ductos biliares. En la formación de granulomas y de otras respuestas inflamatorias, hay evidencias que sugieren un aumento de mediadores quimiotácticos de eosinófilos en pacientes con CBP, alguno de ellos secretados por células epiteliales y endoteliales.(156, 157)

En concordancia con el predominio de IgM sérica aumentada en estos pacientes, los plasmocitos del infiltrado inflamatorio portal son generalmente inmunorreactivos para anticuerpos anti-IgM, lo que es de gran ayuda para el diagnóstico diferencial con la HAI que generalmente son inmunorreactivos para IgG.(158) Sin embargo, parece haber un predominio de expresión por inmunohistoquímica de anticuerpos anti-IgG en plasmocitos portales de pacientes con CBP cuando el grado de fibrosis es avanzado.(159)

En la fase florida es frecuente encontrar granulomas en la biopsia hepática y su morfología varía desde apenas agregados laxos de histiocitos hasta granulomas epitelioides.(160) Los granulomas presentes en la biopsia en contexto de CBP no son numerosos y tampoco son necrosantes.(161) La presencia de numerosos granulomas en la biopsia hepática debe colocar otras hipótesis diagnósticas, dejando la posibilidad de sarcoidosis en último lugar como diagnóstico de exclusión.(161) Los granulomas de la sarcoidosis presentan algunos aspectos que permiten sugerir esta hipótesis diagnóstica, como el hecho de ser granulomas grandes, de contornos bien definidos, frecuentemente epitelioides, coalescentes y sin o con muy poca necrosis de tipo fibrinoide.(162) No obstante, la presencia de granulomas extra-hepáticos en contexto de CBP coloca dilemas importantes sobre su relación o asociación con la enfermedad hepática.(117, 160, 163-165)

Una forma rara de CBP, que se caracteriza por acentuada ductopenia sin fibrosis significativa portal, es denominada la variante ductopénica prematura de CBP, en la cual la función hepática está preservada pero el prurito y la colestasis es tan intensa que su efecto deletéreo en la calidad de vida del paciente lleva a valorar frecuentemente el trasplante hepático.(166)

En algunos pacientes, la biopsia hepática muestra en el estudio histológico un ligero infiltrado inflamatorio portal inespecífico sin evidencia de daño ductal. En estos casos se recomienda la realización de cortes seriados, una vez que buena parte de estos casos presentan, en los niveles más profundos del tejido incluido en parafina, aspectos que permiten compatibilizar el diagnóstico de CBP.(117) En las fases iniciales de la CBP, el infiltrado inflamatorio es predominantemente portal, con focales aspectos que sobrepasan la placa limitante portal, y de actividad necroinflamatoria intralobular focal.(167) La hiperplasia nodular regenerativa puede ser reconocida en esta fase, con la ayuda de técnicas histoquímicas para reticulina, y que junto con la disminución del diámetro de las venas portales pueden explicar situaciones de hipertensión portal que preceden a la fibrosis o la cirrosis.(168) En la fase precoz es inusual la colestasis canalicular y cuando ésta es observada, debemos pensar en la coexistencia de otro factor, como puede ser la ictericia inducida por esteroides.(117, 167, 168) La progresión histológica de la enfermedad ocurre cuando el infiltrado inflamatorio se extiende de forma evidente más allá de los límites de la placa limitante hacia la zona intralobular.(117) En esta fase coexisten dos aspectos morfológicos distintos: el primero está relacionado con aspectos colestáticos y biliares probablemente debido a la pérdida de ductos, mientras que el segundo aspecto es de tipo hepatitis crónica.(117) La reacción ductular es el aspecto biliar más frecuente y precoz, y consiste en la proliferación de neoductos que pretenden suplir la función del ducto biliar interlobular dañado drenando la bilis desde el parénquima y enviándola al sistema ductal actuando como "puente" sobre el segmento lesionado del ducto a modo de *"bypass"* o derivación.(117, 169) Estos neoductos pueden ser difíciles de ver en la hematoxilina eosina por el denso infiltrado inflamatorio que los esconde, pero un estudio inmunohistoquímico con citoqueratina 7 revela su existencia.(117, 170)

La pérdida de ductos lleva a una forma crónica de colestasis que se caracteriza por la presencia de hepatocitos tumefactos, pigmento biliar, cuerpos hialinos de Mallory, depósitos de cobre y de proteína transportadora de cobre.(117) En ocasiones, el acúmulo de bilis puede ser visto en los canalículos de las regiones alrededor de los espacios porta y septos, pero una colestasis canalicular difusa frecuentemente traduce fallo hepático o sepsis.(117) Los macrófagos espumosos pueden ser abundantes y formar xantomas difusos o localizados.(117)

El patrón hepatítico junto con el colestático coexisten frecuentemente e incluso puede haber necrosis pericentrovenular y expansión fibrosa portal con formación de septos, probablemente por extensión de la actividad necroinflamatoria de interfaz portal.(171) La fibrosis sinusoidal parece estar asociada a la disfunción hepatocelular y a la hipertensión portal.(172)

Con el avance de la enfermedad, la fibrosis aumenta y la inflamación portal disminuye, pero los agregados linfoides continúan presentes en donde estarían los ductos biliares interlobulares.(151) Se forman puentes de fibrosis entre espacios porta y/o a venas centrolobulares que lleva al desarrollo de cirrosis. En los pacientes donde el patrón colestático predomina, la cirrosis es de tipo biliar,

mientras que los casos en los que predomina un patrón hepatítico la cirrosis tiende a ser de tipo poshepatítico y ambos patrones pueden coexistir, alternando áreas de cirrosis con áreas de parénquima de estructura preservada.(117)

1.4 Metabolómica

1.4.1 Conceptos y Generalidades

El término metaboloma surge en 1998 para definir un conjunto de analitos (componente o elemento de interés analítico) cuya concentración relativa varía en función de la activación o supresión de un gen con sus implicaciones a nivel transcripcional (transcriptoma) y a nivel traslacional (proteoma) (Figura 1.4.1).(173, 174)

Un "metabolito" es el término para definir un producto (analito) resultante del metabolismo. Son moléculas pequeñas con una masa inferior a 1500 Da. (175). El estudio cuantitativo e integrado de todos los metabolitos de un sistema biológico en estudio, es definido como metabolómica.(176) Horning y Horning(177) introducen el término perfil metabólico como "…realizar análisis multicomponente … para el estudio de metabolitos humanos".

La huella dactilar metabólica (*"fingerprinting"*) la definió Fiehn(176) como "una rápida clasificación de muestras de acuerdo con su origen o a su relevancia biológica…" apenas necesitando definir la presencia o ausencia de metabolitos, sin necesidad de medir los niveles de cada metabolito individualmente en la célula. Refiere este autor que, para no confundir esta metodología con la

metabolómica, un término que ha sido utilizado en estos casos es el de metabonómica, que difiere de la metabolómica en su finalidad.

La pisada metabólica ("*footprinting*"), término propuesto por Allen *et al.*(178) y posteriormente adoptada por Kell *et al.*(179), es descrita como la identificación y medición global de todos los metabolitos en el medio extracelular; es diferente de la huella dactilar metabolómica que se centra en los metabolitos intracelulares.

Es importante tener en cuenta que una buena parte de los metabolitos humanos son el resultado de actividades enzimáticas genéticamente codificadas pero otra parte procede de la microbiota, de los alimentos y de medicamentos.(180)

Figura 1.4.1 Relación entre genómica, transcriptómica, proteómica y metabolómica

Se calcula que hay descritos más de 40.000 metabolitos en el ser humano.(181) Otro aspecto importante es que un mismo metabolito puede participar en muchas vías diferentes siendo casi siempre imposible vincular de forma directa metabolitos y genes, porque un gen puede dar lugar a muchos ARNm, un ARNm puede dar lugar a varias proteínas y múltiples metabolitos pueden proceder de una única enzima al poder ésta aceptar diferentes substratos.(174) Al mismo tiempo, alteraciones en las condiciones del medio celular pueden alterar los metabolitos en menos de 1seg lo que puede dificultar establecer una relación real de un perfil o una determinada vía metabólica con el problema que estamos estudiando.(182)

Los metabolitos a su vez regulan la expresión génica a través de su interacción con factores de transcripción nuclear y parece haber cada vez más evidencias que las enzimas juegan también un papel regulador del genoma (Figura 1.4.1).(183, 184)

Por sus propiedades químicas los metabolitos pueden ser hidrofílicos polares (ácidos nucleicos, aminoácidos, azúcares, pequeños ácidos orgánicos) y normalmente están involucrados en el metabolismo primario; los metabolitos pueden ser no polares o hidrofóbicos (antibióticos, compuestos fenólicos) y no están involucrados en el metabolismo primario.(185)

El metabolismo primario engloba un conjunto de reacciones y vías que son fundamentales para la sobrevivencia mientras que el metabolismo secundario tiene funciones importantes en el crecimiento, desarrollo y la adaptación del organismo al medio ambiente, como ocurre en algunas especies de hongos *Penicillium*.(183, 184)

Desde el punto de vista metodológico, las estrategias para la detección de metabolitos basadas en los conceptos anteriormente descritos se pueden resumir a dos: dirigida "*targeted*" y no dirigida "*untargeted*" o de perfil metabólico o de perfil de metabolitos.(174) La estrategia no dirigida "*untargeted*" pretende detectar la mayor parte de los metabolitos presentes en la muestra con la única
limitación que impone la técnica utilizada, así podemos incluir dentro de esta categoría el abordaje de tipo huella dactilar (metabolitos celulares) y el tipo pisada metabolómica (metabolitos del medio extracelular), mientras que la estrategia dirigida "*targeted*" pretende el análisis o detección de metabolitos previamente definidos y/o metabolitos que participan en vías metabólicas específicas.(185)

Estos términos no son consensuales en la literatura encontrándose significados diametralmente opuestos en el término "perfil metabólico" como siendo una aproximación experimental dirigida ("*targeted*"), con conocimiento previo de los metabolitos que se pretenden determinar en la muestra.(186)

Las plataformas tecnológicas para el análisis de metabolitos más utilizadas en las últimas décadas son la **espectroscopia por resonancia magnética nuclear** ("*NMR espectroscopy*"), que presenta ventajas con respecto a otras técnicas como la relativa fácil preparación de las muestras, el carácter no destructivo (posibilidad de recuperar la muestra), su capacidad para cuantificar los niveles de los metabolitos y su buena reproducibilidad, sin embargo, es menos sensible que las otras dos técnicas más utilizadas como son la **cromatografía de gases acoplada a espectrometría de masas** ("*GC/MS"*) y la **cromatografía líquida acoplada a espectrometría de masas** ("*LC-MS"*).(187) Estas dos últimas técnicas difieren en la menor reproducibilidad de la cromatografía líquida acoplada a espectrometría de masas al compararla con el método de GC-MS y por la capacidad de detección de los analitos en función de su masa siendo que por debajo de los 600 Da, el método GC/MS tiene un peor desempeño que la LC-MS, aparte que mediante la técnica de GC-MS sólo son detectados analitos volátiles.(188, 189)

Cada técnica tiene sus ventajas y sus desventajas que pueden tener reflejo en el resultado de la cantidad de analitos detectados y que a su vez se atribuye en parte a las características fisicoquímicas de estos analitos, como destaca Psychogious *et al.*(190) al analizar el metaboloma de suero humano donde identificó 49 metabolitos mediante espectroscopia NMR y 90 metabolitos mediante GC-MS, llamando la atención el hecho de que 20 compuestos detectados por NMR no fueron detectados mediante GC-MS y que 45 compuestos fueron detectados mediante GC-MS y no mediante NMR atribuyendo esto al carácter excesivamente volátil/no volátil de compuestos que serían detectados por NMR y no por GC-MS o por pérdida durante la preparación de la muestra. Otras causas potenciales que el autor atribuye para detectar compuestos mediante GS-MS y no por NMR es si sus protones no son detectables o si su concentración está por debajo de los límites de detección, sin embargo, todos los compuestos detectados por NMR fueron detectados por la otra técnica.

La extensa manipulación de las muestras que requiere la técnica GC-MS y la versatilidad de la técnica LC-MS para la detección tanto de metabolitos poco volátiles y así como metabolitos de carácter polar y no polar, hace que la técnica LC-MS sea la seleccionada en numerosos estudios metabolómicos.(191) No obstante, no podemos pensar que la técnica GC-MS está limitada a la detección de metabolitos volátiles ya que, mediante la misma, es posible detectar estos metabolitos no volátiles o poco volátiles introduciendo varios pasos en el proceso y que están enfocados a transformar los compuestos poco volátiles o no volátiles en compuestos volátiles. Este proceso, denominado "derivatización", adiciona

pasos al proceso con el consecuente aumento de tiempo del ensayo y aumento en la posibilidad de errores.(174)

1.4.2 Preparación de la muestra

Los estudios metabolómicos pueden ser realizados a partir de una extensa variedad de muestras que pueden ser fluidos biológicos (orina, sangre, suero, saliva, líquido cefalorraquídeo...) (186, 192-195), células cultivadas o tejidos.(196, 197)

La facilidad de acceso a muestras de fluidos biológicos como la saliva y la orina los hacen excelentes candidatos para estudios metabolómicos con la finalidad de encontrar biomarcadores.(186, 192) Parece aceptable desde el punto de vista ético y operacional que este tipo de muestras sean utilizadas como muestras subsidiarias o sustitutas de tejidos con los que tienen una relación fisiológica o topográfica, como es el caso de la orina para el estudio de enfermedades renales o la saliva para el cáncer oral.(198, 199)

Al ser **la orina** el producto del principal sistema excretor del cuerpo humano, se ha utilizado para descubrir biomarcadores de enfermedad (200), determinación del estado nutricional (201) y para el desarrollo de medicamentos (202).

En el *caso* de la orina, la mejor muestra es aquella que se recoge de la primera micción de la mañana porque se reduce el efecto de la alimentación y/o de los medicamentos después de varias horas de ayuno(203, 204), aunque hay autores que defienden que la segunda micción de la mañana es más aconsejable.(205) Acerca de las condiciones de almacenamiento de la muestra de orina, Wang *et al.*(206) demuestra que son un factor fundamental para mantener la estabilidad

de los metabolitos y que la adición de químicos preservadores debe ser hecha con cautela por su potencial capacidad para inducir alteraciones en los metabolitos. Recomienda que la orina sea almacenada a 4ºC hasta 48h o a temperatura ambiente ≤ 22ºC hasta 24h, siendo que si se prevé que los tiempos máximos de almacenaje serán sobrepasados o que las temperaturas de almacenaje serán altas sugiere la adición de timol, un producto químico con propiedades bactericidas.

Si el estudio pretende ser no dirigido ("*untargeted*"), lo mejor es utilizar la orina pura sin modificar, sin embargo la sensibilidad para metabolitos poco abundantes de las plataformas LC-MS saldría perjudicada y los componentes del equipo se saturan(207), por lo que se recomienda en estos casos diluir la orina con solventes apropiados(186). En aquellos estudios dirigidos ("*targeted*"), se recomiendan procedimientos de selección previa de grupos de metabolitos de interés antes del análisis en la plataforma y una forma es a través de la técnica de extracción de fase sólida.(208)

Hay una gran variabilidad en la cantidad y diversidad de metabolitos en la orina entre individuos y las características individuales de la orina también varían en función de varios factores, por lo que es necesario la normalización antes del análisis metabolómico, generalmente utilizando parámetros que reflejen la concentración de la orina como puede ser la osmolaridad, creatinina o gravedad específica.(209)

En el caso del **suero y del plasma**, este tipo de muestras no son tan accesibles como la orina o la saliva porque es necesaria una flebotomía para obtener la muestra. La distinción entre suero y plasma puede ser relevante, una vez que parece haber diferencias en las concentraciones de metabolitos en ambos tipos de muestra del mismo individuo.(210) La presencia de aditivos como el ácido etilendiaminotetraacético (EDTA), la heparina o citrato en los tubos para la colección de sangre no parece afectar significativamente al perfil metabolómico en los estudios basados en espectrofotometría de masas (MS) y en resonancia magnética (NMR).(209)

No se han encontrado diferencias significativas en el perfil metabolómica de suero y plasma congelado a -80°C con el paso del tiempo, por lo que el almacenaje de alícuotas de suero y/o plasma a -80°C es aconsejable.(209) Para la extracción de los metabolitos de las muestras de suero o plasma es necesario eliminar de la muestra los compuestos con alto peso molecular. Para ello se utilizan solventes orgánicos como el metanol que provoca la precipitación de estos compuestos indeseables y que son separados por medio de centrifugación, interesando sólo el sobrenadante que contiene los metabolitos.(211)

Como la actividad enzimática es completamente inhibida a temperaturas inferiores a -56°C y como el suero y el plasma tienen elevados niveles de enzimas, la adición del solvente orgánico debe ser realizada justo por encima del punto de congelación del agua, de forma a reducir al máximo la actividad enzimática y evitar alteraciones en los niveles de metabolitos de la muestra.(211) Los lípidos que contiene el plasma no son completamente eliminados por este método de extracción y pueden perjudicar el análisis de metabolitos, por lo que se adiciona un método de extracción de lípidos que pretende desplazar los lípidos a un solvente orgánico como puede ser el metil tert-butil éter (MTBE) mientras que los metabolitos solubles en agua quedan separados permitiendo la separación definitiva utilizando una pipeta.(212)

La saliva es un producto de fácil obtención y acceso que puede ser un sustituto del plasma para fines de análisis metabolómico.(213) Estas características hacen de la saliva un producto atractivo para el estudio de enfermedades emergentes como la infección por SARS-CoV-2, agente etiológico del COVID19.(214)

Es importante que el método de recogida de la saliva sea siempre el mismo para toda la casuística del estudio, una vez que la saliva recogida después de estímulos (saliva estimulada) como puede ser la masticación de parafina o la instilación de un ácido, la saliva recogida sin estímulos (saliva no estimulada) y saliva pura procedente de una determinada glándula como puede ser la glándula parótida, muestran resultados diferentes en el estudio metabolómico.(215) El siguiente paso es la hidrólisis utilizando agentes alcalinos o ácidos como NaOH o HCI que permiten la liberación de metabolitos adheridos a proteínas con la ayuda de un agitador vórtex para posteriormente someter la muestra a centrifugación quedando con el sobrenadante como producto de interés.(216) El almacenaje de la muestra de saliva después de la preparación, puede hacerse a 4ºC durante 4h o a -20ºC en un máximo de 4 semanas.(217)

El líquido céfalo-raquídeo o fluido cerebroespinal es un ultrafiltrado de plasma con bajo contenido en proteínas y células que protege el cerebro de las variaciones de la presión sanguínea, regula el medio ambiente químico del sistema nervioso central y es el medio de transporte intracerebral.(218)

Por las características del líquido céfalo-raquídeo, el procesamiento de la muestra es mucho más simple que para otro tipo de fluidos biológicos limitándose apenas a una agitación con vórtex y centrifugación para después

almacenar el sobrenadante a -80ºC hasta su uso para el análisis sin mediar cualquier proceso de extracción de metabolitos. (219, 220)

Otros fluidos corporales como el sudor,(221) la leche materna,(222) derrames pleurales,(223) derrames peritoneales,(224) fueron objeto de estudios metabolómicos con diferentes finalidades y potenciales aplicaciones clínicas. Los fluidos biológicos son la fuente principal del fenotipaje metabólico de múltiples situaciones patológicas que permiten estratificar a pacientes prediciendo efectos adversos de terapias farmacológicas o quirúrgicas.(225, 226) Sin embargo, el perfil metabólico de todo un organismo no suministra información acerca de tipos celulares específicos bajo diferentes condiciones, lo que puede ser relevante para el desarrollo de terapéuticas diana específicas de fenotipos celulares.(227)

Los cultivos celulares permiten complementar la información obtenida en los fluidos biológicos.(228) Entre sus ventajas está el hecho de ser un ensayo realizado en ambiente controlado, donde factores potencialmente confundidores asociados a muestras biológicas obtenidas directamente del donante como pueden ser el sexo, la edad, el estado de salud, etc., no interfieren y son eliminados de la "ecuación".(229) El procesado de la muestra requiere pasos adicionales a los normalmente utilizados en los fluidos biológicos y que incluye la aplicación de un método que pretenda parar de forma instantánea todas las reacciones metabólicas después de la extracción de las células de su medio de cultivo, es el llamado "*quenching*" que en castellano sería *el templado*.(228) Para ello se utiliza el frío aplicando solventes diluidos cuya temperatura puede ir desde los 4ºC hasta los -50ºC dependiendo de si la muestra es una suspensión celular o son células adherentes y del riesgo de pérdida de metabolitos por una ruptura

indeseada de las membranas celulares.(230) Los cultivos celulares 3D presentan ventajas frente a los tradicionales 2D, como la capacidad de organización de las células de una forma más parecida a aquella que tendrían si estuviesen en el órgano de origen con ganancias en la expresión de metabolitos y aumento de la supervivencia del cultivo.(231)

El tejido parafinado en bloques de parafina constituye el principal archivo "biológico" de los servicios de anatomía patológica. De este material es posible extraer marcadores moleculares (DNA, RNA y proteínas) archivados durante lustros.(232) En el caso de la metabolómica se ha estudiado el papel que juega la fijación en formol, el procesamiento y la inclusión en parafina de los tejidos habiéndose concluido que la identificación de metabolitos procedentes de material fijado en formol y en el material parafinado es afectada ligeramente siendo que el material parafinado es el que mayor influencia tiene la extracción.(233) En el estudio de Wojakowska A et al.(233), en un diseño no dirigido (untargeted) en una plataforma GC/MS consiguieron detectar 75, 77 y 60 compuestos de muestras congeladas a fresco, sólo fijadas en formol y de material parafinado, respectivamente. El método empleado por Wojakowska A et al.(233)para la extracción consistió en una fase de desparafinación con xileno seguido de "centrifugación durante 5 minutos a 13.000rpm a 4°C; el pellet sólido se secó en el desecador durante 2h. ...posteriormente las muestras se homogeneizaron en 250µL mezcla de MeOH: H2O (1: 1 v / v), se agitó en el agitador vórtex durante 5 min y se colocaron en un baño ultrasónico durante 10 minutos, y la mezcla resultante se centrifugó durante 10 minutos a 16.000 rpm en 4 ° C. El sobrenadante se transfirió a unidades de filtro centrífugo (Millipore PVDF 0,22µm), y luego se centrifugó durante 1 minuto a 13.000 rpm para generar fracción polar (1ª extracción). El pellet fue suspendido en 250µL de mezcla de Ch2Cl2:MeOH (3:1 v/v) y procesado como se describió anteriormente para generar fracción no polar (2ª extracción)."

En el ámbito de un estudio sobre cáncer de colon, Arima K *et al.*(234) congelaron muestras de 11 cánceres de colon procedentes de piezas de colectomía y para el estudio metabolómico realizaron cortes a 20µm de cada caso para el material congelado y para el material en parafina. El método de extracción utilizado fue el siguiente:

"La extracción de metabolitos de tejido parafinado y muestras congeladas a fresco realizado..., los metabolitos de las muestras congeladas a fresco se extrajeron por incubación en 1 mL de metanol al 80% a temperatura ambiente durante 4 horas. Después de la centrifugación en 14.000x g durante 10 minutos, los sobrenadantes fueron recogidos y almacenados a -80°C hasta el análisis metabólico. Los metabolitos de las muestras parafinadas se extrajeron por incubación en 1 mL de metanol al 80% a 70°C durante 45 minutos en tubos de microcentrífuga de 1,5 mL sin ningún tipo de procedimiento de desparafinación. Las muestras se colocaron en hielo durante 15 minutos y se centrifugó a 14.000x g durante 10 minutos a 4°C. Los sobrenadantes se transfirieron a los nuevos tubos de microcentrífuga de 1,5 mL tubos y colocados en el hielo durante 10 minutos, seguido de centrifugación a 14.000x g durante 5 minutos a 4°C. Los sobrenadantes fueron recogidos y almacenados a -80°C hasta el análisis metabólico."

En este estudio consiguieron detectar, en el material parafinado, el 40% de los metabolitos detectados en el material congelado, identificando una relación proporcionalmente inversa entre el peso molecular y la capacidad de detección

a partir de muestras parafinadas.(234) Son resultados equivalentes a los descritos en el ámbito de un estudio metabolómico en cáncer de próstata y en ambos estudios valoran positivamente el papel del material parafinado como muestra válida para la realización de estudios metabolómicos.(234, 235)

1.4.3 Cromatografía líquida de alta eficacia acoplada a espectrometría de masas en tándem

La cromatografía es un método físico de separación en el cual los componentes a separar se distribuyen entre dos fases, una que es estacionaria (fase estacionaria) mientras que la otra, (la fase móvil) se mueve en una dirección determinada.(236) La fase móvil suele ser un líquido que se desplaza por acción de la gravedad, sin embargo, en el caso de la cromatografía de alta eficacia, el líquido se desplaza a alta presión (50-350 bar). (237)

La fase estacionaria es una de las dos fases que forman un sistema cromatográfico. Puede ser un sólido, un gel, o un líquido. Si es un líquido, puede estar adherido sobre un sólido. Este sólido puede o no contribuir al proceso de separación.(236)

La representación de la respuesta del detector en un gráfico de la concentración del analito en el efluente, es el cromatograma.(236)

Las cuatro funciones del espectrómetro de masas son: ionización, separación, detección y análisis.(238) Para esto necesita de los siguientes componentes: fuente de ionización, analizador de masas, detector y *software*.(238)

Como su nombre indica, la cromatografía líquida de alta eficacia acoplada a espectrometría de masas en tándem (MS/MS) consiste en dos equipos

acoplados, siendo que la cromatografía líquida se encarga de la separación de los compuestos de una muestra antes de la fase de análisis en el espectrómetro de masas que se encargará del análisis de las masas de cada compuesto.(237) La derivatización es un término amplio que generalmente se asigna a transformaciones químicas irreversibles de los analitos o a aquellas que tienen una gran tendencia a completarse.(239)

La cromatografía líquida acoplada a espectrometría de masas, se realiza en tipos de muestras que son térmicamente inestables, grandes, polares, iónicas o no volátiles, o que necesitan ser derivatizadas.(240) Las muestras típicas incluyen nucleótidos, péptidos, esteroides, hormonas, colorantes, ácidos grasos y alcoholes; por eso se usa preferentemente en farmacocinética, proteómica, metabolómica, lipidómica y desarrollo de fármacos.(240)

La cromatografía líquida se usa primero para separar los componentes de la muestra de modo que sus formas relativamente purificadas puedan introducirse en el espectrómetro de masas.(240) La ionización por electrospray (ESI) o la ionización química a presión atmosférica (APCI) se suele aplicar para generar iones cargados a partir de la muestra, y son estos iones los que pasan al analizador de masas. La identidad del ion objetivo se determina comparando su relación masa:carga (m/z) con una base de datos espectrales como MassBank, METLIN y mzCloud.(240)

Las características físicas y químicas de las muestras, así como la de los analitos que se pretenden identificar, determinaron qué solución de extracción es la más adecuada y la composición de la fase móvil y de la fase estacionaria.(240)

Hecha la separación en la columna cromatográfica, la muestra purificada es ionizada y por aspersión entra en el analizador del espectrómetro de masa,

donde los analitos son sometidos a un campo magnético y el analizador separa y almacena iones cargados en función de sus polaridades.(238) Algunos ejemplos de analizadores de masas incluyen cuadrupolos, triples cuadrupolos, trampas de iones, Orbitraps, transformada de Fourier, sectores magnéticos e instrumentos de tiempo de vuelo (TOF).(238) Diferentes analizadores sobresalen en diferentes funciones; por ejemplo, los cuadrupolos se utilizan a menudo en estudios cuantitativos, mientras que las trampas de iones se eligen para trabajos cualitativos y estructurales.(238)

La práctica de MS simultánea se denomina frecuentemente espectrometría de masas en tándem (MS/MS o MS2) y se refiere a dos o más pasos de reacción que se realizan en iones seleccionados.(238) En el primer paso del análisis de masas, los iones precursores se forman en la fuente de iones y se inducen a fragmentarse.(238) En el segundo paso, los productos de fragmentación se detectan y analizan.(238) La selección de iones precursores y fragmentos, así como su número durante cada paso del proceso, puede variar según el objetivo del análisis.(238)

1.4.4 Metabolómica en la HAI

Hasta el año 2016, los metabolitos detectados en plataforma de resonancia magnética a partir de muestras de plasma que mostraron una variación positiva en el caso de la HAI y citados en la literatura fueron: acetoacetato, acetona, citrato, creatina, dimetilamina, glutamina, histidina y piruvato.(241) Metabolitos que se relacionan con las vías del metabolismo de los aminoácidos y metabolismo de los carbohidratos.(242). En esta misma línea, Wang, J. B *et al*

(243) publicó un estudio realizado en plasma de pacientes con HAI, pacientes con daño inducido por drogas, pacientes con CBP y pacientes con síndrome de sobreposición consiguiendo, a través del estudio metabolómico con plataforma de resonancia magnética, modelos predictivos con excelente capacidad discriminativa al mismo tiempo que sus resultados soportan la importancia del metabolismo energético y el metabolismo de los carbohidratos en la HAI.

Un estudio reciente realizado en suero de pacientes con HAI en diferentes fases evolutivas hasta la cirrosis descompensada revela que el perfil metabólico evolutivo de esos pacientes apunta para un aumento creciente del metabolismo catabólico con predominio de proteólisis y lipólisis con disminución del metabolismo anabólico.(244)

En este sentido, la kynurenina es un subproducto del catabolismo del triptófano que se encuentran elevada en situaciones de inflamación y en infecciones virales crónicas, mientras que la neopterina es un producto del metabolismo de las purinas producida por macrófagos y monocitos bajo el estímulo del interferón gamma.(245) Ambos metabolitos se consideran biomarcadores de inflamación y de activación inmune respectivamente siendo que la razón kiynurenina/triptófano y los niveles de neopterina se correlacionan positivamente, no obstante, esta relación no fue encontrada en casos de HAI tipo 1 y tipo 2 en la edad pediátrica a partir de suero de los pacientes utilizando cromatografía líquida de alta eficacia (HPLC).(245) Sin embargo, un estudio sobre el perfil metabolómico, realizado en suero de pacientes, en diferentes fases de la HAI hasta la cirrosis descompensada revela que hay un aumento progresivo de kynurenina desde la fase inicial de la HAI hasta la cirrosis.(244)

Utilizando suero de pacientes con HAI y CBP se realizó un ensayo en una plataforma UPLC-MS para detectar metabolitos que permitiesen discriminar entre estas enfermedades obteniéndose, en el trabajo de Lian, J. S *et al.* (246), una capacidad discriminativa del modelo de 100% de sensibilidad y 100% de especificidad a partir de cinco grupos de metabolitos en los que incluían cuatro ácidos biliares, tres ácidos grasos libres, nueve fosfatidilcolinas, dos lisolecitinas y esfingomielina.

En la literatura consultada por medio de una búsqueda en la base de datos PubMed con los términos *"metabolomics"* and *"autoimmune hepatitis",* identificamos apenas 16 resultados de los que fueron seleccionados 6 que presentaban estudios originales de análisis metabolómico en el contexto de HAI e incluimos un caso de revisión que fue considerado pertinente. No se identificó ningún estudio publicado en el que la muestra fuese biopsia hepática parafinada. Un resumen del contenido de la literatura encontrada puede ser consultado en la Tabla 1.4.1.

Tabla 1.4.1 Trabajos publicados de metabolómica en HAI

Tipo de artículo y año	Tipo de muestra y especie	N⁰ Casos	Platafor ma y tipo de estudio	Patologia/s subyacente/s y objectivos	Metabolitos relevantes	Ref.Bibliográfica
Original 2019	Suero Humano	(N=63) 37 HAI-1; 8 HAI-2; 10 α1ATD; 8 Wilson D	HPLC Targeted	HAI 1 y 2; α1ATD; Wilson D Identificación de nuevos marcadores bioquímicos e inmunológicos que se correlacionan con la histopatología del hígado y predicen la remisión sostenida en la HAI para mejorar la práctica clínica	tryptophan; kynurenine; neopterin	Lytton, S. D., <i>et al.</i> (2019). Tryptophan-kynurenine profile in pediatric autoimmune hepatitis. <i>Immunologic</i> <i>research, 67</i> (1), 39–47.
Revisión 2016	Plasma Humano	ND	NMR untargeted	ND Revisión	acetoacetato, acetona, citrato, creatina, dimetilamina, glutamina, histidina y piruvato	Amathieu, R. <i>et al.</i> (2016). Nuclear magnetic resonance- based metabolomics and liver diseases: Recent advances and future clinical applications. <i>World journal of</i> <i>gastroenterology</i> , 22(1), 417– 426.
Original 2015	Plasma Humano	(N=64) 19 HAI; 20 PBC; 25 sanos	UPLC-MS untargeted	CBP y HAI Identificación de biomarcadores para el diagnóstico	five groups of markers, including four bile acids (BAs), three free fatty acids (FFAs), nine phosphatidylcholines (PCs), two lysolecithins (LPCs) and SM (d18:0/16:1).	Lian, J. et al. (2015). A serum metabolomic analysis for diagnosis and biomarker discovery of primary biliary cirrhosis and autoimmune hepatitis. Hepatobiliary & pancreatic diseases international : HBPD INT, 14(4), 413–421.
Original 2016	Suero Ratón	(N=16) 8 control; 8 HAI inducida	UPLC-MS untargeted	Control vs HAI Caracterización de las alteraciones de los metabolitos en la enfermedad y su progresión.	taurocholic acid, taurochenodeoxycholic acid, tetradecanoy(carnitine, linoleyl carnitine, l- palmitoylcarnitine, seven glycerophospholipids (lysoPE (18 : 0/0 : 0) (V3), lysoPC (16 : 0) (V5), lysoPC (18 : 1) (V7), lysoPC (18 : 0) (V10), lysoPC (20 : 1) (V11), lysoPE (22 : 0/0 : 0) (V12) and lysoPC (20 : 0) (V13)), bilirubin, retinyl ester	Zhou, C. <i>et al.</i> (2016). Metabolism of glycerophospholipid, bile acid and retinol is correlated with the early outcomes of autoimmune hepatitis. Molecular bioSystems, 12(5), 1574–1585.
Original 2021	Suero Humano	(N=79) 27 HAI no cirróticos ; 22 HAI cirrosis ada; 30 HAI cirrosis descomp ensada	LC-MS untargeted	HAI Identificar marcadores que identifiquen cirrosis de no cirrosis o predecir pacientes descompensados	Mesobilirubinogen/6- Hydroxynicotinic acid and LysoPA(8:0/0:0)/7alpha- Hydroxycholesterol	Li, S. <i>et al.</i> (2021). Metabolomic Signatures of Autoimmune Hepatitis in the Development of Cirrhosis. Frontiers in medicine, 8, 644376.
Original 2014	Plasma Humano	(N=135) 39 HAI; 41 PBC; 18 overlap; 14 DILI; 23 sanos	NMR untargeted	HAI; PBC; Overlap S; DILI; sanos Estudio discriminativo entre entidades	citrate, glutamine, acetone, pyruvate, β- hydroxyisobutyrate, acetoace- tate, histidine, dimethylamine, and creatinin	Wang, J. B. et al. (2014). Metabolomic Profiling of Autoimmune Hepatitis: The Diagnostic Utility of Nuclear Magnetic Resonance Spectroscopy. Journal of proteome research, 13(8), 3792–3801.

1.4.5 Metabolómica en la CBP

Una búsqueda en la base de datos PubMed® con los términos *"Metabolomics and PBC"* y *"Metabolomics and primary biliary colangitis"* arrojó un total de 32 referencias que después de depuradas por razones de pertinencia y originalidad de los trabajos, fueron seleccionados 7 artículos, uno de los cuales es una revisión que se estimó pertinente.

Las muestras utilizadas en los trabajos consultados fueron mayoritariamente suero humano, habiendo un caso en el que además de suero se utilizó orina humana. En otro trabajo se utilizó plasma e hígado de ratón.

Una vez que el diagnóstico diferencial entre HAI y la CBP puede ser difícil desde el punto de vista bioquímico, inmunológico e histológico, un estudio metabolómico realizado en suero de pacientes sanos, pacientes con HAI y pacientes con CBP consiguió desarrollar un modelo predictivo con 100% de sensibilidad y 100% de especificidad para discriminar entre los casos de HAI y CBP.(246)

El perfil metabolómico, a partir de suero humano, también permitió discriminar entre grupos de patología en el caso de pacientes con CBP, colangitis esclerosante y el grupo control, con una exactitud predictiva del 94% para los tres grupos diagnósticos utilizando 30 metabolitos.(247) Otro estudio realizado en plasma e hígado de modelos de ratón para colangitis esclerosante y CBP demostraron diferencias en el perfil metabolómico entre los modelos, concluyendo que hay diferencias metabólicas en función del tipo de colestasis mostrando así el potencial beneficio de esta metodología para descubrir biomarcadores de enfermedades colestáticas.(248) Bell *et al.*(247) describe que las vías metabólicas que característicamente se encuentran perturbadas en la CBP son el metabolismo de las proteínas y metabolismo de aminoácidos, metabolismo de lípidos, peroxidación lipídica, estrés oxidativo y estrés hormonal. Otro estudio posterior, realizado en una plataforma de análisis diferente, reveló 15 vías metabólicas alteradas en el grupo diagnóstico de CBP que incluían el metabolismo de la taurina, el metabolismo de la arginina y la prolina, el metabolismo del piruvato de la fenilalanina, el metabolismo de los glicerolípidos, el metabolismo del butanoato, la glucólisis o gluconeogénesis, la vía del fosfato de pentosa, la biosíntesis de lisina, la biosíntesis de valina, la leucina y la isoleucina, el metabolismo de la cisteína y la metabolismo de la pirimidina y la biosíntesis de ácidos biliares primarios.(249)

La frecuente asociación entre la enfermedad celíaca y la CBP llevó a explorar el perfil metabolómico de pacientes de estos dos grupo diagnósticos cuyo resultado reveló un perfil metabolómico distinto en el suero y en la orina.(248) Los metabolitos que se encontraron especialmente elevados en la CBP comparando con el control fueron piruvato, citrato, glutamato, glutamina, serina, tirosina, fenilalanina y lactato.(248)

En la Tabla 1.4.2 se puede consultar un resumen de diferentes aspectos destacados de la literatura consultada.

Tabla 1.4.2 Trabajos publicados de metabolómica en CBP

Tipo de	Nº	Plataforma y tipo	Patologia/s subyacente/s y	Metabolitos	Ref.ª Bibliográfica
muestra y Especie	Casos	de estudio	objetivos	relevantes	
Suero y orina Humano	(N=60) 20 CBP, 21 EC, and 19 sex-matched HC	NMR untargeted	CBP y enfermedad celíaca (EC) Ver si la CBP tiene una firma metabólica especial y si existen semejanzas entre CBP y EC	piruvato, citrato, glutamato, glutamina, serina, tirosina, fenilalanina y lactato	Vignoli A, Orlandini B, Tenori L, Biagini MR, Milani S, Renzi D, Luchinat C, Calabrò AS. Metabolic Signature of Primary Biliary Cholangitis and Its Comparison with Celiac Disease. J Proteome Res. 2019 Mar 1;18(3):1228- 1236.
Plasma Ratón	(N=30) Control (15) y modelos ANIT (5), DDC (5), LCA (5) - modelos para enfermedade como a CBP y CEP	UPLC-QTOF-MS targeted	CBP, colangitis esclerosante primaria (CEP) Comprender la firma metabólica de CBP y CEP, en un intento de tener una pista sobre qué vía metabólica está involucrada en estas patologías y así tratar de comprender los mecanismos fisiopatológicos de estas enfermedades, que aún se conocen poco	Arginina, glutation, fosfolípidos, protoporfirina IX	Yang R, Zhao Q, Hu DD, Xiao XR, Huang JF, Li F. Metabolomic analysis of cholestatic liver damage in mice. Food Chem Toxicol. 2018 Oct;120:253-260.
Revisión de literatura	Revisión de literatura	Revisión de literatura	CBP, CEP, HAI Se verificaron cambios en el perfil metabólico entre CBP y CEP, así como CBP y HAI	Metabolismo lipídico, estrés oxidativo, hormonas del estrés, metabolismo proteico, ácidos biliares y carnitina	Gatselis NK, Dalekos GN. Molecular diagnostic testing for primary biliary cholangitis. Expert Rev Mol Diagn. 2016 Sep;16(9):1001-10.
sangre y orina Humano	(N=64) 32 Controlo e 32 CBP	Chromatography/Mass spectrometry	CBP Identificar marcadores metabólicos en la orina y sangre que sean distintos en pacientes con CBP vs control. Con la progresión de la enfermedad los ácidos biliares aumentan y la carnitina disminuye.	Carnitina y ácidos biliares	Tang YM, Wang JP, Bao WM, Yang JH, Ma LK, Yang J, Chen H, Xu Y, Yang LH, Li W, Zhu YP, Cheng JB. Urine and serum metabolomic profiling reveals that bile acids and carnitine may be potential biomarkers of primary biliary cirrhosis. Int J Mol Med. 2015 Aug;36(2):377-85.
Suero Humano	(N=49) 10 control, 18 CBP, 21 CEP	UHLC/MS/MS análisis untargeted	CBP e CEP Estudiar un panel de metabolitos y ver si existem diferencias entre las patologías y el control.	ácidos biliares	Bell LN, Wulff J, Comerford M, Vuppalanchi R, Chalasani N. Serum metabolic signatures of primary biliary cirrhosis and primary sclerosing cholangitis. Liver Int. 2015 Jan;35(1):263-74.
Sangre Humano	(N=64) 20 CBP, 19 HAI e 25 controlo	UPLC-MS untargeted	CBP, HAI Este estudio tuvo como objetivo determinar si los perfiles metabólicos eran diferentes entre HAI y CBP, identificar marcadores metabolómicos específicos y establecer un modelo para el diagnóstico de HAI y CBP.	Acidos biliares, ácidos gordos livres, fosfatidilcolina, lisolecitinas e esfingomielina.	Lian JS, Liu W, Hao SR, Chen DY, Wang YY, Yang JL, Jia HY, Huang JR. A serum metabolomic analysis for diagnosis and biomarker discovery of primary biliary cirrhosis and autoimmune hepatitis. Hepatobiliary Pancreat Dis Int. 2015 Aug;14(4):413-21.
Suero Humano	(N=100) 29 CBP, 30 HBV e 41 controlo	NMR untargeted	CBP y hepatitis B Identificar las vías metabólicas asociadas específicamente con estas patologías.	4-hydroxyproline, 3- hydroxyisovalerate, citraconate and pyruvate	Hao J, Yang T, Zhou Y, Gao GY, Xing F, Peng Y, Tao YY, Liu CH. Serum Metabolomics Analysis Reveals a Distinct Metabolic Profile of Patients with Primary Biliary Cholangitis. Sci Rep. 2017 Apr 11;7(1):784.

1.4.6 Metabolómica en la VHC

Una búsqueda en la base de datos PubMed utilizando los términos *"metabolomics"* and *"HCV"* arrojó un resultado de 63 publicaciones, de las que por su naturaleza original y pertinencia se seleccionaron 21 trabajos. De estos trabajos seleccionados, 2 utilizaron muestras de cultivos celulares de hepatocitos humanos (uno de ellos incluyó hígado de ratón), 3 utilizaron muestras de orina humana (uno de ellos incluyó plasma), 4 utilizaron muestras de plasma humano y 13 utilizaron suero (dos de ellos procedentes de musarañas de árbol, el resto era de procedencia humana).

No identificamos ningún trabajo publicado en que la muestra utilizada fuese biopsia hepática humana parafinada ni un estudio comparativo con otros grupos diagnósticos de interés además de la hepatitis B, el VIH y el hepatocarcinoma. Un resumen de las informaciones más relevantes de estos artículos puede ser consultado en la Tabla 1.4.3. Una breve aproximación a la literatura seleccionada nos obliga a comentar que se han realizado estudios metabolómicos de pacientes con VHC en diferentes contextos, como puede ser la coinfección con HIV y el virus de la hepatitis B, con o sin cirrosis cuyos resultados permitieron a los autores estratificar el riesgo de enfermedad hepática terminal, identificar perfiles diferentes entre pacientes cirróticos compensados y descompensados, argumentar a favor de la acción directa del virus C sobre la vía metabólica de la glicólisis y la fosforilación oxidativa.(250-253)

Un estudio, realizado en cultivos celulares y en ratones infectados con el virus de la VHC, integró los resultados de los análisis metabolómico, proteómico y de transcriptomas, concluyendo que la infección por el virus de la VHC aumenta el metabolismo de la glucosa, activa la vía STAT3 y, al igual que ocurre en la NASH,

disminuye la función de los peroxisomas perjudicando el metabolismo lipídico favoreciendo así la esteatosis, la inflamación y la fibrosis.(254) La STAT3 es una familia de factores de transcripción citoplasmáticos que a través de la señalización procedente de receptores de la superficie de la membrana citoplasmática de la célula, se activan y transmiten la señal al núcleo promoviendo entre otras cosas la proliferación celular, tal y como ocurre en varios tipos de cáncer en los que esta vía se encuentra constitutivamente activada.(255)

El diagnóstico precoz de hepatocarcinoma en pacientes con cirrosis hepática por VHC fue el objetivo principal de un estudio metabolómico realizado en plasma de pacientes con cirrosis por VHC y en pacientes con hepatocarcinoma, donde el ácido octanoico, ácido decanoico, ácido oleico, ácido oxálico y glicina revelaron ser los metabolitos con mayor poder discriminativo entre esas dos situaciones clínicas.(256) Otro estudio intentaba identificar perfiles que permitiesen detectar la presencia de hepatocarcinoma en pacientes con VHC. A partir de suero de pacientes con VHC y pacientes con hepatocarcinomas construyeron un modelo con siete metabolitos (ácido úrico, coliglicina, ácido 3hidroxicáprico, ácido D-leucico, xantina. lisoclecitin araquidonil, dioleoilfosfatidicolina) con capacidad discriminativa excelente (AUROC= 0.93).(257)

Los pacientes que en contexto de VHC desarrollaron un hepatocarcinoma que fue diagnosticado y tratado, tienen riesgo de recidiva de la neoplasia.

Tabla 1.4.3 Trabajos publicados de metabolómica en hepatitis C

Tipo de muestra y especie	N⁰ Casos	Plataforma y tipo de estudio	Patologia/s subyacente/ s y	Metabolitos relevantes	Ref.Bibliográfica
Cultivo celular Humano	HCV N/D	UHPLC/MS/ GC/MS untargeted	VHC vias metabólicas	Cholesterol y esfingolípidos 5'-metiltioadenosina glutatión	Roe B, Kensicki E, Mohney R, Hall WW. Metabolomic profile of hepatitis C virus-infected hepatocytes. PLoS One. 2011;6(8):e23641.
Hepatocitos Cultivo celular Ratón	(N=332) 216 HCV 99 hepatocarcin omas 17 esteatohepat itis	GC-MS no especificado	HCV, Hepatocarcino ma Progresión de la enfermedad y carcin ogénesis	metabolitos de Glucosa, succinato, piruvato, 3-fosfooglicerato, y citrato	Lupberger J, <i>et al.</i> Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus- Infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology. 2019 Aug;157(2):537-551.e9.
Orina Humano	(N=21) 11 HVC, 10 control	UPLC-MS untargeted	HCV Perfil HCV y vías metabólicas	acetate, arginine, aspartic acid, betaine, carnitine, citrate, ethyl citrate, glycine, hippuric, histidine, indolebutyric acid, leucine, L-tyrosine, N- benzoylglycine, ethyl ester, octanedioic acid, phthalic acid, propanedioic acid, succinic acid, taurine, and valine	Zhang AH, et al. Ultraperformance liquid chromatography-mass spectrometry based comprehensive metabolomics combined with pattern recognition and network analysis methods for characterization of metabolites and metabolic pathways from biological data sets. Anal Chem. 2013 Aug 6;85(15):7606-12.
Orina Humano	(N=66) 34 VHC 32, 32 anti HBc +	NMR untargeted	VHC Discriminación	No disponibles	Godoy MM, <i>et al.</i> . Hepatitis C virus infection diagnosis using metabonomics. J Viral Hepat. 2010 Dec;17(12):854-8.
Plasma Humano	(N=90) 62 HIV/HCV- coinfected 28 HCV- monoinfecte d patients	GC-MS LC- MS untargeted	HIV/HCV HCV Asociación de metabolitos con descompensac ión en pacientes cirróticos	glycolic acid taurocholic acid lysophosphatidylcholine	Salgüero S, <i>et al.</i> Plasma metabolomic fingerprint of advanced cirrhosis stages among HIV/HCV- coinfected and HCV-monoinfected patients. Liver Int. 2020 Sep;40(9):2215-2227.
Plasma Humano	(N=44) 22 HCV, 22 HCC	GC-MS no especificado	HCV, Hepatocarcino ma Perfiles HCV cirrosis y hepatocarcino ma	octanoic acid (caprylic acid), decanoic (capric acid), oleic acid, oxalic acid and glycine	Nomair AM, Madkour MA, Shamseya MM, Elsheredy HG, Shokr A. Profiling of plasma metabolomics in patients with hepatitis C-related liver cirrhosis and hepatocellular carcinoma. Clin Exp Hepatol. 2019 Nov;5(4):317-326.
Plasma Humano	565	Omiso targeted	HIV, HCV Predictor de enfermedad hepática en pacientes HIV/HCV	Creatinine, DCA TCDCA 12S-HHTrE AC(3:0) LPC(17:0) LPC-O(16:1) PC(42:7) PC-O(36:1) PC-O(40:8) SM(35:1) DG(39:0) His Val Met-SO SDMA	Naggie S, <i>et al.</i> Metabolomic Signature as a Predictor of Liver Disease Events in Patients With HIV/HCV Coinfection. J Infect Dis. 2020 Nov 13;222(12):2012-2020
Plasma y orina Humano	43	GC/MS targeted	VHC Determinar el cese de perturbación de vias metabólicas después de tratamiento	Cholesterol, 7-Dehydrocholesterol, Lathosterol	Clark PJ, <i>et al.</i> Hepatitis C virus selectively perturbs the distal cholesterol synthesis pathway in a genotype-specific manner. Hepatology. 2012 Jul;56(1):49-56.
Suero Humano	(N=117) 67 HCV Control 50 naive subjects with chronic HBV infection	NMR untargeted	HCV, HBV Fingerprint HCV antes y después de DAA	2-oxoglutarate, phenylalanine, tyrosine, histidine, formate, tyrosine, lactate, formate, acetate, pyruvate, phenylalanine, tyrosine, acetate, pyruvate, 2-oxoglutarate, fumarate, 3- hydroxybutyrate, acetate, ornithine, formate, lactate, pyruvate, glutamate, acetone, tyrosine, phenylalanine, choline, glucose, glutamite and isoleucine 2-oxoglutarate, fumarate, 3-hydroxybutyrate, pyruvate, dimethylamine, lactate, phenylalanine and isoleucine, leucine	Meoni G, Lorini S, Monti M, Madia F, Corti G, Luchinat C, Zignego AL, Tenori L, Gragnani L. The metabolic fingerprints of HCV and HBV infections studied by Nuclear Magnetic Resonance Spectroscopy. Sci Rep. 2019 Mar 11;9(1):4128.
Suero Animal (musarañas de árbol)	(N=31) 9 HIV, 5 control, 5 interfpeg+rib , 9 HPBBP, 8LPBBP	UPLC-HDMS untargeted	HCV HCV tratado	38 metabolitos no legibles en la tabla presentada	Wang XJ, <i>et al.</i> Metabolomics and proteomics approaches to characterize and assess proteins of bear bile powder for hepatitis C virus. Chin J Nat Med. 2013 Nov;11(6):653- 65.

Suero Humano	(N=52) HCC (n=30), HCV (n=22)	LC-MS/MS targeted	HCV, HCC Discriminación HCC y HCV	(tyrosine, phenylalanine, glycerol, 1- methylguanosine, methionine, Ncarbamoyl-β alanine, xanthine, homocysteine, creatine, 1- methyladenosine, N2,N2- dimethylguanosine, 5-hydroxymethyl- 2'-deoxyuridine, 2-deoxyguanosine, 1- methylinosine, aconitic acid and uric acid	Baniasadi H, Gowda GA, Gu H, Zeng A, Zhuang S, Skill N, Maluccio M, Raftery D. Targeted metabolic profiling of hepatocellular carcinoma and hepatitis C using LC-MS/MS. Electrophoresis. 2013 Oct;34(19):2910-7.
Suero Animal (Tupaia belangeri chinensis)		UPLC/ESI- SYNAPT- HDMS untargeted	HCV Discriminación	LysoPC(0:0/16:0), 2- octenoylcarnitine, lysoPE(16:0), arachidonic acid, and taurocholic acid	Sun H, Zhang A, <i>et al.</i> Metabolomic analysis of key regulatory metabolites in hepatitis C virus-infected tree shrews. Mol Cell Proteomics. 2013 Mar;12(3):710-9.
Suero Humano	(N=57) HCC (n=30), HCV (n=27)	GC/MS and UPLC/MS-MS untargeted	HCC, cirrosis discriminación VHC y HCC	12-hydroxyeicosatetraenoic acid (12- HETE), 15-HETE, sphingosine, γ- glutamyl oxidative stress-associated metabolites, xanthine, amino acids serine, glycine and aspartate, and acylcarnitines, bile acids and dicarboxylic acids	Fitian AI, Nelson DR, Liu C, Xu Y, Ararat M, Cabrera R. Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS-MS. Liver Int. 2014 Oct;34(9):1428-44.
Suero Humano	(N=203) F0 = 81, F1= 53, F2 = 41, F3= 22 F4=).	UHPLC-MS no especificado	VHC trasplante Determinar relación metabolitos y fibrosis	glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), SM(d18:0/18:0), and SM(18:0/14:0)branched-chain amino acids (BCAA) to aromatic amino acids (ArAA)	Cano A, <i>et al.</i> A Metabolomics Signature Linked To Liver Fibrosis In The Serum Of Transplanted Hepatitis C Patients. Sci Rep. 2017 Sep 5;7(1):10497.
Suero Humano	46	GC-MS no especificado	HCC, VHC Predicción de recidiva de hepatocarcino ma	L-Glutamate, L-Aspartate, N-Acetyl- lysine , Glycerol, L-Proline, L-Aspartate, Glutaric acid, FFA 14:0	Liu Z, <i>et al.</i> Determination of candidate metabolite biomarkers associated with recurrence of HCV- related hepatocellular carcinoma. Oncotarget. 2017 Dec 15;9(5):6245- 6258.
Suero Humano	(N=58) HCC (n=37) HCV (n=21)	HPLC-MS untargeted	HCC, VHC Discriminativo	Arachidonyl lysolecithin, Dioleoylphosphatidylcholine, 17beta- Estradiol 17-(beta-D-glucuronide), 3- Deoxyvitamin D3, Myristoyl L-a- lysophosphatidylcholine, Choline, Uric Acid	Bowers J, Hughes E, Skill N, Maluccio M, Raftery D. Detection of hepatocellular carcinoma in hepatitis C patients: biomarker discovery by LC-MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Sep 1;966:154-62
Suero Humano	VHC 222	HPLC-MS targeted	VHC VHC antes y después del tratamiento	glutamine and putrescine, methionine sulfoxide/methionine ratio decreased, dimethylarginine/arginine, glutamine/glutamate, citrulline/arginine, ornithine/arginine, kynurenine/tryptophan, tyrosine/phenylalanine	Chang ML, <i>et al.</i> Recovery of pan- genotypic and genotype-specific amino acid alterations in chronic hepatitis C after viral clearance: transition at the crossroad of metabolism and immunity. Amino Acids. 2017 Feb;49(2):291-302.
Suero Humano	VHC 45	H-NMR untargeted	VHC Determinación de fibrosis, actividad necroinflamato ria	methylsuccinate, creatinine, adenosine, tyrosine, Caffeine, 1,7- Dimethylxanthine, histidine, N- acetylclycine, suberate, Tryptophan	Sarfaraz MO, <i>et al.</i> A quantitative metabolomics profiling approach for the noninvasive assessment of liver histology in patients with chronic hepatitis C. Clin Transl Med. 2016 Dec;5(1):33. d
Suero Humano	(N=57) 27 VHC crónica, 30 HCV sin fibrosis	H-NMR untargeted	VHC Determinación de fibrosis	choline, acetoacetate, LDL1,	Embade N, <i>et al.</i> Metabolic Characterization of Advanced Liver Fibrosis in HCV Patients as Studied by Serum 1H-NMR Spectroscopy. PLoS One. 2016 May 9;11(5):e0155094.
Suero Humano	(N=131) 30 Cirrosis (22 VHB 8 VHC), 70 HCC (39 with VHB; 31 VHC), 31 sanos	LC-MS targeted	VHC, VHB, HCC Discriminación	furoic acid, isoxanthopterin,	Tian S, et al. Multi-TGDR, a multi- class regularization method, identifies the metabolic profiles of hepatocellular carcinoma and cirrhosis infected with hepatitis B or hepatitis C virus. BMC Bioinformatics. 2014 Apr 4;15:97.
Suero Humano	20 HCV	CE-TOFMS LC–MS/MS targeted	HCV evolución de los metabolitos	tryptophan and γ-glutamate-arginine γ-glutamyl dipeptides, glutamic acid, 5-oxoproline, glucosamine and methionine sulfoxide, 5-methoxy-3- indoleacetate, glutamine, kynurenine and lysine	Saito T, <i>et al.</i> Dynamics of serum metabolites in patients with chronic hepatitis C receiving pegylated interferon plus ribavirin: a metabolomics analysis. Metabolism. 2013 Nov;62(11):1577-86.

Los metabolitos que permiten discriminar o detectar la recidiva del hepatocarcinoma en contexto de hepatocarcinoma tratado en paciente con VHC fueron, según Liu Z *et al.*(258), L-Glutamato, L-Aspartato, N-Acetil-lisina glicerol, L-Prolina, L-Aspartato, ácido glutárico y FFA 14:0.

Metabolito	Cantidad trabajos	Ref.ª bibliográfica
Colesterol	2	(259, 260)
Esfingolípidos	3	(252, 259, 261)
Succinato	2	(254, 262)
Piruvato	2	(251, 254)
Citrate	2	(254, 263)
Acetato	2	(251, 263)
Arginina	3	(263-265)
Glicina	3	(256, 263, 266)
Histidina	3	(251, 262, 263)
Leucina	2	(251, 263)
Succinato/acido succínico	2	(254, 263)
Ácido taurocólico	2	(250, 267)
Lisofosfatidilcolina	2	(250, 257)
Creatinina	2	(252, 262)
Fenilalanina	3	(251, 264, 268)
Colina	3	(251, 257, 269)
Glutamina	3	(251, 264, 265)
Tirosina	3	(251, 262, 264)
Kynurenina	2	(264, 265)
Metionina	3	(264, 265, 268)

Tabla 1.4.4 Metabolitos reiteradamente publicados en contexto de VHC

Otros autores, en una línea de investigación parecida, en la que se pretendía detectar precozmente el hepatocarcinoma en pacientes con VHC, encontraron un perfil metabolómico que permitió discriminar entre pacientes cirróticos con VHC de los pacientes que progresaron a hepatocarcinoma construyendo un modelo con 16 metabolitos altamente discriminativos, con una sensibilidad del 97%, una especificidad del 95% y AUROC de 0.98.(268) en encontrar modelos discriminantes entre grupos diagnósticos.

Con la llegada de los antivirales de acción directa, varios trabajos estudiaron las alteraciones del perfil metabolómico en pacientes con VHC, antes y después del tratamiento con mejoría en la vía de los aminoácidos por lo que se infiere que hay un cambio a un metabolismo de perfil más anabólico que catabólico.(264) En la Tabla 1.4.4 se muestra una relación de los metabolitos citados en la literatura consultada que reiteradamente fueron publicados en al menos dos trabajos de autores diferentes.

2 HIPÓTESIS Y OBJETIVOS

En este capítulo serán formuladas la hipótesis de trabajo y los objetivos.

Se enuncia una hipótesis de trabajo, un objetivo principal y tres objetivos secundarios.

2.1 Hipótesis

El fenotipo molecular de las hepatitis crónicas en la biopsia hepática puede ser diferente entre ellas y diferente al de los individuos sin hepatitis crónica. Si esto es así, sería de esperar diferentes perfiles de expresión de metabolitos que nos permitan identificar pacientes con distintos tipos de hepatopatía crónica y eventualmente diagnosticarlos/clasificarlos de manera más precisa, contribuyendo así a una mejor definición del diagnóstico anatomopatológico.

2.2 Objetivos

Para dar respuesta a la hipótesis planteada, se proponen los siguientes objetivos:

2.2.1 Objetivo principal

Conocer los metabolitos con mayor capacidad de discriminación entre grupos de hepatitis crónicas (control-VHC, control-HAI, control-CBP, VHC-HAI, VHC-CBP, HAI-CBP) y desarrollar un modelo de diagnóstico predictivo.

2.2.2 Objetivos secundarios

- a) Descubrir patrones de correlación de metabolitos asociados a las hepatitis crónicas (Control-VHC, control-HAI, control-CBP, VHC-HAI, VHC-CBP, HAI-CBP)
- b) Determinar el poder discriminativo de la morfología en las hepatitis crónicas. (Control-VHC, control-HAI, control-CBP, VHC-HAI, VHC-CBP, HAI-CBP)
- c) Identificar patrones de metabolitos asociados a variables de relevancia clínica y pronóstica como la fibrosis y la actividad necroinflamatoria en las hepatitis crónicas.

3 MATERIAL Y MÉTODOS

El capítulo "Material y Métodos" consta de seis subcapítulos donde se explica paso a paso el material, los recursos y las herramientas utilizadas en este estudio.

Consta de seis subcapítulos que son:

- 1. Selección y descripción de los casos
- 2. Tabla de variables
- 3. Preparación de la muestra
- Condiciones cromatográficas y del espectrómetro de masas
- 5. Tratamiento de datos del HPLC/MS/MS
- 6. Análisis estadístico

3.1 Selección y descripción de los casos

Se revisó la base de datos del *Serviço de Anatomía Patológica do Centro Hospitalar do Porto,* a través del software de gestión de laboratorio CitoPro®, para el período entre el 1 de enero de año 2000 hasta el 31 de diciembre del año 2020. Fueron evaluadas un total de 253 biopsias. Se excluyeron todas aquellas biopsias que no fueran de hígado nativo (118 biopsias de hígado trasplantado) y todas aquellas cuya longitud total del producto de biopsia fuese igual o inferior a 7mm. También se excluyeron todas aquellas biopsias con diagnóstico histológico de compatibilidad para otros grupos diagnósticos diferentes de la HAI, VHC y CBP. Todos aquellos casos de coexistencia de estos grupos diagnósticos, como el caso de los síndromes de sobreposición, fueron excluidos del estudio.

Las biopsias hepáticas con diagnóstico histológico de compatibilidad para los grupos diagnósticos de HAI, VHC, CBP y biopsias en "cuña" de hígado de donante (muestras de control), fueron revisadas en el microscopio óptico y fueron descartados los casos cuyo producto de biopsia por aguja no superase los 7mm de longitud total.

Posteriormente se consultó el proceso clínico electrónico SClínico del Serviço Nacional de Saúde portugués para verificar, a través de los registros clínicos y de los resultados analíticos, los casos que reunían criterios diagnósticos inequívocos para los grupos diagnósticos de interés o aquellos en el que el diagnóstico fue asumido por el clínico en función de los datos obtenidos y del resultado de la prueba terapéutica. Después de seleccionados los pacientes, se registraron los datos clínicos, analíticos, serológicos, inmunológicos y microbiológicos de cada paciente en la tabla de variables. Fueron seleccionados un total de 62 pacientes con una media de 51.5 años y edades entre 18 y 77 años en el momento de la biopsia descritos de forma sumaria en la Tabla 3.1.1. De todos ellos, 33 eran del sexo masculino y 28 del sexo femenino, aunque en un caso esta variable no pudo ser determinada. Para el grupo de control se seleccionaron 13 casos de biopsias hepáticas en "cuña" de donantes con media de 58.5 años, 7 eran del sexo masculino con media de 57 años y edades entre 51 años y 74 años, y en dos de estos casos no se disponía de este dato; 5 del sexo femenino con media de 61 años y edades entre 50 años y los 74 años y en dos casos no se disponía de este dato. Para seleccionar los casos de muestras para control, se requirió apenas que hubiese disponible muestra suficiente (>7mm de longitud total del producto) de biopsias de hígado de donante, sin esteatosis macrovacuolar 0 con esteatosis macrovacuolar ligera, histológicamente bien preservada y sin necrosis pericentrovenular.

	GRUPOS DIAGNÓSTICOS							
			Control	VHC	HAI	CBP		
	N (n=62)		13	21	17	11		
		8:2	7:5	17:4	8:9	1:10		
		Media de edad	58.5	51.8	45.1	50.8		
		UDCA	N/D	2	1	9		
LES		Corticoides	N/D	N/D	N/D	N/D		
ARIAB	entos	Azatioprina+Cor ticoides.	N/D	N/D	4	N/D		
>	itamie	Micofenolato+C orticoides	N/D	1	1	1		
	Tra	Antihipertensivo	N/D	3	4	2		
		Antidiabéticos	N/D	1	N/D	N/D		
		Estatinas	N/D	2	1	3		

En el grupo de VHC fueron seleccionados 21 casos con media de 51.8 años, 17 del sexo masculino con media de 51.3 años y edades entre 30 años y 63 años; 4 del sexo femenino con media de 53.5 años y edades entre 49 años y 58 años. El grupo de HAI lo constituyen 17 pacientes con media de 46.19 años, 8 del sexo masculino con media de 38.9 años y edades entre 18 años y 70 años; 9 del sexo femenino con media de 49.8 años y edades entre 18 años y 77 años. Para el grupo diagnóstico de la CBP se seleccionaron 11 pacientes con media de 50.8 años, 1 del sexo masculino con 62 años; 10 del sexo femenino con media de 48.35 años y edades entre 32 y 65 años.

De los casos seleccionados para control no disponemos de información sobre tratamientos en el momento de la biopsia. Los tratamientos medicamentosos del resto de los pacientes seleccionados, en el momento de la biopsia fueron: ácido ursodeoxicólico (1 caso de HAI, 2 casos de VHC y 9 casos de CBP), azatioprina con asociación de corticoides (4 pacientes con HAI), corticoide con asociación a micofenolato de mofetilo (1 paciente con CBP,1 HAI y 1 VHC en trasplantada renal), antihipertensivos (3 pacientes con VHC, 4 con HAI y 2 con CBP), antidiabéticos (1 caso de VHC), estatinas (2 pacientes con VHC, 1 uno con HAI y 3 con CBP), antihipertensivos (3 pacientes con VHC, 4 pacientes con HAI y 2 con CBP). Ninguno de los pacientes tomaba otros fármacos inmunosupresores o quelantes.

3.2 Tabla de variables

La tabla de variables recoge datos de 50 variables morfológicas/histológicas (Tabla 3.2.1), 12 variables bioquímicas (Tabla 3.2.2), 12 variables inmunológicas (Tabla 3.2.3), 9 variables serológicas y microbiológicas (Tabla 3.2.4),), 17 variables clínicas (Tabla 3.2.5), 53 variables de metabolitos (Tabla 3.2.6), 8

variables del hemograma (Tabla 3.2.7). Esta tabla totaliza 161 variables

recogidas.

Tabla 3.2.1 Variables morfológicas

NOMBRE DE LA VARIABLE	DEFINICIÓN/DESCRIPCIÓN	TIPO DE	VALOR
		VARIABLE	
Nº de Fragmentos	Cantidad de fragmentos presentes en la biopsia	Discreta	Nº entero
Área inicial	Área de los fragmentos medidos en el cristal de H&E antes de los cortes para extracción de metabolitos. Unidad: mm2	Continua	Numeración
Área final	Área de los fragmentos medidos en el cristal de H&E después de los cortes para extracción de metabolitos Unidad: mm2	Continua	Numeración
Media de las áreas	(Area inicial+Area final) /2 Unidad: mm2	Continua	Numeración
Longitud de la biopsia	Suma de la longitud de los fragmentos en mm	Discreta	Nº entero
Nº de espacios porta	Cantidad de espacios porta completos en la biopsia	Discreta	Nº entero
Topografía de la inflamación	Localización preferencial de la inflamación	Cualitativa nominal	0= sin inflamación 1= sin localización preferencial 2= portal 3= lobular
Nº de espacios porta inflamados	Cantidad de espacios porta completos e incompletos con inflamación	Discreta	Nº entero
Linfocitos en EP	Presencia o ausencia de linfocitos en espacios porta inflamados	Cualitativa dicotómica	0= ausente 1= presente
Eosinófilos en EP	Presencia o ausencia de eosinófilos en espacios porta inflamados	Cualitativa dicotómica	0= ausente 1= presente
Neutrófilos en EP	Presencia o ausencia de eosinófilos en espacios porta inflamados	Cualitativa dicotómica	0= ausente 1= presente
Macrófagos en EP	Presencia o ausencia de eosinófilos en espacios porta inflamados	Cualitativa dicotómica	0= ausente 1= presente
Plasmocitos en EP	Presencia o ausencia de plasmocitos en espacios porta inflamados	Cualitativa dicotómica	0= ausente 1= presente
Predominio de tipo de células inflamatórias	Estimativa de la población de células inflamatorias que predominan en el conjunto de los espacios porta	Cualitativa nominal	0= sin inflamación 1= sin predominio 2= linfocitos 3= eosinófilos 4=neutrófilos 5= macrófagos 6= plasmocitos

			7= granulocitos
			8=
	Presencia o ausencia de	Cualitativa	0 = ausente
Morfología nodular de la inflamación	patrón nodular del infiltrado inflamatorio	dicotómica	1= presente
Zonalización de la inflamación portal	Presencia de por lo menos un espacio porta donde el infiltrado inflamatorio es manifiestamente más intenso en relación con el ducto biliar o a la zona de interfaz	Cualitativa nominal	0= ausencia de zonalización 1= periductal 2= interfaz 3= periductal e interfaz
Actividad inflamatoria	Graduación de la actividad necroinflamatoria portal e intralobular (METAVIR)	Cualitativa nominal ordinal	0= sin actividad 1= ligera 2= moderada 3= severa
Fibrosis	Graduación de la fibrosis portal/hepática (METAVIR)	Cualitativa nominal ordinal	0= sin fibrosis 1=fibrosis portal sin septos 2= fibrosis portal con algunos septos 3= fibrosis portal con numerosos septos 4= cirrosis
Peaceión ductular	Presencia o ausencia de	Cualitativa	0= ausencia
	Presencia o ausencia de	Cualitativa	0= ausencia
Endotelitis portal	lesión en el endotelio de vénulas portales por infiltrado inflamatorio linfoide con o sin rotura del endotelio	dicotómica	1= presencia
Endotelitis centrovenular	Presencia de lesión endotelial en vena centrolobular	Cualitativa dicotómica	0= ausencia 1= presencia
№ de EP sin ducto	Cantidad de espacios porta completos (EP) sin ducto biliar terminal	Discreta	Nº entero
№ de EP sin arteriola	Cantidad de espacios porta completos (EP) sin arteriola	Discreta	Nº entero
№ de EP sin ducto y sin arteriola	Cantidad de espacios porta completos sin ducto biliar terminal y sin arteriola	Discreta	Nº entero
Topografía de la inflamación	Localización preferencial de la inflamación en el tejido	Nominal	0= ausencia de inflamación 1= ausencia de predominio 2= predominio portal 3= predominio lobular
Linfocitos en EP	Presencia o ausencia apreciable de linfocitos en los espacios porta (EP) completos o incompletos	Cualitativa dicotómica	0= ausencia 1= presencia
	Presencia o ausencia	Cualitativa	0= ausencia
Eosinófilos en EP	apreciable de eosinófilos	dicotómica	1= presencia

	en los espacios porta (EP)		
	completos o incompletos		
	Presencia o ausencia		0= ausencia
Neutrofilos	apreciable de eosinofilos	dicotomica	1= presencia
	en los espacios porta (EP)		
	Dresensis e evensis	Cualitativa	0
Discretes	Presencia o ausencia	Cualitativa	
Plasmocitos	apreciable de plasmocilos	dicotomica	r= presencia
	Estimativa de la población	Nominal	0- ausoncia de
Predominio de tipo de	de células inflamatorias	Nominal	inflamación
células inflamatórias	que predomina en el		1= ausencia de
	conjunto de los espacios		predominio
	porta inflamados		2 = linfocitos
			3= eosinófilos
			4= neutrófilos
			5= macrófagos
			6= plasmocitos
			7= granulocitos
			8=
			linfomononucleares
	Presencia o ausencia de	Cualitativa	0= ausencia
Morfología nodular de la	agregado de esbozo	dicotómica	1= presencia
inflamación	nodular de células		
	inflamatórias en por lo		
	menos un espacio porta		
	Localización de la fibrosis	Nominal	0= sin fibrosis
topografia de la fibrosis	en el tejido nepatico		1= portal
			2= sinusoidai
			3=
			4= portar y
			5– portal v
			sinusoidal
			6= portal v
			pericentrovenular
			7= sinusoidal y
			pericentrovenular
	Presencia de pigmento	Nominal	0= ausencia
Colestasis	biliar y su localización		1= portal
			2= intralobular
			3= portal e
			intralobular
	Presencia o ausencia de	Nominal	0= ausencia
Esteatosis tipo	vacuolos lipídicos		1= macrovesicular
	citoplasmaticos en los		2= microvesicular
	hepatocitos y su tipo en		3 = mixto
	del púelos y el predemisis		
	Localización prodominante	Nominal	
Esteatosis topografía	de la estestosie (71	nominal	1- 71
Esteatosis topografia	periportal 72 intralobular		2 - 72
	73 pericentrovenular)		3= 73
			4 = difuso
	Presencia de gránulos de	Ordinal	0= Ausencia de
Siderosis	pigmento hemosidérico en		gránulos o apenas
	el citoplasma de		difícilmente
			identificados a 400x

	hepatocitos o en células de Kupffer.		1=Gránulosdifícilmenteidentificados a 250xyfácilmenteconfirmadosa400x=12=Gránulosidentificados a 100x3=Gránulosligeramentegroseros visibles a25x4=Gránulosgroseros y difusosvisibles a 10x o a"ojo"	
Siderosis topografía	Localización/topografía de la siderosis en el tejido hepático	Nominal	0= ausencia 1= hepatocitos 2= células de Kupffer 3= ambos	
Granulomas epitelioides	Presencia o ausencia de agregados linfohistiocíticos nodulares sin necrosis de caseificación	Nominal	0= ausencia 1=portal 2= paraportal 3=ambos	
Rosetas hepatocitarias	Presencia o ausencia de hepatocitos viables que se organizan en grupos de células tumefactas rodeadas de colágeno o de red reticulínica colapsada	Cualitativa dicotómica	0= ausencia 1= presencia	
Emperipolesis	Presencia o ausencia de linfocitos en el citoplasma de hepatocitos	Cualitativa dicotómica	0= ausencia 1= presencia	
"Balonización hepatocitaria"	Presencia o ausencia de hepatocitos con tamaño por lo menos 3x superior al de los hepatocitos vecinos y con el núcleo picnótico	Cualitativa dicotómica	0= ausencia 1= presencia	
Cuerpos hialinos de Mallory	Presencia/ausencia de filamentos intermédios intracitoplasmáticos eosinófilos	Cualitativa dicotómica	0= ausencia 1= presencia	
Glucogenización nuclear	Presencia/ausencia de pseudoinclusiones nucleares de glucógeno en hepatocitos	Cualitativa dicotómica	0= ausencia 1= presencia	
Lobulitis	Presencia/ausencia de actividad necroinflamatoria intralobular	Cualitativa dicotómica	0= ausencia 1= presencia	
Tipo de células inflamatorias predominante	estimativa da população de células inflamatórias que predomina no conjunto dos focos de actividad necroinflamatoria intralobular	Nominal	0= ausencia 1= ausencia de predomínio 2= linfócitos 3= eosinófilos 4= neutrófilos 5= macrófagos 6= plasmócitos 7= granulócitos	
				8=
---------------	--------------------	----	-------------	--------------------
				linfomononucleares
	Presencia/ausencia	en	Cualitativa	0= ausencia
Linfocitos L	zona intralobular		dicotómica	1= presencia
	Presencia/ausencia	en	Cualitativa	0= ausencia
Eosinófilos L	zona intralobular		dicotómica	1= presencia
	Presencia/ausencia	en	Cualitativa	0= ausencia
Neutrófilos L	zona intralobular		dicotómica	1= presencia
	Presencia/ausencia	en	Cualitativa	0= ausencia
Macrófagos L	zona intralobular		dicotómica	1= presencia
	Presencia/ausencia	en	Cualitativa	0= ausencia
Plasmocitos L	zona intralobular		dicotómica	1= presencia

Tabla 3.2.2 Variables bioquímicas

NOMBRE DE LA	DEFINICIÓN/DESCRIPCIÓN	TIPO DE	VALOR
VARIABLE		VARIABLE	
INR	international normalized ratio	Continua	Numérico
Tiempo de protrombina	Tiempo que demora en formarse el coágulo Valor Ref.ª 11,0 seg	Continua	Numérico
Proteínas totales	Albumina+globulinas Valor de Ref.ª 6.0-7.3 g/dL	Continua	Numérico
Albúmina	Valor Ref. ^a 3.5-5.0 g/dL	Continua	Numérico
Bilirrubina total	Valor Ref. ^a 0.20-1.00mg/dL	Continua	Numérico
Bilirrubina directa	Conjugada Valor Ref.ª 0.00- 0.20 mg/dL	Continua	Numérico
Bilirrubina indirecta	No conjugada Valor de Ref.ª 0.00-1.00 mg/dL	Continua	Numérico
AST	Aspartato aminotransferasa Valor de Ref.ª 10-34 U/L	Discreta	Numérico
ALT	Alanina aminotransferasa Valor de Ref.ª 10-44 U/L	Discreta	Numérico
GGT	Ganmaglutamiltransferasa Valor de Ref.ª 10-66 U/L	Discreta	Numérico
FA	Fosfatasa alcalina Valor de Ref.ª 10-66 U/L	Discreta	Numérico
LDH	Lactato deshidrogenasa Valor de Ref.ª 135-225 U/L	Discreta	Numérico

Tabla 3.2.3 Variables inmunológicas

NOMBRE DE LA	DEFINICIÓN/DESCRIPCIÓN	TIPO DE	VALOR
VARIABLE		VARIABLE	
IgG	Titulación del anticuerpo	Cuantitativa	Nº entero
_	IgG en sangre periférico	Discreta	
	con rango de referencia		
	793-1590 mg/dl		
AMA	Imunofluorescencia	Cualitativa	0= <1/80
	indirecta, Valor de Ref. ^a	dicotómica	1= >1/80
	<1/80		

ANA	Imunofluorescencia	Cualitativa	0= <1/80
	indirecta, Valor de Ref. ^a	dicotómica	1=>1/80
	<1/80		
LKM	Imunofluorescencia	Cualitativa	0= <1/20
	indirecta, Valor de Ref. ^a	dicotómica	1=>1/20
	<1/20		
Ac. Anti-M2 (ELISA)	U/mL	Cualitativa	0=<20 U/mL
	Val. Ref. ^a <20	dicotómica	1= >20U/mL
	Negativo		
Ac. Anti – gp210	Imunoblot Valor Ref ^a	Cualitativa	0= negativo
	Cualitativo	dicotómica	1= negativo
Ac. Anti-Sp100	Imunoblot Valor Ref ^a	Cualitativa	0= negativo
	Cualitativo	dicotómica	1= negativo
ASMA	Imunofluorescencia	Cualitativa	0= <1/40
	indirecta, Valor de Ref. ^a	dicotómica	1=>1/40
	<1/40		
F-Actina	Valor Ref. ^a <20 U/mL	Cualitativa	0= <20
		dicotómica	1= >20
(SLA/LP)	Valor Ref. ^a <20 U/mL	Cualitativa	0= <20
		dicotómica	1= >20
Ac. Anti-LC-1	Imunoblot	Cualitativa	0= negativo
	Elisa	dicotómica	1= positivo
Ac. Anti-pANCA	Imunofluorescencia	Cualitativa	0= <1/20
	Valor Ref. ^a <1/20	dicotómica	1=>1/20

Tabla 3.2.4 Variables serológicas y microbiológicas

NOMBRE DE LA VARIABLE	DEFINICIÓN/DESCRIPCIÓN	TIPO DE	VALOR
		VARIABLE	
anti-VHC	Anticuerpos anti-VHC	Cualitativa	0= negativo
		dicotómica	1= positivo
RNA-VHC	Valor de Ref. ^a <15UI/mL	Continua	Numérico
anti-VHBs	Anticuerpos anti	Cualitativa	0= negativo
	proteína de superfície del vírus B	dicotómica	1= positivo
anti-VHBc	Anticuerpos anti "core"	Cualitativa	0= negativo
	del vírus C	dicotómica	1= positivo
VHBsAg	Antígeno del virus de	Cualitativa	0= negativo
_	superficie	dicotómica	1= positivo
VHBeAg	HBeAg es	Cualitativa	0= negativo
	una proteína secretora	dicotómica	1= positivo
	que se procesa de la		
	proteína precore.		
	Se considera un		
	marcador de replicación		
	activa e infectividad		
anti-VHBe	a anti-HBe se asocia	Cualitativa	0= negativo
	usualmente a	dicotómica	1= positivo
	disminución de los		
	niveles de HVB DNA en		
	suero y remisión del		
	daño al hígado		
	Valor de Ref. ^a Negativo:		
	<20UI/mI		

DNA VHB	Negativo=<20UI/ml Puede considerarse positivo, aunque esté por debajo del umbral de detección.	Cualitativa dicotómica	0= negativo 1= positivo
anti-VHA	Anticuerpo hepatitis A Valor de Ref.ª cualitativo	Cualitativa dicotómica	0= negativo 1= positivo

Tabla 3.2.5	Variables Cín	nicas (tratamientos	y enfermedades en	el momento de la biopsia)
-------------	---------------	---------------------	-------------------	---------------------------

NOMBRE DE LA	DEFINICIÓN/DESCRIPCIÓN	TIPO DE VARIABI F	VALOR
Tacrolimus	Inmunosupresor	Cualitativa dicotómica	0= negativo 1= positivo
Tacrolimus Conc. Sangre	Concentración en sangre ng/ml	Continua	numérico
Ciclosporina	Inmunosupresor	Cualitativa dicotómica	0= negativo 1= positivo
Ciclosporina Conc. Sangre	Inmunosupresor ng/mL Val. Ref.ª: Níveles muy bajos <20ng/mL Normal en el trasplante hepático 100-400 Conc. Tóxica >400	Continua	numérico
Micofenolato de Mofetilo (MMF)	Inmunosupresor	Cualitativa dicotómica	0= negativo 1= positivo
Corticoides	Inmunosupresor/antinflamatorio esteroide	Cualitativa dicotómica	0= negativo 1= positivo
Azatioprina	Inmunomodulador	Cualitativa dicotómica	0= negativo 1= positivo
UDCA	colerético	Cualitativa dicotómica	0= negativo 1= positivo
Quelantes	Ej. penicilamina	Cualitativa dicotómica	0= negativo 1= positivo
Diabetes		Cualitativa dicotómica	0= negativo 1= positivo
Diabetes Tratada		Cualitativa dicotómica	0= negativo 1= positivo
НТА	TA>130/80 mm Hg	Cualitativa dicotómica	0= negativo 1= positivo
HTA Tratada	antihipertensivos	Cualitativa dicotómica	0= negativo 1= positivo
Dislipidemia	colesterol en sangre aumentado	Cualitativa dicotómica	0= negativo 1= positivo
Dislipidemia Tratada	Estatinas	Cualitativa dicotómica	0= negativo 1= positivo
Transplante hepático Nº		Cuantitativa Discreta	Nº entero
Motivo do Transplante	descriptivo	descriptivo	descriptivo

NOMBRE DE LA VARIABLE	DEFINICIÓN/DESCRIPCIÓN	TIPO DE	VALOR
	o Ref.ª	VARIABLE	
	KEGG/HMBD/PUBCHEM		
	IDENTIFIER	0	
imidazole	C01589	Continua	Numérico
alanine	C00041	Continua	Numérico
betaine_aldehyde	C00576	Continua	Numérico
Choline	C00114	Continua	Numérico
dimethylglycine	C4H9NO2	Continua	Numérico
serine	C00065	Continua	Numérico
creatinine	C00791	Continua	Numérico
proline	C00148	Continua	Numérico
valine	C00183	Continua	Numérico
threonine	C00188	Continua	Numérico
nicotinamide	C00153	Continua	Numérico
leucine_isoleucine	C00123	Continua	Numérico
methylcysteine	C00155	Continua	Numérico
glutamine	C00064	Continua	Numérico
guanine	C00242	Continua	Numérico
carnitine	C00318	Continua	Numérico
arginine	C00062	Continua	Numérico
citrulline	C00327	Continua	Numérico
tyrosine	C00082	Continua	Numérico
biotin	C00120	Continua	Numérico
x1_methyladenosine	C02494	Continua	Numérico
l_arginino_succinate	C03406	Continua	Numérico
x5_methyl_thf	C00440	Continua	Numérico
nadh	C00004	Continua	Numérico
sarcosine	C00213	Continua	Numérico
x2_aminooctanoic_acid	HMDB00991	Continua	Numérico
succinate	C00042	Continua	Numérico
methylmalonic_acid	C02170	Continua	Numérico
nicotinate	C00253	Continua	Numérico
taurine	C00245	Continua	Numérico
pyroglutamic_acid	C01879	Continua	Numérico
citraconic_acid	C02226	Continua	Numérico
hypoxanthine	C00262	Continua	Numérico
anthranilate	C00108	Continua	Numérico
p_aminobenzoate	C00568	Continua	Numérico
a_ketoglutarate	C00026	Continua	Numérico
phenylpropiolic_acid	HMDB00563	Continua	Numérico
xanthine	C00385	Continua	Numérico
hydroxyphenylacetic_acid	C05852	Continua	Numérico
orotate	C00295	Continua	Numérico
uric_acid	C00366	Continua	Numérico
x3_phosphoglycerate	C00197	Continua	Numérico
pantothenate	C00864	Continua	Numérico
shikimate_3_phosphate	C03175	Continua	Numérico
hexose_phosphate	C00085	Continua	Numérico
d_sedoheptulose_1_7_phosphate	C05382	Continua	Numérico

trehalose_sucrose	C00089	Continua	Numérico
udp_neg	C00015	Continua	Numérico
trehalose_6_phosphate	C00689	Continua	Numérico
cholesteryl_sulfate	HMDB00653	Continua	Numérico
taurodeoxycholic_acid	C05463	Continua	Numérico
x2_isopropyImalic_acid	C02504	Continua	Numérico
gluthatione_neg	C00051	Continua	Numérico

Tabla 3.2.7 Variables del hemograma

NOMBRE DE LA VARIABLE	DEFINICIÓN/DESCRIPCIÓN	TIPO DE	VALOR
		VARIABLE	
Hemoglobina	Valor de Ref. ^a 13-17	Continua	Numérico
	g/dL		
Eritrocitos	X10^6	Continua	Numérico
Hematocrito	Valor de Ref. ^a 40.0-	Continua	Numérico
	50.0%		
Leucocitos totales	Valor de Ref. ^a 4,00-	Continua	Numérico
	11,00 ^3/µL		
Linfocitos	Valor de Ref. ^a 1,5-4,0	Continua	Numérico
	x10^3µL		
Neutrófilos	Valor de Ref. ^a 2,00-7,50	Continua	Numérico
	x10^3µL		
Eosinófilos	Valor de Ref. ^a 0,04-0,40	Continua Numérico	
	x10^3µL		
Monocitos	Valor de Ref. ^a 0,20-	Continua	Numérico
	0,80 x10^3µL		

3.3 Preparación de la muestra

3.3.1 Fase de validación del ensayo

Inicialmente fueron seleccionados diez fragmentos procedentes de hígados "explantados" (piezas de hepatectomía total de donante sin patología hepática constatada en datos analíticos) de aproximadamente 20x15x4mm, fijados en formol, procesados e incluidos en parafina. Se realizaron cortes con espesor total de 20µm y se almacenaron en *eppendorf* adecuadamente identificado en ambiente refrigerado a 4°C. Posteriormente, a partir de estos bloques de

parafina, se obtuvieron cilindros de 2mm de diámetro utilizando una aguja de biopsia cutánea y se incluyó un cilindro por cada caso en cada nuevo bloque de parafina identificado. Posteriormente se efectuaron cortes de cada bloque de parafina conteniendo un cilindro, hasta completar 20µm de espesor y se guardaron los cortes de cada cilindro en su correspondiente *eppendorf* adecuadamente identificado y en ambiente refrigerado.

En el laboratorio de LC-MS, a cada *eppendorf* de 1.5ml conteniendo la muestra de un caso A, se le añadió 1 mL de xileno, se agitó en vórtex 30 segundos y se centrifugó a 4 °C durante 5 minutos a 13000 rpm. A continuación, se descartó el sobrenadante y se repitió el procedimiento una vez más completando así el proceso de desparafinación de la muestra. Seguidamente, para eliminar cualquier resto de xileno se secó el pellet en desecador durante 3 horas.

A continuación, para extraer los metabolitos intracelulares polares del tejido mecánicamente, se añadieron 500 μ L de H2O:MeOH 20:80 v/v, se agitó con vortex 5 minutos, se aplicaron ultrasonidos durante 10 minutos y se centrifugó a 4 °C durante 10 minutos a 14000 rpm. El sobrenadante se transfirió a un nuevo *eppendorf* y se reservó, mientras que sobre el pellet resultante se añadieron 500 μ L de H2O:MeOH 20:80 v/v a -80 °C para una nueva extracción mediante shock térmico. Para ello se agitó con vórtex durante 5 minutos y se introdujo 30 minutos a -80 °C. Transcurrido ese tiempo se introdujo a 4 °C durante 15 minutos y se centrifugó a 4 °C durante 10 minutos a 14000 rpm. El sobrenadante se recogió y se juntó con el reservado previamente. Finalmente, el "*pool*" de sobrenadantes se evaporó a sequedad bajo corriente de nitrógeno y se volvió a disolver el pellet en 40 μ L de Formiato Amónico pH=3:Acetonitrilo 15:85 v/v (condiciones cromatográficas iniciales).

3.3.2 Fase de análisis

Todos los casos de biopsia hepática por aguja de los casos "problema" y las biopsias quirúrgicas de los casos "control" fueron revisados observando, a través de la microscopia de luz con el microscopio Olympus BX43, los cristales de H&E y de las técnicas histoquímicas (tricrómico de Mason, PAS, PAS diastasa, Reticulina, Fouchet y Perls). Los datos de las variables morfológicas fueron simultánea y consecutivamente registrados en la tabla de variables en cada observación. Finalizada la observación de los 62 casos, se realizaron cortes de cada bloque de parafina de cada biopsia hepática representativos de una espesor total de 20 µm y el último corte se tiñó con H&E. Los cortes representativos de 20 µm de tejido de cada caso fueron depositados en un *eppendorf* identificado con el correspondiente número de identificación de laboratorio y transferidos a un frigorífico a 4ºC hasta su envío al laboratorio de LC-MS.

Los cristales de H&E observados antes del corte (H&E inicial) y los cristales del H&E después del corte (H&E final), fueron digitalizados con el digitalizador PANNORAMIC Midi II de la marca 3DHISTECH. Las áreas de tejido de cada caso fueron medidas por medio del *software* de análisis de imagen QuPath y los valores obtenidos, después de procesados, fueron registrados en la tabla de variables en mm².

3.4 Condiciones cromatográficas y del espectrómetro de masas

La separación y detección de los metabolitos extraídos se llevó a cabo mediante cromatografía líquida acoplada a espectrometría de masas en tándem (HPLC/MS/MS) empleando las condiciones experimentales recogidas en la Tabla 3.4.1.

Tabla 3.4.1 Condiciones cromatográficas del espectrómetro de masas empleadas en la separación y detección de los metabolitos extraídos (HPLC-ESI-MS/MS).

Sistema		Acquity UPLC HSS Class	Plus		
Sistema:		AbSciex Qtrap 5500			
Columna:	Columna:		Kingtov IIII IC 4.6 v 150 mm 2.6 um		
			iiii 2,0 μiii		
T ^a columna		Temperatura ambiente			
Fase Móvil A		H2O, 5mM formiato amór	iico pH=3		
Fase Móvil B		Acetonitrilo			
Volumen iny		25 μL			
Disolv. lavado		H2O			
	Gradien	te cromatográfico			
Tiempo (min)	Flujo (mL/min)	FM A (%)	FM B (%)		
0	0.4	15	85		
1	0.4	15	85		
12	0.4	65	35		
16	0.4	65	35		
17	0.4	15	85		
25	0.4	15	85		
Cor	ndiciones de la fuent	e de ionización electrospr	ay (ESI)		
Modo ionización		ESI +/ESI- (+4500/-4500	V)		
T ^a fuente de ionización		475 °C			
Ion source Gas 1 (GS1)		33			
Ion source Gas 1 (GS2)	Ion source Gas 1 (GS2)				
Curtain Gas 25					
Condiciones espectrómetro de masas					
Método Schedule SRM					
Ventana detección SRM 1		120 s			
Target Scan Time		0.8 s			
CAD		High			

Las 289 transiciones SRM (*Selected Reaction Monitoring*) teóricas empleadas para la detección de 258 metabolitos se tomaron del artículo: Yuan. M, Bretkopf, SB, Yang. X, Asara, JM. *"A positive/negative ion–switching, targeted mass spectrometry–based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue*". Nature Protocols. 2012, 7, 872. Estos 258 metabolitos cubren todas las principales rutas metabólicas (glicólisis, ciclo de Krebs, vía de las pentosasfosfato, metabolismo de aminoácidos, nucleótidos…). Las 289 transiciones SRM teóricas empleadas en este estudio vienen recogidas en el <u>ANEXO I</u>.

3.5 Tratamiento de datos del HPLC/MS/MS

Una vez que se han adquirido las diferentes SRM para los diferentes metabolitos en cada una de las muestras analizadas, empleando el software Multiquant 3.0 de AbSciex, se integran los diferentes picos cromatográficos, obteniendo las diferentes áreas de pico para cada uno de los metabolitos. A continuación, previo al posterior análisis estadístico, es necesario realizar una normalización de los datos obtenidos.

En la etapa de validación del ensayo, las diferentes áreas de pico obtenidas se normalizaron frente a la media de las áreas expresada en mm2 de los cortes histológicos de 20 µm de espesor de un cilindro con dimensiones 0.19 x 0.19 x 0.3 cm extraído de fragmento de hígado e incluido en bloque de parafina. En los casos en los que la muestra consistió en cortes a 20µm de fragmentos completos de hígados "explantados" se identificaron 154 metabolitos. En los cilindros extraídos de los bloques de esos fragmentos se identificaron inicialmente 95 metabolitos. En esta fase, se estudió la precisión realizando el análisis de 6 muestras del mismo paciente de cada uno de los tres grupos de patología en los mismos días de análisis. Los metabolitos que mostraban valores de RSD (Desviación Estándar Relativa) de precisión "entre días" superiores al 35% para el mismo grupo patológico fueron rechazados.

Por otra parte, se evaluó la relación señal-ruido de cada metabolito, teniendo que ser superior a 3 para que el resultado fuera aceptado.

Hubo 42 de los 95 metabolitos analizados que no cumplían con el requisito de precisión impuesto (>35%) por lo que en la fase de análisis se incluirán los 53 metabolitos que cumplían estos requisitos de sensibilidad y precisión.

En la etapa de análisis, las diferentes áreas de pico obtenidas se normalizaron frente al área de pico obtenida para una muestra control de corte histológico de 20 µm de espesor de un fragmento de hígado incluido en bloque de parafina que se analizó en cada uno de los 4 días de análisis. El objetivo de esta normalización es corregir la variabilidad instrumental en la detección de los metabolitos del tejido entre los diferentes días de análisis.

3.6 Análisis estadístico

3.6.1 Generación del modelo predictivo

El primer paso del análisis consistió en la preparación de los datos, donde se llevó a cabo una normalización por la mediana, y una transformación logarítmica. El siguiente paso consistió en la estimación de la curva ROC para cada uno de los metabolitos, para poder obtener el área bajo la curva (AUC) así como su intervalo de confianza *bootstrap* (500 réplicas *bootstrap*) al 95%, y el punto de corte con la concentración del metabolito que mejor discrimine entre grupos. Se llevó a cabo un t-test (con corrección del p-valor mediante el método de Holm) para evaluar si existen diferencias en la concentración de conte con de corte: 0.90-1 (discriminación excelente), 0.80-0.90 (buena discriminación), 0.70-0.80 (discriminación justa), y 0.60-0.70 (discriminación pobre).

Se estimó también el log2-fold-change (FC), que es el logaritmo en base 2 del cociente entre la concentración del metabolito en la condición 1 y la

concentración en la condición 2 (por ejemplo, log2(CreatininaControl/CreatininaVHC)). Un FC positivo nos estará indicando que la concentración en la condición 1 es superior a la concentración en la condición 2, mientras que un FC negativo indicará que la concentración en la condición 2 es superior.

A continuación, se llevó a cabo la selección de aquellos metabolitos que proporcionen la mayor capacidad de discriminación entre grupos. La metodología random forest (combinación de múltiples árboles de clasificación) se utilizó tanto para la discriminación como para determinar la importancia de los metabolitos. El desempeño de los distintos modelos (generados con distintas combinaciones de variables) se evaluó mediante curvas ROC con validación cruzada de Monte-Carlo (MCCV). En cada proceso de validación cruzada, una parte de las muestras se emplearon para estimar la importancia de los metabolitos, y las restantes para validar cada uno de los modelos generados en ese primer paso. Aquellos metabolitos que obtuvieron mayor puntuación (importancia) se utilizaron para generar el modelo de clasificación. Para obtener una estimación de los intervalos de confianza, así como de la precisión del modelo, este proceso se repitió 500 veces. El modelo final se seleccionó en función del parámetro de importancia, incluyendo aquellas variables en las que su valor sea superior a 1, excepto en aquellos casos en que haya muchas variables con importancia superior a 1 en los que se elevó el umbral a 1.9 para que el modelo no esté sobreajustado. Con esas variables se construyó el modelo final, y se estimó por validación cruzada la curva ROC y su intervalo de confianza al 95%, la precisión media del modelo, las probabilidades de cada clase predichas por el modelo (así como los pacientes mal clasificados), y la matriz de confusión (tabla de frecuencias de las categorías predichas versus categorías observadas)

3.6.2 Red de correlaciones perturbadas

Antes de llevar a cabo la estimación de la red, se normalizaron los valores de los metabolitos. Se partió de diferentes métodos de normalización: normalización de la abundancia de metabolitos en relación con el área, normalización por suma total, normalización por la mediana, y normalización Pareto. Se seleccionó aquel método que proporcionó la mayor discriminación entre grupos, habiéndose evaluado mediante un análisis de componentes principales (PCA).

La estimación de las redes de correlaciones perturbadas consta de dos pasos: (1) analizar las correlaciones parciales entre pares de metabolitos, y determinar si existen diferencias significativas en esas correlaciones entre los grupos. Estas correlaciones significativas se denominan correlaciones perturbadas (perturbadas en el sentido de ser significativamente distintas en ambos grupos). (2) A partir de las correlaciones perturbadas significativas se construye la red, y se identificaron los nodos más conectados de la red, así como los diferentes módulos significativos que forman parte de dicha red.

Como paso previo al análisis se realizó el análisis descriptivo de los 53 metabolitos en función del grupo. Para los metabolitos con distribución normal se calculó la media y desviación estándar, y para aquellos que no presentaron distribución normal se calculó la mediana y el rango intercuartílico. La comparación entre grupos se llevó a cabo mediante ANOVA o el test de Kruskall-Wallis (en presencia o ausencia de normalidad respectivamente, que se habrá

evaluado mediante el test de Shapiro-Wilks). Este análisis descriptivo se llevó a cabo sobre los valores normalizados por el control. A continuación, se procedió al análisis de correlaciones parciales y obtención de la red de correlaciones perturbadas

3.6.3 Análisis de correlaciones parciales

El primer paso del análisis tuvo como objetivo evaluar si la correlación entre las concentraciones de cada par de metabolitos era diferente entre grupos. Estas correlaciones son correlaciones parciales, ya que se van a ajustar por una serie de variables: sexo, tiempo de la muestra, nº de fragmentos, y procedencia del tejido (donante_d_trasplantado_t_nativo_n). Estas correlaciones parciales se estimaron de acuerdo con el método propuesto por Sheskin (2003).(270)

Una vez obtenidas las correlaciones parciales, se testaron las diferencias en las correlaciones parciales entre grupos usando la transformación de Fisher (es decir, las correlaciones parciales se transformaron en un z-score, para que la distribución muestral de las correlaciones se distribuya de manera normal). Dado que estamos testando múltiples pares, es necesario ajustar los p-valores obtenidos para reducir el error de tipo I (rechazar la hipótesis nula de igualdad en las correlaciones parciales, cuando ésta es cierta). El método de ajuste seleccionado es el método de Benjamini and Hochberg,(271) que forma parte de la familia de métodos que tratan de controlar la tasa de falso descubrimiento (False Discovery Rate, FDR), y que en contextos donde se realizan cientos o miles de comparaciones resulta muy eficaz.

3.6.4 Principios de la red de correlaciones perturbadas

A partir de cada una de las comparaciones entre grupos se construyeron las diferentes redes (control versus VHC, control versus HAI, control versus CBP, VHC vs HAI, VHC vs CBP y HAI vs CBP), conectando aquellos metabolitos (nodos de la red) que presenten correlaciones significativamente distintas entre los grupos. Para cada uno de esos nodos se estimaron la diferencia media absoluta en las correlaciones (esta diferencia describe el cambio de la correlación entre grupos, independientemente de la dirección del cambio), así como el número de correlaciones perturbadas significativas (links de la red) de cada uno de los nodos respecto a los restantes.

Tras obtener la red, se procedió a identificar grupos de metabolitos en los que los nodos de esa red estén más conectados con otros nodos de esa red de lo que cabría esperar por azar. Esos grupos de metabolitos se denominan módulos. Todos los análisis se han llevado a cabo con el software libre R (R Core Team, 2020). Para la estimación de las correlaciones parciales se ha utilizado el paquete ppcor (Kim, 2015).(272) Para la estimación de las correlaciones perturbadas y la generación de la red, se han utilizado los siguientes paquetes: DiffCorr,(273, 274) qvalue,(275) DGCA(276) y MEGENA.(277, 278)

3.6.5 Correlaciones parciales y diferencias entre correlaciones

Las correlaciones parciales y diferenciales entre correlaciones se aplican para los pares de metabolitos que se correlacionan en cada grupo de hepatitis y el control.

Estas correlaciones no serán presentadas en los resultados y serán expuestas en CD anexo. Sus valores se interpretan de la siguiente forma:

- Correlaciones (parciales) entre pares de marcadores para el grupo 1 (Cond1_cor) y para el grupo 2 (Cond2_cor).
- 2. Significación para cada uno de los grupos expresada como p-valor (Cond1_pVal, Cond2_pVal) y como q-valor (Cond1_qVal, Cond2_qVal). Es en este último parámetro en el que hay que fijarse, debido a que es necesario modificar el p-valor para adaptarlo a una situación en la que se llevan a cabo múltiples tests, y este q-valor mide la proporción de falsos positivos.
- 3. La diferencia de correlaciones entre ambos grupos (zScoreDiff), y el p-valor de dicha diferencia sin ajustar (pValDiff) y ajustado (pValDiff_adj). Se considera que una correlación se encuentra perturbada cuando este p valor ajustado es inferior a 0.05. El signo de la diferencia (zScoreDiff) hace referencia al cambio en la condición 1 frente a la 2 (si en el grupo 1 es mayor que en el 2, el signo es positivo).

Tabla 3.6.1 Tabla con las diferentes clases en función del signo de la correlación y de la significación (Extraido de McKenzie et al., 2016).(272)

4. Clase a la que pertenece cada par de correlaciones: se obtiene en función del signo de la correlación (+/-) y del nivel de significación en los dos grupos que se comparan (Tabla 3.6.1). Así, por ejemplo, entre las 9 clases posible tenemos:

Clase +/+: correlación > 0 y p-valor < 0.05 en los dos grupos.

Clase -/-: correlación < 0 y p-valor < 0.05 en los dos grupos.

Clase +/-: correlación < 0 en el grupo 1 y > 0 en el grupo 2, con p-valor < 0.05 en ambos grupos.

Clase +/0: correlación > 0 y p-valor < 0.05 en el grupo 1, y p-valor > 0.05 en el grupo 2.

Clase 0/0: p-valor > 0.05 en ambos grupos.

 Ganancia/pérdida (Gain/Loss) en la diferencia de correlaciones. Toma los siguientes valores:

- a. Valor 1: Ganancia de correlación de la condición 1 a la 2 (Gain of correlation-GOC).
- b. Valor -1: Pérdida de correlación de la condición 1 a la 2 (Loss of correlation-LOC). Esta pérdida puede deberse también a un cambio en la dirección de la correlación (positiva en el grupo 2 y negativa en el grupo 1).
- c. Valor 0: sin cambios.

3.6.6 Correlación diferencial media

Para cada uno de los marcadores, se estimó la diferencia de correlación media (avgCorr), y la diferencia de correlación media absoluta (abs_avgCorr), que sólo tiene en cuenta la magnitud de la correlación, pero no la dirección.

La correlación diferencial media calcula las diferencias medias considerando todas las correlaciones, tanto perturbadas como no perturbadas, que establece el nodo, y considerando sólo las correlaciones perturbadas. Estas últimas son las que se van a representar en la red. (Datos no presentados en resultados y expuestos en CD anexo)

3.6.7 Links de cada nodo

Número de perturbaciones significativas (que actúan como *link*) que establece cada nodo. (Datos no presentados en resultados y expuestos en CD anexo)

3.6.8 Red de correlaciones perturbadas

Las correlaciones perturbadas se muestran en la red que están indicadas con la referencia a los grupos diagnósticos que correlacionan.

Los *links* se encuentran diferenciados por color y grosor:

COLOR:

Rojo: ganancia de correlación entre la condición 1 y la 2 (*Gain of correlation*-GOC).

Gris: pérdida de correlación (Loss of correlation-LOC).

GROSOR: a mayor grosor, mayor peso del *link* dentro de la red (los pesos se establecen en relación a las correlaciones diferenciales).

Los nodos también presentan diferencias en color y diámetro:

COLOR: representa la diferencia absoluta media en la correlación de cada nodo.

En una escala que va del gris (menor) al rojo (mayor).

DIÁMETRO: a mayor diámetro, mayor grado (número de links) del nodo.

Se presentaron los módulos que están constituidos por metabolitos siendo que aquellos metabolitos con más *links* son los *hubs*.

3.6.9 Interpretación biológica

La interpretación biológica de las redes generadas se realizó mediante el *software* MetaboAnalyst5.0 cuya aplicación de análisis de vías metabólicas (MetPA) nos permitió conocer, a partir de los metabolitos de cada módulo, cuáles son las vías metabólicas que con mayor probabilidad estarán perturbadas.(200) La denominación constante en MetaboAnalyst para los metabolitos, no coincide siempre con la denominación utilizada por la plataforma de análisis. Los sinónimos pueden ser consultados en el <u>Anexo II</u>.

La introducción de los metabolitos por "nombre de compuesto" en la plataforma de análisis, nos dio una representación gráfica de las vías en las que uno o más compuestos de nuestro módulo están presentes. En esta representación cada vía identificada está representada por un círculo dispuesto en el espacio en función de la probabilidad y del impacto de la vía.(279) El color y el tamaño de cada círculo se basan en su valor p y el valor de impacto de la vía, respectivamente.(279) Nos interesaron aquellas vías y metabolitos que se localicen lo más próximo a la esquina superior derecha del gráfico.

Todo este análisis fue posterior a una consulta de las fuentes naturales de los metabolitos que constituyen cada *hub*, rol biológico y otros aspectos buscados en la base de datos *Human Metabolome Data Base* (HMDB).(181)

3.7 Poder discriminativo de las variables morfológicas

El primer paso del análisis consistió en la preparación de los datos, donde se llevó a cabo una normalización por la mediana, y una transformación logarítmica. A continuación, con fines exploratorios, se evaluó la asociación entre cada una de las variables morfológicas y bioquímicas (sólo aquellas que no presenten valores perdidos) y cada uno de los pares de patologías, mediante el *odds ratio*. También se lleva a cabo un test χ^2 (variables categóricas) o un t-test (variables continuas), o bien su equivalente no paramétrico, el test U de Mann-Whitney-Wilcoxon (variables continuas no normales).

El siguiente paso consistió en evaluar la capacidad predictiva de las distintas variables para discriminar entre grupos, mediante el algoritmo de Boruta. Este algoritmo, basado en la metodología *random forest*, pertenece a la familia de métodos de selección de variables que siguen la aproximación "*all-relevant*", es decir, que su objetivo es encontrar todas las variables que porten información relevante en relación con la variable respuesta (en este caso, variables con información que permita discriminar entre grupos). El algoritmo confirmó las variables con relevancia en la discriminación, y rechazó aquellas que no la tuvieron. Con esas variables se construyó un modelo predictivo, y se llevó a cabo la validación de su capacidad predictiva evaluando la capacidad de discriminación, y la calibración del modelo, ambas obtenidas mediante remuestreo *bootstrap*.

La capacidad de discriminación del modelo se estimó mediante el AUC así como el índice D de Somer. La D de Somer es una medida del desempeño de un predictor o predictores sobre la variable respuesta. Este índice toma valores de -1 a 1, y cuanto más próximo a 0, menor capacidad predictiva del modelo.

Se llevó a cabo la calibración del modelo comparando la media predicha por el modelo con la observada. En un modelo bien calibrado, los valores predichos deberían estar próximos a los observados. Se obtendrá también el score de Brier escalado (con valores cuanto más próximos a 1, más informativo será el modelo). Se obtendrá también la R2 de Nagelkerke (equivalente a R2 en modelos lineales), que indicaron un mejor ajuste cuanto más próximo a 1.

3.8 Fibrosis y actividad necroinflamatoria

La metodología implementada fue la misma metodología utilizada en la generación del modelo predictivo, enunciada y explicada con detalle en el punto 3.6.1 "Generación del modelo predictivo".

Para la fibrosis, se agruparon para la condición 1 los casos F0 y F1 que se les denominó F0. Para los demás casos (>F1) se les denominó F2 y conformaron la condición 2.

Para la actividad se aplicó el mismo principio. Para la condición 1 se agruparon los casos A0 y A1. Para la condición 2 se agruparon los casos >A1.

4 RESULTADOS

En el capítulo "Resultados", exponemos los resultados del análisis estadístico de los datos obtenidos en el ensayo. Consta este capítulo de cuatro subcapítulos que son:

- 1. Modelo predictivo (objetivo principal)
- Correlación diferencial media, red de correlaciones perturbadas y "*links*" (objetivo secundario a))
- Capacidad discriminativa de las variables morfológicas (objetivo secundario b))
- 4. Fibrosis y actividad necroinflamatoria (objetivo secundario c))

4.1 Modelo predictivo

4.1.1 Control vs VHC

Después de la normalización (datos no presentados) se procede al cálculo del AUC, el p-valor del test t de student y del logaritmo em base 2 (log2FC) (Tabla 4.1.1)

FC positivo indica que la concentración en la condición 1 (control) es superior a la concentración en la condición 2 (VHC), mientras que un FC negativo indica que la concentración en la condición 1 (control) es inferior a la concentración en la condición 2 (VHC).

Tabla 4.1.1 Valor estimado del AUC para cada uno de los metabolitos, el p-valor corregido del test t, y el log2FC estimado. Control vs VHC

X	AUC	Pval	FC
L-Carnitine	0.8425	0.0012	-1.5557
2-Isopropylmalic acid	0.8352	0.0006	-1.1434
Methylmalonic acid	0.8278	0.0004	-0.9877
Sarcosine	0.8168	0.0008	0.3071
Succinic acid	0.8132	0.0005	-0.9675
L-Alanine	0.7875	0.0017	0.3956
L-Tyrosine	0.7692	0.0075	0.1524
Orotic acid	0.7619	0.0056	-0.6201
S-Methyl-L-cysteine	0.7582	0.0196	0.0458
p-Aminobenzoic acid	0.7216	0.0524	-0.5830
Argininosuccinic acid	0.7179	0.0562	0.0054
Nicotinic acid	0.7179	0.1170	-0.5166
L-Arginine	0.7070	0.0886	0.0231
Choline	0.6923	0.0810	-0.7756
Dimethylglycine	0.6886	0.0849	-0.8000
5-Methyltetrahydrofolic acid	0.6886	0.0768	-0.0122
Citraconic acid	0.6886	0.0612	-0.5515

X	AUC	Pval	FC
Glutathione	0.6886	0.0770	0.0446
Citrulline	0.6832	0.1213	0.3516
2-Aminobenzoic acid	0.6832	0.0757	-0.6023
L-Glutamine	0.6813	0.1174	0.1806
NADH	0.6777	0.2172	-0.0386
Oxoglutaric acid	0.6777	0.2483	-0.4154
7-bisphosphate	0.6630	0.4857	0.2699
Hypoxanthine	0.6593	0.3006	-0.7824
Phenylpropiolic acid	0.6593	0.2408	-0.4048
Uridine 5'-diphosphate	0.6593	0.2469	-0.3774
L-Threonine	0.6520	0.0808	0.2594
Niacinamide	0.6484	0.2687	-0.6027
L-Proline	0.6447	0.0995	0.0716
Betaine aldehyde	0.6227	0.4771	0.2241
3-Phosphoglyceric acid	0.6081	0.3507	-0.3904
Serine	0.6081	0.2452	0.0712
Pantothenic acid	0.6081	0.2571	-0.0798
Ortho-Hydroxyphenylacetic acid	0.5861	0.4886	-0.1785
D-Hexose-Phosphate	0.5824	0.8689	-0.7120
DL-2-Aminooctanoic acid	0.5641	0.6856	-0.5411
Guanine	0.5604	0.6550	-0.3196
Creatinine	0.5568	0.2994	-0.1781
L-Valine	0.5568	0.9948	-0.2834
Biotin	0.5568	0.7892	-0.1589
Cholesterol sulfate	0.5513	0.9014	-0.3978
1-Methyladenosine	0.5458	0.6610	-0.4786
Trehalose 6-phosphate	0.5458	0.7856	-0.2234
Taurodeoxycholic acid	0.5421	0.4954	-0.1954
Pyroglutamic acid	0.5403	0.6448	-0.1652
Trehalose	0.5311	0.7493	-0.1572
Leu-Ile	0.5275	0.7124	-0.2533
Xanthine	0.5275	0.8759	-0.4251
Taurine	0.5238	0.8735	-0.6828
3-phosphoshikimic acid	0.5201	0.7708	-0.2380
Imidazole	0.5055	0.8710	-0.1833

X	AUC	Pval	FC
Uric acid	0.5018	0.7136	-1.0265

En la Figura 4.1.1 se representan los metabolitos en función de su FC. Un FC positivo (verde) indica que la concentración en la condición 1 (control) es superior a la concentración en la condición 2 (VHC), y un FC negativo (morado) indicando mayor concentración en la condición 2 (VHC).

Para los cinco metabolitos con mayores AUC, se presenta la curva ROC, el punto de corte óptimo (valor entre paréntesis al lado del valor de concentración del punto de corte): así, por ejemplo, el punto de corte óptimo para el ácido succínico es 0.378, con (punto de color rojo), un intervalo de confianza para el AUC de 0.5 a 0.9. Como se puede ver en la Figura 4.1.2 hay 5 metabolitos con buena capacidad de discriminación: L-carnitina, ácido isopropilmálico, ácido metilmalónico, sarcosina y ácido succínico.

Figura 4.1.1 Metabolitos ordenados en función de su FC. Control vs VHC

En la Tabla 4.1.1 se presenta el parámetro de importancia, y el ranking de la frecuencia con la que son seleccionados cada uno de los metabolitos para el grupo control y el grupo de VHC. Estos resultados proceden de la frecuencia de selección (a partir de las 500 muestras de validación cruzada) de los metabolitos (Figura 4.1.2), y el parámetro de importancia (se muestran sólo los metabolitos con un valor del parámetro de importancia superior a 1).

x	Rank.Freq.	Importance	Sem_alteracoes	VHC
L-Carnitine	1	4.6043	Low	High
Sarcosine	1	3.4122	High	Low
Methylmalonic acid	1	2.9752	High	Low
Succinic acid	1	2.8472	High	Low
L-Alanine	1	2.7495	High	Low
2-Isopropylmalic acid	1	2.4523	Low	High
Nicotinic acid	1	1.3961	Low	High
p-Aminobenzoic acid	1	1.2275	High	Low
Orotic acid	1	1.1412	High	Low
Argininosuccinic acid	1	1.0173	High	Low
S-Methyl-L-cysteine	1	1.0009	Low	High

Figura 4.1.2 Frecuencia de selección y parámetro de importancia de los metabolitos Control vs VHC

Tabla 4.1.2 Parámetro de importancia, y el ranking de la frecuencia con la que son seleccionados cada uno de los metabolitos para el grupo control y VHC

La curva ROC en color azul (ver Figura 4.1.6) muestra el punto de corte óptimo (punto rojo), y el intervalo de confianza al 95% para el AUC, siendo la diagonal de color gris la que indica la ausencia de capacidad de discriminación. Al lado derecho de cada curva ROC se presenta el *boxplot* con la distribución de las concentraciones en cada uno de los grupos, la media de la concentración (rombo amarillo), y el punto de corte óptimo (línea de color rojo).

La Figura 4.1.4 representa las curvas ROC para modelos que van desde 1 metabolito a 53 metabolitos.

La capacidad que tienen los diferentes modelos con número creciente de metabolitos en cada modelo para predecir correctamente casos verdaderos positivos y verdaderos negativos está representada en la Figura 4.1.5

El modelo finalmente seleccionado incluye a los 11 metabolitos con valor superior a 1 en el parámetro de importancia, siendo la L-carnitina y la sarcosina las que tienen mayor importancia. En la Figura 4.1.6 se muestra la curva ROC y el AUC, ambas con su intervalo de confianza al 95% obtenida a partir de

в в А А 0.6 -0.1 -0. 2 0. 80 -0.1 8 8 18 -0.1 True post 0.4 D 0.2 03 03 -0. 8 00 -0.1 0.4 False p 0.6 0.4 False (0.0 в в A А 0.6 ۰. 0.75 9 80 0.4 80 0.5 diversite 0.6 8 8 True posi Trep 4 0.2 0.2 02 7 2 2 0.4 0.6 0.8 1.0 . . 0.2 0.4 False : 0.6 0.8 1.0 0.2 0.0 А в 2 80 8.0 0.4 Pos 0.2 -0 8 0.4 False p 0.6 ve rate 0.2 o.s

500 muestras de validación cruzada. El valor del AUC, es indicativo de un modelo con buena capacidad de discriminación.

Figura 4.1.3 Curva ROC Control vs VHC para los cinco metabolitos más discriminativos

1-Specificity (False positive rate) Figura 4.1.4 Curvas ROC para múltiples modelos generados Control vs VHC

Predictive accuracies with different features

Figura 4.1.5 Exactitud predictiva para los diferentes modelos generados Control vs VHC

Figura 4.1.6 Curva ROC y AUC del modelo seleccionado Control vs VHC

Figura 4.1.7 Probabilidades predichas para cada paciente del modelo Control vs VHC

Página 4-110 de 337

En la Figura 4.1.7 se muestran las probabilidades predichas para cada uno de los pacientes, indicando aquellos que han tenido una clasificación errónea. Se muestra también la matriz de confusión (Tabla 4.1.3), donde podemos ver que 3 pacientes del grupo control y 4 del grupo VHC han sido mal clasificados.

La capacidad que tiene el modelo seleccionado para predecir correctamente casos verdaderos positivos y verdaderos negativos está representada en la Figura 4.1.8 estimada en base a 100 muestras de validación cruzada. La exactitud predictiva media estimada por validación cruzada es 0.764.

Figura 4.1.8 Exactitud predictiva del modelo Control vs VHC

4.1.2 Control vs HAI

Después de la normalización (datos no presentados) se procede al cálculo del AUC, el p-valor del test t de student y del logaritmo em base 2 (log2FC) (Tabla 4.1.4)

Un valor "FC" positivo indica que la concentración en la condición 1 (control) es superior a la concentración en la condición 2 (HAI), mientras que un FC negativo indica que la concentración en la condición 1 (control) es inferior a la concentración en la condición 2 (HAI).

Tabla 4.1.4 Valor estimado del AUC para cada uno de los metabolitos, el p-valor corregido del test t, y el log2FC estimado. Control vs HAI

X	AUC	Pval	FC
1-Methyladenosine	0.7548	0.0165	0.9448
Sarcosine	0.7548	0.0186	-0.2736
Cholesterol sulfate	0.7548	0.0169	0.7925
L-Alanine	0.7452	0.0235	-0.3582
L-Carnitine	0.7452	0.0648	0.9850
Creatinine	0.7115	0.0323	2.7935
Uridine 5'-diphosphate	0.6875	0.2475	0.3422
Methylmalonic acid	0.6779	0.1444	0.4350
7-bisphosphate	0.6683	0.3478	-0.4683
Pantothenic acid	0.6683	0.1445	-0.1600
p-Aminobenzoic acid	0.6683	0.1512	0.5332
Succinic acid	0.6635	0.1968	0.4065
Taurine	0.6490	0.3357	1.0420
Ortho-Hydroxyphenylacetic acid	0.6490	0.4219	0.1487
Glutathione	0.6490	0.1636	-0.0631
Guanine	0.6442	0.2871	0.5580
2-Aminobenzoic acid	0.6442	0.1738	0.4777
Nicotinic acid	0.6346	0.7394	0.2854
Hypoxanthine	0.6250	0.3318	0.6553
L-Tyrosine	0.6154	0.2624	0.0066

X	AUC	Pval	FC
L-Glutamine	0.6106	0.4226	0.1613
D-Hexose-Phosphate	0.6106	0.6276	0.5014
L-Proline	0.6058	0.2302	-0.0815
Phenylpropiolic acid	0.6058	0.1019	-0.1589
Argininosuccinic acid	0.6010	0.4622	0.0822
Serine	0.5962	0.3129	-0.1517
Citrulline	0.5962	0.3029	-0.3126
Xanthine	0.5962	0.3077	0.7217
Taurodeoxycholic acid	0.5962	0.3668	0.5535
L-Arginine	0.5938	0.3200	-0.0122
S-Methyl-L-cysteine	0.5817	0.6124	0.1006
Oxoglutaric acid	0.5769	0.1835	-0.0965
5-Methyltetrahydrofolic acid	0.5721	0.3658	0.0768
Choline	0.5673	0.8693	0.2039
Dimethylglycine	0.5673	0.8948	0.1934
Trehalose	0.5673	0.5830	0.2456
Orotic acid	0.5577	0.7299	0.2239
L-Threonine	0.5529	0.5638	0.5526
Pyroglutamic acid	0.5529	0.7625	0.1052
Uric acid	0.5529	0.7943	0.9227
3-Phosphoglyceric acid	0.5529	0.6376	0.0697
Leu-Ile	0.5433	0.4478	0.3314
DL-2-Aminooctanoic acid	0.5433	0.9354	0.3647
Niacinamide	0.5337	0.7861	0.3298
NADH	0.5288	0.7895	0.2266
Trehalose 6-phosphate	0.5288	0.8796	0.1757
2-Isopropylmalic acid	0.5240	0.9161	0.0730
Citraconic acid	0.5192	0.9793	0.1435
Imidazole	0.5144	0.9900	0.1278
3-phosphoshikimic acid	0.5096	0.8965	0.1839
L-Valine	0.5048	0.7449	0.2593
Betaine aldehyde	0.5000	0.9596	0.0730
Biotin	0.5000	0.8888	0.3460

En la Figura 4.1.9 se representan los metabolitos en función de su FC. Un FC

positivo (verde) indica que la concentración en la condición 1 (control) es superior a la concentración en la condición 2 (HAI), y un FC negativo (morado) indicando mayor concentración en la condición 1 (control).

En la Figura 4.1.10 están representadas las curvas ROC de los cinco metabolitos con mayor AUC, el punto de corte óptimo (punto de color rojo) y el intervalo de confianza *bootstrap* al 95% (valor entre paréntesis al lado del valor de concentración del punto de corte), siendo la diagonal de color gris la que indica la ausencia de capacidad de discriminación la condición 2 (HAI). Al lado derecho de cada curva ROC se presenta el *boxplot* con la distribución de las concentraciones en cada uno de los grupos, la media de la concentración (rombo amarillo), y el punto de corte óptimo (línea de color rojo).

Ningún metabolito tiene un AUC superior a 0.80.

Figura 4.1.9 Metabolitos ordenados en función de su FC. Control vs HAI

x	Rank.Freq.	Importance	HAI	Sem_alteracoes
Sarcosine	0.88	2.1432	High	Low
1-Methyladenosine	0.80	1.8708	High	Low
Creatinine	0.80	1.5446	Low	High
Cholesterol sulfate	0.78	2.0398	Low	High
L-Alanine	0.72	1.5001	Low	High
7-bisphosphate	0.72	1.2009	Low	High
L-Carnitine	0.68	2.0408	Low	High

Tabla 4.1.5 Parámetro de importancia, y el ranking de la frecuencia con la que son seleccionados cada uno de los metabolitos para el grupo control y HAI

En la Tabla 4.1.5 se presenta el parámetro de importancia, y el ranking de la frecuencia con la que son seleccionados cada uno de los metabolitos para el grupo control y el grupo HAI.

Estos resultados proceden de la frecuencia de selección (a partir de las 500 muestras de validación cruzada) de los metabolitos, y el parámetro de importancia (se muestran sólo los metabolitos con un valor del parámetro de importancia superior a 1). La forma gráfica de representación de estos datos puede verse en la Figura 4.1.11

Figura 4.1.10 Curva ROC Control vs HAI para los cinco metabolitos más discriminativos

Figura 4.1.11 Frecuencia de selección y parámetro de importancia de los metabolitos Control vs HAI

En la Figura 4.1.12 podemos ver representadas las curvas ROC de los distintos

modelos generados, desde 1 metabolito a 53 metabolitos.

Figura 4.1.12 Curvas ROC para múltiples modelos generados Control vs HAI

La capacidad que tienen los diferentes modelos con número creciente de metabolitos en cada modelo para predecir correctamente casos verdaderos positivos y verdaderos negativos está representada en la Figura 4.1.13

El modelo finalmente seleccionado incluye a los 7 metabolitos con valor superior a 1 en el parámetro de importancia, siendo la sarcosina, L-carnitina y el sulfato de colesterol las que tienen mayor importancia. En la Figura 4.1.14 se muestra la curva ROC y el AUC, ambas con su intervalo de confianza al 95% obtenida a partir de 500 muestras de validación cruzada. El valor del AUC que, si bien es indicativo de un modelo con buena capacidad de discriminación, su intervalo de confianza es de gran amplitud, llegando al límite de no discriminación.

Figura 4.1.13 Exactitud predictiva para los diferentes modelos generados Control vs HAI

Figura 4.1.14 Curva ROC y AUC del modelo seleccionado Control vs HAI

En la Figura 4.1.15 se muestran las probabilidades predichas para cada uno de los pacientes, indicando aquellos que han tenido una clasificación errónea. Se muestra también la matriz de confusión (ver Tabla 4.1.6), donde podemos ver que 3 pacientes del grupo control y 5 del grupo HAI han sido mal clasificados.

Figura 4.1.15 Probabilidades predichas para cada paciente del modelo Control vs HAI

Tabla 4.1.6 Matriz de confusión del modelo Control vs HAI

La capacidad que tiene el modelo seleccionado para predecir correctamente casos verdaderos positivos y verdaderos negativos está representada en la Figura 4.1.16 estimada en base a 100 muestras de validación cruzada. La exactitud predictiva media estimada por validación cruzada es 0.718.

Figura 4.1.16 Exactitud predictiva del modelo Control vs HAI

4.1.3 Control vs CBP

Después de la normalización (datos no presentados) se procede al cálculo del AUC, el p-valor del test t de student y del logaritmo em base 2 (log2FC) (Tabla 4.1.7)

Un valor "FC" positivo indica que la concentración en la condición 1 (control) es superior a la concentración en la condición 2 (CBP), mientras que un FC negativo indica que la concentración en la condición 1 (control) es inferior a la concentración en la condición 2 (CBP).

Tabla 4.1.7 Valor estimado del AUC para cada uno de los metabolitos, el p-valor corregido del test t, y el log2FC estimado. Control vs CBP

X	AUC	Pval	FC
Imidazole	0.9744	0.0000	-2.8596
Uric acid	0.9615	0.0000	4.9227

X	AUC	Pval	FC
Glutathione	0.9231	0.0005	-0.7044
Leu-Ile	0.9167	0.0004	0.6111
L-Arginine	0.8910	0.0002	1.1360
Pantothenic acid	0.8462	0.0025	-0.8743
Uridine 5'-diphosphate	0.8397	0.0298	0.4211
L-Tyrosine	0.8333	0.0092	0.5517
1-Methyladenosine	0.8269	0.0027	1.0596
DL-2-Aminooctanoic acid	0.8269	0.0033	-1.1217
L-Carnitine	0.8141	0.0027	0.8604
2-Aminobenzoic acid	0.8109	0.0187	-0.8859
Ortho-Hydroxyphenylacetic acid	0.7821	0.0318	0.4756
Niacinamide	0.7756	0.0147	-1.3124
Taurodeoxycholic acid	0.7756	0.0267	-0.9612
S-Methyl-L-cysteine	0.7692	0.0242	0.3866
Betaine aldehyde	0.7564	0.0117	0.5510
L-Proline	0.7436	0.0421	0.4562
Trehalose 6-phosphate	0.6987	0.0810	0.3760
Cholesterol sulfate	0.6987	0.0787	0.4428
Xanthine	0.6923	0.0520	0.8316
Guanine	0.6859	0.0695	1.3623
Citrulline	0.6795	0.3685	0.0355
Trehalose	0.6731	0.2770	-0.5623
L-Glutamine	0.6538	0.3952	-0.3867
Methylmalonic acid	0.6538	0.2011	0.1750
Argininosuccinic acid	0.6474	0.2167	0.2582
Succinic acid	0.6474	0.2624	0.1458
2-Isopropylmalic acid	0.6410	0.3402	-0.3275
Creatinine	0.6346	0.3565	0.7335
Nicotinic acid	0.6218	0.1658	-0.5758
Biotin	0.6090	0.4896	-0.1796
Oxoglutaric acid	0.6026	0.2609	-0.2087
Serine	0.5897	0.2638	0.1807
3-phosphoshikimic acid	0.5897	0.4708	-0.0937
Orotic acid	0.5769	0.5826	0.0306
5-Methyltetrahydrofolic acid	0.5577	0.5829	0.0989
Citraconic acid	0.5577	0.7068	-0.0168
3-Phosphoglyceric acid	0.5577	0.6455	-0.0992
7-bisphosphate	0.5449	0.6002	-0.0339

X	AUC	Pval	FC
Choline	0.5449	0.5242	0.2476
Dimethylglycine	0.5449	0.6333	0.2350
L-Threonine	0.5449	0.9330	-0.1154
Hypoxanthine	0.5385	0.6375	0.3221
Taurine	0.5321	0.9441	0.0197
Pyroglutamic acid	0.5321	0.9945	-0.0191
p-Aminobenzoic acid	0.5321	0.2909	-0.6435
NADH	0.5256	0.4368	-0.1393
L-Alanine	0.5192	0.5334	0.4121
L-Valine	0.5192	0.6557	0.0944
Phenylpropiolic acid	0.5128	0.6264	-0.1171
Sarcosine	0.5064	0.4928	0.4673
D-Hexose-Phosphate	0.5064	0.4899	-0.1315

En la Figura 4.1.17 se representan los metabolitos en función de su FC. Un FC positivo (verde) indica que la concentración en la condición 1 (control) es superior a la concentración en la condición 2 (CBP), y un FC negativo (morado) indicando mayor concentración en la condición 2 (CBP).

Figura 4.1.17 Metabolitos ordenados en función de su FC. Control vs CBP

En la Tabla 4.1.8 se presenta la frecuencia de selección (a partir de las 500 muestras de validación cruzada) de los metabolitos, y el parámetro de importancia (se muestran sólo los metabolitos con un valor del parámetro de importancia superior a 1). En la Figura 4.1.18 se presenta esta información de manera gráfica.

Hay 12 metabolitos con buena o excelente capacidad de discriminación, teniendo imidazol, ácido úrico, glutation, y leucina-isoleucina una capacidad de discriminación excelente.

	Rank.Freq.	Importance
Imidazole	1.00	6.3639
Uric acid	1.00	5.9354
Glutathione	0.98	4.5565
Leu-Ile	0.98	3.3273
Pantothenic acid	0.96	2.5821
L-Arginine	0.94	3.0812
DL-2-Aminooctanoic acid	0.80	1.8372
Uridine 5'-diphosphate	0.76	2.4430
L-Carnitine	0.74	1.9795
1-Methyladenosine	0.74	1.7144
2-Aminobenzoic acid	0.72	1.0282
Betaine aldehyde	0.70	1.4213
L-Tyrosine	0.68	1.3605
Niacinamide	0.64	1.2013

Tabla 4.1.8 Frecuencias de selección de metabolitos Control vs CBP

Figura 4.1.18 Frecuencia de selección de los diferentes metabolitos. Control vs CBP

En la Figura 4.1.19 se muestra la curva ROC en color azul para los cinco metabolitos más discriminativos donde se puede observar el punto de corte óptimo (punto rojo), y el intervalo de confianza al 95% para el AUC, siendo la diagonal de color gris la que indica la ausencia de capacidad de discriminación. Al lado derecho de cada curva ROC se presenta el boxplot con la distribución de las concentraciones en cada uno de los grupos, la media de la concentración (rombo amarillo), y el punto de corte óptimo (línea de color rojo).

Figura 4.1.19 Curva ROC Control vs CBP para los cinco metabolitos más discriminativos

La capacidad que tienen los diferentes modelos con número creciente de metabolitos en cada modelo para predecir correctamente casos verdaderos positivos y verdaderos negativos está representada en la Figura 4.1.21

Figura 4.1.20 Curvas ROC para múltiples modelos. Control vs CBP

Predictive accuracies with different features

Figura 4.1.21 Exactitud predictiva para los diferentes modelos generados Control vs CBP

En la Figura 4.1.20 podemos ver representadas las curvas ROC de los distintos modelos generados, desde 1 metabolito a 53 metabolitos.

El modelo finalmente seleccionado incluye a 13 metabolitos con valor superior a 1 en el parámetro de importancia, siendo la imidazol, ácido úrico y glutation los que tienen mayor importancia. En la Figura 4.1.22 se muestra la curva ROC y el AUC, ambas con su intervalo de confianza al 95%. El valor del AUC es indicativo de una excelente capacidad de discriminación, con un intervalo de confianza muy estrecho.

En la Figura 4.1.23 se muestran las probabilidades predichas para cada uno de los pacientes, indicando aquellos que han tenido una clasificación errónea. Se muestra también la matriz de confusión (ver Tabla 4.1.9), donde podemos ver que sólo un paciente del grupo control está mal clasificado.

La exactitud predictiva media estimada por validación cruzada es 0.907 estimado en base a 100 muestras de validación cruzada (ver Figura 4.1.24).

Figura 4.1.22 Curva ROC y AUC del modelo seleccionado Control vs CBP

Figura 4.1.23 Probabilidades predichas para cada paciente del modelo Control vs CBP

Página 4-129 de 337

	0	1
0	11	0
1	1	13

Tabla 4.1.9 Matriz de confusión Control vs CBP

Figura 4.1.24 Exactitud predictiva del modelo Control vs CBP

4.1.4 VHC vs HAI

Después de la normalización (datos no presentados) se procede al cálculo del AUC, el p-valor del test t de student y del logaritmo em base 2 (log2FC) expuestos en la Tabla 4.1.10.

Un valor "FC" positivo indica que la concentración en la condición 1 (VHC) es superior a la concentración en la condición 2 (HAI), mientras que un FC negativo

indica que la concentración en la condición 1 (VHC) es inferior a la concentración

en la condición 2 (HAI).

Tabla 4.1.10 Valor estimado del AUC para cada uno de los metabolitos, el p-valor corregido del test t, y el log2FC estimado. VHC vs HAI

X	AUC	Pval	FC
2-Isopropylmalic acid	0.9048	0.0000	-1.0704
1-Methyladenosine	0.8065	0.0053	0.4663
Creatinine	0.8036	0.0004	2.6154
Cholesterol sulfate	0.7976	0.0146	0.3948
Methylmalonic acid	0.7798	0.0034	-0.5527
Succinic acid	0.7708	0.0028	-0.5610
Orotic acid	0.7619	0.0045	-0.3962
Oxoglutaric acid	0.7560	0.0126	-0.5119
Phenylpropiolic acid	0.7530	0.0042	-0.5637
L-Threonine	0.7292	0.0145	0.8120
S-Methyl-L-cysteine	0.6994	0.0478	0.1464
Choline	0.6905	0.0881	-0.5717
Dimethylglycine	0.6905	0.0880	-0.6066
L-Carnitine	0.6815	0.1360	-0.5708
Nicotinic acid	0.6696	0.1717	-0.2312
L-Tyrosine	0.6577	0.1023	0.1590
Niacinamide	0.6562	0.1556	-0.2729
3-Phosphoglyceric acid	0.6488	0.1609	-0.3206
Taurodeoxycholic acid	0.6339	0.0933	0.3583
Citraconic acid	0.6280	0.0873	-0.4080
Taurine	0.6220	0.2826	0.3592
Betaine aldehyde	0.6190	0.6023	0.3339
Leu-Ile	0.6161	0.2154	0.0780
L-Arginine	0.6101	0.3726	0.0108
Xanthine	0.6101	0.2508	0.2966
NADH	0.6042	0.3260	0.1879
Argininosuccinic acid	0.6012	0.2980	0.0875
Citrulline	0.5952	0.5123	0.0390
DL-2-Aminooctanoic acid	0.5893	0.7476	-0.1764
Guanine	0.5878	0.4568	0.2384
L-Alanine	0.5863	0.4526	0.0374
Sarcosine	0.5714	0.4069	0.0334
5-Methyltetrahydrofolic acid	0.5655	0.3449	0.0646

X	AUC	Pval	FC
Ortho-Hydroxyphenylacetic acid	0.5595	0.8076	-0.0298
Trehalose	0.5595	0.7253	0.0884
Imidazole	0.5536	0.8473	-0.0555
Biotin	0.5506	0.6716	0.1871
2-Aminobenzoic acid	0.5506	0.7088	-0.1246
Glutathione	0.5476	0.7076	-0.0186
Hypoxanthine	0.5417	0.8927	-0.1271
L-Glutamine	0.5357	0.5336	0.3419
Uric acid	0.5357	0.5631	-0.1038
D-Hexose-Phosphate	0.5357	0.8474	-0.2103
L-Valine	0.5327	0.6453	-0.0241
3-phosphoshikimic acid	0.5268	0.8857	-0.0541
p-Aminobenzoic acid	0.5238	0.7178	-0.0498
L-Proline	0.5208	0.7777	-0.0099
Uridine 5'-diphosphate	0.5208	0.9976	-0.0352
Trehalose 6-phosphate	0.5179	0.9445	-0.0477
Pyroglutamic acid	0.5179	0.8335	-0.0600
Pantothenic acid	0.5149	0.7985	-0.2397
7-bisphosphate	0.5119	0.6786	-0.1983
Serine	0.5074	0.8289	-0.0806

Figura 4.1.25 Frecuencia de selección y parámetro de importancia de los metabolitos VHC vs HAI

En la Figura 4.1.25 se representan los metabolitos en función de su FC. Un FC positivo (verde) indica que la concentración en la condición 1 (VHC) es superior a la concentración en la condición 2 (HAI), y un FC negativo (morado) indicando mayor concentración en la condición 2 (HAI).

Para los tres metabolitos con mayores AUC, se presenta en la Figura 4.1.26 la curva ROC, el punto de corte óptimo (punto de color rojo), y el intervalo de confianza *bootstrap* al 95% (valor entre paréntesis al lado del valor de concentración del punto de corte). Hay 3 metabolitos con buena o excelente capacidad de discriminación, teniendo el ácido isopropilmálico una capacidad de discriminación excelente.

Al lado derecho de cada curva ROC se presenta el *boxplot* con la distribución de las concentraciones en cada uno de los grupos, la media de la concentración (rombo amarillo), y el punto de corte óptimo (línea de color rojo).

En la Tabla 4.1.11 se presenta la frecuencia de selección (a partir de las 500 muestras de validación cruzada) de los metabolitos, y el parámetro de importancia (se muestran sólo los metabolitos con un valor del parámetro de importancia superior a 1). En la Figura 4.1.27 se presenta esta información de manera gráfica.

Figura 4.1.26 Curva ROC VHC vs HAI para los tres metabolitos más discriminativos

En la Figura 4.1.28 se muestran las curvas ROC para los distintos modelos generados (desde un modelo que incluye sólo 1 metabolito, a un modelo que los incluye a todos).

Figura 4.1.27 Frecuencia de selección y parámetro de importancia de los metabolitos VHC vs HAI

Tabla 4.1.11 Parámetro de importancia, y el ranking de la frecuencia con la que son seleccionados cada uno de los metabolitos para el grupo VHC y HAI

	Rank.Freq.	Importance
2-IsopropyImalic acid	1.00	5.7343
1-Methyladenosine	0.98	4.1585
Creatinine	0.98	3.1207
Cholesterol sulfate	0.94	3.1960
Methylmalonic acid	0.94	2.2812
Phenylpropiolic acid	0.88	1.9449
Succinic acid	0.84	1.9047
Orotic acid	0.82	1.4484
L-Threonine	0.74	1.4232
Choline	0.72	1.2809
Oxoglutaric acid	0.72	1.2615

Figura 4.1.28 Curvas ROC para múltiples modelos generados VHC vs HAI

Figura 4.1.29 Exactitud predictiva para los diferentes modelos generados VHC vs HAI

El modelo finalmente seleccionado incluye a 11 metabolitos con valor superior a 1 en el parámetro de importancia, siendo el ácido 2-isopropilmálico y la metiladenosina los que tienen mayor importancia. En la Figura 4.1.30 se muestra la curva ROC y el AUC, ambas con su intervalo de confianza al 95%. El valor del AUC es indicativo de una buena capacidad de discriminación.

Figura 4.1.30 Curva ROC y AUC del modelo seleccionado Curva ROC y AUC del modelo seleccionado VHC vs HAI

En la Figura 4.1.31 se muestran las probabilidades predichas para cada uno de los pacientes, indicando aquellos que han tenido una clasificación errónea. Se muestra también la matriz de confusión (Tabla 4.1.12), donde podemos ver que 4 pacientes del grupo VHC están mal clasificados.

La exactitud predictiva media estimada por validación cruzada es 0.767 (Figura 4.1.32)

Figura 4.1.31 Probabilidades predichas para cada paciente del modelo VHC vs HAI

Tabla 4.1.12 Matriz de confusión del modelo VHC vs HAI

Figura 4.1.32 Exactitud predictiva del modelo VHC vs HAI

4.1.5 VHC vs CBP

Después de la normalización (datos no presentados) se procede al cálculo del AUC, el p-valor del test t de student y del logaritmo em base 2 (log2FC) expuestos en la Tabla 4.1.13 . Un valor "FC" positivo indica que la concentración en la condición 1 (VHC) es superior a la concentración en la condición 2 (HAI), mientras que un FC negativo indica que la concentración en la condición 1 (VHC) es inferior a la concentración en la condición 1 (VHC)

Tabla 4.1.13 Valor estimado del AUC para cada uno de los metabolitos, el p-valor corregido del test t, y el log2FC estimado. VHC vs CBP

x	AUC	Pval	FC
Imidazole	0.9802	0.0000	-3.0429
2-Isopropylmalic acid	0.9603	0.0000	-1.4709
Uric acid	0.9524	0.0000	3.8963
L-Tyrosine	0.9206	0.0000	0.7041
2-Aminobenzoic acid	0.9147	0.0000	-1.4883
L-Arginine	0.9127	0.0000	1.1591
S-Methyl-L-cysteine	0.9087	0.0000	0.4324
Leu-Ile	0.9048	0.0000	0.3578
1-Methyladenosine	0.8730	0.0010	0.5810

X	AUC	Pval	FC
L-Proline	0.8690	0.0001	0.5278
Nicotinic acid	0.8651	0.0002	-1.0925
L-Alanine	0.8532	0.0012	0.8077
Citrulline	0.8492	0.0007	0.3871
p-Aminobenzoic acid	0.8492	0.0009	-1.2266
Betaine aldehyde	0.8413	0.0006	0.7906
Sarcosine	0.8373	0.0014	0.7744
Niacinamide	0.8294	0.0003	-1.9151
L-Threonine	0.8016	0.0208	0.1440
Succinic acid	0.7937	0.0068	-0.8217
Serine	0.7917	0.0038	0.2519
Methylmalonic acid	0.7897	0.0085	-0.8127
Orotic acid	0.7738	0.0066	-0.5895
Argininosuccinic acid	0.7698	0.0046	0.2636
Oxoglutaric acid	0.7659	0.0291	-0.6240
Glutathione	0.7659	0.0066	-0.6599
Ortho-Hydroxyphenylacetic acid	0.7619	0.0102	0.2971
Creatinine	0.7540	0.0239	0.5554
Cholesterol sulfate	0.7460	0.0749	0.0450
Pantothenic acid	0.7381	0.0654	-0.9541
DL-2-Aminooctanoic acid	0.7302	0.0573	-1.6628
5-Methyltetrahydrofolic acid	0.7103	0.0339	0.0867
Xanthine	0.7103	0.0463	0.4066
Taurodeoxycholic acid	0.7103	0.0460	-1.1561
Trehalose 6-phosphate	0.6786	0.0341	0.1526
Phenylpropiolic acid	0.6746	0.1002	-0.5218
Dimethylglycine	0.6706	0.2443	-0.5650
Trehalose	0.6687	0.4219	-0.7195
Guanine	0.6667	0.0692	1.0427
Uridine 5'-diphosphate	0.6667	0.1317	0.0437
3-Phosphoglyceric acid	0.6548	0.1873	-0.4896
Choline	0.6508	0.3014	-0.5281
Citraconic acid	0.6468	0.1390	-0.5683
L-Glutamine	0.6151	0.3414	-0.2061
L-Carnitine	0.6111	0.5732	-0.6953
L-Valine	0.5992	0.5151	-0.1890
7-bisphosphate	0.5952	0.1510	0.2384
Hypoxanthine	0.5774	0.6139	-0.4603

x	AUC	Pval	FC
D-Hexose-Phosphate	0.5556	0.4982	-0.8430
3-phosphoshikimic acid	0.5437	0.7180	-0.3316
NADH	0.5357	0.9758	-0.1779
Taurine	0.5238	0.9254	-0.6631
Pyroglutamic acid	0.5198	0.5688	-0.1843
Biotin	0.5040	0.5344	-0.3385

Figura 4.1.33 Metabolitos ordenados en función de su FC. VHC vs CBP

En la Figura 4.1.33 se representan los metabolitos en función de su FC. Un FC positivo (verde) indica que la concentración en la condición 1 (VHC) es superior a la concentración en la condición 2 (HAI), y un FC negativo (morado) indicando mayor concentración en la condición 2 (HAI).

Para los cinco metabolitos con mayores AUC, se presenta la curva ROC, el punto de corte óptimo (punto de color rojo), y el intervalo de confianza *bootstrap* al 95% (valor entre paréntesis al lado del valor de concentración del punto de corte) (ver Figura 4.1.34).

Hay 18 metabolitos con buena o excelente capacidad de discriminación, con 8 metabolitos con una capacidad de discriminación excelente, entre los que destacan imidazol y ácido 2-isopropimálico.

Tabla 4.1.14 Parámetro de importancia, y el ranking de la frecuencia con la que son seleccionados cada uno de los metabolitos para el grupo VHC y CBP

	Rank.Freq.	Importance
Imidazole	1.00	5.5924
2-IsopropyImalic acid	0.94	5.2958
Uric acid	0.86	4.0206
L-Tyrosine	0.74	3.4689
L-Arginine	0.70	3.6070
2-Aminobenzoic acid	0.54	2.9980
S-Methyl-L-cysteine	0.46	2.7025
1-Methyladenosine	0.46	2.4612
Leu-lle	0.44	2.3456
Citrulline	0.30	2.0283

En la Tabla 4.1.14 se presenta la frecuencia de selección (a partir de las 500 muestras de validación cruzada) de los metabolitos, y el parámetro de importancia (se muestran sólo los metabolitos con un valor del parámetro de importancia superior a 1.9).

En la Figura 4.1.35 se presenta esta información de manera gráfica.

Figura 4.1.34 Curva ROC VHC vs CBP para los cinco metabolitos más discriminativos

Uric acid

AUC: 0.16

0.4 0.6 False positive rate

0.8

20

0.8

ve rate 0.6

True positi 0.4

0.2

0.0

Α

0.0 0.2

•

CBF

Figura 4.1.35 Frecuencia de selección y parámetro de importancia de los metabolitos VHC vs CBP

Figura 4.1.36 Curvas ROC para múltiples modelos generados VHC vs CBP

Figura 4.1.37 Curva ROC y AUC del modelo seleccionado Curva ROC y AUC del modelo seleccionado VHC vs CBP

Figura 4.1.38 Exactitud predictiva para los diferentes modelos generados VHC vs CBP

En la Figura 4.1.36 se muestran las curvas ROC para los distintos modelos generados (desde un modelo que incluye sólo 1 metabolito, a un modelo que los incluye a todos). En la Figura 4.1.34 se muestra la curva ROC en color azul para los cinco metabolitos más discriminativos donde se puede observar el punto de corte óptimo (punto rojo), y el intervalo de confianza al 95% para el AUC, siendo la diagonal de color gris la que indica la ausencia de capacidad de discriminación. Al lado derecho de cada curva ROC se presenta el *boxplot* con la distribución de las concentraciones en cada uno de los grupos, la media de la concentración (rombo amarillo), y el punto de corte óptimo (línea de color rojo).

La capacidad que tienen los diferentes modelos con número creciente de metabolitos en cada modelo para predecir correctamente casos verdaderos positivos y verdaderos negativos está representada en la Figura 4.1.38.

Figura 4.1.39 Probabilidades predichas para cada paciente del modelo VHC vs CBP

El modelo finalmente seleccionado incluye a 9 metabolitos con valor superior a 1.9 en el parámetro de importancia, siendo el ácido 2-isopropimálico y el imidazol los que tienen mayor importancia. En la Figura 4.1.37 se muestra la curva ROC y el AUC, ambas con su intervalo de confianza al 95%. El valor del AUC es indicativo de una capacidad de discriminación excelente, y un intervalo de confianza muy estrecho.

En la Figura 4.1.39 se muestran las probabilidades predichas para cada uno de los pacientes, indicando aquellos que han tenido una clasificación errónea. Se muestra también, en la Tabla 4.1.15, la matriz de confusión donde podemos ver que 1 paciente del grupo VHC y 1 paciente del grupo CBP están mal clasificados.

La exactitud predictiva media estimada en base a 100 muestras de validación cruzada es 0.915 (ver Figura 4.1.40)

Figura 4.1.40 Exactitud predictiva del modelo VHC vs CBP

4.1.6 HAI vs CBP

Después de la normalización (datos no presentados) se procede al cálculo del AUC, el p-valor del test t de student y del logaritmo em base 2 (log2FC) (Tabla 4.1.16)

Un valor "FC" positivo indica que la concentración en la condición 1 (HAI) es superior a la concentración en la condición 2 (CBP), mientras que un FC negativo indica que la concentración en la condición 1 (HAI) es inferior a la concentración en la condición 2 (CBP).

Tabla 4.1.16 Valor estimado del AUC para cada uno de los metabolitos, el p-valor corregido del test t, y el log2FC estimado. HAI vs CBP

X	AUC	Pval	FC
Imidazole	0.9948	0.0000	-2.9875
Uric acid	0.9531	0.0000	4.0000
L-Arginine	0.9115	0.0000	1.1483
L-Tyrosine	0.8750	0.0005	0.5451
2-Aminobenzoic acid	0.8698	0.0003	-1.3636
Taurodeoxycholic acid	0.8542	0.0006	-1.5177
Glutathione	0.8438	0.0025	-0.6413
S-Methyl-L-cysteine	0.8385	0.0048	0.2860

X	AUC	Pval	FC
L-Proline	0.8333	0.0013	0.5377
Serine	0.8307	0.0021	0.3325
Leu-Ile	0.8125	0.0042	0.2798
Citrulline	0.8125	0.0038	0.3481
Ortho-Hydroxyphenylacetic acid	0.7760	0.0195	0.3269
Betaine aldehyde	0.7708	0.0023	0.5643
Sarcosine	0.7552	0.0170	0.7410
L-Alanine	0.7500	0.0142	0.7703
p-Aminobenzoic acid	0.7500	0.0074	-1.1767
Nicotinic acid	0.7448	0.0458	-0.8613
DL-2-Aminooctanoic acid	0.7396	0.0193	-1.4864
Niacinamide	0.7240	0.0220	-1.6422
Argininosuccinic acid	0.7031	0.0836	0.1761
Trehalose 6-phosphate	0.6823	0.0960	0.2003
Creatinine	0.6615	0.1466	-2.0600
2-Isopropylmalic acid	0.6510	0.0636	-0.4005
5-Methyltetrahydrofolic acid	0.6510	0.1806	0.0221
Phenylpropiolic acid	0.6458	0.2391	0.0418
Xanthine	0.6458	0.3362	0.1099
Uridine 5'-diphosphate	0.6458	0.1310	0.0789
Pantothenic acid	0.6354	0.0700	-0.7144
Guanine	0.6250	0.2317	0.8043
Taurine	0.6250	0.3360	-1.0223
L-Glutamine	0.6146	0.8544	-0.5480
L-Carnitine	0.6042	0.3607	-0.1246
Biotin	0.5990	0.4670	-0.5256
D-Hexose-Phosphate	0.5938	0.3135	-0.6338
7-bisphosphate	0.5885	0.1007	0.4380
1-Methyladenosine	0.5781	0.3041	0.1148
Trehalose	0.5781	0.7764	-0.8079
3-phosphoshikimic acid	0.5729	0.6361	-0.2775
Hypoxanthine	0.5677	0.6856	-0.3332
Cholesterol sulfate	0.5677	0.5916	-0.3498
NADH	0.5417	0.5305	-0.3658
Methylmalonic acid	0.5417	0.9691	-0.2600
Citraconic acid	0.5417	0.7526	-0.1603
Pyroglutamic acid	0.5365	0.6686	-0.1244
L-Threonine	0.5312	0.5477	-0.6680

X	AUC	Pval	FC
L-Valine	0.5156	0.8692	-0.1650
Succinic acid	0.5156	0.9607	-0.2607
Dimethylglycine	0.5104	0.7062	0.0416
3-Phosphoglyceric acid	0.5104	0.9908	-0.1689
Orotic acid	0.5104	0.8162	-0.1933
Choline	0.5052	0.6045	0.0436
Oxoglutaric acid	0.5052	0.8093	-0.1122

En la Figura 4.1.41 se representan los metabolitos en función de su FC. Un FC positivo (verde) indica que la concentración en la condición 1 (HAI) es superior a la concentración en la condición 2 (CBP), y un FC negativo (morado) indicando mayor concentración en la condición 2 (CBP). Para los cinco metabolitos con mayores AUC, se presenta en la Tabla 4.1.17 la curva ROC, el punto de corte óptimo (punto de color rojo), y el intervalo de confianza *bootstrap* al 95% (valor

Figura 4.1.41 Metabolitos ordenados en función de su FC. HAI vs CBP

entre paréntesis al lado del valor de concentración el punto de corte). A la derecha de cada AUC se presenta Boxplot con la distribución de las concentraciones en cada uno de los grupos, la media de la concentración (rombo amarillo), y el punto de corte óptimo (línea de color rojo) (Derecha).

Figura 4.1.42 Curva ROC HAI vs CBP para los cinco metabolitos más discriminativos

Hay 12 metabolitos con buena o excelente capacidad de discriminación, con 3 metabolitos con una capacidad de discriminación excelente, entre los que destacan imidazol y ácido úrico.

En la Tabla 4.1.17 se presenta la frecuencia de selección (a partir de las 500 muestras de validación cruzada) de los metabolitos, y el parámetro de importancia (se muestran sólo los metabolitos con un valor del parámetro de importancia superior a 1.9). En la Figura 4.1.43 se presenta esta información de
manera gráfica. En la Figura 4.1.42 se muestra la curva ROC en color azul para los cinco metabolitos más discriminativos donde se puede observar el punto de corte óptimo (punto rojo), y el intervalo de confianza al 95% para el AUC, siendo la diagonal de color gris la que indica la ausencia de capacidad de discriminación.

Tabla 4.1.17 Parámetro de importancia, y el ranking de la frecuencia con la que son seleccionados cada uno de los metabolitos para el grupo HAI vs CBP

	Rank.Freq.	Importance
Imidazole	1.00	5.5924
2-IsopropyImalic acid	0.94	5.2958
Uric acid	0.86	4.0206
L-Tyrosine	0.74	3.4689
L-Arginine	0.70	3.6070
2-Aminobenzoic acid	0.54	2.9980
S-Methyl-L-cysteine	0.46	2.7025
1-Methyladenosine	0.46	2.4612
Leu-lle	0.44	2.3456
Citrulline	0.30	2.0283

Figura 4.1.43 Frecuencia de selección y parámetro de importancia de los metabolitos HAI vs CBP

1-Specificity (False positive rate) Figura 4.1.44 Curvas ROC para múltiples modelos generados HAI vs CBP

En la Figura 4.1.44 se muestran las curvas ROC para los distintos modelos generados (desde un modelo que incluye sólo 1 metabolito, a un modelo que los incluye a todos).

Figura 4.1.45 Exactitud predictiva para los diferentes modelos generados HAI vs CBP

La capacidad que tienen los diferentes modelos con número creciente de metabolitos en cada modelo para predecir correctamente casos verdaderos positivos y verdaderos negativos está representada en la Figura 4.1.45. El modelo finalmente seleccionado incluye a 10 metabolitos con valor superior a 1.9 en el parámetro de importancia, siendo el ácido úrico y el imidazol los que tienen mayor importancia. En la Figura 4.1.42 se muestra la curva ROC

En la Figura 4.1.46 se muestra la curva ROC y el AUC del modelo seleccionado, ambas con su intervalo de confianza al 95%. El valor del AUC es indicativo de una capacidad de discriminación excelente, y un intervalo de confianza muy estrecho.

Figura 4.1.46 Curva ROC y AUC del modelo seleccionado Curva ROC y AUC del modelo seleccionado HAI vs CBP

Figura 4.1.47 Probabilidades predichas para cada paciente del modelo HAI vs CBP

Tabla 4.1.18 Matriz de confusión del modelo HAI vs CBP

En la Figura 4.1.47 se muestran las probabilidades predichas para cada uno de los pacientes, indicando aquellos que han tenido una clasificación errónea. Se muestra, en la Tabla 4.1.18 la matriz de confusión, donde podemos ver que 1 paciente del grupo CBP está mal clasificado.

La exactitud predictiva media del modelo, estimada en base a 100 muestras de validación cruzada, es 0.927 (ver Figura 4.1.48).

Figura 4.1.48 Exactitud predictiva del modelo VHC vs CBP

4.1.7 Resumen del modelo predictivo

Se presenta un resumen por extenso de los resultados obtenidos por grupos de comparación diagnóstica descritos previamente y en la Tabla 4.1.19 se pueden consultar de forma sucinta estos resultados.

Modelo (Condición 1 vs Condición 2)	Metabolitos	Metabolito en la condición 2.	Curvas ROC-AUC	Capacidad discriminativa
	L-Carnitine	1		
	Sarcosine	+		
	Methylmalonic acid	1		
	Succinic acid	1	93	
	L-Alanine	+	8-	
Control vs	2-IsopropyImalic acid	1	9 - Area under the curve (AUC) = 0.808	Buena
VHC	p-Aminobenzoic acid	1	u) // // // // // // // // // // // // //	
	Nicotinic acid	1	50	
	Orotic acid	1	°	
	Argininosuccinic acid	+	0.0 0.2 0.4 0.6 0.8 1.0 1.Specificity (False positive rate)	
	S-Methyl-L-cysteine	+		

Tabla 4.1.19 Tabla resumen del modelo predictivo entre Control, VHC, HAI y CBP

	Sarcosine 1-		9		
	Methyladenosine	Ļ	80-		
	Creatinine	+	9 9	Buena	
Control vs HAI	Cholesterol sulfate	ŧ	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	(con intervalo de confianza amplio)	
	L-Alanine	1	00-		
	7-bisphosphate	1	0.0 0.2 0.4 0.6 0.8 1.0 1-Specificity (False positive rate)		
	L-Carnitine	ŧ			
	Imidazole	1			
	Uric acid	Ļ			
	Glutathione	1			
	Leu-Ile	ŧ			
	Pantothenic acid	1			
	L-Arginine	ŧ			
	DL-2- Aminooctanoic	•	3-		
	Uridine 5'- diphosphate	ŧ	9 - Are unlist the core (AUC) = 8.964 90% CI = 9.741		
Control	L-Carnitine	Ļ	tenenst 1	Excelente	
vs CBP	1- Methyladenosine	ŧ			
	2-Aminobenzoic acid	1	 Specificity prime pression with 		
	Betaine aldehyde	ŧ			
	L-Tyrosine	ŧ			
	Niacinamide	•			
	2-Isopropylmalic acid	•			
	1- Methyladenosine	I	01		
	Creatinine	Ļ	:-		
	Cholesterol sulfate	ŧ	form wrighted at		
	Methylmalonic acid	1	99% Ct 0.751		
VHC vs	Phenylpropiolic	1	0 0	Buena	
	Succinic acid		- 1,		
	Orotic acid				
	L-Threonine				
	Choline				
	Oxoglutaric acid				
		T			

	Imidazole	1		
	2-Isopropylmalic acid	1	97	
	Uric acid	Ļ	æ _	
	L-Tyrosine	Ļ	0 (egg	
	L-Arginine	Ļ	8 G - Area under the curve (AUC) = 0.975	
VHC vs CBP	2-Aminobenzoic acid	1	42 - 95% Ct. 0.056-1	Excelente
021	S-Methyl-L- cysteine	ŧ	- 0	
	1- Methyladenosine	ŧ	0 0 02 04 06 0.8 10 1.5pecificity (Failer positive rate)	
	Leu-lle	•		
	Imidazole	1 I		
	Uric acid	•		
	L-Arginine	•		
	L-Tyrosine	+		
	2-Aminobenzoic acid	1	21 ·	
	Taurodeoxycholic acid	1	80	
	Glutathione		06 -	
CBP	Betaine aldehyde	ŧ	90 Area under the curve (AUC) = 0.929 90% O: 0.0751	Excelente
	DL-2- Aminooctanoic acid	A	2	
	S-Methyl-L- cysteine	ŧ		

4.2 Correlación diferencial media, red de correlaciones perturbadas y "links"

4.2.1 Control vs VHC

La red de correlaciones perturbadas entre el grupo control y el grupo de VHC se muestra en la Figura 4.2.16 A. De los 53 metabolitos analizados, 45 tenían por lo menos una correlación que estaba significativamente perturbada en pacientes con VHC. Los metabolitos que presentan mayor número de correlaciones perturbadas son el ácido fenilpropiólico, metilcisteína, a-ketoglutarato, ácido metilmalónico y el ácido 2-isopropilmálico. Los metabolitos con mayores correlaciones diferenciales medias son la prolina, citrulina, ácido 2-isopropilmálico y ácido metilmalónico.

En esta red se identifica un módulo significativo formado por dos *hubs* (nodo o metabolito con mayor número de *links*) que son el ácido isopropilmálico y el ácido metilmalónico. La designación de los metabolitos que constituyen este módulo y que se relacionan con estos dos *hubs* están representadas en la Tabla 4.2.1. Para

<pre>\$modules \$modules\$c1 2</pre>			
<pre>[1] "succinate" [5] "hydroxyphenylacetic_acid"</pre>	"carnitine"	"methylcysteine"	"methylmalonic_acid"
	"orotate"	"serine"	"taurine"
<pre>[9] "citraconic_acid" [13] "pyroglutamic_acid" [17] "hexose phosphate"</pre>	"nicotinate" "guanine" "biotin"	" <mark>citru</mark> lline" "trehalose_6_phosphate" "trehalose sucrose"	"creatinine" "x2_isopropylmalic_acid"
<pre>\$module.table module.id module.size modu c1_2 c1_2 19</pre>	le.parent	modul	e.hub module.scale module.pvalue
	c1_1 methylmalon:	ic_acid(10),x2_isopropylmalic_ac	id(9) S1 Ø

Tabla 4.2.1 Metabolitos del módulo de correlaciones perturbadas Control vs VHC

los metabolitos que constituyen el único módulo identificado en la red, el análisis de vías metabólicas señala que lo más probable es que haya una perturbación en el metabolismo de los carbohidratos habiéndose identificado dos metabolitos en la vía del metabolismo del almidón y sucrosa (Figura 4.2.1).

Table 2: Result from Pathway Analysis

	Total	Expected	Hits	Raw p	-log10(p)	Holm adjust	FDR	Impact
Starch and sucrose metabolism	18	0.22	2	1.94E-02	1.71E+00	1.00E+00	1.00E+00	0.07
Taurine and hypotaurine metabolism	8	0.10	1	9.42E-02	1.03E+00	1.00E + 00	1.00E+00	0.43
Phenylalanine metabolism	10	0.12	1	1.16E-01	9.34E-01	1.00E + 00	1.00E+00	0.00
Biotin metabolism	10	0.12	1	1.16E-01	9.34E-01	1.00E + 00	1.00E+00	0.20
Arginine biosynthesis	14	0.17	1	1.59E-01	7.98E-01	1.00E + 00	1.00E+00	0.23
Butanoate metabolism	15	0.18	1	1.70E-01	7.71E-01	1.00E + 00	1.00E+00	0.00
Nicotinate and nicotinamide metabolism	15	0.18	1	1.70E-01	7.71E-01	1.00E + 00	1.00E+00	0.00
Citrate cycle (TCA cycle)	20	0.25	1	2.20E-01	6.58E-01	1.00E + 00	1.00E+00	0.03
Propanoate metabolism	23	0.28	1	2.49E-01	6.05E-01	1.00E + 00	1.00E+00	0.00
Galactose metabolism	27	0.33	1	2.85E-01	5.45E-01	1.00E + 00	1.00E + 00	0.04
Alanine, aspartate and glutamate	28	0.34	1	2.94E-01	5.31E-01	1.00E + 00	1.00E + 00	0.00
metabolism								
Glutathione metabolism	28	0.34	1	2.94E-01	5.31E-01	1.00E + 00	1.00E+00	0.01
Amino sugar and nucleotide sugar	37	0.45	1	3.70E-01	4.32E-01	1.00E + 00	1.00E + 00	0.00
metabolism								
Pyrimidine metabolism	39	0.48	1	3.86E-01	4.14E-01	1.00E + 00	1.00E + 00	0.05
Valine, leucine and isoleucine degrada-	40	0.49	1	3.93E-01	4.05E-01	1.00E + 00	1.00E + 00	0.02
tion								
Primary bile acid biosynthesis	46	0.56	1	4.38E-01	3.59E-01	1.00E + 00	1.00E+00	0.01
Purine metabolism	65	0.80	1	5.59E-01	2.53E-01	1.00E + 00	1.00E+00	0.01

Figura 4.2.1 Análisis de vías metabólicas Control vs VHC.

4.2.2 Control vs HAI

La red de correlaciones perturbadas entre el grupo control y el grupo de HAI se muestra en la Figura 4.2.16 B. De los 53 metabolitos analizados, 51 tenían por lo menos una correlación que estaba significativamente perturbada en pacientes con HAI. Los metabolitos que presentan mayor número de correlaciones perturbadas son el ácido fenilpropiolico y la metilcisteína. Los metabolitos con mayores correlaciones diferenciales medias son la colina, dimetilglicina, antranilato y p-aminobenzoato.

En esta red se identifican tres módulos significativos formados que tienen por hubs la tirosina (módulos 1 y 2), el ácido citracónico y el ácido 2-isopropilmálico. La designación de los metabolitos que constituyen este módulo y que se relacionan con estos tres hubs están representados en la Tabla 4.2.2.

Para los metabolitos que constituyen los dos primeros módulos cuyo componente constituye el principal hub em ambos módulos es la tirosina, el análisis de vías metabólicas apunta para un predominio del metabolismo de los aminoácidos, muy probablemente la vía de la biosíntesis de fenilalanina, tirosina y triptófano. (Figura 4.2.2; Figura 4.2.3)

Tabla 4.2.2 Metabolitos que constituyen los módulos Control vs HAI.	

<pre>pmouulespc5_5 [1] "leucine_isoleucine" [5] "citraconic_acid" [9] "cholesteryl_sulfate"</pre>	"alanine" "imidazole"	"tyrosine" "nicotinate"	"taurine" "x2_isopro	pylmalic_acid"	
<pre>\$modules\$c3_4 [1] "leveine inclosed"</pre>				"-h-lhl-	
[1] Tenciue_Isotenciue	tyrosine	Imidazore nicor	Inace	choiesteryi_	surrace
\$modules\$c3 5					
[1] "alanine"	"taurine"	"citraconic_acid"	"x2_isopro	pylmalic_acid"	
A 1.7 1.17					
\$module.table	a madula nanant		odulo huh mod	ulo ccolo modulo	nyalua
	e modure.parent			die.scale module	.pvarue
C3_3 C3_3	9 63_1	ty	rosine(5)	51	0
c3_4 c3_4	5 c3_3	ty	rosine(4)	S1	0
c3_5 c3_5	4 c3_3	citraconic_acid(3),x2_isopropylmali	c_acid(3)	S1	0

Table 2: Result from Pathway Analysis

	Total	Expected	Hits	Raw p	-log10(p)	Holm adjust	FDR	Impact
Phenylalanine, tyrosine and tryptophan	4	0.02	1	2.05E-02	1.69E + 00	1.00E + 00	8.50E-01	0.50
biosynthesis	1.00	ACCULATION OF THE	1.5		11111111111111111111111111111111111111		STORE WARDEN	1002808054
Aminoacyl-tRNA biosynthesis	48	0.25	2	2.33E-02	1.63E+00	1.00E+00	8.50E-01	0.00
Taurine and hypotaurine metabolism	8	0.04	1	4.06E-02	1.39E + 00	1.00E + 00	8.50E-01	0.43
Ubiquinone and other terpenoid-quinone	9	0.05	1	4.56E-02	1.34E+00	1.00E + 00	8.50E-01	0.00
biosynthesis	22200	20382300	3.0	2010/2010/2010/2010	00000000000000		1002020000000	199300200
Phenylalanine metabolism	10	0.05	1	5.06E-02	1.30E + 00	1.00E + 00	8.50E-01	0.00
Nicotinate and nicotinamide metabolism	15	0.08	1	7.50E-02	1.12E+00	1.00E + 00	1.00E+00	0.00
Selenocompound metabolism	20	0.10	1	9.89E-02	1.00E+00	1.00E + 00	1.00E+00	0.00
Alanine, aspartate and glutamate metabolism	28	0.14	1	1.36E-01	8.66E-01	1.00E+00	1.00E+00	0.00
Tyrosine metabolism	42	0.22	1	1.98E-01	7.04E-01	1.00E + 00	1.00E+00	0.14
Primary bile acid biosynthesis	46	0.24	1	2.15E-01	6.68E-01	1.00E + 00	1.00E+00	0.01
Steroid hormone biosynthesis	85	0.44	1	3.64E-01	4.39E-01	1.00E + 00	1.00E+00	0.00

Figura 4.2.2 Análisis de vías metabólicas Control vs HAI. Primer módulo

Figura 4.2.3 Análisis de vías metabólicas Control vs HAI. Segundo módulo

En el caso del tercer módulo identificado, una perturbación el metabolismos de los aminoácidos parece lo más probable, con mayor impacto en la vía del metabolismo de la taurina e hipotaurina (Figura 4.2.4).

Figura 4.2.4 Análisis de vías metabólicas Control vs HAI. Tercer módulo

4.2.3 Control vs CBP

La red de correlaciones perturbadas entre el grupo control y el grupo de CBP se presentan en la Figura 4.2.16 C. De los 53 metabolitos analizados, 49 tenían por lo menos una correlación que estaba significativamente perturbada en pacientes con CBP. Los metabolitos que presentan mayor número de correlaciones perturbadas son el ácido fenipropiólico, metilcisteina y ácido metilmalónico. Los metabolitos con mayores correlaciones diferenciales medias son la serina, glutamina, y 3-fosfoglicerato.

En esta red de correlaciones perturbadas se establecen 6 módulos significativos, cuyos *hubs* son los siguientes: (1) ácido fenilpropiólico, (2) succinato y ácido metilmalónico, (3) nicotinamida y betaina aldehido, (4) ácido fenipropiólico, a-cetoglutarato, y glutatation negativo, (5) treonina, (6) shikimato-3-fosfato.

Estos resultados revelan que algunos de los metabolitos, con correlaciones diferenciales medias elevadas o elevado número de links, son compartidos por el grupo control-VHC y control-CBP.

La designación de los metabolitos que constituyen estos seis módulos y que se relacionan con sus correspondientes *hubs* se presentan en la Tabla 4.2.3

Para los metabolitos que constituyen el primer módulo del análisis de redes perturbadas entre el grupo control y el grupo de CBP, el análisis de vías metabólicas sugiere que la vía metabólica que más probablemente estará perturbada es la vía de la biosíntesis de arginina de la que hacen parte cinco de los metabolitos que constituyen este módulo que tiene como *hub* el ácido

fenilpropiólico

(Figura

4.2.5)

Tabla 4.2.3 Metabolitos que constituyen los módulos Control vs CBP

[1] [6] [11] [16] [21]	"a_ketoglutarate" "sarcosine" "threonine" "leucine_isoleucine" "trehalose_6_phosphate'	"serine" "1_anginino_succinate" "citrulline" "udp_neg" "taurodeoxycholic_acid"	"pyroglutamic_acid" "pantothenate" "cholestery1_sulfate" "anthranilate" "gluthatione_neg"	"shikimate_3_phosphate" "valine" "p_aminobenzoate" "nadh" "arginine"	"glutamine" "phenylpropiolic_acid" "xanthine" "x3_phosphoglycerate"
\$modu [1] [5] [9] [13] [17]	<pre>lles\$c1_4 "succinate" "creatinine" "tyrosine" "dimethylglycine" "trehalose_sucrose"</pre>	"methylcysteine" "proline" "guanine" "choline" "x2_isopropylmalic_ad	"methylmalonic_ac "orotate" "citraconic_acid" "hydroxyphenylace cid" "biotin"	id" "x5_methyl_thf' "carnitine" "taurine" tic_acid" "hexose_phospha "hypoxanthine"	, ste"
\$modu [1] "	les\$c1_5 betaine_aldehyde" "imic	dazole" "alanine"	"nicotinate"	"uric_acid"	
\$modu [1] [6] [11]	lles\$c1_6 "a_ketoglutarate" "pantothenate" "nadh"	"pyroglutamic_acid" "valine" "x3_phosphoglycerate"	"glutamine" "phenylpropiolic_acid" "taurodeoxycholic_acid"	"sarcosine" "p_aminobenzoate" "gluthatione_neg"	"l_arginino_succinate" "anthranilate"
\$modu [1] "	les\$c1_7 'serine" "threonine'	' "citrulline" "arginine'			
\$modu [1] " [6] "	lles\$c1_8 shikimate_3_phosphate" 'trehalose_6_phosphate"	"cholesteryl_sulfate" '	'xanthine"	"leucine_isoleucine" '	'udp_neg"
\$modu	le.table				
	module.id module.size m	odule.parent		module.hu	ub module.scale
c1_3	c1_3 24	c1_1		phenylpropiolic_acid(8	3) 53
c1_4	c1_4 20	c1_2	succinat	e(8),methylmalonic_acid(8	3) 51
c1_5	c1_5 5	c1_2	betaine	_aldehyde(3),nicotinate(3	3) 51
c1_6	c1_6 14	c1_3 a_ketoglutar	rate(7),phenylpropiolic_	acid(7),gluthatione_neg(0	5) 52
c1_7	c1_7 4	c1_3		threonine(3	3) 52
c1_8	c1_8 6	c1_3		shikimate_3_phosphate(4	¥) 52
	module.pvalue				
c1_3	0.00				
c1_4	0.00				
c1_5	0.01				
c1_6	0.08				
c1_7	0.00				
c1_8	0.01				

El segundo módulo del análisis de redes de correlaciones perturbadas entre el grupo control y el grupo de CBP presenta un conjunto de metabolitos que en el análisis de vías metabólicas revela que con mayor probabilidad estarán perturbadas la vía del metabolismo de fenilalanina y la vía del metabolismo del almidón y sucrosa, cada una de estas vías conteniendo dos metabolitos del módulo (Figura 4.2.6)

and the second s	Total	Expected	Hits	Raw p	-log10(p)	Holm adjust	FDR	Impact
Arginine biosynthesis	14	0.20	5	6.55E-07	6.18E+00	5.50E-05	5.50E-05	0.42
D-Glutamine and D-glutamate metabolism	6	0.09	2	2.79E-03	2.55E+00	2.31E-01	1.07E-01	0.00
Aminoacyl-tRNA biosynthesis	48	0.68	4	3.93E-03	2.41E+00	3.22E-01	1.07E-01	0.00
Valine, leucine and isoleucine biosynthe- sis	8	0.11	2	5.12E-03	2.29E+00	4.14E-01	1.07E-01	0.00
Alanine, aspartate and glutamate metabolism	28	0.40	3	6.46E-03	2.19E+00	5.17E-01	1.09E-01	0.18
Pantothenate and CoA biosynthesis	19	0.27	2	2.84E-02	1.55E+00	1.00E+00	3.98E-01	0.01
Glutathione metabolism	28	0.40	2	5.82E-02	1.24E+00	1.00E + 00	6.98E-01	0.03
Glycine, serine and threonine metabolism	33	0.47	2	7.79E-02	1.11E+00	1.00E + 00	7.68E-01	0.09
Nitrogen metabolism	6	0.09	1	8.23E-02	1.08E+00	1.00E + 00	7.68E-01	0.00
Pyrimidine metabolism	39	0.55	2	1.04E-01	9.83E-01	1.00E + 00	8.73E-01	0.04
Butanoate metabolism	15	0.21	1	1.94E-01	7.13E-01	1.00E + 00	1.00E+00	0.00
Purine metabolism	65	0.92	2	2.35E-01	6.29E-01	1.00E + 00	1.00E+00	0.01
Citrate cycle (TCA cycle)	20	0.28	1	2.50E-01	6.02E-01	1.00E+00	1.00E+00	0.06
Glyoxylate and dicarboxylate metabolism	32	0.45	1	3.70E-01	4.32E-01	1.00E+00	1.00E+00	0.00
Arginine and proline metabolism	38	0.54	1	4.23E-01	3.74E-01	1.00E + 00	1.00E+00	0.06
Valine, leucine and isoleucine degrada- tion	40	0.57	1	4.40E-01	3.57E-01	1.00E + 00	1.00E+00	0.00
Tryptophan metabolism	41	0.58	1	4.48E-01	3.49E-01	1.00E + 00	1.00E+00	0.00
Steroid hormone biosynthesis	85	1.21	1	7.13E-01	1.47E-01	1.00E+00	1.00E+00	0.00

Figura 4.2.5 Análisis de vías metabólicas Control vs CBP. Primer módulo

El resultado del análisis de las vías metabólicas de los seis módulos nos informa que el metabolismo de los aminoácidos, el metabolismo energético y el de los nucleótidos estarán perturbados de forma preferencial cuando comparamos el grupo control con el grupo de CBP. En tres módulos, la probabilidad es mayor para la vía del metabolismo de la biosíntesis de arginina (metabolismo de aminoácidos) (ver Figura 4.2.5; Figura 4.2.9; Figura 4.2.8), mientras que los otros módulos privilegian el metabolismo de la pirimidina (metabolismo de nucleótidos) (ver Figura 4.2.10), el metabolismo del nicotinato y nicotinamida (metabolismo de cofactores y vitaminas) (ver Figura 4.2.7) y el metabolismo de la fenilalanina

Figura 4.2.6 Análisis de vías metabólicas Control vs CBP. Segundo módulo

Figura 4.2.7 Análisis de vías metabólicas Control vs CBP. Tercer módulo

0 - 120 - 000 - 000 - 00	Total	Expected	Hits	Raw p	-log10(p)	Holm adjust	FDR	Impact
Arginine biosynthesis	14	0.12	3	1.59E-04	3.80E+00	1.34E-02	1.34E-02	0.12
D-Glutamine and D-glutamate metabolism	6	0.05	2	9.56E-04	3.02E+00	7.94E-02	3.75E-02	0.00
Alanine, aspartate and glutamate metabolism	28	0.23	3	1.34E-03	2.87E+00	1.10E-01	3.75E-02	0.18
Pantothenate and CoA biosynthesis	19	0.16	2	1.03E-02	1.99E+00	8.30E-01	2.15E-01	0.01
Glutathione metabolism	28	0.23	2	2.17E-02	1.66E+00	1.00E+00	3.65E-01	0.26
Nitrogen metabolism	6	0.05	1	4.94E-02	1.31E+00	1.00E+00	6.86E-01	0.00
Aminoacyl-tRNA biosynthesis	48	0.40	2	5.89E-02	1.23E+00	1.00E+00	6.86E-01	0.00
Valine, leucine and isoleucine biosynthe- sis	8	0.07	1	6.53E-02	1.19E+00	1.00E+00	6.86E-01	0.00
Butanoate metabolism	15	0.13	1	1.19E-01	9.24E-01	1.00E+00	1.00E+00	0.00
Citrate cycle (TCA cycle)	20	0.17	1	1.56E-01	8.07E-01	1.00E+00	1.00E+00	0.06
Glyoxylate and dicarboxylate metabolism	32	0.27	1	2.38E-01	6.23E-01	1.00E+00	1.00E+00	0.00
Glycine, serine and threonine metabolism	33	0.28	1	2.45E-01	6.11E-01	1.00E+00	1.00E+00	0.09
Pyrimidine metabolism	39	0.33	1	2.83E-01	5.48E-01	1.00E+00	1.00E+00	0.00
Valine, leucine and isoleucine degrada-	40	0.34	1	2.89E-01	5.39E-01	1.00E+00	1.00E+00	0.00
tion	17.55	- 100 CON 11						
Tryptophan metabolism	41	0.34	1	2.95E-01	5.30E-01	1.00E + 00	1.00E+00	0.00
Purine metabolism	65	0.55	1	4.28E-01	3.68E-01	1.00E + 00	1.00E+00	0.00

Figura 4.2.8 Análisis de vías metabólicas Control vs CBP. Cuarto módulo

Figura 4.2.9 Análisis de vías metabólicas Control vs CBP. Quinto módulo

Figura 4.2.10 Análisis de vías metabólicas Control vs CBP. Sexto módulo

4.2.4 VHC vs HAI

La red de correlaciones perturbadas entre el grupo de VHC y el grupo de HAI se presentan en la Figura 4.2.16 D. De los 53 metabolitos analizados, 40 tenían por lo menos una correlación que estaba significativamente perturbada. Los metabolitos que presentan mayor número de correlaciones perturbadas son l-argininosuccinato y guanina. Los metabolitos con mayores correlaciones diferenciales medias son colina, dimetilglicina, succinato, y ácido metilmalónico. En esta red de correlaciones perturbadas se establecen 4 módulos significativos, que tienen como *hubs*: (1) ácido hidroxifeniliacético y p-aminobenzoato, (2) alanina, arginina, y sarcosina, (3) leucina-isoleucina y tirosina, (4) l-argininouccinato. La designación de los metabolitos que constituyen estos

Tabla 4.2.4 Metabolitos que constituyen los módulos VHC vs HAI.

\$module \$module [1] "ar [5] "cr	es es\$c3_2 hthranilate" reatinine"	"im "hy	idazole droxyph	" menylacetic_acid"	"citraconic_a "threonine"	acid"	"p_aminot	venzoate"	
\$module [1] "a] [7] "na	es\$c3_4 Lanine" adh"	"arginine"		"proline"	"sarco:	sine"	"pyrogluta	mic_acid" "pantother	nate
\$module [1] "le [6] "ni	es\$c3_5 eucine_isoleucine icotinate"	e" "valine"		"tyrosine"	"ord	otate"	"udp_r	ieg"	
\$module [1] "1_ [6] "hy	es\$c3_6 _arginino_succina /poxanthine"	ate" "guanin	2"	"betain	e_aldehyde"	"glutha	atione_neg"	"x5_methyl_thf"	
\$module	e.table								
mo	dule.id module.	size module.	parent		modu]	le.hub moo	dule.scale modu	le.pvalue	
c3_2	c3_2	7	c3_1			()	S2	0.00	
c3_4	c3_4	7	c3_3	alanine(4),argin	ine(4),sarcosi	ine(4)	S1	0.00	
c3_5	c3_5	6	c3_3			()	S1	0.01	
c3_6	c3_6	6	c3_3	l_ar	ginino_succina	ate(5)	S1	0.00	

cuatro módulos y que se relacionan con sus correspondientes hubs están representados en la Tabla 4.2.4

Table	2:	Result	from	Pathway	Analysis	

	Total	Expected	Hits	Raw p	-log10(p)	Holm adjust	FDR	Impact
Valine, leucine and isoleucine biosynthe-	8	0.04	1	3.56E-02	1.45E+00	1.00E+00	1.00E+00	0.00
Bis Phonylalapina metabolism	10	0.05	1	A AAE.02	1358-100	1.008+00	1.005+00	0.00
Checing, sering and throoning metabolism	33	0.05	1	1.40E-01	8.54E-01	1.00E+00	1.00E+00	0.00
Tryptophan metabolism	41	0.19	î	1.71E-01	7.66E-01	1.00E+00	1.00E+00	0.00
Aminoacyl-tRNA biosynthesis	48	0.22	1	1.98E-01	7.03E-01	1.00E+00	1.00E+00	0.00

Figura 4.2.11 Análisis de vías metabólicas VHC vs HAI. Primer módulo

Arginine biosynthesis	14	0.06	1	6.17E-02	1.21E+00	1.00E + 00	1.00E+00	0.0
Pantothenate and CoA biosynthesis	19	0.09	1	8.29E-02	1.08E+00	1.00E + 00	1.00E+00	0.0
Selenocompound metabolism	20	0.09	1	8.71E-02	1.06E+00	1.00E + 00	1.00E+00	0.0
Alanine, aspartate and glutamate metabolism	28	0.13	1	1.20E-01	9.21E-01	1.00E+00	1.00E+00	0.0
Glutathione metabolism	28	0.13	1	1.20E-01	9.21E-01	1.00E + 00	1.00E+00	0.0
Glycine, serine and threonine metabolism	33	0.15	1	1.40E-01	8.54E-01	1.00E+00	1.00E+00	0.0

Figura 4.2.12 Análisis de vías metabólicas VHC vs HAI. Segundo módulo

	Total	Expected	Hits	Raw p	-log10(p)	Holm adjust	FDR	Impact
Purine metabolism	65	0.25	2	2.33E-02	1.63E+00	1.00E + 00	1.00E+00	0.03
One carbon pool by folate	9	0.03	1	3.44E-02	1.46E+00	1.00E + 00	1.00E+00	0.00
Arginine biosynthesis	14	0.05	1	5.31E-02	1.28E+00	1.00E+00	1.00E+00	0.12
Alanine, aspartate and glutamate	28	0.11	1	1.04E-01	9.84E-01	1.00E + 00	1.00E+00	0.02
metabolism					The state board of the state			
Glutathione metabolism	28	0.11	1	1.04E-01	9.84E-01	1.00E+00	1.00E+00	0.26
Glycine, serine and threonine metabolism	33	0.13	1	1.21E-01	9.16E-01	1.00E+00	1.00E+00	0.03

Figura 4.2.14 Análisis de vías metabólicas VHC vs HAI. Cuarto módulo

Las vías metabólicas identificadas en el análisis de vías metabólicas de los metabolitos que constituyen los módulos de nuestra red de correlaciones perturbadas entre el grupo de VHC y HAI son la vía del metabolismo de aminoácidos (biosíntesis de fenilalanina, tirosina y triptófano - ver Figura 4.2.13), el metabolismos de la arginina y prolina – ver Figura 4.2.12 y biosíntesis de arginina – ver Figura 4.2.14) y el metabolismo de nucleótidos (metabolismo de purinas– ver Figura 4.2.14). El primer módulo no presenta ninguna vía metabólica con impacto para considerar con seguridad que estará perturbada.

4.2.5 VHC vs CBP

La red de correlaciones perturbadas entre el grupo de VHC y el grupo de CBP se presentan en la Figura 4.2.16 E. De los 53 metabolitos analizados, 23 tenían por lo menos una correlación que estaba significativamente perturbada. Los metabolitos que presentan mayor número de correlaciones perturbadas son el taurodeoxycholic_acid es el que mayor número presenta, si bien sólo tiene 3 links. Los metabolitos con mayores correlaciones diferenciales medias son hexose_phosphate y trehalose_sucrose.

En esta red de correlaciones perturbadas no se establece ningún módulo significativo.

4.2.6 HAI vs CBP

La red de correlaciones perturbadas entre el grupo de HAI y el grupo de CBP se presentan en la Figura 4.2.16 F. De los 53 metabolitos analizados, 44 tenían por lo menos una correlación que estaba significativamente perturbada. Los metabolitos que presentan mayor número de correlaciones perturbadas son la prolina, betaine aldehido y alanina. Los metabolitos con mayores correlaciones diferenciales medias son succinate, methylmalonic_acid, choline, y dimethylglycine.

En esta red de correlaciones perturbadas se establecen 1 módulo significativo, que tienen como *hubs* a la guanina.

Figura 4.2.15 Análisis de vías metabólicas HAI vs CBP. Módulo identificado

El análisis de vías metabólicas señala la vía del metabolismo de nucleótidos (metabolismo de las purinas) como la que más probablemente estará

perturbada, seguida del metabolismo de aminoácidos (metabolismo de la glicina, serina y treonina).

Figura 4.2.16 Red de correlaciones perturbadas. A mayor diámetro del nodo, mayor grado (número de links) tiene ese nodo. El color representa la diferencia absoluta media en la correlación de cada nodo y va desde el gris (menor) al rojo (mayor). El color de las líneas (links) representa ganancia de correlación entre la condición 1 y la 2 si son rojas y pérdida de la correlación si son grises. A- Control vs VHC; B-Control vs HAI; C- Control vs CBP; D- VHC vs HAI; E-VHC vs CBP; F- HAI vs CBP.

В

4.3 Capacidad discriminativa de las variables morfológicas

4.3.1 Control vs VHC

En la Tabla 4.3.1 se muestran los frecuencias y porcentajes relativos para las variables categóricas, así como la media y su desviación estándar (variables continuas normales) o la mediana y el rango intercuartílico (variables continuas no normales). Se incluye el odds ratio y su p-valor, así como el p-valor del test de asociación correspondiente (χ 2, t-test, U-test). Valores del OR superiores a 1 favorecerían al grupo 2, VHC (incrementarían el "riesgo" de estar en el grupo VHC), e inferiores a 1 favorecerían al grupo 1 (reducirían el "riesgo" de estar en el grupo VHC). Se encuentran las siguientes asociaciones significativas:

n_espacios_porta_ep: por cada unidad de incremento de esta variable, se incrementa en un factor de 1.13 (incremento del riesgo del 13%) el riesgo de estar en la categoría VHC.

n_espacios_porta_completos_ep: por cada unidad de incremento de la variable, se incrementa el riesgo de estar en la categoría VHC en un factor de 1.21 (incremento del riesgo del 21%).

topografia_de_la_inflamación: los pacientes que están en la categoría 2 (respecto a los que están en la categoría 0) incrementan el riesgo de estar en el grupo VHC en un factor de 6.25.

linfocitos_en_ep: los pacientes que están en la categoría 1 (respecto a los que están en la categoría 0) incrementan el riesgo de estar en el grupo VHC en un factor de 8.4.

plasmocitos_en_ep: los pacientes que están en la categoría 1 (respecto a los que están en la categoría 0) incrementan el riesgo de estar en el grupo VHC en un factor de 8.44.

predominio_de_tipo_de_células_inflamatorias_28: por cada unidad de incremento de la variable, se incrementa el riesgo de estar en la categoría VHC en un factor de 1.29 (incremento del riesgo del 29%).

actividad: los pacientes que están en la categoría 1 o en la categoría 2 (respecto a los que están en la categoría 0) incrementan el riesgo de estar en el grupo VHC en un factor de 30.3 y 18.7 respectivamente.

fibrosis: por cada unidad de incremento de la variable, se incrementa el riesgo de estar en la categoría VHC en un factor de 2.57.

topografía_fibrosis: los pacientes que están en la categoría 1 o en la categoría 5 (respecto a los que están en la categoría 0) incrementan el riesgo de estar en el grupo VHC en un factor de 14.6 y 18 respectivamente.

En la Tabla 4.3.2 se muestran las variables que han sido confirmadas como importantes, y las que se han rechazado. Un total de 6 variables contienen información importante para discriminar entre grupos: n_espacos_porta_ep, actividade, plasmocitos_em_ep, fibrose, topografia_fibrose, y n_espacos_porta_completos_ep.

En la Tabla 4.3.3 se muestran los índices de discriminación obtenidos por remuestreo *bootstrap*, así como el índice de Brier y la R2. Excepto el AUC, los índices no muestran ni buena capacidad de discriminación (Figura 4.3.1), ni un ajuste adecuado, lo que podemos ver también en el gráfico de la Figura 4.3.2 (Cuanto más próxima se encuentra la línea roja, la predicha por el modelo, a la línea punteada negra, la óptima, mejor calibrado el modelo.)

Tabla 4.3.1 Tabla descriptiva Control vs VHC para variables morfológicas

	Sem_alteracoe s	VHC	OR	p.rati 0	p.overal l
	N=13	N=21			
n_espacos_porta_ep	7.00 [4.00;14.0]	18.0	1.13	0.029	0.004
n_espacos_porta_completos_ep	5.31 (4.57)	8.62	1.21	0.042	0.042
n_ep_sem_ducto:					1.000
0	12 (38.7%)	19	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.30	0.788	
2	0 (0.00%)	1 (100%)	0.60	0.625	
n_ep_sem_arteriola_e_sem_ducto:					1.000
0	13 (39.4%)	20	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.62	0.618	
topografia_da_inflamacao:					0.007
0	5 (83.3%)	1 (16.7%)	Ref.	Ref.	
2	7 (25.9%)	20	6.25	0.017	
3	1 (100%)	0 (0.00%)	0.00	0.857	
n_ep_inflamados	3.00 [0.00;10.0]	8.00	1.04	0.399	0.051
linfocitos_em_ep:					0.015
0	4 (100%)	0 (0.00%)	Ref.	Ref.	
1	9 (30.0%)	21	8.40	0.015	
eosinofilos_em_ep:					0.124
0	8 (57.1%)	6 (42.9%)	Ref.	Ref.	
1	5 (25.0%)	15	2.86	0.074	
neutrofilos_em_ep:					0.653
0	10 (35.7%)	18	Ref.	Ref.	
1	3 (50.0%)	3 (50.0%)	0.39	0.549	
macrofagos_em_ep:					0.491
0	7 (33.3%)	14	Ref.	Ref.	
1	6 (46.2%)	7 (53.8%)	0.47	0.482	
plasmocitos_em_ep:					0.002
0	8 (80.0%)	2 (20.0%)	Ref.	Ref.	
1	5 (20.8%)	19	8.44	0.002	

	Sem_alteracoe s	VHC	OR	p.rati 0	p.overal l
predominio_de_tipo_de_celulas_inflamatorias_28	2.00 [0.00;8.00]	8.00	1.29	0.027	0.022
morfologia_nodular_da_inflamacao:					0.092
0	9 (56.2%)	7 (43.8%)	Ref.	Ref.	
1	4 (22.2%)	14	3.15	0.053	
zonalizacao_da_inflamacao_portal:					1.000
0	12 (41.4%)	17	Ref.	Ref.	
1	1 (25.0%)	3 (75.0%)	1.00	0.599	
2	0 (0.00%)	1 (100%)	0.67	0.600	
actividade:					< 0.001
0	7 (100%)	0 (0.00%)	Ref.	Ref.	
1	2 (13.3%)	13	30.3	< 0.001	
2	2 (20.0%)	8 (80.0%)	18.7	0.002	
3	2 (100%)	0 (0.00%)	0.00	1.000	
fibrose	1.00 [0.00;1.00]	2.00	2.57	0.010	0.005
topografia_fibrose:					0.001
0	6 (100%)	0 (0.00%)	Ref.	Ref.	
1	6 (26.1%)	17	14.6	0.002	
5	0 (0.00%)	3 (100%)	18.0	0.012	
6	1 (50.0%)	1 (50.0%)	3.00	0.250	
reacao_ductular:					1.000
0	10 (37.0%)	17	Ref.	Ref.	
1	3 (42.9%)	4 (57.1%)	0.56	0.786	
endotelite_portal:					1.000
0	11 (37.9%)	18	Ref.	Ref.	
1	2 (40.0%)	3 (60.0%)	0.58	0.922	
endotelite_centrovenular:					0.544
0	11 (35.5%)	20	Ref.	Ref.	
1	2 (66.7%)	1 (33.3%)	0.17	0.369	
colestase:					0.720
0	11 (36.7%)	19	Ref.	Ref.	
1	2 (66.7%)	1 (33.3%)	0.18	0.391	

	Sem_alteracoe s	VHC	OR	p.rati 0	p.overal l
2	0 (0.00%)	1 (100%)	0.55	0.645	
esteatosis_tipo:					0.266
0	8 (34.8%)	15	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.25	0.720	
2	4 (66.7%)	2 (33.3%)	0.20	0.202	
3	0 (0.00%)	3 (100%)	1.50	0.314	
esteatosis_topografia:					0.901
0	8 (34.8%)	15	Ref.	Ref.	
2	1 (50.0%)	1 (50.0%)	0.25	0.720	
3	0 (0.00%)	1 (100%)	0.50	0.667	
4	4 (50.0%)	4 (50.0%)	0.40	0.482	
granulomas_epitelioides:					1.000
0	12 (40.0%)	18	Ref.	Ref.	
1	1 (33.3%)	2 (66.7%)	0.63	0.871	
2	0 (0.00%)	1 (100%)	0.63	0.613	
rosetas_hepatocitarias:					0.544
0	11 (35.5%)	20	Ref.	Ref.	
1	2 (66.7%)	1 (33.3%)	0.17	0.369	
emperipolese: 0	13 (38.2%)	21	Ref.	Ref.	
balonizacao_hepatocitaria:					0.627
0	11 (36.7%)	19	Ref.	Ref.	
1	2 (50.0%)	2 (50.0%)	0.37	0.643	
corpos_hialinos_de_mallory:					1.000
0	12 (37.5%)	20	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.29	0.765	
glicogenizacao_nuclear:					1.000
0	11 (37.9%)	18	Ref.	Ref.	
1	2 (40.0%)	3 (60.0%)	0.58	0.922	
lobulite:					0.158
0	9 (52.9%)	8 (47.1%)	Ref.	Ref.	
1	4 (23.5%)	13	2.60	0.095	

	Sem_alteracoe s	VHC	OR	p.rati 0	p.overal l
predominio_de_tipo_de_celulas_inflamatorias_49					0.274
0	9 (52.9%)	8 (47.1%)	Ref.	Ref.	
2	2 (20.0%)	8 (80.0%)	2.67	0.116	
6	0 (0.00%)	1 (100%)	1.00	0.500	
8	2 (33.3%)	4 (66.7%)	1.33	0.461	
linfocitos:					0.158
0	9 (52.9%)	8 (47.1%)	Ref.	Ref.	
1	4 (23.5%)	13	2.60	0.095	
eosinofilos:					1.000
0	13 (39.4%)	20	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.62	0.618	
neutrofilos: 0	13 (38.2%)	21	Ref.	Ref.	
macrofagos:					1.000
0	11 (37.9%)	18	Ref.	Ref.	
1	2 (40.0%)	3 (60.0%)	0.58	0.922	
plasmocitos:					0.370
0	12 (42.9%)	16	Ref.	Ref.	
1	1 (16.7%)	5 (83.3%)	1.76	0.277	

Tabla 4.3.2 Importancia de las variables morfológicas Control vs VHC obtenida a partir del algoritmo de BORUTA y decisión (confirmación de su importancia/rechazo) tomada por el algoritmo respecto a cada una de las variables.

Variables	meanImp	decision
n_espacos_porta_ep	11.9371	Confirmed
actividade	10.1861	Confirmed
plasmocitos_em_ep	7.7144	Confirmed
fibrose	6.8683	Confirmed
topografia_fibrose	5.8766	Confirmed
n_espacos_porta_completos_ep	3.5950	Confirmed
linfocitos_em_ep	2.2405	Rejected
morfologia_nodular_da_inflamacao	2.0897	Rejected
predominio_de_tipo_de_celulas_inflamatorias_28	2.0506	Rejected
topografia_da_inflamacao	1.1972	Rejected
eosinofilos_em_ep	0.8204	Rejected

Variables	meanImp	decision
linfocitos	0.5448	Rejected
lobulite	0.4836	Rejected
n_ep_inflamados	0.3614	Rejected
macrofagos	0.1748	Rejected
macrofagos_em_ep	0.1258	Rejected
n_ep_sem_arteriola_e_sem_ducto	0.0000	Rejected
emperipolese	0.0000	Rejected
eosinofilos	0.0000	Rejected
neutrofilos	0.0000	Rejected
reacao_ductular	-0.0606	Rejected
rosetas_hepatocitarias	-0.2415	Rejected
n_ep_sem_ducto	-0.2669	Rejected
glicogenizacao_nuclear	-0.3657	Rejected
plasmocitos	-0.3926	Rejected
colestase	-0.3976	Rejected
neutrofilos_em_ep	-0.4635	Rejected
esteatosis_topografia	-0.5580	Rejected
corpos_hialinos_de_mallory	-0.5804	Rejected
predominio_de_tipo_de_celulas_inflamatorias_49	-0.5880	Rejected
granulomas_epitelioides	-0.6324	Rejected
zonalizacao_da_inflamacao_portal	-0.7071	Rejected
esteatosis_tipo	-0.8098	Rejected
balonizacao_hepatocitaria	-0.8235	Rejected
endotelite_portal	-0.9951	Rejected
endotelite_centrovenular	-1.3146	Rejected

Figura 4.3.1 Boxplot >>Control vs VHC mostrando la distribución del parámetro de importancia para cada una de las variables morfológicas (En verde las variables consideradas importantes, y en rojo las rechazadas.

Figura 4.3.2 Gráfico de calibración del modelo Control vs VHC estimado en base a las variables morfológicas

est	m1_est
Brier score (rescaled)	0.66 (0.53 to 1)
R2	0.466 (0.34 to 0.695)
AUC	0.904 (0.832 to 0.919)
D-statistic	0.736 (0.663 to 0.839)

Tabla 4.3.3 Índices de discriminación y calibración del modelo Control vs VHC para variables morfológicas, y sus intervalos de confianza bootstrap al 95%

4.3.2 Control vs HAI

En la Tabla 4.3.4 se muestran las frecuencias y porcentajes relativos para las variables categóricas, así como la media y su desviación estándar (variables continuas normales) o la mediana y el rango intercuartílico (variables continuas no normales). Se incluye el odds ratio y su p-valor, así como el p-valor del test de asociación correspondiente (χ 2, t-test, U-test). Se encuentran las siguientes asociaciones significativas:

plasmocitos_em_ep: los pacientes que están en la categoría 1 (respecto a los que están en la categoría 0) reducen el riesgo de estar en el grupo HAI por un factor de 0.12 (reducción del riesgo del 88%).

actividade: los pacientes que están en la categoría 1 (respecto a los que están en la categoría 0) reducen el riesgo de estar en el grupo HAI en un factor de 0.07 (reducción del 93%).

topografia_fibrose: los pacientes que están en la categoría 1 o en la categoría 5 (respecto a los que están en la categoría 0) reducen el riesgo de estar en el grupo HAI.

En la Tabla 4.3.5 se muestran las variables que han sido confirmadas como importantes, y las que se han rechazado. Un total de 3 variables contienen información importante para discriminar entre grupos: plasmocitos_em_ep, topografia_fibrose, y n_espacos_porta_ep. En este caso, los valores del parámetro de importancia se reducen respecto a los del modelo para control-VHC.

En la Tabla 4.3.6 se muestran los índices de discriminación obtenidos por remuestreo *bootstrap*, así como el índice de Brier y la R2. Excepto el AUC, los índices no muestran ni buena capacidad de discriminación, ni un ajuste adecuado, lo que podemos ver también en el gráfico de la Figura 4.3.3

	HAI	Sem_alteracoe s	OR	p.rati 0	p.overal l
	N=16	N=13			
n_espacos_porta_ep	15.5 [9.75;19.8	7.00 [4.00;14.0]	0.95 [0.86;1.04	0.230	0.048
n_espacos_porta_completos_ep	5.00 [4.00;12.2	3.00 [2.00;8.00]	0.89 [0.77;1.04	0.145	0.103
n_ep_sem_ducto:					1.000
0	15 (55.6%)	12 (44.4%)	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.58 [0.11;13.4	0.897	
n_ep_sem_arteriola_e_sem_ducto: 0	16 (55.2%)	13 (44.8%)	Ref.	Ref.	
topografia_da_inflamacao:					0.064

Tabla 4.3.4 Tabla descriptiva Control vs HAI de las variables morfológicas.

	HAI	Sem_alteracoe s	OR	p.rati 0	p.overal l
0	1 (16.7%)	5 (83.3%)	Ref.	Ref.	
2	14 (66.7%)	7 (33.3%)	0.08 [0.02;1.05	0.046	
3	1 (50.0%)	1 (50.0%)	0.08 [0.02;4.93	0.500	
n_ep_inflamados	5.00 [2.75;8.25	3.00 [0.00;10.0]	1.00 [0.93;1.08	0.937	0.389
linfocitos_em_ep:					0.144
0	1 (20.0%)	4 (80.0%)	Ref.	Ref.	
1	15 (62.5%)	9 (37.5%)	0.11 [0.03;1.53	0.118	
eosinofilos_em_ep:					0.714
0	11 (57.9%)	8 (42.1%)	Ref.	Ref.	
1	5 (50.0%)	5 (50.0%)	1.02 [0.31;5.93	0.705	
neutrofilos_em_ep:					1.000
0	13 (56.5%)	10 (43.5%)	Ref.	Ref.	
1	3 (50.0%)	3 (50.0%)	0.89 [0.24;6.95	0.792	
macrofagos_em_ep:					1.000
0	8 (53.3%)	7 (46.7%)	Ref.	Ref.	
1	8 (57.1%)	6 (42.9%)	0.67 [0.21;3.57	0.848	
plasmocitos_em_ep:					0.027
0	3 (27.3%)	8 (72.7%)	Ref.	Ref.	
1	13 (72.2%)	5 (27.8%)	0.12 [0.03;0.82	0.026	
predominio_de_tipo_de_celulas_inflamatorias_28	8.00 [2.00;8.00	2.00 [0.00;8.00]	0.86 [0.69;1.08	0.190	0.160
	HAI	Sem_alteracoe s	OR	p.rati 0	p.overal l
-----------------------------------	--------------------	--------------------	--------------------	-------------	---------------
morfologia_nodular_da_inflamacao:					1.000
0	11 (55.0%)	9 (45.0%)	Ref.	Ref.	
1	5 (55.6%)	4 (44.4%)	0.73 [0.22;4.50	0.983	
zonalizacao_da_inflamacao_portal:					1.000
0	15 (55.6%)	12 (44.4%)	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.58 [0.11;13.4	0.897	
actividade:					0.036
0	3 (30.0%)	7 (70.0%)	Ref.	Ref.	
1	9 (81.8%)	2 (18.2%)	0.07 [0.02;0.81	0.026	
2	4 (66.7%)	2 (33.3%)	0.15 [0.04;1.92	0.206	
3	0 (0.00%)	2 (100%)	0.75 [0.09;62.7	0.545	
fibrose	1.00 [1.00;3.00	1.00 [0.00;1.00]	0.62 [0.33;1.17	0.144	0.059
topografia_fibrose:					0.024
0	1 (14.3%)	6 (85.7%)	Ref.	Ref.	
1	10 (62.5%)	6 (37.5%)	0.08 [0.02;1.08	0.048	
5	4 (100%)	0 (0.00%)	0.00 [0.00;0.78	0.015	
6	1 (50.0%)	1 (50.0%)	0.07 [0.01;4.10	0.444	
reacao_ductular:					1.000
0	12 (54.5%)	10 (45.5%)	Ref.	Ref.	
1	4 (57.1%)	3 (42.9%)	0.65 [0.18;4.68	0.918	

	HAI	Sem_alteracoe s	OR	p.rati 0	p.overal l
endotelite_portal:					0.410
0	11 (50.0%)	11 (50.0%)	Ref.	Ref.	
1	5 (71.4%)	2 (28.6%)	0.31 [0.08;2.50	0.366	
endotelite_centrovenular:					0.573
0	15 (57.7%)	11 (42.3%)	Ref.	Ref.	
1	1 (33.3%)	2 (66.7%)	1.25 [0.26;19.5	0.498	
colestase:					1.000
0	13 (54.2%)	11 (45.8%)	Ref.	Ref.	
1	3 (60.0%)	2 (40.0%)	0.54 [0.14;5.09	0.840	
esteatosis_tipo:					0.338
0	12 (60.0%)	8 (40.0%)	Ref.	Ref.	
1	2 (66.7%)	1 (33.3%)	0.44 [0.10;7.99	0.874	
2	1 (20.0%)	4 (80.0%)	2.67 [0.57;34.0	0.151	
3	1 (100%)	0 (0.00%)	0.00 [0.02;13.5	0.619	
esteatosis_topografia:					0.827
0	12 (60.0%)	8 (40.0%)	Ref.	Ref.	
2	1 (50.0%)	1 (50.0%)	0.67 [0.13;16.6	0.818	
4	3 (42.9%)	4 (57.1%)	1.33 [0.36;9.81	0.474	
granulomas_epitelioides:					0.737
0	13 (52.0%)	12 (48.0%)	Ref.	Ref.	

	HAI	Sem_alteracoe s	OR	p.rati 0	p.overal l
1	1 (50.0%)	1 (50.0%)	0.50 [0.10;11.8	0.963	
2	2 (100%)	0 (0.00%)	0.00 [0.01;4.95	0.299	
rosetas_hepatocitarias:					0.573
0	15 (57.7%)	11 (42.3%)	Ref.	Ref.	
1	1 (33.3%)	2 (66.7%)	1.25 [0.26;19.5	0.498	
emperipolese:					1.000
0	15 (53.6%)	13 (46.4%)	Ref.	Ref.	
1	1 (100%)	0 (0.00%)	0.00 [0.01;10.2	0.552	
balonizacao_hepatocitaria:					0.573
0	15 (57.7%)	11 (42.3%)	Ref.	Ref.	
1	1 (33.3%)	2 (66.7%)	1.25 [0.26;19.5	0.498	
corpos_hialinos_de_mallory:					0.448
0	16 (57.1%)	12 (42.9%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	1.23 [0.15;106]	0.448	
glicogenizacao_nuclear:					0.663
0	12 (52.2%)	11 (47.8%)	Ref.	Ref.	
1	4 (66.7%)	2 (33.3%)	0.40 [0.11;3.44	0.572	
lobulite:					0.505
0	8 (47.1%)	9 (52.9%)	Ref.	Ref.	
1	8 (66.7%)	4 (33.3%)	0.36 [0.11;2.06	0.330	

	HAI	Sem_alteracoe s	OR	p.rati 0	p.overal l
predominio_de_tipo_de_celulas_inflamatorias_49 :					0.814
0	8 (47.1%)	9 (52.9%)	Ref.	Ref.	
2	4 (66.7%)	2 (33.3%)	0.32 [0.08;3.01	0.461	
4	1 (100%)	0 (0.00%)	0.00 [0.01;8.35	0.500	
8	3 (60.0%)	2 (40.0%)	0.40 [0.10;4.14	0.655	
linfocitos:					0.702
0	9 (50.0%)	9 (50.0%)	Ref.	Ref.	
1	7 (63.6%)	4 (36.4%)	0.45 [0.14;2.62	0.507	
eosinofilos:					1.000
0	15 (53.6%)	13 (46.4%)	Ref.	Ref.	
1	1 (100%)	0 (0.00%)	0.00 [0.01;10.2	0.552	
neutrofilos:					0.488
0	14 (51.9%)	13 (48.1%)	Ref.	Ref.	
1	2 (100%)	0 (0.00%)	0.00 [0.01;4.89	0.296	
macrofagos:					0.663
0	12 (52.2%)	11 (47.8%)	Ref.	Ref.	
1	4 (66.7%)	2 (33.3%)	0.40 [0.11;3.44	0.572	
plasmocitos:					0.606
0	13 (52.0%)	12 (48.0%)	Ref.	Ref.	
1	3 (75.0%)	1 (25.0%)	0.25 [0.06;3.64	0.460	

Tabla 4.3.5 Importancia de las variables morfológicas Control vs HAI obtenida a partir del algoritmo de BORUTA y decisión (confirmación de su importancia/rechazo) tomada por el algoritmo respecto a cada una de las variables.

Variables	meanImp	decision
plasmocitos_em_ep	5.4494	Confirmed
topografia_fibrose	4.2295	Confirmed
n_espacos_porta_ep	4.1665	Confirmed
fibrose	2.7563	Rejected
topografia_da_inflamacao	2.2876	Rejected
actividade	2.1628	Rejected
linfocitos_em_ep	0.6830	Rejected
neutrofilos	0.3638	Rejected
plasmocitos	0.2771	Rejected
predominio_de_tipo_de_celulas_inflamatorias_28	0.2077	Rejected
lobulite	0.1972	Rejected
morfologia_nodular_da_inflamacao	0.0753	Rejected
n_espacos_porta_completos_ep	0.0283	Rejected
granulomas_epitelioides	0.0113	Rejected
n_ep_sem_arteriola_e_sem_ducto	0.0000	Rejected
emperipolese	0.0000	Rejected
corpos_hialinos_de_mallory	0.0000	Rejected
eosinofilos	0.0000	Rejected

Variables	meanImp	decision
reacao_ductular	-0.1995	Rejected
linfocitos	-0.2187	Rejected
macrofagos	-0.2996	Rejected
neutrofilos_em_ep	-0.3029	Rejected
n_ep_inflamados	-0.4113	Rejected
balonizacao_hepatocitaria	-0.4794	Rejected
macrofagos_em_ep	-0.6642	Rejected
rosetas_hepatocitarias	-0.6834	Rejected
predominio_de_tipo_de_celulas_inflamatorias_49	-0.6878	Rejected
endotelite_portal	-0.7303	Rejected
glicogenizacao_nuclear	-0.7440	Rejected
eosinofilos_em_ep	-0.8252	Rejected
endotelite_centrovenular	-1.0279	Rejected
zonalizacao_da_inflamacao_portal	-1.1124	Rejected
colestase	-1.1281	Rejected
esteatosis_tipo	-1.4682	Rejected
n_ep_sem_ducto	-1.6079	Rejected
esteatosis_topografia	-1.6091	Rejected

Tabla 4.3.6 Índices de discriminación y calibración del modelo, y sus intervalos de confianza bootstrap al 95%.

Figura 4.3.3 Gráfico de calibración del modelo estimado en base a las variables seleccionada

4.3.3 Control vs CBP

En la Tabla 4.3.7 se muestran los frecuencias y porcentajes relativos para las variables categóricas, así como la media y su desviación estándar (variables continuas normales) o la mediana y el rango intercuartílico (variables continuas no normales). Se incluye el odds ratio y su p-valor, así como el p-valor del test de asociación correspondiente (χ 2, t-test, U-test). No se encuentran asociaciones significativas.

En la Tabla 4.3.8 se muestran las variables que han sido confirmadas como importantes, y las que se han rechazado. Sólo 1 variables contienen información importante para discriminar entre grupos: n_espacos_porta_ep. En este caso, los valores del parámetro de importancia se reducen respecto a los del modelo para control-VHC.

En la Tabla 4.3.9 se muestran los índices de discriminación obtenidos por remuestreo *Bootstrap*, así como el índice de Brier y la R2. Los índices no muestran ni buena capacidad de discriminación, ni un ajuste adecuado, lo que podemos ver también en el gráfico de la Figura 4.3.4

	СВР	Sem_alteracoes	OR	p.ratio	p.overall
	N=12	N=13			
n_espacos_porta_ep	17.0 [12.8;20.0]	7.00 [4.00;14.0]	0.93 [0.84;1.04]	0.195	0.034
n_espacos_porta_completos_ep	7.00 [5.25;12.2]	3.00 [2.00;8.00]	0.88 [0.74;1.04]	0.132	0.113
n_ep_sem_ducto:					0.344
0	10 (45.5%)	12 (54.5%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.77 [0.09;68.6]	0.565	
2	2 (100%)	0 (0.00%)	0.00 [0.01;3.90]	0.239	
n_ep_sem_arteriola_e_sem_ducto:					0.480
0	11 (45.8%)	13 (54.2%)	Ref.	Ref.	
1	1 (100%)	0 (0.00%)	0.00 [0.01;7.67]	0.480	
4-195ootstrap4-195_da_inflamacao:					0.534
0	3 (37.5%)	5 (62.5%)	Ref.	Ref.	

Tabla 4.3.7 Tabla descriptiva Control v	vs CBP de las variables morfológicas
---	--------------------------------------

	СВР	Sem_alteracoes	OR	p.ratio	p.overall
2	9 (56.2%)	7 (43.8%)	0.35 [0.10;2.61]	0.430	
3	0 (0.00%)	1 (100%)	0.50 [0.06;61.3]	0.667	
n_ep_inflamados	4.00 [1.50;10.8]	3.00 [0.00;10.0]	1.00 [0.93;1.09]	0.915	0.804
linfocitos_em_ep:					1.000
0	3 (42.9%)	4 (57.1%)	Ref.	Ref.	
1	9 (50.0%)	9 (50.0%)	0.54 [0.15;4.10]	0.773	
4-196ootstrap4-196s_em_ep:					1.000
0	8 (50.0%)	8 (50.0%)	Ref.	Ref.	
1	4 (44.4%)	5 (55.6%)	0.89 [0.26;5.86]	0.808	
4-196ootstrap4-196s_em_ep:					0.593
0	11 (52.4%)	10 (47.6%)	Ref.	Ref.	
1	1 (25.0%)	3 (75.0%)	1.50 [0.32;20.6]	0.384	
4-196ootstrap4-196_em_ep:					0.411
0	9 (56.2%)	7 (43.8%)	Ref.	Ref.	
1	3 (33.3%)	6 (66.7%)	1.69 [0.47;11.8]	0.311	
plasmocitos_em_ep:					0.553
0	5 (38.5%)	8 (61.5%)	Ref.	Ref.	
1	7 (58.3%)	5 (41.7%)	0.35 [0.10;2.21]	0.358	
predominio_de_tipo_de_celulas_inflamatorias_28	2.00 [0.75;8.00]	2.00 [0.00;8.00]	1.03 [0.82;1.30]	0.797	0.932
4-196ootstrap4-196_nodular_da_inflamacao:					1.000

	СВР	Sem_alteracoes	OR	p.ratio	p.overall
0	8 (47.1%)	9 (52.9%)	Ref.	Ref.	
1	4 (50.0%)	4 (50.0%)	0.64 [0.18;4.44]	0.899	
zonalizacao_da_inflamacao_portal:					1.000
0	12 (50.0%)	12 (50.0%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.92 [0.11;81.0]	0.520	
actividade:					0.791
0	5 (41.7%)	7 (58.3%)	Ref.	Ref.	
1	4 (66.7%)	2 (33.3%)	0.25 [0.06;2.72]	0.376	
2	2 (50.0%)	2 (50.0%)	0.42 [0.09;5.81]	0.800	
3	1 (33.3%)	2 (66.7%)	0.62 [0.12;12.2]	0.844	
fibrose	2.00 [0.75;3.00]	1.00 [0.00;1.00]	0.70 [0.37;1.31]	0.262	0.235
4-197ootstrap4-197_fibrose	1.00 [1.00;1.00]	1.00 [0.00;1.00]	0.80 [0.44;1.46]	0.465	0.071
reacao_ductular:					0.593
0	11 (52.4%)	10 (47.6%)	Ref.	Ref.	
1	1 (25.0%)	3 (75.0%)	1.50 [0.32;20.6]	0.384	
endotelite_portal:					1.000
0	10 (47.6%)	11 (52.4%)	Ref.	Ref.	
1	2 (50.0%)	2 (50.0%)	0.56 [0.13;6.37]	0.937	
endotelite_centrovenular:					0.480
0	12 (52.2%)	11 (47.8%)	Ref.	Ref.	

		СВР	Sem_alteracoes	OR	p.ratio	p.overall
	1	0 (0.00%)	2 (100%)	2.00 [0.24;126]	0.260	
cole	stase:					0.480
	0	12 (52.2%)	11 (47.8%)	Ref.	Ref.	
	1	0 (0.00%)	2 (100%)	2.00 [0.24;126]	0.260	
este	atosis_tipo:					0.282
	0	5 (38.5%)	8 (61.5%)	Ref.	Ref.	
	1	3 (75.0%)	1 (25.0%)	0.14 [0.03;2.49]	0.271	
	2	2 (33.3%)	4 (66.7%)	0.74 [0.18;7.65]	0.860	
	3	2 (100%)	0 (0.00%)	0.00 [0.01;3.24]	0.200	
este	atosis_topografia:					0.498
	0	5 (38.5%)	8 (61.5%)	Ref.	Ref.	
	2	2 (66.7%)	1 (33.3%)	0.19 [0.04;3.84]	0.463	
	3	2 (100%)	0 (0.00%)	0.00 [0.01;3.24]	0.200	
	4	3 (42.9%)	4 (57.1%)	0.56 [0.14;4.84]	0.859	
grar	ulomas_epitelioides:					1.000
	0	12 (50.0%)	12 (50.0%)	Ref.	Ref.	
	1	0 (0.00%)	1 (100%)	0.92 [0.11;81.0]	0.520	
rose	tas_hepatocitarias:					1.000
	0	11 (50.0%)	11 (50.0%)	Ref.	Ref.	
	1	1 (33.3%)	2 (66.7%)	0.92	0.656	

	СВР	Sem_alteracoes	OR	p.ratio	p.overall
emperipolese: 0	12 (48.0%)	13 (52.0%)	Ref.	Ref.	•
balonizacao_hepatocitaria:					1.000
0	11 (50.0%)	11 (50.0%)	Ref.	Ref.	
1	1 (33.3%)	2 (66.7%)	0.92 [0.19;14.8]	0.656	
corpos_hialinos_de_mallory:					1.000
0	12 (50.0%)	12 (50.0%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.92 [0.11;81.0]	0.520	
glicogenizacao_nuclear:					1.000
0	11 (50.0%)	11 (50.0%)	Ref.	Ref.	
1	1 (33.3%)	2 (66.7%)	0.92 [0.19;14.8]	0.656	
lobulite:					0.688
0	7 (43.8%)	9 (56.2%)	Ref.	Ref.	
1	5 (55.6%)	4 (44.4%)	0.47 [0.13;3.11]	0.603	
predominio_de_tipo_de_celulas_inflamatorias_49:					0.608
0	7 (43.8%)	9 (56.2%)	Ref.	Ref.	
2	4 (66.7%)	2 (33.3%)	0.28 [0.07;2.70]	0.392	
8	1 (33.3%)	2 (66.7%)	0.70 [0.14;12.4]	0.795	
linfocitos:					0.688
0	7 (43.8%)	9 (56.2%)	Ref.	Ref.	
1	5 (55.6%)	4 (44.4%)	0.47 [0.13:3.11]	0.603	

	СВР	Sem_alteracoes	OR	p.ratio	p.overall
4-200ootstrap4-200s: 0	12 (48.0%)	13 (52.0%)	Ref.	Ref.	
4-200ootstrap4-200s: 0	12 (48.0%)	13 (52.0%)	Ref.	Ref.	
4-200ootstrap4-200:					1.000
0	11 (50.0%)	11 (50.0%)	Ref.	Ref.	
1	1 (33.3%)	2 (66.7%)	0.92 [0.19;14.8]	0.656	
plasmocitos:					1.000
0	11 (47.8%)	12 (52.2%)	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.42 [0.08;10.1]	0.960	

Tabla 4.3.8 Importancia de las variables morfológicas Control vs CBP obtenida a partir del algoritmo de BORUTA y decisión (confirmación de su importancia/rechazo) tomada por el algoritmo respecto a cada una de las variables.

Variables	meanImp	decision
n_espacos_porta_ep	6.3984	Confirmed
endotelite_centrovenular	3.2312	Rejected
n_espacos_porta_completos_ep	1.9977	Rejected
rosetas_hepatocitarias	1.5518	Rejected
4-200ootstrap4-200_fibrose	1.4148	Rejected
n_ep_sem_ducto	0.9035	Rejected
colestase	0.6700	Rejected
4-200ootstrap4-200_em_ep	0.2615	Rejected
4-200ootstrap4-200s_em_ep	0.2249	Rejected

Variables	meanImp	decision
n_ep_sem_arteriola_e_sem_ducto	0.0000	Rejected
zonalizacao_da_inflamacao_portal	0.0000	Rejected
granulomas_epitelioides	0.0000	Rejected
emperipolese	0.0000	Rejected
corpos_hialinos_de_mallory	0.0000	Rejected
eosinofilos	0.0000	Rejected
neutrofilos	0.0000	Rejected
fibrose	-0.1603	Rejected
predominio_de_tipo_de_celulas_inflamatorias_28	-0.4172	Rejected
4-201ootstrap4-201_nodular_da_inflamacao	-0.4720	Rejected
reacao_ductular	-0.4870	Rejected
4-201ootstrap4-201_da_inflamacao	-0.4928	Rejected
esteatosis_tipo	-0.6307	Rejected
plasmocitos	-0.7581	Rejected
4-201ootstrap4-201s_em_ep	-0.7933	Rejected
linfocitos_em_ep	-0.8366	Rejected
glicogenizacao_nuclear	-0.8458	Rejected
balonizacao_hepatocitaria	-0.9100	Rejected
macrofagos	-0.9355	Rejected
plasmocitos_em_ep	-1.1512	Rejected

Variables	meanImp	decision
linfocitos	-1.1643	Rejected
esteatosis_topografia	-1.1765	Rejected
endotelite_portal	-1.2830	Rejected
predominio_de_tipo_de_celulas_inflamatorias_49	-1.2902	Rejected
lobulite	-1.3222	Rejected
actividade	-1.3813	Rejected
n_ep_inflamados	-1.5303	Rejected

Tabla 4.3.9 Índices de discriminación y calibración del modelo Control vs CBP para las variables morfológicas, y sus intervalos de confianza bootstrap al 95%.

Est	m1_est
Brier score (rescaled)	-0.02 (-0.12 to 0.545)
R2	-0.203 (-0.304 to 0.376)
AUC	0.664 (0.329 to 0.855)
D-statistic	0.339 (-0.343 to 0.711)

Figura 4.3.4 Gráfico de calibración del modelo estimado en base a las variables seleccionadas

4.3.4 VHC vs HAI

En la Tabla 4.3.10 se muestran los frecuencias y porcentajes relativos para las variables categóricas, así como la media y su desviación estándar (variables continuas normales) o la mediana y el rango intercuartílico (variables continuas no normales). Se incluye el odds ratio y su p-valor, así como el p-valor del test de asociación correspondiente (χ 2, t-test, U-test). Se encuentran las siguientes asociaciones significativas:

eosinofilos_em_ep: los pacientes que están en la categoría 1 (respecto a los que están en la categoría 0) incrementan el riesgo de estar en el grupo VHC por un factor de 3.93.

morfologia_nodular_da_inflamacao: los pacientes que están en la categoría 1 (respecto a los que están en la categoría 0) incrementan el riesgo de estar en el grupo VHC por un factor de 3.21. En la Tabla 4.3.11 se muestran las variables que han sido confirmadas como importantes, y las que se han rechazado. Sólo 4 variables contienen información importante para discriminar entre grupos: n_espacos_porta_ep, morfologia_nodular_da_inflamacao, fibrose, y eosinofilos_em_ep.

En la Tabla 4.3.12 se muestran los índices de discriminación obtenidos por remuestreo *bootstrap*, así como el índice de Brier y la R2. Excepto el AUC, los índices no muestran ni buena capacidad de discriminación, ni un ajuste adecuado, lo que podemos ver también en el gráfico de la Figura 4.3.5

	HAI	VHC	OR	p.ratio	p.overall
	N=16	N=21			
n_espacos_porta_ep	15.4 (7.28)	19.5 (7.52)	1.08 [0.98;1.20]	0.119	0.109
n_espacos_porta_completos_ep	5.00 [4.00;12.2]	10.0 [5.00;11.0]	1.00 [0.88;1.13]	0.940	0.537
n_ep_sem_ducto:					1.000
0	15 (44.1%)	19 (55.9%)	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.38 [0.08;8.41]	0.889	
2	0 (0.00%)	1 (100%)	0.75 [0.09;62.7]	0.571	
n_ep_sem_arteriola_e_sem_ducto:					1.000
0	16 (44.4%)	20 (55.6%)	Ref.	Ref.	

Tabla 4.3.10 Tabla descriptiva VHC vs HAI de las variables morfológicas.

	HAI	VHC	OR	p.ratio	p.overall
1	0 (0.00%)	1 (100%)	0.76 [0.09;63.3]	0.568	
topografia_da_inflamacao:					0.712
0	1 (50.0%)	1 (50.0%)	Ref.	Ref.	
2	14 (41.2%)	20 (58.8%)	0.67 [0.13;15.0]	0.833	
3	1 (100%)	0 (0.00%)	0.00 [0.01;16.8]	0.667	
n_ep_inflamados	5.00 [2.75;8.25]	8.00 [5.00;13.0]	1.05 [0.96;1.16]	0.249	0.082
linfocitos_em_ep:					0.432
0	1 (100%)	0 (0.00%)	Ref.	Ref.	
1	15 (41.7%)	21 (58.3%)	1.31 [0.16;109]	0.432	
eosinofilos_em_ep:					0.036
0	11 (64.7%)	6 (35.3%)	Ref.	Ref.	
1	5 (25.0%)	15 (75.0%)	3.93 [1.27;19.6]	0.020	
neutrofilos_em_ep:					1.000
0	13 (41.9%)	18 (58.1%)	Ref.	Ref.	
1	3 (50.0%)	3 (50.0%)	0.51 [0.14;3.76]	0.735	
macrofagos_em_ep:					0.493

	HAI	VHC	OR	p.ratio	p.overall
0	8 (36.4%)	14 (63.6%)	Ref.	Ref.	
1	8 (53.3%)	7 (46.7%)	0.41 [0.14;1.89]	0.333	
plasmocitos_em_ep:					0.634
0	3 (60.0%)	2 (40.0%)	Ref.	Ref.	
1	13 (40.6%)	19 (59.4%)	1.36 [0.35;11.8]	0.465	
predominio_de_tipo_de_celulas_inflamatorias_28	8.00 [2.00;8.00]	8.00 [6.00;8.00]	1.13 [0.90;1.42]	0.300	0.329
morfologia_nodular_da_inflamacao:					0.071
0	11 (61.1%)	7 (38.9%)	Ref.	Ref.	
1	5 (26.3%)	14 (73.7%)	3.21 [1.05;15.5]	0.041	
zonalizacao_da_inflamacao_portal:					0.780
0	15 (46.9%)	17 (53.1%)	Ref.	Ref.	
1	1 (25.0%)	3 (75.0%)	1.25 [0.27;15.8]	0.474	
2	0 (0.00%)	1 (100%)	0.83 [0.10;70.1]	0.545	
actividade:					0.113
0	3 (100%)	0 (0.00%)	Ref.	Ref.	
1	9 (40.9%)	13 (59.1%)	3.90 [0.46;216]	0.096	

	HAI	VHC	OR	p.ratio	p.overall
2	4 (33.3%)	8 (66.7%)	4.80 [0.55;317]	0.077	
fibrose	1.00 [1.00;3.00]	2.00 [2.00;3.00]	1.59 [0.84;3.00]	0.156	0.133
topografia_fibrose:					0.493
0	1 (100%)	0 (0.00%)	Ref.	Ref.	
1	10 (37.0%)	17 (63.0%)	1.55 [0.19;134]	0.393	
5	4 (57.1%)	3 (42.9%)	0.60 [0.07;76.7]	0.625	
6	1 (50.0%)	1 (50.0%)	0.50 [0.06;151]	0.667	
reacao_ductular:					0.705
0	12 (41.4%)	17 (58.6%)	Ref.	Ref.	
1	4 (50.0%)	4 (50.0%)	0.53 [0.16;3.18]	0.683	
endotelite_portal:					0.254
0	11 (37.9%)	18 (62.1%)	Ref.	Ref.	
1	5 (62.5%)	3 (37.5%)	0.29 [0.09;1.82]	0.251	
endotelite_centrovenular:					1.000
0	15 (42.9%)	20 (57.1%)	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.36 [0.07;7.99]	0.865	

	HAI	VHC	OR	p.ratio	p.overall
colestase:					0.296
0	13 (40.6%)	19 (59.4%)	Ref.	Ref.	
1	3 (75.0%)	1 (25.0%)	0.16 [0.04;2.27]	0.252	
2	0 (0.00%)	1 (100%)	0.65 [0.08;54.9]	0.606	
esteatosis_tipo:					0.762
0	12 (44.4%)	15 (55.6%)	Ref.	Ref.	
1	2 (66.7%)	1 (33.3%)	0.25 [0.06;4.18]	0.538	
2	1 (33.3%)	2 (66.7%)	0.75 [0.16;11.6]	0.770	
3	1 (25.0%)	3 (75.0%)	1.12 [0.24;14.7]	0.532	
esteatosis_topografia:					1.000
0	12 (44.4%)	15 (55.6%)	Ref.	Ref.	
2	1 (50.0%)	1 (50.0%)	0.38 [0.07;8.74]	0.897	
3	0 (0.00%)	1 (100%)	0.75 [0.09;64.7]	0.571	
4	3 (42.9%)	4 (57.1%)	0.75 [0.21;5.05]	0.952	
granulomas_epitelioides:					0.815
0	13 (41.9%)	18 (58.1%)	Ref.	Ref.	

	HAI	VHC	OR	p.ratio	p.overall
1	1 (33.3%)	2 (66.7%)	0.68 [0.14;10.4]	0.826	
2	2 (66.7%)	1 (33.3%)	0.23 [0.05;3.73]	0.485	
rosetas_hepatocitarias:					1.000
0	15 (42.9%)	20 (57.1%)	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.36 [0.07;7.99]	0.865	
emperipolese:					0.432
0	15 (41.7%)	21 (58.3%)	Ref.	Ref.	
1	1 (100%)	0 (0.00%)	0.00 [0.01;6.30]	0.432	
balonizacao_hepatocitaria:					1.000
0	15 (44.1%)	19 (55.9%)	Ref.	Ref.	
1	1 (33.3%)	2 (66.7%)	0.75 [0.16;11.2]	0.775	
corpos_hialinos_de_mallory:					1.000
0	16 (44.4%)	20 (55.6%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.76 [0.09;63.3]	0.568	
glicogenizacao_nuclear:					0.437
0	12 (40.0%)	18 (60.0%)	Ref.	Ref.	

	HAI	VHC	OR	p.ratio	p.overall
1	4 (57.1%)	3 (42.9%)	0.38 [0.11;2.53]	0.448	
lobulite:					0.697
0	8 (50.0%)	8 (50.0%)	Ref.	Ref.	
1	8 (38.1%)	13 (61.9%)	1.28 [0.44;5.72]	0.493	
predominio_de_tipo_de_celulas_inflamatorias_49	1.00 [0.00;2.50]	2.00 [0.00;2.00]	1.04 [0.83;1.29]	0.746	0.624
linfocitos:					0.444
0	9 (52.9%)	8 (47.1%)	Ref.	Ref.	
1	7 (35.0%)	13 (65.0%)	1.62 [0.56;7.28]	0.298	
eosinofilos:					1.000
0	15 (42.9%)	20 (57.1%)	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.36 [0.07;7.99]	0.865	
neutrofilos:					0.180
0	14 (40.0%)	21 (60.0%)	Ref.	Ref.	
1	2 (100%)	0 (0.00%)	0.00 [0.01;3.02]	0.180	
macrofagos:					0.437
0	12 (40.0%)	18 (60.0%)	Ref.	Ref.	

	HAI	VHC	OR	p.ratio	p.overall
1	4 (57.1%)	3 (42.9%)	0.38 [0.11;2.53]	0.448	
plasmocitos:					1.000
0	13 (44.8%)	16 (55.2%)	Ref.	Ref.	
1	3 (37.5%)	5 (62.5%)	0.96 [0.28;5.88]	0.739	

Tabla 4.3.11 Importancia de las variables morfológicas VHC vs HAI obtenida a partir del algoritmo de BORUTA y decisión (confirmación de su importancia/rechazo) tomada por el algoritmo respecto a cada una de las variables.

Variables	meanImp	decision
n_espacos_porta_ep	6.9876	Confirmed
morfologia_nodular_da_inflamacao	6.0969	Confirmed
fibrose	5.1379	Confirmed
eosinofilos_em_ep	4.2822	Confirmed
actividade	2.3415	Rejected
neutrofilos	2.1094	Rejected
n_ep_inflamados	0.6029	Rejected
macrofagos_em_ep	0.0115	Rejected
n_ep_sem_arteriola_e_sem_ducto	0.0000	Rejected
linfocitos_em_ep	0.0000	Rejected
emperipolese	0.0000	Rejected

Página 4-211 de 337

Variables	meanImp	decision
corpos_hialinos_de_mallory	0.0000	Rejected
zonalizacao_da_inflamacao_portal	-0.0827	Rejected
plasmocitos_em_ep	-0.1604	Rejected
reacao_ductular	-0.2234	Rejected
colestase	-0.2619	Rejected
esteatosis_tipo	-0.2802	Rejected
predominio_de_tipo_de_celulas_inflamatorias_28	-0.3721	Rejected
endotelite_portal	-0.4906	Rejected
n_espacos_porta_completos_ep	-0.5292	Rejected
plasmocitos	-0.6537	Rejected
n_ep_sem_ducto	-0.6901	Rejected
linfocitos	-0.7921	Rejected
macrofagos	-0.7974	Rejected
neutrofilos_em_ep	-0.8777	Rejected
topografia_fibrose	-0.8795	Rejected
endotelite_centrovenular	-0.8928	Rejected
topografia_da_inflamacao	-0.9403	Rejected
glicogenizacao_nuclear	-0.9770	Rejected
esteatosis_topografia	-0.9886	Rejected

Variables	meanImp	decision
granulomas_epitelioides	-1.0276	Rejected
lobulite	-1.1526	Rejected
balonizacao_hepatocitaria	-1.2718	Rejected
eosinofilos	-1.3170	Rejected
rosetas_hepatocitarias	-1.5452	Rejected
predominio_de_tipo_de_celulas_inflamatorias_49	-1.6904	Rejected

Tabla 4.3.12 Índices de discriminación y calibración del modelo VHC ves HAI para variables morfológicas, y sus intervalos de confianza bootstrap al 95%

st	m1_est
Brier score (rescaled)) 0.44 (0.265 to 0.94)
R2	0.43 (0.251 to 0.807)
AUC	0.88 (0.786 to 0.952)
D-statistic	0.725 (0.571 to 0.904

Figura 4.3.5 Gráfico de calibración del modelo VHC vs HAI para variables morfológicas estimado en base a las variables seleccionadas

4.3.5 VHC vs CBP

Figura 4.3.6

Tabla 4.3.13 se muestran las frecuencias y porcentajes relativos para las variables categóricas, así como la media y su desviación estándar (variables continuas normales) o la mediana y el rango intercuartílico (variables continuas no normales). Se incluye el odds ratio y su p-valor, así como el p-valor del test de asociación correspondiente (χ 2, t-test, U-test). Se encuentran las siguientes asociaciones significativas:

linfocitos_em_ep: los pacientes que están en la categoría 1 (respecto a los que están en la categoría 0) incrementan el riesgo de estar en el grupo VHC por un factor de 6.3.

eosinofilos_em_ep: los pacientes que están en la categoría 1 (respecto a los que están en la categoría 0) incrementan el riesgo de estar en el grupo VHC por un factor de 3.43.

plasmocitos_em_ep: los pacientes que están en la categoría 1 (respecto a los que están en la categoría 0) incrementan el riesgo de estar en el grupo VHC por un factor de 3.96.

predominio_de_tipo_de_celulas_inflamatorias_28: por cada unidad de incremento de la variable, se incrementa el riesgo de estar en la categoría VHC en un factor de 1.35 (incremento del riesgo del 35%).

actividade: los pacientes que están en la categoría 1 o 2 (respecto a los que están en la categoría 0) incrementan el riesgo de estar en el grupo VHC por un factor de 13 y 13.3 respectivamente.

En la Tabla 4.3.14 se muestran las variables que han sido confirmadas como importantes, y las que se han rechazado. Sólo 5 variables contienen información importante para discriminar entre grupos: actividade, eosinofilos_em_ep, predominio_de_tipo_de_celulas_inflamatorias_28,

morfologia_nodular_da_inflamacao, linfocitos_em_ep, y plasmocitos_em_ep.

En la Tabla 4.3.15 se muestran los índices de discriminación obtenidos por remuestreo *bootstrap*, así como el índice de Brier y la R2. Los índices no muestran ni buena capacidad de discriminación, ni un ajuste adecuado, lo que podemos ver también en el gráfico de la Figura 4.3.6

	СВР	VHC	OR	p.ratio	p.overall
	N=12	N=21			
n_espacos_porta_ep	17.0 [12.8;20.0]	18.0 [14.0;21.0]	1.08 [0.96;1.22]	0.204	0.453

Tabla 4.3.13 Tabla descriptiva VHC vs CBP de las variables morfológicas.

	СВР	VHC	OR	p.ratio	p.overall
n_espacos_porta_completos_ep	7.00 [5.25;12.2]	10.0 [5.00;11.0]	0.98 [0.85;1.12]	0.737	0.821
n_ep_sem_ducto:					0.707
0	10 (34.5%)	19 (65.5%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.50 [0.06;43.2]	0.667	
2	2 (66.7%)	1 (33.3%)	0.17 [0.04;2.80]	0.355	
n_ep_sem_arteriola_e_sem_ducto:					1.000
0	11 (35.5%)	20 (64.5%)	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.26 [0.05;6.03]	0.727	
topografia_da_inflamacao:					0.125
0	3 (75.0%)	1 (25.0%)	Ref.	Ref.	
2	9 (31.0%)	20 (69.0%)	3.00 [0.64;39.6]	0.137	
n_ep_inflamados	4.00 [1.50;10.8]	8.00 [5.00;13.0]	1.06 [0.96;1.17]	0.275	0.103
linfocitos_em_ep:					0.040
0	3 (100%)	0 (0.00%)	Ref.	Ref.	
1	9 (30.0%)	21 (70.0%)	6.30 [0.74;338]	0.040	
eosinofilos_em_ep:					0.078
0	8 (57.1%)	6 (42.9%)	Ref.	Ref.	
1	4 (21.1%)	15 (78.9%)	3.43 [1.04;19.5]	0.045	
neutrofilos_em_ep:					1.000
0	11 (37.9%)	18 (62.1%)	Ref.	Ref.	

	СВР	VHC	OR	p.ratio	p.overall
1	1 (25.0%)	3 (75.0%)	0.87 [0.19;11.3]	0.683	
macrofagos_em_ep:					0.710
0	9 (39.1%)	14 (60.9%)	Ref.	Ref.	
1	3 (30.0%)	7 (70.0%)	1.05 [0.31;6.35]	0.650	
plasmocitos_em_ep:					0.071
0	5 (71.4%)	2 (28.6%)	Ref.	Ref.	
1	7 (26.9%)	19 (73.1%)	3.96 [1.03;31.8]	0.048	
predominio_de_tipo_de_celulas_inflamatorias_28	2.00 [0.75;8.00]	8.00 [6.00;8.00]	1.35 [1.06;1.72]	0.015	0.012
morfologia_nodular_da_inflamacao:					0.137
0	8 (53.3%)	7 (46.7%)	Ref.	Ref.	
1	4 (22.2%)	14 (77.8%)	2.80 [0.86;15.5]	0.081	
zonalizacao_da_inflamacao_portal:					0.369
0	12 (41.4%)	17 (58.6%)	Ref.	Ref.	
1	0 (0.00%)	3 (100%)	2.00 [0.24;106]	0.230	
2	0 (0.00%)	1 (100%)	0.67 [0.08;57.1]	0.600	
actividade:					0.003
0	5 (100%)	0 (0.00%)	Ref.	Ref.	
1	4 (23.5%)	13 (76.5%)	13.0 [1.51;722]	0.005	
2	2 (20.0%)	8 (80.0%)	13.3 [1.49;936]	0.007	
3	1 (100%)	0 (0.00%)	0.00 [0.05;275]	1.000	

	СВР	VHC	OR	p.ratio	p.overall
fibrose	2.00 [0.75;3.00]	2.00 [2.00;3.00]	1.81 [0.89;3.68]	0.101	0.149
topografia_fibrose	1.00 [1.00;1.00]	1.00 [1.00;1.00]	1.23 [0.71;2.13]	0.451	0.510
reacao_ductular:					0.630
0	11 (39.3%)	17 (60.7%)	Ref.	Ref.	
1	1 (20.0%)	4 (80.0%)	1.22 [0.27;14.5]	0.474	
endotelite_portal:					1.000
0	10 (35.7%)	18 (64.3%)	Ref.	Ref.	
1	2 (40.0%)	3 (60.0%)	0.53 [0.13;4.76]	0.853	
endotelite_centrovenular:					1.000
0	12 (37.5%)	20 (62.5%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.57 [0.07;48.5]	0.636	
colestase:					1.000
0	12 (38.7%)	19 (61.3%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.60 [0.07;51.0]	0.625	
2	0 (0.00%)	1 (100%)	0.60 [0.07;51.0]	0.625	
esteatosis_tipo:					0.238
0	5 (25.0%)	15 (75.0%)	Ref.	Ref.	
1	3 (75.0%)	1 (25.0%)	0.08 [0.02;1.30]	0.097	
2	2 (50.0%)	2 (50.0%)	0.21 [0.05;2.63]	0.387	
3	2 (40.0%)	3 (60.0%)	0.31 [0.07;3.30]	0.549	

	СВР	VHC	OR	p.ratio	p.overall
esteatosis_topografia:					0.296
0	5 (25.0%)	15 (75.0%)	Ref.	Ref.	
2	2 (66.7%)	1 (33.3%)	0.10 [0.02;2.01]	0.229	
3	2 (66.7%)	1 (33.3%)	0.10 [0.02;2.01]	0.229	
4	3 (42.9%)	4 (57.1%)	0.31 [0.08;2.50]	0.420	
granulomas_epitelioides:					0.692
0	12 (40.0%)	18 (60.0%)	Ref.	Ref.	
1	0 (0.00%)	2 (100%)	1.26 [0.15;76.5]	0.383	
2	0 (0.00%)	1 (100%)	0.63 [0.08;53.9]	0.613	
rosetas_hepatocitarias:					1.000
0	11 (35.5%)	20 (64.5%)	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.26 [0.05;6.03]	0.727	
emperipolese: 0	12 (36.4%)	21 (63.6%)	Ref.	Ref.	
balonizacao_hepatocitaria:					1.000
0	11 (36.7%)	19 (63.3%)	Ref.	Ref.	
1	1 (33.3%)	2 (66.7%)	0.55 [0.11;8.45]	0.949	
corpos_hialinos_de_mallory:					1.000
0	12 (37.5%)	20 (62.5%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.57 [0.07;48.5]	0.636	

glicogenizacao_nuclear:

1.000

	СВР	VHC	OR	p.ratio	p.overall
0	11 (37.9%)	18 (62.1%)	Ref.	Ref.	
1	1 (25.0%)	3 (75.0%)	0.87 [0.19;11.3]	0.683	
lobulite:					0.447
0	7 (46.7%)	8 (53.3%)	Ref.	Ref.	
1	5 (27.8%)	13 (72.2%)	1.69 [0.54;8.74]	0.292	
predominio_de_tipo_de_celulas_inflamatorias_49:					0.807
0	7 (46.7%)	8 (53.3%)	Ref.	Ref.	
2	4 (33.3%)	8 (66.7%)	1.24 [0.37;7.52]	0.518	
6	0 (0.00%)	1 (100%)	0.78 [0.09;75.3]	0.562	
8	1 (20.0%)	4 (80.0%)	1.56 [0.33;21.5]	0.358	
linfocitos:					0.447
0	7 (46.7%)	8 (53.3%)	Ref.	Ref.	
1	5 (27.8%)	13 (72.2%)	1.69 [0.54;8.74]	0.292	
eosinofilos:					1.000
0	12 (37.5%)	20 (62.5%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.57 [0.07;48.5]	0.636	
neutrofilos: 0	12 (36.4%)	21 (63.6%)	Ref.	Ref.	
macrofagos:					1.000
0	11 (37.9%)	18 (62.1%)	Ref.	Ref.	
1	1 (25.0%)	3 (75.0%)	0.87 [0.19;11.3]	0.683	

	CBP	VHC	OR	p.ratio	p.overall
plasmocitos:					0.379
0	11 (40.7%)	16 (59.3%)	Ref.	Ref.	
1	1 (16.7%)	5 (83.3%)	1.62 [0.36;18.1]	0.318	

Tabla 4.3.14 Importancia de las variables morfológicas VHS vs CBP obtenida a partir del algoritmo de BORUTA y decisión (confirmación de su importancia/rechazo) tomada por el algoritmo respecto a cada una de las variables.

Variables	meanImp	decision
actividade	9.1214	Confirmed
eosinofilos_em_ep	6.0807	Confirmed
predominio_de_tipo_de_celulas_inflamatorias_28	5.0060	Confirmed
morfologia_nodular_da_inflamacao	4.2760	Confirmed
linfocitos_em_ep	4.1004	Confirmed
plasmocitos_em_ep	3.6654	Confirmed
n_espacos_porta_ep	1.6237	Rejected
n_ep_inflamados	1.1985	Rejected
fibrose	1.0143	Rejected
topografia_da_inflamacao	0.8668	Rejected
granulomas_epitelioides	0.2758	Rejected
zonalizacao_da_inflamacao_portal	0.2100	Rejected
linfocitos	0.1987	Rejected

Variables	meanImp	decision
colestase	0.1256	Rejected
endotelite_centrovenular	0.0000	Rejected
rosetas_hepatocitarias	0.0000	Rejected
emperipolese	0.0000	Rejected
corpos_hialinos_de_mallory	0.0000	Rejected
eosinofilos	0.0000	Rejected
neutrofilos	0.0000	Rejected
n_espacos_porta_completos_ep	-0.0924	Rejected
endotelite_portal	-0.2696	Rejected
neutrofilos_em_ep	-0.2965	Rejected
n_ep_sem_ducto	-0.3884	Rejected
topografia_fibrose	-0.5028	Rejected
reacao_ductular	-0.5099	Rejected
n_ep_sem_arteriola_e_sem_ducto	-0.5648	Rejected
lobulite	-0.5971	Rejected
predominio_de_tipo_de_celulas_inflamatorias_49	-0.6654	Rejected
balonizacao_hepatocitaria	-0.7633	Rejected
esteatosis_topografia	-0.7657	Rejected
macrofagos_em_ep	-0.7715	Rejected

Variables	meanImp	decision
plasmocitos	-0.7786	Rejected
glicogenizacao_nuclear	-0.7834	Rejected
esteatosis_tipo	-0.9187	Rejected
macrofagos	-1.2277	Rejected

Tabla 4.3.15 Índices de discriminación y calibración del modelo VHC vs CBP para variables morfológicas, y sus intervalos de confianza bootstrap al 95%.

Figura 4.3.6 Gráfico de calibración del modelo VHC vs CBP para variables morfológicas estimado en base a las variables seleccionadas.
4.3.6 HAI vs CBP

En la Tabla 4.3.16 se muestran los frecuencias y porcentajes relativos para las variables categóricas, así como la media y su desviación estándar (variables continuas normales) o la mediana y el rango intercuartílico (variables continuas no normales). Se incluye el odds ratio y su p-valor, así como el p-valor del test de asociación correspondiente (χ 2, t-test, U-test). No se encuentran asociaciones significativas.

En la Tabla 4.3.17 se muestran las variables que han sido confirmadas como importantes, y las que se han rechazado. Ninguna variable contiene información importante para discriminar entre grupos.

	СВР	HAI	OR	p.ratio	p.overall
	N=12	N=16			
n_espacos_porta_ep	16.2 (5.86)	15.4 (7.28)	0.98 [0.88;1.10]	0.768	0.771
n_espacos_porta_completos_ep	7.00 [5.25;12.2]	5.00 [4.00;12.2]	0.99 [0.89;1.10]	0.846	0.675
n_ep_sem_ducto:					0.175
0	10 (40.0%)	15 (60.0%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.62 [0.08;54.8]	0.615	
2	2 (100%)	0 (0.00%)	0.00 [0.01;3.12]	0.188	

Tabla 4.3.16 Tabla descriptiva HAI vs CBP para variables morfológicas

 $n_ep_sem_arteriola_e_sem_ducto:$

	СВР	HAI	OR	p.ratio	p.overall
0	11 (40.7%)	16 (59.3%)	Ref.	Ref.	
1	1 (100%)	0 (0.00%)	0.00 [0.01;6.22]	0.429	
topografia_da_inflamacao:					0.285
0	3 (75.0%)	1 (25.0%)	Ref.	Ref.	
2	9 (39.1%)	14 (60.9%)	2.10 [0.44;28.5]	0.244	
3	0 (0.00%)	1 (100%)	1.50 [0.17;291]	0.400	
n_ep_inflamados	4.00 [1.50;10.8]	5.00 [2.75;8.25]	1.00 [0.91;1.10]	0.961	0.709
linfocitos_em_ep:					0.285
0	3 (75.0%)	1 (25.0%)	Ref.	Ref.	
1	9 (37.5%)	15 (62.5%)	2.25 [0.48;30.4]	0.220	
eosinofilos_em_ep:					1.000
0	8 (42.1%)	11 (57.9%)	Ref.	Ref.	
1	4 (44.4%)	5 (55.6%)	0.67 [0.20;4.17]	0.910	
neutrofilos_em_ep:					0.613
0	11 (45.8%)	13 (54.2%)	Ref.	Ref.	
1	1 (25.0%)	3 (75.0%)	1.18 [0.25;15.7]	0.506	
macrofagos_em_ep:					0.253

	СВР	HAI	OR	p.ratio	p.overall
0	9 (52.9%)	8 (47.1%)	Ref.	Ref.	
1	3 (27.3%)	8 (72.7%)	2.00 [0.58;12.8]	0.212	
plasmocitos_em_ep:					0.231
0	5 (62.5%)	3 (37.5%)	Ref.	Ref.	
1	7 (35.0%)	13 (65.0%)	2.03 [0.57;14.2]	0.223	
predominio_de_tipo_de_celulas_inflamatorias_28	2.00 [0.75;8.00]	8.00 [2.00;8.00]	1.21 [0.95;1.54]	0.119	0.103
morfologia_nodular_da_inflamacao:					1.000
0	8 (42.1%)	11 (57.9%)	Ref.	Ref.	
1	4 (44.4%)	5 (55.6%)	0.67 [0.20;4.17]	0.910	
zonalizacao_da_inflamacao_portal:					1.000
0	12 (44.4%)	15 (55.6%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.75 [0.09;64.7]	0.571	
actividade:					0.319
0	5 (62.5%)	3 (37.5%)	Ref.	Ref.	
1	4 (30.8%)	9 (69.2%)	2.25 [0.58;19.0]	0.195	
2	2 (33.3%)	4 (66.7%)	1.67 [0.37;21.9]	0.347	
3	1 (100%)	0 (0.00%)	0.00 [0.02;16.8]	0.667	

	СВР	HAI	OR	p.ratio	p.overall
fibrose	2.00 [0.75;3.00]	1.00 [1.00;3.00]	1.11 [0.59;2.10]	0.747	0.829
topografia_fibrose	1.00 [1.00;1.00]	1.00 [1.00;5.00]	1.37 [0.82;2.29]	0.227	0.360
reacao_ductular:					0.355
0	11 (47.8%)	12 (52.2%)	Ref.	Ref.	
1	1 (20.0%)	4 (80.0%)	1.69 [0.37;20.7]	0.311	
endotelite_portal:					0.662
0	10 (47.6%)	11 (52.4%)	Ref.	Ref.	
1	2 (28.6%)	5 (71.4%)	1.39 [0.36;11.1]	0.425	
endotelite_centrovenular:					1.000
0	12 (44.4%)	15 (55.6%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.75 [0.09;64.7]	0.571	
colestase:					0.238
0	12 (48.0%)	13 (52.0%)	Ref.	Ref.	
1	0 (0.00%)	3 (100%)	2.57 [0.30;138]	0.171	
esteatosis_tipo:					0.327
0	5 (29.4%)	12 (70.6%)	Ref.	Ref.	
1	3 (60.0%)	2 (40.0%)	0.19 [0.05;2.12]	0.272	

	СВР	HAI	OR	p.ratio	p.overall
2	2 (66.7%)	1 (33.3%)	0.13 [0.03;2.53]	0.301	
3	2 (66.7%)	1 (33.3%)	0.13 [0.03;2.53]	0.301	
esteatosis_topografia:					0.223
0	5 (29.4%)	12 (70.6%)	Ref.	Ref.	
2	2 (66.7%)	1 (33.3%)	0.13 [0.03;2.53]	0.301	
3	2 (100%)	0 (0.00%)	0.00 [0.00;2.15]	0.123	
4	3 (50.0%)	3 (50.0%)	0.29 [0.07;2.63]	0.415	
granulomas_epitelioides:					0.492
0	12 (48.0%)	13 (52.0%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.86 [0.10;74.7]	0.538	
2	0 (0.00%)	2 (100%)	1.71 [0.20;106]	0.299	
rosetas_hepatocitarias:					1.000
0	11 (42.3%)	15 (57.7%)	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.34 [0.07;8.08]	0.857	
emperipolese:					1.000
0	12 (44.4%)	15 (55.6%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.75 [0.09;64.7]	0.571	

	СВР	HAI	OR	p.ratio	p.overall
balonizacao_hepatocitaria:					1.000
0	11 (42.3%)	15 (57.7%)	Ref.	Ref.	
1	1 (50.0%)	1 (50.0%)	0.34 [0.07;8.08]	0.857	
corpos_hialinos_de_mallory: 0	12 (42.9%)	16 (57.1%)	Ref.	Ref.	
glicogenizacao_nuclear:					0.355
0	11 (47.8%)	12 (52.2%)	Ref.	Ref.	
1	1 (20.0%)	4 (80.0%)	1.69 [0.37;20.7]	0.311	
lobulite:					0.956
0	7 (46.7%)	8 (53.3%)	Ref.	Ref.	
1	5 (38.5%)	8 (61.5%)	1.04 [0.32;5.84]	0.685	
predominio_de_tipo_de_celulas_inflamatorias_49:					0.860
0	7 (46.7%)	8 (53.3%)	Ref.	Ref.	
2	4 (50.0%)	4 (50.0%)	0.62 [0.17;4.52]	0.889	
4	0 (0.00%)	1 (100%)	0.78 [0.09;75.3]	0.562	
8	1 (25.0%)	3 (75.0%)	1.17 [0.24;17.7]	0.511	
linfocitos:					1.000
0	7 (43.8%)	9 (56.2%)	Ref.	Ref.	

	СВР	HAI	OR	p.ratio	p.overall
1	5 (41.7%)	7 (58.3%)	0.82 [0.25;4.63]	0.920	
eosinofilos:					1.000
0	12 (44.4%)	15 (55.6%)	Ref.	Ref.	
1	0 (0.00%)	1 (100%)	0.75 [0.09;64.7]	0.571	
neutrofilos:					0.492
0	12 (46.2%)	14 (53.8%)	Ref.	Ref.	
1	0 (0.00%)	2 (100%)	1.60 [0.19;98.5]	0.317	
macrofagos:					0.355
0	11 (47.8%)	12 (52.2%)	Ref.	Ref.	
1	1 (20.0%)	4 (80.0%)	1.69 [0.37;20.7]	0.311	
plasmocitos:					0.613
0	11 (45.8%)	13 (54.2%)	Ref.	Ref.	
1	1 (25.0%)	3 (75.0%)	1.18 [0.25;15.7]	0.506	

Tabla 4.3.17 Importancia de las variables obtenida a partir del algoritmo de BORUTA y decisión (confirmación de su importancia/rechazo) tomada por el algoritmo respecto a cada una de las variables morfológicas

Variables	meanImp	decision
predominio_de_tipo_de_celulas_inflamatorias_28	3.5479	Rejected
n_espacos_porta_completos_ep	2.8591	Rejected

Variables	meanImp	decision
colestase	2.6164	Rejected
granulomas_epitelioides	0.7874	Rejected
n_ep_sem_ducto	0.7801	Rejected
linfocitos_em_ep	0.6355	Rejected
topografia_da_inflamacao	0.4983	Rejected
neutrofilos	0.3109	Rejected
topografia_fibrose	0.2077	Rejected
actividade	0.0683	Rejected
n_ep_sem_arteriola_e_sem_ducto	0.0000	Rejected
zonalizacao_da_inflamacao_portal	0.0000	Rejected
endotelite_centrovenular	0.0000	Rejected
rosetas_hepatocitarias	0.0000	Rejected
emperipolese	0.0000	Rejected
corpos_hialinos_de_mallory	0.0000	Rejected
eosinofilos	0.0000	Rejected
macrofagos_em_ep	-0.0262	Rejected
lobulite	-0.0570	Rejected
glicogenizacao_nuclear	-0.2696	Rejected
plasmocitos_em_ep	-0.2919	Rejected

Variables	meanImp	decision
neutrofilos_em_ep	-0.3041	Rejected
esteatosis_topografia	-0.3391	Rejected
linfocitos	-0.4681	Rejected
fibrose	-0.4808	Rejected
predominio_de_tipo_de_celulas_inflamatorias_49	-0.6292	Rejected
endotelite_portal	-0.7816	Rejected
reacao_ductular	-0.7982	Rejected
morfologia_nodular_da_inflamacao	-0.8167	Rejected
balonizacao_hepatocitaria	-0.8205	Rejected
esteatosis_tipo	-0.9103	Rejected
macrofagos	-0.9341	Rejected
plasmocitos	-0.9532	Rejected
eosinofilos_em_ep	-1.2065	Rejected
n_espacos_porta_ep	-1.2109	Rejected
n_ep_inflamados	-1.3706	Rejected

4.3.7 Resumen de la capacidad discriminativa de las variables morfológicas

	Control vs VHC	Control vs HAI	Control vs CBP	VHC vs HAI	VHC vs CBP	HAI vs CBP
actividade	X				X	
eosinofilos_em_ep				X	X	
fibrose	X			X		
linfocitos_em_ep					X	
morfologia_nodular_da_inflamacao				X	X	
n_espacos_porta_completos_ep	X					
n_espacos_porta_ep	X	X	X	X		
plasmocitos_em_ep	X	X			X	
predominio_de_tipo_de_celulas_inflamatorias_28					X	
topografia_fibrose	X	X				

4.4 Fibrosis y actividad necroinflamatoria

En referencia a la **fibrosis**, en la Tabla 4.4.1 se muestra el valor estimado del AUC para cada uno de los metabolitos, el p-valor corregido del test t, y el log2FC estimado. En la Figura 4.4.1 se muestran los metabolitos ordenados en función de su FC: FC positivo, en color verde, indica que la concentración en la condición 1 (Categoría F0 fibrosis) es superior a la concentración en la condición 2 (Categoría F1 fibrosis), mientras que un FC negativo, en color morado, indica que la concentración en la condición 1 es inferior a la concentración en la condición 2.

Ningún metabolito tiene un AUC superior a 0.80. La capacidad de discriminación,

en general, es bastante baja.

Tabla 4.4.1 Tabla con el valor estimado del AUC para cada uno de los metabolitos, el p-valor corregido del test t, y el log2FC estimado. Fibrosis

X	AUC	Pval	FC
Orotic acid	0.7032	0.0050	-0.1449
DL-2-Aminooctanoic acid	0.6792	0.0360	0.2004
Uridine 5'-diphosphate	0.6583	0.0945	-0.0256

X	AUC	Pval	FC
Citraconic acid	0.6390	0.0286	-0.2633
2-Isopropylmalic acid	0.6374	0.0314	-0.3462
Creatinine	0.6228	0.0630	1.4832
Guanine	0.6129	0.2360	0.1707
Phenylpropiolic acid	0.6123	0.1613	-0.1026
5-Methyltetrahydrofolic acid	0.6040	0.1757	-0.1095
L-Carnitine	0.5956	0.1294	-0.1394
Uric acid	0.5904	0.1074	-1.4212
L-Glutamine	0.5841	0.2412	-0.4845
Dimethylglycine	0.5794	0.2396	-0.1372
Citrulline	0.5784	0.6392	0.0683
Trehalose	0.5752	0.2667	-0.4289
3-Phosphoglyceric acid	0.5737	0.2570	-0.0672
D-Hexose-Phosphate	0.5737	0.1763	0.2459
Choline	0.5726	0.2373	-0.1152
Succinic acid	0.5716	0.3164	-0.0035
Methylmalonic acid	0.5684	0.3093	-0.0101
Pantothenic acid	0.5664	0.5410	-0.1099
3-phosphoshikimic acid	0.5653	0.3030	-0.0678

X	AUC	Pval	FC
S-Methyl-L-cysteine	0.5643	0.2303	-0.0469
Oxoglutaric acid	0.5632	0.4102	-0.0641
Taurodeoxycholic acid	0.5611	0.7137	-0.2626
Nicotinic acid	0.5569	0.4901	-0.1544
Sarcosine	0.5569	0.8423	-0.0707
NADH	0.5559	0.3397	-0.0812
Niacinamide	0.5549	0.2399	0.5509
Hypoxanthine	0.5512	0.6765	0.2862
Ortho-Hydroxyphenylacetic acid	0.5507	0.4543	0.0191
Betaine aldehyde	0.5465	0.9752	0.2057
L-Alanine	0.5444	0.9748	-0.0978
Biotin	0.5434	0.4592	0.2405
L-Threonine	0.5413	0.5398	0.2905
Pyroglutamic acid	0.5324	0.7434	-0.0039
Xanthine	0.5319	0.6206	0.1509
Argininosuccinic acid	0.5308	0.5798	-0.0053
Imidazole	0.5277	0.8990	-0.0632
7-bisphosphate	0.5256	0.9081	0.0181
Glutathione	0.5256	0.7667	0.0919

X	AUC	Pval	FC
L-Tyrosine	0.5246	0.5390	0.0090
Serine	0.5225	0.7763	0.1111
L-Arginine	0.5225	0.8183	0.0582
Trehalose 6-phosphate	0.5225	0.4674	-0.0225
2-Aminobenzoic acid	0.5214	0.9286	0.0803
p-Aminobenzoic acid	0.5183	0.9778	0.1291
Taurine	0.5162	0.7886	0.1143
Cholesterol sulfate	0.5115	0.3646	-0.1252
1-Methyladenosine	0.5099	0.8189	0.0809
L-Proline	0.5089	0.6903	0.0359
L-Valine	0.5005	0.7462	0.0237
Leu-Ile	0.5005	0.9684	0.1011

Figura 4.4.1 Gráfico mostrando los metabolitos ordenados en función de su FC (FC positivo (verde) indica que la concentración en la condición 1 (FO) es superior a la concentración en la condición 2 (F1), y FC negativo (morado) indicando mayor concentración en la condición 2. Estadio de Fibrosis

En la Tabla 4.4.2 se presenta la frecuencia de selección (a partir de las 500 muestras de validación cruzada) de los metabolitos, y el parámetro de importancia. Como se puede ver, sólo la alanina tiene un valor superior a 1 del parámetro de importancia. En la Figura 4.4.2 se presenta esta información de manera gráfica.

En la Figura 4.4.3 se muestran las curvas ROC para los distintos modelos generados (desde un modelo que incluye sólo 1 metabolito, a un modelo que los incluye a todos).

Tabla 4.4.2 Tabla con el parámetro de importancia, y el ranking de la frecuencia con la que son seleccionados cada uno de los metabolitos. Fibrosis

X	Rank.Freq.	Importance	FO	F1
L-Alanine	1	1.0109	Low	High
2-Isopropylmalic acid	1	0.7209	Low	High
Phenylpropiolic acid	1	0.7206	High	Low

X	Rank.Freq.	Importance	FO	F1
DL-2-Aminooctanoic acid	1	0.6797	High	Low
Citraconic acid	1	0.5992	High	Low
5-Methyltetrahydrofolic acid	1	0.5035	High	Low
7-bisphosphate	1	0.4421	Low	High
L-Carnitine	1	0.4126	Low	High
Creatinine	1	0.3040	Low	High
Dimethylglycine	1	0.2762	High	Low
Cholesterol sulfate	1	0.2407	Low	High
p-Aminobenzoic acid	1	0.1986	Low	High
Choline	1	0.1761	High	Low
Succinic acid	1	0.0009	High	Low
Trehalose 6-phosphate	1	-0.0075	Low	High
Xanthine	1	-0.0130	High	Low
Uric acid	1	-0.0403	High	Low
Ortho-Hydroxyphenylacetic acid	1	-0.0571	Low	High
Methylmalonic acid	1	-0.0660	Low	High
3-Phosphoglyceric acid	1	-0.0789	High	Low
NADH	1	-0.0806	High	Low
Guanine	1	-0.1514	Low	High

Citrulline	1	-0.1632	High	Low
D-Hexose-Phosphate	1	-0.2275	High	Low
Betaine aldehyde	1	-0.2479	High	Low
S-Methyl-L-cysteine	1	-0.2487	Low	High
Hypoxanthine	1	-0.2503	Low	High
Nicotinic acid	1	-0.2695	Low	High
Trehalose	1	-0.2841	Low	High
Oxoglutaric acid	1	-0.3058	High	Low
L-Threonine	1	-0.4028	Low	High
Niacinamide	1	-0.4135	Low	High
Leu-Ile	1	-0.4184	High	Low
Biotin	1	-0.4208	Low	High
Pyroglutamic acid	1	-0.4522	Low	High
L-Glutamine	1	-0.4731	Low	High
Pantothenic acid	1	-0.4791	High	Low
L-Proline	1	-0.4964	Low	High
Taurodeoxycholic acid	1	-0.5001	High	Low
L-Tyrosine	1	-0.5185	Low	High
1-Methyladenosine	1	-0.5414	Low	High

Х

L-Valine	1	-0.6229	Low	High
Imidazole	1	-0.6363	Low	High
Argininosuccinic acid	1	-0.6537	High	Low
Glutathione	1	-0.6699	Low	High
3-phosphoshikimic acid	1	-0.6889	Low	High
2-Aminobenzoic acid	1	-0.7011	High	Low
Serine	1	-0.7148	High	Low
L-Arginine	1	-0.9527	Low	High
Taurine	1	-0.9779	Low	High

Х

Figura 4.4.2 Frecuencia de selección de los diferentes metabolitos. Fibrosis

Figura 4.4.3 Curvas ROC para los distintos modelos con orden creciente de metabolitos incluidos. Fibrosis

Figura 4.4.4 Curva ROC, AUC e intervalos de confianza al 95% obtenida a partir de 500 muestras de validación cruzada. Fibrosis

En la Figura 4.4.5 se muestran las probabilidades predichas para cada uno de los pacientes, indicando aquellos que han tenido una clasificación errónea. Se muestra también la matriz de confusión.

La precisión predictiva media estimada por validación cruzada es 0.59 (en la Figura 4.4.6 se muestra la precisión estimada para el modelo seleccionado, estimado en base a 100 muestras de validación cruzada).

Figura 4.4.5 Probabilidades predichas por el modelo para cada uno de los pacientes. Se incluye el identificador de los pacientes mal clasificados. Fibrosis

Figura 4.4.6 Exactitud predictiva del modelo estimada en base a 100 muestras de validación cruzada. Fibrosis

Para la **actividad necroinflamatoria**, la Tabla 4.4.3 muestra el valor estimado del AUC para cada uno de los metabolitos, el p-valor corregido del test t, y el log2FC estimado. En la figura 3.8 se muestran los metabolitos ordenados en función de su FC.

No hay ningún metabolito con AUC superior a 0.80.

Tabla 4.4.3 Tabla con el valor estimado del AUC para cada uno de los metabolitos, el p-valor corregido del test t, y el log2FC estimado. Actividad

X	AUC	Pval	FC
L-Valine	0.6304	0.1613	-0.2702
p-Aminobenzoic acid	0.6218	0.1591	-0.3929
Orotic acid	0.6108	0.1518	-0.2219
2-Aminobenzoic acid	0.6059	0.1372	-0.4248
Pantothenic acid	0.5998	0.4842	-0.0837
Taurodeoxycholic acid	0.5998	0.1518	-0.6580
L-Carnitine	0.5949	0.2404	-0.3080
Creatinine	0.5900	0.2334	0.8295
Niacinamide	0.5900	0.5667	-0.2835
3-phosphoshikimic acid	0.5851	0.3283	0.0602
2-Isopropylmalic acid	0.5851	0.3218	-0.2320
7-bisphosphate	0.5826	0.4610	0.1798
Trehalose 6-phosphate	0.5826	0.3716	0.0201
Glutathione	0.5814	0.2119	0.1056
D-Hexose-Phosphate	0.5789	0.4327	-0.0457
Hypoxanthine	0.5734	0.4234	-0.2060
Taurine	0.5728	0.3786	-0.3198
Uric acid	0.5716	0.7366	-0.9248

x	AUC	Pval	FC
Dimethylglycine	0.5685	0.2885	-0.3074
Choline	0.5679	0.2831	-0.2962
L-Tyrosine	0.5679	0.2890	-0.2188
Imidazole	0.5630	0.3563	-0.4079
L-Arginine	0.5630	0.6726	0.0707
Betaine aldehyde	0.5532	0.9289	-0.0549
Trehalose	0.5477	0.4232	-0.7968
L-Threonine	0.5471	0.2971	-0.3557
Leu-Ile	0.5459	0.4577	-0.1642
L-Glutamine	0.5459	0.4944	-0.3496
1-Methyladenosine	0.5447	0.4837	-0.3821
Ortho-Hydroxyphenylacetic acid	0.5447	0.4988	-0.2099
5-Methyltetrahydrofolic acid	0.5435	0.5278	-0.1701
Xanthine	0.5373	0.5884	-0.1988
Argininosuccinic acid	0.5361	0.6736	-0.0493
Citrulline	0.5355	0.4125	-0.2848
Oxoglutaric acid	0.5337	0.9705	-0.0721
Citraconic acid	0.5300	0.8357	-0.0800
Uridine 5'-diphosphate	0.5300	0.7715	-0.0655

X	AUC	Pval	FC
NADH	0.5288	0.6878	-0.1221
L-Proline	0.5275	0.7066	-0.1145
Biotin	0.5275	0.6940	-0.2070
Nicotinic acid	0.5275	0.6376	-0.3058
Pyroglutamic acid	0.5257	0.5516	-0.1551
3-Phosphoglyceric acid	0.5214	0.8134	-0.0175
S-Methyl-L-cysteine	0.5202	0.4593	-0.1681
DL-2-Aminooctanoic acid	0.5177	0.9221	0.0698
Cholesterol sulfate	0.5177	0.3989	-0.2526
Guanine	0.5122	0.9385	0.2051
Phenylpropiolic acid	0.5092	0.9144	-0.0447
L-Alanine	0.5067	0.9954	-0.0119
Succinic acid	0.5067	0.8358	-0.0223
Serine	0.5055	0.7443	-0.1177
Sarcosine	0.5031	0.9526	-0.0143
Methylmalonic acid	0.5031	0.8986	-0.0292

Figura 4.4.7 Gráfico mostrando los metabolitos ordenados en función de su FC (FC positivo (verde) indica que la concentración en la condición 1 (control) es superior a la concentración en la condición 2 (VHC), y FC negativo (morado) indicando mayor condición 2. Actividad

Tabla 4.4.4 Tabla con el parámetro de importancia, y el ranking de la frecuencia con la que son seleccionados cada uno de los metabolitos.

X	Rank.Freq.	Importance	FO	F1
Glutathione	0.22	0.6095	High	Low
Creatinine	0.20	-0.0859	Low	High
Uric acid	0.16	0.1084	Low	High
L-Tyrosine	0.16	0.0301	Low	High
Taurine	0.16	-0.0691	Low	High
p-Aminobenzoic acid	0.14	-0.0844	Low	High
2-Isopropylmalic acid	0.14	-0.2634	Low	High
DL-2-Aminooctanoic acid	0.12	0.4693	Low	High
3-Phosphoglyceric acid	0.12	-0.1521	Low	High
Cholesterol sulfate	0.10	-0.0921	Low	High

Taurodeoxycholic acid	0.10	-0.2170	High	Low
Xanthine	0.08	-0.1499	Low	High
L-Threonine	0.08	-0.1997	Low	High
Orotic acid	0.08	-0.3039	Low	High
Betaine aldehyde	0.08	-0.3445	Low	High
L-Valine	0.08	-0.4107	High	Low
Pantothenic acid	0.08	-0.5765	High	Low
2-Aminobenzoic acid	0.06	-0.0978	Low	High
Pyroglutamic acid	0.06	-0.3129	Low	High
D-Hexose-Phosphate	0.06	-0.4590	High	Low
Niacinamide	0.06	-0.4915	Low	High
L-Arginine	0.06	-0.5073	High	Low
Choline	0.06	-0.5196	High	Low
Trehalose	0.04	-0.3503	Low	High
S-Methyl-L-cysteine	0.04	-0.4152	Low	High
3-phosphoshikimic acid	0.04	-0.4769	Low	High
Dimethylglycine	0.04	-0.6047	High	Low
Imidazole	0.04	-0.6240	Low	High
L-Proline	0.04	-0.6326	High	Low

Nicotinic acid	0.04	-0.8365 Low	High
Uridine 5-diphosphate,0.04,-0.948908967297561,Low,High Succinic acid,0.04,-1.12760650426893,High,Low L-Carnitine,0.02,- 0.276311153135914,High,Low L-Alanine,0.02,- 0.485491701969001,High,Low NADH,0.02,- 0.590230793994318,Low,High L-Glutamine,0.02,- 0.84195704078078,Low,High Guanine,0.02,- 0.916473752389041,Low,High Hypoxanthine,0.02,- 0.963819066696743,Low,High Leu-Ile,0.02,- 0.965228482961332,High,Low 5-Methyltetrahydrofolic acid,0.02,- 1.01078830352089,High,Low Methylmalonic acid,0.02,- 1.21693720364322,Low,High	NA	NA	

En la Tabla 4.4.4 se presenta la frecuencia de selección (a partir de las 500 muestras de validación cruzada) de los metabolitos, y el parámetro de importancia (se muestran sólo los metabolitos con un valor del parámetro de importancia superior a 1). En la Figura 4.4.8 se presenta esta información de manera gráfica.

En la Figura 4.4.9 se muestran las curvas ROC para los distintos modelos generados (desde un modelo que incluye sólo 1 metabolito, a un modelo que los incluye a todos).

Figura 4.4.8 Frecuencia de selección de los diferentes metabolitos. Actividad

Figura 4.4.9 Curvas ROC para los distintos modelos con orden creciente de metabolitos incluidos Actividad.

5 DISCUSIÓN

En este capítulo se dará respuesta, sucinta y fundamentada en los resultados obtenidos, a la pregunta que constituye el objetivo principal de este estudio. Se sugerirán aplicaciones y se alertará de las eventuales implicaciones. No faltarán citaciones de estudios previos relevantes como parte de la explicación de los hallazgos y se someterán a la crítica. Las afirmaciones, interpretaciones y deducciones serán acompañadas de modificadores del nivel de certeza. El mismo principio se aplicará a los objetivos secundarios.

Para facilitar la lectura, se propone que este capítulo sea estructurado en cuatro subcapítulos:

- 5.1 Relevancia de la cantidad de la muestra y el método de extracción
- 5.2 Objetivo principal
- 5.3Objetivo secundario a)
- 5.4 Objetivo secundario b)
- 5..5 Objetivo secundario c)

5.1 Relevancia de la cantidad de la muestra y el método de extracción

En el diagnóstico y estadificación histológica de las biopsias hepáticas por aguja, la longitud de los fragmentos es relevante para la fiabilidad de los resultados del examen anatomopatológico.(127, 128) Sin embargo, en la práctica clínica, raramente el patólogo observa biopsias hepáticas por aguja con más de 20mm de longitud.(128)

En nuestra serie de casos, los fragmentos de biopsia por aguja (n=49) tenían una longitud media de 16,3mm, con un rango entre 7 mm y 43 mm.

La variabilidad de la cantidad de muestra en la biopsia es un factor importante para establecer el límite de detección del ensayo que pretendemos desarrollar y decidir la cantidad de muestra mínima para la validación se torna fundamental. Demostramos que la cantidad de tejido es un factor limitante en el proceso de extracción de metabolitos al confirmar que los cortes efectuados en el micrótomo con espesor total de 20µm en un fragmento de tejido parafinado con 270mm² de área, permitieron detectar 154 metabolitos mientras que en un cilindro con 2mm de diámetro (aproximadamente 3mm²) obtenidos de ese mismo bloque permitieron identificar 95 metabolitos.

El procesado de los tejidos implica someterlos a la acción de varios productos químicos en varios ciclos durante horas antes de parafinarlos e incluirlos en bloques de parafina y este es uno de los factores a los que se le atribuye una menor capacidad para identificar el mismo número de metabolitos en material parafinado al compararlo con material congelado en fresco.(235) El porcentaje de metabolitos que no son detectados a partir de tejido parafinado comparado

con el mismo tejido congelado se sitúa en cerca del 40%. Sin embargo, esos estudios fueron realizados en carcinoma de colon y carcinoma de próstata, no en tejido hepático.(234, 235, 280) En el tejido hepático humano, la mayor parte de los estudios se realizaron en hígado congelado a partir de piezas de hepatectomía por tumor, por lo tanto, con abundante muestra disponible, con plataformas de análisis diferentes, diseños no dirigidos (*untargeted*) y en material preferencialmente congelado.(281, 282)

En el trabajo publicado por Wojakowska *et al.*(233), el método de extracción de metabolitos a partir de tejido parafinado incluyó la fase de desparafinación con xylol y dos fases de extracción en las que utilizó en ambas, un método mecánico por ultrasonidos. El tejido utilizado fue riñón de ratón en condiciones controladas y con abundante tejido disponible. Utilizando una plataforma GC/MS consiguió detectar 60 metabolitos.

Arima *et al.*(234) prescindió de la fase de desparafinación y utilizó un método de extracción utilizando como solvente el metanol a 70°C y utilizando una plataforma UPLC/MS consiguió detectar 197 metabolitos en el material parafinado que también estaban presentes en el material congelado. El tejido utilizado fueron fragmentos de cáncer de colon de piezas de colectomía, por lo tanto, con abundante muestra disponible.

Evaluar de forma grosera el método de extracción en función de la cantidad de metabolitos detectados por uno u otro método puede ser un gran error. Factores como la propia naturaleza del producto analizado y el procedimiento de selección de la muestra parecen muy relevantes, así como tener la seguridad de lo que se está analizando. En el caso del cáncer de colon y tal como describe Arima *et al.*(234) la selección del tejido consistió en obtener un fragmento del tumor para

posteriormente congelarlo y evaluar en cortes de hematoxilina y eosina, las áreas tumorales y no tumorales en cada muestra de cada paciente. En el análisis comparativo, entre los resultados del material congelado y el material parafinado, describe una "pérdida" de detección de metabolitos en el material parafinado del 45%. Con esta descripción del procedimiento, parece razonable pensar que la presencia o ausencia de materia fecal en cada muestra no se tuvo en cuenta y aunque su efecto en los resultados es desconocido, parece muy probable que este efecto exista con implicaciones en la cantidad de metabolitos detectados en muestras del mismo tejido preservadas de forma diferente, una vez que las heces, aparte de que no son asépticas y contener numerosos metabolitos, ya mostraron su utilidad como muestra idónea en el estudio del metaboloma del microbioma y su estudio es objeto de una base de datos de metaboloma de heces humanas.(283)

Los resultados del estudio de Wojakowska *et al.*(233) nos parecen más comparables a los obtenidos en nuestro trabajo, aunque hay diferencias significativas en la especie, el tipo de tejido utilizado y la fijación.

Parece evidente que los factores asociados a la muestra, principalmente la cantidad de muestra y método de preservación, influyen en el resultado de la extracción de metabolitos. Sin duda, el método de extracción es importante, pero determinar cuál es el mejor método en el caso de los tejidos parafinados dependerá en gran medida del objetivo del estudio.

Serán necesarios estudios que, con diferentes métodos de preservación del tejido y utilizando diversos tejidos humanos se analice la "rentabilidad" de los diferentes métodos de extracción para los diferentes tipos de metabolitos. Sólo

así se podrá llegar a una estandarización de los estudios metabolómicos en material parafinado.

5.2 Objetivo principal

El modelo predictivo entre el grupo diagnóstico control y el grupo VHC lo constituye once metabolitos seleccionados, considerados importantes: carnitina, sarcosina, ácido metilmalónico, ácido succínico, alanina, ácido 2-isopropilmálico, ácido p-aminobenzoico, ácido nicotínico, ácido orótico, ácido argininosuccínico y metilcisteína. De estos once metabolitos la carnitina y la sarcosina son los que tienen mayor importancia en nuestro modelo. Exceptuando el ácido argininosuccínico, la sarcosina, la tirosina, la alanina y la metilcisteína, todos los demás metabolitos mencionados están aumentados en la VHC respecto al control.

La carnitina es un aminoácido no esencial cuya función más importante es el transporte de grasas a las mitocondrias de las células musculares siendo un factor fundamental en el metabolismo de los ácidos grasos en mamíferos y para la obtención de energía.(181) Este aminoácido se obtiene a través de la dieta pero puede ser sintetizado endógenamente en el hígado y en el riñón.(284) La carnitina y sus derivados, bajo la forma de acilcarnitinas, son metabolitos considerados relevantes en modelos discriminativos y de análisis de vías metabólicas en suero y orina de pacientes con VHC y hepatocarcinoma. Las acilcarnitinas estarían elevadas en el suero de estos pacientes, mientras que la carnitina estaría disminuida en la orina de pacientes con VHC.(263, 266, 267) La carnitina parece estar disminuida también en el suero de los pacientes con

VHC, y a pesar de estar más elevada en los pacientes con cirrosis por VHC, estos continúan teniendo niveles más bajos si los comparamos con las personas sanas.(285)

Los mecanismos de la deficiencia de carnitina en el suero de pacientes con VHC no están bien aclarados, aunque hay autores que defienden la hipótesis de una deficiencia en la síntesis hepática.(286) Nuestros resultados ponen en duda esta hipótesis una vez que constatamos un aumento de carnitina hepática en los pacientes con VHC (ver Tabla 4.1.19). Una teoría alternativa se basaría en una transformación extrahepática de la carnitina en acilcarnitinas que, al no ser correctamente metabolizadas, quizás por una regulación a la baja de una enzima como la carnitinapalmitoiltransferasa 2 (CPT2), aumentan los niveles de acilcarnitinas en el suero y disminuyen los niveles de carnitina libre. El hecho de que los niveles de acilcarnitinas en el suero son considerados marcadores substitutos de la actividad de la CPT2 apoya esta nuestra teoría.(287) La sarcosina es un aminoácido omnipresente en todo el cuerpo y es generado a partir de la colina ingerida en los alimentos, así como del metabolismo de la metionina pasando, la sarcosina, a ser degradada rápidamente a glicina, al mismo tiempo que la glicina puede pasar a sarcosina por medio de una reacción enzimática.(181) La sarcosina no se encuentra entre los metabolitos más relevantes en las diferentes publicaciones consultadas sobre metabolómica en la VHC, que fueron mayoritariamente realizadas en suero y orina humanos. Sin embargo, la glicina parece estar disminuida en el suero de pacientes con cirrosis por VHC y aumentada en la orina de pacientes con VHC.(256, 263, 266)

El ácido metilmalónico, el ácido p-aminobenzoico o p-aminobenzoato, el ácido 2-isopropilmálico, el ácido nicotínico, serán comentados con detalle en la discusión de los patrones de correlación y red de correlaciones perturbadas. En la literatura consultada, estos metabolitos junto con la alanina, ácido orótico, ácido argininosuccínico y metilcisteína o S-Metil L-cisteína, no fueron descritos como relevantes en pacientes con VHC en muestras de plasma, suero y orina.

En cultivos celulares de células hepatocitarias Huh-7.5 que fueron infectadas con el virus de la VHC y realizado el estudio metabolómico después de 24h, 48h y 72h desde la infección, mostró un aumento significativo de alanina y descenso significativo de carnitina y acilcarnitinas. Así, entre los 250 metabolitos cuantificados no constan el ácido orótico, ácido argininosuccínico ni la metilcisteína o S-Metil L-cisteína.(259) Estos resultados discordantes con los obtenidos en nuestro estudio tienen escaso significado o un significado condicionado por el hecho de que las células Huh-7.5 son células de hepatocarcinoma y porque el medioambiente del cultivo, por muchos cuidados que se tenga en el control de los parámetros, nunca será como aquel del que procede la biopsia hepática sin hepatocarcinoma donde la interacción entre estructuras y diferentes tipos celulares que constituyen el tejido están preservadas, mientras que en el cultivo no.

El modelo predictivo que diseñamos para discriminar entre VHC y los casos control ofrece una buena capacidad discriminativa con un área bajo la curva de 0.808 y una exactitud predictiva de 76,4%.

La carnitina y la sarcosina también se revelan como metabolitos importantes en el modelo predictivo, constituido por siete metabolitos, de Control vs HAI. Aunque en la literatura consultada, apenas en los derivados de la carnitina (acilcarnitinas) fueron descritas alteraciones de sus niveles en el suero de modelos de HAI en ratones.(288)

Este modelo predictivo de Control vs HAI no consiguió clasificar adecuadamente cinco casos de HAI por la gran variabilidad clínica de los mismos. Tres casos estaban a tratamiento con corticoides y en dos de ellos tenían asociada azatioprina y otro tenía asociado micofenolato de mofetilo. Uno de estos tres casos era seronegativo con hipergammaglobulinemia a tratamiento con corticoides y azatioprina (ver Tabla 3.1.1). Los dos casos restantes que no fueron correctamente clasificados por el modelo eran casos de HAI tipo 1 sin tratamiento en el momento de la biopsia. En lo referente a los tres casos control que fueron mal clasificados, por la naturaleza del producto (biopsia de hígado donante) no tenemos datos suficientes que puedan ser comparados.

En nuestra serie de HAI hay cuatro casos que estaban bajo tratamiento con corticoides, tres asociados a azatioprina y uno a micofenolato de mofetilo, en el momento de la biopsia. Tres de estos cuatro casos fueron incorrectamente clasificados por nuestro modelo, por lo que parece probable que la terapéutica tenga efecto en el perfil metabolómico esperado de la HAI.

El colesterol sulfato es un esteroide endógeno con múltiples funciones regulatorias que incluyen la activación enzimática, la adhesión de queratinocitos y señal de transducción.(289) Está disminuido en los casos de HAI de nuestro estudio con respecto al grupo control hasta el punto de que es un metabolito importante en nuestro modelo discriminativo (ver Tabla 4.1.19). Desde el punto de vista funcional, el colesterol sulfato inhibe la activación de los linfocitos T por el bloqueo de la señalización de los receptores de células T (TCR).(290) En la literatura consultada se mencionan metabolitos que traducen una perturbación
del metabolismo del colesterol en contexto de HAI, pero relacionado con la biosíntesis de ácidos biliares en contexto de cirrosis descompensada por HAI y no con la inflamación.(244) No encontramos ninguna mención del colesterol sulfato en contexto de HAI por lo que, de ser validada esta primicia, podría ser un punto de partida para ponderar una eventual intervención terapéutica teniendo como diana el colesterol sulfato en contexto de HAI. Esta intervención podría ser apenas a través del aporte nutricional de alimentos con alto contenido recomendado en sulfuros. como es en otros contextos la como aterosclerosis.(291)

En nuestro modelo predictivo, ningún metabolito presenta un AUC superior a 0.80. El valor del AUC del modelo es de 0.815 con un intervalo de confianza muy amplio próximo a 0.5, por lo tanto, cerca del límite de no discriminación. Probablemente a este intervalo de confianza contribuyen los casos mal clasificados de HAI en tratamiento al momento de realizar la biopsia.

En modelos experimentales en ratones que intentan reproducir la colangitis esclerosante primaria y la CBP, se menciona una disminución del glutatión en el plasma.(248) Sin embargo, nuestro estudio revela una mayor concentración de glutatión en la biopsia hepática de pacientes con CBP al compararlo con el control (ver Tabla 4.1.19).

El imidazol se postula en nuestro modelo "Control *versus* CBP" como uno de los metabolitos con mayor importancia (ver Tabla 4.1.19 y Tabla 4.1.8). No obstante, ningún trabajo publicado de los consultados en la literatura menciona este metabolito en el contexto de CBP. Sin embargo, el imidazol se asocia a la histamina y a la histidina, siendo la histidina un aminoácido esencial a partir del cual se sintetiza la histamina.(181) Una vez que los niveles de histamina

aumentan en situaciones de enfermedad hepática crónica colestática como la CBP, parece razonable pensar que el aumento de su síntesis debe ir acompañado de un aumento de la síntesis de imidazol.(292) No sabemos los niveles de concentración de histidina e histamina de las biopsias hepáticas de nuestro estudio porque no constan en nuestro panel de metabolitos validados para el ensayo.

El ácido úrico es otro de los metabolitos más importantes en nuestro modelo discriminativo entre CBP y el grupo control (ver Tabla 4.1.19 y Tabla 4.1.8). Es un producto final del metabolismo de las purinas y es un antioxidante.(181) Aunque no está descrito como un metabolito relevante en las publicaciones consultadas, sí está descrito el estrés oxidativo como un fenómeno importante en la CBP, por lo que el consumo de ácido úrico podría ser una consecuencia de este aumento del estrés oxidativo. No obstante, aunque hay estudios que justifican la hipouricemia en los pacientes con CBP por un aumento de la excreción renal, al mismo tiempo no se descarta una disminución de su producción.(293, 294) La leucina es un aminoácido esencial importante en la síntesis proteica.(181) Aunque este aminoácido no es mencionado en la literatura consultada como relevante en contexto de CBP, en nuestro estudio este aminoácido está disminuido en los casos de CBP al compararlo con el grupo control (ver Tabla 4.1.19).

La arginina, aminoácido esencial cuyo consumo aumenta en estados catabólicos como sepsis y cáncer,(181) se muestra disminuida en el caso de la CBP al compararlo con el control en nuestro estudio (ver Tabla 4.1.19). También se ha descrito una disminución de la arginina en el plasma de ratones, a los que se les indujo enfermedad hepática colestática como modelo de CBP.(248)

El ácido 2-amonibenzoico es una toxina urémica derivada del triptófano y la exposición crónica del organismo a este tipo de toxina provoca daño renal, enfermedad renal crónica y cardiovascular.(181) En nuestro estudio, este metabolito está aumentado en la CBP en su comparación con el control (ver Tabla 4.1.19). La relación de este metabolito con un hipotético daño renal que provoque un aumento de la excreción renal de ácido úrico está aún por descifrar.

Uridina 5'-difosfato, Carnitina, 1-metiladenosina, tirosina y betaína aldehído están disminuidas en el grupo de las colangitis biliares primaria al compararlo con el control. De todos ellos, apenas la tirosina y la carnitina fueron descritos como metabolitos relevantes en la literatura consultada. Por un lado, se ha descrito un aumento de la tirosina y por otro lado una disminución de carnitina (carnitina libre y otras carnitinas) en el suero de pacientes con CBP cuando se compararon con el grupo control.(295, 296) Si tomamos estos datos como reproducibles en el suero de los pacientes de nuestro estudio, podemos inferir que es muy probable una disminución de la síntesis de carnitina en los pacientes con CBP. En el caso de la tirosina, al constatarse una disminución en el tejido hepático con un aumento en el suero, es probable que esta disparidad pueda deberse a un problema en la incorporación de la tirosina procedente de la dieta en el hígado o una disminución de la síntesis hepática, o ambas. Para los restantes metabolitos que se encuentran significativamente disminuidos (ver Tabla 4.1.19) en nuestro estudio, no hemos encontrado referencia en la literatura consultada.

Nuestro modelo discriminativo entre el grupo control y el grupo de la CBP presenta una excelente capacidad discriminativa entre estos dos grupos con un AUC de 0.964 y un intervalo de confianza muy estrecho.

Once metabolitos fueron seleccionados en el modelo discriminativo entre el grupo de VHC y la HAI. En cuatro de ellos se demostró una disminución significativa (sarcosina, alanina, ácido argininosuccínico y metilcisteína) y siete estaban significativamente aumentados (ácido 2-Isopropilmálico, ácido metilmalónico, ácido fenilpropiólico, ácido succínico, ácido orótico, colina, ácido oxoglutárico) – ver Tabla 4.1.19. La anemia perniciosa frecuentemente se asocia a enfermedades autoinmunes. Aunque el déficit de vitamina B12 aparece en la literatura consultada, en dos casos publicados, coexistiendo con HAI, nos parece razonable pensar que esta situación puede ser más común de lo que parece, teniendo en cuenta el resultado de nuestro estudio referente al ácido metilmalónico. Una vez que la concentración de ácido metilmalónico tiene una relación inversamente proporcional a los niveles de vitamina B12 en el suero y si esto es extensible a la biopsia hepática, la hipótesis de la deficiencia de vitamina B12 en pacientes con HAI parece posible.(297-299)

Todos estos metabolitos constituyen el modelo predictivo entre el grupo de VHC y la HAI que tiene buena capacidad de discriminación con un AUC de 0.888 y una exactitud predictiva de 0.767.

El modelo predictivo para el grupo de VHC y la CBP está constituido por nueve metabolitos de los cuales tres están aumentados en la CBP (Imidazol, ácido 2isopropilmálico y el ácido 2-aminobenzoico) y seis están disminuidos (Ácido úrico, Tirosina, Arginina, 1-metiladenosina, Leucil-isoleucina) – ver Tabla 4.1.19. Se verifica que, de todos los metabolitos de este modelo predictivo, apenas uno de ellos, el ácido 2-isopropilmálico, consta en el modelo predictivo entre los grupos control y el grupo de VHC, estando en ambos modelos aumentado. Todo apunta a que este aumento es más acentuado en la CBP. Este modelo refleja una excelente capacidad discriminativa.

El modelo predictivo entre el grupo de HAI y la CBP reveló una capacidad discriminativa excelente. En la CBP incluye cinco metabolitos que están aumentados (Imidazol, 2-Aminobenzoic acid, Taurodeoxycholic acid, Glutathione, DL-2-Aminooctanoic acid) y cinco metabolitos que están disminuidos (Uric acid, L-Arginine, L-Tyrosine, Betaine aldehyde, S-Methyl-L-cysteine).

5.3 Objetivo secundario a)

El primer hallazgo de este análisis de redes de correlaciones perturbadas es la diferencia de los metabolitos con mayores correlaciones diferenciales medias y los metabolitos que constituyen los *hubs* de los módulos generados para cada grupo diagnóstico cuando los comparamos entre ellos. Por lo que podemos inferir que el fenotipo molecular difiere entre los diferentes grupos diagnósticos analizados, teniendo en cuenta siempre que este no es un análisis discriminante. El modelo de correlaciones perturbadas establece correlaciones entre metabolitos a través de un análisis estadístico que nos asegura que estas correlaciones no son debidas al azar sin tener en cuenta, desde el punto de vista biológico, si esas correlaciones están identificadas en las bases de datos de vías metabólicas.(300)

La *"hexose phosphate"* es la fructosa 6-fosfato y la *"trehalose sucrose"* es la sucrosa. Estos dos metabolitos, identificados como haciendo parte del módulo referido por el análisis de correlaciones perturbadas entre el grupo control y el

grupo de VHC, están presentes en la vía metabólica del almidón y de la sucrosa que a su vez está relacionada con la vía de la glicólisis y gluconeogénesis. A este respecto existe evidencia de que el metabolismo de la glucosa está perturbado en las células infectadas por el virus de la VHC y hay modelos que apuntan que existe un aumento de la gluconeogénesis mediada por la acción del virus C, explicando la diabetes y la resistencia a la insulina que afecta a muchos enfermos con VHC.(301)

El ácido metilmalónico es un intermediario vital en el metabolismo de las grasas y proteínas. La forma ligada de la coenzima A al ácido metilmalónico, la metilmalonil-CoA, es transformada en succinil-CoA por la metilmalonil-CoA mutasa en una reacción que requiere vitamina B12 como cofactor y que permite que el ácido metilmalónico entre en el ciclo de Krebs.(181) Nuestro análisis de redes de correlaciones perturbadas señala al ácido metilmalónico como un metabolito importante en sus correlaciones con otros metabolitos que constituyen el módulo identificado entre el grupo control y el grupo de VHC. Es conocido que los niveles del ácido metilmalónico se relacionan de forma inversa con los niveles de vitamina B12 en suero por lo que se ha propuesto como un potencial marcador de deficiencia de B12.(302) En algunos estudios se relacionó a la vitamina B12 como un factor importante en el tratamiento de la VHC, ya que aumentaba la respuesta virológica sostenida en pacientes tratados con regímenes de interferón pegilado y ribavirina por un mecanismo que bloquea la replicación viral. (303, 304)

Otro metabolito importante en nuestro módulo de la red de correlaciones perturbadas entre el grupo control y el grupo de VHC, es al ácido 2isopropilmálico. Este compuesto es un ácido graso con un grupo hidroxilo que

se incorpora a nuestro organismo por ingestión 0 por bacterias (microbioma).(181) Es un metabolito presente en vías metabólicas de levaduras, plantas y bacterias, pero no tiene vía metabólica conocida en el ser humano, otros mamíferos, aves e insectos.(242) Sin embargo, este metabolito ha sido identificado en muestras de orina y hemofiltrados humanos. (305, 306) En el suero de pacientes con MAFLD (ex NAFLD), este metabolito está significativamente disminuido. En pacientes con asma, la asociación del ácido 2isopropilmálico y betaína medidos en el suero, se comportó como un fuerte discriminador entre los niños con asma y del grupo control.(307) En el caso del hígado, un interesante experimento llevado a cabo en cerdos demostró que este órgano libera de forma significativa ácido 2-isopropilmálico comparando las concentraciones de la sangre arterial con la sangre venosa. (308) En el contexto de nuestro módulo de la red de correlaciones perturbadas, el papel de este metabolito supone una incógnita. A pesar de ser un metabolito cuya función en los mamíferos no es conocida, parece razonable pensar, a la luz de los resultados de nuestro análisis y de los resultados encontrados en la literatura, que esa función puede existir.

En el caso de la HAI el metabolismo de los aminoácidos parece estar perturbado, señalando el análisis de vías metabólicas un papel tanto la vía de la biosíntesis de la fenilalanina, tirosina y triptófano, como la del metabolismo de la tirosina y de la fenilalanina. Estas vías ya fueron referidas como relevantes en un modelo en ratón al que se le indujo una enfermedad autoinmune de tipo artritis reumatoide, señalando el estudio metabolómico a partir de muestra de orina, la importancia de la fenilalanina en el metabolismo energético y en la producción de dopamina y norepinefrina, mientras que el del triptófano tendría un papel importante como regulador de la proliferación de linfocitos T.(309) Se han documentado alteraciones significativas en los niveles de tirosina y fenilalanina a partir de estudios metabolómicos en plasma de pacientes con HAI comparados con individuos sanos.(243)

El último módulo identificado resalta el papel del metabolismo de la taurina e hipotaurina en la comparación entre el grupo de HAI y el grupo control. La taurina es un aminoácido no esencial que procede del metabolismo del ácido taurocólico, que es uno de los componentes principales de los ácidos biliares no sulfatados presentes en la orina de pacientes con atresia biliar primaria y tiene un efecto colerético.(181) El ácido taurocólico está elevado en el plasma de los pacientes cirróticos y tiene un papel promotor de la cirrosis, demostrado en cultivos celulares de células "estrelladas" hepáticas, por lo que ha sido propuesto como diana terapéutica en las hepatitis crónicas.(310) Pero la fuente principal de taurina en la vía del metabolismo de la taurina e hipotaurina es la L-cisteína.(311) Habiendo varias fuentes de taurina, parece razonable que no deba ser considerada un fiel substituto del ácido taurocólico en el estudio de la fibrosis hepática.

El *hub* constituido por el ácido citracónico, también conocido como ácido maleico o simplemente maleato, es un subproducto del metabolismo de la tirosina y es un ácido graso que hace parte del metabolismo del butanoato y que a su vez está relacionada con el ciclo del citrato, la gluconeogénesis/glicólisis y también con el metabolismo de la alanina, aspartato y glutamato. La alanina es uno de los links que establece nuestro modelo con el ácido citracónico.(311) La relevancia de metabolitos relacionados con el metabolismo energético en la HAI ya fue relatada en un estudio metabolómico realizado en plasma donde los niveles de piruvato, lactato, acetato, acetoacetato y glucosa estaban elevados en estos pacientes cuando fueron comparados con otros grupos diagnósticos.(243)

Nuevamente, el ácido isopropilmálico es un metabolito destacado en este último módulo identificado en la red de correlaciones perturbadas entre el grupo control y el grupo de HAI, que constituye el segundo *hub* de este último módulo. Como referido anteriormente, continúa siendo una incógnita.

El ácido fenilpropiólico, que tanto puede ser ácido L- fenil-láctico como el ácido D-fenil-láctico, constituye el hub de uno de los seis módulos identificados en la red de correlaciones perturbadas entre el grupo control y el grupo de la CBP. Mientras que el ácido fenil-láctico en su forma L (L-fenil-láctico) es un producto del catabolismo de la fenilalanina en humanos, su forma D (D-fenil-láctico) es típicamente derivado de bacterias.(181) Un aumento de este metabolito en las muestras de hemocultivos fue detectado en pacientes con sepsis u otras complicaciones infecciosas relacionadas con Klebsiella, E.colli, Stafilococcus aureus, enterococos, bifidobacterias, lactobacterias, Acinetobacter, Clostridium sporogenes y eubacterias, siendo los valores de producción de este metabolito más elevados en los casos de E.colli y Klebsiella.(312) Así, bacterias productoras de D-fenil-láctico fueron identificadas en pacientes con CBP, siendo candidatas a constituir uno de los posibles factores ambientales desencadenantes de la enfermedad, como es el caso de E. colli, Klebsiella, Staphilococcus aureus y el Lactobacillus delbrueckii. (313) Si fuese cierta la teoría del microbioma, por la cual se explica que la exposición de un antígeno bacteriano y la reacción inmunológica subsecuente genera autoanticuerpos AMA por reacción cruzada debido a la analogía entre el antígeno bacteriano y proteínas del complejo de la

piruvato deshidrogenasa, este hallazgo puede ser relevante al demostrar que el estímulo antigénico bacteriano persiste en el tiempo y quizás una terapéutica antibacteriana dirigida pueda contribuir al control de la enfermedad. (314, 315) A este respecto, la rifampicina es el tratamiento de segunda línea para el tratamiento del prurito en pacientes con CBP al reducir los niveles de unos mediadores causantes del prurito, las autotaxinas, pero también fue descrito que reduce los niveles de FA en estos pacientes. (316, 317) Es curioso que la rifampicina es un agente antimicrobiano eficaz contra E colli y Staphilococcus incluso cuando están localizados dentro de los macrófagos y de los neutrófilos respectivamente.(318). Mientras que la forma (L) del ácido fenil-láctico es un producto del catabolismo de la fenilalanina, no se conoce todavía la vía metabólica en humanos para la forma (D).(175) El elevado número de correlaciones que establece este metabolito en nuestra red de correlaciones perturbadas con otros metabolitos y, por lo tanto, con otras vías metabólicas, aún está por aclarar y parece razonable pensar que su relevancia demostrada en este módulo pueda estar relacionada con lo expuesto.

El segundo módulo identificado en esta red entre el grupo control y el grupo de CBP muestra dos *hubs* cuyos metabolitos son el succinato y el ácido metilmalónico. El ácido metilmalónico, como se mencionó previamente, es un intermediario del metabolismo de las grasas y proteínas que a través de varias reacciones es convertido en succinil-CoA y de esta forma entra en el ciclo de Krebs y el succinato es un componente del ciclo de Krebs.(181) Así, para este segundo módulo, el análisis de las vías metabólicas apunta para una perturbación en la vía del metabolismo de los aminoácidos (metabolismo de la fenilalanina) y el metabolismo de los carbohidratos (metabolismo del almidón y la sucrosa).

La betaína aldehído es sintetizada en el hígado y en el riñón a partir de colina.(181) Es un componente que hace parte del metabolismo de los aminoácidos y más concretamente del metabolismo de la glicina, serina y treonina.(181) El nicotinato o ácido nicotínico, también conocido como niacina o vitamina B3, hace parte del metabolismo de cofactores y vitaminas (metabolismo del nicotinato y nicotinamida), importantes en el metabolismo energético.(181) En este tercer módulo del análisis de redes de correlaciones perturbadas entre el grupo control y el grupo de CBP, estos dos metabolismo de los aminoácidos (metabolismo de la glicina, serina y treonina) ya fueron descritas en estudios metabolómicos en muestras de suero de pacientes con CBP.(249) La hipercolesterolemia se asocia comúnmente a la CBP y la niacina tiene un potente efecto regulador de la lipidemia aumentando el colesterol HDL y disminuyendo el colesterol VDL y el LDL .(319, 320) La eficacia del tratamiento de la hipercolesterolemia con vitamina B3 aún está por aclarar.

El cuarto módulo del análisis de redes de correlaciones perturbadas entre el grupo control y el grupo de CBP lo constituyen tres *hubs* representados por los metabolitos alfa ketoglutarato, ácido fenilpropiólico y glutatión. El alfa ketoglutarato es un componente importante en el ciclo de Krebs, tiene un efecto estimulante de la síntesis proteica y disminuye el catabolismo de las proteínas.(181) Cuando es administrado como suplemento nutricional puede aumentar significativamente en el plasma los niveles de insulina, el factor 1 de

crecimiento de tipo insulina y el factor de crecimiento.(321) En nuestra serie, ninguno de los doce pacientes con CBP tenían el diagnóstico de diabetes. Sobre el papel del ácido fenilpropiólico, otro *hub* de este cuarto módulo, ya fue discutido anteriormente.

El glutatión es un eficaz antioxidante que participa en varias reacciones enzimáticas, entre las que se destaca aquellas direccionadas a la eliminación de tóxicos, por lo que su uso clínico es diverso, como por ejemplo en la prevención de la toxicidad del oxígeno en cámaras hiperbáricas, tratamiento de la intoxicación por plomo y metales pesados, para disminuir la toxicidad de los tratamientos radioterápicos y quimioterápicos en el tratamiento contra el cáncer.(181) En el caso de ciertos medicamentos como el paracetamol, se producen substancias químicas tóxicas que inducen la muerte celular al reaccionar con proteínas celulares, como es el caso de la N-acetil-p benzoquinona iminina (NAPQI), que son neutralizadas por el glutatión que es consumido en este proceso de detoxificación.(181) El estrés oxidativo, en el contexto de la CBP, ha sido descrito como una característica importante de esta enfermedad.(322) Los mecanismos subyacentes en la producción de anticuerpos AMA y la exposición de autoantígenos del PDC-E2, con la subsecuente pérdida de tolerancia inmunológica en pacientes con insuficiencia hepática aguda por intoxicación con paracetamol, se ha propuesto como un evento crucial en la iniciación de la CBP.(322) En nuestro modelo de redes de correlaciones perturbadas entre el grupo control y el grupo de CBP, el glutatión es uno de los hubs del cuarto módulo identificado. Este metabolito parece estar disminuido en las células epiteliales de los ductos biliares hepáticos en pacientes con CBP, y el tratamiento con UDCA corrige parcialmente los niveles de glutatión

en el plasma de estos pacientes.(323, 324) En nuestra serie, siete de los doce pacientes con CBP tomaban UDCA en el momento de la biopsia (ver Tabla 3.1.1), sin embargo su perturbación en este grupo diagnóstico fue significativa, hasta el punto de ser considerado un *hub* en nuestro modelo de redes de correlaciones perturbadas.

El quinto módulo identificado en nuestra red de correlaciones perturbadas entre el grupo control y el grupo de la CBP tiene como *hub* la treonina. El análisis de vías favorece el metabolismo de los aminoácidos y de traslación, concretamente la biosíntesis de arginina y la biosíntesis de aminoacil-tRNA. El metabolismo de la glicina, serina y treonina se ha relacionado con la CBP a partir del análisis de vías metabólicas de metabolitos identificados en suero de pacientes con CBP. Sin embargo, las correlaciones identificadas en nuestra red con el resto de los metabolitos que conforman el módulo y las vías metabólicas de la biosíntesis de arginina y biosíntesis de aminoacil-tRNA están por aclarar.(249)

El sexto módulo identificado en la comparación entre el grupo control y el grupo de CBP en nuestro modelo de redes de correlaciones perturbadas, tiene como *hub* la shikimato 3-fostato. El análisis de vías metabólicas del conjunto de metabolitos de este módulo favorece la perturbación de la vía metabólica de los ácidos nucleicos (metabolismo de la pirimidina), descrita con anterioridad a partir de suero de pacientes con CBP.(249) La correlación encontrada en nuestra red de la shikimato 3-fosfato con los restantes metabolitos es desconocida, dado que la vía metabólica de la shikimato (vía del shikimato) ha sido descrita apenas en plantas y microorganismos, nunca en animales.(325)

El ácido hidroxifenilacético o también llamado fenilacetato es un ácido carboxílico relacionado con el metabolismo de la urea y que tiene un efecto benéfico en

situaciones de hiperamonemia, al favorecer la eliminación de amonio en la orina, situaciones que ocurren en los casos de fallo hepático agudo.(326) El paminobenzoato o ácido p-aminobenzoico, es un metabolito de origen bacteriano y fuente de folato en las bacterias.(181) Este metabolito puede estar presente en suplementos dietéticos y en dosis elevadas puede ser hepatotóxico, habiéndose descrito un caso en el que se atribuyó a este metabolito el papel causal de la HAI.(327) Estos dos metabolitos constituyen los dos *hubs* del primer módulo identificado en la red de correlaciones perturbadas entre el grupo de VHC y el grupo de HAI.

El segundo módulo identificado en nuestra red de correlaciones perturbadas, entre el grupo de VHC y el de HAI, señala que la vía metabólica que estaro perturbada es la vía de la biosíntesis de aminoacil-tRNA, lo que puede traducir una perturbación en la actividad de la enzima tRNA sintetasa. La aminoacil tRNA sintetasa actúa en la regulación y señalización de moléculas en enfermedades autoinmunes, enfermedades infecciosas e inmunidad tumoral.(328)

La leucina-isoleucina y la tirosina constituyen los dos *hubs* del tercer módulo identificado entre el grupo de VHC y la HAI. Las vías metabólicas que probablemente están perturbadas son la vía del metabolismo de pirimidina y la biosíntesis de aminoacil tRNA. Al mismo tiempo, el cuarto módulo señala que la vía metabólica del metabolismo de las purinas estaro también perturbada. La inhibición del metabolismo de la pirimidina se ha propuesto como tratamiento de enfermedades autoinmunes porque tiene como efecto la reducción de la actividad de respuesta inflamatoria de los linfocitos Th1, con buenos resultados en el contexto de artritis reumatoide y esclerosis múltiple.(329) Purinas como la adenosina tienen un papel inmunosupresor de la inflamación y parece haber evidencias que en el contexto de HAI, su síntesis está disminuida.(330) Es de destacar que nuestro estudio de redes de correlaciones perturbadas a partir del análisis metabolómico de la biopsia hepática parafinada parece útil en la generación de hipótesis. Permite el descubrimiento de eventuales dianas terapéuticas y su potencial para llegar a proporcionar a estos pacientes un tratamiento personalizado e integral interviniendo simultáneamente en varias vías metabólicas con diferentes fármacos o complementos nutricionales.

5.4 Objetivo secundario b)

A pesar de que existen variables morfológicas que presentan asociaciones significativas para determinadas patologías al compararlas entre sí y con el control, los índices analizados no muestran buena capacidad de discriminación, por lo que su inclusión en el modelo predictivo, previamente desarrollado y basado en análisis de metabolitos no mejoraría su capacidad discriminativa. Podemos deducir con estos resultados, aunque limitados por la falta de representación completa de todas las categorías de determinadas variables, que son acordes con la literatura, en el sentido de no haber aspectos morfológicos en la microscopía de luz de la biopsia que sean patognomónicos de VHC, HAI o de CBP.(108, 138, 151)

5.5 Objetivo secundario c)

La concentración de metabolitos no permite discriminar entre pacientes con fibrosis F0 (nivel de fibrosis de 0 o 1), y con fibrosis F1 (nivel de fibrosis superior a 1). Sucede lo mismo respecto a la actividad.

Por lo que respecta a la fibrosis, sólo la alanina tiene un valor superior a 1 del parámetro de importancia, pero la capacidad de discriminación del modelo es muy baja. Ningún metabolito tiene un AUC superior a 0.8

Estudios metabolómicos en suero de pacientes con hepatitis B permitió identificar biomarcadores que discriminan entre pacientes con hepatitis crónica B en fase precoz y en fase avanzada, pero entre ellos no está la alanina.(331) Es muy probable que al no estar representadas todas las categorías de las variables fibrosis y actividad necroinflamatoria en cantidades suficientes, se está limitando también el poder discriminativo del modelo, principalmente para categorías más avanzadas de fibrosis y de mayor actividad necroinflamatoria.

En este capítulo se enumeraron las conclusiones de este estudio con el objetivo de presentarse como soluciones a los problemas relacionados con la hipótesis y los objetivos propuestos.

- Distintos biomarcadores detectados a través de técnicas de cromatografía líquida acoplada a espectrometría de masas de alta eficacia a partir de la biopsia hepática parafinada contribuyen al diagnóstico histopatológico de la VHC y de las hepatopatías autoinmunes.
- Una buena a excelente capacidad de discriminación del modelo predictivo en distintas enfermedades hepáticas crónicas que muestra un potencial uso como test confirmatorio.
- 3. Desarrollamos un nuevo método de extracción de metabolitos a partir de biopsias hepáticas en parafina que nos permitió crear una red de correlaciones e hipotetizar sobre las principales vías metabólicas que estarán probablemente perturbadas.
- 4. El metabolismo de los carbohidratos parece estar perturbado en la VHC, al compararla con el grupo control. Lo mismo ocurre con las vías del metabolismo de los aminoácidos y del metabolismo de nucleótidos cuando se compara VHC con la HAI. Al confrontar VHC con la CBP, las vías metabólicas del metabolismo de aminoácidos y del metabolismo de carbohidratos parecen estar perturbadas.
- 5. En la HAI, se demuestra que la perturbación de vías metabólicas afecta predominantemente a las vías del metabolismo de los aminoácidos y del metabolismo de nucleótidos cuando se compara con el grupo control y con la CBP respectivamente.
- 6. El metabolismo de los aminoácidos, el metabolismo energético y el de los nucleótidos estarán perturbados de forma preferencial en la CBP al confrontarla con el grupo control.

- 7. Los resultados obtenidos abren la puerta a un tratamiento integral del paciente, a partir del diagnóstico de la enfermedad y de las posibles deficiencias "nutricionales" y desequilibrios metabólicos detectados en el ensayo de la biopsia, posibilitando un verdadero tratamiento personalizado de los pacientes
- No encontramos ninguna variable morfológica que contribuya a aumentar el poder discriminativo del modelo predictivo de los metabolitos.
- En nuestro análisis, no encontramos un conjunto de metabolitos lo suficientemente discriminativos para construir un modelo de predicción del grado de fibrosis y de actividad necroinflamatoria.
- 10. Las limitaciones de nuestro estudio vinieron determinadas por la asumida pérdida de metabolitos durante el procesado previo a la inclusión en parafina y que no fueron cuantificados en nuestro estudio
- 11. La prueba de concepto del análisis metabolómico de biopsias hepáticas en parafina necesita de validación aumentando el número de pacientes y extendiendo el análisis a otras patologías.

7 PERSPECTIVAS DE FUTURO

En este capítulo se exponen implícitamente, nuevas investigaciones y recomendaciones de aplicación inmediata relacionadas con el grado de importancia y repercusión clínica. Se admiten y mencionan algunas de las limitaciones del presente estudio que justifican investigaciones adicionales El estudio descrito en esta tesis doctoral es un análisis preliminar con resultados que obligan y fundamentan su validación.

Las respuestas encontradas en nuestro proyecto de investigación generan nuevas preguntas; por lo que para responderlas consideramos necesario:

- 1. Ampliar el número de casos
- 2. Ampliar las entidades diagnósticas que serán sometidas a la prueba
- Extracción de sangre y creación de serotecas en el momento de la realización de la biopsia hepática
- Recogida de orina de los pacientes en el momento de la realización de la biopsia hepática
- Buscar la participación de centros sanitarios internacionales (estudio multicéntrico internacional)

La consistencia y reproductibilidad de nuestros resultados sólo puede ser validada con un aumento del número de casos para analizar. Esta validación tendrá utilidad si se realizan las pruebas en diferentes poblaciones para confirmar si existen o no factores relacionados a esas poblaciones (genéticos, ambientales, nutricionales, tratamientos farmacológicos, etc.) que interfieran en la reproductibilidad del modelo predictivo desarrollado en esta investigación.

Al ampliar las entidades diagnósticas de la casuística, podrá ser testada la capacidad del modelo para diagnosticarlas y establecer mejor la sensibilidad y especificidad de la prueba. En el caso de pacientes en los que hay coexistencia de por lo menos dos enfermedades hepáticas, hemos dado el primer paso que permitirá dar respuesta a la pregunta del clínico sobre qué proceso patológico predomina en la biopsia y podrá ser investigada la capacidad de desarrollar o complementar el modelo predictivo para diagnosticar estas enfermedades y

ayudar en la decisión terapéutica, estableciendo prioridades debidamente fundamentadas por medio de ensayos clínicos.

Los beneficios de complementar la intervención terapéutica farmacológica convencional con tratamientos nutricionales o de corrección metabólica en función de los resultados analíticos obtenidos en el ensayo, deben ser validados. El análisis simultáneo de plasma/suero y de orina pueden contribuir mucho para aclarar si los disturbios metabólicos, detectados en el material de biopsia hepática, tienen expresión en estos fluidos biológicos y de qué forma pueden contribuir a mejorar el poder discriminativo del modelo de predicción.

En este punto, el desarrollo de una prueba rápida en muestras sangre u orina supondría un gran avance en el diagnóstico y tratamiento de situaciones graves que requieren celeridad de intervención, como el diagnóstico y tratamiento del rechazo celular agudo en contexto de pacientes trasplantados hepáticos.

8 DECLARACIÓN DE CONFLICTO DE INTERESES

En este capítulo se declara el valor y las fuentes de financiación que permitieron

el desarrollo de este estudio

Este trabajo fue merecedor de financiamiento por medio de la bolsa de investigación Sollari Allegro (2017) concedida por el Centro Hospitalar do Porto por valor de 2500€.

El fondo para investigación y formación del Servicio de Anatomía Patológica del Centro Hospitalar do Porto contribuyó con un apoyo de 20000€.

En este capítulo se enuncian las autorizaciones necesarias para la puesta en marcha del estudio. Se excluyen en este capítulo las autorizaciones relacionadas con la aceptación del proyecto y de matriculación en Escuela Internacional de Doctorado de la Universidad de Murcia

- Autorización con el pago de las tasas para la construcción de la base de datos para investigación clínica a la "Comissão Nacional de Proteção de Dados" el 20 de diciembre de 2017
- 2. Autorización del Consejo de Administración del Centro Hospitalar do Porto para el proyecto titulado "Perfil metabolómico da doença inflamatória portal hepática e o seu contributo no diagnóstico histológico da rejeição celular aguda no transplante hepático" con fecha 14/12/2017 después del visto bueno del Departamento de Ensino, Formação e Investigação (DEFI) y de la comisión de ética.
- Alteración del título del proyecto aprobado por el Consejo de Administración del Centro Hospitalar do Porto para "Contribuição da metabolómica no diagnóstico histopatológico da hepatitis C y das hepatopatías autoimunes" el /07/2022.

Metabolite name	collision	Chemical formula	KEGG/HMDB/	
	energy (eV)		PubChem Identifier	
glyoxylate	-22	C2H2O3	C00048	
glycolate	-13	C2H4O3	C00160	
pyruvate	-14	C3H4O3	C00022	
lactate	-16	C3H6O3	C00186	
2-oxobutanoate	-13	C4H6O3	C00109	
acetoacetate	-14	C4H6O3	C00164	
glycerate	-17	C3H6O4	C00258	
uracil	-22	C4H4N2O2	C00106	
fumarate	-13	C4H4O4	C00122	
Maleic acid	-13	C4H4O4	C01384	
2-keto-isovalerate	-13	C5H8O3	C00141	
Guanidoacetic acid	-15	C3H7N3O2	C00581	
succinate	-12	C4H6O4	C00042	
Methylmalonic acid	-13	C4H6O4	C02170	
3-S-methylthiopropionate	-15	C4H8O2S	C08276	
nicotinate	-16	C6H5NO2	C00253	
taurine	-18	C2H7NO3S	C00245	
Pyroglutamic acid	-19	C5H7NO3	C01879	
Citraconic acid	-13	C5H6O4	C02226	
2-ketohaxanoic acid	-13	C6H10O3	HMDB01864	
N-Acetyl-L-alanine	-14	C5H9NO3	C01073	
oxaloacetate	-14	C4H4O5	C00036	
Hydroxyisocaproic acid	-16	C6H12O3	HMDB00746	
malate	-14	C4H6O5	C00149	
hypoxanthine	-18	C5H4N4O	C00262	
anthranilate	-18	C7H7NO2	C00108	
p-aminobenzoate	-18	C7H7NO2	C00568	
p-hydroxybenzoate	-23	C7H6O3	C00156	
acetylphosphate	-24	C2H5O5P	C00227	
Carbamoyl phosphate	-24	CH4NO5P	C00169	
a-ketoglutarate	-13	C5H6O5	C00026	
Phenylpropiolic acid	-18	C9H6O2	HMDB00563	

2-oxo-4-methylthiobutanoate	-13	C5H8O3S	C01180
2-Hydroxy-2-methylbutanedioic acid	-17	C5H8O5	C02612
3-methylphenylacetic acid	-12	C9H10O2	HMDB02222
xanthine	-23	C5H4N4O2	C00385
Hydroxyphenylacetic acid	-18	C8H8O3	C05852
2,3-dihydroxybenzoic acid	-19	C7H6O4	C00196
orotate	-15	C5H4N2O4	C00295
dihydroorotate	-14	C5H6N2O4	C00337
allantoin	-17	C4H6N4O3	C01551
Aminoadipic acid	-18	C6H11NO4	C00956
Indole-3-carboxylic acid	-20	C9H7NO2	HMDB03320
phenylpyruvate	-13	C9H8O3	C00166
Atrolactic acid	-21	C9H10O3	HMDB00475
Phenyllactic acid	-21	C9H10O3	C01479
quinolinate	-14	C7H5NO4	C03722
phosphoenolpyruvate	-22	C3H5O6P	C00074
Uric acid	-17	C5H4N4O3	C00366
dihydroxy-acetone-phosphate	-40	C3H7O6P	C00111
D-glyceraldehdye-3-phosphate	-14	C3H7O6P	C00111
sn-glycerol-3-phosphate	-15	C3H9O6P	C00093
shikimate	-20	C7H10O5	C04236
aconitate	-17	C6H6O6	C00417
allantoate	-14	C4H8N4O4	C00499
Ascorbic acid	-19	C6H8O6	C00072
2-IsopropyImalic acid	-19	C7H12O5	C02504
N-carbamoyl-L-aspartate_neg	-13	C5H8N2O5	C00438
Pyrophosphate	-16	P2H4O7	C00013
glucono-D-lactone	-13	C6H10O6	C00198
myo-inositol	-17	C6H12O6	C00137
hydroxyphenylpyruvate	-13	C9H8O4	C01179
homocysteic acid	-23	C4H9NO5S	C16511
4-Pyridoxic acid	-18	C8H9NO4	C00847
3-phosphoglycerate	-17	C3H7O7P	C00197
Indoleacrylic acid	-20	C11H9NO2	HMDB00734

Kynurenic acid	-21	C10H7NO3	C01717
citrate-isocitrate	-15	C6H8O7	C00158
isocitrate	-19	C6H8O7	C00311
citrate	-22	C6H8O7	C00158
2-dehydro-D-gluconate	-14	C6H10O7	C00629
D-gluconate	-17	C6H12O7	C00257
D-erythrose-4-phosphate	-19	C4H9O7P	C00279
Xanthurenic acid	-19	C10H7NO4	C02470
lipoate	-13	C8H14O2S2	C00725
D-glucarate	-17	C6H10O8	C00767
deoxyribose-phosphate	-35	C5H11O7P	C00673
pantothenate	-21	C9H17NO5	C00864
prephenate	-17	C10H10O6	C00251
deoxyuridine	-14	C9H12N2O5	C00526
ribose-phosphate	-42	C5H11O8P	C00117
thymidine	-17	C10H14N2O5	C00214
uridine	-21	C9H12N2O6	C00299
deoxyinosine	-21	C10H12N4O4	C05512
shikimate-3-phosphate	-19	C7H11O8P	C03175
6-phospho-D-glucono-1,5-lactone	-22	C6H11O9P	C01236
hexose-phosphate	-42	C6H13O9P	C00085
glucose-1-phosphate	-16	C6H13O9P	C00103
glucose-6-phosphate	-15	C6H13O9P	C00085
fructose-6-phosphate	-16	C6H13O9P	C00085
1,3-diphopshateglycerate	-37	C3H8O10P2	C00236
2,3-Diphosphoglyceric acid	-14	C3H8O10P2	C01159
S-ribosyl-L-homocysteine_neg	-20	C9H17NO6S	C03539
inosine	-27	C10H12N4O5	C00294
6-phospho-D-gluconate	-13	C6H13O10P	C00345
xanthosine	-24	C10H12N4O6	C01762
D-sedoheptulose-1-7-phosphate	-27	C7H15O10P	C05382
N-acetyl-glucosamine-1-phosphate	-34	C6H14NO8P	C03783
glutathione_neg	-19	C10H17N3O6S	C00051
dUMP_neg	-18	C9H13N2O8P	C00365

Geranyl-PP	-20	C10H20O7P2	C00341
octulose-monophosphate (O8P-O1P)	-22	C8H17O11P	
dTMP_neg	-22	C10H15N2O8P	C00364
cyclic-AMP	-33	C10H12N5O6P	C00575
fructose-1,6-bisphosphate	-30	C6H14O12P2	C00354
trehalose-sucrose	-20	C12H22O11	C00089
Cellobiose	-14	C12H22O11	C00185
orotidine-5-phosphate	-18	C10H13N2O11P	C01103
Sedoheptulose 1,7-bisphosphate (SBP)	-37	C7H16O13P2	C00447
trans, trans-farnesyl diphosphate	-23	C15H28O7P2	C00448
S-adenosyl-L-homocysteine_neg	-31	C14H20N6O5S	C00021
dCDP_neg	-27	C9H15N3O10P2	C00705
5-phosphoribosyl-1-pyrophosphate	-20	C5H13O14P3	C00119
Deoxycholic acid	-36	C26H43NO5	C05464
octulose-1,8-bisphosphate (OBP)	-37	C8H18O14P2	
dTDP_neg	-27	C10H16N2O11P2	C00363
CDP_neg	-22	C9H15N3O11P2	C00112
UDP_neg	-28	C9H14N2O12P2	C00015
Cholic acid	-32	C24H40O5	HMDB00619
trehalose-6-Phosphate	-36	C12H23O14P	C00689
Thiamine pyrophosphate	-21	C12H19N4O7P2S	C00068
adenosine 5-phosphosulfate	-22	C10H14N5O10PS	C00224
ADP_neg	-27	C10H15N5O10P2	C00008
dGDP_neg	-27	C10H15N5O10P2	C00008
IDP_neg	-27	C10H14N4O11P2	C00104
GDP_neg	-21	C10H15N5O11P2	C00035
CDP-ethanolamine	-29	C11H20N4O11P2	C00570
FMN	-21	C17H21N4O9P	C00061
cholesteryl sulfate	-39	C27H46O4S	HMDB00653
dCTP_neg	-30	C9H16N3O13P3	C00458
dUTP_neg	-27	C9H15N2O14P3	C00460
dTTP_neg	-33	C10H17N2O14P3	C00459
CTP_neg	-24	C9H16N3O14P3	C00063
UTP_neg	-35	C9H15N2O15P3	C00075

CDP-choline	-21	C14H27N4O11P2	C00307
dATP_neg	-29	C10H16N5O12P3	C00131
Taurodeoxycholic acid	-53	C26H45NO6S	C05463
ATP_neg	-30	C10H16N5O13P3	C00002
dGTP	-30	C10H16N5O13P3	C00002
GTP_neg	-25	C10H16N5O13P3	C00002
UDP-D-glucose	-25	C15H24N2O17P2	C00029
UDP-D-glucuronate	-26	C15H22N2O18P2	C00167
ADP-D-glucose	-24	C16H25N5O15P2	C00498
guanosine 5-diphosphate,3-diphosphate	-24	C10H11N5O17P4	C01228
UDP-N-acetyl-glucosamine	-28	C17H27N3O17P2	C00043
glutathione disulfide_neg	-30	C20H32N6O12S2	C00127
NAD+_neg	-21	C21H27N7O14P2	C00003
NADH_neg	-33	C21H29N7O14P2	C00004
dephospho-CoA_neg	-37	C21H35N7O13P2S	C00882
cyclic bis(3->5) dimeric GMP	-34	C20H24N10O14P2	C16463
NADP+_neg	-20	C21H28N7O17P3	C00006
NADPH_neg	-36	C21H30N7O17P3	C00005
coenzyme A_neg	-42	C21H36N7O16P3S	C00010
acetyl-CoA_neg	-33	C23H38N7O17P3S	C00024
propionyl-CoA_neg	-33	C24H40N7O17P3S	C00100
butyryl-CoA	-38	C25H42N7O17P3S	C00630
acetoacetyl-CoA_neg	-32	C25H40N7O18P3S	C00332
malonyl-CoA_neg	-26	C24H38N7O19P3S	C00083
3-hydroxybutyryl-CoA	-43	C25H42N7O18P3S	C01144
succinyl-CoA-methylmalonyl-CoA_neg	-22	C25H40N7O19P3S	C00091
3-hydroxy-3-methylglutaryl-CoA_neg	-45	C27H44N7O20P3S	C00356
2-deoxyglucose-6-phosphate	-18	C6H13O8P	C06369
2-hydroxygluterate	-17	C5H8O5	C03196
Urea	25	CH4N2O	C00086
ethanolamine	12	C2H7NO	C00189
Imidazole	23	C3H4N2	C01589
glycine	18	C2H5NO2	C00037

alanine	13	C3H7NO2	C00041
betaine aldehyde	21	C5H12NO	C00576
choline	21	C5H14NO	C00114
4-aminobutyrate	22	C4H9NO2	C00334
dimethylglycine	21	C4H9NO2	C01026
serine	15	C3H7NO3	C00065
cytosine	19	C4H5N3O	C00380
Creatinine	19	C4H7N3O	C00791
proline	13	C5H9NO2	C00148
indole	26	C8H7N	C16074
betaine	36	C5H11NO2	C00719
valine	13	C5H11NO2	C00183
threonine	13	C4H9NO3	C00188
homoserine	32	C4H9NO3	C00263
purine	25	C5H4N4	C00465
cysteine	29	C6H12N2O4S2	C00491
creatine	14	C4H9N3O2	C00300
nicotinamide	22	C6H6N2O	C00153
Imidazoleacetic acid	15	C6H8N2O2	C05828
thymine	19	C5H6N2O2	C00178
DL-Pipecolic acid	18	C6H11NO2	C00408
N-Acetylputrescine	12	C6H14N2O	C02714
hydroxyproline	19	C5H9NO3	C01157
leucine-isoleucine	13	C6H13NO2	C00123
ornithine	14	C5H12N2O2	C00077
asparagine	19	C4H8N2O3	C00152
aspartate	17	C4H7NO4	C00049
adenine	26	C5H5N5	C00147
Methylcysteine	12	C4H9NO2S	C00155
homocysteine	17	C4H9NO2S	C00155
methylnicotinamide	20	C7H9N2O	C02918
histidinol	20	C6H11N3O	C00860
lysine	32	C6H14N2O2	C00047
glutamine	17	C5H10N2O3	C00064
O-acetyl-L-serine	14	C5H9NO4	C00979
---------------------------	----	-------------	-----------
glutamate	17	C5H9NO4	C00025
methionine	12	C5H11NO2S	C00073
guanine	20	C5H5N5O	C00242
histidine	14	C6H9N3O2	C00135
2-Aminooctanoic acid	21	C8H17NO2	HMDB00991
carnitine	20	C7H15NO3	C00318
Methionine sulfoxide	14	C5H11NO3S	HMDB02005
phenylalanine	30	C9H11NO2	C00079
Pyridoxamine	25	C8H12N2O2	C00534
pyridoxine	24	C8H11NO3	C00314
1-Methyl-Histidine	20	C7H11N3O2	C01152
N-acetyl-L-ornithine	16	C7H14N2O3	C00437
arginine	16	C6H14N4O2	C00062
citrulline	14	C6H13N3O3	C00327
N-carbamoyl-L-aspartate	19	C5H8N2O5	C00438
glucosamine	12	C6H13NO5	C00329
tyrosine	39	C9H11NO3	C00082
Phosphorylcholine	23	C5H15NO4P	C00588
3-phospho-serine	12	C3H8NO6P	C01005
N6-Acetyl-L-lysine	26	C8H16N2O3	C02727
Acetyllysine	23	C8H16N2O3	C02727
N-acetyl-glutamine	17	C7H12N2O4	HMDB06029
N-acetyl-glutamate	24	C7H11NO5	C00624
Ng,NG-dimethyl-L-arginine	24	C8H18N4O2	C03626
Acetylcarnitine DL	19	C9H18NO4	C02571
tryptophan	18	C11H12N2O2	C00078
Kynurenine	25	C10H12N2O3	C00328
N-acetyl-glucosamine	18	C8H15NO6	C00140
Flavone	29	C15H10O2	C15608
cystathionine	13	C7H14N2O4S	C00542
5-methoxytryptophan	22	C12H14N2O3	HMDB02339
Cystine	32	C6H12N2O4S2	C00491
cytidine	14	C9H13N3O5	C00475

biotin	20	C10H16N2O3S	C00120
deoxyadenosine	22	C10H13N5O3	C00559
Glycerophosphocholine	16	C8H21NO6P	C00670
acadesine	24	C9H14N4O5	D02742
D-glucosamine-6-phosphate	17	C6H14NO8P	C00352
D-glucosamine-1-phosphate	17	C6H14NO8P	C03783
thiamine	19	C12H16N4OS	C00378
S-ribosyl-L-homocysteine_pos	31	C9H17NO6S	C03539
deoxyguanosine	17	C10H13N5O4	C00212
adenosine	29	C10H13N5O4	C00212
1-Methyladenosine	27	C11H15N5O4	C02494
guanosine	35	C10H13N5O5	C00387
L-arginino-succinate	37	C10H18N4O6	C03406
S-methyl-5-thioadenosine	29	C11H15N5O3S	C00170
7-methylguanosine	24	C11H16N5O5	HMDB01107
dCMP	18	C9H14N3O7P	C00239
glutathione	21	C10H17N3O6S	C00051
dTMP	19	C10H15N2O8P	C00364
СМР	18	C9H14N3O8P	C00055
UMP	14	C9H13N2O9P	C00105
dAMP	23	C10H14N5O6P	C00360
Nicotinamide ribotide	30	C11H15N2O8P	C00455
aminoimidazole carboxamide ribonucleotide	32	C9H15N4O8P	C04677
thiamine-phosphate	15	C12H17N4O4PS	C01081
dGMP	38	C10H14N5O7P	C00362
AMP	23	C10H14N5O7P	C00020
IMP	21	C10H13N4O8P	C00130
S-adenosyl-L-methioninamine	20	C14H23N6O3S	C01137
GMP	21	C10H14N5O8P	C06193
xanthosine-5-phosphate	13	C10H13N4O9P	C00655
riboflavin	26	C17H20N4O6	C00255
S-adenosyl-L-homoCysteine_pos	21	C14H20N6O5S	C00021
S-adenosyl-L-methionine	15	C15H22N6O5S	C00019
folate	18	C19H19N7O6	C00504

7,8-dihydrofolate	32	C19H21N7O6	C00415
5-methyl-THF	21	C20H25N7O6	C00440
Diiodothyronine	31	C15H13I2NO4	HMDB00582
glutathione disulfide_pos	35	C20H32N6O12S2	C00127
NAD+_pos	32	C21H27N7O14P2	C00003
NADH	28	C21H29N7O14P2	C00004
dephospho-CoA_pos	27	C21H35N7O13P2S	C00882
NADP+_pos	50	C21H28N7O17P3	C00006
NADPH	18	C21H30N7O17P3	C00005
coenzyme A_pos	39	C21H36N7O16P3S	C00010
FAD	26	C27H33N9O15P2	C00016
acetyl-CoA_pos	30	C23H38N7O17P3S	C00024
propionyl-CoA_pos	35	C24H40N7O17P3S	C00100
acetoacetyI-CoA_pos	36	C25H40N7O18P3S	C00332
malonyl-CoA_pos	28	C24H38N7O19P3S	C00083
succinyl-CoA_pos	40	C25H40N7O19P3S	C00091
putrescine	12	C4H12N2	C00134
spermidine	15	C7H19N3	C00315
spermine	19	C10H26N4	C00750
sarcosine	20	C3H7NO2	C00213

11 ANEXO II

MetaboAnalyst Names	Amslab names
7-bisphosphate	d_sedoheptulose_1_7_phosphate
Imidazole	imidazole
L-Alanine	alanine
Betainealdehyde	betaine_aldehyde
Choline	choline
Dimethylglycine	dimethylglycine
Serine	serine
Creatinine	creatinine
L-Proline	proline
L-Valine	valine
L-Threonine	threonine
Niacinamide	nicotinamide
Leu-Ile	leucine_isoleucine
S-Methyl-L-cysteine	methylcysteine
L-Glutamine	glutamine
Guanine	guanine
L-Carnitine	carnitine
L-Arginine	arginine
Citrulline	citrulline
L-Tyrosine	tyrosine
Biotin	biotin
1-Methyladenosine	x1_methyladenosine

Argininosuccinicacid	I_arginino_succinate
5-Methyltetrahydrofolicacid	x5_methyl_thf
NADH	nadh
Sarcosine	sarcosine
DL-2-Aminooctanoicacid	x2_aminooctanoic_acid
Succinicacid	succinate
Methylmalonicacid	methylmalonic_acid
Nicotinicacid	nicotinate
Taurine	taurine
Pyroglutamicacid	pyroglutamic_acid
Citraconicacid	citraconic_acid
Hypoxanthine	hypoxanthine
2-Aminobenzoicacid	anthranilate
p-Aminobenzoicacid	p_aminobenzoate
Oxoglutaricacid	a_ketoglutarate
Phenylpropiolicacid	phenylpropiolic_acid
Xanthine	xanthine
tho-Hydroxyphenylaceticacid	hydroxyphenylacetic_acid
Oroticacid	orotate
Uricacid	uric_acid
3-Phosphoglycericacid	x3_phosphoglycerate
Pantothenicacid	pantothenate
3-phosphoshikimicacid	shikimate_3_phosphate
D-Hexose-Phosphate	hexose_phosphate

Trehalose	trehalose_sucrose
Uridine5-diphosphate	udp_neg
Trehalose6-phosphate	trehalose_6_phosphate
Cholesterolsulfate	cholesteryl_sulfate
Taurodeoxycholicacid	taurodeoxycholic_acid
2-Isopropylmalicacid	x2_isopropyImalic_acid
Glutathione	gluthatione_neg

BIBLIOGRAFIA

1. Petruzziello A, Marigliano S, Loquercio G, Cozzolino A, Cacciapuoti C. Global epidemiology of hepatitis C virus infection: An up-date of the distribution and circulation of hepatitis C virus genotypes. World J Gastroenterol. 2016;22(34):7824-40.

2. WHO. HEPATITIS C 2020 [Available from: <u>https://www.who.int/news-room/fact-sheets/detail/hepatitis-c</u>.

3. Tada T, Toyoda H, Yasuda S, Miyake N, Kumada T, Kurisu A, et al. Natural history of liver-related disease in patients with chronic hepatitis C virus infection: An analysis using a Markov chain model. J Med Virol. 2019;91(10):1837-44.

4. IHME. Global Burden Disease Compare 2019 [Available from: https://vizhub.healthdata.org/gbd-compare/.

5. ECDC. TECHNICAL REPORT. Hepatitis B and C epidemiology in selected population groups in the EU/EEA 2018 [Available from:

https://www.ecdc.europa.eu/sites/default/files/documents/Hepatitis-B-C-epidemiology-in-selected-populations-in-the-EU.pdf.

6. Mangia A, Piazzolla V. Overall efficacy and safety results of sofosbuvir-based therapies in phase II and III studies. Dig Liver Dis. 2014;46 Suppl 5:S179-85.

7. Roudot-Thoraval F. Epidemiology of hepatitis C virus infection. Clin Res Hepatol Gastroenterol. 2021;45(3):101596.

8. Czaja AJ. Diagnosis and management of autoimmune hepatitis. Clin Liver Dis. 2015;19(1):57-79.

9. Lv T, Li M, Zeng N, Zhang J, Li S, Chen S, et al. Systematic review and meta-analysis on the incidence and prevalence of autoimmune hepatitis in Asian, European, and American population. J Gastroenterol Hepatol. 2019;34(10):1676-84.

10. Tunio NA, Mansoor E, Sheriff MZ, Cooper GS, Sclair SN, Cohen SM. Epidemiology of Autoimmune Hepatitis (AIH) in the United States Between 2014 and 2019: A Population-based National Study. J Clin Gastroenterol. 2020.

11. Thomsen H, Li X, Sundquist K, Sundquist J, Försti A, Hemminki K. Familial associations between autoimmune hepatitis and primary biliary cholangitis and other autoimmune diseases. PLoS One. 2020;15(10):e0240794.

12. Puustinen L, Barner-Rasmussen N, Pukkala E, Färkkilä M. Incidence, prevalence, and causes of death of patients with autoimmune hepatitis: A nationwide register-based cohort study in Finland. Dig Liver Dis. 2019;51(9):1294-9.

13. Takahashi A, Ohira H, Abe K, Zeniya M, Abe M, Arinaga-Hino T, et al. Increasing incidence of acute autoimmune hepatitis: a nationwide survey in Japan. Sci Rep. 2020;10(1):14250.

14. Tanaka A, Mori M, Matsumoto K, Ohira H, Tazuma S, Takikawa H. Increase trend in the prevalence and male-to-female ratio of primary biliary cholangitis, autoimmune hepatitis, and primary sclerosing cholangitis in Japan. Hepatol Res. 2019;49(8):881-9.

15. Czaja AJ. Global Disparities and Their Implications in the Occurrence and Outcome of Autoimmune Hepatitis. Dig Dis Sci. 2017;62(9):2277-92.

16. Valgeirsson KB, Hreinsson JP, Björnsson ES. Increased incidence of autoimmune hepatitis is associated with wider use of biological drugs. Liver Int. 2019;39(12):2341-9.

17. Yokoda RT, Carey EJ. Primary Biliary Cholangitis and Primary Sclerosing Cholangitis. Am J Gastroenterol. 2019;114(10):1593-605.

18. Lv T, Chen S, Li M, Zhang D, Kong Y, Jia J. Regional variation and temporal trend of primary biliary cholangitis epidemiology: A systematic review and meta-analysis. J Gastroenterol Hepatol. 2020.

19. Zeng N, Duan W, Chen S, Wu S, Ma H, Ou X, et al. Epidemiology and clinical course of primary biliary cholangitis in the Asia-Pacific region: a systematic review and meta-analysis. Hepatol Int. 2019;13(6):788-99.

20. Parés A, Albillos A, Andrade RJ, Berenguer M, Crespo J, Romero-Gómez M, et al. Primary biliary cholangitis in Spain. Results of a Delphi study of epidemiology, diagnosis, follow-up and treatment. Rev Esp Enferm Dig. 2018;110(10):641-9.

21. Manno V, Gerussi A, Carbone M, Minelli G, Taruscio D, Conti S, et al. A National Hospital-Based Study of Hospitalized Patients With Primary Biliary Cholangitis. Hepatol Commun. 2019;3(9):1250-7.

22. Lleo A, Jepsen P, Morenghi E, Carbone M, Moroni L, Battezzati PM, et al. Evolving Trends in Female to Male Incidence and Male Mortality of Primary Biliary Cholangitis. Sci Rep. 2016;6:25906.

23. Cheung KS, Seto WK, Fung J, Lai CL, Yuen MF. Epidemiology and Natural History of Primary Biliary Cholangitis in the Chinese: A Territory-Based Study in Hong Kong between 2000 and 2015. Clin Transl Gastroenterol. 2017;8(8):e116.

24. Jeong SH. Current epidemiology and clinical characteristics of autoimmune liver diseases in South Korea. Clin Mol Hepatol. 2018;24(1):10-9.

25. Marschall HU, Henriksson I, Lindberg S, Söderdahl F, Thuresson M, Wahlin S, et al. Incidence, prevalence, and outcome of primary biliary cholangitis in a nationwide Swedish population-based cohort. Sci Rep. 2019;9(1):11525.

26. French J, van der Mei I, Simpson S, Jr., Ng J, Angus P, Lubel J, et al. Increasing prevalence of primary biliary cholangitis in Victoria, Australia. J Gastroenterol Hepatol. 2020;35(4):673-9.

27. Drazilova S, Babinska I, Gazda J, Halanova M, Janicko M, Kucinsky B, et al. Epidemiology and clinical course of primary biliary cholangitis in Eastern Slovakia. Int J Public Health. 2020;65(5):683-91.

 Marzioni M, Bassanelli C, Ripellino C, Urbinati D, Alvaro D. Epidemiology of primary biliary cholangitis in Italy: Evidence from a real-world database. Dig Liver Dis. 2019;51(5):724-9.
 Kanth R, Shrestha RB, Rai I, VanWormer JJ, Roy PK. Incidence of Primary Biliary

Cholangitis in a Rural Midwestern Population. Clin Med Res. 2017;15(1-2):13-8.

30. Madir A, Božin T, Mikolašević I, Milić S, Štimac D, Mijić M, et al. Epidemiological and clinical features of primary biliary cholangitis in two Croatian regions: a retrospective study. Croat Med J. 2019;60(6):494-502.

31. Gatselis NK, Zachou K, Lygoura V, Azariadis K, Arvaniti P, Spyrou E, et al. Geoepidemiology, clinical manifestations and outcome of primary biliary cholangitis in Greece. Eur J Intern Med. 2017;42:81-8.

32. Sebode M, Kloppenburg A, Aigner A, Lohse AW, Schramm C, Linder R. Populationbased study of autoimmune hepatitis and primary biliary cholangitis in Germany: rising prevalences based on ICD codes, yet deficits in medical treatment. Z Gastroenterol. 2020;58(5):431-8.

33. Webb GJ, Ryan RP, Marshall TP, Hirschfield GM. The Epidemiology of UK Autoimmune Liver Disease Varies With Geographic Latitude. Clin Gastroenterol Hepatol. 2021.

34. Dyson JK, Blain A, Foster Shirley MD, Hudson M, Rushton S, Jeffreys Jones DE. Geoepidemiology and environmental co-variate mapping of primary biliary cholangitis and primary sclerosing cholangitis. JHEP Rep. 2021;3(1):100202.

35. Mells GF. Primary biliary cirrhosis: Family, genes, and bugs. Clin Liver Dis (Hoboken). 2014;3(4):69-73.

36. Rosa R, Cristoferi L, Tanaka A, Invernizzi P. Geoepidemiology and (epi-)genetics in primary biliary cholangitis. Best Pract Res Clin Gastroenterol. 2018;34-35:11-5.

37. Chalifoux SL, Konyn PG, Choi G, Saab S. Extrahepatic Manifestations of Primary Biliary Cholangitis. Gut Liver. 2017;11(6):771-80.

38. Wijarnpreecha K, Werlang M, Panjawatanan P, Kroner PT, Mousa OY, Pungpapong S, et al. Association between Smoking and Risk of Primary Biliary Cholangitis: A Systematic Review and Meta-Analysis. J Gastrointestin Liver Dis. 2019;28:197-203.

Krugman S, Giles JP, Hammond J. Infectious hepatitis. Evidence for two distinctive clinical, epidemiological, and immunological types of infection. Jama. 1967;200(5):365-73.
Feinstone SM, Kapikian AZ, Purcell RH, Alter HJ, Holland PV. Transfusion-associated hepatitis not due to viral hepatitis type A or B. N Engl J Med. 1975;292(15):767-70.

41. Feinstone SM, Kapikian AZ, Purceli RH. Hepatitis A: detection by immune electron microscopy of a viruslike antigen associated with acute illness. Science. 1973;182(4116):1026-8.

42. Blumberg BS, Gerstley BJ, Hungerford DA, London WT, Sutnick AI. A serum antigen (Australia antigen) in Down's syndrome, leukemia, and hepatitis. Ann Intern Med. 1967;66(5):924-31.

43. Alter HJ, Purcell RH, Holland PV, Popper H. Transmissible agent in non-A, non-B hepatitis. Lancet. 1978;1(8062):459-63.

44. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989;244(4902):359-62.

45. 2019 I. Confirmed HCV genotypes/subtypes (May 2019) [Available from: <u>https://talk.ictvonline.org/ictv_wikis/flaviviridae/w/sg_flavi/634/table-1---confirmed-hcv-genotypes-subtypes-may-2019</u>.

46. Lavie M, Hanoulle X, Dubuisson J. Glycan Shielding and Modulation of Hepatitis C Virus Neutralizing Antibodies. Front Immunol. 2018;9:910.

47. Chukkapalli V, Randall G. Hepatitis C virus replication compartment formation: mechanism and drug target. Gastroenterology. 2014;146(5):1164-7.

48. Lingala S, Ghany MG. Natural History of Hepatitis C. Gastroenterol Clin North Am. 2015;44(4):717-34.

49. Grebely J, Page K, Sacks-Davis R, van der Loeff MS, Rice TM, Bruneau J, et al. The effects of female sex, viral genotype, and IL28B genotype on spontaneous clearance of acute hepatitis C virus infection. Hepatology. 2014;59(1):109-20.

50. Alexopoulou A, Papatheodoridis GV. Current progress in the treatment of chronic hepatitis C. World J Gastroenterol. 2012;18(42):6060-9.

51. Westbrook RH, Dusheiko G. Natural history of hepatitis C. J Hepatol. 2014;61(1 Suppl):S58-68.

52. Shih YF, Liu CJ. Hepatitis C Virus and Hepatitis B Virus Co-Infection. Viruses. 2020;12(7).

53. Li X, Gao Y, Xu H, Hou J, Gao P. Diabetes mellitus is a significant risk factor for the development of liver cirrhosis in chronic hepatitis C patients. Sci Rep. 2017;7(1):9087.

54. Probst A, Dang T, Bochud M, Egger M, Negro F, Bochud PY. Role of hepatitis C virus genotype 3 in liver fibrosis progression--a systematic review and meta-analysis. J Viral Hepat. 2011;18(11):745-59.

55. Björnsson E, Angulo P. Hepatitis C and steatosis. Arch Med Res. 2007;38(6):621-7.

56. Veldt BJ, Heathcote EJ, Wedemeyer H, Reichen J, Hofmann WP, Zeuzem S, et al. Sustained virologic response and clinical outcomes in patients with chronic hepatitis C and advanced fibrosis. Ann Intern Med. 2007;147(10):677-84.

57. Kanda T, Goto T, Hirotsu Y, Moriyama M, Omata M. Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci. 2019;20(6).

58. Tanaka S, Wands JR. Insulin receptor substrate 1 overexpression in human hepatocellular carcinoma cells prevents transforming growth factor beta1-induced apoptosis. Cancer Res. 1996;56(15):3391-4.

59. Bearn AG, Kunkel HG, Slater RJ. The problem of chronic liver disease in young women. Am J Med. 1956;21(1):3-15.

60. Sherlock S. Waldenström's chronic active hepatitis. Acta Med Scand Suppl. 1966;445:426-33.

61. Mackay IR. Historical reflections on autoimmune hepatitis. World J Gastroenterol. 2008;14(21):3292-300.

62. Hargraves MM, Richmond H, Morton R. Presentation of two bone marrow elements; the tart cell and the L.E. cell. Proc Staff Meet Mayo Clin. 1948;23(2):25-8.

63. Cowling DC, Mackay IR, Taft LI. Lupoid hepatitis. Lancet. 1956;271(6957):1323-6.

64. Holborow EJ, Asherson GL, Johnson GD, Barnes RD, Carmichael DS. Antinuclear factor and other antibodies in blood and liver diseases. Br Med J. 1963;1(5331):656-8.

65. Mackay IR, Weiden S, Hasker J. Autoimmune hepatitis. Ann N Y Acad Sci. 1965;124(2):767-80.

66. Johnson PJ, McFarlane IG. Meeting report: International Autoimmune Hepatitis Group. Hepatology. 1993;18(4):998-1005.

67. Czaja AJ, Davis GL, Ludwig J, Taswell HF. Complete resolution of inflammatory activity following corticosteroid treatment of HBsAg-negative chronic active hepatitis. Hepatology. 1984;4(4):622-7.

68. Cook GC, Mulligan R, Sherlock S. Controlled prospective trial of corticosteroid therapy in active chronic hepatitis. Q J Med. 1971;40(158):159-85.

69. Homberg JC, Abuaf N, Bernard O, Islam S, Alvarez F, Khalil SH, et al. Chronic active hepatitis associated with antiliver/kidney microsome antibody type 1: a second type of "autoimmune" hepatitis. Hepatology. 1987;7(6):1333-9.

70. Ballot E, Homberg JC, Johanet C. Antibodies to soluble liver antigen: an additional marker in type 1 auto-immune hepatitis. J Hepatol. 2000;33(2):208-15.

71. Sonthalia N, Rathi PM, Jain SS, Surude RG, Mohite AR, Pawar SV, et al. Natural History and Treatment Outcomes of Severe Autoimmune Hepatitis. J Clin Gastroenterol. 2017;51(6):548-56.

72. Alvarez F, Berg PA, Bianchi FB, Bianchi L, Burroughs AK, Cancado EL, et al. International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol. 1999;31(5):929-38.

73. Wang QX, Jiang WJ, Miao Q, Xiao X, Zhang HY, Huang SS, et al. Clinical and histological features of autoantibody-negative autoimmune hepatitis in Chinese patients: a single center experience. J Dig Dis. 2013;14(4):175-80.

74. Mann WN. Biliary cirrhosis: an appraisal. The Croonian Lecture 1975. J R Coll Physicians Lond. 1976;10(2):117-32.

75. Hanot VC. Étude sur une forme de Cirrhose Hypertrophique du Foie (Cirrhose Hypertrophique avec Ictére Chronique): Paris; 1876.

76. Ahrens EH, Jr., Payne MA, Kunkel HG, Eisenmenger WJ, Blondheim SH. Primary biliary cirrhosis. Medicine (Baltimore). 1950;29(4):299-364.

77. Carey EJ, Ali AH, Lindor KD. Primary biliary cirrhosis. Lancet. 2015;386(10003):1565-75.

78. Poupon R, Chrétien Y, Poupon RE, Ballet F, Calmus Y, Darnis F. Is ursodeoxycholic acid an effective treatment for primary biliary cirrhosis? Lancet. 1987;1(8537):834-6.

79. Yang F, Wang Q, Wang Z, Miao Q, Xiao X, Tang R, et al. The Natural History and Prognosis of Primary Biliary Cirrhosis with Clinical Features of Autoimmune Hepatitis. Clin Rev Allergy Immunol. 2016;50(1):114-23.

80. Bachrach WH, Hofmann AF. Ursodeoxycholic acid in the treatment of cholesterol cholelithiasis. part I. Dig Dis Sci. 1982;27(8):737-61.

81. Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid 'mechanisms of action and clinical use in hepatobiliary disorders'. J Hepatol. 2001;35(1):134-46.

82. Makino I, Tanaka H. From a choleretic to an immunomodulator: historical review of ursodeoxycholic acid as a medicament. J Gastroenterol Hepatol. 1998;13(6):659-64.

83. Bellentani S. Immunomodulating and anti-apoptotic action of ursodeoxycholic acid: where are we and where should we go? Eur J Gastroenterol Hepatol. 2005;17(2):137-40.

84. Rodrigues CM, Steer CJ. The therapeutic effects of ursodeoxycholic acid as an antiapoptotic agent. Expert Opin Investig Drugs. 2001;10(7):1243-53.

85. Berg PA, Klein R, Lindenborn-Fotinos J. Antimitochondrial antibodies in primary biliary cirrhosis. J Hepatol. 1986;2(1):123-31.

86. Selmi C, Ceribelli A, Gershwin ME. Chapter 57 - Antimitochondrial Antibodies. In: Shoenfeld Y, Meroni PL, Gershwin ME, editors. Autoantibodies (Third Edition). San Diego: Elsevier; 2014. p. 485-90.

87. Lee YM, Kaplan MM. The natural history of PBC: has it changed? Semin Liver Dis. 2005;25(3):321-6.

88. Linie Moore RM. PBC Name Change: PBCers Organization; 1995 [Available from: <u>https://pbcers.org/pbc-name-change/</u>.

89. Sherlock S. Primary billiary cirrhosis (chronic intrahepatic obstructive jaundice). Gastroenterology. 1959;37:574-86.

90. Popper H, Schaffner F. Nonsuppurative destructive chronic cholangitis and chronic hepatitis. Prog Liver Dis. 1970;3:336-54.

91. Beuers U, Gershwin ME, Gish RG, Invernizzi P, Jones DE, Lindor K, et al. Changing nomenclature for PBC: From 'cirrhosis' to 'cholangitis'. J Hepatol. 2015;63(5):1285-7.

92. Carlo Selmi MPM, M. Eric Gershwin, Inflammatory Hepatobiliary Diseases, In: Robert R. Rich TAF, William T. Shearer, Harry W. Schroeder, Anthony J. Frew, Cornelia M. Weyand,, editor. Clinical Immunology Fith ed: Elsevier; 2019. p. 1021-9.

93. Lleo A, Bowlus CL, Yang GX, Invernizzi P, Podda M, Van de Water J, et al. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology. 2010;52(3):987-98.

94. Goodman ZD, McNally PR, Davis DR, Ishak KG. Autoimmune cholangitis: a variant of primary biliary cirrhosis. Clinicopathologic and serologic correlations in 200 cases. Dig Dis Sci. 1995;40(6):1232-42.

95. Kim WR, Poterucha JJ, Jorgensen RA, Batts KP, Homburger HA, Dickson ER, et al. Does antimitochondrial antibody status affect response to treatment in patients with primary biliary cirrhosis? Outcomes of ursodeoxycholic acid therapy and liver transplantation. Hepatology. 1997;26(1):22-6.

96. Juliusson G, Imam M, Björnsson ES, Talwalkar JA, Lindor KD. Long-term outcomes in antimitochondrial antibody negative primary biliary cirrhosis. Scand J Gastroenterol. 2016;51(6):745-52.

97. Lindor KD, Bowlus CL, Boyer J, Levy C, Mayo M. Primary Biliary Cholangitis: 2018 Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology. 2019;69(1):394-419.

98. Natarajan Y, Tansel A, Patel P, Emologu K, Shukla R, Qureshi Z, et al. Incidence of Hepatocellular Carcinoma in Primary Biliary Cholangitis: A Systematic Review and Meta-Analysis. Dig Dis Sci. 2020.

99. Dickson RC. Clinical manifestations of hepatitis C. Clin Liver Dis. 1997;1(3):569-85.

100. Maheshwari A, Ray S, Thuluvath PJ. Acute hepatitis C. Lancet. 2008;372(9635):321-32.

101. Vento S, Cainelli F, Mirandola F, Cosco L, Di Perri G, Solbiati M, et al. Fulminant hepatitis on withdrawal of chemotherapy in carriers of hepatitis C virus. Lancet. 1996;347(8994):92-3.

102. Farci P, Alter HJ, Shimoda A, Govindarajan S, Cheung LC, Melpolder JC, et al. Hepatitis C virus-associated fulminant hepatic failure. N Engl J Med. 1996;335(9):631-4.

103. Younossi Z, Park H, Henry L, Adeyemi A, Stepanova M. Extrahepatic Manifestations of Hepatitis C: A Meta-analysis of Prevalence, Quality of Life, and Economic Burden. Gastroenterology. 2016;150(7):1599-608.

104. Takaki A, Wiese M, Maertens G, Depla E, Seifert U, Liebetrau A, et al. Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C. Nat Med. 2000;6(5):578-82.

 CDC. Hepatitis C: CDC Viral Hepatitis Serology Training 2015 [Available from: <u>https://www.cdc.gov/hepatitis/Resources/Professionals/Training/Serology/training.htm#one</u>.
 Cobb B, Pockros PJ, Vilchez RA, Vierling JM. HCV RNA viral load assessments in the era of direct-acting antivirals. Am J Gastroenterol. 2013;108(4):471-5.

107. Krajden M, Ziermann R, Khan A, Mak A, Leung K, Hendricks D, et al. Qualitative detection of hepatitis C virus RNA: comparison of analytical sensitivity, clinical performance, and workflow of the Cobas Amplicor HCV test version 2.0 and the HCV RNA transcription-mediated amplification qualitative assay. J Clin Microbiol. 2002;40(8):2903-7.

108. Dienes HP, Popper H, Arnold W, Lobeck H. Histologic observations in human hepatitis non-A, non-B. Hepatology. 1982;2(5):562-71.

109. Kumar KS, Saboorian MH, Lee WM. Cholestatic presentation of chronic hepatitis C: a clinical and histological study with a review of the literature. Dig Dis Sci. 2001;46(10):2066-73.
110. Snyder N, Martinez JG, Xiao SY. Chronic hepatitis C is a common associated with

hepatic granulomas. World J Gastroenterol. 2008;14(41):6366-9.

111. Fouad Y, Waked I, Bollipo S, Gomaa A, Ajlouni Y, Attia D. What's in a name? Renaming 'NAFLD' to 'MAFLD'. Liver Int. 2020;40(6):1254-61.

112. Lonardo A, Adinolfi LE, Loria P, Carulli N, Ruggiero G, Day CP. Steatosis and hepatitis C virus: mechanisms and significance for hepatic and extrahepatic disease. Gastroenterology. 2004;126(2):586-97.

113. Perlemuter G, Sabile A, Letteron P, Vona G, Topilco A, Chrétien Y, et al. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model of viral-related steatosis. Faseb j. 2002;16(2):185-94.

114. Roingeard P. Hepatitis C virus diversity and hepatic steatosis. J Viral Hepat. 2013;20(2):77-84.

115. Coral G, de Mattos AA, de Mattos AZ, dos Santos DE. [Steatosis and non-alcoholic steatohepatitis in patients with chronic hepatitis due to hepatitis C virus infection]. Arq Gastroenterol. 2006;43(4):265-8.

116. Lim TR, Hazlehurst JM, Oprescu AI, Armstrong MJ, Abdullah SF, Davies NP, et al. Hepatitis C virus infection is associated with hepatic and adipose tissue insulin resistance that improves after viral cure. Clin Endocrinol (Oxf). 2019;90(3):440-8.

117. MD JHL. Scheuer's Liver Biopsy Interpretation. 10th ed. MD JHL, editor: Elsevier; 2021 2021.

118. Lee HW, Na K, Kim SU, Kim BK, Park JY, Nahm JH, et al. Predictive validation of qualitative fibrosis staging in patients with chronic hepatitis B on antiviral therapy. Sci Rep. 2019;9(1):15628.

119. Kleiner DE. On beyond staging and grading: Liver biopsy evaluation in a posttreatment world. Hepatology. 2017;65(5):1432-4.

H. LJ. Chronic Hepatitis. In: Elsevier, editor. Scheuer's Liver Biopsy Interpretation. 1.10th ed. Clinicalkey and Elsevier Health Bookstore: Elsevier; 2021. p. 155-86.

121. Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology. 1996;24(2):289-93.

122. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995;22(6):696-9.

123. Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, Kaplowitz N, et al. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology. 1981;1(5):431-5.

124. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. The French METAVIR Cooperative Study Group. Hepatology. 1994;20(1 Pt 1):15-20.

125. Grønbaek K, Christensen PB, Hamilton-Dutoit S, Federspiel BH, Hage E, Jensen OJ, et al. Interobserver variation in interpretation of serial liver biopsies from patients with chronic hepatitis C. J Viral Hepat. 2002;9(6):443-9.

126. Rammeh S, Khadra HB, Znaidi NS, Romdhane NA, Najjar T, Bouzaidi S, et al. [Interobserves agreement of Ishak and Metavir scores in histological evaluation of chronic viral hepatitis B and C]. Ann Biol Clin (Paris). 2014;72(1):57-60.

127. Guido M, Rugge M. Liver biopsy sampling in chronic viral hepatitis. Semin Liver Dis. 2004;24(1):89-97.

128. Sanai FM, Keeffe EB. Liver biopsy for histological assessment: The case against. Saudi J Gastroenterol. 2010;16(2):124-32.

129. Regev A, Berho M, Jeffers LJ, Milikowski C, Molina EG, Pyrsopoulos NT, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol. 2002;97(10):2614-8.

130. Lalazar G, Pappo O, Hershcovici T, Hadjaj T, Shubi M, Ohana H, et al. A continuous 13C methacetin breath test for noninvasive assessment of intrahepatic inflammation and fibrosis in patients with chronic HCV infection and normal ALT. J Viral Hepat. 2008;15(10):716-28.

131. Carrión JA. [Utility of Fibroscan in the evaluation of liver fibrosis]. Gastroenterol Hepatol. 2009;32(6):415-23.

132. McFarlane IG. Autoimmune hepatitis: Clinical manifestations and diagnostic criteria. Can J Gastroenterol. 2001;15(2):107-13.

133. Hennes EM, Zeniya M, Czaja AJ, Parés A, Dalekos GN, Krawitt EL, et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology. 2008;48(1):169-76.

134. Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. Serology in autoimmune hepatitis: A clinical-practice approach. Eur J Intern Med. 2018;48:35-43.

135. The Light Spectrum and its Relationship with Fluorescence [Available from: <u>https://www.thermofisher.com/pt/en/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/fluorescence-basics/fluorescence-fluorescence-fluorescence-basics/fluorescence-fluorescence-basics/fluorescence-fluorescence-basics/fluorescence-fluorescence-fluorescence-basics/fluorescence-fluorescence-fluorescence-basics/fluorescence-fluorescence-basics/fluorescence-fluorescence-basics/fluorescence-fluorescence-basics/fluorescence-fluorescence-fluorescence-basics/fluorescence-fluorescence-fluorescence-basics/fluorescence-fluorescence-fluorescence-basics/fluorescence-fluorescence-fluorescence-basics/fluorescence-fluorescence-fluorescence-fluorescence-basics/fluorescence-fluorescence-fluorescence-basics/fluorescence-fluore</u>

136. Parray HA, Shukla S, Samal S, Shrivastava T, Ahmed S, Sharma C, et al. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol. 2020;85:106639.

137. Vergani D, Alvarez F, Bianchi FB, Cançado EL, Mackay IR, Manns MP, et al. Liver autoimmune serology: a consensus statement from the committee for autoimmune serology of the International Autoimmune Hepatitis Group. J Hepatol. 2004;41(4):677-83.

138. Gatselis NK, Zachou K, Koukoulis GK, Dalekos GN. Autoimmune hepatitis, one disease with many faces: etiopathogenetic, clinico-laboratory and histological characteristics. World J Gastroenterol. 2015;21(1):60-83.

139. Gurung A, Assis DN, McCarty TR, Mitchell KA, Boyer JL, Jain D. Histologic features of autoimmune hepatitis: a critical appraisal. Hum Pathol. 2018;82:51-60.

140. Nagore N, Howe S, Boxer L, Scheuer PJ. Liver cell rosettes: structural differences in cholestasis and hepatitis. Liver. 1989;9(1):43-51.

141. Tucker SM, Jonas MM, Perez-Atayde AR. Hyaline droplets in Kupffer cells: a novel diagnostic clue for autoimmune hepatitis. Am J Surg Pathol. 2015;39(6):772-8.

142. Tiniakos DG, Brain JG, Bury YA. Role of Histopathology in Autoimmune Hepatitis. Dig Dis. 2015;33 Suppl 2:53-64.

143. de Boer YS, van Nieuwkerk CM, Witte BI, Mulder CJ, Bouma G, Bloemena E. Assessment of the histopathological key features in autoimmune hepatitis. Histopathology. 2015;66(3):351-62.

144. Misdraji J, Thiim M, Graeme-Cook FM. Autoimmune hepatitis with centrilobular necrosis. Am J Surg Pathol. 2004;28(4):471-8.

145. Béland K, Lapierre P, Marceau G, Alvarez F. Anti-LC1 autoantibodies in patients with chronic hepatitis C virus infection. J Autoimmun. 2004;22(2):159-66.

146. Czaja AJ, Carpenter HA. Autoimmune hepatitis with incidental histologic features of bile duct injury. Hepatology. 2001;34(4 Pt 1):659-65.

147. Zein CO, Angulo P, Lindor KD. When is liver biopsy needed in the diagnosis of primary biliary cirrhosis? Clin Gastroenterol Hepatol. 2003;1(2):89-95.

148. Bauer A, Habior A, Kraszewska E. Detection of anti-SP100 antibodies in primary biliary cirrhosis. Comparison of ELISA and immunofluorescence. J Immunoassay Immunochem. 2013;34(4):346-55.

149. Nakamura M. [The significance of anti-nuclear envelope (gp210) antibody in primary biliary cirrhosis]. Nihon Rinsho Meneki Gakkai Kaishi. 2005;28(3):117-22.

150. Chascsa DM, Lindor KD. Antimitochondrial Antibody-Negative Primary Biliary Cholangitis: Is It Really the Same Disease? Clin Liver Dis. 2018;22(3):589-601.

151. Scheuer P. Primary biliary cirrhosis. Proc R Soc Med. 1967;60(12):1257-60.

152. Jones DE, Metcalf JV, Collier JD, Bassendine MF, James OF. Hepatocellular carcinoma in primary biliary cirrhosis and its impact on outcomes. Hepatology. 1997;26(5):1138-42.

153. Namisaki T, Moriya K, Kitade M, Kawaratani H, Takeda K, Okura Y, et al. Clinical significance of the Scheuer histological staging system for primary biliary cholangitis in Japanese patients. Eur J Gastroenterol Hepatol. 2017;29(1):23-30.

154. Garrido MC, Hubscher SG. Accuracy of staging in primary biliary cirrhosis. J Clin Pathol. 1996;49(7):556-9.

155. Wendum D, Boëlle PY, Bedossa P, Zafrani ES, Charlotte F, Saint-Paul MC, et al. Primary biliary cirrhosis: proposal for a new simple histological scoring system. Liver Int. 2015;35(2):652-9.

156. Neuberger J. Eosinophils and primary biliary cirrhosis-stoking the fire? Hepatology. 1999;30(1):335-7.

157. Lin F, Shi H, Liu D, Zhang Z, Luo W, Mao P, et al. Association of CCL11, CCL24 and CCL26 with primary biliary cholangitis. Int Immunopharmacol. 2019;67:372-7.

158. Moreira RK, Revetta F, Koehler E, Washington MK. Diagnostic utility of IgG and IgM immunohistochemistry in autoimmune liver disease. World J Gastroenterol. 2010;16(4):453-7. 159. Abe K, Takahashi A, Nozawa Y, Imaizumi H, Hayashi M, Okai K, et al. The utility of IgG, IgM, and CD138 immunohistochemistry in the evaluation of autoimmune liver diseases. Med Mol Morphol. 2014;47(3):162-8.

160. Lewis J. Histopathology of granulomatous liver disease. Clin Liver Dis (Hoboken). 2018;11(3):77-80.

161. Turhan N, Kurt M, Ozderin YO, Kurt OK. Hepatic granulomas: a clinicopathologic analysis of 86 cases. Pathol Res Pract. 2011;207(6):359-65.

162. Rosen Y. Pathology of sarcoidosis. Semin Respir Crit Care Med. 2007;28(1):36-52.

163. Iwakura T, Fujigaki Y, Matsuyama T, Fujikura T, Ohashi N, Yasuda H, et al.

Tubulointerstitial nephritis and primary biliary cirrhosis with a T cell-dominant profile of infiltrating cells and granulomas in both organs. Intern Med. 2013;52(4):467-71.

164. Jardine DL, Chambers ST, Hart DJ, Chapman BA. Primary biliary cirrhosis presenting with granulomatous skin lesions. Gut. 1994;35(4):564-6.

165. Kishor S, Turner ML, Borg BB, Kleiner DE, Cowen EW. Cutaneous sarcoidosis and primary biliary cirrhosis: A chance association or related diseases? J Am Acad Dermatol. 2008;58(2):326-35.

166. Vleggaar FP, van Buuren HR, Zondervan PE, ten Kate FJ, Hop WC. Jaundice in noncirrhotic primary biliary cirrhosis: the premature ductopenic variant. Gut. 2001;49(2):276-81.

167. Nakanuma Y. Necroinflammatory changes in hepatic lobules in primary biliary cirrhosis with less well-defined cholestatic changes. Hum Pathol. 1993;24(4):378-83.

168. Colina F, Pinedo F, Solís JA, Moreno D, Nevado M. Nodular regenerative hyperplasia of the liver in early histological stages of primary biliary cirrhosis. Gastroenterology. 1992;102(4 Pt 1):1319-24.

169. Nakano S, Haratake J, Hashimoto H. Alterations in bile ducts and peribiliary microcirculation in rats after common bile duct ligation. Hepatology. 1995;21(5):1380-6.

170. Bateman AC, Hübscher SG. Cytokeratin expression as an aid to diagnosis in medical liver biopsies. Histopathology. 2010;56(4):415-25.

171. Nakanuma Y. Pathology of septum formation in primary biliary cirrhosis: a histological study in the non-cirrhotic stage. Virchows Arch A Pathol Anat Histopathol. 1991;419(5):381-7.

172. Warnes T, Roberts S, Smith A, Haboubi N, McMahon RF. Liver biopsy in primary biliary cholangitis: is sinusoidal fibrosis the missing key? J Clin Pathol. 2019;72(10):669-76.

173. Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16(9):373-8.

174. Villas-Bôas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J. Mass spectrometry in metabolome analysis. Mass Spectrom Rev. 2005;24(5):613-46.

175. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35(Database issue):D521-6.

176. Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics. 2001;2(3):155-68.

177. Horning ECH, M. G. . Human Metabolic Profiles Obtained by GC and GC/MS. Journal of Chromatographic Science. 1971;9(3):129-40.

178. Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, et al. Highthroughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol. 2003;21(6):692-6.

179. Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG. Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol. 2005;3(7):557-65.

180. Clish CB. Metabolomics: an emerging but powerful tool for precision medicine. Cold Spring Harb Mol Case Stud. 2015;1(1):a000588.

181. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608-d17.

182. de Koning W, van Dam K. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem. 1992;204(1):118-23.

183. El Hajj Assaf C, Zetina-Serrano C, Tahtah N, Khoury AE, Atoui A, Oswald IP, et al. Regulation of Secondary Metabolism in the Penicillium Genus. Int J Mol Sci. 2020;21(24).

184. Pott DM, Osorio S, Vallarino JG. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. Front Plant Sci. 2019;10:835.

185. Sussulini A. Metabolomics: From Fundamentals to Clinical Applications. Biology AiEMa,
 Proteomics M, Interactomics and Systems Biology, editors: Springer; 2017 2017. 350 p.
 186. Khamic MMA Adamka DJ. El Apada A. Mass spectrometric based approaches in uring.

186. Khamis MM, Adamko DJ, El-Aneed A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom Rev. 2017;36(2):115-34.

187. Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, et al. NMR Spectroscopy for Metabolomics Research. Metabolites. 2019;9(7).

188. Marquet P. LC-MS vs. GC-MS, online extraction systems, advantages of technology for drug screening assays. Methods Mol Biol. 2012;902:15-27.

189. Vogeser M, Parhofer KG. Liquid chromatography tandem-mass spectrometry (LC-MS/MS)--technique and applications in endocrinology. Exp Clin Endocrinol Diabetes. 2007;115(9):559-70.

190. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, et al. The human serum metabolome. PLoS One. 2011;6(2):e16957.

191. Sussulini A. Metabolomics: From Fundamentals to Clinical Applications. Martins-de-Souza D, editor: Springer; 2017. 350 p.

192. Gardner A, Carpenter G, So PW. Salivary Metabolomics: From Diagnostic Biomarker Discovery to Investigating Biological Function. Metabolites. 2020;10(2).

193. Arneth B, Arneth R, Shams M. Metabolomics of Type 1 and Type 2 Diabetes. Int J Mol Sci. 2019;20(10).

194. Du H, Li S, Zhang Y, Guo H, Wu L, Liu H, et al. NMR Based Metabolomics Comparison of Different Blood Sampling Techniques in Awake and Anesthetized Rats. Molecules. 2019;24(14).
195. Wishart DS, Lewis MJ, Morrissey JA, Flegel MD, Jeroncic K, Xiong Y, et al. The human cerebrospinal fluid metabolome. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;871(2):164-73.

196. Kalluri U, Naiker M, Myers MA. Cell culture metabolomics in the diagnosis of lung cancer-the influence of cell culture conditions. J Breath Res. 2014;8(2):027109.

197. Budczies J, Denkert C. Tissue-Based Metabolomics to Analyze the Breast Cancer Metabolome. Recent Results Cancer Res. 2016;207:157-75.

198. Khurshid Z, Zafar MS, Khan RS, Najeeb S, Slowey PD, Rehman IU. Role of Salivary Biomarkers in Oral Cancer Detection. Adv Clin Chem. 2018;86:23-70.

199. Kalantari S, Nafar M. An update of urine and blood metabolomics in chronic kidney disease. Biomark Med. 2019;13(7):577-97.

200. Yang G, Zhao G, Zhang J, Gao S, Chen T, Ding S, et al. Global urinary metabolic profiling of the osteonecrosis of the femoral head based on UPLC-QTOF/MS. Metabolomics. 2019;15(3):26.

201. Guy PA, Tavazzi I, Bruce SJ, Ramadan Z, Kochhar S. Global metabolic profiling analysis on human urine by UPLC-TOFMS: issues and method validation in nutritional metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;871(2):253-60.

202. Mikami T, Aoki M, Kimura T. The application of mass spectrometry to proteomics and metabolomics in biomarker discovery and drug development. Curr Mol Pharmacol. 2012;5(2):301-16.

203. Chan EC, Pasikanti KK, Nicholson JK. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat Protoc. 2011;6(10):1483-99.

204. Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr. 2006;84(3):531-9.

205. Liu X, Yin P, Shao Y, Wang Z, Wang B, Lehmann R, et al. Which is the urine sample material of choice for metabolomics-driven biomarker studies? Anal Chim Acta. 2020;1105:120-7.

206. Wang X, Gu H, Palma-Duran SA, Fierro A, Jasbi P, Shi X, et al. Influence of Storage
Conditions and Preservatives on Metabolite Fingerprints in Urine. Metabolites. 2019;9(10).
207. Sussulini A. Metabolomics: From Fundamentals to Clinical Applications. Martins-deSouza D, editor: Springer; 2017. 350 p.

208. Chetwynd AJ, Abdul-Sada A, Hill EM. Solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionization mass spectrometry for improved global urine metabolomics. Anal Chem. 2015;87(2):1158-65.

209. Stevens VL, Hoover E, Wang Y, Zanetti KA. Pre-Analytical Factors that Affect Metabolite Stability in Human Urine, Plasma, and Serum: A Review. Metabolites. 2019;9(8).

210. Kaluarachchi M, Boulangé CL, Karaman I, Lindon JC, Ebbels TMD, Elliott P, et al. A comparison of human serum and plasma metabolites using untargeted (1)H NMR spectroscopy and UPLC-MS. Metabolomics. 2018;14(3):32.

211. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060-83. 212. Patterson RE, Ducrocq AJ, McDougall DJ, Garrett TJ, Yost RA. Comparison of blood plasma sample preparation methods for combined LC-MS lipidomics and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;1002:260-6.

213. Ladva CN, Golan R, Greenwald R, Yu T, Sarnat SE, Flanders WD, et al. Metabolomic profiles of plasma, exhaled breath condensate, and saliva are correlated with potential for air toxics detection. J Breath Res. 2017;12(1):016008.

214. Costa Dos Santos Junior G, Pereira CM, Kelly da Silva Fidalgo T, Valente AP. Saliva NMR-Based Metabolomics in the War Against COVID-19. Anal Chem. 2020;92(24):15688-92.

215. Figueira J, Gouveia-Figueira S, Öhman C, Lif Holgerson P, Nording ML, Öhman A. Metabolite quantification by NMR and LC-MS/MS reveals differences between unstimulated, stimulated, and pure parotid saliva. J Pharm Biomed Anal. 2017;140:295-300.

216. Álvarez-Sánchez B, Priego-Capote F, Luque de Castro MD. Study of sample preparation for metabolomic profiling of human saliva by liquid chromatography-time of flight/mass spectrometry. J Chromatogr A. 2012;1248:178-81.

217. Duarte D, Castro B, Pereira JL, Marques JF, Costa AL, Gil AM. Evaluation of Saliva
Stability for NMR Metabolomics: Collection and Handling Protocols. Metabolites. 2020;10(12).
218. Di Terlizzi R, Platt S. The function, composition and analysis of cerebrospinal fluid in
companion animals: part I - function and composition. Vet J. 2006;172(3):422-31.

Panyard DJ, Kim KM, Darst BF, Deming YK, Zhong X, Wu Y, et al. Cerebrospinal fluid metabolomics identifies 19 brain-related phenotype associations. Commun Biol. 2021;4(1):63.
Carlsson H, Abujrais S, Herman S, Khoonsari PE, Åkerfeldt T, Svenningsson A, et al. Targeted metabolomics of CSF in healthy individuals and patients with secondary progressive multiple sclerosis using high-resolution mass spectrometry. Metabolomics. 2020;16(2):26.

221. Mena-Bravo A, Luque de Castro MD. Sweat: a sample with limited present applications and promising future in metabolomics. J Pharm Biomed Anal. 2014;90:139-47.

222. Bardanzellu F, Puddu M, Peroni DG, Fanos V. The Human Breast Milk Metabolome in Overweight and Obese Mothers. Front Immunol. 2020;11:1533.

223. Yang Z, Song Z, Chen Z, Guo Z, Jin H, Ding C, et al. Metabolic and lipidomic characterization of malignant pleural effusion in human lung cancer. J Pharm Biomed Anal. 2020;180:113069.

224. Vettukattil R, Hetland TE, Flørenes VA, Kærn J, Davidson B, Bathen TF. Proton magnetic resonance metabolomic characterization of ovarian serous carcinoma effusions: chemotherapy-related effects and comparison with malignant mesothelioma and breast carcinoma. Hum Pathol. 2013;44(9):1859-66.

225. Lindon JC, Nicholson JK. The emergent role of metabolic phenotyping in dynamic patient stratification. Expert Opin Drug Metab Toxicol. 2014;10(7):915-9.

226. Nicholson JK, Holmes E, Kinross JM, Darzi AW, Takats Z, Lindon JC. Metabolic phenotyping in clinical and surgical environments. Nature. 2012;491(7424):384-92.

227. Sussulini A. Metabolomics: From Fundamentals to Clinical Applications. Martins-de-Souza D, editor: Springer; 2017. 350 p.

228. Zhang A, Sun H, Xu H, Qiu S, Wang X. Cell metabolomics. Omics. 2013;17(10):495-501.

229. Cuperlović-Culf M, Barnett DA, Culf AS, Chute I. Cell culture metabolomics: applications and future directions. Drug Discov Today. 2010;15(15-16):610-21.

230. Kapoore RV, Coyle R, Staton CA, Brown NJ, Vaidyanathan S. Influence of washing and quenching in profiling the metabolome of adherent mammalian cells: a case study with the metastatic breast cancer cell line MDA-MB-231. Analyst. 2017;142(11):2038-49.

231. Mathon C, Bovard D, Dutertre Q, Sendyk S, Bentley M, Hoeng J, et al. Impact of sample preparation upon intracellular metabolite measurements in 3D cell culture systems. Metabolomics. 2019;15(6):92.

232. Kokkat TJ, Patel MS, McGarvey D, LiVolsi VA, Baloch ZW. Archived formalin-fixed paraffin-embedded (FFPE) blocks: A valuable underexploited resource for extraction of DNA, RNA, and protein. Biopreserv Biobank. 2013;11(2):101-6.

233. Wojakowska A, Marczak Ł, Jelonek K, Polanski K, Widlak P, Pietrowska M. An Optimized Method of Metabolite Extraction from Formalin-Fixed Paraffin-Embedded Tissue for GC/MS Analysis. PLoS One. 2015;10(9):e0136902.

234. Arima K, Lau MC, Zhao M, Haruki K, Kosumi K, Mima K, et al. Metabolic Profiling of Formalin-Fixed Paraffin-Embedded Tissues Discriminates Normal Colon from Colorectal Cancer. Mol Cancer Res. 2020;18(6):883-90.

235. Cacciatore S, Zadra G, Bango C, Penney KL, Tyekucheva S, Yanes O, et al. Metabolic Profiling in Formalin-Fixed and Paraffin-Embedded Prostate Cancer Tissues. Mol Cancer Res. 2017;15(4):439-47.

236. Definiciones básicas-Sociedad Española de Cromatografía y Técnicas Afines [Available from:

https://www.secyta.es/es/node/10#:~:text=La%20cromatograf%C3%ADa%20es%20un%20m% C3%A9todo,mueve%20en%20una%20direcci%C3%B3n%20determinada.

237. Liquid Chromatography Mass Spectrometry (LC-MS) Information [Available from: https://www.thermofisher.com/pt/en/home/industrial/mass-spectrometry/massspectrometry-learning-center/liquid-chromatography-mass-spectrometry-lc-msinformation.html.

238. Mass Spectrometry Technology Overview [Available from: https://www.thermofisher.com/pt/en/home/industrial/mass-spectrometry/mass-

spectrometry-learning-center/mass-spectrometry-technology-overview.html.

239. M. Valcárcel Cases AGH. Técnicas analíticas de separación: Editorial Reverté, S.A; 2021.
240. LC-MS Sample Preparation [Available from:

https://www.thermofisher.com/pt/en/home/industrial/mass-spectrometry/massspectrometry-learning-center/liquid-chromatography-mass-spectrometry-lc-msinformation/lc-ms-sample-preparation.html.

241. Amathieu R, Triba MN, Goossens C, Bouchemal N, Nahon P, Savarin P, et al. Nuclear magnetic resonance based metabolomics and liver diseases: Recent advances and future clinical applications. World J Gastroenterol. 2016;22(1):417-26.

242. Metaboanalist5.0. 2021.

243. Wang JB, Pu SB, Sun Y, Li ZF, Niu M, Yan XZ, et al. Metabolomic Profiling of Autoimmune Hepatitis: The Diagnostic Utility of Nuclear Magnetic Resonance Spectroscopy. J Proteome Res. 2014;13(8):3792-801.

Li SS, Niu M, Jing J, Huang Y, Zhang ZT, Chen SS, et al. Metabolomic Signatures of
Autoimmune Hepatitis in the Development of Cirrhosis. Front Med (Lausanne). 2021;8:644376.
Lytton SD, Osiecki M, MałgorzataWoźniak, Cukrowska B, Wierzbicka A, Goliszek M, et
al. Tryptophan-kynurenine profile in pediatric autoimmune hepatitis. Immunol Res.
2019;67(1):39-47.

246. Lian JS, Liu W, Hao SR, Chen DY, Wang YY, Yang JL, et al. A serum metabolomic analysis for diagnosis and biomarker discovery of primary biliary cirrhosis and autoimmune hepatitis. Hepatobiliary Pancreat Dis Int. 2015;14(4):413-21.

Bell LN, Wulff J, Comerford M, Vuppalanchi R, Chalasani N. Serum metabolic signatures of primary biliary cirrhosis and primary sclerosing cholangitis. Liver Int. 2015;35(1):263-74.
Yang R, Zhao Q, Hu DD, Xiao XR, Huang JF, Li F. Metabolomic analysis of cholestatic liver damage in mice. Food Chem Toxicol. 2018;120:253-60.

249. Hao J, Yang T, Zhou Y, Gao GY, Xing F, Peng Y, et al. Serum Metabolomics Analysis Reveals a Distinct Metabolic Profile of Patients with Primary Biliary Cholangitis. Sci Rep. 2017;7(1):784.

250. Salgüero S, Rojo D, Berenguer J, González-García J, Fernández-Rodríguez A, Brochado-Kith O, et al. Plasma metabolomic fingerprint of advanced cirrhosis stages among HIV/HCVcoinfected and HCV-monoinfected patients. Liver Int. 2020;40(9):2215-27. 251. Meoni G, Lorini S, Monti M, Madia F, Corti G, Luchinat C, et al. The metabolic fingerprints of HCV and HBV infections studied by Nuclear Magnetic Resonance Spectroscopy. Sci Rep. 2019;9(1):4128.

252. Naggie S, Lusk S, Thompson JW, Mock M, Moylan C, Lucas JE, et al. Metabolomic Signature as a Predictor of Liver Disease Events in Patients With HIV/HCV Coinfection. J Infect Dis. 2020;222(12):2012-20.

253. Tian S, Chang HH, Wang C, Jiang J, Wang X, Niu J. Multi-TGDR, a multi-class regularization method, identifies the metabolic profiles of hepatocellular carcinoma and cirrhosis infected with hepatitis B or hepatitis C virus. BMC Bioinformatics. 2014;15:97.

254. Lupberger J, Croonenborghs T, Roca Suarez AA, Van Renne N, Jühling F, Oudot MA, et al. Combined Analysis of Metabolomes, Proteomes, and Transcriptomes of Hepatitis C Virus-Infected Cells and Liver to Identify Pathways Associated With Disease Development. Gastroenterology. 2019;157(2):537-51.e9.

255. Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014;1845(2):136-54.

256. Nomair AM, Madkour MA, Shamseya MM, Elsheredy HG, Shokr A. Profiling of plasma metabolomics in patients with hepatitis C-related liver cirrhosis and hepatocellular carcinoma. Clin Exp Hepatol. 2019;5(4):317-26.

257. Bowers J, Hughes E, Skill N, Maluccio M, Raftery D. Detection of hepatocellular carcinoma in hepatitis C patients: biomarker discovery by LC-MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;966:154-62.

258. Liu Z, Nahon P, Li Z, Yin P, Li Y, Amathieu R, et al. Determination of candidate metabolite biomarkers associated with recurrence of HCV-related hepatocellular carcinoma. Oncotarget. 2018;9(5):6245-58.

259. Roe B, Kensicki E, Mohney R, Hall WW. Metabolomic profile of hepatitis C virusinfected hepatocytes. PLoS One. 2011;6(8):e23641.

260. Clark PJ, Thompson AJ, Vock DM, Kratz LE, Tolun AA, Muir AJ, et al. Hepatitis C virus selectively perturbs the distal cholesterol synthesis pathway in a genotype-specific manner. Hepatology. 2012;56(1):49-56.

261. Cano A, Mariño Z, Millet O, Martínez-Arranz I, Navasa M, Falcón-Pérez JM, et al. A Metabolomics Signature Linked To Liver Fibrosis In The Serum Of Transplanted Hepatitis C Patients. Sci Rep. 2017;7(1):10497.

262. Sarfaraz MO, Myers RP, Coffin CS, Gao ZH, Shaheen AA, Crotty PM, et al. A quantitative metabolomics profiling approach for the noninvasive assessment of liver histology in patients with chronic hepatitis C. Clin Transl Med. 2016;5(1):33.

263. Zhang AH, Sun H, Han Y, Yan GL, Yuan Y, Song GC, et al. Ultraperformance liquid chromatography-mass spectrometry based comprehensive metabolomics combined with pattern recognition and network analysis methods for characterization of metabolites and metabolic pathways from biological data sets. Anal Chem. 2013;85(15):7606-12.

264. Chang ML, Cheng ML, Chang SW, Tang HY, Chiu CT, Yeh CT, et al. Recovery of pangenotypic and genotype-specific amino acid alterations in chronic hepatitis C after viral clearance: transition at the crossroad of metabolism and immunity. Amino Acids. 2017;49(2):291-302.

265. Saito T, Sugimoto M, Igarashi K, Saito K, Shao L, Katsumi T, et al. Dynamics of serum metabolites in patients with chronic hepatitis C receiving pegylated interferon plus ribavirin: a metabolomics analysis. Metabolism. 2013;62(11):1577-86.

266. Fitian AI, Nelson DR, Liu C, Xu Y, Ararat M, Cabrera R. Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS-MS. Liver Int. 2014;34(9):1428-44.

267. Sun H, Zhang A, Yan G, Piao C, Li W, Sun C, et al. Metabolomic analysis of key regulatory metabolites in hepatitis C virus-infected tree shrews. Mol Cell Proteomics. 2013;12(3):710-9.

268. Baniasadi H, Gowda GA, Gu H, Zeng A, Zhuang S, Skill N, et al. Targeted metabolic profiling of hepatocellular carcinoma and hepatitis C using LC-MS/MS. Electrophoresis. 2013;34(19):2910-7.

269. Embade N, Mariño Z, Diercks T, Cano A, Lens S, Cabrera D, et al. Metabolic Characterization of Advanced Liver Fibrosis in HCV Patients as Studied by Serum 1H-NMR Spectroscopy. PLoS One. 2016;11(5):e0155094.

270. Sheskin DJ. Handbook of Parametric and Nonparametric Statistical Procedures. 3rd Edition ed. New York: Chapman and Hall/CRC; 2003.

271. Hochberg YBaY. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):300.

272. Kim S. ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. Commun Stat Appl Methods. 2015;22(6):665-74.

273. Fukushima A. DiffCorr: an R package to analyze and visualize differential correlations in biological networks. Gene. 2013;518(1):209-14.

274. Atsushi Fukushima KN. DiffCorr: Analyzing and Visualizing Differential Correlation Networks in Biological Data: cran.r-project.org; 2015 [Available from: <u>https://CRAN.R-project.org/package=DiffCorr</u>

275. ohn D. Storey AJB, Alan Dabney and David Robinson qvalue: Q-value estimation for false discovery rate control. R package version 2.15.0 2017 [Available from: http://github.com/StoreyLab/qvalue.

276. McKenzie AT, Katsyv I, Song WM, Wang M, Zhang B. DGCA: A comprehensive R package for Differential Gene Correlation Analysis. BMC Syst Biol. 2016;10(1):106.

277. Song WM, Zhang B. Multiscale Embedded Gene Co-expression Network Analysis. PLoS Comput Biol. 2015;11(11):e1004574.

278. Zhang W-MSaB. MEGENA: Multiscale Clustering of Geometrical Network. R package version 1.3.7. 2018 [Available from: <u>https://CRAN.R-project.org/package=MEGENA</u>.

279. Xia J, Wishart DS. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr Protoc Bioinformatics. 2016;55:14.0.1-.0.91.

280. Buszewska-Forajta M, Patejko M, Macioszek S, Sigorski D, Iżycka-Świeszewska E, Markuszewski MJ. Paraffin-Embedded Tissue as a Novel Matrix in Metabolomics Study: Optimization of Metabolite Extraction Method. Chromatographia. 2019;82(10):1501-13.

281. Ferrarini A, Di Poto C, He S, Tu C, Varghese RS, Kara Balla A, et al. Metabolomic Analysis of Liver Tissues for Characterization of Hepatocellular Carcinoma. J Proteome Res. 2019;18(8):3067-76.

282. Beyoğlu D, Imbeaud S, Maurhofer O, Bioulac-Sage P, Zucman-Rossi J, Dufour JF, et al. Tissue metabolomics of hepatocellular carcinoma: tumor energy metabolism and the role of transcriptomic classification. Hepatology. 2013;58(1):229-38.

283. Karu N, Deng L, Slae M, Guo AC, Sajed T, Huynh H, et al. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal Chim Acta. 2018;1030:1-24.

284. Vaz FM, van Gool S, Ofman R, Ijlst L, Wanders RJ. Carnitine biosynthesis: identification of the cDNA encoding human gamma-butyrobetaine hydroxylase. Biochem Biophys Res Commun. 1998;250(2):506-10.

285. Nassiri A, Dashti-Khavidaki S, Khalili H, Nassiri-Toosi M, Abdollahi A. Serum carnitine level and its associated factors in patients with chronic viral hepatitis. Future Virology. 2014;9(4):373-83.

286. Malaguarnera M, Restuccia S, Di Fazio I, Zoccolo AM, Ferlito L, Bentivegna P. Serum carnitine levels in chronic hepatitis C patients before and after lymphoblastoid interferonalpha treatment. BioDrugs. 1999;12(1):65-9.

287. Fujiwara N, Nakagawa H, Enooku K, Kudo Y, Hayata Y, Nakatsuka T, et al. CPT2 downregulation adapts HCC to lipid-rich environment and promotes carcinogenesis via acylcarnitine accumulation in obesity. Gut. 2018;67(8):1493-504.

288. Zhou C, Jia HM, Liu YT, Yu M, Chang X, Ba YM, et al. Metabolism of glycerophospholipid, bile acid and retinol is correlated with the early outcomes of autoimmune hepatitis. Mol Biosyst. 2016;12(5):1574-85.

289. Strott CA, Higashi Y. Cholesterol sulfate in human physiology: what's it all about? J Lipid Res. 2003;44(7):1268-78.

290. Wang F, Beck-García K, Zorzin C, Schamel WW, Davis MM. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat Immunol. 2016;17(7):844-50.

291. Seneff S, Davidson RM, Lauritzen A, Samsel A, Wainwright G. A novel hypothesis for atherosclerosis as a cholesterol sulfate deficiency syndrome. Theoretical Biology and Medical Modelling. 2015;12(1):9.

292. Gittlen SD, Schulman ES, Maddrey WC. Raised histamine concentrations in chronic cholestatic liver disease. Gut. 1990;31(1):96-9.

293. Gatselis NK, Dalekos GN. Molecular diagnostic testing for primary biliary cholangitis. Expert Rev Mol Diagn. 2016;16(9):1001-10.

294. Izumi N, Hasumura Y, Takeuchi J. Hypouricemia and hyperuricosuria as expressions of renal tubular damage in primary biliary cirrhosis. Hepatology. 1983;3(5):719-23.

295. Tang YM, Wang JP, Bao WM, Yang JH, Ma LK, Yang J, et al. Urine and serum metabolomic profiling reveals that bile acids and carnitine may be potential biomarkers of primary biliary cirrhosis. Int J Mol Med. 2015;36(2):377-85.

296. Vignoli A, Orlandini B, Tenori L, Biagini MR, Milani S, Renzi D, et al. Metabolic Signature of Primary Biliary Cholangitis and Its Comparison with Celiac Disease. J Proteome Res. 2019;18(3):1228-36.

297. Riaz A, Khan S, Miret R, Bejarano P, Ur Rahman A. Autoimmune Hepatitis With Concomitant Pernicious Anemia: A Rare Association. Cureus. 2021;13(5):e15045.

298. De Block CE, De Leeuw IH, Pelckmans PA, Michielsen PP, Bogers JJ, Van Marck EA, et al. Autoimmune hepatitis, autoimmune gastritis, and gastric carcinoid in a type 1 diabetic patient: a case report. J Diabetes Complications. 2000;14(2):116-20.

299. Teufel A, Weinmann A, Kahaly GJ, Centner C, Piendl A, Wörns M, et al. Concurrent autoimmune diseases in patients with autoimmune hepatitis. J Clin Gastroenterol. 2010;44(3):208-13.

300. Batushansky A, Toubiana D, Fait A. Correlation-Based Network Generation, Visualization, and Analysis as a Powerful Tool in Biological Studies: A Case Study in Cancer Cell Metabolism. Biomed Res Int. 2016;2016:8313272.

301. Shoji I, Deng L, Hotta H. Molecular mechanism of hepatitis C virus-induced glucose metabolic disorders. Front Microbiol. 2011;2:278.

302. Langan RC, Goodbred AJ. Vitamin B12 Deficiency: Recognition and Management. Am Fam Physician. 2017;96(6):384-9.

303. Greenhill C. Hepatitis: Vitamin B₁₂ increases the sustained virological response in HCV. Nat Rev Gastroenterol Hepatol. 2012;9(9):490.

304. Lott WB, Takyar SS, Tuppen J, Crawford DH, Harrison M, Sloots TP, et al. Vitamin B12 and hepatitis C: molecular biology and human pathology. Proc Natl Acad Sci U S A. 2001;98(9):4916-21.

305. Pinkston D, Spiteller G, Von Henning H, Matthaei D. High resolution gas chromatography mass spectrometry of the methyl esters of organic acids from uremic hemofiltrates. J Chromatogr. 1981;223(1):1-19.

306. Spiteller M, Spiteller G. [Occurrence of alpha-alkyl-substituted malic acids, and betahydroxy-beta-alkyl-substituted dicarboxylic and tricarboxylic acid derivatives in normal urine (author's transl)]. J Chromatogr. 1979;164(3):319-29.

307. Checkley W, Deza MP, Klawitter J, Romero KM, Klawitter J, Pollard SL, et al. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches. Respir Med. 2016;121:59-66.

308. Jang C, Hui S, Zeng X, Cowan AJ, Wang L, Chen L, et al. Metabolite Exchange between Mammalian Organs Quantified in Pigs. Cell Metab. 2019;30(3):594-606.e3.

309. Lü S, Zhu M, Guo Q, Xu D, Guo Y, Li G, et al. Metabolomic Analysis of the Urine from Rats with Collagen-Induced Arthritis with the Effective Part of Caulophyllum robustum Maxim. Evid Based Complement Alternat Med. 2021;2021:5580341.

310. Liu Z, Zhang Z, Huang M, Sun X, Liu B, Guo Q, et al. Taurocholic acid is an active promoting factor, not just a biomarker of progression of liver cirrhosis: evidence from a human metabolomic study and in vitro experiments. BMC Gastroenterol. 2018;18(1):112.

311. KEGG. Kyoto Encyclopedia of Genes and Genomes [Available from:

https://www.genome.jp/entry/hsa00430.

312. Beloborodova NV, Khodakova AS, Bairamov IT, Olenin AY. Microbial origin of phenylcarboxylic acids in the human body. Biochemistry (Mosc). 2009;74(12):1350-5.

313. Tanaka A, Leung PSC, Gershwin ME. Pathogen infections and primary biliary cholangitis. Clin Exp Immunol. 2019;195(1):25-34.

314. Quigley EM. Primary Biliary Cirrhosis and the Microbiome. Semin Liver Dis. 2016;36(4):349-53.

Tang R, Wei Y, Li Y, Chen W, Chen H, Wang Q, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut. 2018;67(3):534-41.
Kremer AE, Namer B, Bolier R, Fischer MJ, Oude Elferink RP, Beuers U. Pathogenesis and Management of Prurity in PPC and PSC. Dig Dis. 2015;23 Suppl 2:164–75.

and Management of Pruritus in PBC and PSC. Dig Dis. 2015;33 Suppl 2:164-75.
Bachs L, Parés A, Elena M, Piera C, Rodés J. Effects of long-term rifampicin

administration in primary biliary cirrhosis. Gastroenterology. 1992;102(6):2077-80.
318. Mandell GL. The antimicrobial activity of rifampin: emphasis on the relation to phagocytes. Rev Infect Dis. 1983;5 Suppl 3:S463-7.

319. Crippin JS, Lindor KD, Jorgensen R, Kottke BA, Harrison JM, Murtaugh PA, et al. Hypercholesterolemia and atherosclerosis in primary biliary cirrhosis: what is the risk? Hepatology. 1992;15(5):858-62.

320. Zeman M, Vecka M, Perlík F, Hromádka R, Staňková B, Tvrzická E, et al. Niacin in the Treatment of Hyperlipidemias in Light of New Clinical Trials: Has Niacin Lost its Place? Med Sci Monit. 2015;21:2156-62.

321. Wu N, Yang M, Gaur U, Xu H, Yao Y, Li D. Alpha-Ketoglutarate: Physiological Functions and Applications. Biomol Ther (Seoul). 2016;24(1):1-8.

322. Aboutwerat A, Pemberton PW, Smith A, Burrows PC, McMahon RF, Jain SK, et al. Oxidant stress is a significant feature of primary biliary cirrhosis. Biochim Biophys Acta. 2003;1637(2):142-50.

323. Kouroumalis E, Notas G. Primary biliary cirrhosis: From bench to bedside. World J Gastrointest Pharmacol Ther. 2015;6(3):32-58.

324. Pemberton PW, Aboutwerat A, Smith A, Warnes TW. Ursodeoxycholic acid in primary biliary cirrhosis improves glutathione status but fails to reduce lipid peroxidation. Redox Rep. 2006;11(3):117-23.

325. Herrmann KM, Weaver LM. THE SHIKIMATE PATHWAY. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:473-503.

326. De Las Heras J, Aldámiz-Echevarría L, Martínez-Chantar ML, Delgado TC. An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease. Expert Opin Drug Metab Toxicol. 2017;13(4):439-48.

327. Lorio EA, Garapati K, Schindler A, Tio F. S2594 Autoimmune Hepatitis Due to Para-Aminobenzoic Acid. Official journal of the American College of Gastroenterology | ACG. 2020;115:S1362-S3.

328. Nie A, Sun B, Fu Z, Yu D. Roles of aminoacyl-tRNA synthetases in immune regulation and immune diseases. Cell Death Dis. 2019;10(12):901.

329. Fragoso YD, Brooks JB. Leflunomide and teriflunomide: altering the metabolism of pyrimidines for the treatment of autoimmune diseases. Expert Rev Clin Pharmacol. 2015;8(3):315-20.

330. Dong K, Gao ZW, Zhang HZ. The role of adenosinergic pathway in human autoimmune diseases. Immunol Res. 2016;64(5-6):1133-41.

331. Huang H, Sun Z, Pan H, Chen M, Tong Y, Zhang J, et al. Serum metabolomic signatures discriminate early liver inflammation and fibrosis stages in patients with chronic hepatitis B. Sci Rep. 2016;6:30853.