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teoŕıa de espacios de Banach

Guillaume Grelier

supervised by Mat́ıas Raja Baño

2022





i

Esta tesis no hubiese sido posible sin la partici-
pación de muchas personas. Antes de todo, me gustaŕıa
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Resumen

La mayor parte de este trabajo se centra en el estudio de la super compacidad débil, que es una
versión localizada de la superreflexividad. Los ultraproductos son también una noción central
en este trabajo. A continuación se resume el contenido de esta tesis.

Caṕıtulo 1: Contenido preliminar

Este primer caṕıtulo contiene los conceptos básicos utilizados a lo largo de este documento. La
mayoŕıa de los resultados que se presentan en esta sección se dan sin pruebas, mientras que los
nuevos resultados se presentan con su demostración.

Comenzamos brevemente con la definición de filtros y algunas de sus propiedades elementales.
Éstas nos permiten definir la noción de ultraproductos de los espacios de Banach. En particular,
recordamos que es dif́ıcil acceder al dual de un ultraproducto (excepto en el caso superreflexivo) y
que el ultraproducto de un ultraproducto es también un ultraproducto. A continuación definimos
los ultraproductos de subconjuntos acotados de un espacio de Banach y enunciamos propiedades
fundamentales que se utilizarán repetidamente en este documento.

Recordamos la definición de representabilidad finita de los espacios de Banach y su caracter-
ización en términos de ultraproducto. Enunciamos resultados fundamentales como el Teorema
de Dvoretsky o el Principio de reflexividad local. A continuación, extendemos la definición de
representabilidad finita a subconjuntos de espacios de Banach y obtenemos resultados similares
a los relativos a los espacios de Banach.

En la siguiente parte, introducimos los spreading models de un espacio de Banach X,
que tienen la particularidad de ser finitamente representables en X. Se recuerdan algunas
propiedades elementales y se enuncian los resultados establecidos por Beauzamy que vinculan
los modelos de extensión con las propiedades de Banach-Saks.

Terminamos esta sección definiendo la noción fundamental en torno a la cual se articula este
trabajo: la super compacidad débil (SWC).

Definición 0.0.1. Sea X un espacio de Banach y sea A ⊂ X un conjunto acotado. Decimos
que A es relativamente super débilmente compacto si todos sus ultraproductos son relativamente
débilmente compactos. Si A es además débilmente cerrado, decimos que A es super débilmente
compacto (SWC).

Establecemos caracterizaciones conocidas de los conjuntos super débilmente compactos que
son similares a las de la superreflexividad. También podemos definir los operadores super
débilmente compactos (SWC) y estudiamos algunas de sus propiedades. También nos interesan
los espacios generados por un conjunto SWC ya que tienen notables propiedades de renor-
mamiento.
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Caṕıtulo 2: Funciones uniformemente convexas

En este caṕıtulo, introducimos la noción de función ε-uniformemente convexa. Comenzamos
con la definición de la noción principal que se estudia en esta sección:

Definición 0.0.2. Sea (X, ∥.∥) un espacio de Banach y sea ε > 0. Una función f : X → R se
dice ε-uniformemente convexa si existe δ > 0 tal que si ∥x− y∥ ≥ ε, entonces

f

(
x+ y

2

)
≤ f(x) + f(y)

2
− δ.

Una función se dice uniformemente convexa si es ε-uniformemente convexa para todo ε > 0.

Resulta que admitir una función convexa continua ε-uniformemente convexa es en realidad
una propiedad geométrica-topológica del dominio. Se sabe que un espacio de Banach admite
una función uniformemente convexa acotada en conjuntos acotados si y sólo si es superreflexivo.
Raja demostró en [147] que un conjunto cerrado convexo acotado admite una función continua
uniformemente convexa acotada si y sólo si es SWC. Nuestras técnicas nos permiten dar una
versión cuantitativa muy precisa de la relación entre la existencia de árboles separados y la
existencia de una función uniformemente convexa para un conjunto.

Teorema 0.0.1. Sea C un subconjunto convexo cerrado acotado de espacio de Banach X.
Entonces los siguientes números son iguales:

(a) el mı́nimo de los ε > 0 tal que existe un ĺımite común para las alturas de todos los árboles
diádicos ε-separados;

(b) el ı́nfimo de los ε > 0 tal que existe una función acotada ε-uniformemente convexa (y
convexa, Lipschitz. . . ) definida en C.

Es sabido que los conjuntos SWC convexos no admiten árboles diádicos ε-separados de altura
arbitraria para todo ε > 0 (ver el Teorema 1.5.12). Entonces, el teorema anterior puede verse
como una cuantificación de la super compacidad débil. Esta idea se desarrollará en el próximo
caṕıtulo. En este caṕıtulo, se obtendrán otras caracterizaciones de la SWC demostrada por
Raja como consecuencias de estos nuevos resultados (ver los Corolarios 2.4.9 y 2.4.12).

Nuestro afán por estudiar la super compacidad débil nos ha llevado a establecer resultados de
interés independiente sobre las funciones uniformemente convexas. A lo largo de este documento,
f̆ denotará la envoltura convexa semicontinua inferior de una función f . El siguiente resultado
muestra el comportamiento global de las funciones ε-uniformemente convexas y la estabilidad
relativa de los minimizadores por perturbaciones lineales.

Teorema 0.0.2. Sea X un espacio de Banach y sea f : X → R una función ε-uniformemente
convexa tal que f̆ es propia. Entonces f es acotada inferiormente y coerciva, más precisamente
se tiene que

lim inf
∥x∥→+∞

f(x)

∥x∥2
> 0.

Además, para todo ε′ > ε existen δ, η > 0 tal que si x∗0 ∈ X∗ y x0 ∈ X son tales que

f(x0) + x∗0(x0) < inf(f + x∗0) + δ,

si x∗ ∈ X∗ es tal que ∥x∗ − x∗0∥ < η y si x ∈ X minimiza f + x∗, entonces ∥x − x0∥ ≤ ε′. La

existencia de tal par minimizante (x, x∗) está garantizada si f = f̆ .
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La prueba del primer resultado se basa en la posibilidad de volver convexa una función
ε-uniformemente convexa sin perder la ε-convexidad uniforme. Diremos que una función f
es ε+-uniformemente convexa si es ε′-uniformemente convexa para todo ε′ > ε. Tenemos el
siguiente resultado.

Teorema 0.0.3. Sea X un espacio de Banach y sea f : X → R una función ε-uniformemente
convexa tal que f̆ es propia. Entonces f̆ es ε+-uniformemente convexa.

Ejemplos sencillos, como el Ejemplo 2.1.7, muestran que la convexidad ε-uniforme de f no
garantiza que f̆ sea propia. Para cumplir ese requisito en términos de f , dirigimos al lector al
Corolario 2.4.2. Supongamos ahora que ya tenemos una función convexa propia semicontinua
inferior y ε-uniformemente convexa f . Nos preguntamos si podŕıamos “mejorar” f para obtener
una nueva función que comparta esas propiedades y que, además, sea localmente Lipschitz (no
se permite un comportamiento Lipschitz global para funciones uniformemente convexas). En
ese sentido, tenemos el siguiente resultado.

Teorema 0.0.4. Sea (X, ∥·∥) un espacio de Banach y sea f ∈ Γ(X) una función ε-uniformemente
convexa. Entonces existe una norma equivalente ||| · ||| en X tal que la función x 7→ |||x|||2 es ε+-
uniformemente convexa sobre los subconjuntos de dom(f) donde f es acotada superiormente.
Además, esta norma ||| · ||| se puede elegir tan cercana de ∥ · ∥ como uno quiera.

La estructura de este caṕıtulo es la siguiente. La Sección 2.1 trata de las propiedades básicas
de las funciones ε-uniformemente convexas y ε-uniformemente cuasi-convexas, principalmente
bajo la hipótesis de convexidad. Se dan algunos ejemplos para mostrar que las definiciones
no garantizan algunas buenas propiedades adicionales. La Sección 2.2 está dedicada a la de-
mostración del Teorema 0.0.3 que permitirá la reducción al caso convexo de otros resultados.
La construcción de funciones uniformemente convexas a partir de cero (árboles y conjuntos) se
realiza en la Sección 2.3. La Sección 2.4 trata de las propiedades generales de las funciones
ε-uniformemente convexas y la posibilidad de añadir más propiedades como ser Lipschitz o
la homogeneidad (renormación). También probamos una estimación de la aproximación por
diferencias de funciones convexas. En la sección siguiente esbozaremos una demostración com-
prensible del teorema del renormamiento uniforme convexo de los espacios superreflexivos de
Enflo basada en las ideas expuestas a lo largo del trabajo. La última sección está dedicada a la
suavidad uniforme, que es la propiedad dual de la convexidad uniforme.

Los resultados presentados en este caṕıtulo son consecuencia de una colaboración con M.
Raja y pueden encontrarse en [88].

Caṕıtulo 3: Cuantificación de la super compacidad débil

La super compacidad débil está más presente de lo que parece. Por ejemplo, cualquier oper-
ador débilmente compacto con rango L1(µ) (µ cualquier medida) o dominio C(K) (K cualquier
compacto Hausdorff) es SWC, ver [122, Proposición 6.1]. En realidad, algunos resultados de la
teoŕıa de los espacios de Banach podŕıan entenderse en términos de super compacidad débil. Por
ejemplo, el clásico resultado de Szlenk, que establece que una sucesión débilmente convergente
en L1(µ) tiene una subsucesión cuyos promedios de Cesàro convergen (al mismo ĺımite), es una
consecuencia de dos hechos: los subconjuntos débilmente compactos de L1(µ) son SWC; y los
conjuntos SWC tienen la propiedad Banach-Saks [122, Corolario 6.3].

El objetivo de este caṕıtulo es mostrar que, en realidad, la super compacidad débil y, en
particular, su cuantificación, pueden arrojar luz sobre la estructura de los subespacios de los
espacios de Banach generados por espacios de Hilbert. En efecto, nos hemos dado cuenta de que
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varias “hipótesis técnicas” en los trabajos de Troyanski [162], Argyros y Farmaki [9], y la serie
de trabajos de Fabian, Godefroy, Hájek, Montesinos y Zizler [71, 66, 65, 70] sobre la estructura
de los espacios generados por un espacio de Hilbert y el renormamiento uniformemente Gâteaux,
pueden entenderse en términos de una versión cuantificada de la super compacidad débil.

Introducimos una medida de no super compacidad débil Γ. Sea A un subconjunto acotado
de un espacio de Banach X, entonces definimos

γ(A) = inf{ε > 0 : A
w∗

⊂ X + εBX∗∗}.

Tenemos que un conjunto A es relativamente débilmente compacto si y sólo si γ(A) = 0. Esta
medida ha sido estudiada en [69, 84, 42], véase también [91, Sección 3.6], y hay varias medidas
de no compacidad débil que resultan ser equivalentes [7]. Si U es un ultrafiltro libre, definimos
Γ por

Γ(A) := γ(AU ).

Veremos que la elección de U no es importante. Obtenemos el siguiente resultado de cuantifi-
cación:

Teorema 0.0.5. Sea C un subconjunto convexo cerrado acotado de un espacio de Banach X.
Definimos los siguientes números:

(µ1) el supremo de los ε > 0 tal que para todo n ∈ N existen x1, . . . , xn ∈ C tal que

d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε para todo k = 1, . . . , n− 1;

(µ2) el supremo de los ε > 0 tal que existen árboles diádicos ε-separados de tamaño arbitrari-
amente grande;

(µ3) = ∆(CU ), para un ultrafiltro libre U en N;

(µ4) = Γ(C), (calculado para un ultrafiltro libre U en N);

(µ5) el ı́nfimo de los ε > 0 tal que Dz(C, ε) < ω;

(µ6) el ı́nfimo de los ε > 0 tal que C soporta una función convexa acotada ε-uniformemente
convexa.

Entonces µ1 ≤ µ2 ≤ 2µ3 ≤ 2µ4 ≤ 2µ1 and µ4 ≤ 2µ5 ≤ 2µ6 ≤ 2µ2.

También podemos cuantificar la super compacidad débil para operadores. De hecho, si
T : X → Y es un operador acotado, podemos definir Γ(T ) = Γ(T (BX)). En particular,
demostramos una versión cuantificada de la simetŕıa del bi-ideal Wsuper (el conjunto de los
operadores SWC), aśı como una versión cuantificada del renormamiento de Beauzamy para
volver uniformemente convexo un operador super débilmente compacto.

En la última parte, establecemos la superversión del siguiente resultado:

Teorema 0.0.6 ([22, 68]). Para un espacio de Banach X, los siguientes resultados son equiva-
lentes:

(i) X es un subespacio de espacio WCG;

(ii) (BX∗ , w∗) es un compacto Eberlein;

(iii) Para todo ε > 0 existen conjuntos (Aεn)n tal que BX =
⋃∞
n=1A

ε
n y γ(Aεn) < ε.
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La equivalencia (i) ⇔(ii) se debe a Benyamini, Rudin y Wage [22]. La caracterización interna
(iii) fue obtenida por Fabian, Montesinos y Zizler [68]. Recordemos que WCG significa weakly
compactly generated, es decir, un espacio de Banach que contiene un subconjunto débilmente
compacto cuyo espacio generado es denso. Gracias al famoso resultado de interpolación de
Davis, Figiel, Johnson y Pe lczyński [56] (véase también [67, Teorema 13.22]), un espacio de
Banach X es WCG si y sólo si existe un espacio reflexivo Z y un operador T : Z → X con rango
denso. Además, si el espacio Z puede tomarse como un espacio de Hilbert, decimos que X es
Hilbert generado. El nombre Eberlein se aplica a los espacios compactos que son homeomorfos a
un subconjunto débilmente compacto de un espacio de Banach. Es conocido, después de Amir
y Lindenstrauss (ver [67, Corolario 13.17], por ejemplo), que un compacto Eberlein se inyecta
linealmente como un subconjunto débilmente compacto de c0(I) para I suficientemente grande.
Si tal inyección puede hacerse en un espacio de Hilbert ℓ2(I), entonces se dice que el compacto
es uniformemente Eberlein. Nótese que el tercer enunciado del Teorema 0.0.6 es en realidad una
caracterización interna ya que está escrito en términos del espacio X, no de un sobreespacio o
de su dual. También veremos que el cálculo de γ se puede hacer sin apelar al espacio bidual
(ver la Proposición 3.1.2).

El principal resultado de este caṕıtulo es el siguiente. Nótese el paralelismo con el teorema
anterior.

Teorema 0.0.7. Sea X un espacio de Banach. Las siguientes proposiciones son equivalentes:

(i) X es un subsespacio de un espacio Hilbert generado;

(ii) (BX∗ , w∗) es un compacto uniformemente Eberlein;

(iii) Para todo ε > 0 existen conjuntos (Bεn)n tal que BX =
⋃∞
n=1B

ε
n y Γ(Bεn) < ε.

Este caṕıtulo está estructurado como sigue. La Sección 3.1 está dedicada a demostrar el
Teorema 0.0.5 y el hecho de que Γ define una medida de no-compacidad (según la Definición
3.1.1). En la Sección 3.2, cuantificamos la convexidad uniforme de un operador. En la última
parte, demostramos el Teorema 0.0.7. Concluimos este caṕıtulo con una caracterización de los
espacios super débilmente compactamente generados (SWCG), en particular en el caso de los
espacios C(K), y una aplicación de los resultados anteriores a las álgebras de Jordan.

La mayoŕıa de los resultados presentados en este caṕıtulo se encuentran en [87] (véase también
la Sección 6 en [88]) y se han establecido con M. Raja.

Caṕıtulo 4: Nuevos resultados sobre la super compacidad débil

Los trabajos anteriores sobre el renormamiento uniformemente Gâteaux de Fabian, Godefroy,
Hájek y Zizler [65], aśı como los primeros resultados de Troyanski [162], contienen estimaciones
de Γ (ver el caṕıtulo 3). La explicación vendrá a través del siguiente resultado.

Proposición 0.0.3. Sea A un subconjunto acotado de un espacio de Banach X. Definimos los
siguientes números:

(ε1) es el ı́nfimo de los ε > 0 tal que existe n1 ∈ N tal que para todo x∗ ∈ BX∗ se tiene que

|{x ∈ A : |x∗(x)| > ε}| ≤ n1;

(ε2) es el ı́nfimo de los ε > 0 tal que existe n2 ∈ N tal que para todo conjunto finito B ⊂ A tal
que |B| ≥ n2 se tiene que ∥∥∥∥∥ 1

|B|
∑
x∈B

x

∥∥∥∥∥ < ε.
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Entonces ε1 = ε2 y en este caso Γ(A) ≤ ε1.

Llamaremos conjuntos uniformemente debilmente nulos a los conjuntos que satisfacen el
enunciado de la Proposición 0.0.3 con ε1 = ε2 = 0. Obsérvese que un conjunto uniforme-
mente débilmente nulo se convierte en un conjunto SWC añadiendo {0}. Junto con las bolas
unitarias de los espacios sobrerreflexivos, los conjuntos uniformemente nulos son los ejemplos
más protot́ıpicos de conjuntos SWC. La primera parte de este caṕıtulo trata de las propiedades
de los conjuntos uniformemente débiles nulos. Como veremos, los conjuntos SWC con alguna
hipótesis de discretización razonable son uniformemente débilmente nulos. Nótese que la segunda
proposición (ε2) es una especie de propiedad de Banach-Saks uniforme (con ĺımite único 0). Esto
nos permitirá aplicar resultados de la combinatoria infinita, como los resultados de selección de
Erdös-Magidor [63] y de Mercourakis [134]. Investigamos cuándo una base de Schauder es uni-
formemente débilmente nula, y la relación de los conjuntos uniformemente débilmente nulos con
la representación de los compactos uniformemente Eberlein.

La segunda parte de este caṕıtulo está dedicada a las propiedades de ergodicidad y puntos
fijos de los conjuntos SWC. En [50], los autores demostraron que un subconjunto convexo cerrado
y acotado K de un espacio de Banach X es SWC si y sólo si tiene la super propiedad del punto fijo
para isometŕıas afines T : X → X preservando K. En esta parte, mejoramos esta caracterización
de dos maneras diferentes. Por un lado, demostramos el siguiente resultado:

Teorema 0.0.8. Sea C un subconjunto convexo cerrado de un espacio de Banach X. Las
siguientes proposiciones son equivalentes:

(i) C es SWC;

(ii) C es super-ergódico.

Este resultado se demuestra estudiando los puntos fijos del shift de un spreading model
(ver Proposición 4.2.5). Entonces las propiedades de punto fijo de K se deducen fácilmente
de una adaptación del Teorema ergódico medio (ver Teorema 4.2.3). También observamos que
un conjunto SWC K puede tener propiedades de puntos fijos más fuertes, ya que el espacio
subyacente puede ser renormado de tal manera que K tiene estructura normal (ver el Teorema
1.5.33). Por otro lado, el principal inconveniente de la caracterización dada en [50] es que
pueden existir isometŕıas afines definidas sobre K que no pueden extenderse a todo el espacio.
Además, la super compacidad débil es una versión localizada de la superreflexividad y es natural
esperar que dicha caracterización sólo dependa de K, lo cual se demuestra en el Teorema 4.2.11.
Aplicamos algunos de estos resultados a los espacios de Banach fuertemente super débilmente
compactamente generados (ver Definición 1.5.30). Para terminar esta segunda parte del caṕıtulo,
demostramos que si un espacio de Banach X tiene la M-(FPP para isometŕıas afines) (es decir,
todos los spreading models de X tienen la propiedad del punto fijo para isometŕıas afines)
entonces X es reflexivo. Más precisamente, obtenemos:

Teorema 0.0.9. La M-(FPP para isometŕıas afines) implica la propiedad de Banach-Saks.

De ello se desprende que la reflexividad se encuentra estrictamente entre la propiedad del
punto fijo y la M-(propiedad del punto fijo) (ver la definición 4.2.18).

La primera parte de este caṕıtulo proviene de [87]. Los resultados de la segunda parte son
parte de un preprint (ver [85]).

Caṕıtulo 5: Propiedades de Banach-Saks uniformes

La superreflexividad y su versión localizada, la super compacidad débil, están fuertemente rela-
cionadas con la propiedad de Banach-Saks. De hecho, la super compacidad débil es equivalente
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a la super propiedad de Banach-Saks por el Teorema 1.5.15. En esta sección, estamos intere-
sados en las propiedades de Banach-Saks uniformes, lo que significa que tratamos de controlar
la velocidad de convergencia de una subsucesión Cesaro-convergente de una sucesión acotada.
Muchos de los resultados de este caṕıtulo se inspiran en el trabajo de Beauzamy y su uso de
spreading models para caracterizar las propiedades de Banach-Saks (ver el caṕıtulo 1). El con-
cepto principal de este caṕıtulo se presenta en la siguiente definición. Las demás propiedades
de Banach-Saks que se estudiarán son variaciones de esta definición.

Definición 0.0.4. Sea X un espacio de Banach. Decimos que X tiene la la propiedad uniforme
de Banach-Saks débil (WBS uniforme) si existe una sucesión (an)n de reales positivos tal que

an → 0 y para todo (xn)n ⊂ BX tal que xn
w−→ 0, existe una subsucesión (x′n)n de (xn)n tal que

1

m

∥∥∥∥∥
m∑
k=1

x′k

∥∥∥∥∥ ≤ am

para todo m ≥ 1.

La Sección 5.1 está dedicada al estudio de la WBS uniforme. En la literatura (ver [151, 148]),

aparece un caso especial de la WBS uniforme cuando an es de la forma an = Cn
1
p−1 para algún

C > 0 y p > 1. En ese caso, decimos que X tiene la p-WBS fuerte. En [148], Rakov demostró
que si X tiene la WBS uniforme entonces existe algún p > 1 tal que X tiene la p-WBS fuerte.
Este resultado se establecerá aqúı con otra prueba en la Subsección 5.1.2 (ver Teorema 5.1.9).
La idea principal es demostrar que la (A∞)-débil, introducida por Partington en [139], y la WBS
uniforme son equivalentes. Esto se hace en la Subsección 5.1.1.

Nótese que la constante C presente en la definición de la p-WBS fuerte no depende de la
elección de la subsucesión débilmente nula. Introducimos la propiedad de p-Banach-Saks débil
(p-WBS) eliminando esta independencia. Aparte de algunos casos especiales, parece que no se
sab́ıa si ambas nociones coinciden. En la Subsección 5.1.3, demostramos con toda generalidad
que la p-WBS coincide con la p-WBS fuerte cuando p ∈ (1,∞) (ver Teorema 5.1.14). En
resumen, obtenemos el siguiente resultado:

Teorema 0.0.10. Sea X un espacio de Banach. Las siguientes proposiciones son equivalentes:

(i) X tiene la WBS uniforme;

(ii) X tiene la (A∞)-débil;

(iii) X tiene la p-WBS fuerte para algún p ∈ (1,+∞);

(iv) X tiene la p-WBS para algún p ∈ (1,+∞).

La equivalencia entre la ∞-WBS fuerte y la ∞-WBS también es cierta, pero no se puede
demostrar con el mismo argumento. Por ello, se establecerá utilizando la teoŕıa de Ramsey y
una poderosa caracterización de la propiedad hereditaria de Dunford-Pettis (ver el Teorema 3.1
en [117]).

Si X tiene la WBS uniforme, es interesante encontrar el mayor p tal que X tenga la p-WBS.
Por eso introducimos la siguiente definición:

Definición 0.0.5. Sea X un espacio de Banach. Definimos el indice WBS uniforme UWBS(X)
de X como el supremo de los p > 1 tal que X tiene la p-WBS (fuerte). Si X no tiene la p-WBS
(fuerte) para ningún p > 1, fijamos UWBS(X) = 1.

También introducimos el siguiente ı́ndice, que caracteriza las propiedades (Ak) introducidas
por Partington:
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Definición 0.0.6. Sea X un espacio de Banach. Para todo m ≥ 1, definimos ϕX(m) como el

ı́nfimo de los b tal que para toda sucesión (xn)n ⊂ BX tal que xn
w−→ 0, existen p1 < p2 < ... < pm

tal que

1

m

∥∥∥∥∥
m∑
i=1

xpi

∥∥∥∥∥ ≤ b.

En la Subsección 5.1.4, establecemos uno de nuestros principales resultados:

Teorema 0.0.11. Sea X un espacio de Banach.

(a) Si ϕX(n) > 1
n para todo n ≥ 2, entonces

UWBS(X) = sup
n≥2

ln(n)

ln(nϕX(n))
.

(b) Si ϕX(n) ≤ 1
n para algún n ≥ 2, entonces

UWBS(X) = +∞.

La fórmula anterior ha sido establecida por Rakov en [148] por un método diferente, pero
sin ninguna hipótesis sobre ϕX . Sin embargo, es fácil ver que esta fórmula no es cierta si no se
supone nada sobre ϕX (ver Proposición 5.1.27).

En la Sección 5.2, introducimos la propiedad uniforme de Banach-Saks (BS uniforme), que
se obtiene básicamente añadiendo la reflexividad a la WBS uniforme. Se dan muchos ejem-
plos de espacios que tienen la BS uniforme como los espacios (β), los espacios k-NUCε o los
espacios NUS. La propiedad uniforme de Banach-Saks alternante débil (WABS uniforme) se
introduce en la Sección 5.3. Resulta que la WABS uniforme y la WBS uniforme son equiva-
lentes (ver Teorema 5.3.6). Como aplicación, obtenemos que cualquier espacio de Banach con
un tipo no trivial p tiene la p-WBS (fuerte). En la última sección, introducimos la propiedad
uniforme de Banach-Saks alternante (ABS uniforme) y estudiamos sus v́ınculos con las demás
propiedades uniformes de Banach-Saks. Concluimos este caṕıtulo con una aplicación a las con-
stantes simétricas de Kottman.

Los resultados de este caṕıtulo forman parte de un preprint (ver [86]).

Caṕıtulo 6: Estructura extremal en ultraproductos

El ultraproducto de los espacios de Banach ha demostrado ser una herramienta muy útil en
el estudio de las propiedades locales de los espacios de Banach. Por ejemplo, en [1, Teorema
11.1.4] se utilizan los ultraproductos para demostrar que un espacio de Banach X no tiene tipo
p > 1 si y sólo si ℓ1 es finitamente representable en X. Este v́ınculo entre la estructura local
de un espacio de Banach X y la estructura global de sus ultraproductos XU nos ha permitido
obtener resultados estructurales en espacios de Banach.

Estudios más recientes sobre la geometŕıa de los ultraproductos de espacios de Banach pueden
encontrarse en [94] para los espacios de Banach octaédricos y casi cuadrados o en [25, 110] para la
propiedad de Daugavet. En realidad, el ejemplo de la propiedad de Daugavet es paradigmático
de dos hechos básicos que, la mayoŕıa de las veces, aparecen cuando se trata de una propiedad
geométrica en espacios de Banach. El primero es que, cuando se requiere que un ultraproducto
XU goce de una propiedad geométrica, se debe buscar una “versión uniforme” de esta propiedad
geométrica en X (esto ocurre, por ejemplo, con la propiedad de Daugavet y la propiedad de
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Daugavet uniforme [25, Teorema 6.4], para la convexidad estricta y la convexidad uniforme o
para la reflexividad y superreflexividad [97, Proposición 6.4]). La segunda es que hay que evitar
en lo posible tratar con el dual de un espacio de ultraproductos (esto se hace en [25] utilizando
su Teorema 6.2). La razón es que, en la mayoŕıa de los casos (es decir, fuera de los espacios de
Banach superreflexivos [97, Corolario 7.2]), no hay un buen acceso al dual de XU .

Teniendo en cuenta los dos hechos anteriores, el objetivo de este caṕıtulo es estudiar la
estructura extrema de los subconjuntos de un ultraproducto. Esta estructura codifica mucha
información de los conjuntos convexos acotados (podemos pensar por ejemplo en los teoremas
de Krein-Milman) y es extremadamente útil en otras áreas del Análisis Funcional tal que el
alcanzamiento de la norma (ver [41, 126]). El caso particular de la estructura extrema de los
ultraproductos ha sido considerado previamente por J. Talponen en [159], donde el autor estudió
las propiedades que unen un punto x de la esfera unitaria de un espacio de Banach y su imagen
J (x) en el ultraproducto a través de la isometŕıa canónica. Algunos de sus resultados serán
generalizados en este documento ya que tratamos con conjuntos más generales (no sólo con la
esfera unitaria) y ultrafiltros más generales (no sólo en N). También establecemos cómo las
propiedades sobre los xi se trasladan a (xi)U y rećıprocamente. Se obtienen los resultados que
relacionan x y J (x) como caso particular.

Las tres primeras secciones contienen nuestros resultados principales con total generalidad.
Después de proporcionar una serie de ejemplos que sugieren cuales son las propiedades que
debemos buscar en X, establecemos varios resultados de estabilidad relativos a la estructura
extremal. Por ejemplo, extendemos el resultado de Talponen en el Teorema 6.1.5 mostrando
que x es un punto fuertemente extremo de un conjunto convexo acotado C si y sólo si J (x) es
un punto (fuertemente) extremo de su ultraproducto CU . Además, mostramos que los puntos
extremos y fuertemente extremos de CU coinciden bajo suposiciones débiles sobre U , es decir:

Teorema 0.0.12. Sea C un subconjunto convexo acotado de un espacio de Banach X y sea U
un ultrafiltro CI sobre un conjunto infinito I. Entonces ext(CU ) = str-ext(CU ).

También caracterizamos en el Teorema 6.1.7 los elementos (xi)i∈I ∈ CI tal que (xi)U es un
punto extremo de CU para todo ultrafiltro libre U en I. En el contexto de los puntos dientes
(respectivamente puntos fuertemente expuestos) demostramos que (xi)U ∈ CU es un punto
diente (respectivamente punto fuertemente expuesto) si {xi} satisface una “condición denting
uniforme” (respectivamente una condición uniforme de exposición fuerte), ver los Teoremas 6.2.2
y 6.3.2. Finalmente, demostramos que todo elemento de CU que está expuesto por un funcional
en (X∗)U está fuertemente expuesto bajo suposiciones débiles sobre U :

Teorema 0.0.13. Sea C un subconjunto convexo acotado de un espacio de Banach X y sea U
un ultrafiltro CI sobre un conjunto infinito I. Entonces exp(X∗)U (CU ) = str-exp(X∗)U (CU ).

En la última parte, examinamos con más detalle los conjuntos convexos SWC donde esper-
amos un buen comportamiento de la estructura extremal. También investigamos los conjun-
tos uniformemente convexos, que es un caso particular de conjuntos SWC. La principal her-
ramienta en este estudio es que si C es uniformemente convexo entonces CU también lo es (ver
Proposición 6.4.9). El objetivo de esta sección es recuperar dentro de lo posible las propiedades
extremales de la bola unitaria de un espacio de Banach uniformemente convexo. La mayor
dificultad es que un conjunto uniformemente convexo puede tener interior vaćıo. Sin embargo,
demostramos que cualquier punto extremo de un conjunto de este tipo es diente y que cualquier
punto expuesto es fuertemente expuesto (Proposición 6.4.14). También caracterizamos los pun-
tos extremos de su ultraproducto (Teorema 6.4.13).
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Los resultados aqúı presentados han sido establecidos con L. Garćıa-Lirola y A. Rueda Zoca
y se pueden encontrar en [77].

Caṕıtulo 7: Ultraproductos en espacios Lipschitz libres

En este caṕıtulo, consideramos la noción de ultraproducto de espacios métricos, lo cual es una
generalización de la correspondiente para espacios de Banach. Lo aplicamos para obtener una
caracterización de ultraproducto de espacios métricos que son Lipschitz finitamente representa-
bles (en el sentido introducido por Lee, Naor y Peres [123]) en un espacio de Banach. Además,
analizamos la relación entre la Lipschitz representabilidad finita de los espacios métricos y la rep-
resentabilidad finita de los espacios Lipschitz libres correspondientes. Estos espacios (también
llamados espacios de Arens-Eells y espacios de coste de transporte) se han convertido en un
tema de investigación muy activo debido a sus aplicaciones en el Análisis No Lineal [81], aśı
como en la Informática y en el Transporte Óptimo.

En la primera sección, introducimos las propiedades fundamentales de los ultraproductos
de espacios métricos y de los espacios Lipschitz libres utilizados en este documento. En la
siguiente sección, demostramos que, dado un espacio métrico M y un ultrafiltro U , el espacio
Lipschitz libre del ultraproducto de M , F(MU ), es linealmente isométrico a un subespacio del
ultraproducto del espacio Lipschitz libre, F(M)U . De hecho, tenemos que:

Teorema 0.0.14. Sea U un ultrafiltro sobre un conjunto I y sea (Mi)i∈I una familia de espacios
métricos. Entonces F((Mi)U ) es linealmente isométrico a span(δ(Mi)U ) ⊂ F(Mi)U .

En particular, F(MU ) es finitamente representable en F(M). Además, demostramos que
un espacio métrico M es Lipschitz finitamente representable en un espacio de Banach X si y
sólo si M se inyecta biLipschitz en un ultraproducto de X (Teorema 7.3.6). Esto se hace en
la Sección 7.3 donde vinculamos los ultraproductos de los espacios métricos con la noción de
representabilidad finita. Como consecuencia obtenemos el siguiente resultado:

Teorema 0.0.15. Sea M un espacio métrico y sea X un espacio de Banach. Supongamos que
M es λ-Lipschitz finitamente representable en X. Entonces F(M) es λ-finitamente representable
en F(X).

Este resultado tiene algunas consecuencias sobre el cótipo de los espacios Lipschitz libres
que pueden encontrarse en la Sección 7.3. Por ejemplo, se tiene la siguiente dicotomı́a: o bien
F(ℓ2) tiene un cótipo no trivial, o bien F(X) no tiene cótipo para ningún espacio de Banach de
dimensión infinita X. Finalmente, aunque se sabe que varias clases de espacios de Banach (como
los ret́ıculos de Banach, las álgebras C* y los espacios C(K)) son estables por ultraproductos,
mostramos que (F(M))U no es isomorfo a ningún espacio Lipschitz libre siempre que M sea un
espacio métrico infinito y U sea contablemente incompleto. En la Sección 7.5, comparamos la
estabilidad de Lip0(K) y C(K) bajo ultraproductos y observamos algunas similitudes y diferen-
cias entre ellos.

Este caṕıtulo está basado en [76] y es consecuencia de un trabajo con L. Garćıa-Lirola.

Caṕıtulo 8: Una nota sobre espacios Lipschitz libres no separables

En la primera sección, demostramos que varias propiedades clásicas de los espacios de Banach
son equivalentes a la separabilidad para la clase de espacios Lipschitz libres, incluyendo la
propiedad de Corson (C), ser un espacio de diferenciabilidad de Gâteaux, o la propiedad de
separación contable. Por otro lado, señalamos propiedades, más generales que las anteriores, en
las que falla la equivalencia con la separabilidad en la clase de espacios libres de Lipschitz. En
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particular, la cuestión de si los espacios Lipschitz libres no separables pueden tener una bola
dual débil∗ secuencialmente compacta es indecidible. De hecho, si denotamos por s el splitting
cardinal tenemos que:

Teorema 0.0.16. Sea M un espacio métrico completo. Las siguientes proposiciones son equiv-
alentes:

(i) dens(M) ≥ s,

(ii) M contiene un subconjunto uniformemente discreto de cardinal s,

(iii) BLip0(M) no es w∗-secuencialmente compacto.

En particular, Bℓ∞(Γ) es w∗-secuencialmente compacto si y solo si |Γ| < s. Por lo tanto es
indecidible si Bℓ∞(ω1) es w∗-secuencialmente compacto.

Finalmente, en la segunda sección proporcionamos un ejemplo de un espacio Lipschitz libre
dual no separable que no cumple la propiedad de Radon-Nikodým. Este ejemplo se basa en la
siguiente proposición que afirma que el espacio M(S) de medidas de Radon sobre un espacio
polaco S es un espacio Lipschitz libre:

Proposición 0.0.7. Sea S un espacio polaco. Entonces M(S) es linealmente isométrico a
F(M) para cierto espacio métrico M . Más precisamente,

M(S) ∼= ℓ1(|S|) ⊕1

(⊕
κ

L1

)
1

∼= F(M)

donde κ es un cardinal tal que κ ≤ c y M es la suma métrica de |S| espacios con dos puntos y
de κ copias de [0, 1].

Este pequeño caṕıtulo forma parte de un trabajo en curso con R. Aliaga y A. Procházka.

Caṕıtulo 9: Proximinalidad y conjuntos uniformemente aproximables
en Lp

Este caṕıtulo es totalmente independiente de los anteriores. Sin embargo, este trabajo proviene
del estudio de los espacios superreflexivos. En efecto, es sabido que si X es superreflexivo en-
tonces también lo es L2(X). Esto se deduce directamente del Teorema de Enflo, ya que L2(X) es
uniformemente convexo si X lo es. Esta transición a L2(X) es fundamental en la demostración
del Teorema de Pisier y, hasta la fecha, no existe ninguna demostración de este teorema que no
requiera el Teorema de Enflo. Los resultados de este caṕıtulo provienen del cuestionamiento del
autor de por qué L2(X) es superreflexivo si X es superreflexivo sin pasar por el Teorema de Enflo.

En este caṕıtulo se estudia la aproximación de funciones medibles por funciones simples que
toman como máximo k valores, para k ∈ N. Este problema tiene importantes consecuencias
en múltiples aplicaciones, donde por ejemplo se busca la reducción de la dimensionalidad, entre
otras muchas. Por ejemplo, la inyección de espacios métricos en espacios normados de dimensión
finita es uno de los principales problemas del análisis no lineal (ver [32, 108, 131]). Estos resulta-
dos tienen consecuencias profundas para diseñar algoritmos de aproximación, como por ejemplo
el Sparsest Cut problem (ver [10]). Cuando aproximamos una función dada f ∈ Lp(Ω,F , µ) me-
diante funciones simples, el número de términos en esas aproximaciones crece hasta el infinito
en general. Aqúı, una de las principales preocupaciones es lo que podemos decir si restringimos
el número de términos en las aproximaciones. En particular, lo que podemos decir sobre los sub-
conjuntos de Lp(Ω,F , µ) que pueden ser uniformemente aproximados por funciones simples que
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toman k valores a medida que k crece a ∞. Como veremos, este nuevo concepto es más general
que la integrabilidad uniforme o la compacidad, y lo caracterizamos completamente en términos
de una nueva medida de variación definida para funciones en Lp(Ω,F , µ) para p ∈ [1,∞), y en
términos de números de recumbrimiento en el caso p = ∞.

Fijemos algunas notaciones necesarias para explicar los principales resultados de este tra-
bajo. Consideremos (Ω,F , µ) un espacio de medida. Para cualquier k ≥ 1, denotamos por
Gp,k(Ω,F , µ), o simplemente Gp,k cuando el espacio de medidas (Ω,F , µ) es claro por el con-
texto, el conjunto de funciones simples dadas por

Gp,k =

{
l∑
i=1

ai1Ai
∈ Lp(Ω,F , µ) : {Ai}1≤i≤l partición medible de Ω, ai ∈ R para todo i, l ≤ k

}
.

Observación 0.0.8. Supongamos que µ es una medida finita. Entonces Gp,k = G1,k para todo
p ∈ [1,∞] es simplemente el conjunto de funciones medibles simples que toma como máximo k

valores. Si µ es una medida infinita, entonces h =
∑k
i=1 ai1Ai

, donde {Ai}1≤i≤k es una partición
medible, pertenece a Gp,k, para p ∈ [1,∞), si y sólo si µ(Ai) = ∞ implica ai = 0. Aśı, de nuevo
para todo p ∈ [1,∞) se cumple que Gp,k = G1,k ⊂ G∞,k, y este último es el conjunto de todas
las funciones simples medibles que toman como máximo k valores.

Recordamos algunas nociones de la teoŕıa de la aproximación. Sea X un espacio de Banach y
seaK un subconjunto cerrado deX. La proyección métrica sobreK es la aplicación multivaluada
PK : X ⇒ K definida por PK(x) = {y ∈ K : ∥x− y∥ = d(x,K)} (donde d(A,B) es la distancia
entre dos subconjuntos A y B de X). Si PK(x) no está vaćıo para todo x ∈ X, decimos que
K es proximinal. Si PK(x) es un conjunto unitario para todas las x ∈ X, decimos que K es
Chebyshev. La Sección 9.1 está dedicada a mostrar el siguiente resultado.

Teorema 0.0.17. Sea (Ω,F , µ) un espacio de medida y sea p ∈ [1,+∞]. Entonces Gp,k es
proximinal en Lp(Ω,F , µ) para todo k ≥ 1.

En otras palabras, la distancia de una función f a Gp,k se alcanza en algún g ∈ Gp,k.
Obsérvese que la mayoŕıa de los resultados clásicos sobre la existencia de una solución no pueden
utilizarse en este caso, ya que obviamente Gp,k no es compacto en la topoloǵıa fuerte, ni convexo,
y como veremos, en general no es cerrado en la topoloǵıa débil. La demostración de este resul-
tado se divide en varios pasos. Primero tratamos el caso p ∈ [1,∞) y también demostramos que
un mı́nimo puede ser elegido para tener una forma particular (ver Teorema 9.1.5 cuando µ es
finito y el Teorema 9.1.12 si no lo es). La demostración es bastante técnica ya que tratamos con
cualquier tipo de medida (no sólo finita o σ-finita). En el caso de que µ sea finita también damos
condiciones para asegurar que hay un minimizador único (ver Teorema 9.1.10). En general, el
conjunto de minimizadores no es un conjunto unitario, incluso puede existir un continuum de
minimizadores. Entonces, tiene sentido estudiar si la proyección métrica PG , tiene una selección
continua. En general, no hay selección continua, a menos que Lp(Ω,F , µ) sea de dimensión
finita (ver Observación 9.1.21).

Cuando p = ∞, en la Proposición 9.1.14 demostramos que G∞,k es proximinal. Las pruebas
que proporcionamos son de alguna manera constructivas, pero todav́ıa hay un largo camino por
recorrer para obtener algoritmos útiles, que en śı mismo, pensamos, será importante en muchas
aplicaciones.

Un papel importante en esta sección lo desempeña Mp(f,A), la media p-ésima de f en un
conjuntoA (ver Definición 9.1.2). En particular, para p = 2, tenemos M2(f,A) = 1

µ(A)

∫
A
f(x) dµ(x).

Una aproximación conocida asociada a una partición medible finita P = {Ai}1≤i≤k viene dada
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por:

EP(f) =

k∑
i=1

M2(f,Ai)1Ai
,

y corresponde a la esperanza condicional de f con respecto a la σ-algebra generada por P.

En la Sección 9.2, introducimos la p-variación Varp,k(f) de una función f ∈ Lp(Ω,F , µ), para
p ∈ [1,∞), y estudiamos algunas de sus propiedades. La p-variación de una función nos permite
controlar la distancia de f a los conjuntos Gp,k, bajo un factor 2 (ver Proposición 9.2.6). Esta
noción será una herramienta útil para caracterizar la aproximabilidad uniforme de los conjuntos
en la siguiente sección y cuya definición es la siguiente:

Definición 0.0.9. Sea (Ω,F , µ) un espacio de medida y sea p ∈ [1,+∞]. Sea A ⊂ Lp(Ω,F , µ).
Para ε > 0, definimos

Np,ε(A ) = inf{k ≥ 1 : ∀f ∈ A , ∃h ∈ Gp,k ∥f − h∥p ≤ ε}.

Como siempre, si el conjunto donde se toma el ı́nfimo es vaćıo, definimos Np,ε(A ) = ∞. Decimos
que A es uniformemente aproximable (UA) en Lp(Ω,F , µ) si Np,ε(A ) <∞ para todo ε > 0.

Concretamente, un conjunto A es UA en Lp(Ω,F , µ) si para cualquier ε > 0 existe k ≥ 1 tal
que cualquier función en A puede ser ε-aproximada en Lp(Ω,F , µ) por funciones simples que
toman menos de k valores diferentes. Obsérvese que A es UA si y sólo si

lim
k→∞

sup
f∈A

inf{∥f − g∥p : g ∈ Gp,k} = 0.

Señalamos que una cantidad similar conduce a la compacidad relativa de A . En efecto, si
1 ≤ p < ∞, un resultado inspirado por M. Riesz (ver Teorema 4.7.28 en [26]) afirma que
K ⊂ Lp(Ω,F , µ) es relativamente compacto si y sólo si K está acotado en Lp(Ω,F , µ) y

inf
P

sup
f∈K

∥f − EP(f)∥p = 0.

Notar que para toda partición medible finita P con un máximo de k átomos, se cumple

inf{∥f − g∥p : g ∈ Gp,k} ≤ ∥f − EP(f)∥p,

por lo que la compacidad relativa implica UA, un hecho que puede ser fácilmente demostrado
directamente.

La última parte del trabajo, la Sección 9.3, está dedicada al estudio de los conjuntos uni-
formemente aproximables. Daremos algunos ejemplos de conjuntos UA y demostraremos que
es una clase más grande que la de los conjuntos uniformemente integrables. También caracter-
izamos esta propiedad en términos de números de recumbrimiento si p = ∞ y en términos de
la p-variación si p < ∞. Los números de recumbrimiento N (f, ε) de una función f se definen
simplemente como el número de recumbrimiento de su imagen, salvo un conjunto de medida 0.
Demostraremos los dos resultados siguientes:

Teorema 0.0.18. Sea (Ω,F , µ) un espacio de medida y sea A ⊂ L∞(Ω,F , µ). Las siguientes
proposiciones son equivalentes:

(i) A es UA;

(ii) supf∈A N (f, ε) <∞ para todo ε > 0.
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Teorema 0.0.19. Sean (Ω,F , µ) un espacio de medida, p ∈ [1,∞) y A ⊂ Lp(Ω,F , µ). Las
siguientes proposiciones son equivalentes:

(i) A es UA en Lp(Ω,F , µ);

(ii) lim
k→∞

supf∈A Varp,k(f) = 0.

Luego investigamos cuando la bola unitaria de Lp(Ω,F , µ) es UA. Si 1 ≤ p < ∞, esto
ocurre, como es de esperar, si y sólo si Lp(Ω,F , µ) es de dimensión finita (ver Teorema 9.3.10).
Concluimos esta sección estableciendo algunas propiedades de estabilidad de la clase de con-
juntos UA. En particular, un buen uso del tipo de Rademacher nos permite demostrar que si
A es un conjunto UA acotado en Lp(Ω,F , µ) para p ∈ (1,∞) entonces su envoltura convexa
cerrada también es UA (ver Teorema 9.3.15). Para más información sobre el tipo y cotipo de
Rademacher, referimos el lector a [1] (caṕıtulo 6).

Este caṕıtulo es un preprint ([89]) que es consecuencia de una colaboración con J. San Mart́ın.







Abstract

Most of this work focuses on the study of super weak compactness, which is a localized version
of superreflexivity. Ultraproducts are also a central notion in this paper. We summarize the
contents of this thesis.

Chapter 1: Some preliminary content

This first chapter contains the basic concepts used throughout this document. Most of the
results presented in this section are given without proof. The few new results are proved.

We start briefly with the definition of filters and some of their elementary properties. These
allow us to define the notion of ultraproducts of Banach spaces. We recall in particular that it
is difficult to access the dual of an ultraproduct (except in the superreflexive case) and that the
ultraproduct of an ultraproduct is also an ultraproduct. We then define the ultraproducts of
bounded subsets of a Banach space and state fundamental properties that will be used repeatedly
in this document.

We recall the definition of finite representability of Banach spaces and its characterization
in terms of ultraproduct. We state fundamental results such as Dvoretsky’s Theorem or the
Principle of local reflexivity. We then extend the definition of finite representability to subsets
of Banach spaces and obtain results similar to those concerning Banach spaces.

In the next part, we introduce the spreading models of a Banach space X, which have
the particularity of being finitely representable in X. Some elementary properties are recalled
and we state the results established by Beauzamy which link spreading models to Banach-Saks
properties.

We end this section by defining the fundamental notion around which this work is articulated:
the super weak compactness (SWC).

Definition 0.0.10. Let X be a Banach space and let A ⊂ X be a bounded set. We say that
A is relatively super weakly compact all of its ultraproducts are relatively weakly compact. If
furthemore A is weakly closed, we say that A is super weakly compact (in short, SWC).

We establish well-known characterizations of super weakly compact sets which are similar
to those of superreflexivity. We can define the super weakly compact operators (SWC) and we
study some of their properties. We are also interested in the spaces generated by a SWC set
since they have remarkable renorming properties.

Chapter 2: Uniformly convex functions

In this chapter, we introduce the notion of ε-uniformly convex function. We start with the
definition of the main notion studied here:

xxiii
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Definition 0.0.11. Let (X, ∥.∥) be a Banach space and let ε > 0. A function f : X → R is
said to be ε-uniformly convex if there is δ > 0 such that

f

(
x+ y

2

)
≤ f(x) + f(y)

2
− δ,

whenever ∥x − y∥ ≥ ε. The function is said to be uniformly convex if it is ε-uniformly convex
for all ε > 0.

It turns out that supporting a convex continuous ε-uniformly convex function is actually
a geometrical-topological property of the domain. It is known that a Banach space admits
a uniformly convex function bounded on bounded sets if and only if it is superreflexive. Raja
proved in [147] that a closed convex bounded set admits a bounded continuous uniformly convex
function if and only if it is SWC. Our techniques allow us to give a very precise quantitative
version of the relation between containment of separated trees and supporting a uniformly convex
function for a set.

Theorem 0.0.12. Let C be a closed bounded convex subset of a Banach space X. Then these
two numbers coincide:

(ν1) the infimum of the ε > 0 such that there is a common bound for the heights of all the
ε-separated dyadic trees;

(ν2) the infimum of the ε > 0 such that there is a bounded ε-uniformly convex (and convex,
Lipschitz. . . ) function defined on C.

It is well-known that convex SWC sets do not admit ε-separated dyadic trees of arbitrary
height for all ε > 0 (see Theorem 1.5.12). Then the previous theorem can be seen as a quantifi-
cation of the super weak compactness. This idea will be developed in the next chapter. In this
chapter, further characterizations of the SWC proved by Raja will be obtained as consequences
of these new results (see Corollaries 2.4.9 and 2.4.12).

In our desire to study super weak compactness, we have been led to establish results of inde-
pendent interest on uniformly convex functions. Along this document, f̆ will denote the lower
semicontinuous convex envelope of a function f . The next result shows the global behaviour of
ε-uniformly convex functions and the relative stability of minimizers by linear perturbations.

Theorem 0.0.13. Let X Banach space and let f : X → R be an ε-uniformly convex function
such that f̆ is proper. Then f is bounded below and coercive, more precisely we have

lim inf
∥x∥→+∞

f(x)

∥x∥2
> 0.

Moreover, for any ε′ > ε there exist δ, η > 0 such that if given x∗0 ∈ X∗ and x0 ∈ X with

f(x0) + x∗0(x0) < inf(f + x∗0) + δ,

and x∗ ∈ X∗ such that ∥x∗ − x∗0∥ < η and x ∈ X that minimizes f + x∗, then ∥x − x0∥ ≤ ε′.

The existence of such minimizer pair (x, x∗) is guaranteed if f = f̆ .

The proof of the former result relies in the possibility of “making convex” an ε-uniformly
convex function without loosing the ε-uniformly convexity. We will say that a function f is
ε+-uniformly convex if it is ε′-uniformly convex for every ε′ > ε. We have the following result.

Theorem 0.0.14. Let X Banach space and let f : X → R be an ε-uniformly convex function
such that f̆ is proper. Then f̆ is ε+-uniformly convex.
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Simple examples, such as Example 2.1.7, show that the ε-uniformly convexity of f does not
guarantee that f̆ would be proper. In order to fulfil that requirement in terms of f , we direct
the reader to Corollary 2.4.2. Suppose now that we already have a proper lower semicontinuous
convex and ε-uniformly convex function f . We wonder if we could “upgrade” f to a new function
sharing those properties and, besides, being locally Lipschitz (global Lipschitzness is not allowed
for uniformly convex functions). In that sense, we have the following result.

Theorem 0.0.15. Let (X, ∥ · ∥) be a Banach space and let f ∈ Γ(X) be ε-uniformly convex.
Then there exists an equivalent norm ||| · ||| on X such that the function x 7→ |||x|||2 is ε+-uniformly
convex on the subsets of dom(f) where f is bounded above. Moreover, the norm ||| · ||| can be
taken as close to ∥ · ∥ as we wish.

The structure of this chapter is the following. Section 2.1 deals with basic properties of
ε-uniformly convex and ε-uniformly quasi-convex functions, mostly under the hypothesis of con-
vexity. A few examples are given to show that the definitions do not guarantee some additional
nice properties. Section 2.2 is devoted to the proof of Theorem 0.0.14 that will allow the re-
duction to the convex case of other results. The construction of uniformly convex functions
from scratch (trees and sets) is done in Section 2.3. Section 2.4 treats general properties of
ε-uniformly convex functions and the possibility of adding more properties like Lipschitzness
or homogeneity (renorming). We also prove an estimation of the approximation by differences
of convex functions. In the following section we will sketch an understandable proof of Enflo’s
uniformly convex renorming of superreflexive spaces theorem based on the ideas exposed along
the paper. The last section is dedicated to the uniform smoothness, which is the dual property
of the uniform convexity.

The results presented in this chapter are the consequence of a collaboration with M. Raja
and can be found in [88].

Chapter 3: Quantification of the super weak compactness

Super weak compactness is more widespread than it may appear. For instance, any weakly
compact operator with range L1(µ) (µ any measure) or domain C(K) (K any Hausdorff com-
pact) is SWC, see [122, Proposition 6.1]. Actually, some results in Banach space theory could
be understood in terms of super weak compactness. As for instance, the classic Szlenk result
establishing that a weakly convergent sequence in L1(µ) has a subsequence whose Cesàro means
converge (to the same limit) is a consequence of two facts: the weakly compact subsets of L1(µ)
are SWC; and the SWC sets have the Banach-Saks property [122, Corollary 6.3].

The aim of this chapter is to show that, actually, super weak compactness and, particu-
larly, its quantification, may cast light on the structure of the subspaces of Hilbert generated
Banach spaces. Indeed, we have realized that several “technical hypotheses” in papers of Troy-
anski [162], Argyros and Farmaki [9], and the series by Fabian, Godefroy, Hájek, Montesinos
and Zizler [71, 66, 65, 70] on the structure of Hilbert generated spaces and uniformly Gâteaux
renorming, can be understood in terms of a quantified version of super weak compactness.

We introduce a measure of super weak noncompactness Γ. Let A be a bounded subset of a
Banach space X, then take

γ(A) = inf{ε > 0 : A
w∗

⊂ X + εBX∗∗}.

We have that a set A is relatively weakly compact if and only if γ(A) = 0. This measure has
been studied in [69, 84, 42], see also [91, Section 3.6], and there are several measures of weak
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noncompactness that turn out to be equivalent [7]. If U is a free ultrafilter, we define Γ by

Γ(A) := γ(AU ).

We will see that the choice of U does not matter. We obtained the following quantification
result:

Theorem 0.0.16. Let C be a bounded closed convex subset of a Banach space X. Consider the
following numbers:

(µ1) the supremum of the numbers ε > 0 such that for any n ∈ N there are x1, . . . , xn ∈ C such
that d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε for all k = 1, . . . , n− 1;

(µ2) the supremum of the ε > 0 such that there are ε-separated dyadic trees of arbitrary height;

(µ3) = ∆(CU ), for U a free ultrafilter on N;

(µ4) = Γ(C), (computed for an arbitrary free ultrafilter U on N);

(µ5) the infimum of the ε > 0 such that Dz(C, ε) < ω;

(µ6) the infimum of the ε > 0 such that C supports a convex bounded ε-uniformly convex
function.

Then µ1 ≤ µ2 ≤ 2µ3 ≤ 2µ4 ≤ 2µ1 and µ4 ≤ 2µ5 ≤ 2µ6 ≤ 2µ2.

We can also quantify the super weak compactness for operators. In fact, if T : X → Y is a
bounded operator, we can define Γ(T ) = Γ(T (BX)). In particular, we prove a quantified version
of the symmetry of the bideal Wsuper (the set of SWC operators), as well as a quantified version
of Beauzamy’s renorming to make uniformly convex a super weakly compact operator.

In the last part, we establish the super-version of the following result:

Theorem 0.0.17 ([22, 68]). For a Banach space X the following statements are equivalent:

(i) X is a subspace of a WCG space;

(ii) (BX∗ , w∗) is an Eberlein compact;

(iii) For every ε > 0 there are sets (Aεn)n such that BX =
⋃∞
n=1A

ε
n and γ(Aεn) < ε.

The equivalence (i)⇔(ii) is due to Benyamini, Rudin and Wage [22]. The inner character-
ization (iii) was obtained by Fabian, Montesinos and Zizler [68]. Recall that WCG stands for
weakly compactly generated, that is, a Banach space that contains a weakly compact subset
whose linear span is dense. Thanks to the celebrated interpolation result of Davis, Figiel, John-
son and Pe lczyński [56] (see also [67, Theorem 13.22]), a Banach space X is WCG if and only if
there exists a reflexive space Z and an operator T : Z → X with dense range. Moreover, if the
space Z can be taken a Hilbert space, we say that X is Hilbert generated. The name Eberlein
applies to the compact spaces which are homeomorphic to a weakly compact set of a Banach
space. It is well known after Amir and Lindenstrauss (see [67, Corollary 13.17], for instance)
that an Eberlein compact embeds as a weakly (equivalent, bounded and pointwise) compact
subset of c0(I) for I large enough. If such an embedding can be done into a Hilbert space ℓ2(I),
then the compact is said to be uniformly Eberlein. Note that the third statement in Theorem
0.0.17 is actually an internal characterization as it is written in terms of the space X, not an
over-space or its dual. We will see that the computation of γ can be done without appealing to
the bidual space (see Proposition 3.1.2).

The main result of this chapter is the following. Please note the parallelism with the previous
theorem.
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Theorem 0.0.18. Let X be a Banach space. The following statements are equivalent:

(i) X is a subspace of a Hilbert generated space;

(ii) (BX∗ , w∗) is a uniform Eberlein compact;

(iii) For every ε > 0 there are sets (Bεn)n such that BX =
⋃∞
n=1B

ε
n and Γ(Bεn) < ε.

This chapter is structured as follows. Section 3.1 is devoted to prove Theorem 0.0.16 and the
fact that Γ defines a measure of noncompactness (according to Definition 3.1.1). In Section 3.2,
we quantify the uniform convexity of an operator. In the last part, we prove Theorem 0.0.18.
We conclude this chapter with a characterization of super weakly compactly generated spaces
(SWCG), in particular in the case of C(K)-spaces, and an application of the previous results to
Jordan algebras.

Most of the results presented in this chapter can be found in [87] (see also Section 6 in [88])
and have been established with M. Raja.

Chapter 4: New results on super weak compactness

Previous works on uniformly Gâteaux renorming by Fabian, Godefroy, Hájek and Zizler [65],
as well as early results by Troyanski [162], unawarely contain estimations of Γ (see Chapter 3).
The explanation will come through the following result.

Proposition 0.0.19. Let A a bounded subset of a Banach space X and consider the two fol-
lowing numbers:

(ε1) is the infimum of the ε > 0 such that there is n1 ∈ N such that for every x∗ ∈ BX∗ then

|{x ∈ A : |x∗(x)| > ε}| ≤ n1;

(ε2) is the infimum of the ε > 0 such that there is n2 ∈ N such that for any finite set B ⊂ A
with |B| ≥ n2 then ∥∥∥∥∥ 1

|B|
∑
x∈B

x

∥∥∥∥∥ < ε.

Then ε1 = ε2 and in such a case Γ(A) ≤ ε1.

The sets satisfying the statements of Proposition 4.1.3 with ε1 = ε2 = 0 will be called
uniformly weakly null sets. Note that a uniformly weakly null set becomes SWC by adding
{0}. Together with unit balls of superreflexive spaces, uniformly weakly null sets are the most
prototypical examples of SWC sets. The first part deals with properties of uniformly weakly
null set. As we will see, SWC sets with some reasonable discreteness assumption are uniformly
weakly null. Note that the second statement (ε2) is a sort of uniform Banach-Saks property
(with unique limit 0). That will allow us to apply results of infinite combinatorics, such as the
Erdös-Magidor [63] and Mercourakis [134] selections. We investigate when a Schauder basis is
uniformly weakly null, and the relation of uniformly weakly null sets with the representation of
uniformly Eberlein compacts.

The second part of this chapter is dedicated to ergodicity and fixed points properties of SWC
sets. In [50], the authors proved that a closed bounded convex subset K of a Banach space X
is SWC if and only if it has the super fixed point property for affine isometries T : X → X
preserving K. In this part, we improve this characterization in two different ways. On the one
hand, we prove the following result:
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Theorem 0.0.20. Let C be a closed convex subset of a Banach space X. The following asser-
tions are equivalent:

(i) C is SWC;

(ii) C is super-ergodic.

This result is proved studying the fixed points of the shift of a spreading model (see Propo-
sition 4.2.5). Then the fixed point properties of K are easily deduced from an adaptation of the
classical mean ergodic Theorem (see Theorem 4.2.3). We also note that a SWC set K may enjoy
stronger fixed points properties since the underlying space can be renormed such K has normal
structure (see Theorem 1.5.33). On the other hand, the main drawback of the characterization
given in [50] is that it can exist affine isometries defined on K which can not be extended to
the all space. Moreover, the super weak compactness is a localized version of superreflexivity
and it is natural to expect that such a characterization only depends on K. This is done in
Theorem 4.2.11. We apply some of these results to strongly super weakly compactly generated
Banach spaces (see Definition 1.5.30). To end this second part of the chapter, we prove that if a
Banach space X has the M-(FPP for affine isometries) (i.e. all the spreading models of X have
the fixed point property for affine isometries) then X is reflexive. More precisely, we obtain:

Theorem 0.0.21. The M-(FPP for affine isometries) implies the Banach-Saks property.

It follows that the reflexivity strictly lies between the fixed point property and the M-(fixed
point property) (see Definition 4.2.18).

The first part of this chapter comes from [87]. The results of the second part are part of a
preprint (see [85]).

Chapter 5: Uniform Banach-Saks properties

Superreflexivity and its localized version, the super weak compactness, are strongly related to the
Banach-Saks property. In fact, the super weak compactness is equivalent to the super-Banach-
Saks property by Theorem 1.5.15. In this section, we are interested in the uniform Banach-Saks
properties, meaning that we try to control the speed of convergence of a Cesaro convergent
subsequence of a bounded sequence. Many results in this chapter are inspired by the work of
Beauzamy and his use of spreading models for the characterization of Banach-Saks properties
(see Chapter 1). The main concept of this chapter is presented in the following definition. The
other Banach-Saks properties that will be studied are variations of this definition.

Definition 0.0.22. Let X be a Banach space. We say that X has the uniform weak Banach-
Saks property (in short uniform WBS) if there exists a sequence (an)n of real positive numbers

such that an → 0 and for all (xn)n ⊂ BX such that xn
w−→ 0, there is a subsequence (x′n)n of

(xn)n such that

1

m

∥∥∥∥∥
m∑
k=1

x′k

∥∥∥∥∥ ≤ am

for all m ≥ 1.

Section 5.1 is dedicated to the study of the uniform WBS. In the literature (see [151, 148]), a

special case of the uniform WBS appears when an is of the form an = Cn
1
p−1 for some C > 0 and

p > 1. In that case, we say that X has the strong p-weak Banach-Saks property (in short, strong
p-WBS). In [148], Rakov proved that if X has the uniform WBS then there exists some p > 1
such that X has the strong p-WBS. This result will be established here with another proof in
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Subsection 5.1.2 (see Theorem 5.1.9). The main idea is to prove that the weak-(A∞), introduced
by Partington in [139], and the uniform WBS are equivalent. This is done in Subsection 5.1.1.

Note that the constant C present is the definition of the strong p-WBS does not depend
on the choice of the weakly null subsequence. We introduce the p-weak Banach-Saks property
(in short, p-WBS) by releasing this independance. Apart from a few special cases, it seemed
unknown if both notions coincide. In Subsection 5.1.3, we prove in full generality that the p-
WBS coincide with the strong p-WBS when p ∈ (1,∞) (see Theorem 5.1.14). To sum up, we
obtain the following result:

Theorem 0.0.23. Let X be a Banach space. The following assertions are equivalent:

(i) X has the uniform WBS;

(ii) X has the weak-(A∞);

(iii) X has the strong p-WBS for some p ∈ (1,+∞);

(iv) X has the p-WBS for some p ∈ (1,+∞).

The equivalence between the strong ∞-Banach-Saks property and the ∞-Banach-Saks prop-
erty is also true but can not be proved with the same argument. It will be established using
Ramsey’s theory and a powerful characterization of the hereditary Dunford-Pettis property (see
Theorem 3.1 in [117]).

If X has the uniform WBS, it is interesting to find the greatest p such that X has the p-WBS.
That is why we introduce the following definition:

Definition 0.0.24. Let X be a Banach space. We define the uniform WBS-index UWBS(X)
of X as the supremum of the p > 1 such that X has the (strong) p-WBS. If X does not have
the (strong) p-WBS for any p > 1, we set UWBS(X) = 1.

We also introduce the following index, which caracterizes the properties (Ak) introduced by
Partington:

Definition 0.0.25. Let X be a Banach space. For all m ≥ 1, we define ϕX(m) as the infimum

of the b such that for all (xn)n ⊂ BX with xn
w−→ 0, there exist p1 < p2 < ... < pm such that

1

m

∥∥∥∥∥
m∑
i=1

xpi

∥∥∥∥∥ ≤ b.

In Subsection 5.1.4, we establish one of our main result:

Theorem 0.0.26. Let X be a Banach space.

(a) If ϕX(n) > 1
n for all n ≥ 2, then

UWBS(X) = sup
n≥2

ln(n)

ln(nϕX(n))
.

(b) If ϕX(n) ≤ 1
n for some n ≥ 2, then

UWBS(X) = +∞.
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The previous formula has been established by Rakov in [148] by a different method, but
without any hypothesis on ϕX . However, it is easy to see that this formula is not true if we do
not make the assumption on ϕX (see Proposition 5.1.27).

In Section 5.2, we introduce the uniform Banach-Saks property (in short, uniform BS), which
is basically obtained by adding the reflexivity to the uniform WBS. Many examples of spaces
enjoying the uniform BS are given such that (β)-spaces, k-NUCε spaces or NUS spaces. The uni-
form alternating weak Banach-Saks property (in short, uniform WABS) is introduced in Section
5.3. It turns out that the uniform WABS and the uniform WBS are equivalent (see Theorem
5.3.6). As an application, we obtain that any Banach space with non-trivial type p has the
(strong) p-WBS. In the last section, we introduce the uniform alternating Banach-Saks property
(in short, uniform ABS) and we study its links with the other uniform Banach-Saks properties.
We conclude this chapter with an application to symmetric Kottman’s constants.

The results of this chapter are part of a preprint (see [86]).

Chapter 6: Extremal structure in ultraproducts

The ultraproduct of Banach spaces has shown to be a very useful tool in the study of local
properties of Banach spaces. For instance, in [1, Theorem 11.1.4] ultraproducts are used in
order to prove that a Banach space X fails to have type p > 1 if and only if ℓ1 is finitely
representable in X. This link between the local structure of a Banach space X and the global
one of its ultraproducts XU has allowed us to obtain structural results in Banach spaces.

More recent studies about the geometry of ultraproduct Banach spaces can be found in [94]
for octahedral and almost square Banach spaces or in [25, 110] for the Daugavet property. Ac-
tually, the example of the Daugavet property is paradigmatic of two basic facts that, more often
than not, appear when dealing with a geometric property in Banach spaces. The first one is
that, when requiring an ultraproduct XU to enjoy a geometric property, one has to look for a
“uniform version” of this geometric property in X (this happens for instance with the Daugavet
property and the uniform Daugavet property [25, Theorem 6.4], for the strict convexity and
uniform convexity or for the reflexivity and superreflexivity [97, Proposition 6.4]). The second
one is that one should avoid as much as possible to deal with the dual of an ultraproduct space
(this is done in [25] by using their Theorem 6.2). The reason is that, in most of the cases (i.e.
out of superreflexive Banach spaces [97, Corollary 7.2]), there is not good access to the dual of
XU .

Taking the above two facts in mind, the aim of this chapter is to study the extremal structure
of subsets of an ultraproduct. This structure codifies much information of bounded convex sets
(we can think for instance in Krein-Milman theorems) and it is extremely useful in other areas
of the Functional Analysis like the norm-attainment (see [41, 126]). In the particular case of the
extremal structure of ultraproducts, it has been previously considered by J. Talponen in [159],
where the author studied the properties that link a point x of the unit sphere of a Banach space
and its image J (x) in the ultraproduct through the canonical isometry. Some of his results will
be generalised in this document since we deal with more general sets (not only with the unit
ball) and more general ultrafilters (not only on N). We also establish how the properties on the
xi’s are transferred to (xi)U and reciprocally. Then the results linking x and J (x) are obtained
as a particular case.

The first three sections contain our main results in complete generality. After providing
a number of examples that suggests which properties we need to look for on X, we establish
several stability results concerning the extremal structure. For instance, we extend Talponen’s
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result in Theorem 6.1.5 showing that x is a strongly extreme point of a bounded convex set C if
and only if J (x) is a (strongly) extreme point of its ultraproduct CU . Moreover, we show that
extreme and strongly extreme points of CU coincide under mild assumptions on U , that is:

Theorem 0.0.27. Let C be a bounded convex subset of a Banach space X, U be a CI ultrafilter
on an infinite set I. Then ext(CU ) = str-ext(CU ).

We also characterise in Theorem 6.1.7 elements (xi)i∈I ∈ CI giving that (xi)U is an extreme
point of CU for every free ultrafilter U on I. In the context of denting points (respectively
strongly exposed points) we prove that (xi)U ∈ CU is a denting point (respectively strongly
exposed point) if {xi} satisfy a “uniform denting condition” (respectively a uniform condition
of strong exposition), see Theorems 6.2.2 and 6.3.2. Finally, we prove that every element of CU
which is exposed by a functional in (X∗)U is in fact strongly exposed under mild assumptions
on U :

Theorem 0.0.28. Let C be a bounded convex subset of a Banach space X, and U be a CI
ultrafilter on an infinite set I. Then exp(X∗)U (CU ) = str-exp(X∗)U (CU ).

In the last part, we take a closer look at SWC convex sets where we expect a nice behaviour
of the extremal structure. We also investigate the uniformly convex sets, which is a particular
case of SWC sets. The main tool in this study is that if C is uniformly convex then CU too
(see Proposition 6.4.9). The aim of this section is to recover as much as possible the extremal
properties of the unit ball of a uniformly convex Banach space. The biggest difficulty is that
a uniformly convex set can have empty interior. However, we prove that any extreme point of
such a set is denting and any exposed point is strongly exposed (Proposition 6.4.14). We also
characterise the extreme points of its ultraproduct set (Theorem 6.4.13).

The results presented here have been established with L. Garćıa-Lirola and A. Rueda Zoca
and can be found in [77].

Chapter 7: Ultraproducts in Lipschitz-free spaces

In this chapter, we consider the notion of ultraproduct of metric spaces (which is a general-
ization of the corresponding one for Banach spaces). We apply it to obtain an ultraproduct
characterization of the metric spaces that are finitely Lipschitz representable (in the sense intro-
duced by Lee, Naor and Peres [123]) in a Banach space. Also, we analyze the relation between
finite Lipschitz representability of metric spaces and finite representability of the correspond-
ing Lipschitz-free spaces. These spaces (also called Arens-Eells spaces and transportation cost
spaces) have become a very active research topic due to their applications in Non-Linear Anal-
ysis [81], as well as Computer Science and Optimal Transport.

In the first section, we introduce the fundamental properties of ultraproducts of metric spaces
and Lipschitz-free spaces used in this document. In the following section, we prove that, given a
metric space M and an ultrafilter U , the Lipschitz-free space on the ultraproduct of M , F(MU ),
is linearly isometric to a subspace of the ultraproduct of the Lipschitz-free space, F(M)U . In
fact, we have:

Theorem 0.0.29. Let U be an ultrafilter on a set I and let (Mi)i∈I be a family of metric spaces.
Then F((Mi)U ) is linearly isometric to span(δ(Mi)U ) ⊂ F(Mi)U .

In particular, F(MU ) is finitely representable in F(M). Also, we prove that a metric space M
is finitely Lipschitz representable into a Banach spaceX if and only ifM biLipschitz embeds in an
ultraproduct of X (Theorem 7.3.6). This is done in Section 7.3 where we link the ultraproducts
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of metric spaces with the notion of finite representability. As a consequence we obtain the
following result:

Theorem 0.0.30. Let M be a metric space and X be a Banach space. Assume that M is
finitely λ-Lipschitz representable in X. Then F(M) is λ-finitely representable in F(X).

This result has some consequences on the cotype of Lipschitz-free spaces that can be found
in Section 7.3. For instance, the following dichotomy holds: either F(ℓ2) has non-trivial cotype
or F(X) does not have cotype for any infinite-dimensional Banach space X. Finally, although
several classes of Banach spaces (as Banach lattices, C*-algebras, and C(K)-spaces) are known
to be stable by ultraproducts, we show that (F(M))U is not isomorphic to any Lipschitz-free
space whenever M is an infinite metric space and U is countably incomplete. In Section 7.5, we
then compare the stability of Lip0(K) and C(K) under ultraproducts and remark some similar-
ities and differences between them.

This chapter is based on [76] and is the consequence of a work with L. Garćıa-Lirola.

Chapter 8: A note on non-separable Lipschitz-free spaces

In the first section, we prove that several classical Banach space properties are equivalent to sep-
arability for the class of Lipschitz-free spaces, including Corson’s property (C), being a Gâteaux
differentiability space, or the Countable Separation Property. On the other hand, we single
out properties, more general than the previously mentioned where the equivalence with separa-
bility in class of Lipschitz-free spaces fails. In particular, the question whether non-separable
Lipschitz-free spaces can have a weak∗ sequentially compact dual ball is undecidable. In fact, if
we denote by s the splitting cardinal we have that:

Theorem 0.0.31. Let M be a complete metric space. Then the following assertions are equiv-
alent:

(i) dens(M) ≥ s,

(ii) M contains a uniformly discrete subset of cardinality s,

(iii) BLip0(M) is not w∗-sequentially compact.

In particular, Bℓ∞(Γ) is w
∗-sequentially compact if and only if |Γ| < s. Therefore it is undecidable

whether Bℓ∞(ω1) is w∗-sequentially compact.

Finally, in the second section, we provide an example of a non-separable dual Lipschitz-
free space that fails the Radon-Nikodým property. This is example is based on the following
proposition asserting that the space M(S) of Radon measures on a Polish space S is a Lipschitz-
free space:

Proposition 0.0.32. Let S be a Polish space. Then M(S) is linearly isometric to F(M) for
some metric space M . Specifically

M(S) ∼= ℓ1(|S|) ⊕1

(⊕
κ

L1

)
1

∼= F(M)

for some cardinal κ ≤ c, and M is the metric sum of |S| two-point spaces and κ copies of [0, 1].

This little chapter is part of a ongoing work with R. Aliaga and A. Procházka.
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Chapter 9: Proximinality and uniformly approximable sets in Lp

This chapter is totally independant from the previous ones. However, this work comes from
the study of superreflexive spaces. Indeed, it is well known that if X is superreflexive then so
is L2(X). This follows directly from Enflo’s Theorem since L2(X) is uniformly convex if X is.
This transition to L2(X) is fundamental in the proof of Pisier’s Theorem and, to date, there
is no proof of this theorem that does not require Enflo’s Theorem. The results in this chapter
come from the author’s questioning of why L2(X) is superreflexive if X is superreflexive without
going through Enflo’s theorem.

In this chapter we study the approximation of measurable functions by simple functions
taking at most k values, for k ∈ N. This problem has important consequences in multiple ap-
plications, where for example, one seeks for reduction of dimensionality, among many others.
For example, the embedding of metric spaces into finite-dimensional normed spaces with small
dimension is one of the main issue in non-linear analysis (see [32, 108, 131]). These results
have deep consequences in order to design approximation algorithms, for instance for the Spars-
est Cut problem (see [10]). When we aproximate a given function f ∈ Lp(Ω,F , µ) by simple
functions, the number of terms in those approximations growths to infinity in general. Here, a
main concern is what we can say if we restrict the number of terms in the approximations. In
particular, what we can say about subsets of Lp(Ω,F , µ) that can be uniformly approximated
by simple functions taking k values, as k growth to ∞. As we shall see, this new concept is
more general than uniform integrability or compactness, and we fully characterize it in terms of
a new measure of variation defined for functions in Lp(Ω,F , µ) for p ∈ [1,∞), and in terms of
covering numbers in the case of p = ∞.

Let us fix some notations we need to explain the main results of this paper. Consider (Ω,F , µ)
a measure space. For any k ≥ 1, we denote by Gp,k(Ω,F , µ), or simply Gp,k when the measure
space (Ω,F , µ) is clear from the context, the set of simple functions given by

Gp,k =

{
l∑
i=1

ai1Ai ∈ Lp(Ω,F , µ) : {Ai}1≤i≤l measurable partition of Ω, ai ∈ R for all i, l ≤ k

}
.

Remark 0.0.33. Assume µ is a finite measure. Then Gp,k = G1,k for all p ∈ [1,∞] is just the
set of simple measurable functions that takes at most k values. If µ is an infinite measure, then
h =

∑k
i=1 ai1Ai , where {Ai}1≤i≤k is a measurable partition, belongs to Gp,k, for p ∈ [1,∞), if

and only if µ(Ai) = ∞ implies ai = 0. So, again for all p ∈ [1,∞) it holds that Gp,k = G1,k ⊂
G∞,k, and the latter is the set of all simple measurable functions that takes at most k values.

We recall some notions from approximation theory. Let X be a Banach space and let K be
a closed subset of X. The metric projection on K is the multi-valued mapping PK : X ⇒ K
defined by PK(x) = {y ∈ K : ∥x− y∥ = d(x,K)} (where d(A,B) is the distance between two
subsets A and B of X). If PK(x) is not empty for all x ∈ X, we say that K is proximinal. If
PK(x) is a singleton for all x ∈ X, we say that K is Chebyshev. Section 9.1 is devoted to show
the following result.

Theorem 0.0.34. Let (Ω,F , µ) be a measure space and p ∈ [1,+∞]. Then Gp,k is proximinal
in Lp(Ω,F , µ) for all k ≥ 1.

In other words, the distance of a function f to Gp,k is attained at some g ∈ Gp,k. Note that
most of the classical results on the existence of a solution cannot be used in this case since Gp,k
is obviously not compact in the strong topology, nor convex, and as we will see, it is not closed
in the weak topology, in general. The proof of this result is divided into several steps. We
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first deal with the case p ∈ [1,∞) and we also prove that a minimum can be chosen to have a
particular form (see Theorem 9.1.5 when µ is finite and Theorem 9.1.12 if not). The proof is
rather technical since we deal with any kind of measure (not only finite or σ-finite). In case µ is
finite we also give conditions to ensure that there is a unique minimizer (see Theorem 9.1.10).
In general, the set of minimizers is not a singleton, it can even exists a continuum of minimizers.
Then, it makes sense to study if the metric projection PGp,k

has a continuous selection. In
general, there is no continuous selection, unless Lp(Ω,F , µ) is finite dimensional (see Remark
9.1.21).

When p = ∞, in Proposition 9.1.14 we prove that G∞,k is proximinal. The proofs we pro-
vide are somehow constructive in nature, but still there is a long way to go for obtaining useful
algorithms, which in itself, we think, will be important in many applications.

An important role in this section is played by Mp(f,A), the p-th mean of f on a set A (see
Definition 9.1.2). In particular, for p = 2 we have M2(f,A) = 1

µ(A)

∫
A
f(x) dµ(x). A well-known

approximation associated to a finite measurable partition P = {Ai}1≤i≤k is given by

EP(f) =

k∑
i=1

M2(f,Ai)1Ai
,

which corresponds to the conditional expectation of f over the σ-field generated by P.

In Section 9.2, we introduce the p-variation Varp,k(f) of a function f ∈ Lp(Ω,F , µ), for
p ∈ [1,∞) , and we studied some of its properties. The p-variation of a function allow us to
control the distance of f to the sets Gp,k, up to a factor of 2 (see Proposition 9.2.6). This notion
will be a useful tool to characterize the uniform approximability of sets in the following section
and whose definition is the following:

Definition 0.0.35. Let (Ω,F , µ) be a measure space and p ∈ [1,+∞]. Let A ⊂ Lp(Ω,F , µ).
For ε > 0, we define

Np,ε(A ) = inf{k ≥ 1 : ∀f ∈ A , ∃h ∈ Gp,k ∥f − h∥p ≤ ε}.

As usual if the set where the infimum is taken is empty we set Np,ε(A ) = ∞. We say that A
is uniformly approximable (in short UA) in Lp(Ω,F , µ) if Np,ε(A ) <∞ for any ε > 0.

Concretely a set A is UA in Lp(Ω,F , µ) if for any ε > 0 there exists k ≥ 1 such that any
function in A can be ε-approximated in Lp(Ω,F , µ) by simple functions taking less than k
different values. Notice that A is UA if and only if

lim
k→∞

sup
f∈A

inf{∥f − g∥p : g ∈ Gp,k} = 0.

We point out that a similar quantity leads to relatively compactness of A . Indeed, if 1 ≤ p <∞,
a result inspired by M. Riesz (see Theorem 4.7.28 in [26]) says that K ⊂ Lp(Ω,F , µ) is relatively
compact if and only if K is bounded in Lp(Ω,F , µ) and

inf
P

sup
f∈K

∥f − EP(f)∥p = 0.

We point out that for every finite measurable partition P, with at most k atoms it holds

inf{∥f − g∥p : g ∈ Gp,k} ≤ ∥f − EP(f)∥p,

so relatively compactness implies UA, a fact that can be easily proved directly.
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The last part of the paper, Section 9.3, is dedicated to the study of uniformly approximable
sets. We will give some examples of UA sets and prove that it is a larger class than the class
of uniformly integrable sets. We also characterize this property in terms of covering numbers if
p = ∞ and in terms of the p-variation if p < ∞. The covering numbers N (f, ε) of a function
f is simply defined as the covering number of its range, up to measure 0. We will prove the
following two results:

Theorem 0.0.36. Let (Ω,F , µ) be a measure space and let A ⊂ L∞(Ω,F , µ). The following
assertions are equivalent:

(i) A is UA;

(ii) supf∈A N (f, ε) <∞ for all ε > 0.

Theorem 0.0.37. Let (Ω,F , µ) be a measure space, p ∈ [1,∞) and let A ⊂ Lp(Ω,F , µ). The
following assertions are equivalent:

(i) A is UA in Lp(Ω,F , µ);

(ii) lim
k→∞

supf∈A Varp,k(f) = 0.

Then we investigate when the unit ball of Lp(Ω,F , µ) is UA. If 1 ≤ p < ∞, this happens,
as one can expect, if and only if Lp(Ω,F , µ) is finite dimensional (see Theorem 9.3.10). We
conclude this section by establishing some stability properties of the class of UA sets. In par-
ticular, a nice use of the Rademacher type allows us to prove that if A is a bounded UA set
in Lp(Ω,F , µ) for p ∈ (1,∞) then its closed convex hull also is UA (see Theorem 9.3.15). For
more information about Rademacher type and cotype, we refer the reader to [1] (chapter 6).

This chapter is a preprint (see [89]) which is the consequence of a collaboration with J. San
Mart́ın.





Notation

Our notation is standard and follows books as [67] and [1].

All the Banach spaces are supposed to be real. In this document, (X, ∥.∥) will always be a
Banach space and we denote

BX the closed unit ball of X;

X∗ the dual space of X;

w the weak topology;

w∗ the weak∗ topology.

If A ⊂ X, conv(A) denotes the convex hull of A. If T : X → Y is a linear operator between
two Banach spaces X and Y , T ∗ is the adjoint operator.

If (T, τ) is the topological space and if A ⊂ T , then A
τ

(or simply A) is the closure of A.

A more detailed list of notations is given at the end of this work.

xxxvii





Contents

Resumen vii

Abstract xxiii

Notation xxxvii

1 Some preliminary content 5
1.1 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Ultraproduct of Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Finite representability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Finite representability of Banach spaces . . . . . . . . . . . . . . . . . . . 8
1.3.2 Finite representability of sets . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Spreading models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.1 Definition and first properties . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Relations with Banach-Saks properties . . . . . . . . . . . . . . . . . . . . 13

1.5 Super weak compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.1 Definitions and first properties . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.2 Super weakly compact operators . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.3 Super weakly compactly generated spaces . . . . . . . . . . . . . . . . . . 21

2 Uniformly convex functions 25
2.1 Definitions and first properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Convexifying the ε-uniform convexity . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Building uniformly convex functions . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Improving functions and domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 A new glance at Enflo’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 A remark on ε-uniformly smooth functions . . . . . . . . . . . . . . . . . . . . . 45

3 Quantification of the super weak compactness 47
3.1 Different ways to quantify SWC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Quantifying uniform convexity for operators . . . . . . . . . . . . . . . . . . . . . 52
3.3 Uniformly Gâteaux renorming and other applications . . . . . . . . . . . . . . . . 56

4 New results on super weak compactness 61
4.1 Uniformly weakly null set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Ergodicity and fixed point properties . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Ergodicity and (super) weak compactness . . . . . . . . . . . . . . . . . . 66
4.2.2 Fixed point property and (super) weak compactness . . . . . . . . . . . . 69
4.2.3 Application to S2WCG Banach spaces . . . . . . . . . . . . . . . . . . . . 71
4.2.4 A remark on the M-FPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

1



2 CONTENTS

5 Uniform Banach-Saks properties 75
5.1 The uniform WBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 The weak-(A∞) property . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.2 The strong p-WBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.3 Equivalence between the strong p-WBS and p-WBS . . . . . . . . . . . . 80
5.1.4 The UWBS-index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 The uniform BS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 The uniform WABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 The uniform ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Extremal structure in ultraproducts 103
6.1 Extreme and strongly extreme points . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Denting points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3 Exposed and strongly exposed points . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4 Application to super weak compactness . . . . . . . . . . . . . . . . . . . . . . . 112

7 Ultraproducts in Lipschitz-free spaces 121
7.1 Definitions and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.1 Ultraproduct of metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.1.2 Lipschitz-free spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Ultraproduct of F(M) and Lip0(M) . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3 Finite representability of metric spaces . . . . . . . . . . . . . . . . . . . . . . . . 126
7.4 Some remarks on the cotype of Lipschitz-free spaces . . . . . . . . . . . . . . . . 129
7.5 Stability of F(M) and Lip0(M) under ultraproducts . . . . . . . . . . . . . . . . 130

8 A note on non-separable Lipschitz-free spaces 133
8.1 Equivalent properties to separability . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2 A non-separable example on dual Lipschitz-free spaces . . . . . . . . . . . . . . . 137

9 Proximinality and uniformly approximable sets in Lp 141
9.1 Minimizing the distance to the sets Gp,k . . . . . . . . . . . . . . . . . . . . . . . 141

9.1.1 The case of a finite measure, p ∈ [1,∞) . . . . . . . . . . . . . . . . . . . 144
9.1.2 The case of an infinite measure, p ∈ [1,∞) . . . . . . . . . . . . . . . . . . 155
9.1.3 The case p = ∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
9.1.4 Extra properties of minimizers and the sets (Gp,k)p,k . . . . . . . . . . . . 159

9.2 The p-variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.3 Uniform approximability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.3.1 Uniform integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.3.2 Characterization of the uniform approximability . . . . . . . . . . . . . . 170
9.3.3 The unit ball of Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.3.4 Stability of the class of UA sets . . . . . . . . . . . . . . . . . . . . . . . . 179

Bibliography 183

List of symbols 193







Chapter 1

Some preliminary content

1.1 Filters

We begin by stating the basic definitions and properties of filters that will be very useful later.
If I is a set, we denote its power set by P(I).

Definition 1.1.1. Given a set I and U ⊆ P(I), we say that U is a filter if

(a) ∅ /∈ U .

(b) A,B ∈ U implies A ∩B ∈ U .

(c) A ∈ U and A ⊆ B implies B ∈ U .

In that case, we say that U is free if
⋂
A∈U A = ∅ and that U is proper if U ̸= P(I). An ultrafilter

is a filter which is maximal in the set of proper ultrafilters ordered by inclusion.

Using Zorn’s lemma it is easy to see that any filter can be extended to an ultrafilter, that is:

Proposition 1.1.2. Let U be a proper filter on a set I. Then there exists an ultrafilter G on I
such that U ⊂ G

We have the following well-known characterization of ultrafilter:

Proposition 1.1.3. Let U be a filter on a set I. The following assertions are equivalent:

(i) U is an ultrafilter;

(ii) for all A ⊂ I, A ∈ U or Ac ∈ U ;

(iii) for all A,B ⊂ I, if A ∪B ∈ U , then A ∈ U or B ∈ U .

The notion of filter plays an important role in topology. For more details about filters and
topology, we refer the reader to [30]. It is possible to define a notion of convergence according
to a filter and which will allow us to define ultraproducts in the next part.

Definition 1.1.4. Let (T, τ) be a topological space. Consider I a set and U ⊂ P(I) an
ultrafilter. Let (xi)i∈I ∈ TI and x ∈ X. We say that (xi)i∈I converges to x with respect to U
if {i ∈ I : xi ∈ U} ∈ U for all open neighborhood U of x. In this case, we say that x is a U-
ultralimit (or simply an ultralimit is there is no confusion) of (xi)i∈I and we write limU,i xi = x
or simply limU xi = x if there is no confusion.

5
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The following proposition is elementary:

Proposition 1.1.5. Let (T, τ) be a topological space and U an ultrafilter on a set I. Let
(xi)i∈I ∈ TI . Then

(a) if (T, τ) is Hausdorff and if (xi)i∈I admits a U-ultralimit, then this latter is unique;

(b) if (T, τ) is compact, then (xi)i∈I admits a U-ultralimit.

We need to recall that if U is an ultrafilter on I and V is an ultrafilter on J , the product
U × V of U and V is the ultrafilter defined on I × J by

L ∈ U × V ⇐⇒ {j ∈ J | {i ∈ I | (i, j) ∈ L} ∈ U} ∈ V.

Note that this product is not commutative in general.

The product limit of an ultrafilter is simply obtained by iterating the limits.

Lemma 1.1.6. Let (M,d) be a metric space, U an ultrafilter on a set I and V an ultrafilter on
a set J . Let (xi,j)i,j ∈M I×J . Then limU×V xi,j = limV,j limU,i xi,j whenever all of these limits
exist.

Proof. Let x = limU×V xi,j and y = limV,j limU,i xi,j . For j ∈ J , define also yj = limU,i xi,j . Fix
ε > 0 and note that by definition of the limit we have

{(i, j) ∈ I × J | d(xi,j , x) < ε} ∈ U × V,

that is
Jε := {j ∈ J | {i ∈ I | d(xi,j , x) < ε} ∈ U} ∈ V.

Then, for all j ∈ Jε, we have that {i ∈ I | d(xi,j , x) < ε} ∈ U which implies that d(yj , x) ≤ ε.
Since Jε ∈ V, we obtain that d(x, y) ≤ ε. The arbitrariness of ε allows us to conclude that
x = y.

The next definition introduces a type of ultrafilters which will be very usefull in this document
since it allows to imitate what happens for free ultrafilters on N:

Definition 1.1.7. An ultrafilter U on a set I is said to be countably incomplete (in short, CI)
if it contains a sequence of sets (In)n∈N such that ∩n∈NIn = ∅.

If U is CI, the sequence (In)n∈N given by the previous definition can always be chosen to be
decreasing. Note that every CI ultrafilter is free and that any free ultrafilter on N is CI. We
have the following characterization of CI ultrafilter:

Proposition 1.1.8. Let U be ultrafilter on a set I. The following assertions are equivalent:

(i) U is CI;

(ii) there exists (ai)i∈I ⊂ R such that limU ai = 0 and ai > 0 for all i ∈ I.

Proof. Suppose first that U is CI and let (In)n≥1 ⊂ U with
⋂
n≥1 In = ∅. We can suppose that

I1 = I and In+1 ⊊ In for all n ∈ N. Define (ai)i∈I by ai = 1
n if i ∈ In \ In+1. Given ε > 0, take

n0 such that 1
n0
< ε. It is easily seen that

In0
⊂ {i ∈ I : ai < ε}.

It follows that the last set belongs to U . Thus, limU ai = 0.
Now suppose that (ii) holds. For n > 0, define

In :=

{
i ∈ I : ai <

1

n

}
∈ U .

Since ai ̸= 0 for all i ∈ I, it is clear that
⋂
n In = ∅, i.e. U is CI.
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1.2 Ultraproduct of Banach spaces

We start with the construction of the ultraproduct of a Banach space.

Given a Banach space X and a set I, we denote ℓ∞(I,X) := {(xi)i∈I : supi∈I ∥xi∥ < ∞}.
Given a ultrafilter U over I, consider NU := {f ∈ ℓ∞(I,X) : limU ∥xi∥ = 0}. The ultraproduct
of X with respect to U is the Banach space

XU := ℓ∞(I,X)/NU .

We denote by (xi)U,i or simply by (xi)U , if no confusion is possible, the coset in XU given by
(xi)i∈I +NU .

The norm on XU is the associated quotient norm. Fortunately, there is a simpler way to
compute it:

Proposition 1.2.1. Let X be a Banach space and U be an ultrafilter on a set I. If (xi)U ∈ XU ,
we have that ∥(xi)U∥ = limU ∥xi∥

The previous proposition implies that the canonical inclusion J : X −→ XU given by the
formula J (x) := (x)U is an into linear isometry. Note that, if X is finite dimensional, XU = X
isometrically.

The properties that are possessed by the ultraproducts are called super-properties:

Definition 1.2.2. Let (P) be a property of Banach spaces. We say that a Banach has super-(P)
if XU has (P) for any ultrafilter U .

For example, we can talk about superreflexivity, which will be one of the main notion used
in this document.

One big issue dealing with ultraproducts is the lack of representation for (XU )∗, except when
X is superreflexive. In fact, we have that (XU )∗ = (X∗)U if and only if X is superreflexive (see
Proposition 6.4 in [97]). Otherwise, (X∗)U is a proper subspace of (XU )∗. The identification is
done by the assignment

⟨(x∗i ), (xi)⟩ := lim
U
x∗i (xi).

Recall that a subset B ⊂ BX∗ is called a boundary (of X) if for every x ∈ X there exists x∗ ∈ B
such that ∥x∥ = x∗(x). A norming subspace Z ∈ X∗ is called a boundary if BZ = Z ∩ BX∗ is
a boundary in the previous sense. Even if the dual can be difficult to determine, we have the
following positive result:

Theorem 1.2.3. Let X be Banach space and let U be any free ultrafilter on a set I. Then
(X∗)U is a boundary for XU . Therefore, the relatively weakly compact subsets of XU are exactly
those which are relatively compact for the topology of pointwise convergence on the elements
from (X∗)U .

Proof. Indeed, for every i ∈ I take x∗i ∈ BX∗ such that x∗i (xi) = ∥xi∥. The second statement
comes from Pfitzner’s solution [141] to Godefroy’s boundary problem.

We can also define the ultraproduct of bounded sets in the natural way:

Definition 1.2.4. Let X be a Banach space and let A ⊂ X be a bounded set. Let U be a
ultrafilter on a infinite set I. We define the ultraproduct of A with respect to U by

AU := {(xi)U : xi ∈ A ∀i ∈ I}.
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Concerning the question of when AU is closed we have the following result. The first part
can be found in [47, Proposition 3.2].

Proposition 1.2.5. Let X be a Banach space and let A ⊂ X be a bounded set. Let U be a CI
ultrafilter on a infinite set I. Then AU is closed and (A)U = AU = AU .

Proof. Let (In)n∈N be a sequence of sets as in the definition of CI ultrafilter, we may assume
that In+1 ⊊ In for every n. Let x ∈ AU and let (xn)n∈N be a sequence of AU such that
∥x− xn∥ < 1

n . Consider Un = {i ∈ I : ∥xi − xni ∥ < 1
n} for all n and note that Un ∈ U . Then

define I ′n = In ∩ Un ∈ U . Define y ∈ AU by yi = xmi if i ∈ I ′m \ I ′m+1 for some m, and yi = x0
in the other case, where x0 is a arbitrary element of A. One can check that x = y ∈ AU .

Now we need to show that (A)U = AU . Let (xi)U ∈ (A)U with xi ∈ A for all i ∈ I. By
Proposition 1.1.8, there exists (ai)i∈I ⊂ R such that limU ai = 0 and ai > 0 for all i ∈ I. For
i ∈ I, choose yi ∈ A such that ∥xi − yi∥ < ai. We deduce that limU ∥xi − yi∥ = 0, that is,
(xi)U = (yi)U ∈ AU . The other inclusion is obvious.

The following technical result which will be useful in order to deal with slices in an ultra-
product.

Lemma 1.2.6. Let A be a bounded subset of a Banach space X and U be a free ultrafilter on
an infinite set I. If (x∗i )U ∈ (X∗)U , then supAU

(x∗i )U = limU supA x
∗
i .

Proof. Let a = supAU
(x∗i )U and b = limU supA x

∗
i . Let ε > 0. By definition of a, there exists

(xi)U ∈ AU such that ⟨(x∗i )U , (xi)U ⟩ > a− ε. Then there exists J ∈ U such that x∗i (xi) > a− ε
for all i ∈ J . It follows that

sup
A
x∗i ≥ x∗i (xi) > a− ε,

for all i ∈ J and taking limit on U , we conclude that b ≥ a− ε.
Now, by definition of b, the set J := {i ∈ I : supA x

∗
i > b − ε} belongs to U . For all i ∈ J

there exists xi ∈ A such that x∗i (xi) > b − ε. Define yi = xi if i ∈ J and yi = x0 if not, where
x0 is an arbitrary element of A. It is clear that

⟨(x∗i )U , (yi)U ⟩ ≥ b− ε.

It follows that a ≥ b− ε.

The next proposition (see [156, Proposition 2.1]) shows that the ultraproduct of an ultra-
product is still an ultraproduct:

Proposition 1.2.7. Let U and V be two ultrafilters on sets I and V respectively and let X
be a Banach space. Then (XU )V = XU×V isometrically, via T : (XU )V → XU×V defined by
T (((xi,j)U,i)V,j) = (xi,j)U×V .

Note that the isometry given by the previous proposition preserved the ultraproducts of sets.
In fact, we have that T ((AU )V) = AU×V for all bounded sets A ⊂ X.

1.3 Finite representability

1.3.1 Finite representability of Banach spaces

Definition 1.3.1. We say that a Banach space X is finitely representable in a Banach space Y
(in short, X is f.r. in Y ) if for all finite-dimensional subspaces E of X and all ε > 0, there exist a
finite-dimensional subspace F of Y and an isomorphism T : E → F such that ∥T∥∥T−1∥ < 1+ε.
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The following fundamental result characterizes the finite representability in terms of ultra-
product (see Theorem 6.3 in [97]):

Theorem 1.3.2. Let X and Y be two Banach spaces. The following assertions are equivalent:

(i) X is f.r. in Y ;

(ii) there exists an ultrafilter U such that X is isometric to a subspace of YU .

In that case, if X is moreover separable then X is isometric to a subspace of YU for any CI
ultrafilter U .

It follows that a Banach space X is superreflexive if and only if any ultraproduct of X is
reflexive. In fact, we will see that it is enough to consider only one free ultrafilter on N (see
Theorem 1.5.6).

When X is separable, we can just check the finite representability on a particular increasing
sequence of finite-dimensional subspaces:

Proposition 1.3.3. Let X,Y be two Banach spaces and suppose that there exists an increasing
sequence of finite-dimensional subspaces (En)n of X such that X =

⋃∞
n=1En. The following

assertions are equivalent:

(i) X is f.r. in Y ;

(ii) for all n ∈ N and all ε > 0, there exist a finite-dimensional subspace Fn of Y and an
isomorphism T : En → Fn such that ∥T∥∥T−1∥ < 1 + ε.

The previous proposition is particularly interesting when X admits a Schauder basis (en)n.
In this case, it is enough to check the finite representability on the subspaces span{ek}1≤k≤n
for all n.

We now recall some particularly well-known theorems on finite representability. We start
with a consequence of the famous Dvoretzky’s Theorem:

Theorem 1.3.4. ℓ2 is f.r. in any infinite-dimensional Banach space.

The next result is a consequence of the Principle of local reflexivity:

Theorem 1.3.5. X∗∗ is f.r. in X for any Banach space X.

We end this subsection recalling that the type and the cotype can be characterized in terms
of finite representability. We refer the reader to [1] for more informations about type and cotype
and to Theorem 12.1.15 in [1] for the proof of the next result:

Theorem 1.3.6. Let X be a Banach space. Then

(a) X has non-trivial type if and only if ℓ1 is not f.r. in X;

(b) X has non-trivial cotype if and only if ℓ∞ is not f.r. in X.

1.3.2 Finite representability of sets

One definition of finite representability for sets has been introduced in [47], but we believe that
the next definition is more natural:
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Definition 1.3.7. Let X and Y be Banach spaces. We say that a set B ⊂ Y is finitely
represented in a set A ⊂ X (in short, B is f.r. in A) if for all ε > 0, for all finite linearly
independent sets B0 ⊂ B, there exist A0 ⊂ A and an isomorphism T : span(B0) → span(A0)
such that T (B0) ⊂ A and ∥T∥∥T−1∥ < 1 + ε.

Note that the previous definition generalizes the usual one for Banach spaces since a Banach
space X is f.r. in a Banach space Y if and only if BX is f.r. in BY .

The two following results are similar to Propositions 6.1 and 6.2 in [97] and the proofs require
minor adjustments.

Proposition 1.3.8. Let X be a Banach space and A ⊂ X. Then AU is f.r. in A for any free
ultrafilter U .
Proof. Let x1, ..., xn be a finite linearly independant subset of AU and let ε ∈ (0, 1). Let
M = span{x1, ..., xn}. Each xk can be write xk = (xki )U with xki ∈ A. For all i, let Mi =
span{x1i , ..., xni } and define an bounded operator Ti : M → Mi by Ti(x

k) = xki for all k.
Obviously, Ti is surjective and Ti(x

k) ∈ A for all k.
Note that it exists C ∈ R such that ∥Ti∥ ≤ C for all i. In fact, define on M an equivalent norm
by ∥x∥∞ = max1≤k≤n |λk| where x =

∑n
k=1 λkx

k. If α is such that ∥.∥∞ ≤ α∥.∥ then

∥Ti(x)∥ =

∥∥∥∥∥
n∑
k=1

λkx
k
i

∥∥∥∥∥ ≤ ∥x∥∞ max
1≤k≤n

∥xki ∥ ≤ α max
1≤k≤n

∥(xki )i∥l∞(I)∥x∥ ≤ C∥x∥

with C = αmax1≤k≤n ∥(xki )i∥l∞(I). It implies that if x =
∑n
k=1 λkx

k ∈ M then (Ti(x))i∈I and
we have

lim
U,i

∥(Tix)i∥ = lim
U,i

∥∥∥∥∥
(

n∑
k=1

λkx
k
i

)
i

∥∥∥∥∥ =

∥∥∥∥∥
n∑
k=1

λk(xki )U

∥∥∥∥∥ = ∥x∥.

Then, for all x ∈M , it exists Ix ∈ U such that (1 + ε
2 )−1∥x∥ ≤ ∥Tix∥ ≤ (1 + ε

2 )∥x∥.
Let δ > 0 and take a δ-net (yn)n∈J in SM where J is a finite set. Define I0 = ∩n∈JIyn ∈ U . Let
x ∈ SM and choose n0 ∈ J such that ∥x− yn0

∥ ≤ δ. For i ∈ I0, we have that:

∥Ti(x)∥ ≤ ∥Ti(x− yn0
)∥ + ∥Ti(yn0

)∥ ≤ Cδ + 1 +
ε

2

and

∥Ti(x)∥ ≥ ∥Ti(yn0)∥ − ∥Ti(x− yn0)∥ ≥
(

1 +
ε

2

)−1

− Cδ.

If we choose δ such that Cδ + 1 + ε
2 < 1 + ε and (1 + ε

2 )−1 − Cδ > (1 + ε)−1, we have that
1 − ε ≤ (1 + ε)−1 ≤ ∥Ti(x)∥ ≤ 1 + ε and the proof is complete.

Proposition 1.3.9. Let X and Y be Banach spaces. Suppose that B ⊂ Y is f.r. in A ⊂ X. If
B0 ⊂ B is a linearly independant set, then there exist a free ultrafilter U and a linear isometry
T : span(B0) → (span(A))U such that T (B0) ⊂ AU .

Proof. Define I = {(C, ε) : C ⊂ B0 finite and linearly independent set, ε > 0} with the order
(C1, ε1) ≤ (C2, ε1) if and only if C1 ⊂ C2 and ε1 ≥ ε2. Let U be an ultrafilter that contains
the filter basis {{i ∈ I : i0 < i} : i0 ∈ I}. For i = (Ci, εi) ∈ I, there exist Ai ⊂ A and
an operator Ti : span(Ci) → span(Ai) such that ∥Ti∥, ∥T−1

i ∥ ≤ 1 + εi and Ti(Ci) ⊂ A. Define
T : span(B0) → (span(A))U by T (x) = (yi)U where yi = Tix if x ∈ Ci and yi = 0 in the other
case. Let ε0 > 0 and let x ∈ span(B0). By definition of U , we have that Ix := {(C, ε) : x ∈
C, ε ≤ ε0} ∈ U . Then, for i ∈ Ix, one has that (1 + ε0)−1∥x∥ ≤ ∥yi∥ ≤ (1 + ε0)∥x∥ and then
(1 + ε0)−1∥x∥ ≤ ∥T (x)∥ = limU,i ∥yi∥ ≤ (1 + ε0)∥x∥. Since ε0 is arbitrary, we deduce that T is
an isometry. Furthemore, for i ∈ Ix, we have that yi = Tix ∈ A and, since Ix ∈ U , we deduce
that T (x) ∈ AU .
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We will need the following lemma:

Lemma 1.3.10. Let A ⊂ X be a subset of a Banach space X and let ε > 0. Then for any finite
linearly independent set x1, ..., xN in A, there exists a finite linearly independent set y1, ..., yN
in A such that ∥xk − yk∥ < ε for all 1 ≤ k ≤ N .

Proof. There exist sequences (ykn)n ⊂ A such that (ykn)n −→
n
xk for all 1 ≤ k ≤ N . Without

loss of generality, we can suppose that ∥ykn − xk∥ < ε for all n ∈ N and 1 ≤ k ≤ N . Since
span{xk}1≤k≤N is finite dimensional, it is complemented in X and then there exists a bounded
onto projection p : X → span{xk}1≤k≤N . By continuity of p, we have that p(ykn)n −→

n
p(xk) = xk

for all 1 ≤ k ≤ N . Now using the continuity of the determinant in span{xk}1≤k≤N , we deduce
that there exists n0 ∈ N such that the family p(y1n0

), ..., p(yNn0
) is linearly independent for all

n ≥ n0. The family y1n0
, ..., yNn0

is linearly independent and fulfills that ∥xk − ykn0
∥ < ε for all

1 ≤ k ≤ N .

The following result is an adaptation of Proposition 1.3.3 to the finite representability of
sets:

Proposition 1.3.11. Let A ⊂ X and B ⊂ Y be subsets of two Banach spaces X and Y .
Suppose that A can be written A =

⋃∞
n=1An where (An)n is an increasing sequence of sets such

that An is f.r. in B. Then A is f.r. in B. In particular, A is f.r. in B if and only if A is f.r.
in B.

Proof. Let e1, ..., eN be a finite linearly independent set in A and let ε > 0. Define E =
span{xk}1≤k≤N . Since E is finite dimensional, there exists C > 0 such that for all a1, ..., aN ∈ R

1

C
max

1≤k≤N
|ak| ≤

∥∥∥∥∥
N∑
k=1

akek

∥∥∥∥∥ ≤ C max
1≤k≤N

|ak|.

Choose ν > 0 such that (1 + ε) 1+CNν
1−CNν < 1 + 2ε. By the previous lemma, there exist a finite

linearly independant set x1, ..., xN ∈
⋃∞
n=1An such that ∥ek − xk∥ < ε for all 1 ≤ k ≤ N . Let

n ∈ N such that x1, ..., xn ∈ An. Since An is f.r. in B, there exist B0 ⊂ B and an isomorphism
T : span(A0) → span(B0) such that T (A0) ⊂ B and ∥T∥∥T−1∥ < 1+ε. Define a linear operator

S : E → span(B0) by S(ek) = T (xk) for all 1 ≤ k ≤ N . Take e =
∑N
k=1 akek ∈ E. Note that∥∥∥∥∥

N∑
k=1

akek −
N∑
k=1

akxk

∥∥∥∥∥ ≤ Nν max
1≤k≤N

|aj | ≤ CNν

∥∥∥∥∥
N∑
k=1

akek

∥∥∥∥∥ .
On one hand, we have that

∥S(e)∥ =

∥∥∥∥∥T
(

N∑
k=1

akxk

)∥∥∥∥∥ ≤ ∥T∥

∥∥∥∥∥
N∑
k=1

akek

∥∥∥∥∥
≤ ∥T∥

(∥∥∥∥∥
N∑
k=1

akek −
N∑
k=1

akxk

∥∥∥∥∥+

∥∥∥∥∥
N∑
k=1

akek

∥∥∥∥∥
)

≤ ∥T∥∥e∥(1 + CNν)
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and on the other hand

∥S(e)∥ =

∥∥∥∥∥T
(

N∑
k=1

akxk

)∥∥∥∥∥ ≥ 1

∥T−1∥

∥∥∥∥∥
N∑
k=1

akxk

∥∥∥∥∥
≥ 1

∥T−1∥

(∥∥∥∥∥
N∑
k=1

akek

∥∥∥∥∥−
∥∥∥∥∥
N∑
k=1

akek −
N∑
k=1

akxk

∥∥∥∥∥
)

≥ 1

∥T−1∥
∥e∥(1 − CNν).

We conclude that ∥S∥∥S−1∥ ≤ ∥T∥∥T−1∥ 1+CNν
1−CNν ≤ (1 + ε) 1+CNν

1−CNν < 1 + 2ε.

1.4 Spreading models

1.4.1 Definition and first properties

In this part, we recall the definition of spreading models initially introduced by Brunel and
Sucheston in [40]. We refer the reader to [19] for a great presentation of spreading models.
Almost all the results presented in this section can be found in [19].

If A is a set and n ∈ N, we define A(n) = {B ⊂ A : Card(B) = n}. The construction of
spreading models is based on Ramsey’s Theorem (see Proposition 6.4 in [67]).

Theorem 1.4.1. Let n ∈ N∗ and let (Si)1≤i≤k be a finite partition of N(n). Then there exist
i ∈ {1, ..., k} and an infinite set M ⊂ N such that M (n) ⊂ Si.

Definition 1.4.2. Let X be a Banach space and let (xn)n∈N be a sequence in X. We said that
(xn)n∈N is a good sequence if the limit

lim
n1→∞

∥a1xn1
+ ...+ a1xnk

∥

exists whenever n1 < ... < nk, k ∈ N and a1, ..., ak ∈ R. Using Theorem 1.4.1, one can prove
that every bounded sequence has a good subsequence. If (xn)n∈N is a good sequence, the formula
∥(a1, ..., ak)∥ = limn1→∞ ∥a1xn1

+ ...+ akxnk
∥, with n1 < ... < nk, defines a semi-norm on c00.

It is easily seen that it defines a norm if and only if (xn)n∈N is not convergent. In this case, the
completion Z of c00 with this new norm is called spreading model of X built on (xn)n∈N. We
say that (en)n∈N (where (en)n∈N is the canonical basis of c00) is the fundamental sequence of
the spreading model.

Any spreading model of X is finitely representable in X. More precisely, one has that:

Proposition 1.4.3. Let Z be a spreading model built on a sequence (xn)n∈N of X. Then

∀ε > 0 ∀N ≥ 1 ∃p ∈ N ∀n1 < ... < nN with n1 ≥ p ∀a1, ..., aN ∈ R

(1 − ε)

∥∥∥∥∥
N∑
i=1

aixni

∥∥∥∥∥ ≤

∥∥∥∥∥
N∑
i=1

aiei

∥∥∥∥∥ ≤ (1 + ε)

∥∥∥∥∥
N∑
i=1

aixni

∥∥∥∥∥ .
Note that the finite representability of Z into X follows then from Proposition 1.3.3.
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Definition 1.4.4. A non-constant sequence (en)n∈N of a Banach space X is said to be spreading
if ∥∥∥∥∥

n∑
i=1

aiei

∥∥∥∥∥ =

∥∥∥∥∥
n∑
i=1

aieni

∥∥∥∥∥
for all k ∈ N, all a1, ..., ak ∈ R and all n1 < ... < nk.

By construction of the norm of a spreading model, its fundamental sequence is spreading.

The following proposition characterized the spreading sequences which are basic (see Propo-
sition 2 p.17 in [19]):

Proposition 1.4.5. Let (en)n∈N be a spreading sequence in a Banach space X. The following
assertions are equivalent:

(i) (en)n∈N is basic;

(ii) (en)n∈N does not weakly converge to a non-zero vector.

The behaviour of the fundamental sequence is strongly linked with the behaviour of the
sequence on which is built the spreading model. For example, we have (see Theorem 3 p.25 in
[19]):

Proposition 1.4.6. Let X be a Banach space and let Z be a spreading model built on (xn)n∈N ⊂
X with fundamental sequence (en)n. Suppose that (en)n∈N is not equivalent to the canonical basis
of ℓ1. The following assertions are equivalent:

(i) (xn)n∈N is weakly convergent;

(ii) (en)n∈N is weakly convergent.

We end this section with the following result:

Proposition 1.4.7. Let Z be a spreading model of a Banach space X built on (xn)n with
spreading sequence (en)n. Then conv{en}n is f.r. in conv{xn}n.

Proof. By the Proposition 1.3.11, it is enough to prove that conv{e1, ..., ep} is f.r. in {xn}n for
all p ≥ 1. But that follows directly from Proposition 1.4.3.

1.4.2 Relations with Banach-Saks properties

Definition 1.4.8. A sequence (xn)n is said to be Cesàro convergent if the sequence of its
arithmetic means

n−1
n∑
k=1

xk

converges to some x ∈ X.

Definition 1.4.9. Let A be a subset of a Banach space X. We say that A has:

(a) the Banach-Saks property (in short, BS) if every sequence (xn)n ⊂ A has a Cesàro con-
vergent subsequence;

(b) the weak Banach-Saks property (in short, WBS) if every weakly convergent sequence
(xn)n ⊂ A has a Cesàro convergent subsequence;
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(c) the alternate Banach-Saks property (in short, ABS) if every sequence (xn)n ⊂ A has a
subsequence (x′n)n such that n−1

∑n
k=1 x

′
k converges.

If BX has the BS (resp. WBS, ABS), we say that X has the BS (resp. WBS, ABS).

Spreading sequences have a particular behavior (see Proposition 4 p.21 in [19]):

Proposition 1.4.10. Let (en)n∈N be a spreading sequence in a Banach space X. The following
assertions are equivalent:

(i) 0 ∈ conv{en}n;

(ii) (en)n is Cesàro convergent;

(iii) (en)n weakly converges to 0;

(iv) (en)n is basic unconditional and is not equivalent to the canonical basis of ℓ1.

The following lemma characterizes the spreading models which are isomorphic to ℓ1 (see
Lemma 1 p.39 in [19]):

Lemma 1.4.11. Let Z be a spreading model with fundamental sequence (en)n. The following
assertions are equivalent:

(i) Z is isomorphic to ℓ1;

(ii) (en)n is equivalent to the canonical basis of ℓ1.

The following result characterizes the ABS and is due to Beauzamy (see Theoreme 5 p.47 in
[19]):

Theorem 1.4.12. Let A be a bounded subset of a Banach space X. The following assertions
are equivalent:

(i) A has the ABS property;

(ii) A does not contain any spreading sequence whose spreading model is isomorphic to l1.

The WBS is characterized in the same spirit (see Theorem 5 p.49 in [19]):

Theorem 1.4.13. Let A be a bounded subset of a Banach space X. The following assertions
are equivalent:

(i) A has the WBS property;

(ii) A does not contain any weakly null spreading sequence whose spreading model is isomorphic
to l1.

It follows directly from the previous theorems that the ABS imply the WBS. Moreover, if A
does not contain any sequence equivalent to the canonical basis of ℓ1, then the converse is true
(see Proposition 2 p.50 in [19]). The following result gives the link between the BS and the ABS
(see Proposition 1 p.50 in [19]):

Proposition 1.4.14. Let A be a bounded subset of a Banach space X. If A has the BS, then
A has the ABS. Moreover, if A is relatively weakly compact, then the converse is true.

The previous results give the following characterization of the BS:

Theorem 1.4.15. Let A be a bounded subset of a Banach space X. The following assertions
are equivalent:
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(i) A has the BS;

(ii) A is relatively weakly compact and does not contain any spreading sequence whose spreading
model is isomorphic to l1.

Proof. Using the previous results, the only thing to show is that a bounded set with the BS is
relatively weakly compact. So, let A such a set. Let (xn)n∈N ⊂ A. Since the canonical basis of
l1 does not have any Cesaro convergent subsequence, the l1-Rosenthal’s Theorem (see Theorem
5.37 in [67]) implies that (xn)n∈N has a weakly Cauchy subsequence (x′n)n∈N. Furthemore,
(x′n)n∈N admits a subsequence (x′′n)n∈N such that

(
1
n

∑n
i=1 x

′′
i

)
n

converges to some x ∈ X. It is

easily seen that x′′n
w−→ x and the proof is complete.

1.5 Super weak compactness

1.5.1 Definitions and first properties

In this section, a localized notion of superreflexivity is introduced. We will see that most of
the characterizations of superreflexivity transpose without major problems. The notion of super
weakly compact set has been introduced in [146] under the name finitely dentable set. We will
see that both notions are equivalent (see Corollary 2.4.12). The name super weakly compact is
used for the first time in [48].

Definition 1.5.1. Let X be a Banach space and let A ⊂ X be a bounded set. We say that A
is relatively super weakly compact if AU is relatively weakly compact for all free ultrafilters U .
If furthemore A is weakly closed, we say that A is super weakly compact (in short, SWC).

It is clear that any bounded subset of a superreflexive Banach space is relatively SWC.
Through this document, we will see many other examples. We start this subsection with the
following stability result proved by Tu in [163], which is a super-version of the Krein-Smulian
Theorem:

Theorem 1.5.2. Let K be a relatively SWC subset of a Banach space X and let U be an
ultrafilter. Then

(conv(K))U = conv(KU ).

In particular, conv(K) is SWC.

As the superreflexivity, super weak compactness can be characterized in terms of finite
representability of sets:

Theorem 1.5.3. Let X be a Banach space and let K ⊂ X be a bounded weakly closed set. The
following assertions are equivalent:

(i) K is SWC

(ii) Every set f.r. in K is relatively weakly compact.

Proof. By Proposition 1.3.8, (ii) =⇒ (i) is direct. Now, suppose by contradiction that there
exists a set A f.r. in K which is not relatively weakly compact. Then A contains a sequence
(xn)n∈N without any weakly convergent subsequence. By Zorn’s lemma, consider a maximal
linearly independant subset C of {xn}n∈N. Suppose that C is finite. By maximality, we have
that xn ∈ span(C) for all n ∈ N, which is a subspace of finite dimension. Then (xn)n has
a convergent subsequence since it is a bounded sequence, which is a contradiction. So C is
infinite and can be seen as a subsequence (x′n)n of (xn)n. By Proposition 1.3.9, there exist a
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free ultrafilter U and an isometry T : span(B0) → (span(A))U such that T (B0) ⊂ AU . That
contradicts the fact that AU is relatively weakly compact since (T (x′n))n∈N does not admit any
weakly convergent subsequence.

We recall the following two theorems of James (see [105]) which caracterize the weak com-
pactness:

Theorem 1.5.4. Let C be a subset of a Banach space X. The following assertions are equiva-
lent:

(i) C is not relatively weakly compact;

(ii) there exist θ > 0 and a sequence (xn)n∈N ⊂ K such that d(conv{xj}j≤k, conv{xj}j>k) ≥ θ
for all k ∈ N.

Theorem 1.5.5. Let C be a closed convex subset of a Banach space X. The following assertions
are equivalent:

(i) C is not weakly compact;

(ii) there exist θ > 0, a sequence (xn)n∈N ⊂ K and a sequence (x∗n)n∈N ⊂ BX∗ such that
x∗n(xk) = 0 if n > k and x∗n(xk) = θ if n ≤ k.

Many characterizations of superreflexive Banach spaces are also true for SWC sets. For
example, the ”finite” version of James’ theorems characterizes the super weak compactness:

Theorem 1.5.6. Let X be a Banach space and let K ⊂ X be a bounded set. The following
assertions are equivalent:

(i) K is not relatively SWC;

(ii) there exists an free ultrafilter U on N such that KU is not relatively weakly compact;

(iii) for all free ultrafilters U on N, KU is not relatively weakly compact;

(iv) ∃θ > 0 ∀n ≥ 1 ∃x1, ..., xn ∈ K such that ∀k ∈ {1, ..., n−1} d(conv{xj}j≤k, conv{xj}j>k) ≥
θ.

Proof. (iii) =⇒ (ii) =⇒ (i) is trivial. Suppose that (iv) holds. For all n ≥ 1, let
xn,1, ..., xn,n such that (iv) holds. Let U be a free ultrafilter on N. For n ≥ 1, define xn ∈ KU
by xn = (0, ..., 0, xn,n, xn+1,n, ...)U (with n zeros at the beginning). It is easy to see that
d(conv{xj}j≤k, conv{xj}j>k) ≥ θ for all k ≥ 1. By Theorem 1.5.4, KU can not be relatively
weakly compact, i.e. (iii) holds.
Now suppose that K is not relatively SWC. By Theorem 1.5.3, there exists a set A f.r. in K such
that A is not relatively weakly compact. By James’ theorem, there exist θ > 0 and (xn)n≥1 ⊂ A
such that d(conv{xj}j≤k, conv{xj}j>k) ≥ θ for all k ≥ 1. Since K is bounded and by taking
a subsequence if necessary, we can and do suppose that {xn}n∈N is linearly independant. Let
n ≥ 1. If Mn = span{x1, ....xn}, there exists Kn ⊂ K and T : Mn → span(Kn) such that
T (xi) ∈ K for all i ∈ {1, ..., n} and 1

2∥x∥ ≤ ∥T (x)∥ ≤ ∥x∥ for all x ∈ Mn. The finite sequence

(yi = T (xi))1≤i≤n fulfils (iv) with θ
2 .

Note that the previous theorem together with Proposition 1.2.5 imply that a bounded set K
is relatively SWC if and only if K

w
is SWC.

Lemma 1.5.7. Let C be a convex subset of a Banach space X. If T : C → C is an affine
continuous mapping then T is weakly continuous.
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Proof. Let (xa)a∈A be a net in C that weakly converges to some x ∈ C. Suppose that (T (xa))a∈A
does not weakly converge to T (x). Then there exists a weak open neighborhood V of T (x) and
a subnet (xb)b∈B of (xa)a∈A such that T (xb) /∈ V for all b ∈ B. We can write V =

⋂p
i=1 Ui with

Ui = {y ∈ X | x∗i (y − T (x)) < ε}. So, by taking another subnet if necessary, we can suppose
that there exists i0 ∈ {1, ..., p} such that xb /∈ Ui0 for all b ∈ B. Since (xb)b∈B weakly converges
to x, we have that x ∈ conv{xb}b∈B and then there exists a sequence (yn)n∈N ⊂ conv{xb}b∈B
such that yn → x. By continuity of T , we have that T (yn) → T (x). However using that T is
affine, the convexity of U ci and the fact that T (xb) /∈ Ui0 for all b ∈ B, it is easy to see that
T (yn) /∈ Ui0 for all n ∈ N. This is a contradiction and the proof is complete.

Corollary 1.5.8. Suppose that X and Y are Banach spaces and let K ⊂ X be a (relatively)
convex SWC set. Let T : K → Y be a uniformly continuous affine function. Then T (K) is
(relatively) SWC.

Proof. Fix θ > 0 and take ε > 0 such that for all x, y ∈ K, if ∥x−y∥ < ε then ∥T (x)−T (y)∥ < θ.
Let n ∈ N and let y1, ..., yn ∈ T (K) and let xi ∈ K such that T (xi) = yi for all i ∈ {1, ..., n}.
By Theorem 1.5.6, there exists k ∈ {1, ..., n − 1} such that d(conv{xj}j≤k, conv{xj}j>k) < ε.

So, there exists a1, ..., ak, bk+1, ..., bn ≥ 0 such that
∑k
j=1 aj = 1,

∑n
j=k+1 bj = 1 and∥∥∥∥∥∥

k∑
j=1

ajxj −
n∑

j=k+1

bjxj

∥∥∥∥∥∥ < ε.

It follows that∥∥∥∥∥∥
k∑
j=1

ajyj −
n∑

j=k+1

bjyj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
k∑
j=1

ajT (xj) −
n∑

j=k+1

bjT (xj)

∥∥∥∥∥∥ =

∥∥∥∥∥∥T
 k∑
j=1

ajxj

− T

 n∑
j=k+1

bjxj

∥∥∥∥∥∥ < θ.

By the previous lemma, T (K) is (relatively) weakly compact and therefore bounded. The
conclusion follows by Theorem 1.5.6.

Theorem 1.5.9. Let X be a Banach space and let K ⊂ X be a bounded closed convex set. The
following assertions are equivalent:

(i) K is not SWC

(ii) ∃θ > 0 ∀n ≥ 1 ∃x1, ..., xn ∈ K ∃x∗1, ..., x∗n ∈ BX∗ such that x∗i (xj) = θ if i ≤ j and
x∗i (xj) = 0 if i > j.

Proof. It is easy to see that (ii) implies (iv) of Theorem 1.5.6, so (ii) =⇒ (i) holds. Suppose
that (i) is true and let U be an ultrafilter such that KU is not weakly compact. By Theorem
1.5.5, there exist θ > 0, (fn)n≥1 ⊂ B(XU )∗ and (xn)n≥1 ⊂ KU such that fi(x

j) = θ if i ≤ j
and fi(x

j) = 0 if i > j. Let n ≥ 1. Since {x1, ..., xn} is linearly independent and KU is f.r.
in K, there exist Kn ⊂ K and an isomorphism T : span{x1, ..., xn} → span(Kn) such that
yi := T (xi) ∈ K for all i ∈ {1, ..., n} and 1

2∥x∥ ≤ ∥T (x)∥ ≤ ∥x∥ for all x ∈ span{x1, ..., xn}. Let
y∗j be a Hahn-Banach extension of fj ◦ T−1. Then ∥yj∥ ≤ ∥fj∥∥T−1∥ ≤ 2 and we have that

y∗i (xj) = θ if i ≤ j and y∗i (xj) = 0 if i > j. Then (ii) holds with x∗i = 1
2y

∗
i and θ′ = θ

2 .

Definition 1.5.10. A dyadic tree of height n ∈ N ∪ {∞} is a set of the form {xs : |s| ≤ n},
indexed by finite sequences s ∈

⋃n
k=0{0, 1}k of length |s| ≤ n, such that xs = 2−1(xs⌢0 +xs⌢1)

for every |s| < n, where {0, 1}0 := {∅} indexes the root x∅ and the symbol “⌢” stands for
concatenation. We say that a dyadic tree {xs : |s| ≤ n} is ε-separated if ∥xs⌢0 − xs⌢1∥ ≥ ε for
every |s| < n. A ε-separated tree is strongly separated if the points of the tree are at a distance
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greater than ε/2 from each other. Bushes are defined in a very similar way, however the index
set is

⋃n
k=0 Nk and xs =

∑
k λs⌢kxs⌢k where λs⌢k ≥ 0, λs⌢k = 0 except for finitely many k’s

and
∑
k λs⌢k = 1. We say that a bush {xs : |s| ≤ n} is ε-separated if ∥xs⌢k − xs∥ ≥ ε for all k

such that λs⌢k > 0.

Definition 1.5.11. A subset of Banach space has the finite tree property (resp. strong finite
tree property) if there exists ε > 0 such that it contains a ε-separated tree (resp. a ε-strongly
separated tree) of height n for all n ∈ N.

Theorem 1.5.12. Let K be a bounded closed convex subset of a Banach space X. The following
assertions are equivalent:

(i) K is SWC;

(ii) K does not have the finite tree property;

(iii) K does not have the strong finite tree property.

Proof. (ii) =⇒ (iii) is obvious.
(iii) =⇒ (i) Suppose that K is not SWC. Then there exists an ultrafilter such that KU

is not weakly compact. By Theorem 1.5.5, there exist θ > 0, a sequence (yn)n∈N ⊂ K and a
sequence (y∗n)n∈N such that y∗n(yk) = 0 if n > k and y∗n(yk) = θ if n ≤ k. Note that for all k < p
and all real numbers αi, one has that∥∥∥∥∥

k∑
i=1

αiyi −
p∑

i=k+1

yi

∥∥∥∥∥ ≥ y∗k+1

(
k∑
i=1

αiyi −
p∑

i=k+1

yi

)
≥ θ(p− k). (1.1)

Let n ∈ N. Define a finite sequence (zi)0≤i≤2n+1−2 ⊂ K by

z0 =
1

2n

2n∑
i=1

yi

z1 =
1

2n−1

2n−1∑
i=1

yi, z2 =
1

2n−1

2n∑
i=2n−1+1

yi

z3 =
1

2n−2

2n−2∑
i=1

yi, z4 =
1

2n−2

2n−1∑
i=2n−2+1

yi, z5 =
1

2n−2

3.2n−1∑
i=2n−1+1

yi, z6 =
1

2n−2

2n∑
i=3.2n−1+1

xi

and so on until z2n+1−2. Using (1.1), it is easily seen that (zi)0≤i≤2n+1−2 ⊂ K is a strong
(n, θ)-tree. Using the finite-representability of KU in K (note that (zi)0≤i≤2n+1−2 is linearly
independant since (yn)n∈N is), we deduce that K contains a strong (n, θ2 )-tree for all n ∈ N.

(i) =⇒ (ii) Now suppose that K has the finite tree property. Let {xns : |s| ≤ n} be a
ε-separated tree of height n in K for a suitable ε. For all n, define a semi-norm in c00 by

∥(ai)i∥n =
∥∥∥∑|s|≤n aix

n
s

∥∥∥. A diagonal procedure based on a separability argument permits to

find a strictly increasing sequence (nk)k such that ∥(ai)∥ := limk ∥(ai)i∥nk
is well-defined for all

(ai)i ∈ c00. Suppose that c00 is endowed this semi-norm. Let Y the completion of c00/N where
N = {a ∈ c00 : ∥a∥ = 0}. Let U be a free ultrafilter on N. Define T : Y → XU by

T ((ai)i +N) =

 ∑
|s|≤nk

aix
nk
s


U,k

.



1.5. SUPER WEAK COMPACTNESS 19

Let (ei)i is the canonical basis of c00. It is easy to see that T is an isometry and that (T (ei +
N))i∈N is a infinite ε-separated tree, called T , in KU . Suppose that K is SWC, then KU is
weakly compact and C := co(T ) also is. By Theorem 8.13 in [67], C has a strongly exposed
point x. Let f be a functional that strongly exposes x. Let δ > 0 such that ∥z − x∥ < ε

8 if
f(z) > f(x) − δ with z ∈ T . Since f(x) = supT f , there exist t ∈ T such that f(t) > f(x) − δ.
Let t1, t2 ∈ T such that t = 1

2 (t1 + t2). Suppose without loss of generality that f(t1) > f(x)− δ.
It follows that ∥t− x∥ < ε

8 and ∥t1 − x∥ < ε
8 . So ∥t1 − t∥ < ε

4 , which contradicts the fact that
∥t− t1∥ = 1

2∥t1 − t2∥ ≥ ε
2 . Then K is not SWC.

If (xn)n is a basic sequence (eventually a finite sequence), bc(xn)n denotes its basic constant:

Theorem 1.5.13. Let K be a weakly closed bounded subset of a Banach space X such that
0 /∈ K. The following propositions are equivalent:

(i) K is not SWC;

(ii) for all n ∈ N, there exists xn1 , ..., x
n
n ∈ K linearly independant such that

sup
n∈N

bc(xni )1≤i≤n < +∞.

Proof. (i) =⇒ (ii) Suppose that K is not SWC. There exist a Banach space Y and a closed
subset A ⊂ Y which is finitely representable in K. We can suppose that 0 /∈ A. In fact, if A
is an isolated point of A, just consider A′ = A \ {0}. Otherwise, there exists (yn)n ⊂ A such
that yn → 0 and yn ̸= 0. For all n ∈ N, by the definition of finite representability, there exist
xn ∈ K and Tn : span{yn} → span{xn} such that T (yn) = xn and ∥Tn∥ ≤ 1. It follows that
∥xn∥ ≤ ∥yn∥ → 0 and then 0 ∈ K, which is a contradiction. By Theorem 1.5.6 in [1], A contains
a basic sequence (yn)n. Let b = bc(yn)n. Let n ≥ 1. Since {y1, ..., yn} is a finite linearly
independent set, the definition of finite representability implies that there exist xn1 , ..., x

n
n ∈ K

and an isomorphism T : span{y1, ..., yn} → span{xn1 , ..., xnn} such that T (yi) = xni and for all
y ∈ span{y1, ..., yn}

1

2
∥y∥ ≤ ∥T (y)∥ ≤ 3

2
∥y∥.

If a1, ...an ∈ R and p ≤ n, it follows that∥∥∥∥∥
p∑
i=1

aix
n
i

∥∥∥∥∥ =

∥∥∥∥∥
p∑
i=1

aiT (yi)

∥∥∥∥∥ ≤ 3

2

∥∥∥∥∥
p∑
i=1

aiyi

∥∥∥∥∥ ≤ 3b

2

∥∥∥∥∥
n∑
i=1

aiyi

∥∥∥∥∥ ≤ 3b

2

∥∥∥∥∥
n∑
i=1

aiT
−1(xni )

∥∥∥∥∥ ≤ 3b

∥∥∥∥∥
n∑
i=1

aix
n
i

∥∥∥∥∥
and this part is complete.

(ii) =⇒ (i) Suppose that (ii) holds. If K is not weakly compact then (i) holds so we
can suppose obviously that K is weakly compact. For all n, define a semi-norm in c00 by
∥(ai)i∥n = ∥

∑n
i=1 aix

n
i ∥. As in the previous proof, let (nk)k be a strictly increasing sequence

such that ∥(ai)∥ := limk ∥(ai)i∥nk
is well-defined for all (ai)i ∈ c00. Let Y the completion of

c00/N (c00 with this new semi-norm) where N = {a ∈ c00 : ∥a∥ = 0}. Let U be a free ultrafilter
on N. Define as before the isometry T : Y → XU by

T ((ai)i +N) =

(
nk∑
i=1

aix
nk
i

)
U,k

.

Let show that (T (ei + N))i∈N is a basic sequence. For simplicity, we write ẽi = T (ei + N) =
(xnk
i )U . Let A = supn∈N bc(xni )1≤i≤n < +∞. Take 1 ≤ p ≤ q and a1, ..., aq ∈ R. We have that∥∥∥∥∥
p∑
i=1

aiẽi

∥∥∥∥∥ =

∥∥∥∥∥
p∑
i=1

ai(x
nk
i )U

∥∥∥∥∥ ≤ lim
U

∥∥∥∥∥
p∑
i=1

aix
nk
i

∥∥∥∥∥ ≤ A

∥∥∥∥∥
q∑
i=1

aix
nk
i

∥∥∥∥∥ = A

∥∥∥∥∥
q∑
i=1

ai(x
nk
i )U

∥∥∥∥∥ = A

∥∥∥∥∥
q∑
i=1

aiẽi

∥∥∥∥∥ ,
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i.e. (T (ei+N))i∈N is a basic sequence in KU . By Theorem 1.5.6 in [1] again, it implies that KU

is not relatively weakly compact or 0 ∈ KU
w

. To conclude that K is not SWC, let show that
0 can not be in KU

w
. In fact, suppose that there exist a net ((xλi )U )λ in KU which converges

weakly to 0. By weak compactness, xλ = limU (xλi ) exists and belongs to K. It follows that for
every x∗ ∈ X∗, one has that

lim
U,i

x∗(xλi ) = x∗
(

lim
U,i

xλi

)
= x∗(xλ) → 0.

That means that (xλ)λ weakly converges to 0, which is a contradiction since 0 /∈ K.

Definition 1.5.14. Let A be a bounded subset of a Banach space X. We say A has the super-
Banach-Saks (in short, super-BS) if AU has the BS for all free ultrafilters U . We also say that
X has the super-BS if BX has the super-BS.

Note that the same arguments used in the proof of theorem 1.5.3 show that A has the super-
BS property if and only if every set f.r. in A has the BS property.

The BS and the SWC are closely related notions. In fact, we have the following result (see
[122, Corollary 2.4]):

Theorem 1.5.15. Let K be a bounded subset of a Banach space X. The following assertions
are equivalent:

(i) K is relatively SWC;

(ii) K has the super-BS.

Proof. (ii) =⇒ (i) Let A be a set f.r. in K. The set A is bounded with the BS. Then A is
relatively weakly compact by Theorem 1.4.15. By Theorem 1.5.3, K is relatively SWC.

(i) =⇒ (ii) Suppose that K is relatively SWC and let A be a set f.r. in K. Suppose
that A does not have the BS. Since A is relatively weakly compact, Theorem 1.4.15 implies
that A contain a spreading sequence (xn)n∈N whose spreading model Z is isomorphic to l1. Its
fundamental sequence (en)n∈N is equivalent to the canonical basis of l1 (by Lemma 1.4.11) and
then is not relatively weakly compact. By Proposition 1.4.3, {en}n∈N is f.r. in {xn}n∈N and
then in K, which is a contradiction since K is relatively SWC.

1.5.2 Super weakly compact operators

Beauzamy [16] introduced an operator version of superreflexivity under the name of uniformly
convexifying property (of an operator), but it was later renamed. The equivalence between these
two notions will be quantified in Theorem 3.2.9.

Definition 1.5.16. A bounded operator T : X → Y between two Banach spaces is said to
be super weakly compact (in short, SWC) if for all free ultrafilters U on a set I, the operator
TU : XU → YU defined by TU ((xi)U ) = (T (xi))U is weakly compact.

The following easy proposition is left to the reader:

Proposition 1.5.17. Let T : X → Y be a bounded operator between two Banach spaces. The
following assertions are equivalent:

(i) T is SWC;

(ii) T (BX) is relatively SWC;
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(iii) there exists a free ultrafilter on N such that TU is weakly compact.

Now let us prove that the set of super weakly compact operators is an operator ideal denoted
by Wsuper. We start recalling the following lemma due to Grothendiek (see [67], Lemma 13.32):

Lemma 1.5.18. Let X be a Banach space and let A ⊂ X. If for all ε > 0, there exists a weakly
compact set Aε ⊂ X such that A ⊂ Aε + εBX then A is relatively weakly compact.

The previous lemma leads easily to the following characterization of super weak compactness:

Proposition 1.5.19. Let K be a subset of a Banach space X. The following assertions are
equivalent:

(i) K is relatively SWC;

(ii) for all ε > 0, there exists a relatively SWC set Kε ⊂ X such that K ⊂ Kε + εBX .

Proposition 1.5.20. The space of SWC operators between two Banach spaces X and Y is a
closed subspace of B(X,Y ), the space of bounded operators between X and Y .

Proof. Suppose that (Tn)n∈N is a sequence of SWC operators such that Tn → T in B(X,Y ).
Let ε > 0. There exists n0 ∈ N such that ∥Tn0

− T∥ < ε. In particular, we have that
T (BX) ⊂ Tn0

(BX) + εBY where Tn0
(BX) is relatively SWC. By Proposition 1.5.19, we deduce

that T (BX) is relatively SWC, i.e. T is SWC.

Corollary 1.5.8 leads to the following result:

Proposition 1.5.21. Let X, Y and Z three Banach spaces. Let T : X → Y and R : Y → Z
two bounded operators. Then RT is SWC whenever R or T is SWC.

Notably, Wsuper is a symmetric ideal, that is:

Proposition 1.5.22. Let T : X → Y be a bounded operator between two Banach spaces. The
following assertions are equivalent:

(i) T is SWC;

(ii) T ∗ is SWC.

We do not provide the proof of the previous result since it will be quantified and thus gen-
eralized in Theorem 3.2.2.

We refer the reader to [16, 17, 96] and Chapter 11 in [109] for more properties of Wsuper and
its relation with other operator ideals. See also [172] for characterizations in terms of martingale
type and cotype, and [44] for a nonlinear characterization.

1.5.3 Super weakly compactly generated spaces

The definitions and results presented in this section can be found in [147].

Definition 1.5.23. A Banach space X is said to be super weakly compactly generated (in short,
SWCG) if there exists a SWC set K ⊂ X such that X = span(K).

In this case, note that K can be taken to be convex and symmetric by Theorem 1.5.2.
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Proposition 1.5.24. Let X be a SWCG Banach space and let K be a SWC set such that
X = span(K). Then there exist a reflexive Banach space Y and an one-to-one SWC operator
T : Y → X such that K ⊂ T (BY ).

Proof. Without loss of generality, we can suppose that K is symetric and convex. For n ∈ N,
define Un = 2nK + 1

2nBX and let ∥.∥n its Minkovski funcional and note that it is an equivalent

norm on X. For x ∈ X, define |x| =
(∑

n∈N ∥x∥2n
) 1

2 . Let Y = {x ∈ X : |x| < ∞}. With
the norm |.|, it is easily seen that Y is a Banach space. Define T : Y → X by T (y) = y. The
operator T is one-to-one and bounded and verifies that K ⊂ T (BY ). Let C = B(Y,|.|). Since

C ⊂ 2nK + 1
2nBX for all n ∈ N, it follows that C is SWC by Proposition 1.5.19. The fact

that Y is reflexive is classic and has been proved by Davis, Figiel, Johnson and Pe lczyinski (see
Theorem 13.22 of [67]).

As a consequence, we obtain the two following corollaries:

Corollary 1.5.25. Let X be a Banach space. The following assertions are equivalent:

(i) X is SWCG;

(ii) there exist a reflexive Banach space Y and a (one-to-one) SWC operator T : Y → X such
that T (Y ) = X.

Corollary 1.5.26. Let K be a closed bounded subset of a Banach space X. The following
assertions are equivalent:

(i) K is SWC;

(ii) there exist a reflexive Banach space Y and a (one-to-one) SWC operator T : Y → X such
that K ⊂ T (BY ).

Remark 1.5.27. In [147], Raja gave an example of a SWCG space X such that the space Y
in the previous corollaries can not be chosen to be superreflexive.

Definition 1.5.28. The norm of the Banach space (X, ∥ · ∥) is said to be uniformly Gâteaux
(UG) smooth if for every h ∈ X

sup{∥x+ th∥ + ∥x− th∥ − 2 : x ∈ SX} = o(t) when t→ 0.

Given a bounded set H ⊂ X, the norm is said to be H-UG smooth if

sup{∥x+ th∥ + ∥x− th∥ − 2 : x ∈ SX , h ∈ H} = o(t) when t→ 0.

The norm is uniformly Fréchet (UF) smooth if it is BX -UG smooth. Finally, the norm is said
to be strongly UG smooth if it is H-UG smooth for some bounded and linearly dense subset
H ⊂ X.

In [147], the author characterized the SWCG spaces in terms of renorming:

Theorem 1.5.29. Let X be a Banach space. The following assertions are equivalent:

(i) X is SWCG;

(ii) X admits an equivalent strongly UG smooth norm.

Definition 1.5.30. A Banach space X is said to be strongly super weakly compactly generated
(in short, S 2WCG) if there is a SWC set K ⊂ X that strongly generates X, i.e. for any weakly
compact set H ⊂ X and ε > 0 there is n ∈ N such that H ⊂ nK + εBX .
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In this case, we can suppose again that K is also convex and symmetric.

Note that if X is S 2WCG then any weakly compact subset of X is SWC by Proposition
1.5.19. A fundamental example of a S 2WCG space is L1(Ω,A, µ,X) where (Ω,A, µ) is a finite
measure space and X is a superreflexive Banach space (see [147] for the proof).

We just recall the following well-known definition:

Definition 1.5.31. Let (X, ∥ · ∥) be a Banach space. The modulus of convexity of the norm is
the function δX : [0, 2] → R defined by

δX(ε) = inf

{
1 −

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ BX ∥x− y∥ ≥ ε

}
.

We say that the norm is uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2].

The following result is Theorem 3.2 in [147]. It will be used repeatedly in section 4.2 since
it has a strong connexion with normal structure and fixed point properties.

Theorem 1.5.32. Let K be a SWC absolutely convex subset of a Banach space X. Then X
admits an equivalent norm |.| such that the restriction of |.|2 to any convex set strongly generated
by K is uniformly convex.

As a consequence, we obtain the following result (see Theorem 1.9 in [147]):

Corollary 1.5.33. Let X be a S2WCG Banach space. Then there is an equivalent norm on
X such that its restriction to any reflexive subspace is uniformly convex. In particular, any
reflexive subspace of X is superreflexive.

Using a procedure called Asplund averaging (see [57] p.52), the previous norm can be chosen
such that its restriction to any reflexive subspace is also UF smooth.





Chapter 2

Uniformly convex functions

In this chapter, we are dealing with real functions defined on X. If there is not specific hypothesis
on the domain, we will follow the convention typical from Convex Analysis [28, 175] that a
function f is defined everywhere and takes values in R = R ∪ {−∞,+∞}. A function f is said
to be proper if f > −∞ and dom(f) := {x ∈ X : f(x) < +∞} ≠ ∅. In the following, all the
functions are supposed to be proper. However some operations performed on proper functions
could lead to non-proper functions. The class of lower semicontinuous convex proper functions
on X will be denoted Γ(X).

2.1 Definitions and first properties

We start with the definition of ε-uniformly convex. For technical purposes, we need to introduce
a slightly more general definition than Definition 0.0.11:

Definition 2.1.1. Let (X, ∥.∥) be a Banach space. Let f : X → R be a function and let
d : dom(f) → R be a pseudo-metric which is uniformly continuous with respect to ∥.∥. The
function f is said to be ε-uniformly convex with respect to d if for a given ε > 0, there is δ > 0
such that if d(x, y) ≥ ε then

f

(
x+ y

2

)
≤ f(x) + f(y)

2
− δ.

The function is said uniformly convex with respect to d if it is ε-uniformly convex for all ε > 0.
If f is ε-uniformly convex (resp. uniformly convex) with respect to ∥.∥, we simply say that f is
ε-uniformly convex (resp. uniformly convex). To finish, we say that f is ε+-uniformly convex
(resp. with respect to d) if it is ε′-uniformly convex (resp. with respect to d) for every ε′ > ε.

The suggestive name discrete uniformly convex functions applied to functions which are
ε-uniformly convex for some ε > 0 could be misleading here. Clearly, a uniformly convex

function is midpoint-convex, that is, the inequality f(x+y2 ) ≤ f(x)+f(y)
2 holds whenever x, y ∈ X.

Therefore, a uniformly convex function is convex provided some regularity holds (e.g., if f is
lower semicontinuous). The notion of uniform convexity for functions was introduced by Levitin
and Polyak [124], and based on Clarkson’s uniform convexity for normed spaces [52]. Since
then, the properties of uniformly convex functions have been studied in several papers, notably
[166, 167, 174, 14, 27, 29], the Section 3.5 in Zalinescu’s book [175], and part of chapter 5 in
Borwein-Vaderwerff’s book [28] devoted to them. In relation to the standard theory, let us point
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out the notion of modulus of uniform convexity

δf (ε) = inf

{
f(x) + f(y)

2
− f

(
x+ y

2

)
: x, y ∈ dom(f), ∥x− y∥ ≥ ε

}
.

Note that δf could take negative values unless f is supposed to be (midpoint-)convex. Analo-
gously, it is possible to define ε-uniformly concave functions, however it will not be necessary to
treat them here because all the theory extends trivially.

We will discuss in this section results of almost arithmetical nature. The first proposition
contains some easy facts whose proof is left to the reader.

Proposition 2.1.2. Let X be a Banach space. Let ε > 0 and let f : X → R be an ε-uniformly
convex function. Then:

(a) If g is convex, then f + g is ε-uniformly convex with δf+g ≥ δf .

(b) The supremum of finitely many ε-convex functions is ε-convex too.

(c) If f ≥ 0, then f2 is ε-uniformly convex.

(d) The lower semicontinuous envelope of f is ε-uniformly convex.

Recall that the infimal convolution of two functions f, g is defined as

(f □ g)(x) = inf{f(x− y) + g(y) : y ∈ X}, for x ∈ X.

Proposition 2.1.3. Let X be a Banach space. Let f1, f2 : X → R be two convex functions
such that f1 is ε1-uniformly convex and f2 is ε2-uniformly convex for ε1, ε2 > 0. Then f1 □ f2
is (ε1 + ε2)-uniformly convex with modulus min{δf1(ε1), δf2(ε2)}.

Proof. Given x1, x2 ∈ dom(f1 □ f2) = dom(f1) + dom(f2) with ∥x1 − x2∥ ≥ ε1 + ε2 and η > 0
we may find y1, y2 ∈ dom(f2) such that

f1(x1 − y1) + f2(y1) < (f1 □ f2)(x1) + η,

f1(x2 − y2) + f2(y2) < (f1 □ f2)(x2) + η.

We have
∥(x1 − y1) − (x2 − y2)∥ + ∥y1 − y2∥ ≥ ∥x1 − x2∥ ≥ ε1 + ε2.

Therefore, one of the inequalities either

∥(x1 − y1) − (x2 − y2)∥ ≥ ε1 or ∥y1 − y2∥ ≥ ε2

holds. Assume the first one does (the other case is similar)

(f1 □ f2)

(
x1 + x2

2

)
≤ f1

(
x1 + x2

2
− y1 + y2

2

)
+ f2

(
y1 + y2

2

)

≤ f1(x1 − y1) + f1(x2 − y2)

2
− δf1(ε1) +

f2(y1) + f2(y2)

2

≤ (f1 □ f2)(x1) + (f1 □ f2)(x2)

2
− δf1(ε1) + η

which implies the statement as η > 0 was arbitrary.
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Figure 2.1: Geometric interpretation of Proposition 2.1.4.

Now we will discuss some properties of the modulus of uniform convexity in the classic case,
that is, when the function is assumed to be also convex. The following property can be deduced
easily with the help of a picture.

Proposition 2.1.4. Let X be a Banach space. Let f : X → R be convex and ε > 0. Then

(1 − t)f(x) + tf(y) − f((1 − t)x+ ty) ≥ 2δf (ε) min{t, 1 − t}

whenever x, y ∈ dom(f), ∥x− y∥ ≥ ε and t ∈ [0, 1] (cf Fig. 2.1).

Proof. Without loss of generality we may assume t ∈ [0, 1/2] so t = min{t, 1 − t}. Note now
that

(1 − t)x+ ty = (1 − 2t)x+ 2t
x+ y

2
.

By convexity of f we have

f((1 − t)x+ ty) ≤ (1 − 2t)f(x) + 2tf

(
x+ y

2

)

≤ (1 − 2t)f(x) + 2t

(
f(x) + f(y)

2
− δf (ε)

)
= (1 − t)f(x) + tf(y) − 2tδf (ε)

as wished.

The gage of uniform convexity is introduced in [166] (see also [175, p. 203]) for convex
function as

pf (ε) = inf

{
(1 − t)f(x) + tf(y) − f((1 − t)x+ ty)

t(1 − t)
: 0 < t < 1, ∥x− y∥ ≥ ε

}
.

Corollary 2.1.5. Let X be a Banach space. For any convex function f : X → R and ε > 0,
we have

2δf (ε) ≤ pf (ε) ≤ 4δf (ε).

Proof. The first inequality is a consequence of Proposition 2.1.4 together with the fact that
min{t, 1 − t} ≥ t(1 − t), for t ∈ R. The second inequality follows just taking t = 1/2.

Therefore, for convex functions, ε-uniformly convexity can be expressed as pf (ε) > 0. The
gage of uniform convexity has the following remarkable property

pf (λε) ≥ λ2pf (ε)
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Figure 2.2: Example 2.1.6.

whenever ε ≥ 0 and λ ≥ 1, see [175, Proposition 3.5.1] and note that the proof does not requiere
the uniform convexity of f . In particular ε→ ε−2pf (ε) is a non decreasing function.

Now we will discuss some examples showing the limitations of the notions we are dealing
with.

Example 2.1.6. f(x) = |x2 − 1/9| is a continuous nonconvex 1-uniformly convex function on
R.

Proof. This can be deduced by inspection of the drawing (see Fig. 2.2). A more detailed
computation shows that δ = 1/36.

Example 2.1.7. A (proper) ε-uniformly convex function may have a non-proper lower semi-
continuous convex envelope.

Proof. Take a function f which is finite and unbounded below on B(0, ε/3) and takes the value

+∞ outside. By the very definition, f is ε-uniformly convex and necessarily f̆ = −∞ on
B(0, ε/3).

Example 2.1.8. A uniformly convex continuous function taking finite values which is un-
bounded on a bounded convex closed set.

Proof. The function will be defined on ℓ2. Firstly note that ∥x∥2 is uniformly convex. Consider
the convex function h : R → R defined by

h(t) = max{0, t− 1/2,−t− 1/2}.

The series g(x) =
∑∞
n=1 nh(xn), for x = (xn) ∈ ℓ2, defines a convex continuous function. Indeed,

at each point, only a finite number of summands can be positive at once. The continuity comes
from the fact that the same is true on any ball of radius less than 1. Now, the function
f(x) = ∥x∥2 + g(x) is continuous, unbounded on Bℓ2 and, by Proposition 2.1.2, it is also
uniformly convex.

The following notions will be useful in relation with ε-uniform convexity.

Definition 2.1.9. Let X be a Banach space. Let f : X → R be a function. Then f is said to
be:
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(a) quasi-convex if
f(λx+ (1 − λ)y) ≤ max{f(x), f(y)}

for every x, y ∈ X and λ ∈ [0, 1].

(b) ε-uniformly quasi-convex if, for a given ε > 0, there is some δ > 0 such that

f

(
x+ y

2

)
≤ max{f(x), f(y)} − δ

whenever x, y ∈ X with ∥x− y∥ ≥ ε (or d(x, y) ≥ ε for a pseudometric d).

(c) uniformly quasi-convex if it is ε-uniformly quasi-convex for every ε > 0.

Whereas the notion of quasi-convexity is well known, our definition of uniform quasi-convexity
is weaker than the one given in [167]. As with convexity, the midpoint version does not implies
the “λ-version” unless some regularity (e.g. lower semicontinuity) is assumed. The following
result shows one relation between the quantified versions of uniform convexity and uniform
quasi-convexity for functions.

Proposition 2.1.10. Let X be a Banach space. Let ε > 0 and let f : X → R be a positive,
convex and ε-uniformly quasi-convex function. Then f2 is ε-uniformly convex.

Proof. The following inequality can be checked easily: if for some real numbers a, b, c we have
a+ b ≥ 2c ≥ 0 then (

a+ b

2
− c

)2

+

(
a− b

2

)2

≤ a2 + b2

2
− c2. (2.1)

Assume ∥x − y∥ ≥ ε and let δ > 0 be given by the definition of ε-uniform quasi-convexity. If
|f(x) − f(y)| > δ the previous inequality implies

f(x)2 + f(y)2

2
− f

(
x+ y

2

)2

≥ δ2

4
.

On the other hand, if |f(x) − f(y)| ≤ δ then

f

(
x+ y

2

)
≤ max{f(x), f(y)} − δ ≤ f(x) + f(y)

2
− δ

2

and thus
f(x)2 + f(y)2

2
− f

(
x+ y

2

)2

≥ δ2

4

using again the inequality (2.1).

Example 2.1.11. A uniformly quasi-convex non-convex (concave) function.

Proof. Take f(x) = x for x < 0, and f(x) = x/2 for x ≥ 0.

2.2 Convexifying the ε-uniform convexity

In order to cover previous developments around finite dentability [146], we will consider uni-
formly convex functions with respect to a pseudometric d defined on the domain of f . The norm
of the Banach space will still play an important role and we require that d be uniformly con-
tinuous with respect to the norm. Therefore, along this section we will assume that ε-uniform
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convexity refers to d. We will refer as d-diameter of a subset in X×R the diameter with respect
to d of the projection of the set onto X. Let ϖ be the modulus of uniform continuity (the
standard symbol is “ω” but we are using it as the first countable ordinal later), that is, the
following inequality holds

d(x, y) ≤ ϖ(∥x− y∥)

and limt→0+ ϖ(t) = 0.

Proposition 2.2.1. Let X be a Banach space. Let f : X → R be a function and let ε > 0.
Then

(a) If f is ε-uniformly convex then every slice of epi(f) disjoint from epi(f + δf (ε)) has d-
diameter less than ε.

(b) If f ∈ Γ(X) and there is δ > 0 such that every slice of epi(f) disjoint from epi(f + δ) has
d-diameter less than ε then f is ε-uniformly convex with modulus δf (ε) ≥ δ/2.

Proof. For the first statement, assume that (x, f(x)), (y, f(y)) belong to such a slice. The
separation from epi(f + δf (ε)) implies

f(x) + f(y)

2
< f

(
x+ y

2

)
+ δf (ε)

and so d(x, y) < ε. On the other hand, let δ > 0 as in statement (b) and take x, y ∈ X such
that the following inequality holds

f(x) + f(y)

2
− f

(
x+ y

2

)
<
δ

2
.

It implies that
(
x+y
2 , f(x)+f(y)2

)
does not belong to epi(f+δ/2). We may take an affine function

h such that h < f + δ/2 and h(x+y2 ) > f(x)+f(y)
2 . It is evident that either f(x) < h(x) or

f(y) < h(y). We may assume without loss of generality that the first inequality holds as the
scenario is symmetric for x and y. Now we have

f(y) < 2h

(
x+ y

2

)
− f(x) = h(x) + h(y) − f(x) < h(y) +

δ

2
.

That implies both (x, f(x)) and (y, f(y)) belong to the slice defined by h+ δ/2

S = {(x, t) ∈ epi(f) : t < h(x) + δ/2}.

By our choices, we have S ∩ epi(f + δ) = ∅ and thus d(x, y) < ε by the hypothesis. We deduce
in this way that δ/2 ≤ δf (ε).

Corollary 2.2.2. Let X be a Banach space. Let ε > 0 and let f : X → R be a convex and
ε-uniformly convex function. Then

f(x) ≤
n∑
k=1

λkf(xk) − δf (ε)

whenever x, x1, . . . , xn ∈ dom(f) satisfy that d(x, xk) ≥ ε and x =
∑n
k=1 λkxk with λk ≥ 0 and∑n

k=1 λk = 1.
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Proof. If the inequality does not hold, then (x,
∑n
k=1 λkf(xk)) does not belong to epi(f + δf (ε))

so it can be separated from that set with a slice. Necessarily, one of the points (xk, f(xk))
belongs to the slice. That implies that the d-diameter of the slice is at least ε which contradicts
the previous proposition.

The following result is based on the techniques of the geometrical study of the Radon–
Nikodym property (RNP), see [35]. Note that the technique works only on bounded domains.

Lemma 2.2.3. Let X be a Banach space. Let ε > 0 and let f : X → R be a bounded below
function with bounded domain. Let m > 0 be an upper bound for the norm diameter of dom(f)
and let τ > 0 be such that τ/m < 1. Assume that the set

{x ∈ X : f(x) < inf f + δ}

has d-diameter less than ε. Then the set

{x ∈ X : f̆(x) < inf f + δτ/m}

has d-diameter less than ε+ 2ϖ(τ).

Proof. Consider the sets

A = {(x, r) ∈ X × R : f(x) ≤ r < inf f + δ};

B = {(x, r) ∈ X × R : r ≥ inf f + δ, f(x) ≤ r}.

Note that the epigraph of f is A ∪ B. Consider their closed convex hulls Ă = conv(A) and

B̆ = conv(B) and note that conv(Ă ∪ B̆) is dense in the epigraph of f̆ . Assume that (x, r) ∈
conv(Ă ∪ B̆) and r < inf f + δτ/m. There is λ ∈ [0, 1] such that (x, r) = λ(y, t) + (1 − λ)(z, s)
where (y, t) ∈ Ă and (z, s) ∈ B̆. The condition λt+(1−λ)s < inf f+δτ/m implies 1−λ < τ/m.
Indeed, suppose 1 − λ ≥ τ/m. As s ≥ inf f + δ, then

(1 − λ)s ≥ (1 − λ) inf f + δτ/m

On the other hand, λt ≥ λ inf f . Adding these inequalities we get λt+ (1− λ)s ≥ inf f + δτ/m,
which contradicts the assumption. Therefore

∥x− y∥ = ∥(λ− 1)y + (1 − λ)z∥ = (1 − λ)∥y − z∥ < τ.

In order to estimate the d-diameter of

S = {(x, t) : x ∈ X, f̆(x) ≤ t < inf f + δτ/m},

we may consider only points on the dense set S∩conv(Ă∪B̆). Therefore, consider (x1, r1), (x2, r2) ∈
conv(Ă ∪ B̆) with r1, r2 < inf f + δτ/m. The convex decomposition above shows that for some
λ1, λ2 ∈ [0, 1] and points (y1, t1), (y2, t2) ∈ Ă and (z1, s1), (z2, s2) ∈ B̆ we have

(x1, r1) = λ1(y1, t1) + (1 − λ1)(z1, s1),

(x2, r2) = λ2(y2, t2) + (1 − λ2)(z2, s2).

By the previous estimations, we have ∥x1−y1∥, ∥x2−y2∥ ≤ τ , which implies that d(x1, y1), d(x2, y2) ≤
ϖ(τ), and thus, by the assumption on A,

d(x1, x2) ≤ d(x1, y1) + d(y1, y2) + d(x2, y2) ≤ ε+ 2ϖ(τ)

as desired.
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We will deal now with the transfer of the ε-uniform convexity property to the lower semicon-
tinuous convex envelope. Note that ε-uniform convexity is referred to a uniformly continuous
pseudometric, however we require the hypothesis that the domain be norm bounded.

Theorem 2.2.4. Let X be a Banach space. Let ε > 0 and let f : X → R be a bounded below
ε-uniformly convex function with bounded domain . Then f̆ is ε+-uniformly convex and given
ε′ > ε, the modulus of convexity δf̆ (ε′) depends only on ε′, δf (ε), ϖ and the norm diameter of

dom(f).

Proof. Let m an upper bound for the diameter of dom(f) and δ > 0 the parameter given by
the definition of ε-uniform convexity. Take τ > 0 such that τ/m < 1. We will estimate the

d-diameter of any slice of epi(f̆) not meeting epi(f̆ + δτ/m). Suppose that the slice is given by
x∗ ∈ X∗. Note that the estimation of the d-diameter of the slice we need is equivalent to the
same for an horizontal slice of epi(f̆ − x∗) not meeting epi(f̆ − x∗ + δτ/m), which is the same

as taking the points of epi(f̆ − x∗) whose scalar coordinate is less than inf(f̆ − x∗) + δτ/m.

Since f̆−x∗ equals the convex envelope of the function f−x∗, which is ε-uniformly convex with
parameter δ, the set

{x ∈ X : f(x) − x∗(x) < inf(f − x∗) + δ}

has diameter less than ε by Proposition 2.2.1. The previous lemma applies to get that

{x ∈ X : f̆(x) − x∗(x) < inf(f − x∗) + δτ/m}

has diameter less than ε + 2ϖ(τ). Thanks to Proposition 2.2.1, it follows that f̆ is ε + 2ϖ(τ)-
uniformly convex. Given ε′ > ε, we only have to set τ > 0 such that 2ϖ(τ) < ε′ − ε.

The following result is the key to deal with unbounded domains.

Proposition 2.2.5. Let X be a Banach space. Let ε > 0 and let f : X → R be an ε-uniformly
convex function such that f̆ is proper. Then the value of f̆(x) for x ∈ dom(f) depends only on
the set of values {f(y) : ∥y − x∥ < ε}. Namely, if g is the function defined by g(y) = f(y) if

∥y − x∥ < ε and g(x) = +∞ otherwise, then f̆(x) = ğ(x).

Proof. Let us roughly explain the idea of the proof before going into details. A priori, the
computation of f̆(x) may involve values of f at points arbitrarily far away from x. Namely,

(x, f̆(x)) can be approximated by a convex combination of points of the form (xk, f(xk)). As we
want the points xk to be close to x, we will describe an algorithm that will modify the set {xk}
by the substitution of one (or several points) at each step until the resulting set is contained in
B(x, ε). The algorithm consists in switching a farthest point xi by the middle point between it
and an “opposite point” xj which is not farther from x as xi is. If d(xi, xj) ≥ ε, the ε-uniform

convexity of f will imply that we do not loose information about f̆(x) when switching xi by
(xi+xj)/2. Once, xi has disappeared from the the set, we choose a new farthest point and start
over. Actually, the method brings the points closer to x with respect to a prefixed direction
x∗ ∈ X∗. The repetition of the algorithm with several directions will eventually finish with the
modified set of points contained into B(x, ε). Now we will resume the proof.

The definition of f̆ implies that the following set{
(x, t) : t ≥

n∑
k=1

λkf(xk) with x =

n∑
k=1

λkxk a convex combination

}

is dense in epi(f̆). Fix x ∈ dom(f) and suppose x =
∑n
k=1 λkxk is a convex combination.

Now, we are going to describe the announced algorithm that will transform the set of points
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S = {x1, . . . , xn} into a set S′ = {x′1, . . . , x′n′} ⊂ B(x, ε) such that still we have
∑n′

k=1 λ
′
kx

′
k = x,

where
∑n′

k=1 λ
′
kx

′
k = x with λ′k ≥ 0,

∑n′

k=1 λ
′
k = 1, and

n′∑
k=1

λ′kf(x′k) ≤
n∑
k=1

λkf(xk).

In order to do that, without loss of generality, we may assume x = 0. Fix x∗ ∈ SX∗ . Let
a = supS x

∗ ≥ 0 and b = − infS x
∗. As a and b can be exchanged just taking −x∗ instead,

without loss of generality we may assume a ≥ max{b, ε}. Also, without loss of generality, we
may assume x∗(x1) = a. Since x1 is the farther point (with respect to x∗), its “mass” λ1
compensates with masses on the side x∗ ≤ 0. Suppose firstly that x∗(x2) ≤ 0 and λ2 ≥ λ1. We
have ∥x1 − x2∥ ≥ ε. We claim that it is possible to switch x1 by x′1 = (x1 + x2)/2. Indeed,

2λ1x
′
1 + (λ2 − λ1)x2 + λ3x3 + · · · + λnxn = 0

which is still a convex combination. Note that

2λ1f(x′1) + (λ2 − λ1)f(x2) + λ3f(x3) + · · · + λnf(xn)

≤ λ1(f(x1) + f(x2)) + (λ2 − λ1)f(x2) + λ3f(x3) + · · · + λnf(xn)

= λ1f(x1) + λ2f(x2) + λ3f(x3) + · · · + λnf(xn)

where we have used f(x′1) ≤ (f(x1) + f(x2))/2 (see the definition of ε-uniform convexity).
The inequality means that S1 = {x′1, x2, . . . , xn} is an improvement of S in the sense of the

approximation to f̆ . Note also that x∗(x′1) ≤ a/2.
In case, λ1 > λ2, we will use several vectors xk with x∗(xk) ≤ 0 to compensate x1. This is
possible because a ≥ b implies that the “mass” lying on the halfspace x∗ < 0 is not lesser than
λ1. In this case, λ1 could be cancelled with several λk’s. In any case, we will get a new set
S1 whose cardinal is not larger than that of S and conv(S1) ⊂ conv(S). After that, suppose
that, unfortunately, we still have supS1

x∗ = a. In such a case, the maximizing vector cannot
be x1, so it is a new vector, say x3. We will apply the argument with x3 in order to replace it
by another vector x′3 and S1 by a new set S2. Eventually, we will get supSn

x∗ ≤ a/2 after a
finite number of steps. Then, with the same x∗, we have to change the constants a, b > 0 by
new ones. This can be done with the same x∗ until we get max{a, b} < ε, so it is not possible
to go further.
If the set of points it is not yet inside B(0, ε) then find a new x∗ ∈ SX∗ such that supSn

x∗ ≥ ε
and then run again the algorithm. Since conv(S) is finite dimensional, it is enough to do this
procedure over finitely many x∗ ∈ SX∗ in order to get Sn ⊂ B(0, ε) eventually.

We are now ready to prove the main result of this section.

Theorem 2.2.6. Let X Banach space and let f : X → R be an ε-uniformly convex function
such that f̆ is proper. Then f̆ is ε+-uniformly convex.

Proof. For the proof it would be convenient to represent a convex combination in X by means
of a vector integral instead of the usual symbol “

∑
”. Namely, given a convex combination∑n

k=1 λkxk, the weights λk are changed by n disjoint intervals Ik of lengths λk and whose union
is [0, 1]. In this way, the convex combination is represented as the integral of the simple function
x defined on [0, 1] by x(t) = xk whenever t ∈ Ik. As we will deal only with simple functions, no
further knowledge of vector integration theory is required.
We resume the proof. If f̆ is proper then it is bounded below by an affine function, so by
adding an affine function (that does not alter the ε-uniform convexity), we may suppose that
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f is bounded below (actually that is true without modifications, see Corollary 2.4.2). Given
x, y ∈ dom(f), if ∥x− y∥ ≥ 3ε then

f̆

(
x+ y

2

)
≤ f̆(x) + f̆(y)

2
− δf (ε).

Indeed, fix η > 0. By Proposition 2.2.5, we may take (xn)n a sequence of simple functions
defined on [0, 1] such that ∥xn(t) − x∥ < ε for all t ∈ [0, 1], n ∈ N, with

lim
n

∫ 1

0

xn(t) dt = x, and lim
n

∫ 1

0

f(xn(t)) dt = f̆(x).

Let (yn)n an analogous sequence of simple functions playing the same role for y and f̆(y).
Clearly we have ∥xn(t) − yn(t)∥ ≥ ε for all t ∈ [0, 1] and n ∈ N. Therefore

f̆

(
x+ y

2

)
≤ lim inf

n

∫ 1

0

f

(
xn(t) + yn(t)

2

)
dt

≤ lim
n

∫ 1

0

(
f(xn(t)) + f(yn(t))

2
− δf (ε)

)
dt ≤ f̆(x) + f̆(y)

2
− δf (ε).

Since η > 0 was arbitrary we get the claimed inequality provided ∥x− y∥ ≥ 3ε.
Now we will suppose ε ≤ ∥x− y∥ < 3ε. Proposition 2.2.5 implies that reducing the domain of f

to [x, y] + B(0, ε) does not affect to the values of f̆(x), f̆(y) and f̆(x+y2 ). Fix ε′ > ε. Theorem
2.2.4 says that δf̆ (ε′) depends only on ε′, δf (ε), ϖ, which are fixed, and the diameter of the
domain, which is bounded by 5ε.

2.3 Building uniformly convex functions

Most of the constructions of uniformly convex functions on a Banach spaces that one can find
in the literature are based on modifications of a uniformly convex norm, see [29]. Nevertheless,
the existence of a finite uniformly convex function whose domain has nonempty interior implies
that X has an equivalent uniformly convex norm. In any case, the constructions dealing with
the composition of a uniformly convex norm and a suitably chosen function can be quite tricky,
except for the Hilbert space. Here we will exploit a method based on “discretization” and
uniformly quasi-convex functions.

Lemma 2.3.1. Let X Banach space. Let ε > 0 and let f : X → R be a bounded below ε-
uniformly quasi-convex with modulus δ > 0. Then the function h ◦ f is ε-uniformly convex
where h(t) = 3t/δ.

Proof. The function h is increasing and satisfies the property 3h(t) = h(t− δ). Take

η = 4−1 inf{h(t+ δ) − h(t) : t ≥ inf f} = 2−1 · 3inf f/δ

and note that it depends only on f . If x, y ∈ C are such that d(x, y) ≥ ε take a = f(x), b = f(y)
and c = f(x+y2 ). The hypothesis says that c ≤ max{a, b} − δ. With no loss of generality, we
may assume b ≤ a. We have

h(c) ≤ h(a) − 4η.

Since 3h(c) ≤ h(a) and h(b) > 0, we also have

3h(c) ≤ h(a) + 2h(b)
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and adding the previous inequality, we get

4h(c) ≤ 2h(a) + 2h(b) − 4η

and thus

h(c) ≤ h(a) + h(b)

2
− η

which is the ε-uniform convexity of h ◦ f .

If X is uniformly convex, it is well known that x 7→ ∥x∥2 is a uniformly convex function on
bounded convex subsets. The usual construction of a global uniformly convex functions involves
additional properties of the norm, such as having a power type modulus of uniform convexity.
Here there is a simple alternative construction based in our methods.

Proposition 2.3.2. If a Banach space X has a uniformly convex norm then there exists a real
function ϕ such that x 7→ ϕ(∥x∥) is a uniformly convex function defined on X.

Proof. Fix ε > 0. Take a1 = ε/2 and define inductively a sequence (an)n by the implicit
equation

an−1 =

(
1 − δX

(
ε

an

))
an

which has a unique solution thanks to the continuity of δX on [0, 2), [83, Lemma 5.1]. The
sequence (an)n is increasing with limn an = +∞ and has the following property: if ∥x∥, ∥y∥ ≤ an
and ∥x− y∥ > ε then ∥(x+ y)/2∥ ≤ an−1.
Define a function as fε(x) = n if an−1 < ∥x∥ ≤ an Note that fε satisfies the hypothesis of
Lemma 2.3.1 with δ = 1, and so h ◦ fε is ε+-uniformly convex. Now, for ε = 1/n take fn the
convex envelope of h ◦ fε and cn = 2−n supnBX

fn. The series
∑∞
n=1 cnfn converges uniformly

on bounded sets to a uniformly convex function f . By construction, f(x) depends only on
∥x∥. Therefore, we may define a real function by ϕ(t) = f(x) if t = ∥x∥, for t ≥ 0. Clearly,
f(x) = ϕ(∥x∥).

Now we will explain constructions using trees. Separated trees and bushes are obstructions
to the existence of bounded uniformly convex functions.

Proposition 2.3.3. Let ε > 0 and let C be a convex subset of a Banach space X that supports
an ε-uniformly convex function f with values in [a, b]. Then (b−a)/δf (ε) is the maximum height
of

(a) any ε-separated tree contained in C;

(b) any ε+-separated bush contained in C.

Proof. If {xs} is an ε-separated tree then we have

f(xs) ≤ max{f(xs⌢0), f(xs⌢1)} − δf (ε)

that gives the estimation. In the case of bushes, the argument is the same after passing to f̆ ,
which is ε+-uniformly convex by Theorem 2.2.6, and applying Corollary 2.2.2.

Our following result is quite a converse.

Theorem 2.3.4. Let ε > 0 and let C be a convex subset of a Banach space X that does not con-
tain arbitrarily high ε-separated trees (with respect to some uniformly continous pseudometric).
Then C supports a bounded ε-uniformly convex function, and a bounded convex ε+-uniformly
convex function (with respect the same pseudometric).
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Proof. Define a function for x ∈ C by

f(x) = −max{height(xs) : (xs) ⊂ C ε-sep. tree, x∅ = x}

and f(x) = +∞ otherwise. We claim that f is ε-uniformly quasi-convex. Indeed, consider
points x, y ∈ C with d(x, y) ≥ ε. Take ε-separated trees contained into C {xs′ : |s′| ≤ n′} and
{ys′′ : |s′′| ≤ n′′} of maximal length with the property that x∅ = x and y∅ = y. The trees can be
“glued” as follows. Take n = min{n′, n′′}. Define a new tree (zs), for |s| ≤ n+ 1, as z∅ = x+y

2 ,

z0⌢s = xs and z1⌢s = ys for |s| ≤ n. Now (zs) is a ε-separated tree rooted at x+y
2 of height

min{n′, n′′} + 1. That means in terms of the function f the uniform quasi-convex inequality

f

(
x+ y

2

)
≤ max{f(x), f(y)} − 1

for d(x, y) ≥ ε. Now, Lemma 2.3.1 says that h ◦ f is ε-uniformly convex and its convex hull is
ε+-uniformly convex after Theorem 2.2.6.

Theorem 2.3.5. Let C be a closed bounded convex subset of a Banach space X. Then these
two numbers coincide:

(ν1) the infimum of the ε > 0 such that there is a common bound for the heights of all the
ε-separated dyadic trees;

(ν2) the infimum of the ε > 0 such that there is a bounded ε-uniformly convex (and convex,
Lipschitz. . . ) function defined on C.

Proof. It just follows from Theorem 2.3.4 and Proposition 2.3.3.

We obtain the following well-known characterization of convex SWC sets.

Corollary 2.3.6. Let C be a closed bounded convex subset of a Banach space X. The following
assertions are equivalent:

(i) C is SWC;

(ii) there exists a bounded uniformly convex function f : C → R.

Proof. (ii) =⇒ (i) The infimums of the previous theorem are zero. So C does not have the
finite tree property. By Theorem 1.5.12, C is SWC.

(i) =⇒ (ii) By Theorem 1.5.12, the infimum of the previous theorem are again zero. Then,
for all ε > 0, there exists a bounded ε-uniformly convex function on C. Taking a serie, we
deduce easily that there exists a bounded uniformly convex function on C.

Finally we will explain constructions based on the dentability index.

Definition 2.3.7. Let C be a bounded closed convex subset of a Banach space X, (M,d) be a
pseudometric space and F : C → M be a map. We say that F is dentable if for any nonempty
closed convex subset D ⊂ C and ε > 0, it is possible to find an open halfspace H intersecting
D such that diam(F (D ∩H)) < ε, where the diameter is computed with respect to d. If F is
dentable, we may consider the following “derivation”

[D]′F,ε = {x ∈ D : diam(F (D ∩H)) > ε, ∀H ∈ H, x ∈ H},

where H denotes the set of all the open halfspaces of X. Clearly, [D]′F,ε is what remains of
D after removing all the slices of diameter less or equal than ε. Consider the sequence of sets
defined by [C]0F,ε = C and, for every n ∈ N, inductively by

[C]nF,ε = [[C]n−1
F,ε ]′F,ε.
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If there is n ∈ N such that [C]n−1
F,ε ̸= ∅ and [C]nF,ε = ∅ we say that Dz(F, ε) = n. We say that F

is finitely dentable if Dz(F, ε) < ω for every ε > 0 (ω stands for the first infinite ordinal number).

A useful trick is the so called (nonlinear) Lancien’s midpoint argument: if a segment satisfies
[x, y] ⊂ D and [x, y] ∩ [D]′F,ε = ∅ then d(F (x), F (y)) ≤ 2ε, see the beginning of [146, Theorem
2.2].

All these notions can be applied to the identity map of a convex set where there is a pseu-
dometric defined. The following result is the quantified version of [146, Theorem 2.2]. For
convenience we will write

∆Φ(x, y) =
Φ(x) + Φ(y)

2
− Φ

(
x+ y

2

)
.

Theorem 2.3.8. Let C be a bounded closed convex subset of a Banach space X, let M be a
pseudometric space, let F : C →M be a uniformly continuous map, and let ε > 0.

(a) Suppose that there exists a bounded lower semi-continuous convex function Φ defined on
C and δ > 0 such that d(F (x), F (y)) ≤ ε whenever x, y ∈ C satisfy ∆Φ(x, y) ≤ δ. Then
Dz(F, ε) < ω.

(b) On the other hand, if Dz(F, ε) < ω then for every ε′ > 2ε there exits a bounded lower
semi-continuous convex function Φ defined on C and δ > 0 such that d(F (x), F (y)) ≤ ε′

whenever x, y ∈ C satisfy ∆Φ(x, y) ≤ δ.

Proof. Let s = supC F . The hypothesis implies [C]′F,ε ⊂ {F ≤ s − δ}. Iterating this we will
eventually get to the empty set. For the second part, we need to introduce some notation.
Firstly put d′(x, y) = d(F (x), F (y)) which is a pseudometric uniformly continuous with respect
to ∥ · ∥. Derivations and diameters will be referred to d′. The slice of a set A with parameters
x∗ ∈ X∗ and α > 0 is

S(A, x∗, α) = {x ∈ A : x∗(x) > sup
A
x∗ − α}.

The “half-derivation” of a convex set is defined as

⟨D⟩′ε = {x ∈ D : x∗(x) ≤ α, ∀x∗, α > 0 s.t. diam(S(D,x∗, 2α)) > ε}.

The geometric interpretation is that we remove half of the slice, in sense of the width, for every
slice of d′-diameter less than ε. This derivation can be iterated by taking ⟨C⟩nε = ⟨⟨C⟩n−1

ε ⟩′ε. It
is not difficult, but rather tedious, to show that if Dz(F, ε) < ω then for every ε′ > 2ε there is
some n ∈ N such that ⟨C⟩nε′ = ∅. The idea is the following. Firstly note that every slice of C
not meeting [C]′F,ε has diameter 2ε at most by Lancien’s argument. Taking “half a slice” of the
slice given by some x∗ ∈ X∗, we deduce that

sup
⟨C⟩′2ε

x∗ − sup
[C]′F,ε

x∗ ≤ 2−1

(
sup
C
x∗ − sup

[C]′F,ε

x∗

)
.

Iterating, we would get

sup
⟨C⟩n2ε

x∗ − sup
[C]′F,ε

x∗ ≤ 2−n

(
sup
C
x∗ − sup

[C]′F,ε

x∗,

)
for every x∗ ∈ X∗. If η > 0, we will get for some n large enough that

⟨C⟩n2ε ⊂ [C]′F,ε +BX(0, η).
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We can do that for every set [C]kF,ε. A perturbation argument, using the room between ε and ε′,
will allow us to fill the gap between the sequences of sets. In this way we will get that ⟨C⟩nε′ = ∅
for some n ∈ N large enough.
Now we define a function g on C by g(x) = −n if x ∈ ⟨C⟩nε′ \ ⟨C⟩n+1

ε′ following the notation
above. We claim that g satisfies Lemma 2.3.1 with separation ε′. Indeed, if d′(x, y) > ε′ and
n = −max{g(x), g(y)} then x, y ∈ ⟨C⟩nε′ . If x+y

2 ̸∈ ⟨C⟩n+1
ε′ then the segment [x, y] would be

fully contained into a slice of diameter less than ε′ and so d′(x, y) ≤ ε′ which is a contradiction.
Therefore x+y

2 ∈ ⟨C⟩n+1
ε′ and so g(x+y2 ) ≤ −n−1. Now f(x) = 3g(x) is ε′-uniformly convex with

respect to d′. Take Φ = f̆ to get the desired function.

If F in Theorem 2.3.8 (2) were finitely dentable, a standard argument using a convergent
series would lead to this results, which is essentially [79, Proposition 3.2] with a uniformly convex
function instead of a norm.

Corollary 2.3.9. Let C be a bounded closed convex subset of a Banach space X, let M be a
pseudometric space, and let F : C →M be a uniformly continuous finitely dentable map. Then
there exists a bounded convex function Φ defined on C such that for every ε > 0 there is δ > 0
such that d(F (x), F (y)) ≤ ε whenever x, y ∈ C are such that ∆Φ(x, y) ≤ δ.

2.4 Improving functions and domains

So far the best improvement we have done on an existing ε-uniformly convex function is taking
its lower semicontinuous convex envelope provided this last one is proper. The aim in this sec-
tion is to manipulate the functions in order to improve their qualities. We will begin by proving
the results about global behaviour.

The next result shows global behaviour of ε-uniformly convex functions and the relative
stability of minimizers by linear perturbations.

Theorem 2.4.1. Let X Banach space and let f : X → R be an ε-uniformly convex function
such that f̆ is proper. Then f is bounded below and coercive, more precisely we have

lim inf
∥x∥→+∞

f(x)

∥x∥2
> 0.

Moreover, for any ε′ > ε there exist δ, η > 0 such that if given x∗0 ∈ X∗ and x0 ∈ X with

f(x0) + x∗0(x0) < inf(f + x∗0) + δ,

and x∗ ∈ X∗ such that ∥x∗ − x∗0∥ < η and x ∈ X that minimizes f + x∗, then ∥x − x0∥ ≤ ε′.

The existence of such minimizer pair (x, x∗) is guaranteed if f = f̆ .

Proof. Since f̆ ≤ f , it is enough to prove that the property holds for an ε-convex and convex
proper function. Actually the same proof for a uniformly convex function done in Zalinescu’s
book [175, Proposition 3.5.8] works in this case because lim inft→+∞ t−2pf (t) ≥ ε−2pf (ε) > 0.
For the second part, without loss of generality we may assume that x∗0 = 0 (just change f

by f + x∗0). Let δ = δf̆ (ε′) and take η = inf f + δ − f̆(x0) > 0. Note that inf f = inf f̆ .

By the property established in the first part applied to f̆ − x∗, there is R > 0 such that
f̆(x) ≥ f̆(x0) − x∗(x − x0) for any x∗ ∈ BX∗ and ∥x − x0∥ ≥ R. Now, fix x∗ such that
∥x∗∥ ≤ η/R. Then we have

f̆(x) + x∗(x) ≥ f̆(x0) + x∗(x0) − δ
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for all x ∈ X such that ∥x − x0∥ ≤ R, and therefore the inequality holds for all x ∈ X. That

implies epi(f̆ + x∗ + δ) does not meet the horizontal slice

S = {(x, t) ∈ epi(f̆ + x∗) : t ≤ f̆(x0) + x∗(x0)}

By Proposition 2.2.1, the projection of S on X has diameter less than ε′. Moreover, if f + x∗

attains a minimum at x, then the same holds for f̆ + x∗ and so x ∈ S. Since x0 ∈ S we
have ∥x − x0∥ ≤ ε′. The existence of a dense set of x∗’s such that f̆ + x∗ attains a minimum
is guaranteed by Brøndsted–Rockafellar [28, Theorem 4.3.2] (or Bishop–Phelps [67, Theorem
7.4.1] applied to the epigraph).

As a consequence, we characterize when an ε-uniformly convex function has a proper convex
envelope.

Corollary 2.4.2. Let X Banach space. Let ε > 0 and let f : X → R be an ε-uniformly convex
function. Then the following statements are equivalent:

(i) f̆ is proper;

(ii) f is bounded below;

(iii) f is bounded below by an affine continuous function.

For a ε-uniformly quasi-convex function we can say the following

Proposition 2.4.3. Let X Banach space. Let ε > 0 and let f : X → R be an ε-uniformly
quasi-convex function that is bounded below. Then f is coercive and moreover

lim inf
∥x∥→+∞

f(x)

∥x∥
> 0.

Proof. By adding a constant, we may suppose that inf f = 0. Take x0 ∈ X such that f(x0) <
δ/2. For any x ∈ X such that ∥x − x0∥ ≥ ε we have f(x) ≥ δ. Indeed, otherwise it would be
f(x) < δ and by the ε-uniformly quasi-convexity, f(x+x0

2 ) < inf f , an obvious contradiction.
Now, if ∥x−x0∥ ≥ 2ε, then ∥x+x0

2 −x0∥ ≥ ε. That implies f(x+x0

2 ) ≥ δ and therefore f(x) ≥ 2δ.
Inductively, we will get that if ∥x − x0∥ ≥ 2nε then f(x) ≥ 2nδ. Now, the statement follows
easily.

The following results will show that, given a ε-uniformly convex function, we can make
modification in both the function and its domain in order to get a new function with additional
properties.

Proposition 2.4.4. Let X Banach space. Let ε > 0, let f : X → R be an ε-uniformly convex
function that is locally bounded below and let η > 0. Then there exists a lower semicontinuous
(ε+ 2η)-uniformly convex function defined on dom(f) + B(0, η). In particular, dom(f) admits
a lower semicontinuous ε+-uniformly convex function.

Proof. Define g(x) = inf{f(y) : ∥y − x∥ < η} on dom(f) +B(0, η). This function g is (ε+ 2η)-
uniformly convex (the simple verification of this fact is left to the reader). Now take its lower
semicontinuous envelope.

The following result will be done for ε-uniformly convexity with respect to a metric because
such a degree of generality will be needed later.
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Proposition 2.4.5. Let X Banach space. Let ε > 0, let f : X → R be an ε-uniformly convex
function (with respect to a metric d with modulus of uniform continuity ϖ) and let C ⊂ dom(f)
be convex such that f is bounded on it. Then for any ε′ > ε, there exists g ∈ Γ(X) Lipschitz
(with respect to the norm of X) such that g|C is ε′-uniformly convex.

Proof. Without loss of generality, we may assume that f is convex. Take η > 0 such that
ϖ(η) < (ε′ − ε)/2, m = sup{f(x) − f(y) : x, y ∈ C} and c = m/η. Define

g(x) = inf{f(y) + c∥x− y∥ : y ∈ C}

which is convex and c-Lipschitz. Let x ∈ C and ξ > 0. Then either g(x) = f(x) and the
infimum is attained with y = x, or g(x) < f(x). In the last case, the infimum can be computed
over the y ∈ C such that f(y) + c∥x − y∥ < f(x). Therefore, we can find y ∈ C such that
f(y) + c∥x− y∥ < g(x) + ξ and ∥x− y∥ < m/c = η, which implies d(x, y) < (ε′ − ε)/2. Now, for
x1, x2 ∈ C with d(x1, x2) ≥ ε′ find y1, y2 ∈ C as above. Clearly we have d(y1, y2) ≥ ε, and so

g

(
x1 + x2

2

)
≤ f

(
y1 + y2

2

)
+ c

∥∥∥∥x1 + x2
2

− y1 + y2
2

∥∥∥∥
≤ f(y1) + f(y2)

2
− δ +

c

2
∥x1 − y1∥ +

c

2
∥x2 − y2∥ ≤ g(x1) + g(x2)

2
− δ + 2ξ.

Since ξ > 0 was arbitrary, we get the ε′-uniform convexity of g as wished.

Remark 2.4.6. A Baire category argument shows that an ε-uniformy convex function f is
bounded in an open ball if dom(f) has nonempty interior. However we do not know how to
ensure that f will be bounded on a larger set.

Now we will show how to change an ε-uniformly convex function by a norm with the same
property.

Theorem 2.4.7. Let (X, ∥ · ∥) be a Banach space, let f ∈ Γ(X) be a non negative function and
let C ⊂ dom(f) be a bounded convex set. Assume f is Lipschitz on C. Then given δ > 0 there
exists an equivalent norm ||| · ||| on X and ζ > 0 such that ∆f (x, y) < δ whenever x, y ∈ C satisfy
∆|||·|||2(x, y) < ζ. Therefore, if f was moreover ε-uniformly convex for some ε > 0 (with respect
to a pseudometric) on C, then ||| · |||2 would be ε-uniformly convex on C (with respect to the same
pseudometric).

Proof. Taking f(x)+f(−x)+∥x∥ instead, we may indeed assume that f is symmetric and attains
a strong minimum at 0. Let M = supC f and m = minC f + δ/2. The Lipschitz condition easily
implies that there is η > 0 such that if r ≤M then

{f ≤ r − δ} +B(0, η) ⊂ {f ≤ r}.

For r ∈ [m,M ] let ∥ · ∥r the Minkowski functional of the set {f ≤ r}, which is an equivalent
norm on X. Let N = sup{∥x∥ : x ∈ C} and note that λ = (1 + η/N)−1 has the property

{f ≤ r − δ} ⊂ λ {f ≤ r}.

We deduce the following property: if x, y ∈ C, ∥x∥r, ∥y∥r ≤ 1 and ∆f (x, y) ≥ δ then∥∥∥∥x+ y

2

∥∥∥∥
r

≤ λ.
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Consider a partition m = a1 < a2 < · · · < ak = M such that aj/aj+1 < λ1/2 and put
||| · |||j = ∥ · ∥aj . Let x, y ∈ C such that ∆f (x, y) ≥ δ. Assume f(x) ≥ f(y) for instance. There is

some 1 ≤ j < k such that 1 ≥ |||x|||j ≥ λ1/2. Since |||x+y2 |||j ≤ λ, we have∣∣∣∣∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣∣∣∣∣
j

≤ max{|||x|||j , |||y|||j} − (λ1/2 − λ).

Following the same computations that in the proof of Proposition 2.1.10, we have∣∣∣∣∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣∣∣∣∣2
j

≤
|||x|||2j + |||y|||2j

2
− (λ1/2 − λ)2

4
.

Therefore, if we define an equivalent norm by ||| · |||2 =
∑k
j=1 ||| · |||2j we will have∣∣∣∣∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣∣∣∣∣2 ≤ |||x|||2 + |||y|||2

2
− (λ1/2 − λ)2

4
.

whenever x, y ∈ C satisfies ∆f (x, y) ≥ δ, meaning that the statement is true with ζ = 4−1(λ1/2−
λ)2.

Theorem 2.4.8. Let (X, ∥·∥) be a Banach space and let f ∈ Γ(X) be ε-uniformly convex. Then
there exists an equivalent norm |||·||| on X such that the function x 7→ |||x|||2 is ε+-uniformly convex
on the subsets of dom(f) where f is bounded above. Moreover, the norm ||| · ||| can be taken as
close to ∥ · ∥ as we wish.

Proof. Consider the sets Cn = {f ≤ n} that eventually will “capture” any set where f is
bounded. Fixed n ∈ N, by Proposition 2.4.5, we may assume that f is already norm-Lipschitz
and finite on X provided we change ε by ε+. Let ||| · |||n the norm given by Theorem 2.4.7, which
is ε+-uniformly convex on Cn. Let α > 0 and let (αn) be a sequence of positive numbers such
that

||| · |||2 = α||| · |||2 +

∞∑
n=1

αn||| · |||2n

converges uniformly on bounded sets. Clearly, ||| · ||| will be ε+-uniformly convex on bounded sets
too. The last affirmation follows just taking α > 0 small enough.

Corollary 2.4.9. Let C be a closed bounded convex subset of a Banach space X. The following
assertions are equivalent:

(i) C is SWC;

(ii) X admits an equivalent norm ||| · ||| such that ||| · |||2 is uniformly convex on C.

Proof. (ii) =⇒ (i) is direct by Corollary 2.3.6.
(i) =⇒ (ii) By Corollary 2.3.6, there exists a bounded uniformly convex function f : C → R.

We can also assume that f is Lipschitz. By the previous theorem, for all ε > 0 there exists an
equivalent norm ||| · |||ε on X such that ||| · |||2ε is uniformly convex on C. Taking a serie, we deduce
that (ii) holds.

Finally we will discuss the approximation by differences of convex functions in terms of the
index of dentability improving [146, Theorem 1.4] and [79, Theorem 4.1], which in turn are
based in the seminal work [46]. A real function defined on a convex set is called DC-Lipschitz if
it is the difference of two convex Lipschitz functions. The symbol ∥·∥C stands for the supremum
norm on the set C.
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Theorem 2.4.10. Let C be a bounded closed convex subset of a Banach space X and let f :
C → R be a uniformly continuous function. Consider the following numbers:

(ε1) the infimum of the ε > 0 such that Dz(f, ε) < ω;

(ε2) the infimum of the ε > 0 such that there exists a DC-Lipschitz function g such that
∥f − g∥C < ε.

Then ε1/2 ≤ ε2 ≤ 2ε1.

Proof. Let ε > ε2 and find a DC-Lipschitz function g such that ∥f−g∥C < ε. We know by [146,
Proposition 5.1] that g is finitely dentable, which easily implies that f is 2ε-finitely dentable.
For the reverse inequality, take ε > 2ε1 and M = sup{f(x) − f(y) : x, y ∈ C} < +∞. Apply
Theorem 2.3.8 to get a function Φ such that |f(x) − f(y)| ≤ ε if ∆Φ(x, y) < δ. By Proposition
2.4.5 we may suppose that Φ is Lipschitz too, and by Theorem 2.4.7, there is an equivalent norm
||| · ||| defined on X such that ∆|||·|||2(x, y) < ζ implies ∆Φ(x, y) < δ. Take c > M/ζ. Consider the
function

g(x) = inf
y∈C

{
f(y) + c

(
|||x|||2 + |||y|||2

2
−
∣∣∣∣∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣∣∣∣∣2
)}

= inf
y∈C

{f(y) + c∆|||·|||2(x, y)}

which is actually an inf-convolution with the Cepedello’s kernel, see [46] or [21, Theorem 4.21].
For every x ∈ C, the infimum can be computed just on the set

A(x) = {y ∈ C : f(y) + c∆|||·|||2(x, y)} ≤ f(x)}.

If x ∈ C and y ∈ A(x), we have

0 ≤ c∆|||·|||2(x, y) ≤ f(x) − f(y) ≤M.

Then ∆|||·|||2(x, y) ≤ ζ by the choice of c and thus 0 ≤ f(x) − f(y) ≤ ε. Fix η > 0 and take
y ∈ A(x) such that

f(y) + c∆|||·|||2(x, y) ≤ g(x) + η.

Then
f(x) − g(x) ≤ f(x) − f(y) − c∆|||·|||2(x, y) + η ≤ ε+ η.

We deduce that ∥f(x) − g(x)∥C ≤ ε and

g(x) =
c

2
|||x|||2 − sup

y∈C

{
c

∣∣∣∣∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣∣∣∣∣2 − c

2
|||y|||2 − f(y)

}

which is an explicit decomposition of g as a difference of two convex Lipschitz functions on C,
as wanted.

In definition 2.3.7, we introduced the dentability of a map. The dentability of a set is defined
in the obvious way:

Definition 2.4.11. Let C be a closed convex subset of a Banach space X. We say that C is
dentable (resp. finitely dentable) if the identity id : C → C is dentable (resp. finitely dentable).
For all n ∈ N and all ε > 0, we simply write [C]nε instead of [C]nid,ε. Similarly, we defined
Dz(C, ε) by Dz(C, ε) := Dz(id, ε).

Corollary 2.4.12. Let C be a closed bounded convex subset of a Banach space X. The following
assertions are equivalent:
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(i) C is SWC;

(ii) C is finitely dentable;

(iii) every Lipschitz function defined on C is finitely dentable;

(iv) every Lipschitz function defined on C can be uniformly approximated by a DC-Lipschitz
function.

Proof. The equivalence between (iii) and (iv) follows from the previous theorem.
(ii) =⇒ (i) We can assume that C is symmetric by Theorem 1.5.2. Suppose that C is not

SWC. By Theorem 1.5.12, C has the finite tree property. So, there exists ε > 0 such that C
contains a 2ε-separated tree Tn of height n for all n ∈ N. Let n ≥ 1. It is easily seen that the
2ε-separated tree of height n− 1 obtained by cutting the last level of Tn is a subset of [C]′ε. A
trivial induction shows that [C]nε ̸= ∅. Since [C]nε ̸= ∅ is convex and symmetric, we have that
0 ∈ [C]nε ̸= ∅ for all n ∈ N. It follows that C is not finitely dentable.

(i) =⇒ (ii) By Corollary 2.3.6, there exists a function f : C → R which is bounded and
uniformly convex. Let s = supC f and fix ε > 0. It is easy to see that [C]′ε ⊂ {f ≤ s − δf (ε)}.
Iterating this we will eventually get to the empty set.

(iv) =⇒ (i) Without loss of generality, we can suppose that 0 ∈ C. Suppose that C is
not SWC. In particular, C is not compact. So there exist ε > 0 and a sequence (xn)n∈N ⊂ C
such that ∥xp − xq∥ > 3ε for all p ̸= q. Since C is bounded, there exists α ∈ (0, 12 ) such that
αC ⊂ ε

2BX . Define yn = 1
2xn ∈ C (since 0 ∈ C) and Cn = yn + αC for all n ∈ N. Note

that Cn = 1
2xn + αC ⊂ C for all n ∈ N. Furthemore, it is easily seen by triangle inequality

that d(Cp, Cq) > ε for all p ̸= q. Note that Cn has the same properties of C, i.e. it is a closed
bounded convex non SWC set. By Theorem 1.5.12, there exists θ > 0 such that Cn contains a
θ-strongly separated tree of height n for all n ∈ N. So, for a suitable η, we have constructed a
family (Tn)n∈N of trees in C such that Tn is a strong η-strongly separated tree of height n and
d(Tp, Tq) > η for all p ̸= q. For n ∈ N, denote by Sn the set of nodes at odd levels of Tn and
consider the subset S =

⋃∞
n=1 Sn. Define a 1-Lipschitz function f : C → R by f(x) = d(x, S).

Let δ ∈ (0, η4 ). By (iv), there exists two Lipschitz convex functions h, g : C → R such that
∥f − (h+ g)∥C < δ. We write Tn = {xns : |s| ≤ n}. Let n ∈ N. Since f(xn∅ ) = 0, one has that

h(xn∅ ) ≥ g(xn∅ ) − δ. By convexity of h and since xn∅ =
xn
0 +x

n
1

2 , there exists α1 ∈ {0, 1} such that

h(xnα1
) ≥ h(xn∅ ) ≥ g(xn∅ ) − δ

Then, we have that

g(xnα1
) ≥ f(xnα1

) + h(xnα1
) − δ ≥ η

2
+ g(xn∅ ) − 2δ. (2.2)

Using the convexity of g, there exists α2 ∈ {0, 1} such that g(xnα1⌢α2
) ≥ g(xnα1

). By (2.2), we
deduce that

g(xnα1⌢α2
) − g(xn∅ ) ≥ η

2
− 2δ > 0.

Iterating this process until the last level of Tn, we find a point xnα1⌢α2⌢...⌢αn
∈ Tn such that

g(xnα1⌢α2⌢...⌢αn
) − g(xn∅ ) ≥

(η
2
− 2δ

) n
2
,

contradicting the fact that g is Lipschitz.
(ii) =⇒ (iii) Let f : C → R be a L-Lipschitz function. One has that [C]nf,ε ⊂ [C]nεL−1 for

all ε > 0 and for all n ∈ N. So (iii) holds.
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2.5 A new glance at Enflo’s theorem

Let us show how Enflo’s theorem follows from our results.

Theorem 2.5.1 (Enflo [62]). Let X be a superreflexive Banach space. Then X has an equivalent
uniformly convex norm.

Proof. The unit ball BX endowed with the weak topology is SWC. Therefore, there is a bounded
convex ε-uniformly convex function defined on BX for every ε > 0 by Theorem 2.3.5. Now, by
Theorem 2.4.8, there is an equivalent norm ∥ · ∥ε on X whose square is an ε-uniformly convex
function on BX . Without loss of generality, we may assume that ∥ · ∥ ≤ ∥ · ∥ε ≤ 2∥ · ∥. The
series ||| · |||2 =

∑∞
n=1 2−n∥ · ∥21/n defines an equivalent uniformly convex norm.

At this point, we want to stress that we barely get Enflo’s but not Pisier’s, see [57] for
instance, because we are mainly focused on “ε” (the separation of dyadic trees) instead of “δ”
(the quality of the modulus of convexity).

Enflo’s original proof of the uniformly convex renorming of superreflexive Banach spaces has
remain practically unchanged in books, see [67, Pages 438-442] for instance. We believe that the
reason is that the proof is difficult to follow from a geometrical point of view. One of the original
aims of this paper was to cast some light on the renorming of superreflexive spaces. Since the
geometrical ideas are now diluted along this paper, we would like to offer to the interested reader
a more direct pathway to Enflo’s theorem as a successive improvement of functions.

• By Theorem 1.5.12, BX does not have the finite tree property. The maximal height of an
ε-separated tree with root x ∈ BX is an ε-uniformly concave function h(x). This is the
main idea in the proof of Theorem 2.3.4. Note that this function is also symmetric.

• g(x) = 3−h(x) is a symmetric ε-uniformly convex function taking values in [0, 1]. This
comes from Lemma 2.3.1 and is just an arithmetical fact.

• f = ğ is convex, symmetric and 3ε-uniformly convex. The key idea is that f(x) is computed
with the values of g(y) with ∥y − x∥ < ε. The technical details can be carried out as in
the proof of Theorem 2.2.6, which relies on Proposition 2.2.5.

• Let fn the function given in the previous steep for ε = 1/n. The function

F (x) = ∥x∥ +

∞∑
n=1

2−nfn(x)

is uniformly convex, symmetric, Lipschitz on the balls rBX for 0 < r < 1 and it attains
a strong minimum at 0. Moreover, elementary computations can show that F (0) ≤ 1/17
and F (x) ≥ 1 for x ∈ SX .

• The set B = {x : F (x) ≤ inf F + 1/2} is the unit ball of an equivalent uniformly convex
norm ||| · |||. The idea is to use the Lipschitz property of F to show that for any δ > 0, there
is λ(δ) ∈ (0, 1) such that

{x : F (x) ≤ inf F + 1/2 − δ} ⊂ λ(δ)B.

Therefore, if |||x||| = |||y||| = 1 and ∥x − y∥ ≥ ε then F (x) = F (y) = inf F + 1/2 and
F (x+y2 ) ≤ inf F + 1/2 − δ for some δ = δ(ε) > 0 and thus |||x+y2 ||| ≤ λ(δ).
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2.6 A remark on ε-uniformly smooth functions

In this small subsection, we show that there exists a duality between ε-uniformly convex func-
tions and ε-uniformly smooth functions. This point will probably be exploited in a future work.

If f : X → R is a function, then f∗ denotes its Fenchel conjugate.

Proposition 2.6.1. Let X be a Banach space and let f : X → R be an ε-uniformly convex
function which is not identically +∞. The following are equivalent:

(i) f̆ is proper

(ii) f is bounded below

(iii) f∗ is bounded on bounded sets

Proof. (i) ⇐⇒ (ii) follows from Corollary 2.4.2. Suppose that (ii) holds. Fix r > 0. Since

lim inf f(x)∥x∥2 > 0, there exists R > 0 such that f(x) ≥ r∥x∥ whenever ∥x∥ > R. By hypotesis,

there exists α > 0 such that f ≥ −α on X. It follows that f ≥ r∥.∥ − rR − α. By taking the
conjugate, we conclude that f∗ ≤ rR + α on B(0, α). Furthermore f∗ is a lower semicontinous
convex function which is also proper (f is bounded below by a affine function), it follows that
f∗ is bounded below on bounded sets.
Now, suppose that (iii) holds. Recall that

f∗(x∗) = sup
x∈X

{x∗(x) − f̆(x)}

for all x∗ ∈ X∗. If there exists x0 ∈ X such that f̆(x0) = −∞ then f∗ ≡ +∞, which contradicts

(ii). Now if f̆ ≡ +∞, then f∗ ≡ −∞, which is again a contradiction.

Corollary 2.6.2. Let X be a Banach space and let f : X → R be an ε-uniformly convex bounded
below function. Then f∗ is continuous.

Proof. By the previous proposition, f∗ is locally bounded above. Since f∗ is convex, it implies
that f∗ is continuous.

Nor we point out that we can define a dual notion to ε-uniform convexity.

Definition 2.6.3. Let X be a Banach space and let f : X → R be a function. We define its
modulus of smoothness as the function ρf : R+ → R defined by

ρf (ε) = sup

{
f(x) + f(y)

2
− f

(
x+ y

2

)
: ∥x− y∥ ≥ ε

}
.

We say that f is ε-uniformly smooth if there exists ηε > 0 such that
ρf (t)
t ≤ ε for all t ∈ (0, ηε).

Finally, we say that f is uniformly smooth if f is ε-uniformly smooth for all ε > 0.

Note that if f is mid-convex, then ρf is a positive function and f is uniformly smooth if and
only if

lim
t→0+

ρf (t)

t
= 0.

The two following results shows that the notions of ε-uniform convexity and ε-uniformly
smooth are dual notions.

Proposition 2.6.4. Let X be a Banach space and let f : X → R be a ε-uniformly convex
function such that f∗ is proper. Then f∗ is ε+- uniformly smooth.
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Proof. Since f∗ = (f̆)∗ and f̆ is ε-uniformly convex, we can suppose that f is convex. Pick

ε′ > ε. Define ηε′ =
δf (ε

′)
ε′ > 0 and take s ∈ (0, ηε′). By the previous proposition, f∗ is

(δf )∗-smooth. We have that

(δf )∗(s) = sup{ts− δf (t) : t ≥ 0}

≤ max{sup{ts− δf (t) : t ∈ [0, ε′]}, sup{ts− δf (t) : t > ε′}} ≤ ε′s.

It follows that
ρf∗(s)

s
≤ (δf )∗(s)

s
≤ ε′,

i.e. f∗ is ε′- uniformly smooth.

Proposition 2.6.5. Let X be a Banach space and let f : X → R be a ε-uniformly smooth
function such that f∗ is proper. Then f∗ is ε+- uniformly convex.

Proof. There exists ηε > 0 such that
ρf (t)

t
≤ ε

for all t ∈ (0, ηε). Define a function g : R → R by g(t) = εt if t ∈ [0, ηε] and g(t) = +∞ if not.
We have that ρf ≤ g and it follows that (ρf )∗ ≥ g∗. In particular, for ε′ > ε, we have that

(ρf )∗(ε′) ≥ sup{ε′t− εt : t ∈ [0, ηε]} ≥ (ε′ − ε)ηε > 0.

Since f∗ is (ρf )∗-convex, it follows that

δf∗(ε′) ≥ (ρf )∗(ε′) > 0,

i.e. f∗ is ε′-uniformly convex.

We can deduce the dual version of Theorem 2.2.6:

Corollary 2.6.6. Let X be a Banach space. Let f : X → R be a ε-uniformly smooth function
such that f̆ is proper. Then f̆ is ε+-uniformly smooth.

Proof. We have that f∗∗ = f̆ . In particular, it implies that f∗ is proper. It follows that f∗ is
ε+-uniformly convex and then f∗∗ is ε+-uniformly smooth.



Chapter 3

Quantification of the super weak
compactness

3.1 Different ways to quantify SWC

Measures of noncompactness can be defined in very general settings. Here we will restrict
ourselves to the frame of topological vector spaces. Let X be a topological vector space and
let K be a vector bornology of compact subsets (that just means the class is stable under some
elementary operations).

Definition 3.1.1. A measure of noncompactness associated to K is a nonnegative function µ
defined on the bounded subsets of X that satisfies the following properties:

(a) µ(A) = µ(A)

(b) µ(A) = 0 if and only if A ∈ K

(c) µ(A ∪B) = max{µ(A), µ(B)}

(d) µ(λA) = |λ|µ(A) for all λ ∈ R

(e) µ(A+B) ≤ µ(A) + µ(B)

(f) there exists k > 0 such that µ(conv(A)) ≤ k µ(A)

This list of conditions comes from the usual requirements in literature [13] and some prop-
erties enjoyed by several measures that are interesting for Banach space geometry, such as γ or
the family of measures introduced in [121] in relation with the Szlenk index. Condition (6) is
usually the most tricky and necessarily requieres that the class K be stable by closed convex
hulls (Krein-type theorem).

The quantification of the super weak non-compactness is linked to the quantification of the
weak non-compactness. De Blasi (see [7], for instance) introduced a measure of weak noncom-
pactness ω as follows

ω(A) = inf{ε > 0 : ∃K ⊂ X weakly compact, A ⊂ K + εBX}.

It is not hard to check that ω enjoys all the properties above. In particular, we have

ω(conv(A)) = ω(A),

47
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that is, its “convexifiability constant” is 1. Another quite natural way to measure weak non-
compactness, is the function γ defined by

γ(A) = inf{ε > 0 : A
w∗

⊂ X + εBX∗∗} = sup{d(X,x∗∗) : x∗∗ ∈ A
w∗

}.

It is easy to check that γ(A) ≤ ω(A) for any bounded set A ⊂ X. However, there is no constant
c > 0 such that ω(A) ≤ c γ(A) in general, see [7, Corollary 3.4]. That fact says that ω and γ
are not equivalent. The measure γ was introduced in [68] where the authors also proved ([84]
independently, see also [91, Theorem 3.64]) that

γ(conv(A)) ≤ 2 γ(A)

for any bounded A ⊂ X. Notably, there are many different equivalent ways to deal with γ
which are interesting to us because they have a “super” version. We will requiere the following
measure of super weak noncompactness: for a bounded set A ⊂ X take

Γ(A) := γ(AU )

where U is a free ultrafilter and γ is computed in XU . Later we will see that Γ does not depend,
essentially, on the choice of the ultrafilter U and that Γ is a measure of noncompactness accord-
ing to definition 3.1.1 (see Theorem 3.1.11). Obviously, we have that A is relatively SWC if and
only if Γ(A) = 0, and an operator T : X → Y is SWC if and only if Γ(T (BX)) = 0

The following contains the quantified version of two classic James’ characterizations of rel-
ative weak compactness together with the quantified version of Grothendieck’s commutation of
limits criterion.

Proposition 3.1.2. Let A be a bounded subset of a Banach space X. Consider the following
numbers:

(γ1) = γ(A);

(γ2) the supremum of the numbers ε ≥ 0 such that there are sequences (xn)n ⊂ A and (x∗n)n ⊂
BX∗ such that x∗n(xm) = 0 if m < n and x∗n(xm) ≥ ε if m ≥ n;

(γ3) the supremum of the numbers ε > 0 such that for any n ∈ N there are x1, . . . , xn ∈ C such
that d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε for all k = 1, . . . , n− 1;

(γ4) the infimum of the numbers ε ≥ 0 such that

| lim
n

lim
m
x∗n(xm) − lim

m
lim
n
x∗n(xm)| ≤ ε

whenever (xn)n ⊂ A, (x∗n)n ⊂ BX∗ and the iterated limits exist.

Then γ1 ≤ γ2 ≤ γ3 ≤ γ4 ≤ 2γ1.

Proof. Take ε < γ(A) and let x∗∗ ∈ A
w∗

with d(X,x∗∗) > ε. We will build sequences satisfying
the second statement for such an ε. Indeed, there exists x∗1 ∈ BX∗ with |x∗∗(x∗1)| > ε. Now take
x1 ∈ A such that x∗1(x1) ≥ ε. Assume we have xk and x∗k already built for 1 ≤ k < n and it is
satisfied x∗∗(x∗k) > ε. An elementary application of Helly’s theorem [67, p. 159] to X∗∗ allows
us to choose x∗n ∈ BX∗ such that x∗n(xk) = 0 for 1 ≤ k < n and x∗∗(x∗n) > ε. Now we take

xn ∈ A ∩ {x ∈ X : x∗k(x) > ε, 1 ≤ k ≤ n}

since the set is nonempty. That finishes the construction of the sequence and proves γ1 ≤ γ2.
The inequality γ2 ≤ γ3 follows straight. In order to prove γ3 ≤ γ4, take ε < γ3, and sequence
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(xn) as in the statement (γ3). For every n ∈ N, take x∗n ∈ BX∗ such that x∗n(y) ≤ ε+ x∗n(z) for
every y ∈ conv{x1, . . . , xn} and z ∈ conv{xn+1, xn+2, . . . }. The sequences satisfies the following
property

x∗n(xp) ≤ ε+ x∗n(xq)

whenever p ≤ n < q. Passing to a subsequence, we may assume the existence of the limits
limn x

∗
n(xm) and limm x

∗
n(xm), as well as the existence of the iterated limits. In such a case we

will get

lim
m

lim
n
x∗n(xm) ≤ ε+ lim

n
lim
m
x∗n(xm)

which implies ε ≤ γ4, and therefore γ3 ≤ γ4. Finally, γ4 ≤ 2γ1 is proved in [7].

Now we will state the “super” version of Proposition 3.1.2, for which we prefer to avoid a
uniform version of Grothendieck’s commutation of limits (fourth statement).

Proposition 3.1.3. Let A be a subset of a Banach space X. Consider the following numbers:

(Γ1) = γ(AU ) measured in XU for U a free ultrafilter;

(Γ2) the infimum of the numbers ε > 0 such that there are no arbitrarily long sequences (xk)n1 ⊂
A, (x∗k)n1 ⊂ BX∗ with x∗k(xj) = 0 if j < k and x∗k(xj) > ε if j ≥ k;

(Γ3) the supremum of the numbers ε > 0 such that for any n ∈ N there are x1, . . . , xn ∈ C such
that d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε for all k = 1, . . . , n− 1;

Then Γ1 ≤ Γ2 ≤ Γ3 ≤ 2Γ1.

Proof. The fact Γ1 ≤ Γ2 follows straight by applying finite representatibity to inequality ε1 ≤ ε2
in Proposition 3.1.2. It is quite easy to get Γ2 ≤ Γ3, and Γ3 ≤ 2Γ1 follows using the standard
ultraproduct technique, (see also Theorem 3.1.7 below where the convex case is considered).

Recall that Γ1 is the measure introduced at the beginning of this section

Γ(A) := γ(AU )

that depends on the choice of U . From now on, we will assume the free ultrafilter U is fixed
when speaking of Γ or dealing with the ultraproducts. Note that the equivalent measures Γ2

and Γ3 does not depend on any ultrafilter. Moreover, Γ3 does not involves explicitly the dual
space. In the next section we will use Γs(A) = Γ2 as an alternative to Γ(A).

Proposition 3.1.4. Let T : X → Y be an operator between two Banach spaces and let A ⊂ X
be a bounded set. Then Γ(T (A)) ≤ ∥T∥Γ(A).

Proof. Firstly, we will prove a similar statement for γ. Consider T ∗∗ : X∗∗ → Y ∗∗ which is
weak∗ to weak∗ continuous. For any bounded set A ⊂ X we have

T (A)
w∗

= T ∗∗(A
w∗

) ⊂ T (X) + εT ∗∗(BX∗∗) ⊂ Y + ε∥T∥BY ∗∗

where ε > γ(A). Therefore γ(T (A)) ≤ ∥T∥ γ(A). In order to prove the statement for Γ, consider
the induced operator TU : XU → YU . Then we have

Γ(T (A)) = γ(TU (AU )) ≤ ∥TU ∥γ(AU ) = ∥T∥Γ(A),

as we wished.
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Definition 3.1.5. Given a convex subset C of a Banach space X, let us define Dent(C) as the
infimum of the numbers ε > 0 such that C has nonempty slices contained in balls of radius less
than ε, and take ∆(C) = sup{Dent(B) : B ⊂ C}.

The measure ∆ was introduced in [43] as a way to quantify the lack of Radon-Nikodym
property (RNP).

Lemma 3.1.6. Let A be a closed convex bounded subset of a Banach space X, U a free ultrafilter
on N and ε > 0. Then

[AU ]′2ε ⊂ ([A]′ε)U .

Proof. Given (xn)U ∈ AU \ ([A]′ε)U , we have to find a slice of AU containing (xn)U of diameter
not greater than 2ε. As (xn)U ̸∈ ([A]′ε)

U , then for some α > 0

{n : d(xn, [A]′ε) ≥ α} ∈ U .

Indeed, otherwise the sequence (xn)n would be equivalent to a sequence in [A]′ε. It is possible
to find x∗n ∈ BX∗ such that x∗n(xn) ≥ α + sup[A]′ε

x∗n for those indices n from the previous set,
for the other n’s the choice of xn ∈ BX∗ does not make a difference. Consider the functional
(x∗n)U ∈ (X∗)U ⊂ (XU )∗. By construction,

⟨(x∗n)U , (xn)U ⟩ ≥ α+ sup
([A]′ε)U

(x∗n)U .

Now, we will estimate the diameter of the slice defined by (x∗n)U . Suppose that

(yn)U , (zn)U ∈ AU ∩ {(x∗n)U ≥ α+ sup
([A]′ε)U

(x∗n)U}.

Then for a subset in U of indices n, we have yn, zn ∈ A ∩ {x∗n ≥ α + sup{x∗n, An}} and thus
∥yn − zn∥ ≤ 2ε by Lancien’s midpoint argument. That implies ∥(yn)U − (zn)U∥ ≤ 2ε, so the
diameter of the slice is not greater than 2ε as wished.

The following result is a quantification of super weak compactness (see Theorems 1.5.6, 1.5.9,
1.5.12 and Corollaries 2.3.6, 2.4.12).

Theorem 3.1.7. Let C be a bounded closed convex subset of a Banach space X. Consider the
following numbers:

(µ1) the supremum of the numbers ε > 0 such that for any n ∈ N there are x1, . . . , xn ∈ C such
that d(conv{x1, . . . , xk}, conv{xk+1, . . . , xn}) ≥ ε for all k = 1, . . . , n− 1;

(µ2) the supremum of the ε > 0 such that there are ε-separated dyadic trees of arbitrary height;

(µ3) = ∆(CU ), for U a free ultrafilter on N;

(µ4) = Γ(C), (computed for an arbitrary free ultrafilter U on N);

(µ5) the infimum of the ε > 0 such that Dz(C, ε) < ω;

(µ6) the infimum of the ε > 0 such that C supports a convex bounded ε-uniformly convex
function.

Then µ1 ≤ µ2 ≤ 2µ3 ≤ 2µ4 ≤ 2µ1 and µ4 ≤ 2µ5 ≤ 2µ6 ≤ 2µ2.
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Proof. We will label the steps of the proof by the couple of numbers associated to the inequality.
(1-2) If ε < µ1, the separation between convex hulls applied to 2n elements allows the construc-
tion of a ε-separated dyadic trees of height n. Therefore µ2 ≥ µ1.
(2-3) If ε < M2 then ∆(CU ) ≥ ε/2. Indeed, CU contains an infinite ε-separated dyadic tree T ,
therefore any nonempty slice of T cannot be covered by finitely many balls of radius less than
ε/2.
(3-4) By [43, Proposition 6.1], Dent(A) ≤ γ(A), therefore ∆(CU ) ≤ γ(CU ) = Γ(C).

(4-1) Let ε < µ4. Then there is x ∈ C
w∗

which is at distance greater than ε from X. Following
Oja’s proof of James theorem [67, Theorem 3.132], it is possible to find an infinite sequence
(xn)n with convex separation greater than ε. Finite representativity gives arbitrarily large se-
quences in X with the same separation, thus µ1 ≥ µ4.
(4-5) If ε > M5 then there is a finite sequence of sets C = C1 ⊃ C2 ⊃ · · · ⊃ Cn given by the
ε-dentability process. Taking weak∗ closures in the bidual, we have

C
w∗

= (C1
w∗

\ C2
w∗

) ∪ · · · ∪ (Cn−1
w∗

\ Cn
w∗

) ∪ Cn
w∗

.

Now, take any x ∈ C
w∗

that belongs to one of those sets. The w∗-open slice separating x from

the smaller set, say Ck+1
w∗

(∅ for the last set) in the difference is contained in the w∗-closure of
a slice of Ck not meeting Ck+1 which has diameter less than 2ε (Lancien’s midpoint argument).
Since w∗-closures does not increase the diameter, we have d(x,X) ≤ 2ε. The argument actually
implies γ(C) ≤ 2ε. However, we can apply it to the sequence of sets in XU

CU = (C1)U ⊃ (C2)U ⊃ · · · ⊃ (Cn)U

which has the same slice-separation property by Lemma 3.1.6.
(5-6) If ε > µ6, there is a bounded convex and ε-uniformly convex function f that, without loss
of generality, we may suppose lower semicontinuous. By Proposition 2.2.1, any slice of the set
{x ∈ C : f(x) ≤ a} not meeting the set {x ∈ C : f(x) ≤ a + δ} has diameter less than ε. A
judicious arranging of these sets shows that C is ε-finitely dentable. Thus µ5 ≤ µ6.
(6-2) Take ε > µ2. Then the ε-separated dyadic trees are uniformly bounded in height. By
Theorem 2.3.4, that implies the existence of ε′-uniformly convex function for every ε′ > ε. Thus
µ6 ≤ µ2.

Remark 3.1.8. The equivalence between µ3 and µ4 is both a local and a quantitative version
of the well know statement saying that super-RNP is the same that superreflexivity. Note
that Theorem 2.4.10 gives another expression of µ5 in terms of approximation DC-Lipschitz
function. Also notice that some estimations can be improved. For example, we have that
µ2 = µ6 by Theorem 2.3.5. Let us point out that some other relations between the quantities
µi for i = 1, . . . , 6 can be established and so improving the equivalence constants. For instance
µ2 ≤ 2µ5 which is somehow straightforward or µ6 ≤ µ5 as a consequence of Proposition 2.3.3.

We will need the following estimation of how much thicken the closure with respect to the
topology induced by a norming subspace of the dual.

Lemma 3.1.9. Let X a Banach space and F ⊂ X∗ an 1-norming subspace. Then for any
bounded convex A ⊂ X and any ε > γ(A) we have

A
σ(X,F ) ⊂ A+ 2εBX .

Proof. By [91, Proposition 3.59], A
w∗

⊂ A + 2εBX∗∗ . The linear map p : X∗∗ → F ∗ defined

by p(x∗∗) = x∗∗|F has norm 1 and satisfies p(A
w∗

) = A
σ(F∗,F )

. We may identify p(X) = X

isometrically into F ∗ and so we have A
σ(F∗,F ) ⊂ A + 2εBF∗ . Therefore A

σ(X,F ) ⊂ A + 2εBX
as wished.



52 CHAPTER 3. QUANTIFICATION OF THE SUPER WEAK COMPACTNESS

We will need the following result that appears as a fact inside the proof of [163, Theorem
3.1]. The 1-norming subspace (X∗)U ⊂ (XU )∗ will play an important role.

Lemma 3.1.10. Let X be a Banach space and let U be a free ultrafilter on N. For any
(x∗n)U ∈ (X∗)U and (an)U ∈ conv(A)U , there is (bn)U ∈ conv(AU ) such that ⟨(x∗n)U , (an)U ⟩ ≤
⟨(x∗n)U , (bn)U ⟩.

Let us finish this section by showing that Γ fulfils the all requirements for a genuine measure
of noncompactness listed at the beginning.

Theorem 3.1.11. The function Γ defined on bounded subsets of a Banach space X has the
following properties:

(a) Γ(A) = Γ(A);

(b) Γ(A) = 0 if and only if A is SWC;

(c) Γ(A ∪B) = max{Γ(A),Γ(B)};

(d) Γ(λA) = |λ|Γ(A) for all λ ∈ R;

(e) Γ(A+B) ≤ Γ(A) + Γ(B);

(f) Γ(conv(A)) ≤ 4 Γ(A).

Proof. (a) and (b) follow straightly from the definition of Γ. (c), (d) and (e) follow from the
following set identities: (A∪B)U = AU ∪BU , (λA)U = λAU and (A+B)U = AU +BU . Consider
F = (X∗)U which is an 1-norming subspace of (XU )∗. Take ε > γ(AU ). By Lemma 3.1.9,

convσ(X,F )(AU ) ⊂ conv(AU ) + 2εBXU .

We claim (conv(A))U ⊂ conv(AU ) + 2εBXU . If it not the case, then we could separate a point
(conv(A))U from convσ(X,F )(AU ) by a functional from F . That leads to a contradiction with
Lemma 3.1.10. Now, we have

γ((conv(A))U ) ≤ 2γ(AU ) + 2ε

which implies (f).

Note that (f) is a quantitative version (in terms of µ6) of [163, Theorem 3.1] establishing
that the super weak compactness is stable by closed convex hulls. The measure of non super
weak compactness introduced by K.Tu in [163] is different from ours and so our result is not
equivalent to [163, Theorem 4.2].

3.2 Quantifying uniform convexity for operators

In this section we will discuss the application of the measure of weak noncompactness. For an
operator T : X → Y , we will write Γ(T ) := Γ(T (BX)). We have the following.

Proposition 3.2.1. Let A be convex symmetric bounded subset of a Banach space X with
Γ(A) < ε. Then there exists a Banach space Z and an operator T : Z → X such that ∥T∥ = 1,
A ⊂ T (BZ) and Γ(T ) < ε.

Proof. Without loss of generality we may assume that A is closed. Then, just take Z = span(A),
endow it with the norm given by the Minkowski functional of A and take T the identity operator.
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If we consider the alternative measure of weak noncompactness Γs introduced after Propo-
sition 3.1.3, we have the following quantified version of the symmetry of the operator ideal
Wsuper.

Theorem 3.2.2. Let T : X → Y be an operator between two Banach spaces. Then Γs(T
∗) =

Γs(T ).

Proof. We will assume firstly that Γs(T ) > 0. Take 0 < ε < Γs(T ). Then, for every N ∈ N
there are elements (xn)Nn=1 ⊂ BX and (x∗n)Nn=1 ⊂ BX∗ such that

⟨x∗n, T (xm)⟩ = 0 for m < n,

⟨x∗n, T (xm)⟩ ≥ ε for m ≥ n.

But this is exactly the same that

⟨T ∗(x∗n), xm⟩ = 0 for m < n,

⟨T ∗(x∗n), xm⟩ ≥ ε for m ≥ n.

By reversing the order of 1, . . . , N , we get Γs(T
∗) ≥ ε. That gives Γs(T

∗) ≥ Γs(T ). Suppose
now that Γs(T

∗) > 0 and take 0 < ε < Γs(T
∗). Then, for every N ∈ N there are elements

(x∗∗n )Nn=1 ⊂ BX∗∗ and (x∗n)Nn=1 ⊂ BX∗ such that

⟨x∗∗n , T ∗(x∗m)⟩ = 0 for m < n,

⟨x∗∗n , T ∗(xm)⟩ ≥ ε for m ≥ n.

Fix λ > 1. Helly’s theorem [67, p. 159] allows us to find (xn)Nn=1 ⊂ λBX such that

⟨x∗∗n , T ∗(x∗m)⟩ = ⟨xn, T ∗(x∗m)⟩

for every 1 ≤ n,m ≤ N . That implies Γs(T ) ≥ λ−1ε, after reversing the order of 1, . . . , N . By
the arbitrarily choice of constants, we get Γs(T ) ≥ Γs(T

∗).
So far we have proved that Γs(T ) > 0 if and only if Γs(T

∗) > 0 and, in such a case, Γs(T ) =
Γs(T

∗). That also implies Γs(T ) = 0 if and only if Γs(T
∗) = 0, therefore the proof is complete.

Corollary 3.2.3. Let T : X → Y be an operator between two Banach spaces. Then 2−1Γ(T ) ≤
Γ(T ∗) ≤ 2Γ(T ).

Remark 3.2.4. Using γ2 as a measure of weak noncompactness for sets and operators, the
quantified version of Gantmacher theorem [7] would become an equality.

De Blasi’s measure applied to operators does not satisfy a similar quantified Gantmacher
result, as observed in [7] after an example from [11], neither does the measure on super weak
noncompactness introduced by Tu [164], inspired by De Blasi’s definition, as

σ(T ) = inf{ε > 0 : ∃K ⊂ Y, K is SWC, T (BX) ⊂ K + εBY }

Indeed, Tu shows provides a sequence of operators Tn such that and σ(T ∗
n) = 1 for all n ∈ N

and limn σ(Tn) = 0.

Remember that if f function is a function then ∆f is the function defined by

∆f (x, y) =
f(x) + f(y)

2
− f

(
x+ y

2

)
.



54 CHAPTER 3. QUANTIFICATION OF THE SUPER WEAK COMPACTNESS

Definition 3.2.5. An operator T : X → Y between two Banach spaces is called uniformly
convex (UC) if for every ε > 0 there is a δ > 0 such that ∥T (x)−T (y)∥ ≤ ε whenever x, y ∈ BX
are such that ∆∥·∥2(x, y) < δ. An operator T : X → Y is called uniformly convexifying if it
becomes uniformly convex after a suitable renorming of X.

Lemma 3.2.6. Let T : X → Y be a bounded operator between two Banach spaces. The following
assertions are equivalent:

(i) T is UC;

(ii) limn ∥T (xn) − T (yn)∥ = 0 whenever xn, yn ∈ BX are such

lim
n

∆∥·∥2(xn, yn) = 0;

(iii) limn ∥T (xn) − T (yn)∥ = 0 whenever xn, yn ∈ BX are such ∥xn + yn∥ → 2.

Proof. (i) =⇒ (iii) Suppose that (iii) does not hold. Then, there exists ε > 0 such that for all
n ∈ N there exist xn, yn ∈ BX such that ∥xn + yn∥ > 2(1 − 1

n ) and ∥T (xn) − T (yn)∥ > ε. It is
easily seen that ∥xn∥ → 1 and ∥yn∥ → 1. Then ∆∥·∥2(xn, yn) = 2∥xn∥2+2∥yn∥2−∥xn+yn∥2 → 0
and ∥T (xn) − T (yn)∥ > ε, i.e. (i) T is not UC.

(iii) =⇒ (ii) Let (xn)n∈N, (yn)n∈N ⊂ BX such that ∆∥·∥2(xn, yn) → 0. Define α =
lim supn ∥T (xn) − T (yn)∥ and let us prove that α = 0. Taking subsequence if necessary, we
assume that α = limn ∥T (xn) − T (yn)∥. Since

2∥xn∥2 + 2∥yn∥2 − ∥xn + yn∥2 ≥ 2∥xn∥2 + 2∥yn∥ − (∥xn∥2 − ∥yn∥)2 = (∥xn∥ − ∥yn∥)2,

we have that ∥xn∥ − ∥yn∥ → 0. Without loss of generality, we can suppose that limn ∥xn∥ =
limn ∥yn∥ =: a. If a = 0, we have that ∥T (xn) − T (yn)∥ ≤ ∥T∥(∥xn∥ + ∥yn∥) → 0 and then
α = 0. Suppose now that a > 0. Since 2∥xn∥2 + 2∥yn∥2 − ∥xn + yn∥2 → 0, we have that

∥xn + yn∥ → 2a and then
∥∥∥ xn

∥xn∥ + yn
∥yn∥

∥∥∥ → 2. By (iii), we deduce that
∥∥∥T (xn)

∥xn∥ − T (yn)
∥yn∥

∥∥∥ → 0

and then α = limn ∥T (xn) − T (yn) = 0.
(ii) =⇒ (i) follows directly from the definition.

Now we define the ε-version of UC operator:

Definition 3.2.7. We will say that an operator T : X → Y between two Banach spaces is
ε-uniformly convex (ε-UC) if there is δ > 0 such that ∥T (x) − T (y)∥ ≤ ε whenever x, y ∈ BX
are such that ∆∥·∥2(x, y) < δ.

The following result contains two alternative forms of the ε-UC property that we will need
later.

Lemma 3.2.8. For an operator T : X → Y and ε > 0, the following statements are equivalent:

(i) T is ε-UC;

(ii) lim supn ∥T (xn) − T (yn)∥ ≤ ε whenever xn, yn ∈ BX are such

lim
n

∆∥·∥2(xn, yn) = 0;

(iii) there is δ > 0 such that ∥T (x)−T (y)∥ ≤ ε whenever x, y ∈ X are such that ∥x∥ = ∥y∥ = 1
and ∥x+ y∥ > 2(1 − δ).

Proof. The proof is left to the reader.
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We are ready to prove the quantified Beauzamy’s renorming result.

Theorem 3.2.9. Let (X, ∥ · ∥), Y be two Banach spaces, and let T : X → Y be an operator such
that Γ(T ) < ε. Then there exists an equivalent norm ||| · ||| on X such that ||| · ||| ≤ ∥ · ∥ and such
that T is ε-UC on (X, ||| · |||).
Moreover, in case X and Y are dual Banach spaces and T is an adjoint operator, then the norm
||| · ||| making T is ε-UC can be taken to be a dual one.

Proof. Take Γ(T ) = ε′ < ε and 1 < λ < ε/ε′. By Theorem 3.1.7, the set B = λT (BX) supports
a convex bounded ε-uniformly convex function f that we may assume it is also Lipschitz (see
Proposition 2.4.5). The function f ◦ T is ε-uniformly convex with respect to the pseudo-metric
d(x, y) = ∥T (x) − T (y)∥ on λBX . By Theorem 2.4.7, there is an equivalent norm ∥ · ∥u on X
whose square is ε-uniformly convex with respect to d on the set λBX . All the norms defined by
the formula

||| · |||2 = λ−2∥ · ∥2 + ξ∥ · ∥2u
fulfills that ||| · |||2 is ε-uniformly convex with respect to d on the set λBX . By taking ξ > 0 small
enough we may assume that

λ−1∥ · ∥ ≤ ||| · ||| ≤ ∥ · ∥.

Since the unit ball of ||| · ||| contains λBX , we get that T becomes ε-UC when X is endowed with
||| · |||.
Assume now that X and Y are dual spaces and T is an adjoint operator, and therefore it is weak∗

to weak∗ continuous. By the first part, we may assume that X is already endowed with a (non

dual) norm such that T is ε-UC. We claim that the norm |||.||| on X having BX
w∗

as the unit ball
makes T ε-UC too. By Lemma 3.2.8 there is δ > 0 such that x, y ∈ BX and ∥x+ y∥ > 2(1 − δ)
implies ∥T (x) − T (y)∥ ≤ ε. Therefore, diam(T (H ∩ BX)) ≤ ε whenever H is a halfspace such
that H ∩ (1−δ)BX = ∅. Take x, y ∈ X with |||x||| = |||y||| = 1 and |||x+y||| > 2(1−δ/2). Note that

the condition implies that the segment [x, y] does not meet (1 − δ)BX
w∗

Take H a weak∗-open

halfspace such that [x, y] ∩ (1 − δ)BX
w∗

= ∅. We have ∥x − y∥ ≤ diam(H ∩ BX
w∗

). Now, by
the weak∗ to weak∗-continuity of T we have

T (H ∩BX
w∗

) ⊂ T (H ∩BX)
w∗

.

As diam(T (H ∩BX)
w∗

) = diam(T (H ∩ BX)) ≤ ε by the weak∗ semicontinuity of the norm of
Y and the previous observation, we get that ∥T (x) − T (y)∥ ≤ ε as wished.

It turns out that the class of uniformly convexifying operators agrees with Wsuper.

Proposition 3.2.10. Let T : X → Y be an operator between two Banach spaces. The following
assertions are equivalent:

(i) T is SWC;

(ii) T is uniformly convexifying.

Proof. (i) =⇒ (ii) By Corollary 2.3.6, T (BX) supports a uniformly convex function f . To
conclude, just follow the previous proof without taking care of ε.

(ii) =⇒ (i) Without loss of generality, we can suppose that T is uniformly convex and
that ∥T∥ ≤ 1. Let ε > 0. By Lemma 3.2.6, there exists δ > 0 such that for all x, y ∈ BX
with

∥∥x+y
2

∥∥ > 1 − δ, one has that ∥T (x) − T (y)∥ ≤ ε. If S is an open slice of BX such that

(1− δ)BX ∩ S = ∅ then diam(T (S)) < ε. It is easy to deduce that if S is a open slice of T (BX)
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such that (1− δ)T (BX)∩S = ∅ then diam(S) < ε. It shows that [T (BX)]′ε ⊂ (1− δ)T (BX). By
an easy induction, we deduce that T (BX) is finitely dentable. By Corollary 2.4.12, we conclude
that T (BX) is SWC.

As a consequence, we obtain the following well-known result (see Theorem 1.3 in [146]).
We juste recall that the norm of a Banach space is weak uniformly rotund (in short, WUR)
if w − limn(xn − yn) = 0 (limit in the weak topology) provided that ∥xn∥ = ∥yn∥ = 1 and
limn ∥xn + yn∥ = 2. Weak∗ uniformly rotund norms (W∗UR) are defined analogously for dual
Banach spaces. We include that the original proof since this Corollary will be used afterwards.

Corollary 3.2.11. Let K ⊂ X be a SWC subset of a Banach space X. Then K is uniformly
Eberlein in its weak topology.

Proof. By Corollary 1.5.26, there exists a reflexive Banach space Y and a one-to-one SWC
operator T : Y → X such that K ⊂ T (BY ). Note that T/BY

: (BY , w) → (T (BY ), w) is an
homeomorphism. Since K ⊂ T (BY ), it is enough to show that (T (BY ), w) and then (BY , w) is
uniformly Eberlein. By the previous proposition, we can suppose that T is uniformly convex.
If (xn)n∈N, (yn)n∈N ⊂ SY are such that ∥xn + yn∥ → 2, then ∥T (xn) − T (yn)∥ → 0 and, in

particular, T (xn)−T (yn)
w−→ 0. Since T/BY

is a homeomorphism, we deduce that xn− yn
w−→ 0.

It shows that the norm of Y is WUR. Since Y is reflexive, its norm is W∗-UR. The duality
between UG smooth norms and W∗UR norms (see Theorem II-6-7 in [57]) and the use of
Theorem 2 in [66] imply that (BY , w

∗) = (BY , w) is uniformly Eberlein.

3.3 Uniformly Gâteaux renorming and other applications

The objective of this section is to establish the super-version of the following result.

Theorem 3.3.1 ([22, 68]). For a Banach space X, the following statements are equivalent:

(i) X is a subspace of a WCG space;

(ii) (BX∗ , w∗) is an Eberlein compact;

(iii) For every ε > 0 there are sets (Aεn)n such that BX =
⋃∞
n=1A

ε
n and γ(Aεn) < ε.

It is well known [57, Theorem 6.7] that the norm on X is UG smooth if and only if the dual
norm on X∗ is weak∗ uniformly rotund (W∗UR), that is, weak∗-limn(x∗n − y∗n) = 0 whenever
x∗n, y

∗
n ∈ BX∗ are such that limn ∆∥·∥2(x∗n, y

∗
n) = 0.

Lemma 3.3.2. Let A be a subset of a Banach space X and let ε > 0. Assume that A =
⋃∞
k=1Ak

with Ak bounded and Γ(Ak) < ε for every k ∈ N. Then, there exists an equivalent norm ||| · |||
on X such that the dual norm on X has the following property: whenever (x∗n), (y∗n) ⊂ BX∗ are
such that limn ∆∥·∥2(x∗n, y

∗
n) = 0, then

lim sup
n

|x∗n(x) − y∗n(x)| ≤ 8ε

for every x ∈ A.

Proof. Let Bk be the symmetric convex hull of Ak. By Proposition 3.1.11, we have Γ(Bk) < 4ε.
Let Tk : Zk → X the operator given by Proposition 3.2.1 such that Γ(Tk) < 4ε and Ak ⊂ Bk ⊂
Tk(BZk

). Now, by Corollary 3.2.3 Γ(T ∗
k ) < 8ε, and, by Theorem 3.2.9, T ∗

k became 8ε-UC with
an equivalent dual norm ∥ · ∥k ≤ ∥ · ∥. Consider the equivalent dual norm on X∗ defined by the
formula

||| · |||2 =

∞∑
k=1

2−k∥ · ∥2k.
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Suppose given (x∗n), (y∗n) ⊂ BX∗ with limn ∆∥·∥2(x∗n, y
∗
n) = 0. Then, for every k ∈ N, we have

limn ∆∥·∥2
k
(x∗n, y

∗
n) = 0 and therefore lim supn ∥T ∗

k (x∗n) − T ∗
k (y∗n)∥ ≤ 8ε on Z∗

k . In particular, for
every z ∈ Zk, we get

lim sup
n

|⟨Tk(z), x∗n⟩ − ⟨Tk(z), y∗n⟩| = lim sup
n

|⟨z, T ∗
k (x∗n)⟩ − ⟨z, T ∗

k (y∗n)⟩| ≤ 8ε.

Having in mind that Ak ⊂ T (BZk
), we obtain lim supn |x∗n(x) − y∗n(x)| ≤ 8ε for every x ∈ Ak.

Since this is true for every k ∈ N, the lemma is proved.

Now we are ready to state the main result of this section.

Theorem 3.3.3. Let X be a Banach space. The following statements are equivalent:

(i) X is a subspace of a Hilbert generated space;

(ii) For every ε > 0 there are sets (Bεn)n such that BX =
⋃∞
n=1B

ε
n and Γ(Bεn) < ε;

(iii) There exists a linearly dense set A ⊂ X such that for every ε > 0 it can be decomposed as
A =

⋃∞
n=1A

ε
n where each Aεn is bounded and Γ(Aεn) < ε;

(iv) X admits an equivalent UG smooth norm.

Proof. (i) =⇒ (ii) It is enough to prove statement (ii) for a Hilbert generated space since
that property is clearly inherited by subspaces. Let H be a Hilbert space and T : H → X an
operator with dense range. For every 0 < ε′ < ε we have

BX ⊂
∞⋃
n=1

(nT (BH) + ε′BX).

We have Γ(nT (BH) + ε′BX) ≤ ε′ and we can take Bεn = BX ∩ (nT (BH) + ε′BX).
(ii) =⇒ (iii) It is obvious.
(iii) =⇒ (iv) By Lemma 3.3.2, for every k ∈ N there exists an equivalent dual norm ∥ · ∥k on
X∗ such that: whenever (x∗n), (y∗n) ⊂ BX∗ are such that limn ∆∥·∥2

k
(x∗n, y

∗
n) = 0, then

lim sup
n

|x∗n(x) − y∗n(x)| ≤ 1/k

for every x ∈ A. The dual norm defined by

||| · |||2 =

∞∑
k=1

2−k∥ · ∥2k

satisfies then lim supn |x∗n(x)− y∗n(x)| = 0 whenever x ∈ span(A) and (x∗n), (y∗n) ⊂ BX∗ are such
that limn ∆|||·|||2(x∗n, y

∗
n) = 0. As the sequences (x∗n), (y∗n) are bounded and span(A) is dense, we

have lim supn |x∗n(x) − y∗n(x)| = 0 for every x ∈ X. Therefore, the norm ||| · ||| is W∗UR and its
predual norm on X is uniformly Gâteaux.
(iv) ⇐⇒ (i) It was proved in [66] (see also [91, Theorem 6.30]).

The result of Fabian, Godefroy and Zizler [66] (see also [91, Theorem 6.30]) gives actually
more information: the linearly dense set can be decomposed, for every ε > 0 in countably many
pieces which are uniformly weakly null up to ε in the sense of Proposition 4.1.3. That cannot
be done on every set generally, however it applies to Markushevich bases as a consequence of
the following dual interpretation of [9].
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Proposition 3.3.4. Let X be a subspace of a Hilbert generated Banach space and let A ⊂ X
be a bounded set such that 0 is its only cluster point and A ∪ {0} is weakly compact. Then, for
every ε > 0 there is a decomposition A =

⋃∞
n=1A

ε
n such that for every n ∈ N and for every

x∗ ∈ BX∗ then
|{x ∈ Aεn : |x∗(x)| > ε}| ≤ n.

Proof. Without loss of generality we may assume A ⊂ C(K) where K is uniform Eberlein.
Indeed, take K = (BX∗ , w∗) that is uniform Eberlein after a result from [22]. Consider the
embedding of K into ℓ∞(A) given by K ∋ t→ (f(t))f∈A and note that, actually, it take values
into c0(A). By [9] (see also [91, Theorem 6.33]), there is a decomposition of the index set
A =

⋃∞
n=1A

ε
n such that for every t ∈ K

|{f ∈ Aεn : |f(t)| > ε}| ≤ n.

Since K is a norming set on C(K), we get the conclusion for every norm one functional, see
Remark 4.1.4.

It is interesting to investigate the case where statement (iii) Theorem 3.3.3 happens without
countable decomposition of the linearly dense set, that is, when that set is relatively SWC.

Theorem 3.3.5. Let X be a Banach space. The following are equivalent:

(i) X is SWCG;

(ii) X has a Markushevich basis {xi, x∗i }i∈I such that {xi : i ∈ I} ∪ {0} is SWC;

(iii) There exists an one-to-one bounded linear operator T : X∗ → c0(I), for some set I, which
is weak∗ to pointwise continuous and SWC.

Proof. (i) =⇒ (ii) Without loss of generality we may assume that X is generated by a balanced
convex SWC set K. The proof of existence of Markushevich basis on WCG spaces allows the
choice {xi : i ∈ I} ⊂ K, see [67, Theorem 13.16]. Clearly, the only cluster point of {xi : i ∈ I}
is 0, and thus {xi : i ∈ I} ∪ {0} is SWC.
(ii) =⇒ (iii) We may assume that {x∗i : i ∈ I} is uniformly bounded. Define T (x∗) =
(x∗(xi))i∈I which, initially, takes values into ℓ∞(I). It can be proved that T (X∗) ⊂ c0(I), see
[67, Theorem 12.20] for the details. In order to see that T is SWC, we will see that T ∗ is SWC.
Indeed, T ∗ takes the basis (ei)i∈I of ℓ1(I) to the set {xi : i ∈ I}. Since Bℓ1(I) is the closed
convex hull of (ei)i∈I , we deduce that T (Bℓ1(I)) is contained in the balanced convex hull of
{xi : i ∈ I}, and therefore it is relatively SWC.
(iii) =⇒ (i) Consider the adjoint operator T ∗ : ℓ1(I) → X∗∗, which is SWC, and note that
every element from (ei)i∈I , the basis of ℓ1(I), goes through T ∗∗ to a weak∗ continuous element
of X∗∗. Therefore T ∗({ei : i ∈ I}) ⊂ X, and thus T ∗(ℓ1(I)) ⊂ X. Now, as T is one-to-one, T ∗

has a dense range and therefore X is super WCG.

Remark 3.3.6. Note that if X is SWCG then X is a subspace of a Hilbert generated space. In
fact, let T given by the previous theorem. Then T (BX∗) is SWC and then is uniformly Eberlein
with the weak topology (see Theorem 1.3 in [146]) and so is BX∗ . In particular, X is a subspace
of SWCG Banach space if and only if X is a subspace of a Hilbert generated space.

For C(K)-spaces, we have the following result:

Proposition 3.3.7. Let K be a Haussdorf compact set. The following assertions are equivalent:

(i) K is uniformly Eberlein;

(ii) C(K) is Hilbert generated;
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(iii) C(K) is SWCG;

(iv) there exists a SWC subset L ⊂ C(K) that separates points of K.

Proof. (i) ⇐⇒ (ii) is Theorem 2 in [66]. (iii) =⇒ (iv) is obvious. Let us suppose that
(iv) holds. By Corollary 1.5.26, there exist a reflexive Banach space Z and a SWC operator
T : Z → C(K) such that L ⊂ T (BZ). In particular, T (BZ) separates points of K. By
Theorem 1.5.22, T ∗ : C(K)∗ → Z∗ is SWC. We identificate K with a subset of BC(K)∗ (via the
homeomorphism x 7→ δx). Since K is compact, T ∗(K) is w∗-compact and so w-compact since Z
is reflexive. Furthermore, T ∗(BC(K)∗) is SWC. We deduce that T ∗(K) is SWC since T ∗(K) is
a weakly closed subset of T ∗(BC(K)∗). By Proposition 3.2.11, T ∗(K) is uniformly Eberlein. By
compactness and since T (BZ) separates points of K, T ∗

/K : K → T ∗(K) is an homeomorphism
and the proof is complete.

Remark 3.3.8. c0 has a weakly compact set which is not SWC. Consider for all n ∈ N,

Wn =


2n+1−1∑
i=0

εie2n+i : εi ∈ {−1, 1}


where (en)n∈N is the canonical basic of c0. Then W = ∩n∈NWn is weakly compact but not SWC
(see Example 5.3 in [47] and Theorem 12 in [72]). If K is infinite compact Haussdorf space,
C(K) contains an isometric copy of c0 (see Proposition 4.3.11 in [1]). In this case, C(K) contains
a weakly compact set which is not SWC. It follows that C(K) is S2WCG if and only if K is
finite.

Now we will give an application to Jordan algebras. We refer the reader to [93] for the
necessary definitions. In [93] the authors have proved that the measures of weak noncompactness
γ and ω (De Blasi’s measure) agree on a JBW∗-triple predual. The next result shows that we
can add Γ to them.

Proposition 3.3.9. Let X be JBW∗-triple predual. Then ω, γ and Γ agree on X.

Proof. Let A ⊂ X be bounded and take ε > γ(A). Since γ = ω by [93], there is K ⊂ X weakly
compact such that A ⊂ K + εBX . By [122, Theorem 6.3], K is SWC. Therefore, the inclusion
A ⊂ K + εBX implies Γ(A) ≤ ε. We deduce Γ(A) ≤ γ(A). Since the other inequality always
holds Γ(A) = γ(A) = ω(A).

This result implies for a JBW∗-triple predual that the notions of WCG and super WCG
are equivalent. Moreover, in [93, Theorem 9.3] the authors provide characterizations for JBW∗-
triple predual to be WCG or strongly WCG. It turns out that in such cases the spaces become
super WCG or strongly super WCG (S2WCG), respectively, which implies nice geometrical
properties under renorming, see Theorem 1.6 and Theorem 1.9 in [147].





Chapter 4

New results on super weak
compactness

4.1 Uniformly weakly null set

The most typical example of SWC set is the unit ball of a superreflexive Banach space. Now we
will introduce another family of (relatively) SWC sets.

Definition 4.1.1. We say that a subset A of a Banach space X is uniformly weakly null if for
every ε > 0 there is n(ε) ∈ N such that, for every x∗ ∈ BX∗ ,

|{x ∈ A : |x∗(x)| > ε}| ≤ n(ε).

Note that any sequence made of different points of a uniformly weakly null set is a weakly
null sequence. Therefore, uniformly weakly null sets are relatively weakly compact (and become
weakly compact just by adding 0). We have something better.

Theorem 4.1.2. Let A ⊂ X be a uniformly weakly null set and let U be any free ultrafilter.
Then AU is uniformly weakly null in XU and, therefore, A is relatively SWC in X.

Proof. Let x1, . . . , xn ∈ AU be different vectors, x∗ ∈ B(XU )∗ and ε > 0 such that |x∗(xk)| > ε for
every 1 ≤ k ≤ n. We claim that for ε′ < ε, there are different elements x1, . . . , xn ∈ A and x∗ ∈
BX∗ with |x∗(xk)| > ε′. Indeed, the proof that X is finitely representable in XU (see [18, p. 222]
for instance), provides those x1, . . . , xn ∈ X in such a way that Y = span{x1, . . . , xn} and Y =
span{x1, . . . , xn} are ε/ε′-isomorphic. Moreover, the vector xk is found on the “coordinates” of
xk, so we may assume xk ∈ A for all k. Then T : Y → Y be the isomorphism. Let x∗ be the
Hahn-Banach extension of (ε′/ε)x∗ ◦ T . Then, x∗ ∈ BX∗ and |x∗(xk)| > ε′ for all 1 ≤ k ≤ n
as desired. That claim shows that AU have to be uniformly weakly null. Now we have AU is
weakly compact in XU and thus A is relatively SWC.

A sequence (xn)n that is a uniformly weakly null set is called uniformly weakly null sequence.
A sequence (xn)n is uniformly weakly convergent to x if (xn − x)n is a uniformly weakly null
sequence. The fact that a uniformly weakly convergent sequence together its limit is SWC set
was noted in [50]. Uniformly weakly convergent sequences are closely related to the Banach-Saks
property.

The following result quantifies the uniform weak nullity in terms of a kind of uniform Banach-
Saks property (with unique limit 0):

61
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Proposition 4.1.3. Let A a bounded subset of a Banach space X and consider the two following
numbers:

(ε1) is the infimum of the ε > 0 such that there is n1 ∈ N such that for every x∗ ∈ BX∗ then

|{x ∈ A : |x∗(x)| > ε}| ≤ n1;

(ε2) is the infimum of the ε > 0 such that there is n2 ∈ N such that for any finite set B ⊂ A
with |B| ≥ n2 then ∥∥∥∥∥ 1

|B|
∑
x∈B

x

∥∥∥∥∥ < ε.

Then ε1 = ε2 and in such a case Γ(A) ≤ ε1.

Proof. Let r > 0 such that A ⊂ rBX . Take ε > ε1 and fix the corresponding number n1. For
n > n1 and any B ⊂ A with |B| = n we have

|x∗(
∑
x∈B

x)| < n1r + (n− n1)ε

for every x∗ ∈ BX∗ . Therefore

n−1

∥∥∥∥∥∑
x∈B

x

∥∥∥∥∥ < n1r

n
+
(

1 − n1
n

)
ε

Since the bound can be taken arbitrarily closed to ε independently from B if n is large enough,
we have that ε2 ≤ ε1. That proves the equality ε1 = ε2 in case ε1 = 0. Assume now that ε1 > 0
and take 0 < ε < ε1. Then, for every n ∈ N we can find C ⊂ A with |C| = 2n and x∗ ∈ BX∗

such that x∗(x) > ε or x∗(x) < −ε for all x ∈ C. Since at least one half of the elements satisfies
the same inequality, we may find B ⊂ C such that |B| = n and

|x∗(
∑
x∈B

x)| > nε.

Therefore, we have

n−1

∥∥∥∥∥∑
x∈B

x

∥∥∥∥∥ > ε,

that implies ε2 ≥ ε1. Now, note that the first statement implies

A
w∗

⊂ A ∪ ε1BX∗∗ ⊂ X + ε1BX∗∗

and so γ(A) ≤ ε1. In order to pass to Γ, just follow the ideas in the proof of Theorem 4.1.2 or
check that the property of the second statement is stable by ultraproducts. In any case, we get
that Γ(A) ≤ ε1.

Remark 4.1.4. The proof of the equivalence shows that it is enough to check condition (ε2)
for x∗ from a norming subset of BX∗ .

Definition 4.1.5. A subset A of a Banach space X is said to be uniformly Banach-Saks null if
for every ε > 0 there is n(ε) such that whenever B ⊂ A is finite with |B| ≥ n(ε) then

|B|−1

∥∥∥∥∥∑
x∈B

x

∥∥∥∥∥ < ε.
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Proposition 4.1.3 has the following consequence.

Corollary 4.1.6. Let A be a bounded subset of a Banach space X. Then A is uniformly
Banach-Saks null if and only if it is uniformly weakly null.

Mercourakis [134] improvement of the Erdös-Magidor [63] dichotomy for bounded sequences
can be stated in this way (see also [129] for related results and references).

Theorem 4.1.7 (Mercourakis). Let (xn)n a bounded sequence in a Banach space X. Then
there exists a subsequence (xnk

)k of (xn)n for which one of the following statements holds:

(a) either, (xnk
)k is uniformly weakly convergent;

(b) or, no subsequence of (xnk
)k is Cesàro convergent.

The celebrated Eberlein-Šmulian theorem, see [67] for instance, says that weak compactness
is determined by sequences. As an application, we get that there is no Eberlein-Šmulian for
super weak compactness. That is, the fact that every sequence has a relatively SWC subsequence
does not imply that the set is relatively SWC.

Corollary 4.1.8. Let A be a relatively SWC subset of a Banach space X. Then every sequence
(xn)n ⊂ A contains a uniformly weakly convergent subsequence. However, this property does not
characterize the super weak compactness. Actually, it characterizes the Banach-Saks property.

Proof. For a Banach-Saks set the dichotomy 4.1.7 always produces a uniformly weakly conver-
gent subsequence. On the other hand, every uniformly convergent sequence is Cesàro convergent.
Therefore, the Banach-Saks property is characterized by sequences. The other statements follow
from the fact that relatively SWC sets are Banach-Saks and there exist Banach-Saks sets which
are not relatively SWC [122, Corollary 2.5].

A set that contains a sequence equivalent to the basis of ℓ1 cannot be uniformly weakly null.
Whether a Schauder basis is a uniformly weakly null set or not will be characterized among the
symmetric basis. Recall that an unconditional Schauder basis is said symmetric if it is uniformly
equivalent to all its permutations. The following is a result due to Troyanski [161] reformulated
in our terms.

Theorem 4.1.9. Let X be a Banach space with a symmetric basis (ei)i∈I . Then the following
statements are equivalent:

(i) {ei : i ∈ I} is uniformly weakly null;

(ii) {ei : i ∈ I} ∪ {0} is SWC;

(iii) 0 is a weak cluster point of {ei : i ∈ I};

(iv) X is not isomorphic to ℓ1(I).

In case I is not countable (equivalently, X is not separable), these conditions characterize the
existence of an equivalent uniformly Gâteaux norm on X.

Proof. Note that (i) ⇐⇒ (iv) and characterization of uniform Gâteaux renorming for Banach
spaces with symmetric bases is the original result of Troyanski [161], see also [91, Lemma 7.52]
and [91, Theorem 7.54]. Clearly (i) =⇒ (ii) and (i) =⇒ (iii). On the other hand, assume
(iii) and let cs ≥ 1 the symmetric unconditionality constant of the basis. For every ε > 0 there
are indices (ik)nk=1 ⊂ I and positive numbers λk, 1 ≤ k ≤ n, with

∑n
k=1 λk = 1 such that

∥
n∑
k=1

λkeik∥ ≤ ε.
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Consider a cyclic permutation λ1k = λk+1 if k < n and λ1n = λ1. Then we have

∥
n∑
k=1

λ1keik∥ ≤ csε.

If we take the other n− 2 cyclic permutations obtained by iterating the first one, the sum gives

∥
n∑
k=1

eik∥ ≤ ∥
n∑
k=1

λkeik∥ + ∥
n∑
k=1

λ1keik∥ + · · · + ∥
n∑
k=1

λ
(n−1)
k eik∥ ≤ n cs ε.

Again, by the symmetry of the basis, for any J ⊂ I with n elements we have

n−1∥
∑
i∈J

ei∥ ≤ c2s ε

that implies {ei : i ∈ I} is uniformly weakly null. Finally, assume (ii). By Corollary 4.1.8, there
exists an infinite sequence in the set {ei : i ∈ I} which is uniformly weakly convergent. Since
the unique allowed cluster point is 0, the sequence is uniformly weakly null. That behavior can
easily be extended to all the basis (ei)i∈I by the symmetry.

Without the hypothesis of symmetry for the basis, we have the following result.

Proposition 4.1.10. Let X be a Banach space with nontrivial type. Then every unconditional
seminormalized basic sequence (or set) is uniformly weakly null.

Proof. Let (en) be an unconditional basic sequence with unconditionality constant cu ≥ 1, let
p ∈ (1, 2] be the type of X and cτ the type constant. Without loss of generality we may assume
(en) is normalized. We have

∥
∑
n∈F

en∥ ≤ cu ∥
∑
n∈F

ϵnen∥

whenever ϵn ∈ {−1, 1} and F ⊂ N finite. Let (rn(t)) denote the sequence of Rademacher
functions. Applying the definition of type we get

∥
∑
n∈F

en∥ ≤ cu

∫ 1

0

∥
∑
n∈F

rn(t) en∥ dt ≤ cucτ (
∑
n∈F

∥en∥p)1/p = cucτ n
1/p

that implies (en) is a uniformly weakly null set.

In [122] it is proved a result about the coordinate combinatoric behavior of the SWC compact
subsets of c0(N) that are made up of characteristic functions. The following result shows that
uniformly weakly null subsets in c0(I) made up of characteristic functions are more boring.

Proposition 4.1.11. Let F be a family of finite subsets of a set I. Then A = {1F : F ∈ F} is
uniformly weakly null as a subset of c0(I) if and only if there is a Hilbert space H and an operator
T : H → c0(I) such that A is covered by the image of an orthonormal basis of H. Moreover, an
analogous result fails if c0(I) is replaced by another space with a long unconditional basis.

Proof. Consider the Hilbert space H = ℓ2(A) with the basis {ex : x ∈ A}. As A is uniformly
weakly null, there exists N such that

|{i ∈ I : |xi| > 0}| ≤ N
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for every x = (xi)i∈I ∈ A. That implies that the assignation ex → x can be extended to a linear
operator. Indeed, for (ax)x∈A ⊂ R finitely supported, the sum

∑
x∈A axx takes values in c0(I)

and the bound
|(
∑
x∈A

axx)i| ≤
∑
xi ̸=0

|ax| ≤ N sup
x∈A

{|ax|} ≤ N∥
∑
x∈A

axex∥

implies that the operator

T ((ax)x∈A) =
∑
x∈A

axx

can be extended to all (ax)x∈A ∈ H with ∥T∥ ≤ N . On the other hand, if the set A is covered
by the image of an orthonormal basis of a Hilbert space H through an operator T , fix for every
x ∈ A an element ex ∈ H such that (ex)x∈A is orthonormal. The fact that A is uniformly weakly
null follows easily from the fact that

∥x1 + · · · + xn∥ ≤ ∥T∥ ∥ex1
+ · · · + exn

∥ = ∥T∥n1/2

for different points x1, . . . , xn ∈ A. For the last statement, we claim that c0(I) cannot be replaced
by ℓ3/2(I). Indeed, the canonical basis of ℓ3/2(I) is a uniformly weakly null set, however it cannot
be covered by the image of an operator from a Hilbert space (for I uncountable). Otherwise
ℓ3/2(I) would be Hilbert generated, which is not the case by [65, p. 316].

Remark 4.1.12. According to a classic result of Davis, Johnson, Lindenstrauss and Pe lczyński
[56], every relatively weakly compact set whose unique accumulation point is 0 (like as in the
hypothesis of Proposition 3.3.4) is the image through an operator of an unconditional basis in
a reflexive space.

The second named author proved that convex SWC sets considered with the weak topology
are uniformly Eberlein [146]. These last results will deal with a more restrictive property.
Following [66], we say that a compact subset K ⊂ E in a locally convex space is linearly
uniformly Eberlein if there exists a linear injection T : E → c0(I) which is continuous to the
pointwise topology of c0(I) and for every ε > 0 there is n(ε) such that

|{i ∈ I : |T (x)i| > ε}| ≤ n(ε)

for every x ∈ K. In case K is moreover convex, we say that K is affinely uniformly Eberlein if
an affine map can be defined on K with values on c0(I) with similar properties.

Proposition 4.1.13. Let X be a Banach space. Then X contains a linearly dense uniformly
weakly null set if and only if (BX∗ , w∗) is linearly uniformly Eberlein.

Proof. Let A ⊂ X be uniformly weakly null. Observe that T : X∗ → c0(A) given by T (x∗) =
(x∗(x))x∈A is well defined, one-to-one, and linearly represents BX∗ as uniform Eberlein. On
the other hand, if T : X∗ → c0(I) witnesses that (BX∗ , w∗) is linearly uniformly Eberlein, then
the coordinate maps define elements {xi : i ∈ I} ⊂ X, as they are weak∗ continuous. It is not
difficult to check that {xi : i ∈ I} is uniformly weakly null and linearly dense.

Remark 4.1.14. Note that (BX∗ , w∗) can be uniformly Eberlein but not linearly uniformly
Eberlein. For that, just take a uniformly Gâteaux Banach space which is not WCG, for instance,
Rosenthal’s non WCG subspace of some L1(µ) space, see [65] for more details.

This is the main question we cannot answer with the techniques of this paper.

Problem 4.1.15. Is every SWCG Banach space generated by a uniformly weakly null set?

Next result is motivated by [65, Theorem 4].
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Theorem 4.1.16. Let K be a SWC convex subset of a Banach space X such that K has density
(equivalently, weight) ω1. Then K is affinely uniformly Eberlein.

Proof. Let Z be a reflexive Banach space and T : Z → X a one-to-one super weakly compact
operator such that K ⊂ T (BZ), [146, Theorem 1.3]. Then K is linearly homeomorphic to a
weakly compact subset of Z of density ω1. Without loss of generality we may assume that Z
has density ω1 too. Now, T ∗ : X∗ → Z∗ is a super weakly compact operator with dense range.
We deduce that Z∗ is super WCG and thus it is a uniformly Gâteaux renormable Banach space
of density ω1. By [65, Theorem 4], BZ is linearly uniformly Eberlein, which implies that K is
affinely uniformly Eberlein.

There are stronger results for weakly compact convex sets of weight strictly less than ω1,
that is, the compact is metrizable. For instance, Keller’s theorem, see [24], showing an affine
homeomorphism to the Hilbert cube.

4.2 Ergodicity and fixed point properties

4.2.1 Ergodicity and (super) weak compactness

Definition 4.2.1. Let C be a convex subset of a Banach space X. We say that an affine
function T : C → C is

(a) ergodic if the Cesaro mean sequence
(

1
n

∑n−1
k=0 T

k(x)
)
n

converges for all x ∈ C;

(b) Cesaro equicontinuous if
{

1
n

∑n−1
k=0 T

k
}
n≥1

is an equicontinuous set.

We say that C is ergodic if any Cesaro equicontinuous affine function T : C → C is ergodic. We
say that C is super-ergodic if any convex set which is f.r. in C is ergodic.

Note the that the previous definition of ergodicity extends the usual one in a natural way.
In fact, remember that a Banach space X is ergodic if any Cesaro bounded operator T : X → X

(i.e. supn≥1

∥∥∥ 1
n

∑n−1
k=0 T

n
∥∥∥ <∞) is ergodic (see [75]).

Proposition 4.2.2. A Banach space X is ergodic if and only if BX is ergodic.

Proof. Suppose that X is ergodic. Let T : BX → BX be a Cesaro equicontinuous affine function.
Without loss of generality, we can suppose that T (0) = 0. Note that T can be extended to X by

T ′ : X → X by T ′(x) = T
(

x
∥x∥

)
∥x∥. It is easy to prove that T ′ is linear. Moreover, from the

Cesaro equicontinuity of T , it is clear that T ′ is Cesaro bounded. We deduce that T ′ is ergodic
and then T also is.

Now let us suppose that BX is ergodic. Let T : X → X such that T is Cesaro bounded.
Without loss of generality, we can suppose that ∥T∥ ≤ 1. So T/BX

: BX → BX is well-defined,
Cesaro equicontinuous and then is ergodic by hypothesis. It follows that T is ergodic.

We start with an adaptation of the mean ergodic Theorem (see Theorem 1.1 p.72 in [118]):

Theorem 4.2.3. Let C be a bounded convex subset of a Banach space X and let x, y ∈ C. Let
T : C → C be a Cesaro equicontinuous affine function. The following assertions are equivalent:

(i) Ty = y and y ∈ conv{Tnx}n≥0;

(ii) 1
n

∑n−1
k=0 T

k(x) → y;
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(iii) 1
n

∑n−1
k=0 T

k(x)
w−→ y;

(iv)
(

1
n

∑n−1
k=0 T

k(x)
)
n≥1

has a subsequence that converges weakly to y.

Proof. For simplicity, we write Sn = 1
n

∑n−1
k=0 T

k for all n ≥ 1. Obviously we have that (ii) =⇒
(iii) =⇒ (iv). Suppose that (iv) holds, i.e. (Sϕ(n)(x))n≥1 weakly converges to y for some
stricly increasing function ϕ : N → N. It is clear that y ∈ conv{Tnx}n≥0. Note that for all
n ∈ N

T
(
Sϕ(n)(x)

)
= Sϕ(n)(x) +

1

ϕ(n)
Tϕ(n)(x) − 1

ϕ(n)
x

and since C is bounded, we deduce that T
(
Sϕ(n)(x)

) w−→ y. Moreover T is weakly continuous,

so T
(
Sϕ(n)(x)

) w−→ T (y). It follows that Ty = y.
Now suppose that (i) is true and fix ε > 0. Since T is Cesaro equicontinuous, there exists

η > 0 such that whenever z ∈ C fulfills ∥z − y∥ < η then ∥Sn(y) − Sn(z)∥ < ε for all n ∈ N.
There exists a convex combination

∑p
k=0 akT

k(x) such that
∥∥y −∑p

k=0 akT
k(x)

∥∥ < η. Define
an affine function on C by S =

∑p
k=0 akT

k. For all n > p, one has that

∥SnSx− Snx∥ =
1

n

∥∥∥∥∥∥
n−1∑
k=0

T k

 p∑
j=0

ajT
j(x)

−
n−1∑
k=0

T k(x)

∥∥∥∥∥∥
=

1

n

∥∥∥∥∥∥
n−1∑
k=0

p∑
j=0

ajT
k+j(x) −

n−1∑
k=0

T k(x)

∥∥∥∥∥∥
=

1

n

∥∥∥∥∥∥
p∑
j=0

aj

n−1∑
k=0

(
T k+j(x) −

n−1∑
k=0

T k(x)

)∥∥∥∥∥∥
=

1

n

∥∥∥∥∥∥
p∑
j=1

aj

n−1+j∑
k=n

T k(x)

∥∥∥∥∥∥ .
Since limn

1
nT

n(x) = 0 (C is bounded), we deduce that there existsN > p such that ∥SnSx− Snx∥ <
ε for all n ≥ N . It follows that

∥y − Snx∥ = ∥Sny − Snx∥ ≤ ∥Sny − SnSx∥ + ∥SnSx− Snx∥ < ε+ ε = 2ε

for all n ≥ N since ∥y − Sx∥ < η. We conclude that y = limn Snx.

We obtain the following caracterization of weak compactness:

Theorem 4.2.4. Let C be a closed convex subset of a Banach space X. The following assertions
are equivalent:

(i) C is weakly compact;

(ii) any closed convex subset of C is ergodic.

Proof. (i) =⇒ (ii) follows directly from the previous theorem. Now suppose that C is not
weakly compact. By Proposition 1 in [20], there exists a basic sequence (yn)n ⊂ C and an affine
homeomorphism Φ : A→ B such that Φ(yn) = en for all n ∈ N where

A :=

{ ∞∑
n=1

anyn | an ≥ 0 and

∞∑
n=1

an = 1

}
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and

B :=

{ ∞∑
n=1

anen | an ≥ 0 and

∞∑
n=1

an = 1

}
with (en)n the canonical basis of l1. Define the bilateral shift on l1 by

S

( ∞∑
n=1

anen

)
= a2e1 +

∞∑
n=1

a2n−1e2n+1 +

∞∑
n=2

a2ne2n+2.

Finally we define an affine continous mapping by T = Φ−1SΦ : A → A. It is clear that

T is Cesaro equicontinuous. In fact, we have that 1
n

∑n−1
k=0 T

k = Φ−1
(

1
n

∑n−1
k=0 S

k
)

Φ with∥∥∥ 1
n

∑n−1
k=0 S

k
∥∥∥ ≤ 1 for all n ≥ 1. Moreover, it is proved in theorem 3.2 of [20] that T does not

have any fixed point. By Theorem 4.2.3, we deduce that T is not ergodic. So A is a non-ergodic
subset of C and the proof is complete.

Before proving the super-version of the previous theorem, we need to introduce the shift of
a spreading model. Let Z be a spreading model of a Banach space X built on a bounded good
sequence (xn)n with fundamental sequence (en)n. Following ideas of Brunel and Sucheston (see
[39]), we can define a linear isometry T : c00 → Z by

T

∑
i≥1

aiei

 =
∑
i≥2

ai−1ei.

Then T extends to a linear isometry from Z to Z. It is clear that T (conv{en}n) ⊂ conv{en}n.
In this document, we refer to T as the shift of the spreading model Z.

Proposition 4.2.5. Let X be a Banach space and let Z be a spreading model of X with funda-
mental sequence (en)n. Let T be the shift of Z. The following assertions are equivalent:

(i) T/conv{en}n
has a fixed point;

(ii) (en)n is weakly convergent.

Proof. (ii) =⇒ (i) Suppose that (en)n weakly converges to e ∈ Z. By weak continuity of T ,

we have that en+1 = T (en)
w−→
n
T (e) and since en+1

w−→
n
e we deduce that T (e) = e. Obviously

we also have that e ∈ conv{en}n.
(i) =⇒ (ii) Let e ∈ conv{en}n be a fixed point of T . For n ≥ 1, define Fn = span(ei)i≥n.

It is clear that e ∈ F∞ :=
⋂
n≥1 Fn. Note that we can suppose that (en)n is a basic sequence.

In fact, if (en)n is not a basic sequence then (en)n weakly converges (by Proposition 1.5.13) and
we are done. So let us suppose that (en)n is a basic sequence. Then F∞ = {0} and it follows
that e = 0 ∈ conv{en}n. Since (en)n is a spreading sequence, this is equivalent to the fact that

en
w−→
n

0 by Proposition 1.4.10.

We are ready to prove the super-version of Theorem 4.2.4:

Theorem 4.2.6. Let C be a closed convex subset of a Banach space X. The following assertions
are equivalent:

(i) C is SWC;

(ii) C is super-ergodic;
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(iii) any affine isometry from a set f.r. in C into itself is ergodic.

Proof. (i) =⇒ (ii) follows directly from the previous theorem. (ii) =⇒ (iii) is obvious.

Suppose that C is not SWC and let us show that (iii) does not hold. There exists a free
ultrafilter U on N such that CU is not weakly compact. So there exists a sequence (xn)n ∈ CU
without any convergent subsequence. Taking subsequence if necessary, we can suppose that
(xn)n is a good sequence. Let Z be the spreading model built on (xn)n with fundamental
sequence (en)n and consider let T be the shift of Z.

If (en)n is equivalent to the canonical basis of l1 then the mean sequence ( 1
n

∑n−1
k=0 T

k(e1))n
does not converge since 1

n

∑n−1
k=0 T

k(e1) = 1
n

∑n−1
k=0 ek. Remember that conv{en}n is f.r. in

conv{xn}n ⊂ CU by Proposition 1.4.7 and that CU is f.r. in C by Proposition 1.3.8. Since
conv{en}n is not ergodic, it follows that (ii) does not hold.

Now we suppose that (en)n is not equivalent to the canonical basis of l1. To conclude, we

are going to show again that the Cesaro mean sequence ( 1
n

∑n−1
k=0 T

k(e1))n can not converge.
Suppose on the contrary that this sequence converges. This implies that (en)n weakly converges
by Proposition 1.4.10. Since (en)n is not equivalent to the canonical basis of l1, it follows that
(xn)n weakly converges by Proposition 1.4.6, which is a contradiction.

Theorem 4.2.7. Superreflexivity is equivalent to super-ergodicity.

Proof. Suppose that X is not super-ergodic and let Y be a Banach space f.r. in X which is not
ergodic. So BY is not ergodic. By Theorem 4.2.4, it follows that BY is not weakly compact.
So Y is not reflexive and X is not superreflexive. Now suppose that X is super-ergodic and let
Y be a Banach space which is f.r. in X. Then BY is f.r. in BX and then BY is ergodic by the
previous theorem. So Y is ergodic by Proposition 4.2.2.

4.2.2 Fixed point property and (super) weak compactness

The objective of this section is to generalize Theorem 3.6 in [50]. The authors proved that a
closed bounded convex subset C of a Banach space X is SWC if and only if any affine isometry
T : C → C which can be extended to an affine isometry on X has a fixed point. However, it
could exist affine isometries on C without any affine isometric extension to X. That is why we
propose a intrinsic characterization.

Definition 4.2.8. Let C be a class of convex mappings. We say that a closed convex bounded
subset C of a Banach space X has the fixed point property (FPP in short) for C, if every mapping
from C into itself belonging to C has a fixed point. We say that C has the super-FPP for C
if any convex set which is f.r. in C has the FPP for C. Finally, if any closed convex bounded
subset of X has the FPP for C, we say that X has the FPP for C.

Lemma 4.2.9. Let C be a convex subset of a Banach space (X, ∥.∥) such that ∥.∥2 is uniformly
convex on C. If D is a convex subset of a Banach space (Y, |.|) which is f.r. in C, then |.|2 is
uniformly convex on D.

Proof. Define δ(t) = min{δ∥.∥2

(
t
2

)
, δg(t)} > 0 where g(s) = s2 for all s ∈ R. Let x, y ∈ D.

Suppose first that x and y are linearly independant. For all n ∈ N, there exist Cn ⊂ C and an
isomorphism Tn : span{x, y} → span(Cn) such that Tn(x), Tn(y) ∈ C and(

1 − 1

n

)
|z| ≤ ∥Tn(z)∥ ≤

(
1 +

1

n

)
|z|
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for all z ∈ span{x, y}. For all n ≥ 2, it follows that(
1 − 1

n

)2 ∣∣∣∣x+ y

2

∣∣∣∣2 ≤
∥∥∥∥Tn(x) + Tn(y)

2

∥∥∥∥2
≤ ∥Tn(x)∥2 + ∥Tn(y)∥2

2
− δ∥.∥2(∥Tn(x) − Tn(y)∥)

≤
(

1 +
1

n

)2 |x|2 + |y|2

2
− δ∥.∥2

(
|x− y|

2

)
and letting n→ ∞ we obtain that∣∣∣∣x+ y

2

∣∣∣∣2 ≤ |x|2 + |y|2

2
− δ∥.∥2

(
|x− y|

2

)
≤ |x|2 + |y|2

2
− δ(|x− y|).

Now if x and y are linearly dependant, one can easily prove that∣∣∣∣x+ y

2

∣∣∣∣2 ≤ |x|2 + |y|2

2
− δg(|x− y|) ≤ |x|2 + |y|2

2
− δ(|x− y|)

and the proof is complete.

We recall that a closed convex subset C of a Banach space X has normal structure (see [116])
if any bounded closed convex subset D of C containing more than one point has a diametral
point x ∈ D, i.e. such that sup{∥x− y∥ : y ∈ D} < diam(D).

Lemma 4.2.10. Suppose that C is a convex subset of a Banach space X such that ∥.∥2 is
uniformly convex on C. Then C has normal structure.

Proof. Let D be a bounded closed convex subset of C and let d = diam(D). Fix x, y ∈ D
two distinct point and let us show that x+y

2 is a diametral point of D. Suppose that it is not

diametral. Then for all n ∈ N there exists xn ∈ D such that
∥∥x+y

2 − xn
∥∥2 > d2 − 1

n . It follows
that:

d2 − 1

n
<

∥∥∥∥x+ y

2
− xn

∥∥∥∥2
= 2

∥∥∥∥1

2

(
x− xn

2
+
y − xn

2

)∥∥∥∥2
≤
∥∥∥∥x− xn

2

∥∥∥∥2 +

∥∥∥∥y − xn
2

∥∥∥∥2 − δ∥.∥2(∥x− y∥)

≤ d2 − δ∥.∥2(∥x− y∥)

and we obtain a contradiction by letting n→ ∞.

Theorem 4.2.11. Let C be a bounded closed convex subset of a Banach space X. The following
assertions are equivalent:

(i) C is SWC;

(ii) C has the super-(FPP for affine isometries);

(iii) C has the super-(FPP for continuous affine mappings);
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(iv) there exists an equivalent norm on X such that C the super-(FPP for non-expansive map-
pings).

Proof. Any continuous affine self-mapping of a closed convex set is weakly continuous by Lemma
1.5.7. It follows that (i) =⇒ (iii) by Schauder-Tychonoff theorem. The implication (iii) =⇒
(ii) is obvious.

(ii) =⇒ (i) That follows directly from Theorem 4.2.6 and Theorem 4.2.3.
(i) =⇒ (iv) By Corollary 2.4.9, there exists an equivalent |.| norm on X such that |.|2

is uniformly convex on C. Let us show that (C, |.|) has the super-(FPP for non-expansive
mappings). Let D be any convex set f.r. in (C, |.|). By the two previous lemmas, D has normal
structure. By Kirk’s theorem (see [116]), it follows that D has the FPP for non-expansive
mapping.

(iv) =⇒ (i) Under this new norm, C has the super-(FPP for affine isometries) and we
deduce that C is SWC thanks to the implication (ii) =⇒ (i).

Remark 4.2.12. In general, it is not true that a convex SWC set has the super-(FPP for
isometries). In fact, Alspach constructed a weakly compact set K (and then SWC, see the next
part) of L1[0, 1] and an isometry T : K → K without any fixed point (see [6]).

Remark 4.2.13. The implication (i) =⇒ (ii) can also be proved directly using the existence
of lower semi-continuous uniformly convex functions on C. Let T : C → C be any isometric
affine mapping. For ε > 0, we define fε(x) as the height of the tallest ε-separated dyadic tree
with root x. As in the proof of Theorem 2.3.4, we have that fε is ε-quasi concave. Since a
ε-separated dyadic tree with root x gives a ε-separated dyadic tree with root T (x) through T ,
we have that fε◦T ≥ fε. By Lemma 2.3.1, we deduce that the function hε := 3−fε is ε-uniformly
convex and verifies that hε ◦ T ≤ hε. Theorem 2.2.6 implies that gε = conv(hε) is ε+-uniformly
convex convex and lower semi-continuous. Moreover, note that gε ◦ T ≤ gε. In fact, we have
that gε ◦ T = conv(hε) ◦ T ≤ hε ◦ T ≤ hε where gε ◦ T is convex lower semi-continuous and
then gε ◦ T ≤ conv(hε) = gε. The closed envelope g of the function

∑
n≥1

1
2n∥g1/n∥∞

g1/n is

uniformly convex, lower semi-continuous and verifies that g ◦ T ≤ g. The function g is convex
lower semi-continuous (thus convex w-lower semi-continuous) on a weakly compact set and then
reaches his minimum on C at some point x ∈ C. Since g is uniformly convex, this miminum is
unique. Moreover, we have that g(T (x)) ≤ g(x). It follows that T (x) = x.

4.2.3 Application to S2WCG Banach spaces

Theorem 4.6 of [50] is obtained as an easy consequence of the previous results:

Proposition 4.2.14. Let X be a S2WCG Banach space. Then X admits an equivalent norm
such that any weakly compact convex subset has the FPP for non-expansive mappings.

Proof. Let K be a SWC absolutely convex set that strongly generates X. Consider that X is
endowed with the norm given by Theorem 1.5.33. It follows that the square of the norm is
uniformly convex on any weakly compact subset of X and then any weakly compact subset has
normal structure by Lemma 4.2.10. The conclusion is obtained thanks to Kirk’s theorem.

Combining the results of the previous parts, we obtain:

Proposition 4.2.15. Let C be a closed convex subset of a S2WCG Banach space X. The
following assertions are equivalent:

(i) C is weakly compact;

(ii) C is SWC;
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(iii) C is superergodic;

(iv) any closed convex subset of C is ergodic;

(v) any closed convex subset of C has the FPP for continuous affine mappings.

Proof. (i) =⇒ (ii) follows from the fact that X is S2WCG. (ii) =⇒ (iii) follows from Theorem
4.2.6. (iii) =⇒ (iv) is obvious. (iv) =⇒ (v) follows theorem 4.2.3. (v) =⇒ (i) is Theorem
3.2 in [20].

Proposition 4.2.16. Let Y be a subspace of a S2WCG Banach space X. The following asser-
tions are equivalent:

(i) Y is reflexive;

(ii) Y is superreflexive;

(iii) Y is super-ergodic;

(iv) Y is ergodic;

(iv) Y has the FPP for continuous affine mappings.

Proof. It follows directly from the previous results.

Remark 4.2.17. In the case of L1(Ω,A, µ,R), the previous corollary can be considerably
improved. In that case, Y is reflexive if and only if Y has the FPP for non-expansive mappings.
One implication is due to Maurey (Theorem 1 in [132]) and the other one is due to Dowling and
Lennard (theorem 1.4 in [61]).

4.2.4 A remark on the M-FPP

Definition 4.2.18. Let (P) be a property of Banach spaces. We say that a Banach space X
has the property M-(P) if any spreading model of X has (P).

It is worth noting that it does not imply that X has (P) in general. The notion of M-property
has been introduced by Beauzamy in [19] (see Chapter 5). In this book, the author claims that
there does not exist any characterization of the M-reflexivity. As far as we know, this question
is still opened. Before stating the result, we just need to recall the following result due to James
(see Theorem 2.2 in [103]). However we give a simplest proof:

Proposition 4.2.19. Let X be a Banach lattice. The following assertions are equivalent:

(i) X is superreflexive;

(ii) X has non-trivial type.

Proof. Theorem 1.3.6 implies that any superreflexive Banach spaces has non-trivial type. So let
us suppose that (ii) holds. Let U be any ultrafilter. Then XU is a lattice (see Proposition 3.2
in [97]) with non-trivial type. In particular, XU can not contain an isomorphic copy of c0 or ℓ1.
By Theorem in 1.c.5 in [128], it follows that XU is reflexive, i.e. X is superreflexive.

Note that the previous result is true for Banach spaces with an unconditional Schauder basis.

If X has a non-trivial type, it is possible to characterize the M-reflexivity:

Proposition 4.2.20. Let X be a Banach space with non-trivial type. The following assertions
are equivalent:
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(i) X is reflexive;

(ii) X has M-reflexivity;

(iii) X has M-superreflexivity.

Proof. (iii) =⇒ (ii) =⇒ (i) is obvious. Let suppose that (i) holds. Suppose that Z is a
spreading model built on (xn)n∈N whose basic sequence (en)n∈N. Since X is reflexive (and using
the fact that the spreading model built on (xn)n is isomorfic to the spreading model built on

(xn − x)n), we can suppose xn
w−→ 0. In this case, (en)n∈N is a unconditional basic sequence

by Proposition 1.4.10. Then Z is a Banach space with an unconditionnal Schauder basis and
non-trivial type. Thus Z is superreflexive by Proposition 4.2.19.

For the study of the M-FPP, we start with the following lemma:

Lemma 4.2.21. The M-(FPP for affine isometries) implies the ABS.

Proof. Let X be a Banach space and suppose that X does not have the ABS. By Theorem
1.4.12, it follows that X has a spreading model Z isomorphic to l1. Then the fundamental
sequence (en)n of Z is equivalent to the canonical basis of l1 (see Lemma 1 p.39 in [19]). In
particular, (en)n is not weakly convergent. By Proposition 4.2.5, we deduce that conv{en}n and
thus Z do not have the FPP for affine isometries.

It is well-known that the fixed point property does not imply reflexivity. In fact, l1 can be
renormed to have the FPP for non-expansive mappings (see [125]). However the M-FPP implies
reflexivity. More precisely we have that:

Theorem 4.2.22. The M-(FPP for affine isometries) implies the BS.

Proof. Let X be a Banach space with the M-(FPP for affine isometries). By the previous lemma
and Proposition 1.4.14, we need to prove that X is reflexive. By contradiction, suppose that
X is not reflexive. There exists a bounded sequence (xn)n without any weakly convergent
subsequence. By taking subsequence if necessary, we can suppose that (xn)n is a good sequence
generating a spreding model Z with fundamental sequence (en)n. By Theorem 1.4.12 and
Lemma 1.4.11, (en)n is not equivalent to the canonical basis of l1. Since (xn)n is not weakly
convergent, it follows that (en)n is not weakly convergent by Proposition 1.4.6. By Proposition
4.2.5, we conclude that Z can not have the FPP for affine isometries, which is a contradiction.

Maurey proved that any isometry T : C → C on a closed convex subset C of a superreflexive
Banach space has a fixed point (see for example Theorem F p.112 in [154]). Any continuous
affine mapping T : C → C also enjoys this property:

Theorem 4.2.23. Let X be a Banach space. The following assertions are equivalent:

(i) X is superreflexive;

(ii) X has the super-(FPP for affine isometries);

(iii) X has the super-(FPP for continuous affine mappings);

(iv) X has the super-(FPP for isometries).

Proof. By the previous theorem, we have that the super-(FPP for affine isometries) implies
the BS. By Theorem 1.5.15, superreflexivity is equivalent to the super-BS and it follows that
(ii) =⇒ (i). We have that (i) =⇒ (iii) by Schauder-Tychonoff theorem and (iii) =⇒ (ii)
is obvious. (i) =⇒ (iv) is Maurey’s Theorem. Since (iv) =⇒ (ii) is obvious, the proof is
complete.





Chapter 5

Uniform Banach-Saks properties

The main objective of this section is to establish the following graph of implications:

(strong) p-BS uniform BS (A∞) BS

uniform ABS alternate-(A∞) ABS

uniform WABS weak alternate-(A∞) WABS

(strong) p-WBS uniform WBS weak-(A∞) WBS

where BS holds for Banach-Saks, A for alternate and W for weak.

5.1 The uniform WBS

5.1.1 The weak-(A∞) property

The property (Ak) (see definition 5.2.1) has been introduced by Partington in [139]. Re-
moving the reflexivity of the space, we define the weak-(Ak):

Definition 5.1.1. Let X be a Banach space and let k ≥ 2. We say that X has the weak-
(Ak) if there exists θ ∈ (0, 1) such that for all (xn)n ⊂ BX such that xn

w−→ 0, there exist
p1 < p2 < ... < pk such that

1

k

∥∥∥∥∥
k∑
i=1

xpi

∥∥∥∥∥ ≤ θ.

We say that X has the weak-(A∞) if X has the weak-(Ak) for some k ≥ 2.

Núnez introduced in [137] a definition of uniform weak Banach-Saks. We find that the
following definition is more natural. It turns out that both definitions are in fact equivalent (see
Proposition 5.1.4).

Definition 5.1.2. Let X be a Banach space. We say that X has the uniform weak Banach-Saks
property (in short uniform WBS) if there exists a sequence (an)n of real positive numbers such

75
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that an → 0 and for all (xn)n ⊂ BX such that xn
w−→ 0, there is a subsequence (x′n)n of (xn)n

such that
1

m

∥∥∥∥∥
m∑
k=1

x′k

∥∥∥∥∥ ≤ am

for all m ≥ 1.

We start with the following easy arithmetical result:

Lemma 5.1.3. Let (bn)n a sequence of strictly positive numbers. The following assertions are
equivalent:

(i) there exists a sequence of strictly positive numbers (an)n such that for all n ≥ 1

1

n

n∑
k=1

ak ≤ bn

(ii) there exists a sequence of strictly positive numbers (an)n such that for all subsequence
(a′n)n of (an)n and all n ≥ 1

1

n

n∑
k=1

a′k ≤ bn

(iii) infn nbn > 0.

Proof. (iii) =⇒ (ii) Let l ∈ (0, infn nbn). Define an = l
2n for all n ∈ N. Let (aϕ(n))n be a

subsequence of (an)n. Then

n∑
k=1

aϕ(k) = l

n∑
k=1

1

2ϕ(k)
≤ l ≤ nbn,

that is
1

n

n∑
k=1

aϕ(k) ≤ bn

for all n ≥ 1.
(ii) =⇒ (i) is obvious.
(i) =⇒ (iii) Suppose that (iii) does not hold. Then infn nbn = 0. There exists a subse-

quence such that ϕ(n)bϕ(n) → 0. If there exists a sequence (an)n as in (i) then

a1 ≤
ϕ(n)∑
k=1

ak ≤ ϕ(n)bϕ(n) → 0,

which is a contradiction since a1 > 0.

Proposition 5.1.4. Let X be a Banach space. The following assertions are equivalent:

(i) X has the uniform WBS;

(ii) there exists a sequence (bn)n of real positive numbers such that bn → 0 and for all

(xn)n ⊂ BX such that xn
w−→ 0, there is a subsequence (x′n)n of (xn)n such that for

every subsequence (x′′n)n of (x′n)n;

1

m

∥∥∥∥∥
m∑
k=1

x′′k

∥∥∥∥∥ ≤ bm

for all m ≥ 1.
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(iii) there exists a sequence (cn)n of real positive numbers such that cn → 0 and for all (xn)n ⊂
BX such that xn

w−→ 0 and for all m ≥ 1, there exist p1 < ... < pm such that

1

m

∥∥∥∥∥
m∑
i=1

xpi

∥∥∥∥∥ ≤ cm.

In such a case, if one of the sequences (an)n (where (an)n is given by the definition of uniform

WBS), (bn)n or (cn)n is O(n
1
p−1) for some p ∈ (1,∞), then the others can be chosen such that

they also are O(n
1
p−1).

Proof. (ii) =⇒ (i) =⇒ (iii) is obvious. Suppose that (iii) holds. Let (cn)n as in (iii). Define

bn =
3qn
n

+ 3cn

where qn = E
(

ln(n)
ln(2)

)
for all n ∈ N. Note that bn → 0 and nbn → ∞, so in particular

infn nbn > 0. Let (xn)n ⊂ BX such that xn
w−→ 0. First, suppose that (xn)n admits a convergent

subsequence to 0. Take (an)n as in (ii) of the previous lemma. Choose a subsequence (x′n)n of
(xn)n such that ∥x′n∥ ≤ an for all n ∈ N. Then if (x′ϕ(n))n is a subsequence of (x′n)n, we have
that

1

n

∥∥∥∥∥
n∑
k=1

x′ϕ(k)

∥∥∥∥∥ ≤ 1

n

n∑
k=1

aϕ(k) ≤ bn

for all n ∈ N and we are done. Now, let suppose that (xn)n does not admit any convergent
subsequence. By taking a subsequence if necessary, we can suppose that (xn)n is a good sequence
generating a spreading model Z with fundamental basis (en)n. For all k ∈ N, define Nk = 2k. By
Proposition 1.4.3, there exists a strictly increasing sequence (pk)k such that for all n1 < ... < nNk

with n1 ≥ pk and all a1, ..., aNk

1

2

∥∥∥∥∥
Nk∑
i=1

aixni

∥∥∥∥∥ ≤

∥∥∥∥∥
Nk∑
i=1

aiei

∥∥∥∥∥ ≤ 3

2

∥∥∥∥∥
Nk∑
i=1

aixni

∥∥∥∥∥ .
For all k ∈ N, we define x′k = xpk . Let m ∈ N and take k such that m ≤ Nk. By considering
the sequence (xn)n≥pk and by (iii), there exists pk ≤ n1 < ... < nm such that

1

m

∥∥∥∥∥
m∑
i=1

xni

∥∥∥∥∥ ≤ cm.

It follows that

1

m

∥∥∥∥∥
m∑
i=1

ei

∥∥∥∥∥ ≤ 3

2m

∥∥∥∥∥
m∑
i=1

xni

∥∥∥∥∥ ≤ 3

2
cm
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for all m ≥ 1. Now, let (x′′n)n be a subsequence of (x′n)n. Let n ≥ 1. We have that

1

n

∥∥∥∥∥
n∑
i=1

x′′i

∥∥∥∥∥ ≤ 1

n

∥∥∥∥∥
qn∑
i=1

x′′i

∥∥∥∥∥+
1

n

∥∥∥∥∥∥
n∑

i=qn+1

x′′i

∥∥∥∥∥∥
≤ qn

n
+

2

n

∥∥∥∥∥∥
n∑

i=qn+1

ei

∥∥∥∥∥∥
≤ qn

n
+

2

n

(∥∥∥∥∥
n∑
i=1

ei

∥∥∥∥∥+

∥∥∥∥∥
qn∑
i=1

ei

∥∥∥∥∥
)

≤ 3qn
n

+ 3cn = bn

and the proof of the equivalence is complete. The last assertion is easily deduced from the
proof.

Theorem 5.1.5. The uniform WBS and the weak-(A∞) are equivalent.

Proof. Suppose that X has the uniform WBS. Take (cn)n as in (iii) of the previous proposition.

Choose n0 ≥ 2 such that cn0
< 1. Let (xn)n ⊂ BX such that xn

w−→ 0. There exists p1 < ... < pn0

such that
1

n0

∥∥∥∥∥
n0∑
i=1

xpi

∥∥∥∥∥ ≤ cn0 .

Then X has property (An0
).

Now let suppose that X has property (Aj0) for some j0 ≥ 2 and let θ given by the definition.
For m ∈ N, define

cm = 2
jpm+1
0

m
θpm+1

where pm =
[
ln(m)
ln(j0)

]
. Note that cm → 0. Let (xn)n ⊂ BX such that xn

w−→ 0. If (xn)n has a

subsequence that converges to 0, then for all m ≥ 1 there exists p1 < ... < pm such that

1

m

∥∥∥∥∥
m∑
i=1

xpi

∥∥∥∥∥ ≤ cm.

So we can suppose that infn ∥xn∥ > 0. So, by taking subsequence if necessary, we can suppose
that (xn)n is a basic sequence with basic constant less that 2. By induction, we construct a
subsequence (xmk

)k of (xn)n such that

1

j0
∥xmkj0+1

+ ...+ xm(k+1)j0
∥ ≤ θ

for all k ∈ N. For all n, define

x1n =
1

j0
(xmnj0+1

+ ...+ xm(n+1)j0
).

Since ∥x1n∥ ≤ θ and x1n
w−→ 0, we can construct a strictly increasing sequence (mn(1))n such that

1

j0
∥x1mkj0+1(1)

+ ...+ x1m(k+1)j0
(1)∥ ≤ θ2
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for all k ∈ N. For all n, define

x2n =
1

j0
(x1mnj0+1(1)

+ ...+ x1m(n+1)j0
(1)).

Following by induction, we construct a sequence (xpn)p for all p ∈ N such that ∥xpn∥ ≤ θp and

xpn
w−→ 0. Now we can choose a strictly increasing sequence (mn(p))n such that

1

j0
∥xpmkj0+1(p)

+ ...+ xpm(k+1)j0
(p)∥ ≤ θp+1.

For all n, define

xp+1
n =

1

j0
(xpmnj0+1(p)

+ ...+ xpm(n+1)j0
(p)).

Let m ∈ N. By definition of pm, one has that jpm0 ≤ m < jpm+1
0 . By construction, xpm+1

1 is
the arithmetic mean of jpm+1

0 terms of (xn)n, say x′1, ..., x
′
jpm+1
0

. Using the fact that (xn)n is a

basic sequence, we obtain that

1

m

∥∥∥∥∥
m∑
i=1

x′i

∥∥∥∥∥ ≤ 2

m

∥∥∥∥∥∥
jpm+1
0∑
i=1

x′i

∥∥∥∥∥∥ ≤ 2

m
jpm+1
0 θpm+1 = cm,

i.e. X has the uniform WBS by the previous proposition.

Remark 5.1.6. The previous theorem could have been proved using Kakutani’s method (see
proof of Theorem 5.4.7). However, Proposition 5.1.4 has its own interest and will be usefull in
the following section.

Remark 5.1.7. There exist Banach spaces with the BS but without the uniform WBS (see
Theorem 7 in [137]).

5.1.2 The strong p-WBS

Definition 5.1.8. Let X be a Banach space and p ∈ (1,+∞]. We say that X has the strong
p-weak Banach-Saks property (in short, strong p-WBS) if there exists C > 0 such that for all

(xn)n ⊂ BX such that xn
w−→ 0, there exists a subsequence (x′n)n of (xn)n such that∥∥∥∥∥

n∑
k=1

x′k

∥∥∥∥∥ ≤ Cn
1
p

for all n ≥ 1 (with the convention n
1
∞ = 1).

In the previous definition, C does not depend on the sequence (xn)n. In the litterature, one
can find two definitions of the p-WBS: the previous one and a definition where C can depend
on (xn)n and called p-WBS in this document (see Definition 5.1.10). The term ”strong” lays
the emphasis upon the fact that C does not depend on the weakly null sequence. It is obvious
that the strong p-WBS implies the p-WBS. The reciproque is not clear and has been proved
only in some cases (for example in some rearrangement invariant function spaces, see Lemma
4.2 in [151]). The reciproque will be established later.

Theorem 5.1.9. A Banach space has the uniform WBS if and only if it has the strong p-WBS
for some p ∈ (1,+∞).
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Proof. We only prove the non-trivial implication. Suppose that X has the uniform WBS. Then

there exists k0 ≥ 2 such that X has the weak-(Ak0). Let θ ∈
(

1
k0
, 1
)

given by the definition of

weak-(Ak0). By the proof of Theorem 5.1.5, we deduce that (iii) of Proposition 5.1.4 holds with

cm = 2
kpm+1
0

m
θpm+1

where pm =
[
ln(m)
ln(k0)

]
. Note that

mcm ≤ 2k0mθ
ln(m)
ln(k0) .

If p ∈
(

1, 1

1+
ln(θ)
ln(k0)

)
(note that 1

1+
ln(θ)
ln(k0)

> 1 since θ > 1
k0

), it follows that

mcm

m
1
p

→ 0.

In particular, we deduce that cm = O(m
1
p−1). The sequence (an)n given by the definition of

uniform WBS can be chosen such that am = O(m
1
p−1) (by Proposition 5.1.4), i.e. X has the

strong p-WBS.

5.1.3 Equivalence between the strong p-WBS and p-WBS

Definition 5.1.10. Let X be a Banach space and p ∈ (1,+∞]. We say that X has the p-weak

Banach-Saks property (in short, p-WBS) if for all (xn)n ⊂ BX such that xn
w−→ 0, there exist

C > 0 and a subsequence (x′n)n of (xn)n such that∥∥∥∥∥
n∑
k=1

x′k

∥∥∥∥∥ ≤ Cn
1
p

for all n ≥ 1 (with the convention n
1
∞ = 1).

Definition 5.1.11. Let X be a Banach space and let (xk)k be a bounded good sequence. For
all n ≥ 1, we define

s((xk)k, n) = lim
m

∥∥∥∥∥
n∑
k=1

xm+k

∥∥∥∥∥ = lim
p1→∞,p1<...<pn

∥∥∥∥∥
n∑
k=1

xpk

∥∥∥∥∥ .
Remark 5.1.12. Note that s((xk)k, n) is just the norm of

∑n
k=1 ek where (ek)k is the funda-

mental basis of the spreading model generated by (xk)k.

The following lemma is contained in [148] (without using spreading models in the second
part of the proof):

Lemma 5.1.13. Let X be a Banach space with the p-WBS for some p ∈ (1,+∞]. Then there
exists C > 0 such that for all weakly null good sequences (yk)k ⊂ BX

s((yk)k, n) ≤ Cn
1
p

for all n ≥ 1.
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Proof. Suppose that the conclusion of the lemma is false. We claim that there exists a weakly
null good sequence (yk)k ⊂ BX such that

sup
n

s((yk)k, n)

n
1
p

= ∞.

Let (y1k)k ⊂ BX be any weakly null good sequence. Define q1 = 1. By induction, we construct
sequences (ynk )k, (µ′

n)n, (xnk )k, (qn)n, (µn) and (znk )k such that for all n ≥ 1

µ′
n+1 = min

 1

2n
, min
1≤l≤n

 lq
1
p−1

l

2n−l+1


 , (5.1)

s((xn+1
k )k, qn+1) ≥ 4(n+ 1)

µ′
n

q
1
p

n+1, (5.2)

µn+1 =

{
µ′
n+1 if s((ynk )k, qn+1) ≤ 2(n+ 1)q

1
p

n+1,

0 if not
(5.3)

zn+1
k =

{
ynk if k ≤ n+ 1

ynk + µn+1x
n+1
k if k > n+ 1

(5.4)

where (xnk )k ⊂ BX is a weakly null good sequence and (yn+1
k )k is a good subsequence of (zn+1

k )k
such that yn+1

k = zn+1
k for all k ∈ {1, ..., n + 1}. Note that the existence of (xnk )k and (qn)n in

(5.2) is guaranteed by our initial hypothesis. By construction, we have that

s((yn+1
k )k, qn+1) ≥ 2(n+ 1)q

1
p

n+1 (5.5)

for all n ≥ 1. In fact, write yn+1
k = zn+1

ϕ(k) and suppose first that µn+1 = 0. By (5.3), one has

that s((ynk )k, qn+1) > 2(n+ 1)q
1
p

n+1 and it follows that

s((yn+1
k )k, qn+1) = lim

m

∥∥∥∥∥
qn+1∑
k=1

zn+1
ϕ(m+k)

∥∥∥∥∥ = lim
m

∥∥∥∥∥
qn+1∑
k=1

ynϕ(m+k)

∥∥∥∥∥
= s((ynk )k, qn+1) > 2(n+ 1)q

1
p

n+1.

Now if µn+1 = µ′
n+1, then s((ynk )k, qn+1) ≤ 2(n+ 1)q

1
p

n+1 and it follows that

s((yn+1
k )k, qn+1) = lim

m

∥∥∥∥∥
qn+1∑
k=1

zn+1
ϕ(m+k)

∥∥∥∥∥ = lim
m

∥∥∥∥∥
qn+1∑
k=1

ynϕ(m+k) + µ′
n+1x

n+1
ϕ(m+k)

∥∥∥∥∥
≥ µ′

n+1s((x
n+1
k )k, qn+1) − s((ynk )k, qn+1)

≥ 2(n+ 1)q
1
p

n+1.

We are now ready to define the sequence (yk)k. For k ≥ 1, define y′k = ykk = zkk . By construction,
it is not hard to see that there exist a increasing function ϕ : N → N and a function ψ : N2 → N
such that ψ(k, n) ≥ k and

y′k = y1ϕ(k) +

k−1∑
n=2

µnx
n
ψ(k,n) (5.6)
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for all k ≥ 3. From the facts that µn ≤ 1
2n , y1k

w−→ 0 and xnk
w−→
k

0 for all n, it is now clear

that y′k
w−→ 0. Now, let (yk)k be any good subsequence of (y′k)k. Using the fact that y′k can be

expressed in terms of ynk (n < k) and (xjk)k (with n < j < k) in a similar way as in (5.6), it
follows by triangle inequality that

s((yk)k, qn) ≥ s((ynk )k, qn) −
∞∑

j=n+1

µjs((x
j
k)k, qn)

≥ 2nq
1
p
n −

∞∑
j=n+1

µjqn

≥ 2nq
1
p
n − qn

∞∑
j=n+1

nq
1
p−1
n

2j−n
= nq

1
p
n

and the claim is proved.
Now let Z be the spreading model generated by (yk)k with fundamental basis (ek)k. Let (Nk)k

be a increasing sequence of natural numbers such that N
1
p

k ≥ 6 and

sup
n

s((yk)k, Nk)

N
1
p

k

≥ k

for all k ≥ 1. By Proposition 1.4.3, there exists a increasing sequence (pk)k such that

1

2

∥∥∥∥∥
Nk∑
i=1

aiyni

∥∥∥∥∥ ≤

∥∥∥∥∥
Nk∑
i=1

aiei

∥∥∥∥∥ ≤ 3

2

∥∥∥∥∥
Nk∑
i=1

aiyni

∥∥∥∥∥
for all k ≥ 1, n1 < ... < nNk

with n1 ≥ pk and a1, ..., aNk
∈ R. Define y′k = ypk for all k ≥ 1 and

let (y′′k )k be an arbitrary subsequence of (y′k)k. For all k ≥ 1, one has that

1

N
1
p

k

∥∥∥∥∥
Nk∑
i=1

y′′i

∥∥∥∥∥ =
1

N
1
p

k

∥∥∥∥∥
Nk+k∑
i=k+1

y′′i +

k∑
i=1

y′′i −
Nk+k∑
i=Nk+1

y′′i

∥∥∥∥∥
≥ 2

3N
1
p

k

∥∥∥∥∥
Nk∑
i=1

aiei

∥∥∥∥∥− 2k

N
1
p

k

≥ 2k

3
− k

3
=
k

3
.

This implies that X can not have the p-WBS, which is a contradiction.

Theorem 5.1.14. For all p ∈ (1,+∞), the p-WBS and the strong p-WBS are equivalent.

Proof. Suppose that X has the p-WBS. By the previous lemma, let C > 0 such that for all
weakly null good sequence (yk)k ⊂ BX

s((yk)k, n) ≤ Cn
1
p

for all n ≥ 1. Let (xn)n ⊂ BX be a weakly null sequence. Let (x′n)n be a good subsequence of

(xn)n. For all n ≥ 1, we have that s((x′k)k, n) ≤ Cn
1
p . In particular, for all n ≥ 1, there exists

p1 < ... < pn such that ∥∥∥∥∥
n∑
k=1

x′pk

∥∥∥∥∥ ≤ 2Cn
1
p .

Then (iii) of Proposition 5.1.4 holds with cn = 2Cn
1
p−1. It follows that (i) of Proposition 5.1.4

holds with an = O(n
1
p−1), which means exactly that X has the strong p-WBS.
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The case p = ∞ can not be deduced with the same arguments. This can be seen directly
in the proof of Proposition 5.1.4. In fact, we do not know if (an)n can be chosen such that
nan = O(1), even if ncn = O(1) is. That is why we will used another strategy.

We will need some tools from Ramsey’s theory which can be found in [58] (chapter 10). If
M ⊂ N, we denote by P∞(M) the set of all infinite subsets of M . We consider P∞(N) endowed
with the Ellentuck topology. We recall that this topology is stronger than the product topology.
A subset S ⊂ P∞(N) is called a Ramsey set if there exists M ∈ P∞(N) such that P∞(M) ⊂ S or
P∞(M) ⊂ P∞(N)\S. It is well known that any Borel set (in the Ellentuck topology) is Ramsey.

In [82], the authors proved the following result:

Proposition 5.1.15. Let X be a Banach space. The following assertions are equivalent:

(i) X has ∞-WBS;

(ii) for all (xn)n ⊂ BX such that xn
w−→ 0, there exist C > 0 and a subsequence (x′n)n of (xn)n

such that for every subsequence (x′′n)n of (x′n)n∥∥∥∥∥
n∑
k=1

x′′k

∥∥∥∥∥ ≤ C

for all n ≥ 1;

(iii) any normalized weakly null sequence contains a subsequence equivalent to the canonical
basis of c0.

Remark 5.1.16. Note that the previous assertions are equivalent to the fact that X has the
hereditary Dunford-Pettis property (Proposition 2 in [45]).

Using the same tools, we prove the following similar result:

Proposition 5.1.17. Let X be a Banach space. The following assertions are equivalent:

(i) X has the uniform ∞-WBS;

(ii) there exists C > 0 such that for all (xn)n ⊂ BX such that xn
w−→ 0, there exists a

subsequence (x′n)n of (xn)n such that for every subsequence (x′′n)n of (x′n)n∥∥∥∥∥
n∑
k=1

x′′k

∥∥∥∥∥ ≤ C

for all n ≥ 1;

(iii) there exists M > 0 such that any normalized weakly null sequence (xn)n contains a subse-
quence (x′n)n equivalent to the canonical basis of c0 such that∥∥∥∥∥

∞∑
n=1

anx
′
n

∥∥∥∥∥ ≤M sup
n≥1

|an|

for all (an)n ∈ c00.

Proof. (i) =⇒ (ii) Let C > 0 given by the definition of uniform ∞-WBS. Let (xn)n ⊂ BX
such that xn

w−→ 0. Define

S =

{
M = (mk)k∈N ∈ P∞(N) | ∀n ≥ 1

∥∥∥∥∥
n∑
k=1

xmk

∥∥∥∥∥ ≤ C

}
.
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Note that S is closed in P∞(N) (in fact, it is closed in the product topology). In particular, S is
Ramsey. It follows that there exists M ∈ P∞(N) such that P∞(M) ⊂ S or P∞(M) ⊂ P∞(N)\S.
However, the second case is impossible since it would contradict the fact that X has the uniform
∞-WBS.
(ii) =⇒ (iii) Note that (ii) implies easily that if (xn)n is a weakly null sequence in SX then
there exists a subsequence (x′n)n which is basic and such that∥∥∥∥∥

n∑
k=1

εkx
′
k

∥∥∥∥∥ ≤M := 2C

for all k ≥ 1 and all signs ε1, ..., εk. It follows that
∑
n x

′
n is a weakly unconditionally Cauchy

series such that
∑∞
n=1 |x∗(x′n)| ≤ M for all x∗ ∈ BX∗ . The operator T defined by T : c0 → X

by T ((an)n) =
∑∞
n=1 anxn is bounded and verifies that ∥T∥ ≤M , from what (iii) follows.

(iii) =⇒ (i) is obvious.

Property (iii) of the previous proposition has been called property (⋆) in [45] and prop-
erty (US) in [117]. In [45], Cembranos asked if this property is equivalent to the hereditary
Dunford-Pettis property. Knaust and Odell answered this question in the affirmative showing
that property (US) (or (⋆)) is equivalent to (iii) in Proposition 5.1.15 (see Theorem 3.1 in [117]).
Then the two previous propositions imply immediately the following result:

Theorem 5.1.18. The ∞-WBS and the uniform ∞-WBS are equivalent.

We conclude this part with some remarks about the spreading-(s) property introduced by
Farmaki in [73].

Definition 5.1.19. A Banach space has the spreading-(s) property if every normalized weakly
null sequence has a good subsequence such that the fundamental sequence of the associated
spreading model is equivalent to the canonical basis of c0.

If (xn)n is a good weakly null sequence, then it is not difficul to see that the fundamental
sequence (en)n of the associated spreading model is equivalent to the canonical basis of c0 if
and only if supn ∥

∑n
k=1 ek∥ <∞.

Proposition 5.1.20. The ∞-WBS implies the spreading-(s) property.

Proof. Suppose that X has the ∞-WBS. Let (xn)n be a weakly null normalized sequence.
Without loss of generality, we can suppose that (xn)n is a good sequence which generates a
spreading model with fundamental basis (en). By Lemma 5.1.13, we have that supn ∥

∑n
k=1 ek∥ <

∞, i.e. (en)n is equivalent to the canonical basis of c0.

Summing up the previous results and those of Farmaki, we have the following graph of
implications (where HDPP holds for hereditary Dunford-Pettis property). For the definition of
weak HDPP, we refer the reader to [73] (definition 1.14).

∞-WBS spreading-(s) property WBS

HDPP weak HDPP
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5.1.4 The UWBS-index

In this subsection, we wish to determine the optimal index p such that X has the (strong)
p-WBS.

Definition 5.1.21. Let X be a Banach space. For all m ≥ 1, we define ϕX(m) as the infimum

of the b such that for all (xn)n ⊂ BX with xn
w−→ 0, there exist p1 < p2 < ... < pm such that

1

m

∥∥∥∥∥
m∑
i=1

xpi

∥∥∥∥∥ ≤ b.

Proposition 5.1.22. Let X be a Banach space. Then

(a) X has the weak-(Am) if and only if ϕX(m) < 1.

(b) X has the uniform WBS if and only if ϕX(m) < 1 for some m ≥ 2.

Proof. (a) is obvious and (b) follows from the equivalence between the uniform WBS and the
weak-(A∞).

Now we give some arithmetical properties of the sequence (ϕX(n))n.

Proposition 5.1.23. Let X be a Banach space. Then

(a) (ϕX(n))n is a submultiplicative sequence, that is for all m,n ≥ 1

ϕX(nm) ≤ ϕX(n)ϕX(m).

(b) (nϕX(n))n is a subadditive sequence, that is for all m,n ≥ 1

(n+m)ϕX(n+m) ≤ nϕX(n) +mϕX(m).

(c) (nϕX(n))n is an increasing sequence.

(d) If ϕX(m) < 1 for some m ≥ 1, then ϕX(n) → 0.

Proof. (a) Let n,m ≥ 1, ε > 0. Let (xk)k ⊂ BX such that xk
w−→ 0. There exists p11 < ... < p1n

such that
1

n

∥∥∥∥∥
n∑
i=1

xp1i

∥∥∥∥∥ ≤ ϕX(n) + ε.

Then, there exist p21 < ... < p2n with p21 > p1n such that

1

n

∥∥∥∥∥
n∑
i=1

xp2i

∥∥∥∥∥ ≤ ϕX(n) + ε.

Following by induction, we construct sequences pk1 < ... < pkn such that pk+1
1 > pkn and

1

n

∥∥∥∥∥
n∑
i=1

xpki

∥∥∥∥∥ ≤ ϕX(n) + ε.

For all k ≥ 1, define

yk =
1

n(ϕX(n) + ε)

n∑
i=1

xpki .
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Note that yk ∈ BX and yk
w−→ 0. So, there exist p1 < ... < pm such that

1

m

∥∥∥∥∥
m∑
i=1

ypi

∥∥∥∥∥ ≤ ϕX(m) + ε.

But
∑m
i=1 ypi is a sum of nm distincts terms of (xk)k, say x′1, ..., x

′
nm, so it follows that

1

mn

∥∥∥∥∥
nm∑
i=1

x′i

∥∥∥∥∥ ≤ (ϕX(n) + ε)(ϕX(m) + ε).

We deduce that
ϕX(nm) ≤ (ϕX(n) + ε)(ϕX(m) + ε)

for all ε > 0 and then
ϕX(nm) ≤ ϕX(n)ϕX(m).

(b) Let ε > 0. If (xk)k ⊂ BX is such that xk
w−→ 0, just take p1 < ... < pn+m such that

1

n

∥∥∥∥∥
n∑
i=1

xpi

∥∥∥∥∥ ≤ ϕX(n) + ε and
1

n

∥∥∥∥∥
n+m∑
i=n+1

xpi

∥∥∥∥∥ ≤ ϕX(m) + ε.

It follows that
1

n+m

∥∥∥∥∥
n+m∑
i=1

xpi

∥∥∥∥∥ ≤ nϕX(n) +mϕX(m)

m+ n
+

2ε

n+m
,

which implies that

ϕX(n+m) ≤ nϕX(n) +mϕX(m)

m+ n
.

(c) Let n ≥ 1 and ε > 0. Let (xk)k ⊂ BX is such that xk
w−→ 0. Let show that there exist

p1 < p2 < ... < pn such that

1

n

∥∥∥∥∥
n∑
k=1

xpk

∥∥∥∥∥ ≤ (1 + ε)(n+ 1)

n
ϕX(n+ 1) + ε(1 + ε)

n+ 1

n
,

which easily implies the result letting ε → 0+. If (xk)k has a convergent subsequence then we
are done. Else we can suppose that infk ∥xk∥ > 0. It follows that (xk)k admits a (1 + ε)-basic
subsequence. For simplicity, we still denote it by (xk)k. By definition of ϕX(n+ 1), there exists
p1 < p2 < ... < pn+1 such that

1

n+ 1

∥∥∥∥∥
n+1∑
k=1

xpk

∥∥∥∥∥ ≤ ϕX(n+ 1) + ε.

It follows that

1

n

∥∥∥∥∥
n∑
k=1

xpk

∥∥∥∥∥ ≤ 1 + ε

n

∥∥∥∥∥
n+1∑
k=1

xpk

∥∥∥∥∥
=

(1 + ε)(n+ 1)

n

1

n+ 1

∥∥∥∥∥
n+1∑
k=1

xpk

∥∥∥∥∥
≤ (1 + ε)(n+ 1)

n
ϕX(n+ 1) + ε(1 + ε)

n+ 1

n
,
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and the proof is complete.
(d) Using (b) and Fekete’s lemma (see [74]), it follows that

ϕX(n) =
nϕX(n)

n
→ inf

k

kϕX(k)

k
= inf

k
ϕX(k).

Take m ≥ 2 such that ϕX(m) < 1. By (i), it follows that

0 ≤ ϕX(mk) ≤ (ϕX(m))k

for all k ≥ 1. Taking limit, we deduce that infk ϕX(k) = 0.

Definition 5.1.24. Let X be a Banach space. We define the uniform WBS-index UWBS(X)
of X as the supremum of the p > 1 such that X has the (strong) p-WBS. If X does not have
the (strong) p-WBS for any p > 1, we set UWBS(X) = 1.

We are ready to prove the main result of this part:

Theorem 5.1.25. Let X be a Banach space.

(a) If ϕX(n) > 1
n for all n ≥ 2, then

UWBS(X) = sup
n≥2

ln(n)

ln(nϕX(n))
.

(b) If ϕX(n) ≤ 1
n for some n ≥ 2, then

UWBS(X) = +∞.

Proof. (a) Suppose that ϕX(n) > 1
n for all n ≥ 2. If X does not have the uniform WBS, then

ϕX(n) = 1 for all n ≥ 2 and the equality is true. Now suppose that X has the uniform WBS.
The inequality

UWBS(X) ≥ sup
n≥2

1

1 + ln(ϕX(n))
ln(n)

= sup
n≥2

ln(n)

ln(nϕX(n))

is included in the proof of Theorem 5.1.9. Now let p > 1 such that X has the p-WBS. There
exists C > 0 such that for all (xn)n ⊂ BX such that xn

w−→ 0, there exists a subsequence (x′n)n
of (xn)n such that ∥∥∥∥∥

n∑
k=1

x′k

∥∥∥∥∥ ≤ Cn
1
p

for all n ≥ 1. Let q ∈ (1, p). There exists nq such that

Cn
1
p−1 ≤ n

1
q−1

for all n ≥ nq. It follows that for all (xn)n ⊂ BX such that xn
w−→ 0, there exists a subsequence

(x′n)n of (xn)n such that

1

n

∥∥∥∥∥
n∑
k=1

x′k

∥∥∥∥∥ ≤ n
1
q−1

for all n ≥ nq. This implies in particular that

0 < ϕX(n) ≤ n
1
q−1,
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or equivalently,

q ≤ 1

1 + ln(ϕX(n))
ln(n)

for all q ∈ (1, p) and all n ≥ nq. It follows that

q ≤ sup
n≥2

1

1 + ln(ϕX(n))
ln(n)

for all q ∈ (1, p) and then p ≤ supn≥2
1

1+
ln(ϕX (n))

ln(n)

, which implies that

UWBS(X) ≤ sup
n≥2

1

1 + ln(ϕX(n))
ln(n)

.

(b) Let n ≥ 2 such that ϕX(n) ≤ 1
n . By the proof Theorem 5.1.9, we have that

UWBS(X) ≥ 1

1 +
ln( 1

n+ε)
ln(n)

− ε =
ln(n)

ln(1 + nε)
− ε

for all ε > 0. Taking ε→ 0+, we conclude the proof.

Remark 5.1.26. c0 appears to be a borderline case in the previous theorem. In fact, let us show
that ϕc0(n) = 1

n for all n ≥ 1. Considering the canonical basis (or using the next proposition),
it is easily seen that ϕc0(n) ≥ 1

n for all n ≥ 1. Now let ε > 0 and let (xk)k ⊂ BX be a weakly
null sequence. Fix n ≥ 1. Let show that there exist p1 < ... < pn such that∥∥∥∥∥

n∑
k=1

xpi

∥∥∥∥∥ ≤ (1 + ε)2,

it will imply that ϕc0(n) ≤ (1+ε)2

n and then ϕc0(n) ≤ 1
n . If (xn)n admits a convergent sub-

sequence, it is obvious. So let suppose that infn ∥xn∥ > 0. By Bessaga–Pe lczynski selection
Principle (for example, see corollary 4.27 in [67]), there exist a subsequence (x′n)n of (xn)n and
a block basis sequence (e′n)n of the canonical basis of c0 such that x′n − e′n → 0 and∥∥∥∥∥

p∑
k=1

akx
′
k

∥∥∥∥∥ ≤ (1 + ε)

∥∥∥∥∥
p∑
k=1

ake
′
k

∥∥∥∥∥
for all p ≥ 1 and all a1, ..., ap ∈ R. Since x′n− e′n → 0, there exists n0 such that ∥e′n∥ ≤ 1 + ε for
all n ≥ n0. It follows that∥∥∥∥∥

n0+n−1∑
k=n0

x′k

∥∥∥∥∥ ≤ (1 + ε)

∥∥∥∥∥
n0+n−1∑
k=n0

e′k

∥∥∥∥∥ = (1 + ε) max
n0≤k≤n0+n−1

∥e′k∥ ≤ (1 + ε)2

and the proof is done. In particular, it implies that UWBS(c0) = ∞. In fact, more is true:
using the same argument, it is easy to see that c0 has the uniform ∞-WBS.

The formula given by (i) in the previous theorem can be found in [148] without any hypothesis
on ϕX . However, if we do not suppose that ϕX(n) > 1

n for all n ≥ 2, then the formula is easily
seen to be false by considering a Banach space with the Schur property for example:

Proposition 5.1.27. Let X be a Banach space. The following assertions are equivalent:
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(i) X has the Schur property;

(ii) ϕX(n) = 0 for all n ≥ 1;

(iii) ϕX(n) = o
(
1
n

)
;

(iv) there exists n ≥ 2 such that ϕX(n) < 1
n .

Proof. (i) =⇒ (ii) =⇒ (iii) is easy. Suppose that (iii) holds and that X does not have the

Schur property. There exists (xn)n ⊂ BX such that xn
w−→ 0 and (xn)n does not converge to

0. By taking a subsequence, we can suppose that α := infn ∥xn∥ > 0. Then, taking a further
subsequence if necessary, we can suppose that (xn)n is a 2-basic sequence. Let n ≥ 2. By
definition of ϕX(n), there exist p1 < p2 < ... < pn such that

1

n

∥∥∥∥∥
n∑
k=1

xpi

∥∥∥∥∥ ≤ ϕX(n) +
α

4n
.

It follows that

α ≤ ∥xp1∥ ≤ 2

∥∥∥∥∥
n∑
k=1

xpi

∥∥∥∥∥ ≤ 2nϕX(n) +
α

2
.

We deduce that α ≤ 4nϕX(n) → 0, which is a contradiction since α > 0.
(iii) =⇒ (iv) is obvious. Suppose that (iv) holds. Let n ≥ 2 such that ϕX(n) < 1

n .
By submultiplicativity of ϕX , one has that ϕX(nk) < 1

nk for all k ≥ 1. By (c) of Proposition

5.1.23, it follows that (nkϕX(nk))k is an increasing bounded sequence and then converges to
some a ∈ [0, 1]. For all k ≥ 1, we have that

nkϕX(nk) ≤ (nϕX(n))k

and since nϕX(n) < 1, we deduce that a = 0. However (nkϕX(nk))k is positive and increasing
and then it follows that ϕX(nk) = 0 for all k ≥ 1. Using (c) of Proposition 5.1.23 again, it
follows that ϕX(p) = 0 for all p ≥ 1, i.e. (ii) holds.

5.2 The uniform BS

Definition 5.2.1. Let X be a Banach space and let k ≥ 2. We say that X has (Ak) if X is
reflexive and has the weak-(Ak). We say that X has (A∞) if X has (Ak) for some k ≥ 2.

Definition 5.2.2. Let X be a Banach space. We say that X has the uniform Banach-Saks (in
short uniform BS) if there exists a sequence (an)n of real positive numbers such that an → 0
and for all (xn)n ⊂ BX , there exist x ∈ BX and a subsequence (x′n)n of (xn)n such that∥∥∥∥∥ 1

m

m∑
k=1

x′k − x

∥∥∥∥∥ ≤ am

for all m ≥ 1.

Definition 5.2.3. Let X be a Banach space and p > 1. We say that X has the strong p-BS if
there exists C > 0 such that for all (xn)n ⊂ BX , there exist x ∈ BX and a subsequence (x′n)n
of (xn)n such that ∥∥∥∥∥

n∑
k=1

x′k − x

∥∥∥∥∥ ≤ Cn
1
p

for all n ≥ 1.
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Definition 5.2.4. Let X be a Banach space and p > 1. We say that X has the p-BS if for all
(xn)n ⊂ BX , there exist C > 0, x ∈ BX and a subsequence (x′n)n of (xn)n such that∥∥∥∥∥

n∑
k=1

x′k − x

∥∥∥∥∥ ≤ Cn
1
p

for all n ≥ 1.

We start with a similar version of Proposition 5.1.4:

Proposition 5.2.5. Let X a Banach space. The following assertions are equivalent:

(i) X has the uniform BS;

(ii) there exists a sequence (bn)n of real positive numbers such that bn → 0 and for all (xn)n ⊂
BX , there exist x ∈ BX and a subsequence (x′n)n of (xn)n such that for every subsequence
(x′′n)n of (x′n)n ∥∥∥∥∥ 1

m

m∑
k=1

x′′k − x

∥∥∥∥∥ ≤ bm

for all m ≥ 1;

(iii) there exists a sequence (cn)n of real positive numbers such that cn → 0 and for all (xn)n ⊂
BX , there exists x ∈ BX such that all m,n ≥ 1, there exists n ≤ p1 < ... < pm such that∥∥∥∥∥ 1

m

m∑
i=1

xpi − x

∥∥∥∥∥ ≤ cm.

Proof. (ii) =⇒ (i) =⇒ (iii) is obvious. Suppose that (iii) holds. Let (cn)n as in (iii). Define

bn =
6qn
n

+ 3cn

where qn = E
(

ln(n)
ln(2)

)
for all n ∈ N. Let (xn)n ⊂ BX . Let x given by (iii). Define yn = xn−x

2 ∈
BX for all n ∈ N. If (yn)n admits a convergent subsequence to 0, we conclude as in Proposition
5.1.4 using Lemma 5.1.3. By taking a subsequence if necessary, we can suppose that (yn)n is
a good sequence generating a spreading model Z with fundamental basis (en)n. For all k ∈ N,
define Nk = 2k. By Propsition 1.4.3, there exists a strictly increasing sequence (pk)k such that
for all n1 < ... < nNk

with n1 ≥ pk and all a1, ..., aNk

1

2

∥∥∥∥∥
Nk∑
i=1

aiyni

∥∥∥∥∥ ≤

∥∥∥∥∥
Nk∑
i=1

aiei

∥∥∥∥∥ ≤ 3

2

∥∥∥∥∥
Nk∑
i=1

aiyni

∥∥∥∥∥ .
For all k ∈ N, we define y′k = ypk . Let m ∈ N and take k such that m ≤ Nk. By (iii), there
exists pk ≤ n1 < ... < nm such that

2

m

∥∥∥∥∥
m∑
i=1

yni

∥∥∥∥∥ =

∥∥∥∥∥ 1

m

m∑
i=1

xni
− x

∥∥∥∥∥ ≤ cm.

Following the proof of Proposition 5.1.4, we obtain that for all subsequences (y′′n)n of (y′n)n and
for all n ≥ 1 that

1

n

∥∥∥∥∥
n∑
k=1

y′′i

∥∥∥∥∥ ≤ 3qn
n

+
3

2
cn,
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that is ∥∥∥∥∥ 1

n

n∑
k=1

x′′i − x

∥∥∥∥∥ ≤ 6qn
n

+ 3cn = bn

and the proof is complete.

The results of the previous section and the fact that the BS property implies reflexivity give
directly the following result:

Proposition 5.2.6. Let X be a Banach space. The following assertions are equivalent:

(i) X has the uniform BS;

(ii) X is reflexive and has the uniform WBS;

(iii) X has the (strong) p-BS for some p ∈ (1,+∞);

(iv) X has (A∞).

Remark 5.2.7. The previous results imply that weak-(A∞) and (A∞) are preserved under
isomorphism.

For the definitions of nearly uniformly convex (NUC) and nearly uniformly smooth (NUS),
we refer the reader to [145]. We also refer the reader to [119] for the definition of the property
k-NUCε. By Theorem 1 in [53], if X is a Banach space with the (β)-property (introduced by
Rolewicz in [150]) then X and X∗ have the BS. A careful study of the proof shows that any NUS
space or any space with the (β)-property property has (A2). We then have the two following
propositions:

Proposition 5.2.8. Let X be a Banach space such that one of the following assertions holds:

(a) X is k-NUCε for some k ≥ 2 and ε ∈ (0, 1);

(b) X is NUS.

Then X has the uniform BS.

Proof. If X is k-NUCε, X has (Ak) (Proposition 10 in [119]) and then X has the uniform BS.
A NUS space has (A2) by the above discussion.

Thanks to the equivalence between (A∞) and the uniform BS, we can improve Theorem 1
in [53]. Recall that X is a (β)-space if it can be renormed to have the (β)-property.

Proposition 5.2.9. Let X be a (β)-space. Then X and X∗ have the uniform BS.

Proof. Since the uniform BS is invariant by isomorphism, we can already suppose that the norm
on X has the (β)-property. Since the (β)-property implies (A2) by the above discussion, X has
the uniform BS. Moreover, the (β)-property implies that X is NUC (see Proposition 6 in [150]).
Thus X∗ is NUS (by Theorem 2.4 in [145]) and we conclude by the previous proposition.

Corollary 5.2.10. Any superreflexive Banach space has the uniform BS.
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Proof. Since a superreflexive space is a (β)-space, we can conclude thanks to the previous
proposition. However, we give a more direct proof (contained in Kakutani’s proof in [111]). Let
X a superreflexive Banach space. Enflo’s theorem (see Theorem 2.5.1) implies that X admits
a equivalent uniformly convex norm. It is easily seen that X endowed with this new norm has
(A2). In fact, define θ = max

{
1 − δX

(
1
2

)
, 34
}

where δX is the modulus of convexity of this new

norm. Let (xn)n ⊂ BX such that xn
w−→ 0. If ∥x1∥ ≤ 1

2 , then∥∥∥∥x1 + x2
2

∥∥∥∥ ≤ 3

4
≤ θ.

So, we can suppose that ∥x1∥ > 1
2 . It follows that there exists n > 1 such that ∥x1 − xn∥ ≥ 1

2 .
In fact, if ∥x1 − xn∥ < 1

2 for all n, then

|x∗(x1)| = lim
n

|x∗(x1) − x∗(xn)| ≤ lim sup
n

∥x1 − xn∥ ≤ 1

2

for all x∗ ∈ BX∗ . That implies that ∥x1∥ ≤ 1
2 , which is a contradiction. Then let n > 1 such

that ∥x1 − xn∥ ≥ 1
2 . By uniform convexity, it follows that∥∥∥∥x1 + xn

2

∥∥∥∥ ≤ 1 − δX

(
1

2

)
≤ θ

and the proof is complete.

Remark 5.2.11. By Theorem 1.3.6, a superreflexive Banach space has non-trivial type. So,
we could also have invoqued Proposition 5.3.10 to prove the previous corollary.

5.3 The uniform WABS

Definition 5.3.1. Let X be a Banach space and let k ≥ 2. We say that X has the weak
alternate-(Ak) if there exists θ ∈ (0, 1) such that for all (xn)n ⊂ BX such that xn

w−→ 0, there
exist p1 < p2 < ... < pk such that

1

k

∥∥∥∥∥
k∑
i=1

(−1)ixpi

∥∥∥∥∥ ≤ θ.

We say that X has the weak alternate-(A∞) if X has the weak alternate-(Ak) for some k ≥ 2.

Definition 5.3.2. Let X be a Banach space. We say that X has the uniform weak alternate
Banach-Saks property (in short uniform WABS) if there exists a sequence (an)n of real positive

numbers such that an → 0 and for all (xn)n ⊂ BX such that xn
w−→ 0, there is a subsequence

(x′n)n of (xn)n such that

1

m

∥∥∥∥∥
m∑
k=1

(−1)kx′k

∥∥∥∥∥ ≤ am

for all m ≥ 1.

Proposition 5.3.3. Let X a Banach space. The following assertions are equivalent:

(i) X has the uniform WABS;
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(ii) there exists a sequence (bn)n of real positive numbers such that bn → 0 and for all

(xn)n ⊂ BX such that xn
w−→ 0, there is a subsequence (x′n)n of (xn)n such that for

every subsequence (x′′n)n of (x′n)n

1

m

∥∥∥∥∥
m∑
k=1

(−1)kx′′k

∥∥∥∥∥ ≤ bm

for all m ≥ 1;

(iii) there exists a sequence (cn)n of real positive numbers such that cn → 0 and for all (xn)n ⊂
BX such that xn

w−→ 0 and for all m ≥ 1, there exists p1 < ... < pm such that

1

m

∥∥∥∥∥
m∑
i=1

(−1)ixpi

∥∥∥∥∥ ≤ cm.

Proof. The proof is similar to the proof of Proposition 5.1.4 and is left to the reader.

Remark 5.3.4. We could have given the following definition of the uniform WABS: X has the
uniform WABS if there exists a sequence (an)n of real positive numbers such that an → 0 and

for all (xn)n ⊂ BX such that xn
w−→ 0, there exist x ∈ BX and a subsequence (x′n)n of (xn)n

such that ∥∥∥∥∥ 1

m

m∑
k=1

(−1)kx′k − x

∥∥∥∥∥ ≤ am

for all m ≥ 1. Using the same tools as in the previous proposition, we would be able to construct
a sequence (bn)n of real positive numbers such that bn → 0 and for all (xn)n ⊂ BX such that

xn
w−→ 0, there exist x ∈ BX and a subsequence (x′n)n of (xn)n such that for every subsequence

(x′′n)n of (x′n)n ∥∥∥∥∥ 1

m

m∑
k=1

(−1)kx′′k − x

∥∥∥∥∥ ≤ bm (5.7)

for all m ≥ 1. Let (xn)n ∈ BX , consider a subsequence (x′n)n of (xn)n and x ∈ BX with the
previous property. Consider the two following subsequences of (x′n)n

x′1, x
′
4, x

′
7, x

′
10, x

′
13, x

′
16...

x′2, x
′
3, x

′
8, x

′
9, x

′
14, x

′
15...

Then the subsequence (x′′n)n of (x′n)n obtained by ordering the previous terms by increasing
index fullfils that

1

m

∥∥∥∥∥
m∑
k=1

(−1)kx′′k

∥∥∥∥∥ ≤ 2cm

for all m ≥ 1 where cm can be expressed in terms of bm and cm → 0. In fact, for simplicity, let
show it for m = 8:

1

8

∥∥∥∥∥
8∑
k=1

(−1)kx′′k

∥∥∥∥∥ =
1

8
∥(−x′1 + x′4 − x′7 + x′10) + (x′2 − x′3 + x′8 − x′9)∥

≤ 1

8
(∥ − x′1 + x′4 − x′7 + x′10 − x∥ + ∥ − x′2 + x′3 − x′8 + x′9 − x∥)

≤ 1

8
(b4 + b4) =

b4
4
.

It follows that we can always consider that x = 0 in (5.7).
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Theorem 5.3.5. The uniform WABS and the weak alternate-(A∞) are equivalent.

Proof. Same proof as in Theorem 5.1.5.

Theorem 5.3.6. The uniform WBS and the uniform WABS are equivalent.

Proof. Let X be a Banach space with the uniform WBS. Let (xn)n ⊂ BX such that xn
w−→ 0.

Let (bn)n as in (ii) of proposition 5.1.4. Take (x′n)n a subsequence of (xn)n given by (ii) of
proposition 5.1.4. We have that 1

n ∥
∑n
k=1 x

′
2k∥ ≤ bn and 1

n

∥∥∑n
k=1 x

′
2k+1

∥∥ ≤ bn for all n ∈ N. It
follows that for all n ≥ 1

1

2n

∥∥∥∥∥
2n∑
k=1

(−1)kx′k

∥∥∥∥∥ =

∥∥∥∥∥ 1

2n

n∑
k=1

x′2k −
1

2n

n−1∑
k=0

x′2k+1

∥∥∥∥∥ ≤ 1

2
bn +

1

2
bn = bn

and

1

2n+ 1

∥∥∥∥∥
2n+1∑
k=1

(−1)kx′k

∥∥∥∥∥ =

∥∥∥∥∥ 1

2n+ 1

n∑
k=0

x′2k+1 −
1

2n+ 1

n∑
k=1

x′2k

∥∥∥∥∥
≤ n+ 1

2n+ 1
bn+1 +

n

2n+ 1
bn,

that implies that X has the uniform WABS since the right-hand terms tend to 0.
Now suppose that X has the uniform WABS. Take (bn)n as in (ii) in Proposition 5.3.3.

Define an = 3qn
n + 6bn where qn = E

(
ln(n)
ln(2)

)
for all n ∈ N. Let (xn)n ⊂ BX such that xn

w−→ 0.

If (xn)n as a subsequence that converges to 0, then there exists a further subsequence (x′n)n
such that

1

m

∥∥∥∥∥
m∑
k=1

x′k

∥∥∥∥∥ ≤ am

for all m ≥ 1. So, let suppose that (xn)n does not have any convergent subsequence. Let (x′n)n
given by (ii) in Proposition 5.3.3. We can suppose that this subsequence defines a spreading
model Z with fundamental basis (en)n. Let n ≥ 1. By Proposition 1.4.3, there exists pn such
that

1

n

∥∥∥∥∥
n∑
i=1

(−1)iei

∥∥∥∥∥ ≤ 3

2n

∥∥∥∥∥
n∑
i=1

(−1)ixpn+i

∥∥∥∥∥ ≤ 3

2
bn.

It follows that
(
1
n

∑n
i=1(−1)iei

)
n

converges to 0. Since x′n
w−→ 0, it follows that (en)n is a basic

monotone unconditionnal sequence. Then we have for all n ≥ 1

1

n

∥∥∥∥∥
n∑
i=1

ei

∥∥∥∥∥ =
1

n

∥∥∥∥∥∥∥
n∑
i=1

i even

(−1)iei +

n∑
i=1
i odd

(−1)i+1ei

∥∥∥∥∥∥∥
≤ 1

n

∥∥∥∥∥∥∥
n∑
i=1

i even

(−1)iei

∥∥∥∥∥∥∥+
1

n

∥∥∥∥∥∥∥
n∑
i=1
i odd

(−1)i+1ei

∥∥∥∥∥∥∥
≤ 1

n

∥∥∥∥∥
n∑
i=1

(−1)iei

∥∥∥∥∥+
1

n

∥∥∥∥∥
n∑
i=1

(−1)i+1ei

∥∥∥∥∥
≤ 3bn.



5.3. THE UNIFORM WABS 95

For k ≥ 1, define Nk = 2k. By Proposition 1.4.3 again, there exists a strictly increasing sequence
(pk)k such that for all n1 < ... < nNk

with n1 ≥ pk and all a1, ..., aNk

1

2

∥∥∥∥∥
Nk∑
i=1

aix
′
ni

∥∥∥∥∥ ≤

∥∥∥∥∥
Nk∑
i=1

aiei

∥∥∥∥∥ ≤ 3

2

∥∥∥∥∥
Nk∑
i=1

aix
′
ni

∥∥∥∥∥ .
For all k ∈ N, we define x′′k = x′pk . Let n ≥ 1. We have that

1

n

∥∥∥∥∥
n∑
k=1

x′′i

∥∥∥∥∥ ≤ 1

n

∥∥∥∥∥
qn∑
k=1

x′′i

∥∥∥∥∥+
1

n

∥∥∥∥∥∥
n∑

k=qn+1

x′′i

∥∥∥∥∥∥
≤ qn

n
+

2

n

∥∥∥∥∥∥
n∑

k=qn+1

ei

∥∥∥∥∥∥
≤ qn

n
+

2

n

(∥∥∥∥∥
n∑
k=1

ei

∥∥∥∥∥+

∥∥∥∥∥
qn∑
k=1

ei

∥∥∥∥∥
)

≤ 3qn
n

+ 6bn = an,

and we conclude that X has the uniform WBS.

Remark 5.3.7. The previous proof gives an alternative proof of the equivalence between WBS
and WABS (see [51]). In fact, the proof is even easier since we do not have to evaluate the speed
of convergence.

Remark 5.3.8. We could have defined the strong p-WABS in a obvious way. The proof of the
last theorem shows that X has the strong p-WABS if and only if X has the strong p-WBS. In
particular, X has the uniform WABS if and only if X has the strong p-WABS for some p > 1.

Theorem 5.3.9. Let X a Banach space. The following assertions are equivalent:

(i) X has the uniform WABS;

(ii) there exists a sequence (an)n of real positive numbers such that an → 0 and for all (xn)n ⊂
BX such that xn

w−→ 0, there exist a sequence of signs (εn)n and a subsequence (x′n)n of
(xn)n such that

1

m

∥∥∥∥∥
m∑
k=1

εkx
′
k

∥∥∥∥∥ ≤ am

for all m ≥ 1;

(iii) there exists a sequence (bn)n of real positive numbers such that bn → 0 and for all (xn)n ⊂
BX such that xn

w−→ 0, there exist a sequence of signs (εn)n and a subsequence (x′n)n of
(xn)n such that for every subsequence (x′′n)n of (x′n)n

1

m

∥∥∥∥∥
m∑
k=1

εkx
′′
k

∥∥∥∥∥ ≤ bm

for all m ≥ 1;
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(iv) there exists a sequence (cn)n of real positive numbers such that cn → 0 and for all (xn)n ⊂
BX such that xn

w−→ 0 and for all m ≥ 1, there exist p1 < ... < pm and signs ε1, ..., εm
such that

1

m

∥∥∥∥∥
m∑
i=1

εixpi

∥∥∥∥∥ ≤ cm;

(v) there exists a sequence (b′n)n of real positive numbers such that b′n → 0 and for all

(xn)n ⊂ BX such that xn
w−→ 0, there is a subsequence (x′n)n of (xn)n such that for

every subsequence (x′′n)n of (x′n)n and all sequences of signs (εn)n

1

m

∥∥∥∥∥
m∑
k=1

εkx
′′
k

∥∥∥∥∥ ≤ b′m

for all m ≥ 1;

(vi) there exists a sequence (c′n)n of real positive numbers such that c′n → 0 and for all (xn)n ⊂
BX such that xn

w−→ 0 and for all m ≥ 1, there exist p1 < ... < pm such that for all signs
ε1, ..., εm

1

m

∥∥∥∥∥
m∑
i=1

εixpi

∥∥∥∥∥ ≤ c′m;

(vii) there exist k ≥ 2 and θ ∈ (0, 1) such that for all (xn)n ⊂ BX such that xn
w−→ 0, there

exist p1 < p2 < ... < pk and signs ε1, ...εk such that

1

k

∥∥∥∥∥
k∑
i=1

εixpi

∥∥∥∥∥ ≤ θ;

(viii) there exist k ≥ 2 and θ ∈ (0, 1) such that for all (xn)n ⊂ BX such that xn
w−→ 0, there

exist p1 < p2 < ... < pk such that for all signs ε1, ..., εk

1

k

∥∥∥∥∥
k∑
i=1

εixpi

∥∥∥∥∥ ≤ θ.

Proof. (i) =⇒ (iii) is obvious (iii) =⇒ (i) We will show that X has the uniform WBS. Define

an = 3qn
n + 6bn where qn = E

(
ln(n)
ln(2)

)
for all n ∈ N. Let (xn)n ⊂ BX such that xn

w−→ 0. We

suppose that (xn)n does not have any convergent subsequence and is a good sequence. Take
(x′n)n and (εn)n as in (ii). Let Z the spreading model generating by (x′n)n with fundamental
sequence (en)n. By Proposition 1.4.3, there exists pn such that

1

n

∥∥∥∥∥
n∑
i=1

εpn+iei

∥∥∥∥∥ ≤ 3

2n

∥∥∥∥∥
n∑
i=1

εpn+ixpn+i

∥∥∥∥∥ ≤ 3

2
bn.

Using the fact that (en)n is a basic unconditionnal monotone sequence, we obtain that

1

n

∥∥∥∥∥
n∑
i=1

ei

∥∥∥∥∥ ≤ 3bn

for all n ≥ 1 and we conclude as in the previous proof.
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(iii) =⇒ (ii) =⇒ (iv) is direct. Suppose that (iv) holds. Let (cn)n as in (iv). We can
suppose that (xn)n does not admit any convergent subsequence. By taking a subsequence if
necessary, we can suppose that (xn)n is a good sequence generating a spreading model Z with

fundamental basis (en)n. For all k ∈ N, define Nk = 2k. Define qn = E
(

ln(n)
ln(2)

)
. By Proposition

1.4.3, there exists a strictly increasing sequence (pk)k such that for all n1 < ... < nNk
with

n1 ≥ pk and all a1, ..., aNk

1

2

∥∥∥∥∥
Nk∑
i=1

aixni

∥∥∥∥∥ ≤

∥∥∥∥∥
Nk∑
i=1

aiei

∥∥∥∥∥ ≤ 3

2

∥∥∥∥∥
Nk∑
i=1

aixni

∥∥∥∥∥ .
For all k ∈ N, we define x′k = xpk . Let m ∈ N and take k such that m ≤ Nk. By considering the
sequence (xn)n≥pk and by (iv), there exists pk ≤ n1 < ... < nm and signs ε1, ..., εm such that

1

m

∥∥∥∥∥
m∑
i=1

εixni

∥∥∥∥∥ ≤ cm.

It follows that
1

m

∥∥∥∥∥
m∑
i=1

εiei

∥∥∥∥∥ ≤ 3

2m

∥∥∥∥∥
m∑
i=1

εixni

∥∥∥∥∥ ≤ 3

2
cm

and since (en)n is a basic unconditionnal monotone sequence

1

m

∥∥∥∥∥
m∑
i=1

ei

∥∥∥∥∥ ≤ 3cm

for all m ≥ 1. Now, let (x′′n)n be a subsequence of (x′n)n. Let n ≥ 1. We have that

1

n

∥∥∥∥∥
n∑
k=1

x′′i

∥∥∥∥∥ ≤ 1

n

∥∥∥∥∥
qn∑
k=1

x′′i

∥∥∥∥∥+
1

n

∥∥∥∥∥∥
n∑

k=qn+1

x′′i

∥∥∥∥∥∥
≤ qn

n
+

2

n

∥∥∥∥∥∥
n∑

k=qn+1

ei

∥∥∥∥∥∥
≤ qn

n
+

2

n

(∥∥∥∥∥
n∑
k=1

ei

∥∥∥∥∥+

∥∥∥∥∥
qn∑
k=1

ei

∥∥∥∥∥
)

≤ 3qn
n

+ 6cn := bn

and then X has the uniform WBS, i.e (i) holds.
(v) =⇒ (iii) is obvious. Suppose that (iii) holds. Take (bn)n as in (iii). Let (xn)n ⊂ BX

such that xn
w−→ 0. We suppose that (xn)n does not have any convergent subsequence and is a

good sequence generating a spreading model Z with fundamental basis (en)n. Let (x′n)n given
by (iii). By using the same techniques as previously, one has that

1

m

∥∥∥∥∥
m∑
i=1

(−1)iei

∥∥∥∥∥ ≤ 3

2
cm

and then
1

m

∥∥∥∥∥
m∑
i=1

εiei

∥∥∥∥∥ ≤ 3cm
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for all sequences of signs (εn)n and all m ≥ 1. We conclude this implication with the same
arguments used to show that (iv) =⇒ (i).

(vi) =⇒ (i) is direct by Proposition 5.3.3. (v) =⇒ (vi) is obvious. (v) =⇒ (viii) =⇒
(vii) is also obvious. (vii) =⇒ (ii) can be proved following the proof of (ii) =⇒ (i) in
Theorem 5.1.5.

The following result has been proved by Rakov in [149] with a different proof. However, his
proof uses a non-trivial result about the existence of unconditionnal sequences. Here we give an
alternative proof.

Corollary 5.3.10. Any Banach space with non-trivial type p has the (strong) p-WBS.

Proof. There exists C > 0 such that for all n ≥ 1 and all x1, ..., xn ∈ X, one has that

∫ 1

0

∥∥∥∥∥
n∑
k=1

xkrk(t)

∥∥∥∥∥ dt ≤ C

(
n∑
k=1

∥xk∥p
) 1

p

where (rk)k is the sequence of Rademacher functions. Let n ≥ 1 and take x1, ..., xn ∈ BX . We
can deduce that

1

n

∫ 1

0

∥∥∥∥∥
n∑
k=1

xkrk(t)

∥∥∥∥∥ dt ≤ Cn
1
p−1

and then there exist signs ε1, ..., εn such that

1

n

∥∥∥∥∥
n∑
k=1

εkxk

∥∥∥∥∥ ≤ Cn
1
p−1.

So (iv) of the previous theorem holds with cm = Cm
1
p−1. Using the same techniques as in the

previous proofs, we can deduce that (vi) of the previous theorem holds with c′m ≤ Bm
1
p−1 for

some B > 0. It follows that (iii) of Proposition 5.3.3 holds with cm = c′m ≤ Bm
1
p−1. The proof

of Proposition 5.3.3 allows us to conclude that X has the strong p-WABS and then the strong
p-WBS (see remark 5.3.8).

5.4 The uniform ABS

Definition 5.4.1. Let X be a Banach space and let k ≥ 2. We say that X has the alternate-
(Ak) if there exists θ ∈ (0, 1) such that for all (xn)n ⊂ BX , there exist p1 < p2 < ... < pk such
that

1

k

∥∥∥∥∥
k∑
i=1

(−1)ixpi

∥∥∥∥∥ ≤ θ.

We say that X has the alternate-(A∞) if X has the alternate-(Ak) for some k ≥ 2.

Definition 5.4.2. Let X be a Banach space. We say that X has the uniform alternate Banach-
Saks property (in short uniform ABS) if there exists a sequence (an)n of real positive numbers
such that an → 0 and for all (xn)n ⊂ BX , there is a subsequence (x′n)n of (xn)n such that

1

m

∥∥∥∥∥
m∑
k=1

(−1)kx′k

∥∥∥∥∥ ≤ am

for all m ≥ 1.
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Remark 5.4.3. The same observation as in Remark 5.3.4 holds for the uniform ABS.

It is clear that a reflexive space with the uniform WABS has the uniform ABS. However, we
do not have an answer to the following question.

Problem 5.4.4. Does the uniform ABS imply reflexivity?

Proposition 5.4.5. The uniform BS implies the uniform ABS.

Proof. Let X be a Banach space with uniform BS. It follows that X is reflexive and has the
uniform WABS. By Theorem 5.3.6, it follows that X has the uniform WABS. Since X is also
reflexive, it has the uniform ABS.

Proposition 5.4.6. Let X a Banach space. The following assertions are equivalent:

(i) X has the uniform ABS;

(ii) there exists a sequence (bn)n of real positive numbers such that bn → 0 and for all (xn)n ⊂
BX , there is a subsequence (x′n)n of (xn)n such that for every subsequence (x′′n)n of (x′n)n;

1

m

∥∥∥∥∥
m∑
k=1

(−1)kx′′k

∥∥∥∥∥ ≤ bm

for all m ≥ 1.

(iii) there exists a sequence (cn)n of real positive numbers such that cn → 0 and for all (xn)n ⊂
BX and all m ≥ 1, there exists p1 < ... < pm such that

1

m

∥∥∥∥∥
m∑
i=1

(−1)ixpi

∥∥∥∥∥ ≤ cm.

Proof. The proof is similar to that of Proposition 5.2.5, even easier since we do not have to
introduce yn.

Theorem 5.4.7. The uniform ABS and the alternate-(A∞) are equivalent.

Proof. We only prove the non-trivial implication. Suppose that there exists N ≥ 2 such that
X has the alternate-(AN ). Take δ > 0 as in the definition of alternate-(AN ). We will follow
Kakutani’s method. Let (xn)n ⊂ BX . Let (mn)n be a increasing sequence such that m1 ≥ 2
and for n ≥ 0

1

N

∥∥∥∥∥
N∑
i=1

(−1)ixmnN+i

∥∥∥∥∥ ≤ δ.

For n ≥ 0, define x1n = 1
N

∑N
i=1(−1)ixmnN+i

. Since ∥x1n∥ ≤ δ, there exists a increasing sequence
(mn(1))n with m1(1) ≥ 2 such that for n ≥ 0

1

N

∥∥∥∥∥
N∑
i=1

(−1)ixmnN+i(1)

∥∥∥∥∥ ≤ δ2.

For n ≥ 0, define x2n = 1
N

∑N
i=1(−1)ixmnN+i(1). Following by induction, we construct sequence

(mn(p))n and (xpn)n for all p such that m1(p) ≥ 2, ∥xpn∥ ≤ δp and such that

xp+1
n =

1

N

N∑
i=1

(−1)ixpmnN+i(p)
.
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By construction, the sequence (xp1)p is a bloc sequence of (xn)n such that each term xp1 is the
arithmetic mean of Np terms ±xn. It follows that xp1 can be written

x1p =
1

Np

Np∑
i=1

(−1)ixli(p)

such that

1 < l1(1) < ... < lN (1) < l1(2) < ... < lN2(2) < l1(3) < ... < lN3(3) < ...

We define n1 = 1, n2 = l1(1), ... , nN+1 = lN (1), nN+2 = l1(2) and so on. Let k ≥ 1 and define

q = E
(

ln(k)
ln(N)

)
and r = E

(
k
Nq

)
. Note that rNq ≤ k ≤ (r + 1)Nq. It follows that∥∥∥∥∥

k∑
i=1

(−1)ixni

∥∥∥∥∥ ≤ ∥(−1)1xn1
+ ...+ (−1)N

q−1xnNq−1
∥

+

r∑
j=2

∥(−1)(j−1)Nq

xn(j−1)Nq + ...+ (−1)jN
q

xnjNq ∥

+ ∥(−1)rN
q

xnrNq + ...+ (−1)kxnk
∥

≤ (Nq − 1) + (r − 1)Nqδq +Nq.

It follows that for all k ≥ 1

1

k

∥∥∥∥∥
k∑
i=1

(−1)ixni

∥∥∥∥∥ ≤ ak :=
Nqk

k
− 1

k
+ (rk − 1)

Nqkδqk

k
+
Nqk

k

where qk = E
(

ln(k)
ln(N)

)
and rk = E

(
k
Nq

)
. Note that

0 ≤ Nqk

k
≤ N

ln(k)
ln(N)

k
=

ln(k)

k
→ 0

and

0 ≤ rk
Nqkδqk

k
≤ δqk → 0.

It follows that ak → 0 and the proof is complete since ak only depends on k,N and δ.

Remark 5.4.8. The previous results imply that weak alternate-(A∞) and alternate-(A∞) are
preserved preserved under isomorphism.

We conclude this section with an application to the symmetric Kottman constant. We recall
the following definition:

Definition 5.4.9. Let X be a Banach space. The symmetric Kottman constant of X is defined
by

Ks(X) = sup{δ > 0 | ∃(xn)n ⊂ SX ∥xn ± xm∥ ≥ δ whenever n ̸= m}.

We also define the isomorphic symmetric Kottman constant by

Ks(X) = {Ks(Y ) | Y is isomorphic to X}.

Corollary 5.4.10. Let X be a Banach space without the uniform WABS. Then Ks(X) = {2}.
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Proof. Since the uniform WBS is stable under isomorphism, it is enough to prove that Ks(X) =

2. By (vii) of the previous theorem, for all θ ∈ (0, 1), there exists (xn)n ⊂ BX such that xn
w−→ 0

and for all n < m ∥∥∥∥xn ± xm
2

∥∥∥∥ > θ.

We deduce that Ks(X) = 2.

In [90], the authors proved that if X fails to have ABS, then Ks(X) = {2} (see Corollary
5.6 in [90]). The previous corollary generalizes this result. In [130], the authors asked if any
reflexive space admits a renorming such that Ks(X) < 2. In [90], the authors answered this
question negatively by proving that the Tsirelson space T fulfills that Ks(T ) = {2}. Thanks to
the previous corollary, we obtain the following generalization:

Corollary 5.4.11. Let X be a reflexive Banach space without the uniform ABS. Then Ks(X) =
{2}.





Chapter 6

Extremal structure in
ultraproducts

Before presenting the main results, we start recalling some definitions. Let C be a bounded
convex subset of a Banach space X. The set of extreme points of C is denoted by ext(C).
Recall that a point x ∈ C is strongly extreme if for all sequences (yn)n, (zn)n ⊂ C such that∥∥∥∥x− yn + zn

2

∥∥∥∥ −→
n

0,

one has that ∥yn − zn∥ −→
n

0. The set of strongly extreme points of C is denoted by str-ext(C).

A slice of C is a subset of C defined by

S(C, x∗, α) = {x ∈ C | x∗(x) > sup
C
x∗ − α}

where x∗ ∈ X∗ and α > 0.
Let Z be a subspace of X∗. A point x ∈ C is a Z-denting point if for all ε > 0, there

exist x∗ ∈ Z and α > 0 such that x ∈ S(C, x∗, α) and diam(S(C, x∗, α)) < ε. We denote it by
x ∈ dentZ(C). A X∗-denting point is simply called denting and we write dent(C) = dentX∗(C).

A point x ∈ C is a Z-exposed point if there exists x∗ ∈ Z such that x∗(x) > x∗(y) for all
y ∈ C \{x}. We also said that x∗ exposes x in C. The set of Z-exposed point of C is denoted by
expZ(C). A point x ∈ C is said Z-strongly exposed if there exists x∗ ∈ Z exposing x and such
that for all sequences (xn)n ⊂ C such that x∗(xn) −→

n
x∗(x), it follows that xn −→

n
x. In this case,

we write x ∈ str-expZ(C). It is easy to show that x ∈ C is Z-strongly exposed if there exists
x∗ ∈ Z such that x ∈ S(C, x∗, α) for all α > 0 and limα→0+ diam(S(C, x∗, α)) = 0. As before,
an X∗-(strongly) exposed point is said (strongly) exposed and we write exp(C) = expX∗(C)
and str-exp(C) = str-expX∗(C). Obviously,

str-exp(C) ⊂ dent(C) ⊂ str-ext(C) ⊂ ext(C).

6.1 Extreme and strongly extreme points

We will begin by exploring the extreme points of a set CU for a given bounded closed and convex
subset C of X. Let us start with the following characterization of extreme points of CU .

Theorem 6.1.1. Let C be a bounded closed convex subset of a Banach space X and U be a free
ultrafilter on an infinite set I. Let (xi)U ∈ CU . The following assertions are equivalent:
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(i) (xi)U ∈ ext(CU );

(ii) for any (yi)U , (zi)U ∈ CU so that limU ∥xi − yi+zi
2 ∥ = 0, it follows that limU ∥xi − yi∥ = 0

and limU ∥xi − zi∥ = 0.

Proof. Given (yi)U , (zi)U ∈ CU , notice that limU ∥xi − yi+zi
2 ∥ = 0 if, and only if, (xi)U =

1
2 ((yi)U + (zi)U ) in CU . On the other hand,

(xi)U = (yi)U ⇔ (xi − yi)U = (0)U ⇔ lim
U

∥xi − yi∥ = 0.

This gives the characterisation.

Given (xi)i∈I ∈ CI , it is not difficult to realise that being a (strongly) extreme point of CU
depends on the considered ultrafilter U on I. For instance, just take C = [−1, 1]2 ⊂ R2 and
xn = (1, 0) if n is odd and xn = (1, 1) if n is even. It is easy to find free ultrafilters U and V
on N such that (xn)U ∈ ext(CU ) but (xn)V /∈ ext(CV). Our next goal is to characterise when
(xi)U is a strongly extreme point for every free ultrafilter U in terms of the space c0(I). Note
that this result will be improved in Theorem 6.1.7 below.

Recall that c0(I) is the set of those bounded functions f : I −→ R for which {i ∈ I : |f(i)| ≥
ε} is finite for every ε > 0.

Lemma 6.1.2. Let I be an infinite set. Let f : I → R be a bounded function. The following
assertions are equivalent:

(i) f ∈ c0(I);

(ii) limU f(i) = 0 for all free ultrafilter U on I.

Proof. Suppose that (i) holds and let ε > 0. Let U be any free ultrafilter on I, thus it contains
all the sets with finite complement. It follows that {i ∈ I : |f(i)| ≤ ε} ∈ U , which proves that
limU f(i) = 0.

Now suppose that f /∈ c0(I). Then there exists ε > 0 such that J := {i ∈ I : |f(i)| > ε} is
infinite. Let U be a free ultrafilter on I with J ∈ U . Since J ∈ U , it is clear that limU f(i) ≥
ε > 0.

Theorem 6.1.3. Let C be a bounded convex subset of a Banach space X. Let I be a infinite
set and (xi)i∈I ∈ CI . The following assertions are equivalent:

(i) (xi)U ∈ ext(CU ) for every free ultrafilter U on I;

(ii) for any (yi)i∈I , (zi)i∈I ∈ CI so that
(∥∥xi − yi+zi

2

∥∥)
i∈I ∈ c0(I), it follows that (∥xi −

yi∥)i∈I ∈ c0(I) and (∥xi − zi∥)i∈I ∈ c0(I).

Proof. For (i)⇒(ii) assume that (ii) does not hold. Then there exist ε0 > 0 and elements
(yi)i∈I , (zi)i∈I ∈ CI so that (∥xi − yi+zi

2 ∥)i∈I ∈ c0(I) and the set J := {i ∈ I : ∥xi − yi∥ ≥ ε0}
is infinite. Let U be a free ultrafilter on I with J ∈ U . Note that limU ∥xi − yi+zi

2 ∥ = 0 by

Lemma 6.1.2, that is, (xi)U = (yi)U+(zi)U
2 . Moreover, it is not difficult to prove that limU ∥xi −

yi∥ ≥ ε0, so by Theorem 6.1.1 we have that (xi)U is not an extreme point of CU .
For (ii) =⇒ (i) assume that (i) does not hold, that is, there exists a free ultrafilter U over I

so that (xi)U is not an extreme point of CU . By Theorem 6.1.1 there are (yi)i∈I , (zi)i∈I ∈ CI

so that limU ∥xi − yi+zi
2 ∥ = 0 but limU ∥xi − yi∥ > ε0 for certain ε0 > 0. This implies that the

set B := {i ∈ I : ∥xi − yi∥ > ε0} belongs to U . Now, construct inductively a sequence

in ∈
{
i ∈ I :

∥∥∥∥xi − yi + zi
2

∥∥∥∥ < 1

n

}
∩B \ {i1, . . . , in−1}
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(the intersection is non-emtpy because the previous set actually belongs to U). Define (y′i)i∈I
and (z′i)i∈I by y′i = z′i = xi if i /∈ {in : n ∈ N} and y′in = yin and z′in = zin for every n ∈ N. We

have that (∥xi − y′i+z
′
i

2 ∥)i∈I ∈ c0(I) because clearly{
i ∈ I :

∥∥∥∥xi − y′i + z′i
2

∥∥∥∥ ≥ 1

j

}
⊆ {i1, . . . , ij−1} ∀j ∈ N.

On the other hand, we clearly have {in : n ∈ N} ⊆ {i ∈ I : ∥x′i − y′i∥ ≥ ε0}, which implies that
(∥x′i−y′i∥)i∈I /∈ c0(I), and then (ii) does not hold. This completes the proof of (ii) =⇒ (i).

Our aim is now to study when (xi)U is a strongly extreme point of CU . Let us start with
the following result.

Proposition 6.1.4. Let C be a bounded convex set of a Banach space X and U be a free
ultrafilter on an infinite set I. Let (xi)i∈I ∈ CI .

(a) Assume that for every countable subset J = {in : n ∈ N} ⊂ I there is a free ultrafilter V
on J such that (xin)V ∈ ext(CV). Then (xi)U ∈ str-ext(CU ).

(b) Assume that I = N and (xn)n ⊂ C is such that for all subsequences (x′n)n of (xn)n there
is a free ultrafilter V on N such that (x′n)V ∈ ext(CV). Then (xn)U ∈ str-ext(CU ).

Proof. (a) Suppose that (xi)U /∈ str-ext(CU ). Then there exist two sequences ((yni )U,i)n, ((z
n
i )U,i)n ⊂

CU such that
(yni )U,i + (zni )U,i

2
−→
n

(xi)U

but ∥(yni )U,n− (zni )U,i∥ > ε for all n ∈ N and for some ε > 0. Without loss of generality, we can
suppose that ∥yni − zni ∥ > ε for all i ∈ I and n ∈ N.

This means that for every k ∈ N there exists nk such that for all n ≥ nk we have

∥(xi)U − (yni )U + (zni )U
2

∥ < 1

k
,

that is, the set

An,k :=

{
i ∈ I : ∥xi −

yni + zni
2

∥ < 1

k

}
belongs to U (in particular, it is infinite) for every k and every n ≥ nk.

Thus, we may choose ik ∈ Ank,k \ {i1, . . . , ik−1} inductively. Then J = {ik : k ∈ N} is
countable and

∥xik −
ynk
ik

+ znk
ik

2
∥ < 1

k
∀k ∈ N.

This implies that

(
∥xik −

y
nk
ik

+z
nk
ik

2 ∥
)
n∈N

∈ c0(N). So, given any free ultrafilter V on N, we

have

(xik)V =
(ynk
ik

)V + (znk
ik

)V

2

by Lemma 6.1.2. Since ∥ynk
ik

− znk
ik

∥ ≥ ε for all k, it follows that (xik)V /∈ ext(CV), which is a
contradiction.

(b) Just mimic the proof of (a) noting that the sequence (ik)k can be chosen to be strictly
increasing.

In [159, Theorem 2.1] it was proved that, given x ∈ SX and a free ultrafilter U on N, J (x) is
an extreme point of BXU if, and only if, x is strongly extreme. We can now improve that result.
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Theorem 6.1.5. Let C be a bounded convex subset of a Banach space X, U be a CI ultrafilter
on an infinite set I and let x ∈ C. The following assertions are equivalent:

(i) J (x) ∈ str-ext(CU );

(ii) J (x) ∈ ext(CU );

(iii) x ∈ str-ext(C).

Proof. Obviously, we have that (i) =⇒ (ii). Assume now that x ∈ str-ext(C). Given a
countable subset J = {in : n ∈ N} ⊂ I and a free ultrafilter V on N, Theorem 2.1 in [159]
shows that jV(x) ∈ ext(CV) (here jV denotes the canonical embedding of C into CV). Thus,
the hypotheses of Proposition 6.1.4 are satisfied, so we get that J (x) ∈ str-ext(CU ). That is,
(iii)⇒(i).

Finally, assume that J (x) ∈ ext(CU ). If x /∈ str-ext(C), then there sequences (yn)n, (zn)n ⊂
C and a number ε > 0 such that

lim
n→∞

∥x− yn + zn
2

∥ = 0

and ∥x−yn∥ ≥ ε for all n ∈ N. By extracting a subsequence, we may assume that ∥x− yn+zn
2 ∥ <

1
n for all n ∈ N. Now, let (In)n ⊂ U be a sequence of sets with I1 = I, In+1 ⊊ In for all n and⋂
n∈N In = ∅, and define (y′i)i∈I , (z′i)i∈I by y′i = yn and z′i = zn if i ∈ In \ In+1. Note that

In ⊂
{
i ∈ I : ∥x− y′i + z′i

2
∥ ≤ 1

n

}
∀n ∈ N.

Since In ∈ U , we get

J (x) =
(y′i)U + (z′i)U

2
.

As J (x) is extreme, this implies J (x) = (y′i)U . Since ∥x − y′i∥ ≥ ε for all i ∈ I, this is a
contradiction. Therefore, x ∈ str-ext(C), as desired. This shows that (ii)⇒(iii).

Our aim will be to determine when (xi)U is a strongly extreme point of CU which, thanks to
the previous theorem, is equivalent to the fact that jV((xi)U ) is an extreme point of (CU )V in the
space (XU )V . Remember that (XU )V is isometric to XU×V (where U×V is the product ultrafilter
defined in Section 1.1). The isometry is T : (XU )V → XU×V defined by T ((xi,j)U,i)V,j) =
(xi,j)U×V (see Proposition 1.2.7). Moreover, it is clear that T ((AU )V) = AU×V for all bounded
sets A ⊂ X.

Theorem 6.1.6. Let C be a bounded convex subset of a Banach space X, U be a CI ultrafilter
on an infinite set I. Then ext(CU ) = str-ext(CU ).

Proof. Let (Un)n ⊂ U be a strictly decreasing sequence of sets such that
⋂
n>0 Un = ∅. Let

(xi)U ∈ ext(CU ). We need to show that (xi)U ∈ str-ext(CU ). By Theorem 6.1.5, it is
enough to prove that J ((xi)U ) ∈ ext(CU×U ). Suppose that it is not true, then there exist
(yi,j)U×U , (zi,j)U×U and ε0 > 0 such that ∥(yi,j) − (zi,j)∥ = limU×U ∥yi,j − zi,j∥ > ε0 and

J ((xi)U ) =
(yi,j)U×U + (zi,j)U×U

2
.

Up to changing the definition of (yi,j) and (zi,j) out of the set {(i, j) ∈ I2 | ∥yi,j − zi,j∥ > ε0} ∈
U × U , we can assume that ∥yi,j − zi,j∥ > ε0 holds for every i, j ∈ I.

It follows that {
(i, j) ∈ I2 |

∥∥∥∥xi − yi,j + zi,j
2

∥∥∥∥ < 1

n

}
∈ U × U
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for all n > 0, that is

Jn :=

{
j ∈ I |

{
i ∈ I |

∥∥∥∥xi − yi,j + zi,j
2

∥∥∥∥ < 1

n

}
∈ U

}
∈ U .

For j ∈ I and n > 0, define In,j =
{
i ∈ I |

∥∥∥xi − yi,j+zi,j
2

∥∥∥ < 1
n

}
and note that In,j ∈ U if

j ∈ Jn. Since J1 ∈ U , we have that J1 ̸= ∅ and then let j1 ∈ J1. Define I ′1 = I1,j1 ∩ U1 ∈ U .
Now choose j2 ∈ J2 and define I ′2 = I2,j2 ∩ I ′1 ∩ U2 ∈ U . Following by induction, we define
I ′n = In,jn ∩ I ′n−1 ∩ Un ∈ U where jn ∈ Jn. For i ∈ I, define yi = yi,jn if i ∈ I ′n \ I ′n+1 for
some n > 0 and yi = x otherwise where x is an arbitrary point of C. We define zi in the same
way. Note that ∥yi − zi∥ > ε0 for all i ∈ I ′1. In fact, if i ∈ I ′1, then there exists n ≥ 0 such
that i ∈ I ′n \ I ′n+1 (since

⋂
n>0 I

′
n = ∅) and ∥yi − zi∥ = ∥yi,jn − zi,jn∥ > ε0. We deduce that

∥(yi)U − (zi)U∥ ≥ ε0. Let’s show that (xi)U = (yi)U+(zi)U
2 , which will contradict the extremality

of (xi)U and will conclude the proof. Let ε > 0 and take n0 such that 1
n0
< ε. We are going to

show that I ′n0
⊂
{
i ∈ I |

∥∥xi − yi+zi
2

∥∥ < ε
}

, which implies that the last set belongs to U . So
let i ∈ I ′n0

. There exists n ≥ n0 such that i ∈ I ′n \ I ′n+1. Then we have that∥∥∥∥xi − yi + zi
2

∥∥∥∥ =

∥∥∥∥xi − yi,jn + zi,jn
2

∥∥∥∥ < 1

n
≤ 1

n0
< ε

and the proof is complete.

Now, we are able to extend Theorem 6.1.3 including strongly extreme points.

Theorem 6.1.7. Let C be a bounded convex set of a Banach space X and I be an infinite set.
Let (xi)i∈I ∈ CI . The following assertions are equivalent:

(i) (xi)U ∈ str-ext(CU ) for every free ultrafilter U on I;

(ii) (xi)U ∈ ext(CU ) for every free ultrafilter U on I;

(iii) for any (yi)i∈I , (zi)i∈I ∈ CI so that
(∥∥xi − yi+zi

2

∥∥)
i∈I ∈ c0(I), it follows that (∥xi −

yi∥)i∈I ∈ c0(I) and (∥xi − zi∥)i∈I ∈ c0(I);

(iv) (xj)V ∈ ext(CV) holds for every countable subset J ⊆ I and every free ultrafilter V over
J .

Proof. (iv) =⇒ (i) follows from (a) of Proposition 6.1.4. Moreover, (i) =⇒ (ii) is obvious,
whereas (ii)⇔(iii) is Theorem 6.1.3.

Finally, let us prove (iii)⇒(iv), for which we take a countable subset J ⊆ I and, in order to
prove (iv), by Theorem 6.1.3, take (yj), (zj) ∈ CJ so that (∥xj − yj+zj

2 ∥) ∈ c0(J), and let us
prove that (∥xj − yj∥) ∈ c0(J). Define yi := xi and zi := xi if i ∈ I \ J , and it is obvious that

(∥xi − yi+zi
2 ∥) ∈ c0(I) since (∥xj − yj+zj

2 ∥) ∈ c0(J). Using (iii) we get that (∥xi − yi∥) ∈ c0(I)
(analogously (∥xi−zi∥) ∈ c0(I)). From here it is obvious that (∥xj−yj∥) ∈ c0(J) as desired.

Remark 6.1.8. Note that we have proved in Theorem 6.1.6 that ext(CU ) = str-ext(CU ) holds
when U is a CI ultrafilter. The previous theorem shows that the hypothesis of countably
incompleteness can be removed if we require (xi)V being extreme for every free ultrafilter V.

If I = N, the previous theorem can be stated in terms of convergent sequences:

Corollary 6.1.9. Let C be a bounded convex subset of a Banach space X. Let (xn)n ⊂ C. The
following assertions are equivalent:

(i) (xn)U ∈ str-ext(CU ) for every free ultrafilter U on N;
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(ii) (xn)U ∈ ext(CU ) for every free ultrafilter U on N;

(iii) For every pair of sequences (yn)n, (zn)n in C, if ∥xn − yn+zn
2 ∥ → 0 then ∥xn − yn∥ → 0

and ∥xn − zn∥ → 0;

(iv) (x′n)n ∈ ext(CU ) for every subsequence (x′n)n of (xn)n and every free ultrafilter U on N.

Proof. (i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv) follows directly from the previous theorem. (iv) =⇒
(i) is easily deduced from (b) of Proposition 6.1.4.

6.2 Denting points

In this subsection we will study the denting points in ultraproducts. To this end, let us consider
the following notion.

Definition 6.2.1. Let C be a bounded convex subset of a Banach space X. A subset {xi}i∈I ⊂
C is said to be a uniformly denting set if for every ε > 0 there exists αε > 0 with the following
property: for every i ∈ I there exists x∗i ∈ SX∗ so that

xi ∈ S(C, x∗i , αε) and diam(S(C, x∗i , αε)) < ε.

This definition should be compared with that of [160] and [159, P. 4] of a uniform notion of
dentable set.

Now we have the following result.

Theorem 6.2.2. Let C be a bounded convex subset of a Banach space X, U be a free ultrafilter
on an infinite set I and {xi}i∈I be a uniformly denting set in C. Then (xi)U ∈ dent(X∗)U (CU ).

For the proof we need the following lemma.

Lemma 6.2.3. Let C be a bounded convex subset of a Banach space X. Let x∗ ∈ SX∗ and
α > 0. Then diam(S(C, x∗, 32α)) ≤ 2 diam(S(C, x∗, α)).

Proof. Let y, z ∈ S(C, x∗, 32α), and let us estimate ∥y − z∥. To this end, pick x ∈ S(C, x∗, α/2)
and notice that, if we call λ := supC x

∗, we get

x∗
(
x+ y

2

)
>
λ− α

2 + λ− 3α
2

2
= λ− α,

so x+y
2 ∈ S(C, x∗, α). Similarly x+z

2 ∈ S(C, x∗, α). Consequently

diam(S(C, x∗, α)) ≥
∥∥∥∥x+ z

2
− x+ y

2

∥∥∥∥ =
∥y − z∥

2
,

from where the result follows by the arbitrariness of y, z.

Proof of Theorem 6.2.2. Pick ε > 0, and let us find a slice S of CU containing (xi)U whose
diameter is smaller than or equal to 2ε. To this end, since {xi}i∈I is uniformly dentable we can
find α > 0 and {x∗i }i∈I ⊂ SX∗ so that xi ∈ S(C, x∗i , α) and diam(S(C, x∗i , α)) < ε. Note that

⟨(x∗i )U , (xi)U ⟩ = lim
U
x∗i (xi) ≥ lim

U
sup
C
x∗i − α,
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so (xi)U ∈ S = S(CU , (x
∗
i )U ,

3α
2 ). Now, in view of Lemma 6.2.3, it is enough to prove that

diam(S(CU , (x
∗
i )U , α)) ≤ ε. In order to do so, pick (yi)U , (zi)U ∈ S(CU , (xi)U , α). Since

⟨(x∗i )U , (yi)U ⟩ > supCU
(x∗i )U − α and ⟨(x∗i )U , (zi)U ⟩ > supCU (x∗

i )U
−α, we get that

lim
U

(x∗i (yi) − sup
C
x∗i ) + α > 0, and lim

U
(x∗i (zi) − sup

C
x∗i ) + α > 0.

Thus,

J := {i ∈ I : min{x∗i (yi), x∗i (zi)} > sup
C
x∗i − α} ∈ U .

Given i ∈ J , we get that yi, zi ∈ S(C, x∗i , α), and so ∥yi − zi∥ < ε. Consequently,

J ⊆ L := {i ∈ I : ∥yi − zi∥ < ε},

so L ∈ U . It is immediate to obtain that ∥(yi)U − (zi)U∥ = limU ∥yi − zi∥ ≤ ε, from where
diam(S(CU , (x

∗
i )U , α)) ≤ ε and the proof is finished.

In the particular case of points of the form J (x), we can say more.

Theorem 6.2.4. Let C be a bounded convex subset of a Banach space X, x ∈ C and U be a
free ultrafilter on an infinite set I. Then x ∈ dent(C) if and only if J (x) ∈ dent(X∗)U (CU ).

Proof. If x ∈ dent(A), then J (x) ∈ dent(X∗)U (CU ) by Theorem 6.2.2.
Now suppose J (x) ∈ dent(X∗)U (A). Let ε > 0. There exist (x∗i )U ∈ (X∗)U and α > 0 such

that diam(S(CU , (x
∗
i )U , α)) ≤ ε and J (x) ∈ S(CU , (x

∗
i )U , α), i.e. limU x

∗
i (x) > supCU

(x∗i )U − α.
Let η ∈ (0, α) such that

lim
U
x∗i (x) > sup

CU

(x∗i )U − α+ 2η.

Define

J1 = {j ∈ I | x∗j (x) > sup
CU

(x∗i )U − α+ 2η} ∈ U

and

J2 = {j ∈ I | sup
CU

(x∗i )U > sup
C
x∗j − η} ∈ U .

Note that J2 ∈ U by Lemma 1.2.6. Furthermore, for all j ∈ J := J1 ∩ J2, we have that
x ∈ S(C, x∗j , α− η). In fact, if j ∈ J , we have that

x∗j (x) > sup
CU

(x∗i )U − α+ 2η > sup
C
x∗j − α+ η.

Now let us show that there exists j ∈ J such that diam(S(C, x∗j , α − η)) ≤ 2ε. Suppose by
contradiction that it is not true. Then for all j ∈ J there exist yj , zj ∈ S(C, x∗j , α− η) such that
∥yj − zj∥ > 2ε. We have that

x∗j (yj) > sup
C
x∗j − α+ η

for all j ∈ J . It follows that

⟨(x∗i )U , (yi)U ⟩ ≥ lim
U

sup
C
x∗i − α+ η = sup

CU

(x∗i )U − α+ η > sup
CU

(x∗i )U − α

by Lemma 1.2.6. This proves that (yi)U ∈ S(CU , (x
∗
i )U , α). In a similar way, we have that

(zi)U ∈ S(CU , (x
∗
i )U , α). We deduce that ∥(yi)U − (zi)U∥ ≤ ε, which contradicts the choice of yj

and zj .
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6.3 Exposed and strongly exposed points

Let us conclude the section of general results with an analysis of strongly exposed points. As it
is done in the previous subsection, we will begin by considering a uniform notion.

Definition 6.3.1. Let C be a bounded convex subset of a Banach space X. A set {xi}i∈I ⊂ C
is said to be a uniformly strongly exposed set if there exists {x∗i }i∈I ⊂ SX∗ such that for every
ε > 0 there exists αε > 0 satisfying that

xi ∈ S(C, x∗i , αε) and diam(S(C, x∗i , αε)) < ε ∀i ∈ I.

This definition was probably introduced in the celebrated paper of J. Lindenstrauss [126],
where it is proved that if a Banach space X satisfies that its unit ball is the closed convex hull
of a strongly exposed set then X has Lindenstrauss property A, i.e. the set of norm-attaining
operators NA(X,Y ) is dense in L(X,Y ) for every Banach space Y [126, Proposition 1]. See
[41, Section 3] for a number of examples of Banach spaces where the previous condition holds.

Anyway, our interest in uniformly strongly exposed sets comes from the following result.

Theorem 6.3.2. Let C be a bounded convex subset of a Banach space X and I be an infinite set.
Let {xi}i∈I be a family of points exposed in C by {x∗i }i∈I ⊂ BX∗ . The following are equivalent:

(i) {x∗i }i∈I uniformly strongly exposes {xi}i∈I ;

(ii) (x∗i )U strongly exposes (xi)U in CU for every free ultrafilter U on I;

(iii) (x∗i )U exposes (xi)U in CU for every free ultrafilter U on I.

Proof. (i)⇒(ii). Note that, by Lemma 1.2.6,

⟨(x∗i )U , (xi)U ⟩ = lim
U
x∗i (xi) = lim

U
sup
C
x∗i = sup

CU

(x∗i )U .

Now let ε > 0 and take α > 0 given by the definition of uniformly strongly exposed set.
Suppose that (yi)U ∈ S(CU , (x

∗
i )U , α). By the previous equalities, it means that limU x

∗
i (yi) >

limU x
∗
i (xi) − α. In particular,

J := {i ∈ I | x∗i (yi) > x∗i (xi) − α} ∈ U .

Then ∥yi − xi∥ < ε for all i ∈ J . We conclude that ∥(xi)U − (yi)U∥ ≤ ε, thus (xi)U ∈
str-exp(X∗)U (CU ).

(ii)⇒(iii) is obvious, so let us prove (iii)⇒(i). Assume that {xi}i∈I is not uniformly strongly
exposed by {x∗i }i∈I , and let us find a free ultrafilter U on I so that (xi)U is not exposed by
(x∗i )U .

Since {xi}i∈I is not uniformly strongly exposed by {x∗i }i∈I , there exists ε0 > 0 so that, for
every n ∈ N, there exists in ∈ I and yin ∈ C so that x∗in(yin) > supC x

∗
i − 1

n but ∥xin−yin∥ ≥ ε0.
Define the set L := {in : n ∈ N} and note that L is infinite. Otherwise, there is n0 such that
in = in0

for n ≥ n0. We have that

x∗in0
(yin0

) = x∗in(yin) > sup
C
x∗in − 1

n
= sup

C
x∗in0

− 1

n
∀n ≥ n0,

so taking limit we deduce that x∗in0
(yin0

) = supC x
∗
in0

. Since ∥xin0
− yin0

∥ ≥ ε0, we derive a

contradiction with the fact that x∗in0
exposes xin0

. Consequently, L is infinite.

Now, let U be a free ultrafilter on I with L ∈ U . Define yi := yin if i = in and yi = 0
otherwise. First, note that

∥(xi)U − (yi)U∥ = lim
U

∥xi − yi∥ ≥ ε0
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since the set {i ∈ I : ∥xi − yi∥ ≥ ε0} belongs to U .
On the other hand, we claim that ⟨(x∗i )U , (yi)U ⟩ = supCU

(x∗i )U . Indeed, Lemma 1.2.6 implies
that

sup
CU

(x∗i )U = lim
U

sup
C
x∗i = lim

U
x∗i (xi),

so let us prove that ⟨(x∗i )U , (yi)U ⟩ ≥ limU x
∗
i (xi). To this end, pick ε > 0. The set

B := {j ∈ I : |x∗j (yj) − lim
U
x∗i (yi)| < ε}

belongs to U . Now, given p ∈ N, find

j ∈ B ∩ L ∩ {k ∈ I : |x∗k(xk) − lim
U
x∗i (xi)| < ε} \ {i1, . . . , ip}

(the previous set is non-empty because, actually, it belongs to U). Now we have

lim
U
x∗i (yi) > x∗j (yj) − ε > x∗j (xj) −

1

p
− ε > lim

U
x∗i (xi) −

1

p
− 2ε.

The arbitrariness of p and ε conclude that ⟨(x∗i )U , (yi)U ⟩ = supCU
(xi)U . This shows that (xi)U

is not exposed by (x∗i )U and finishes the proof.

Now, we focus on the case of elements of the form J (x) for x ∈ C.

Corollary 6.3.3. Let C be a bounded convex subset of a Banach space X and U be a free
ultrafilter on an infinite set I. Let x ∈ C. Then

(a) if J (x) ∈ exp(X∗)U (CU ), then x ∈ exp(C);

(b) J (x) ∈ str-exp(X∗)U (CU ) if and only if x ∈ str-exp(C).

Proof. (a) Suppose that J (x) is exposed by (x∗i )U . By weak*-compactness of BX∗ , define
x∗ = w∗-limU x

∗
i . Let y ∈ A such that y ̸= x. We have

x∗(x) = lim
U
x∗i (x) = ⟨(x∗i )U ,J (x)⟩ > ⟨(x∗i )U ,J (y)⟩ = lim

U
x∗i (y) = x∗(y),

i.e. x∗ exposes x.
(b) Follows directly from Theorem 6.3.2.

We will obtain in Corollary 6.3.5 a strenghtening of Corollary 6.3.3 under the assumption of
CI ultrafilters. This strengthening will come from the following result.

Theorem 6.3.4. Let C be a bounded convex subset of a Banach space X, and U be a CI
ultrafilter on an infinite set I. Then exp(X∗)U (CU ) = str-exp(X∗)U (CU ).

Proof. Since the inclusion ⊇ is immediate, let us prove ⊆. Suppose that f := (x∗i )U ∈ (X∗)U
exposes z := (xi)U ∈ CU . Let us prove that f actually strongly exposes z. Indeed, consider a

sequence (zm)m := ((x
(m)
i )U,i)m ⊆ CU such that ⟨f, zm⟩ → ⟨f, z⟩ as m → ∞, and let us prove

that ∥zm−z∥ → 0. Assume on the contrary that ∥zm−z∥ ̸→ 0. Up to passing to a subsequence,
we can assume that |⟨f, zm − z⟩| < 1

m and ∥zm − z∥ > β > 0 holds for every m ∈ N and for
some β > 0. Pick, for every k ∈ N, Ak ∈ U satisfying that A1 ⊃ A2 ⊃ . . . such that, for every

k ∈ N, we have |x∗i (x
(m)
i ) − x∗i (xi)| < 1

m and ∥x(m)
i − xi∥ > β for all m ≤ k and every i ∈ Ak.

Since U is CI we can also assume that
⋂
k∈N

Ak = ∅.
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Now define (yi)i∈I ∈ CU be such that yi := x
(m)
i if i ∈ Am \Am+1 and for the negligible case

i ∈ I \A1 we set yi = a for some a ∈ C, so (yi)U ∈ CU . Note that

⟨f, (yi)U ⟩ = lim
U
x∗i (yi) = lim

U
x∗i (xi) = ⟨f, z⟩.

Since z is exposed by f we conclude that

lim
U

∥xi − yi∥ = ∥(xi)U − (yi)U∥ = 0,

but this is a contradiction because clearly limU ∥xi − yi∥ ≥ β > 0 by the construction. This
contradiction implies that f actually strongly exposes z, as desired.

If U is supposed to be CI, we obtain the following improvement of Corollary 6.3.3:

Corollary 6.3.5. Let C be a bounded convex subset of a Banach space X, U be a CI ultrafilter
on an infinite set I and let x ∈ C. The following assertions are equivalent:

(i) J (x) ∈ str-exp(X∗)U (CU );

(ii) J (x) ∈ exp(X∗)U (CU );

(iii) x ∈ str-exp(C).

Proof. The equivalence between (i) and (ii) follows from the previous theorem. Corollary 6.3.3
gives the equivalence between (i) and (iii).

If C is a bounded convex set, we sum up the properties linking x and J (x) in the following
graph of implications:

x ∈ str-exp(C) x ∈ dent(C) x ∈ str-ext(C) x ∈ ext(C)

J (x) ∈ str-exp(X∗)U (CU ) J (x) ∈ dent(X∗)U (CU ) J (x) ∈ str-ext(CU ) J (x) ∈ ext(CU )

Note that none of the previous implications can be reversed in the general case (since there
exist extreme points which are not strongly extreme, strongly extreme points which are not
denting and denting points which are not strongly exposed).

6.4 Application to super weak compactness

In this section we will study the extremality under compactness assumptions. To be more
precise, let X be a Banach space and K ⊆ BX be a convex bounded subset. We will deal
with the assumption that K is SWC. Before we enter in details, let us explain why this context,
though very restrictive, is interesting for us: looking to our results for denting points and strongly
exposed points, we have not been able to completely characterise when a point (xi)U is a denting
(respectively strongly exposed) point because we do not have a good access to the space (XU )∗,
which differs from (X∗)U if X is not superreflexive.

However, in the particular case of KU being weakly compact this difficulty is overcome thanks
to the following lemma applied to Z = (X∗)U :
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Lemma 6.4.1. Let C be a weakly compact convex subset of a Banach space X. Let Z be a
subspace of X∗ such that (X,Z) is a dual pair. Let x be a point of a slice S of C. Then there
exists a slice S′ of C defined by an element of Z such that x ∈ S′ ⊂ S. In particular, if x ∈ C
is denting then x is Z-denting.

Proof. Note that C \ S is a weakly compact set which does not contain x. In particular, C \ S
is σ(X,Z)-compact. Since Z separates points of X, the topology σ(X,Z) is Hausdorff. By the
Hahn-Banach theorem, there exists x∗ ∈ (X,σ(X,Z))∗ = Z and a slice S′ of C defined by x∗

such that (C \ S) ∩ S′ = ∅ and x ∈ S′. It follows that x ∈ S′ ⊂ S.

For instance, here we obtain that a point (xi)U ∈ KU is denting if, and only if, (xi)U belongs
to a sequence of slices of diameter as small as desired where the slices are defined by elements
of (X∗)U . This difficulty will be overcome in the context of super weakly compact subsets.

Recall that every weakly compact convex set is the closed convex hull of its strongly exposed
points (see Theorem 8.13 in [67] for example). In the case of ultraproducts we can say a bit
more.

Theorem 6.4.2. Let K be a relatively SWC convex subset of a Banach space X and U be a CI
ultrafilter on an infinite set I. Then

KU = conv(str-exp(X∗)U (KU )).

This is just a particular case of the following result:

Lemma 6.4.3. Let K be weakly compact convex subset of a Banach space X and Z be a subspace
of X∗ such that (X,Z) is a dual pair. Then

K = conv(str-expZ(K)).

Proof. First, let’s show that every subset C of K is Z-dentable, that is, there are slices of C given
by elements of Z with arbitrarily small diameter. If conv(C) is Z-dentable then C is dentable too,
so we can suppose that C is closed and convex. Since K is weakly compact, so is C. In particular,
C is dentable and then Z-dentable by Lemma 6.4.1. A slight modification of Theorem 8 in [31]
allows us to conclude that the subset of Z that strongly exposes elements of K is dense in Z.
Now, suppose by contradiction that K ̸= conv(str-expZ(K). Since conv(str-expZ(K)) is weakly
compact and then σ(X,Z)-compact, there exists x∗ ∈ Z such that

sup
K
x∗ > sup

str-expZ(K)

x∗.

By density, we deduce that there exists y∗ ∈ Z strongly exposing an element x ∈ K such that

y∗(x) = sup
K
y∗ > sup

str-expZ(K)

y∗,

which is a contradiction.

Proof of Theorem 6.4.2. Note that KU is weakly compact thanks to Proposition 1.2.5. Now,
apply Lemma 6.4.3 taking Z = (XU )∗ ⊂ (XU )∗.

Using Tu’s result (see Theorem 1.5.2), it is possible to localise the set of extreme points of
a super weakly compact set:

Proposition 6.4.4. Let K be a SWC convex subset of a Banach space X and U be a CI
ultrafilter on an infinite set I. Then

ext(KU ) ⊂ (str-exp(K))U
w

and dent(KU ) ⊂ (str-expK)U .
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Proof. Since K is weakly compact, we have that K = conv(str-exp(K)). Thus, by Theorem
1.5.2, it follows that

KU = (conv(str-exp(K)))U = (conv(str-exp(K)))U = conv((str-exp(K))U ).

so any slice of KU has non-empty intersection with (str-exp(K))U . Since the slices are a neigh-
bourhood basis for the extreme (resp. denting) points of KU in the weak (resp. norm) topology,

we have ext(KU ) ⊂ (str-exp(K))U
w

and dent(KU ) ⊂ (str-expK)U = (str-expK)U , where the
last equality follows from Lemma 1.2.5.

Proposition 6.4.5. Let K be a SWC subset of a Banach space X, U be a CI ultrafilter on an
infinite set I and let x ∈ K. Then J (x) ∈ dent(KU ) if and only if x ∈ dent(K).

Proof. Since K is SWC, it follows that J (x) is (X∗)U -denting if and only if J (x) ∈ dent(KU )
(by Lemma 6.4.1). We conclude by Theorem 6.2.4.

Note that Theorem 6.4.2 is a useful tool in the search of a characterisation of when (xi)U
is a denting point in KU if K is SWC. However, in order to get a complete characterisation in
terms of a condition on the points xi’s, we will consider a notion which is stronger than super
weak compactness: the one of uniform convexity (see Definition 6.4.6). This geometric property
on K will allow us to characterise the denting points of uniformly convex subsets of a Banach
space (see Theorem 6.4.19).

Let us now consider the formal definition of uniformly convex set.

Definition 6.4.6. A symmetric bounded closed convex set C of a Banach space X is said to
be uniformly convex if for every ε > 0 there exists δ > 0 such that

∀x, y ∈ C, ∥x− y∥ > ε =⇒ x+ y

2
∈ (1 − δ)C.

In such case, we define the convexity modulus of C by

δC(ε) = inf

{
1 −

∣∣∣∣x+ y

2

∣∣∣∣
C

: x, y ∈ C, ∥x− y∥ > ε

}
where | · |C is the Minkowski functional of C. By convention, inf ∅ = 1.

By [122, Proposition 4.2], any uniformly convex set is SWC. We include the proof for the
lack of completness:

Proposition 6.4.7. Let C be a uniformly convex subset of a Banach space X. Then C is SWC.

Proof. Fix ε > 0. Is is clear that [C]′ε ⊂ (1 − δC(ε))C. An homogeneity argument implies that
[C]nε ⊂ (1 − δC(ε))nC. It follows that there exists n ∈ N such that diam([C]nε ) < ε and then
[C]n+1

ε = ∅. Then C is finitely-dentable and we conclude by Corollar 2.4.12.

One can think that there is a big difference between SWC sets and uniformly convex sets.
However, thanks to a result of Raja and Lancien (see [122, Proposition 4.3]), we see that from a
topological point of view this is not the case. Indeed, given a symmetric super weakly compact
subset K and ε > 0, there exists a uniformly convex set Cε so that Cε ⊆ K ⊆ (1 + ε)Cε.

We will also consider the following weakening of uniform convexity.

Definition 6.4.8. A symmetric bounded closed convex set C of a Banach space X is said to be
strictly convex if for all x, y ∈ C such that x ̸= y and |x|C = |y|C = 1, one has that

∣∣x+y
2

∣∣
C
< 1.
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In general, every extreme point x of a symmetric bounded closed convex set C ̸= {0} satisfies
|x|C = 1. In the case C is strictly convex, one can easily check that indeed ext(C) = | · |−1

C ({1}).
We will use this fact in the sequel.

The following result generalizes the fact that a Banach space is uniformly convex if and only
if its ultraproduct is strictly (or uniformly) convex.

Proposition 6.4.9. Let K be a symmetric bounded convex subset of a Banach space X. Let U
be a CI ultrafilter on an infinite set I. The following assertions are equivalent:

(i) K is uniformly convex;

(ii) KU is uniformly convex.

In that case, we have that δK = δKU . Moreover, if 0 is an interior point of K, then the previous
statements are equivalent to:

(iii) KU is strictly convex.

For the proof we will need the following result.

Lemma 6.4.10. Let C be a symmetric bounded convex subset of a Banach space X, U be a CI
ultrafilter on an infinite set I and (xi)U ∈ CU . Then |(xi)U |CU ≤ limU |xi|C . Moreover, if 0 is
an interior point of C, the reverse equality also holds.

Proof. Define l := limU |xi|C . Let ε > 0. For all i ∈ I, we have that xi ∈ (|xi|C + ε)C. Define
J := {i ∈ I : ||xi|C − l| < ε} ∈ U . For all i ∈ J , it follows that xi ∈ (l + 2ε)C. Then
(xi)U ∈ (l + 2ε)CU for all ε > 0. Since CU is closed, we deduce that (xi)U ∈ lCU . We conclude
that |(xi)U |CU ≤ l.

Now, assume that 0 is an interior point of C. Let λ := |(xi)U |CU and notice that (xi)U ∈ λCU ,
so there exists (yi)i∈I ∈ CI so that (xi)U = (λyi)U . Note that

lim
U

∥xi − λyi∥ = 0 ⇔ lim
U

|xi − λyi|C = 0

since ∥ · ∥ and | · |C are equivalent norms on span(C). This implies that

lim
U

|xi|C = lim
U

|λyi|C = λ lim
U

|yi|C ≤ λ

where the last inequality holds since yi ∈ C holds for every i. This proves the equality in such
case.

Proof of Proposition 6.4.9. (i) =⇒ (ii) Suppose that K is uniformly convex. Note that KU is
closed since U is CI. Let ε > 0. Take (xi)U , (yi)U ∈ KU such that ∥(xi)U − (yi)U∥ > ε. Then,
we can suppose (changing some coordinates if necessary) that ∥xi − yi∥ > ε for all i ∈ I. Let
η ∈ (0, δK(ε)) arbitrary. It follows that xi+yi

2 ∈ (1 − η)K for all i ∈ I and then

(xi)U + (yi)U
2

=

(
xi + yi

2

)
U
∈ (1 − η)KU .

Since η was arbitrary, we conclude that 0 < δK(ε) ≤ δKU (ε), i.e. KU is uniformly convex.
(ii) =⇒ (i) Suppose that KU is uniformly convex. Let ε > 0. Let x, y ∈ K such that

∥x − y∥ > ε. Let η ∈ (0, δKU (ε)) arbitrary. It follows that ∥J (x) − J (y)∥ > ε and then

J
(
x+y
2

)
= J (x)+J (y)

2 ∈ (1 − η)KU . Let (zi)i∈I ∈ KI such that J
(
x+y
2

)
= (1 − η)(zi)U . Since

limU
∥∥x+y

2 − (1 − η)zi
∥∥ = 0, it follows that x+y

2 ∈ (1 − η)K = (1 − η)K. Since η was arbitrary,
we conclude that 0 < δKU (ε) ≤ δK(ε), i.e. K is uniformly convex.
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Now suppose that 0 is an interior point of K and that U is a CI ultrafilter. (ii) =⇒ (iii)
is obvious. We will show the implication (iii) =⇒ (i). Let suppose that K is not uniformly
convex. Then there exists ε > 0 such that for all n ∈ N, there exist xn, yn ∈ K with ∥xn−yn∥ > ε
and

∣∣xn+yn
2

∣∣
K

→ 1. Let (In)n ⊂ U be a sequence of distinct sets such that
⋂
n In = ∅, I0 = I and

In+1 ⊂ In for all n ∈ N. Define x′i = xn if i ∈ In \ In+1 for some n ∈ N. Define y′i in the same

way. It is clear that ∥(x′i)U − (y′i)U∥ ≥ ε. Moreover, it is easy to show that limU

∣∣∣x′
i+y

′
i

2

∣∣∣
K

= 1.

The previous lemma implies that ∣∣∣∣ (x′i)U + (y′i)U
2

∣∣∣∣
KU

= 1.

By triangle inequality, we also have that |(x′i)U |KU = |(y′i)U |KU = 1. So KU cannot be strictly
convex.

Remark 6.4.11. Proposition 6.4.9 reproves the very well-known result that a Banach space X
is uniformly convex if, and only if, XU is strictly convex, where U is a CI ultrafilter.

In the sequel we aim to give a characterisation of the extreme points of a uniformly convex
set. In order to do so, we need a preliminary result.

Lemma 6.4.12. Let C be symmetric bounded convex subset of a Banach space X and U be a
CI ultrafilter on an infinite set I. If (xi)U ∈ ext(CU ), then limU |xi|C = 1.

Proof. Since xi ∈ C for all i ∈ I, we have that limU |xi|C ≤ 1. Moreover we have that (xi)U ∈
ext(CU ) so |(xi)U |CU = 1. We conclude by Lemma 6.4.10.

Theorem 6.4.13. Let K be a uniformly convex subset of a Banach space X and U be a CI
ultrafilter on an infinite set I. Let (xi)U ∈ KU . The following assertions are equivalent:

(i) (xi)U ∈ ext(KU );

(ii) for any (yi)i∈I ∈ KI such that (yi)U = (xi)U , it follows limU |yi|K = 1.

If 0 is an interior point of C, then they are also equivalent to:

(iii) limU |xi|K = 1.

Proof. Suppose that (xi)U ∈ ext(KU ). Let (yi)i∈I ∈ KI such that (yi)U = (xi)U . Obviously, we
have that (yi)U ∈ ext(KU ) and we conclude by the previous lemma.

Now suppose that (xi)U /∈ ext(KU ). Then there exist (yi)U , (zi)U such that (xi)U =
(yi)U+(zi)U

2 and ∥(yi)U − (zi)U∥ > ε for some ε > 0. Let δ associated to ε given by the

uniform convexity of KU . It follows that (xi)U = (yi)U+(zi)U
2 ∈ (1 − δ)KU . So there exists

(y′i)i∈I ∈ (1 − δ)KI ⊂ KI such that (xi)U = (y′i)U . Since |y′i|K ≤ 1 − δ for all i ∈ I, it follows
that limU |y′i|K < 1.

Finally, assume that 0 is an interior point of C. Clearly (ii)⇒(iii), and (iii)⇒(i) by Lem-
mas 6.4.10 and the comment following the definition of strict convexity.

The next proposition shows the extremal structure of a uniformly convex set has great
properties.

Proposition 6.4.14. Let K ⊂ X be a uniformly convex set of a Banach space X and Z be a
subspace of X∗. Then

(a) ext(K) = dent(K).
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(b) expZ(K) = str-expZ(K) = {x ∈ K |∃x∗ ∈ Z : sup
K
x∗ = x∗(x) > 0}.

Proof. (a) Let x ∈ ext(K) and let ε > 0. Take δ associated to ε given by the definition of
uniform convexity. By the Hahn-Banach theorem, there exists x∗ ∈ X∗ \ {0} such that

x∗(x) > sup
(1−δ)K

x∗.

Since K is symmetric, we can suppose that supK x
∗ = 1. Define a slice of K by S := S(x∗,K, δ).

We have that x∗(x) > sup(1−δ)K x
∗ = 1 − δ, so x ∈ S and S ∩ (1 − δ)K = ∅. Let’s show that

diam(S) ≤ ε. Suppose on the contrary that there exist y, z ∈ S such that ∥y − z∥ > ε. By
uniform convexity, it follows that y+z

2 ∈ (1 − δ)K. This is a contradiction since y+z
2 ∈ S.

(b) Clearly str-expZ(K) ⊂ expZ(K). Now, assume that x∗ ∈ Z exposes x. Then 0 = x∗(0) <
x∗(x), so we get that x∗ satisfies our purposes.

Finally, that x∗ ∈ Z satisfies that supK x
∗ = x∗(x) > 0, and let us prove that x∗ ∈ Z

strongly exposes x. To this end, pick ε > 0, and let us find a slice of K determined by x∗ with
diameter smaller than ε. Let δ > 0 be associated to ε in the definition of uniformly convex
set. Without loss of generality, we can suppose that x∗(x) = supK x

∗ = 1. Let y ∈ K so that
∥x− y∥ ≥ ε. Then x+y

2 ∈ (1 − δ)K. Then

x∗(x) + x∗(y)

2
≤ 1 − δ,

from where

x∗(y) ≤ 1 − 2δ.

Summarising we have proved that if ∥x− y∥ ≥ ε then y /∈ S := {z ∈ K : x∗(z) > 1− 2δ}, which
is a slice of K since α > 0. This is equivalent to the following: if x∗(y) ≥ 1 − 2δ = x∗(x) − 2δ
then ∥x− y∥ < ε. Since ε > 0 was arbitrary, we get that x∗ strongly exposes x and the proof is
complete.

Corollary 6.4.15. Let K be a uniformly convex subset of a Banach space X and U be a CI
ultrafilter on an infinite set I be a Banach space. Then ext(KU ) = dent(KU ) and exp(KU ) =
str-exp(KU ).

Proof. By Proposition 6.4.9, KU is uniformly convex. The result follows from the previous
proposition.

Corollary 6.4.16. Let K be a uniformly convex subset of a Banach space X, U be a CI ultrafilter
on an infinite set I and x ∈ K. Then x ∈ ext(K) if and only if J (x) ∈ ext(KU ).

Proof. It follows from Proposition 6.4.14 and Theorem 6.1.5.

The following diagram summarises the implications between the properties of x ∈ K and
the ones of J (x) ∈ KU for a uniformly convex set K. The situation is much simpler than in the
general case:

x ∈ exp(K) x ∈ str-exp(K) x ∈ dent(K) x ∈ str-ext(K) x ∈ ext(K)

J (x) ∈ exp(X∗)U (KU ) J (x) ∈ str-exp(X∗)U (KU ) J (x) ∈ dent(X∗)U (KU ) J (x) ∈ str-ext(KU ) J (x) ∈ ext(KU )
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Remark 6.4.17. In general we do not know whether every extreme point is a strongly exposed
point in a uniformly convex set K. However, it turns out that every extreme point is strongly
exposed in a sense which depends on the Minkowski functional | · |K . We say that a point
is intrinsically strongly exposed if there exists a linear functional f : X −→ R (not necessarily
bounded) so that f(x) = supK f = 1 and that, for every ε > 0, there exists δ > 0 so that
f(y) > 1 − δ ⇒ ∥x− y∥ < ε.

Let us prove that if x ∈ K satisfies that |x|K = 1 then it is intrinsically strongly exposed.
Define Y = (span(K), | · |K). It is well known that Y is a Banach space such that BY = K. By
the Hahn-Banach theorem, there exists f ∈ SY ∗ such that f(x) = |x|K = 1. Let us prove that
f strongly exposes x in the above sense. To do so, pick ε > 0 and take δ of the definition of
uniformly convex set. Now if y ∈ K satisfies that f(y) > 1 − δ we get

1 − δ

2
<
f(x+ y)

2
≤ |x+ y|K

2
=

∣∣∣∣x+ y

2

∣∣∣∣
K

,

which means that x+y
2 /∈ (1− δ)K. This implies that ∥x− y∥ < ε. The arbitrariness of ε implies

that every point of {x ∈ K : |x|K = 1} is strongly exposed (actually, it is uniformly strongly
exposed).

Note that f is | · |K-continuous. However, in the general case, f is not necessarily ∥ · ∥-
continuous (unless span(K) is closed since in that case the norm induced by X on Y and | · |K
are equivalent by the open mapping theorem).

Remark 6.4.18. In spite of the previous remark, we can at least prove that str-exp(K) is
dense in ext(K) in a uniformly convex set K. Indeed, since K is weakly compact, K =
conv(str-exp(K)) and so dent(K) ⊂ str-exp(K). By Proposition 6.4.14, ext(K) = dent(K)
provided that K is uniformly convex.

Note that, by applying Corollary 6.4.15 and Theorem 6.1.1, we can now give a characterisa-
tion of the denting points of a uniformly convex set.

Theorem 6.4.19. Let K be a uniformly convex subset of a Banach space X and U be a free
ultrafilter over I. Let (xi)U ∈ CU . The following assertions are equivalent:

(i) (xi)U ∈ dent(KU ),

(ii) for any (yi)U , (zi)U ∈ CU so that limU ∥xi − yi+zi
2 ∥ = 0, it follows that limU ∥xi − yi∥ = 0

and limU ∥xi − zi∥ = 0.

Recall that F is a face of a convex set C if for any x, y ∈ C such that (x, y)∩F ̸= ∅, one has
that [x, y] ⊂ F . A face F of C is proper if F ̸= ∅ and F ̸= C.

Lemma 6.4.20. Let C be a symmetric bounded closed convex subset of a Banach space X. If
F is a proper face of C then F ⊂ | · |−1

C ({1}). If moreover C is strictly convex, then F is a
singleton.

Proof. Note first that 0 /∈ F , otherwise it follows easily that C = F , a contradiction. Now,
suppose there exists x ∈ F such that |x|C < 1. Thus x belongs to the non-trivial segment
(0, x/|x|C) in C. It follows that 0 ∈ F , so we obtain again that C = F , a contradiction.

Finally, assume that C is strictly convex and take x, y ∈ F . We have that |x|C = |y|C = 1
and, since x+y

2 ∈ F , we also have that
∣∣x+y

2

∣∣
C

= 1. Then x = y by strict convexity, so F is a
singleton.

Theorem 6.4.21. Let U be a free ultrafilter on an infinite set I. Let K be a uniformly convex
subset of a Banach space X such that KU separates points of (X∗)U . Then

(exp(K))U ⊂ exp(X∗)U (KU ) = str-exp(X∗)U (KU ).
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Proof. First, note that the equality follows from Proposition 6.4.14. Let (xi)U ∈ (exp(K))U .
We can obviously suppose that xi ∈ exp(K) for all i ∈ I. Let x∗i ∈ SX∗ that exposes xi. Define
a face of KU by

F =

{
(yi)U ∈ KU | ⟨(x∗i )U , (yi)U ⟩ = sup

KU

(x∗i )U

}
.

It is clear that (xi)U ∈ F and, in particular, F ̸= ∅. Since KU is strictly convex, in order to apply
the previous lemma, we need to show that F is a proper face. If F = K, then (x∗i )U |KU

= 0 since

0 ∈ K. By hypothesis, it follows that (x∗i )U = 0, which is a contradiction since ∥(x∗i )U∥ = 1.
By Lemma 6.4.20, we conclude that F = {(xi)U}, i.e. (xi)U is exposed by (x∗i )U .





Chapter 7

Ultraproducts in Lipschitz-free
spaces

7.1 Definitions and basic properties

7.1.1 Ultraproduct of metric spaces

An excellent reference on this topic is a revised unpublished version of [153]. Since that version
might not be available to the reader, we have chosen to include here the necessary definitions
and properties. Let I be any infinite set. From now on, U will denote a nonprincipal ultrafilter
on I. Let {(Mi, di)}i∈I be a family of metric spaces and fix a distinguished point 0i ∈ Mi for
every i ∈ I. Let us consider the set

ℓ∞(Mi) =

{
(xi)i∈I ∈

∏
i∈I

Mi : sup
i∈I

di(xi, 0i) <∞

}
.

Notice that for every (xi)i∈I , (yi)i∈I ∈
∏
i∈IMi we have supi∈I di(xi, yi) < ∞. Therefore, one

can consider

d((xi)i∈I , (yi)i∈I) := lim
U,i

di(xi, yi).

It is clear that d is a pseudometric on ℓ∞(Mi). We consider the equivalence relation given by
(xi)i∈I ∼ (yi)i∈I if and only if d((xi)i∈I , (yi)i∈I) = 0. We denote

(Mi)U = ℓ∞(Mi)/ ∼

and π : ℓ∞(Mi) → (Mi)U the canonical projection. Then the expression

dU (x̄, ȳ) := d((xi)i∈I , (yi)i∈I),

for x̄, ȳ ∈ (Mi)U and π((xi)i∈I) = x̄, π((yi)i∈I) = ȳ, defines a metric on (Mi)U . For simplicity,
we usually omit π and we write (xi)U = π((xi)i∈I . The metric space ((Mi)U , dU ) is called the
ultraproduct of the metric spaces (Mi)i∈I . Moreover, if Mi = M and 0i = 0 ∈M for every i ∈ I
then the space (Mi)U is called the ultraproduct of the metric space M and denoted MU . If the
context is clear, we simply write d instead of dU .

Remark 7.1.1. Although the concepts are different, we use the same notation as in Definition
1.2.4. In this chapter, only this new notion is used and there is no possible confusion.

121



122 CHAPTER 7. ULTRAPRODUCTS IN LIPSCHITZ-FREE SPACES

Let us notice that if the spaces Mi are uniformly bounded then the definition of (Mi)U does
not depend on the choice of the distinguished points. In the case that the Mi are normed spaces,
we will always consider that the distinguished point is 0 ∈ Mi for every i ∈ I and we recover
then the usual definition of ultraproduct for Banach spaces.

The following result summarises several known properties of the ultraproduct of metric
spaces. We include the proofs (analogous to the Banach case ones) for completeness.

Fact 7.1.2. (a) If 0i ∈ Ni ⊂ Mi for each i ∈ I, then (Ni)U embeds isometrically in (Mi)U .
Moreover, if U is CI and Ni is dense in Mi for every i ∈ I then (Ni)U is isometric to
(Mi)U .

(b) If U is CI, then (Mi)U is a complete metric space.

(c) If the Mi are normed spaces, then (Mi)U is a Banach space.

(d) M embeds isometrically in MU . Moreover, if M is a normed space then there exists a
linear isometry from M into MU .

(e) If M is a proper metric space (that is, closed balls in M are compact sets) then MU is
isometric to M .

Proof. (a) Consider fi : Ni → Mi the canonical inclusion for each i ∈ I. Then it is straight-
forward that (fi)i∈I defines an isometry from (Ni)U into a subset of (Mi)U . In other to prove
the second statement, take x̄ ∈ (Mi)i∈I and fix (xi)i∈I with x̄ = (xi)i∈I . Take a decreasing
sequence (In)n∈N ⊂ U such that

⋂∞
n=1 In = ∅. We will define yi ∈ Ni for each i ∈ I satisfying

that limi,U di(xi, yi) = 0, so x̄ = (yi)i∈I . If i /∈ I1, take yi ∈ Mi arbitrary. If i ∈ In \ In+1, take
yi ∈ Ni so that di(xi, yi) < 1/n. Since

⋂∞
n=1 In = ∅, this defines yi for every i ∈ I. Now notice

that
{i ∈ I : di(xi, yi) < 1/n} ⊃ In ∈ U

and so limi,U di(xi, yi) = 0. This shows that (fi)i∈I is onto, as desired.
(b) By the previous property, we may assume that Mi is complete for each i ∈ I. Notice

that π : (ℓ∞(Mi), d∞) → ((Mi)U , dU ) is 1-Lipschitz and onto. Since completeness is preserved
by uniformly continuous surjections, we only need to check that (ℓ∞(Mi), d∞) is complete. For
that, mimic the proof of the completeness of ℓ∞.

(c) It is clear that dU is a norm on (Mi)U whenever the Mi are normed spaces. Moreover,
ℓ∞(Mi) is a Banach space and NU = {(xi)i∈I | limU ∥xi∥ = 0} is a closed subspace. So
(Mi)U = ℓ∞(Mi)/NU is a Banach space.

(d) Given x ∈M , take xi = x for every i ∈ I. Then (xi)i∈I ∈ ℓ∞(M). Thus ϕ(x) := (xi)i∈I
defines an isometry from M into a subset of MU . For the last statement, notice that the map
ψ is a linear operator whenever M is a normed space.

(e) Given x̄ ∈ MU , take (xi)i∈I such that x̄ = (xi)i∈I . Then R = sup{d(xi, 0) : i ∈ I} < ∞
and so {xi : i ∈ I} is contained in the compact set B(0, R). Therefore, there exists ψ(x̄) :=
limU,i xi. Notice that

d(ψ(x̄), ψ(ȳ)) = d

(
lim
U,i

xi, lim
U,i

yi

)
= lim

U,i
d(xi, yi) = dU (x̄, ȳ),

so ψ defines an isometry from MU into M . Moreover, given x ∈ M we have x = ψ(ϕ(x)) and
therefore ψ is onto.

Note in passing that the ultraproduct of metric spaces is closely related to the Gromov-
Hausdorff limit. Indeed, if M is the Gromov-Hausdorff limit of a sequence of pointed proper
metric spaces Mn, then M is isometric to the ultraproduct (Mn)U (see e.g. [38]).
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7.1.2 Lipschitz-free spaces

Let M be a pointed metric space M , that is, a metric space with a distinguished point denoted
0. We will denote by Lip0(M) the Banach space of all real-valued Lipschitz functions on M
vanishing at 0, endowed with the norm given by the Lipschitz constant:

∥f∥ = Lip(f) = sup

{
|f(x) − f(y)|

d(x, y)
: x, y ∈M,x ̸= y

}
For x ∈ M , the linear map δ(x) : Lip0(M) → R given by ⟨f, δ(x)⟩ = f(x) defines an element
of Lip0(M)∗. The Lipschitz-free space over M (also called Arens-Eells space and transporta-
tion cost space) is defined as the closed subspace of Lip0(M)∗ generated by these evaluation
functionals, that is,

F(M) := span∥·∥ {δ(x) : x ∈M} ⊂ Lip0(M)∗.

The map δ defines an isometric embedding of M into F(M) such that the following fundamental
property holds: for every Banach space X and every Lipschitz function f : M → X with f(0) =
0, there is a unique bounded linear operator Tf : F(M) → X such that Tf ◦ δ = f and ∥Tf∥ =
Lip(f). It follows in particular that F(M)∗ = Lip0(M). We refer the reader to the monographs
[138, 171] and the survey [80] for more properties and applications of these spaces.

7.2 Ultraproduct of F(M) and Lip0(M)

Recall that, for a Banach space X, the ultraproduct (X∗)U embeds isometrically into (XU )∗

and it is norming for XU . The following result provides an analogous for metric spaces (with
Lipschitz functions playing the role of linear functionals). We just need to recall that, given
λ ≥ 1, a set A ⊂ X∗ is λ-norming for X if supx∗∈A∩BX∗ |x∗(x)| ≥ 1

λ∥x∥ for every x ∈ X.

Theorem 7.2.1. Let U be an ultrafilter on a set I and let (Mi)i∈I be a family of metric spaces.
Define an operator T : Lip0(Mi)U → Lip0((Mi)U ) where T ((fi)U ) ∈ Lip0((Mi)U ) is the function
given by

T ((fi)U )((xi)U ) = lim
U,i

fi(xi).

Then T is a well-defined linear operator with ∥T∥ ≤ 1 and T (BLip0(Mi)U ) is a 1-norming set for
F((Mi)U ).

Proof. First notice that if (xi)i∈I = (yi)i∈I in (Mi)U and (fi)i∈I = (gi)i∈I in (Lip0(Mi))U , then

lim
U,i

|fi(xi) − gi(yi)| ≤ lim
U,i

(∥fi − gi∥d(xi, 0) + ∥gi∥d(xi, yi)) = 0.

So the formula does not depend on the chosen representations. Moreover, if f̄ = (fi)U ∈
Lip0(Mi)U we have that

|T f̄(x̄) − T f̄(ȳ)| ≤ ∥f̄∥d(x̄, ȳ) ∀x̄, ȳ ∈ (Mi)U

so T f̄ ∈ Lip0((Mi)U ). Therefore T is well-defined and we have that ∥T f̄∥ ≤ ∥f̄∥ for each
f̄ ∈ Lip0(Mi)U .

Now, we will prove that T (BLip0(Mi)U ) is a 1-norming set. It is well known (see e.g. Propo-
sition 3.3 in [112]) that for that if suffices to check that given ε > 0, a finite subset A ⊂ (Mi)U ,
ε > 0 and f ∈ Lip0((Mi)U ), there exists (fi)U ∈ Lip0(Mi)U such that ∥(fi)U∥ ≤ (1 + ε)∥f∥ and
T ((fi)U )|A = f |A.
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Let A = {(xji )U}1≤j≤n be a finite set, we may assume that 0 = (0i)U ∈ A and that the (xji )U
are all different. Fix ε > 0 and f ∈ Lip0((Mi)U ). For j, j′ ∈ {1, . . . , n} distinct, we have that

Ij,j′ =

{
i ∈ I | d(xji , x

j′

i ) >
1

1 + ε
d((xji )U , (x

j′

i )U )

}
∈ U .

It follows that J =
⋂
j ̸=j′ Ij,j′ ∈ U and then we can assume that

d(xji , x
j′

i ) >
1

1 + ε
d((xji )U , (x

j′

i )U )

for all j ̸= j′ and all i ∈ I. For i ∈ I, define a function fi : {x1i , . . . , xni } → R by fi(x
j
i ) =

f((xjk)U,k) for all j ∈ {1, . . . , n}, note that fi(0i) = 0. If j ̸= j′, we have that

|fi(xji ) − fi(x
j′

i )| = |f((xjk)U,k) − f((xj
′

k )U,k)|

≤ ∥f∥d((xjk)U,k, (x
j′

k )U,k) ≤ (1 + ε)∥f∥d(xji , x
j′

i )

proving that fi is (1 + ε)∥f∥-Lipschitz and belongs to Lip0({x1i , . . . , xni }). Now we extend fi
to a (1 + ε)∥f∥-Lipschitz function on Mi and we still denote it by fi. We have that ∥(fi)U∥ ≤
(1 + ε)∥f∥ and

T ((fi)U )((xji )U ) = lim
U,i

fi(x
j
i ) = lim

U,i
f((xjk)U,k) = f((xjk)U,k)

for all j ∈ {1, ..., n}, proving that T ((fi)U ) and f coincide on A. A standard argument using
the denseness of finitely supported elements in F((Mi)U ) gives that T (BLip0(Mi)U ) is 1-norming
for F((Mi)U ), as desired.

The operator T defined in the previous theorem is not injective, in general. Indeed, we have
the following characterization.

Proposition 7.2.2. Let M be a metric space and let U be a CI ultrafilter on a set I. Let
T : Lip0(M)U → Lip0(MU ) defined in Theorem 7.2.1. The following assertions are equivalent:

(i) M is uniformly discrete and bounded;

(ii) T is injective;

(iii) T is an isometry.

Proof. (iii) =⇒ (ii) is obvious.
(ii) =⇒ (i) Let (In)n ⊂ U be decreasing sequence of sets having empty intersection.

Suppose by contradiction that M is unbounded. Given i ∈ In \ In+1, consider the function fi
given by fi(x) = d(x,B(0, n)). It is easy to check that ∥fi∥ = 1. Let f̄ = (fi)U . Then it follows
∥f̄∥ = 1 and T f̄ = 0, which is a contradiction. It follows that M is bounded.

Now suppose that M is not uniformly discrete. Then there exist two sequences (xn)n and
(yn)n in M such that xn ̸= yn for all n ∈ N and dn := d(xn, yn) → 0. We have that xn ̸= 0 or
yn ̸= 0, so by taking a subsequence if necessary we can suppose without loss of generality that
yn ̸= 0 for all n ∈ N. For all n ∈ N, we define a 1-Lipschitz function gn : M → [0, dn] by

gn(x) = max {dn − d(yn, x), 0}

and let hn ∈ Lip0(M) given by hn(x) = gn(x)−gn(0). It is clear that ∥hn∥=1 and ∥hn∥∞ ≤ dn.
Now let i ∈ I and define fi = hn where n is such that i ∈ In \ In+1. Let f̄ = (fi)U ∈ Lip0(M)U .
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We have that ∥f̄∥ = limU ∥fi∥ = 1, so f̄ ̸= 0. However we have that T f̄ = 0 since ∥hn∥∞ ≤ dn
for n ∈ N, which is again a contradiction. So M is uniformly discrete.

(i) =⇒ (iii) Let θ = inf{d(x, y) : x, y ∈ M,x ̸= y} > 0. Take f̄ ∈ Lip0(M)U and (fi)i∈I
with f̄ = (fi)U . By Theorem 7.2.1, we just need to prove that ∥T f̄∥ ≥ ∥f̄∥. Let ε > 0. For all
i ∈ I, pick xi, yi ∈M two distinct points of M such that |fi(xi) − fi(yi)| ≥ (1 − ε)∥fi∥d(xi, yi).
Since M is bounded, we may consider x̄ = (xi)U and ȳ = (yi)U . Moreover, we have that
d(x̄, ȳ) = limU d(xi, yi) ≥ θ, so x̄ ̸= ȳ. Taking limit on U , it follows that |T f̄(x̄) − T f̄(ȳ)| ≥
(1 − ε)∥f̄∥d(x̄, ȳ) and then ∥T f̄∥ ≥ (1 − ε)∥f̄∥. Since this is true for all ε > 0, we obtain that
∥T f̄∥ ≥ ∥f̄∥.

Note that the implication (i) ⇒ (iii) works for any ultrafilter (not necessarily CI).

Remark 7.2.3. In general the operator T is not onto. In fact, let M be a bounded infinite
uniformly discrete set. Suppose also that U is CI and let (In)n be a decreasing sequence in
U with empty intersection. Let f = T ((fi)U ). Given i ∈ In \ In+1, take xi, yi ∈ M two
distinct points with fi(xi) − fi(yi) ≥ (1 − 1/n)∥fi∥d(xi, yi). Let x̄ = (xi)U and ȳ = (yi)U in
MU and note that these two elements are distinct since M is uniformly discrete. Then clearly
f̄(x̄) − f̄(ȳ) = d(x̄, ȳ), that is,

T ((Lip0(M))U ) ⊂ SNA(MU )

where SNA(MU ) denotes the set of Lipschitz functions on N attaining their Lipschitz constant
at a pair of points of MU . However, whenever the metric space M is infinite, there are Lipschitz
functions on MU which do not attain the Lipschitz constant (otherwise, every linear functional
on F(MU ) attains its norm, and then F(MU ) is reflexive).

Theorem 7.2.4. Let U be an ultrafilter on a set I and let (Mi)i∈I be a family of metric spaces.
Then F((Mi)U ) is linearly isometric to span(δ(Mi)U ) ⊂ F(Mi)U .

Proof. Let s : (Mi)U → F(Mi)U defined by s((xi)U ) = (δxi
)U . Note that s is an isometry since

d((xi)U , (yi)U ) = lim
U
d(xi, yi) = lim

U
∥δxi − δyi∥ = ∥(δxi)U − (δxi)U∥

= ∥s((xi)U ) − s((yi)U )∥

for all (xi)U , (xi)U ∈ (Mi)U . By the linearization property of Lipschitz-free spaces, s extends
to a continuous linear operator S : F((Mi)U ) → F(Mi)U such that ∥S∥ = 1. Let ε > 0 and
fix µ =

∑n
j=1 ajδ(xj

i )U
∈ F((Mi)U ). Let T : Lip0(Mi)U → Lip0((Mi)U ) be the operator defined

in Theorem 7.2.1. Since T (BLip0(Mi)U ) is 1-norming, there exists (fi)U ∈ Lip0(Mi)U such that
∥µ∥ = ⟨T ((fi)U ), µ⟩ and ∥(fi)U∥ ≤ 1 + ε. It follows that

∥µ∥ = ⟨T ((fi)U ), µ⟩ =

n∑
j=1

aj⟨T ((fi)U ), δ(xj
i )U

⟩ =

n∑
j=1

aj lim
U,i

fi(x
j
i )

=

n∑
j=1

aj⟨(fi)U , (δxj
i
)U ⟩ = ⟨(fi)U , S(µ)⟩ ≤ (1 + ε)∥S(µ)∥,

and we deduce that ∥µ∥ ≤ ∥S(µ)∥ since ε was arbitrary. By density of the measures with finite
support, it follows that S is an isometry.

Remark 7.2.5. The previous proof gives that ⟨T ((fi)U ), µ⟩ = ⟨(fi)U , S(µ)⟩ for all µ ∈ F((Mi)U )
and all (fi)U ∈ Lip0(Mi)U . In other words, S∗|Lip0(Mi)U = T .
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7.3 Finite representability of metric spaces

We immediately obtain the following consequence of Theorem 7.2.4.

Theorem 7.3.1. Let M be a metric space and let U be an ultrafilter. Then F(MU ) is finitely
representable in F(M).

We will deal with a related notion for metric spaces introduced by Lee, Naor and Peres
in [123]. We take the terminology from [15]. For a biLipschitz embedding ϕ, dist(ϕ) =
Lip(f) Lip(f−1) denotes its distortion.

Definition 7.3.2. Let λ ≥ 1 and M,N be metric spaces. We say that M is finitely λ-Lipschitz
representable into N if for every finite subset F in M and every ε > 0 there is a map ϕ : F → N
such that dist(ϕ) ≤ λ+ ε.

Moreover, we will consider the following notions.

Definition 7.3.3. Let M and N be metric spaces. If M is finitely λ-Lipschitz representable
in N for some λ ≥ 1, we say that M is crudely finitely Lipschitz representable in N . If M is
finitely 1-Lipschitz representable in N , we say that M is finitely representable in N .

In the case of Banach spaces, this notion coincides with the usual finite representability.
Indeed, the following is a consequence of Theorem 13 in [144].

Proposition 7.3.4. Let X and Y be two Banach spaces and let λ ≥ 1. Then X is finitely
λ-Lipschitz representable in Y if and only if X is λ-finitely representable in Y .

Our first goal is to show that the finite Lipschitz representability admits a characterization
in terms of ultraproducts which is analogous to the corresponding result for Banach spaces (see
Theorem 1.3.2).

Proposition 7.3.5. Let M,N be metric spaces. The following assertions are equivalent:

(i) M is finitely λ-Lipschitz representable into N ;

(ii) there exist an ultrafilter U on a set I, scaling factors ri > 0, points 0i ∈ N and a λ-
biLipschitz embedding of M into (N, 0i, rid)U .

In that case, if moreover M is separable, then for any CI ultrafilter U there are ri > 0, points
0i ∈ N , and a λ-biLipschitz embedding of M into (N, 0i, rid)U .

Proof. Suppose that (i) holds. Fix a point 0 ∈M and define

I := {(A, ε) : 0 ∈ A ⊂M, |A| <∞, 0 < ε < 1}

with the partial order defined by (A1, ε1) ⪯ (A2, ε2) if and only if A1 ⊂ A2 and ε1 ≥ ε2. Since
any pair of element of I has an infimum, it is easy to show that

β := {{i ∈ I : i0 ⪯ i} | i0 ∈ I}

is a filter basis. Then let U be any ultrafilter containing the filter generated by β. For all
i = (Ai, εi) ∈ I, there exists a one-to-one function ϕi : Ai → N such that dist(ϕi) ≤ λ + εi.
Consider the metric space (Ni, 0i, di) where Ni = N , di = ∥ϕ−1

i ∥d and 0i = ϕi(0). Given x ∈M ,
let yi = ϕi(x) if x ∈ Ai with i = (Ai, εi) and yi = 0i if not. Note that

di(ϕi(x), 0i) ≤ ∥ϕi∥di(x, 0) ≤ (λ+ 1)d(x, 0)
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and so (ϕi(x))i∈I gives an element of (Ni)U . This means that x 7→ (yi)U defines a map ϕ : M →
(Ni)U .

Now, let ε0 > 0 arbitrary and take x, x′ ∈M . Note that I0 := {(A, ε) ∈ I | x, x′ ∈ A, ε ≤ ε0}
belongs to U . For i ∈ I0, we have that

d(x, x′) ≤ ∥ϕ−1
i ∥d(yi, y

′
i) ≤ ∥ϕ−1

i ∥∥ϕi∥d(x, x′) ≤ (λ+ ε0)d(x, x′).

Letting ri = ∥ϕ−1
i ∥ and taking limit on U , we obtain that

d(x, y) ≤ d(ϕ(x), ϕ(y)) ≤ (λ+ ε0)d(x, y).

Since ε0 was arbitrary, we conclude that ϕ is a λ-biLipschitz embedding.
For the other implication, suppose that there exists ϕ : M → (N, 0i, rid)U with dist(ϕ) ≤ λ

for some ultrafilter U on a set I and numbers ri > 0. Let A = {x1, . . . , xp} be a finite subset
of different elements of M and fix ε > 0. Each ϕ(xk) can be written ϕ(xk) = (yki )U . For i ∈ I,
define a function ϕi : A→ N by ϕi(x

k) = yki . Note that for k, l ∈ {1, . . . , p}, we have that

∥ϕ−1∥−1d(xk, xl) ≤ d(ϕ(xk), ϕ(xl)) ≤ ∥ϕ∥d(xk, xl)

and
d(ϕ(xk), ϕ(xl)) = lim

i,U
rid(ϕi(x

k), ϕi(x
l)).

It follows that{
i ∈ I | (1 − ε)∥ϕ−1∥−1d(xk, xl) ≤ rid(ϕi(x

k), ϕi(x
l)) ≤ (1 + ε)∥ϕ∥d(xk, xl) ∀k, l

}
belongs to U and so it is not empty. Taking i in this set we have that

(1 − ε)r−1
i ∥ϕ−1∥d(a, b) ≤ d(ϕi(a), ϕi(b)) ≤ (1 + ε)r−1

i ∥ϕ∥d(a, b)

for all a, b ∈ A. That is,

dist(ϕi) ≤
1 + ε

1 − ε
dist(ϕ) ≤ 1 + ε

1 − ε
λ

and so (i) holds.
Now suppose that M is separable and that (i) holds. Let U be any CI ultrafiltrer over a

set I and let (In)n ⊂ U be a decreasing sequence with empty intersection. Let {xn}n be a
countable dense subset of M . For all n ∈ N, there exists a function ϕn : {xk}1≤k≤n → N such
that dist(ϕn) ≤ (1 + 1/n)λ. Given i ∈

⋃
n In, let ni be such that i ∈ Ini \ Ini+1, and consider

the metric space (Ni, 0i, di) where Ni = N , di = ∥ϕ−1
ni

∥d and 0i = ϕni
(x1). If i ∈ I \ I1, define

ri > 0 arbitrarily. Note that, given m ∈ N,

di(ϕni(xm), 0i) ≤ dist(ϕni)d(xm, x1) ≤ 2λd(xm, x1),

and so we may consider the element (ϕni
(xm))U,i.

Now, define a function ϕ : {xn}n → (Ni)U by ϕ(xm) = (ϕni
(xm))U,i. We will prove that ϕ

is an isometry and then will extend to a unique isometry defined on M . Let ε > 0 and p0 ∈ N
such that 1

p0
< ε. Let p < q and define q̃ = max{p0, q}. Let I0 =

⋃
n≥q̃ In ∈ U and take i ∈ I0.

It is clear that ypi = ϕni(xp) and yqi = ϕni(xq). It follows that

d(xp, xq) ≤ ∥ϕ−1
ni

∥d(ypi , y
q
i ) ≤ ∥ϕni

∥∥ϕ−1
ni

∥d(xp, xq)

≤ (1 + 1/ni)λd(xp, xq) < (1 + ε)λd(xp, xq)

Taking limit on U , we deduce that

d(xp, xq) ≤ d(ϕ(xp), ϕ(xq)) ≤ (1 + ε)λd(xp, xq).

Since ε was arbitrary, we conclude that ϕ is an isometry and the proof is complete.
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Note that in the case N = X is a Banach space clearly one may assume that ϕi(0) = 0 and
∥ϕ−1

i ∥ = 1 (and then ri = 1) in the proof of (i) ⇒ (ii) above, so we get:

Theorem 7.3.6. Let M be a metric space and X be a Banach space. The following assertions
are equivalent:

(i) M is finitely λ-Lipschitz representable in X;

(ii) there exists an ultrafilter U such that M is λ-biLipschitz equivalent to a subset of XU .

In that case, if moreover M is separable and U is a CI ultrafilter, then M is λ-biLipschitz
equivalent to a subset of XU .

Theorem 7.3.7. Let M be a metric space and X be a Banach space. Assume that M is finitely
λ-Lipschitz representable in X. Then F(M) is λ-finitely representable in F(X).

Proof. Assume M is finitely λ-Lipschitz representable in X. By Theorem 7.3.6, there exists an
ultrafilter U such that M λ-biLipschitz embeds in XU . It follows that F(M) is λ-isomorphic to
a subspace of F(XU ). By Theorem 7.2.4, we deduce that F(M) is λ-isomorphic to a subspace
of F(X)U . This means exactly that F(M) is λ-finitely representable in F(X).

Remark 7.3.8. Note that if M and N are bounded metric spaces satisfying that for every
finite subset F ⊂M and every ε > 0 there exists a function f : F → N such that

(1 + ε)−1d(x, y) ≤ d(ϕ(x), ϕ(y)) ≤ (1 + ε)d(x, y) ∀x, y ∈ F,

then a similar argument shows that F(M) is finitely representable in F(N).

We obtain some immediate consequences:

Corollary 7.3.9. Let X and Y be Banach spaces. Then F(X) is finitely representable in F(Y )
in any of the following cases:

(a) X = ℓ2 and Y is any infinite-dimensional Banach space.

(b) X = Y ∗∗ and Y is any Banach space.

(c) X = Lp([0, 1]) and Y = ℓp, where 1 ≤ p <∞.

Proof. In each of the cases, we have that X is finitely representable in Y . In fact, for (a) it is
a consequence of Dvoretzky’s theorem (see Theorem 1.3.4). For (b), it is the principle of local
reflexivity (see Theorem 1.3.5) and (c) is part of Theorem 6.2 in [67].

Corollary 7.3.10. Let X and Y be Banach spaces such that X coarsely Lipschitz embeds into
Y . Then F(X) is crudely finitely representable in F(Y ).

Proof. That follows from Ribe’s theorem (see Theorem 14.2.27 in [1]).
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7.4 Some remarks on the cotype of Lipschitz-free spaces

Not much is known about the Rademacher cotype of Lipschitz-free spaces. Bourgain proved
([33], see also Theorem 10.16 in [138]) that F(ℓ1) has trivial cotype, but whether F(Rn) has a
nontrivial cotype is a long-standing open problem. Note that as a consequence of Corollary 7.3.9
the following dichotomy holds:

(a) F(ℓ2) has cotype; or

(b) F(X) does not have cotype for any infinite-dimensional Banach space X.

We obtain now some remarks concerning the cotype of F(M). Recall that the notion of
metric cotype was introduced by Mendel and Naor in [133]. Note that if M is a metric space
such that F(M) has Rademacher cotype q, then M also has metric cotype q. In particular, if
M = X is a Banach space then X has Rademacher cotype q (this follows directly from the fact
that the metric cotype passes to subspaces and is equivalent to the usual cotype for Banach
spaces).

On the other hand, the cotype of F(M) is related to the metric type introduced by Bourgain,
Milman and Wolfson in [34].

Proposition 7.4.1. Let M be a metric space such that F(M) has Rademacher cotype. Then
M has BMW type. In particular, if M = X is a Banach space then X has Rademacher type.

Proof. Suppose that M does not have BMW type. By Theorem 2.6 in [34], M contains uniformly
biLipschitz copies of the Hamming cubes Fn2 . Bourgain’s result mentioned earlier provides a
constant C ≥ 1 such that for all m there exists n such that F(Fn2 ) contains a C-isomorphic
copy of ℓm∞. Since the space F(M) contains D-isomorphic copies of the spaces F(Fn2 ) for some
D ≥ 1, it follows that F(M) contains CD-isomorphic copies of the spaces ℓm∞. In particular,
F(M) can not have cotype. If M is Banach space then M has BMW type if and only if M has
Rademacher type by Corollary 5.9 in [34].

Remark 7.4.2. If X is a Banach space such that F(X) has Rademacher cotype, then we can
deduce easily from Theorem 7.3.7 that X has Rademacher type. In fact, if X does not have
Rademacher type then ℓ1 is finitely representable in X (see Theorem 1.3.6) and then F(ℓ1) is
finitely representable in F(X). This is a contradiction since F(ℓ1) does not have Rademacher
cotype.

It is not known which metric spaces M satisfy that F(M) and F(F(M)) are isomorphic
(one example is Pe lczyński universal space, see [81]). The next result shows in particular that
if F(M) has cotype then F(M) and F(F(M)) cannot be isomorphic.

Corollary 7.4.3. LetM be an infinite metric space. Then F(F(M)) does not have Rademacher
cotype.

Proof. Suppose that F(F(M)) has cotype. It follows from the previous result that F(M) has
type. This is impossible since F(M) contains an isomorphic copy of ℓ1.

Aliaga, Noûs, Petitjean and Procházka have proved recently in [4] that several isomorphic
properties of F(X) (such as the Schur property and weak sequential completeness) are compactly
determined. We finish the section by showing that this is also the case of the cotype. The proof
adapts some ideas from [140].

Proposition 7.4.4. Let X be a Banach space and let q ≥ 2. The following assertions are
equivalent:

(i) F(X) has Rademacher cotype (resp. cotype q);
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(ii) F(K) has Rademacher cotype (resp. cotype q) for any (countable) compact set K ⊂ X;

(iii) F({xn}n) has Rademacher cotype (resp. cotype q) for any null sequence (xn)n ⊂ X.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) are trivial. Suppose that F(X) does not have
Rademacher cotype (resp. cotype q). It follows that F(2−nBX) does not have cotype (resp.
cotype q) for all n ∈ N. In particular, for all n ∈ N, there exists m ∈ N and µn1 , . . . , µ

n
m ∈

F(2−nBX) such that (
m∑
k=1

∥µnk∥n
) 1

n

> n

∫ 1

0

∥∥∥∥∥
m∑
k=1

µnkrk(t)

∥∥∥∥∥ dtresp.

(
m∑
k=1

∥µnk∥q
) 1

q

> n

∫ 1

0

∥∥∥∥∥
m∑
k=1

µnkrk(t)

∥∥∥∥∥ dt
 .

Since the measures with finite support are dense in a Lipschitz-free space, we can and do suppose
that µn1 , . . . , µ

n
m ∈ F(Kn) where Kn is a finite subset of 2−nBX . Define K =

⋃
nKn∪{0}. Then

K is a null sequence such that F(K) does not have Rademacher cotype (resp. cotype q).

Remark 7.4.5. Since F(ℓ1) does not have Rademacher cotype, the previous theorem implies
that there exists a null sequence (xn)n in ℓ1 such that F({xn}n) does not have cotype. Moreover,
it is possible to explicite such a sequence. For n ≥ 1, define

xn =
1

k2

(
r1

(m
2k

)
, ..., rk

(m
2k

)
, 0, 0, ...

)
where k and m are such that 2k−1 ≤ n < 2k+1−1 and n = 2k−1+m with 0 ≤ m ≤ 2k−1. Note
that F(Fk2) = F({xn}2k−1≤n<2k+1−1) isometrically since the metric space {xn}2k−1≤n<2k+1−1

is obtained by scaling the distance on Fk2 . It follows that F(Fk2) is an isometric subspace of
F({xn}n) for all k ≥ 1. So F({xn}n) does not have cotype.

7.5 Stability of F(M) and Lip0(M) under ultraproducts

Several classes of Banach spaces, as Banach lattices, C*-algebras and C(K) spaces, are stable
under ultraproducts [97]. Given a metric space M and an ultrafilter U , it is natural to ask if
F(M)U is isomorphic to F(MU ) or more generally if there exists a metric space N such that
F(M)U is isomorphic to F(N). The first question is easily seen to be false with the following
example:

Example 7.5.1. Let M be an infinite proper metric space. Then MU = M isometrically by
Fact 7.1.2.e) whereas F(M)U is not separable. Thus, F(MU ) is not isomorphic to F(M)U .

In the first version of our preprint, we provided some examples of metric spaces (as M = [0, 1]
and M = N) such that F(M)U is not isomorphic to a Lipschitz-free space, and we asked whether
an analogous statement holds for every metric space. T. Kania has kindly provided an answer
for a general metric space by strengthening our previous result.

Proposition 7.5.2. Let U be a CI ultrafilter on an infinite set I, M be a metric space and X
be an infinite-dimensional Banach space. Then XU is not isomorphic to a subspace of F(M).
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Proof. Since U is CI, there exists a strictly decreasing sequence (In)n such that
⋂
n∈N In = ∅.

Define (ai)i∈I by ai = 1
n and ni = n if i ∈ In \ In+1. By Dvoretzky’s theorem, for all i ∈ I there

exists a subspace Xi of X and an isomorphism Ti : ℓ
ni
2 → Xi such that

∥x∥ ≤ ∥Ti(x)∥ ≤ (1 + ai)∥x∥

for all x ∈ ℓni
2 . Now we define T : (ℓni

2 )U → XU by T ((xi)U ) = (Ti(x))U . Since limU ai = 0,
the previous inequality implies that T is an isometry. We have that the ultraproduct of Hilbert
spaces (ℓni

2 )U is also a Hilbert space and it is non-separable (see Theorem 3.1 in [36]). The
conclusion follows from the fact that a Lipschitz-free space does not contain a non-separable
weakly compact set [113].

Corollary 7.5.3. Let U be a CI ultrafilter and M be a infinite metric space. Then F(M)U is
not isomorphic to a subspace of a Lipschitz-free space.

Thanks to Gelfand-Naimark theorem, the ultraproduct of C(K)-spaces is still a C(K)-space,
i.e. if U is an ultrafilter on a set I and if (Ki)i∈I is a family of compact spaces, then there exists
a compact space K such that (C(Ki))U = C(K) isometrically. Moreover, if there is an algebra
isomorphism between (C(Ki))U and C(K) then (Ki)U is homeomorphic to a dense subset of K
[97]. The following result is the analogue for Lip0(K).

Proposition 7.5.4. Let K be a compact metric space. Let U be an ultrafilter on a set I and let
(Mi)i∈I be a family of uniformly bounded metric spaces. If there exists an algebra isomorphism
between (Lip0(Mi))U and Lip0(K), then (Mi)U is biLipschitz equivalent to a subset of K.

Proof. Let R : Lip0(K) → (Lip0(Mi))U be an algebra isomorphism. If (xi)U ∈ (Mi)U , we can
define a functional F(xi)U ∈ Lip0(K)∗ by

F(xi)U (f) = lim
U
fi(xi)

for all f ∈ Lip0(K) where (fi)U = R(f). In other words, we have F(xi)U (f) = TR(f)((xi)U )
where T : (Lip0(Mi))U → (Lip0(Mi)U ) is the operator defined in Theorem 7.2.1. It is clear that
F(xi)U is also multiplicative. By Lemma 7.28 in [171], F(xi)U is an evaluation, that is there exists
a unique h((xi)U ) ∈ K such that F(xi)U = δh((xi)U ). This allows to define a map h : (Mi)U → K,
we will show this is the biLipschitz map we are looking for.

Let (xi)U , (yi)U ∈ (Mi)U . We have that

d(h((xi)U ), h((yi)U )) = ∥δh((xi)U ) − δh((yi)U )∥
= ∥F(xi)U − F(yi)U ∥
= sup
f∈BLip0(K)

|F(xi)U (f) − F(yi)U (f)|

= sup
f∈BLip0(K)

|TR(f)((xi)U ) − TR(f)((yi)U )|

It follows that on the one hand:

d(h(xi)U , h(yi)U ) ≤ sup
f∈BLip0(K)

∥TR(f)∥d((xi)U , (yi)U ) ≤ ∥R∥d((xi)U , (yi)U ).

On the other hand, taking ε > 0, there exists (fi)U ∈ Lip0(Mi)U such that ∥δ(xi)U − δ(yi)U ∥ =
⟨T ((fi)U ), δ(xi)U − δ(yi)U ⟩ and ∥(fi)U∥ ≤ 1 + ε by Theorem 7.2.1. Let g ∈ Lip0(K) such that
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R(g) = (fi)U and note that ∥g∥ ≤ (1 + ε)∥R−1∥. It follows that

d((xi)U , (yi)U ) = ∥δ(xi)U − δ(yi)U ∥
= ⟨TR(g), δ(xi)U − δ(yi)U ⟩

= (1 + ε)∥R−1∥
〈
TR

(
g

(1 + ε)∥R−1∥

)
, δ(xi)U − δ(yi)U

〉
≤ (1 + ε)∥R−1∥ sup

f∈BLip0(K)

|⟨TR(f), δ(xi)U − δ(yi)U ⟩|

= (1 + ε)∥R−1∥ sup
f∈BLip0(K)

|TR(f)((xi)U ) − TR(f)((yi)U )|

= (1 + ε)∥R−1∥d(h(xi)U , h(yi)U ),

and since ε was arbitrary, we obtain that d((xi)U , (yi)U ) ≤ ∥R−1∥d(h(xi)U , h(yi)U ). Then we
deduce that h is biLipschitz.

We finish the paper remarking that the analogy with the case of ultraproducts C(K)-spaces
is not complete. Indeed, the map h constructed in the proof above does not have dense range, in
general. For instance, assume Mi = M is a compact metric space. Then we have T ◦R(f) = f ◦h
for each f ∈ Lip0(K), that is, T ◦R is the composition operator Ch : Lip0(K) → Lip0(M). Since
R is an isomorphism and T is not injective (by Proposition 7.2.2) we get that Ch is not injective.
It follows (see Proposition 2.25 in [171]) that h(M) = h(M) is properly contained in K.



Chapter 8

A note on non-separable
Lipschitz-free spaces

8.1 Equivalent properties to separability

We denote by dens(M) the density character of a metric space M , that is, the minimum cardi-
nality of a dense subset of M . The first uncountanle ordinal is denoted by ω1.

Given a family {(Mγ , dγ) : γ ∈ Γ} of pointed metric spaces, their metric sum is defined as
the metric space M = {0} ∪

⋃
γ∈Γ(Mγ \ {0}) with the metric given by d(x, x′) = dγ(x, x′) for

x, x′ ∈Mγ and d(x, x′) = dγ(x, 0) + dγ′(0, x′) for x ∈Mγ , x′ ∈Mγ′ . That is, M is obtained by
taking the disjoint union of the Mγ ’s, identifying their base points, and having all paths between
different Mγ ’s go through the base point. F(M) is then linearly isometric to the ℓ1-sum of the
spaces F(Mγ) (see e.g. [171, Proposition 3.9]). In particular, when all Mγ are two-point spaces,
we get F(M) = ℓ1(Γ) and Lip(M) = ℓ∞(Γ) for the metric space M = Γ ∪ {0} with the metric
given by d(γ, 0) = 1 and d(γ, γ′) = 2 for all γ ̸= γ′ ∈ Γ.

Differentiability properties. Our first result characterizes the differentiability of convex
functions in Lipschitz free spaces in terms of separability.

We recall that a Banach space X is weak Asplund if every continuous convex function defined
on an open convex subset U of X is Gâteaux differentiable on a Gδ dense subset of U . We recall
that a Banach space X is a Gâteaux differentiability space (in short, GDS) if every continuous
convex function defined on an open convex subset U of X is Gâteaux differentiable on a dense
subset of U . It has been shown in [135] that the class of Gâteaux differentiability spaces is
strictly larger than the class of weak Asplund spaces.

Theorem 8.1.1. Let M be a metric space. The following assertions are equivalent:

(i) F(M) is separable;

(ii) F(M) is weakly Asplund;

(iii) F(M) is a GDS.

Proof. The implications (i)⇒(ii)⇒(iii) are true for any Banach space.
We thus only need to prove that (iii) implies (i). Suppose that F(M) or, equivalently, M is

not separable. By [92, Proposition 3], F(M) contains a complemented subspace X isomorphic
to l1(ω1). Since the norm of l1(ω1) is nowhere Gâteaux differentiable (see [57, Example 1.6.c]),
it follows that l1(ω1) is not a GDS and then neither is X. Since the property of being a GDS

133
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is preserved by passing to complemented subspaces (see for example [142, Proposition 6.8]), we
conclude that F(M) is not a GDS.

Remark 8.1.2. From the previous theorem, one can also see that F(M) is separable if and only
if F(M) is WCG space or a subspace of WCG space as these two classes contain all separable
Banach spaces and are contained in the class of weakly Asplund spaces.

On the other hand, note that a Lipschitz-free space F(M) is Asplund if and only if it is
finite-dimensional, that is, if M is finite. In fact, any infinite dimensional Lipschitz-free space
contains an isomorphic copy of l1, which is not Asplund. In particular, Lip0(M) is WCG if and
only if M is finite (see Theorem 2.43 in [142]).

Finally, the previous theorem also shows that F(M) is separable if and only if it admits an
equivalent ((strongly) uniformly) Gâteaux differentiable norm. Indeed, existence of such norm
on a space X implies that X is weak Asplund.

Weak* sequential compactness of the dual ball. Since every GDS has weak∗ sequentially
compact dual ball, it is natural to ask whether F(M) has to be separable if (BLip0(M), w

∗) is
weakly∗ sequentially compact. It turns out that this question is undecidable in ZFC.

We denote by [N]ω the family of all infinite subsets of N. We write ℵ1 for the cardinality of
the set of all countable ordinal numbers and c for the cardinality of the real numbers. Using
the notation from [165], we say that a subset S ⊂ [N]ω is a splitting family if it satisfies the
following: for any A ∈ [N]ω, there is S ∈ S such that A ∩ S and A \ S are both infinite. The
splitting cardinal s is defined as the smallest possible cardinality of a splitting family in [N]ω.
It is easy to check that ℵ1 ≤ s ≤ c, and the four possibilities ℵ1 = s = c (i.e. the Continuum
Hypothesis), ℵ1 = s < c, ℵ1 < s = c, ℵ1 < s < c are all known to be consistent in ZFC.

Theorem 8.1.3. Let M be a complete metric space. Then the following assertions are equiva-
lent:

(i) dens(M) ≥ s,

(ii) M contains a uniformly discrete subset of cardinality s,

(iii) BLip0(M) is not w∗-sequentially compact.

In particular, Bℓ∞(Γ) is w
∗-sequentially compact if and only if |Γ| < s. Therefore it is undecidable

whether Bℓ∞(ω1) is w∗-sequentially compact.

For the proof of (i) =⇒ (ii) we will use the following stronger observation of independent
interest.

Lemma 8.1.4. Let κ be a cardinal of uncountable cofinality. Then dens(M) ≥ κ if and only if
M contains a uniformly discrete subset of cardinality κ.

Proof. For each n ∈ N, let An be a maximal 1
n -separated subset of M . Then

⋃
n∈NAn is dense

in M , hence it has cardinality at least κ. Since κ has uncountable cofinality, this implies that
|An| ≥ κ for some n.

For the converse, let A ⊂ M be a ε-separated family of cardinality κ and let D be a dense
set in M . For every x ∈ A let ψ(x) ∈ D ∩B(x, ε/3). Then ψ is injective and |D| ≥ κ

Remark 8.1.5. Note that the direct implication of the previous lemma fails if κ has countable
cofinality: suppose that κ = supn κn with κ > κn for all n, let Mn be a metric space of
cardinality κn where all non-zero distances are 1

n , and construct M as a separated union of the
spaces Mn. Then dens(M) = κ but M contains no uniformly discrete subset of cardinality κ.
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Proof. (i) =⇒ (ii): It is easy to prove that the cofinality of s is not countable (see e.g. [60,
Proposition 1.1]), so Lemma 8.1.4 yields the conclusion.

(ii) =⇒ (iii): Fix a set {xγ : γ < s} ⊂ M such that any pair of points are at distance at
least r > 0, and define functions fγ ∈ BLip0(M) by

fγ(x) = max{r − d(x, xγ), 0}

for x ∈ M , so that fγ(xγ) = r and fγ(xλ) = 0 for λ < s, λ ̸= γ. Now fix a splitting family
S = {Sγ : γ < s} in [N]ω and define a sequence (gn)n in BLip0(M) by gn = sup{fγ : n ∈ Sγ} so
that

gn(xγ) =

{
r , if n ∈ Sγ

0 , if n /∈ Sγ
.

Let us see that no subsequence (gnk
)k∈N of (gn) converges weakly∗, i.e. pointwise. Let A =

{nk : k ∈ N} ∈ [N]ω, then there exists γ < s such that A ∩ Sγ and A \ Sγ are both infinite,
thus gnk

(xγ) takes both values 0 and r for infinitely many values of k so it cannot converge. We
conclude that BLip(M) is not w∗-sequentially compact.

(iii) =⇒ (i): We may assume that M is infinite, as the implication is trivial otherwise.
Suppose that there is a sequence (fn)n in BLip0(M) with no pointwise convergent subsequence.
Let D be a dense subset of M and S be the family of sets Sx,q ⊂ N, for x ∈ D and q ∈ Q, given
by

Sx,q = {n ∈ N : fn(x) > q}.

Fix an arbitrary A ∈ [N]ω and order it as A = {nk : k ∈ N} with nk < nk+1 for all k. Since
(fnk

)k is equi-Lipschitz, there is x ∈ D such that (fnk
(x))k does not converge (here we use

the easily provable and well known fact that if a sequence of equi-Lipschitz functions converges
pointwise on a dense set, then it converges pointwise everywhere). Since (fnk

(x))k is bounded
by d(x, 0), there must be 2 different cluster points a < b. If q ∈ Q is such that a < q < b then
the set Sx,q splits the set A. This shows that S contains a splitting family in [N]ω and therefore
|D| = |D ×Q| ≥ |S | ≥ s.

The last assertion follows from the fact that Lip0(M) = ℓ∞(Γ) when M is the space of
infinite cardinality Γ where d(x, 0) = 1 and d(x, y) = 2 for all x, y ̸= 0.

Under the Continuum Hypothesis, condition (i) in Theorem 8.1.3 is equivalent to the non-
separability of M , thus also of F(M), so we get the following consequence:

Corollary 8.1.6. Let M be a metric space. Under the Continuum Hypothesis, the following
assertions are equivalent:

(i) F(M) is separable;

(ii) BLip0(M) is w∗-sequentially compact.

Topological properties of the dual ball. Recall that a Banach space X is said to have
Corson’s property (C) if for every family A of closed convex sets in X with empty intersection
there is a countable subfamily B of A with empty intersection.

Theorem 8.1.7. Let M be a complete metric space. Then the following assertions are equiva-
lent:

(i) F(M) is separable;

(ii) F(M) has Corson’s property (C);
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Proof. The implication (i) =⇒ (ii) is standard for any Banach space X in place of F(M).
Now we show that (ii) =⇒ (i). Assume that F(M), and therefore M , is non-separable.

Then ℓ1(ω1) is isomorphic to a subspace of F(M). Now F(M) cannot have Corson’s property
(C) as this property passes to subspaces and it is known that ℓ1(ω1) does not have this property
(See [67, Exercise 14.46]; alternatively, since dens(C[0, ω1]) = ℵ1 there is a quotient map from
ℓ1(ω1) onto C[0, ω1]. Now this last space is known to fail Corson’s property (C) (see [67, Theorem
14.36]) and this property is stable by quotients.)

Remark 8.1.8. In fact, when combined with previously known implications, Theorem 8.1.7
characterizes some well-known Banach space properties in Lipschitz-free spaces F(M). These
include F(M) being (in order of increasing generality, see [109, Zizler’s article, Theorem 3.8])
weakly countably determined, weakly Lindelöf determined, and weakly Lindelöf.

Similarly, by combining Theorem 8.1.7 and well known implications, separability of F(M) is
equivalent to any of the following properties of (BLip0(M), w

∗): uniform Eberlein, Eberlein and
angelic.

Weak* separability of the dual. In [158], Talponen introduced the following property: a
Banach space X has the Countable Separation Property (CSP) if any set A ⊂ X∗ that separates
points of X has a countable subset B ⊂ A that also separates points of X. It is obvious
that separable Banach spaces have the CSP, and that X having the CSP implies that BX∗ is
w∗-separable.

Proposition 8.1.9. A Lipschitz-free space F(M) has the CSP if and only if M is separable.

Proof. Suppose that M is not separable and let (Bγ)γ<ω1
be a family of closed balls in M with

infγ ̸=γ′ d(Bγ , Bγ′) > 0. Define Aγ := {0}∪
⋃
γ≤λ<ω1

Bλ. Then (Aγ)γ<ω1 is a strictly decreasing
family of closed subsets of M whose intersection is {0}. Therefore (F(Aγ))γ<ω1 is a strictly
decreasing family of closed subspaces of F(M) whose intersection is

⋂
γ<ω1

F(Aγ) = F

( ⋂
γ<ω1

Aγ

)
= F({0}) = {0}

by [5, Theorem 2.1]. By [159, Theorem 4.1], F(M) does not have the CSP.

We conclude this section by noting that the w∗-separability of BLip0(M) does not imply the
separability of F(M). In fact, BLip(ℓ∞) is w∗-separable whereas ℓ∞ is non-separable. More
precisely, we have:

Proposition 8.1.10. Let M be a pointed metric space. The following assertions are equivalent:

(i) M isometrically embeds into ℓ∞;

(ii) BLip0(M) is w∗-separable;

(iii) F(M) is isometric to a subspace of ℓ∞.

Proof. The equivalence between (ii) and (iii) is true for any Banach space and can be found
in [55]. Let us now show that (i) =⇒ (iii). Recall that Kalton in [113, Proposition 5.1] has
proved that F(ℓ∞) is isometric to a subspace of ℓ∞. Since (i) implies that F(M) ⊆ F(ℓ∞)
the conclusion follows. Finally, since M is isometric to a subset of F(M), it is clear that
(iii) =⇒ (i), and the proof is complete.
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8.2 A non-separable example on dual Lipschitz-free spaces

The characterization of those metric spaces M for which F(M) is (isometrically) a dual Banach
space remains an important open problem in Lipschitz-free space theory. This issue has been
treated e.g. in [170, 112, 78], and has only recently been solved for compact M in [2]. As part
of the effort to find a complete solution, several less far-reaching questions have arisen about
the nature of Lipschitz-free spaces F(M) admitting a predual, including:

(a) Is duality a hereditary property? That is: if N ⊂M , is then F(N) a dual space as well?

(b) Does there always exist a predual of F(M) that is made up exclusively of locally flat
functions?

(c) Must F(M) have the Radon-Nikodým property? Equivalently by [2, Theorem C], must
M be purely 1-unrectifiable?

Question (a) is motivated by the fact that all known restrictions to duality stem from the
metric space M being “too big” and containing specific metric structures, such as nontrivial
geodesics which cause F(M) to contain L1 (and thus prevent duality in the separable case), or
the construction from [78, Example 5.8]. Their non-containment is of course hereditary.

Regarding question (b), we recall that a function f ∈ Lip(M) is locally flat if we have
limr→0 ∥f |B(x,r)∥ = 0 for all x ∈ M . It was shown in [2] that the space of all locally flat
functions in Lip(M) is always an isometric predual of F(M) when M is compact. In [112]
and later [78], the non-compact case was studied and sufficient conditions were found under
which there is a predual consisting of all locally flat functions that are moreover continuous
with respect to a different topology on M (which plays the role of the relative weak∗ topology).
It is a natural suspicion that this may be the general behavior.

Finally, question (c) is motivated by the fact that separable dual spaces have the RNP; in
fact, the RNP is equivalent to duality for F(M) if M is compact [2]. There are known examples
of nonseparable dual Banach spaces without the RNP, but not within the class of Lipschitz-free
spaces so far.

The goal of this section is to provide an example of a nonseparable dual Lipschitz-free
space that gives a negative answer to all three questions above. Our example is a well-known
mathematical object: the space M(K) of Radon measures on a metrizable compact space K.
It is not difficult to show that, more generally, M(S) is isometrically a Lipschitz-free space for
every Polish (i.e. separable and completely metrizable) space S. If two measures µ and ν are
singular, we write µ ⊥ ν.

Proposition 8.2.1. Let S be a Polish space. Then M(S) is linearly isometric to F(M) for
some metric space M . Specifically

M(S) ∼= ℓ1(|S|) ⊕1

(⊕
κ

L1

)
1

∼= F(M)

for some cardinal κ ≤ c, and M is the metric sum of |S| two-point spaces and κ copies of [0, 1].

Proof. The second isometry is clear since F([0, 1]) = L1, so we focus on the first one. If S is
finite or countable then the statement is clear (with κ = ∅) so we may assume that |S| = c by
the Cantor-Bendixson theorem (see e.g. [115, Corollary 6.5]). We follow the argument in [1,
Proposition 4.3.8(iii)], with slight changes and additional details in order to obtain the exact
form of M(S).
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Using Zorn’s lemma, find a maximal family (µi)i∈I of Borel probability measures on S that
contains all Dirac measures δx, x ∈ S, and such that µi ⊥ µj for i ̸= j ∈ I. Now define a
mapping

T : M(S) →

(⊕
i∈I

L1(µi)

)
1

by letting (Tλ)i be the Radon-Nikodým derivative of λ with respect to µi, i.e. the unique
fi ∈ L1(µi) such that dλ = fi dµi + dνi where νi ⊥ µi. T is clearly linear, we will check that it
is an onto isometry.

Let F ⊂ I be finite. Since µi, i ∈ F are pairwise mutually singular, there are pairwise
disjoint Borel sets Ei ⊂ S, i ∈ F such that µi is concentrated on Ei. Then∑

i∈F
∥fi∥L1(µi) =

∑
i∈F

∫
Ei

|fi| dµi =
∑
i∈F

|λ|(Ei) ≤ ∥λ∥.

It follows that ∥Tλ∥ =
∑
i∈I ∥fi∥L1(µi) ≤ ∥λ∥. Now let λ′ ∈ M(S) be given by dλ′ =∑

i∈I fi dµi, which we now know to converge absolutely, and notice that the Radon-Nikodým
derivative of λ − λ′ with respect to any µi is fi − fi = 0, i.e. λ − λ′ ⊥ µi. By the maximality
of (µi) we get λ− λ′ = 0 and therefore ∥λ∥ = ∥λ′∥ =

∑
i∈I ∥fi∥L1(µi), using again the fact that

µi ⊥ µj for all i ̸= j. This proves that T is an onto isometry.
By Theorem 4.13 in [37] and the Example immediately preceding it, every space L1(µi) is

separable. Note that L1(δx) ∼= R for each x ∈ S, and every other µi is purely nonatomic by
construction, therefore L1(µi) ∼= L1 by Theorem 14.9 in [120] and its Corollary. Thus we get
the desired isometric identification, where κ is the cardinality of {µi : i ∈ I} \ {δx : x ∈ S}; the
fact that κ ≤ c follows e.g. from a density argument.

Corollary 8.2.2. There is a nonseparable Lipschitz-free space F(M) with the following prop-
erties:

(a) F(M) is a dual space;

(b) F(M) admits both separable and nonseparable isometric preduals;

(c) there is N ⊂M such that F(N) is not isomorphic to a dual space;

(d) F(M) does not have the Radon-Nikodým property;

(e) there is no predual of F(M) that consists of locally flat functions.

Proof. LetM be such that F(M) = M([0, 1]) as given by Proposition 8.2.1. That space is clearly
the dual of C([0, 1]), but M contains a nontrivial geodesic N so F(N) = L1 is not isomorphic to
a dual space, and F(M) cannot have the RNP because it contains L1 (alternatively, the failure
of the RNP for F(M) follows also from the fact that it is a non-separable Banach space with a
separable predual). Notice also that

(
(
C([0, 1]) ⊕∞ c0(c)

)
)∗ = M([0, 1]) ⊕1 ℓ1(c) = M([0, 1])

so F(M) also has a nonseparable isometric predual. For the last statement, note that any
locally flat function is constant on geodesics and therefore locally flat functions cannot separate
evaluation functionals on different points of N .

Corollary 8.2.2 provides negative answers to all three questions posed at the beginning of this
section. However, the counterexample is strongly dependent on non-separability. The answer to
question (c) is positive in the separable case, so it is natural to ask whether the other questions
also have a positive answer for separable M :
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Problem 8.2.3. Suppose that M is separable and F(M) is a dual space.

(a) Is F(N) also a dual space for every N ⊂M?

(b) Does there exist a subspace X ⊂ Lip0(M) such that X∗ = F(M) that contains only locally
flat functions?





Chapter 9

Proximinality and uniformly
approximable sets in Lp

Consider (Ω,F , µ) a measure space. For any k ≥ 1, we denote by Gp,k(Ω,F , µ), or simply Gp,k
when the measure space (Ω,F , µ) is clear from the context, the set of simple functions given by

Gp,k =

{
l∑
i=1

ai1Ai ∈ Lp(Ω,F , µ) : {Ai}1≤i≤l measurable partition of Ω, ai ∈ R for all i, l ≤ k

}
.

So Gp,k is the set of simpe functions in Lp(Ω,F , µ) taking less than k different values.

We recall some notions from approximation theory. Let X be a Banach space and let K be
a closed subset of X. The metric projection on K is the multi-valued mapping PK : X ⇒ K
defined by PK(x) = {y ∈ K : ∥x− y∥ = d(x,K)} (where d(A,B) is the distance between two
subsets A and B of X). If PK(x) is not empty for all x ∈ X, we say that K is proximinal. If
PK(x) is a singleton for all x ∈ X, we say that K is Chebyshev.

In some of the results we will need to consider diffuse and atomic measures. For that reason
we fix some notations at this respect. We recall that an atom in a measure space (Ω,F , µ)
is a measurable set A that satisfies: µ(A) > 0 and if B ⊂ A is a measurable set such that
µ(B) < µ(A) then µ(B) = 0. Notice that if A1, A2 are two atoms with finite measure, then
either µ(A1 ∩ A2) = 0 or they differ on a set of measure 0, that is, µ(A1∆A2) = 0 (where ∆ is
the symmetric difference). A measurable space is said to be atomic if every measurable set of
positive measure contains an atom. An atomic space is said to have a finite number of atoms of
finite measure, up to measure 0, if there exists a finite collection (eventually empty) A of atoms
of finite measure such that for any atom B either µ(B) = ∞ or there exists A ∈ A such that
µ(A∆B) = 0. A diffuse measure, is a measure that has no atoms. Notice that the measure
µ ≡ 0 is by definition diffuse, and we refer to this case as the trivial one. More information
about measure theory can be found in [26].

9.1 Minimizing the distance to the sets Gp,k

The main objective of this section is to prove that Gp,k proximinal, i.e. given some f ∈
Lp(Ω,F , µ), the distance from f to Gp,k is reached at some function g ∈ Gp,k (see Theorem
0.0.34). We denote by

Dp,k(f) = inf{∥f − h∥p : h ∈ Gp,k}.
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for all p ∈ [1,∞], that is the distance between f and Gp,k. A function g ∈ PGp,k
will be called

a minimizer. As we mentioned in the introduction, the classical results of optimization do not
apply in this case since Gp,k is not convex nor compact. Even in the reflexive case (that is
1 < p <∞), it is not clear if the problem admits a solution. However, if 1 < p <∞ and Gp,k is
weakly closed, it is easy to see that there exists a minimizer. In fact, let (gn)n ⊂ Gp,k such that
∥gn−f∥ → Dp,k(f). In particular, (gn)n is bounded and then admits a subsequence (gn′)n′ that
weakly converges to some g ∈ Gp,k. Since the norm is weakly lower semicontinuous, we obtain
that

Dp,k(f) ≤ ∥f − g∥p ≤ lim
n′

∥f − gn′∥p = Dp,k(f),

implying that Dp,k(f) = ∥f − g∥p. Unfortunately, as the following discussion will show, Gp,k is
not weakly closed in general, a fact that depends strongly on the measure space. On the one
hand, in the case of the ℓp spaces for 1 ≤ p <∞, every Gp,k is closed under the weak topology.
This follows directly from the fact that if (fn)n ⊂ Gp,k converges to f weakly in ℓp, then (fn)n
converges pointwise to f . From this fact it follows that f(N) is a finite set with cardinality at
most k and therefore f ∈ Gp,k. On the other extreme we have the following result:

Proposition 9.1.1. Consider ([0, 1],L, dx) the Lebesgue measure and let p ∈ [1,∞). Then Gp,k
is weakly dense in Lp([0, 1],L, dx) for all k ≥ 2.

Proof. It is enough to prove the case k = 2. Consider an integer r ≥ 2. Every x ∈ [0, 1) has a
unique expansion

x =

∞∑
n=1

ζrn(x)r−n.

where ζrn(x) ∈ {0, ..., r − 1} and (ζrn(x))n is not eventually constant r − 1. For x = 1, we define
ζrn(x) = r − 1 for all n ≥ 1.

Let us prove that for every A ∈ L, the sequence (1A∩{ζ2n=1})n converges weakly to the

function f = 1
21A. Indeed, assume first that A = [0, 1]. For n ≥ 1, let Ψn : [0, 1] → [0, 1] be the

bi-measurable and measure preserving transformation which flips the n-th binary digit. Then
for all continuous functions g : [0, 1] → R it holds∫

{ζ2n=1}
g(x) dx =

∫
{ζ2n=0}

g(x) dx+Rn,

where Rn =
∫
{ζ2n=1} g(x)−g(Ψn(x)) dx. The continuity of g, allow us to prove that Rn converges

to zero. This shows 1{ζ2n=1} converges weakly to 1
21[0,1]. Thus, for all h ∈ Lq, where q is the

conjugated index of p, and all A ∈ L we have

lim
n→∞

∫
1{ζ2n=1}(x)1A(x)h(x) dx =

1

2

∫
1A(x)h(x) dx,

showing that (1A∩{ζ2n=1})n converges weakly to 1
21A.

In a similar way, it is shown that for all A ∈ L, any integer number r ≥ 2, any m ∈ {1, ..., r}
and all 0 ≤ t1 < t2... < tm ≤ r − 1, the sequence

fn = 1A∩∪m
j=1{ζrn=tj} =

m∑
j=1

1A∩{ζrn=tj} ∈ Gp,2,

converges weakly to m
r 1A.

Now, for any ℓ ≥ 1, any partition {Aj}1≤j≤ℓ of measurable sets, any collection {rj}1≤j≤ℓ
of integer numbers greater or equal than 2, any collection {mj}1≤j≤ℓ such that mj ∈ {1, ..., rj}



9.1. MINIMIZING THE DISTANCE TO THE SETS Gp,k 143

and any collection of integer numbers {tj,i : 1 ≤ i ≤ mj , 1 ≤ j ≤ ℓ} such that 0 ≤ tj,1 < ... <
tj,mj

≤ rj − 1, we obtain that the sequence

fn =

ℓ∑
j=1

1
Aj∩∪

mj
i=1{ζ

rj
n =tj,i} =

ℓ∑
j=1

mj∑
i=1

1
Aj∩{ζ

rj
n =tj,i},

converges weakly to
ℓ∑
j=1

mj

rj
1Aj . We notice that fn = 1Bn , where

Bn =

ℓ⋃
j=1

mj⋃
i=1

Aj ∩ {ζrjn = tj,i},

so fn ∈ Gp,2. This shows that the weak closure of Gp,2 contains all the simple functions of the

form f =
ℓ∑
j=1

αj1Aj
, where ℓ ≥ 1, {Aj}1≤j≤ℓ is any finite measurable partition and αj ∈ [0, 1]

for all j ∈ {1, ..., ℓ}. Moreover, any such simple function is the weak limit of a sequence (1Fn)n
for some sequence (Fn)n of measurable sets. From here it follows that the weak closure of Gp,2

contains all the simple functions. Indeed, consider a simple function f =
ℓ∑
j=1

aj1Aj
, with ℓ ≥ 1

and aj ∈ R for all j ∈ {1, ..., ℓ}. By adding a large constant C, we have f + C =
ℓ∑
j=1

bj1Aj
,

where bj = aj +C > 0 for all j ∈ {1, ..., ℓ}. Letting D = max1≤j≤l bj , we deduce that 1
D (f +C)

is the weak limit of a sequence (1Fn)n for some sequence of measurable sets (Fn)n. Then

fn := D1Fn
− C = (D − C)1Fn

− C1F c
n
∈ Gp,2,

converges weakly to f . The density of the simple functions in Lp, in the strong topology, shows
the result.

The previous result implies obviously that Gp,k is not weakly closed in general, and the usual
optimization methods do not work in this context, we have to find a minimizer by a more con-
structive way.

Definition 9.1.2. In what follows, for a measurable set A of positive and finite measure, we
consider Mp(f,A) as one of the p-th means of f on A where p ∈ [1,∞). The function

a 7→
∫
A

|f(x) − a|p dµ(x)

is convex, nonnegative and finite on R, which converges to ∞ as a → ±∞. Therefore, this
function has at least one global minimum. For p = 1, the set of minima is a bounded interval
with extremes a∗ and b∗ and it is customary to take, the median, as

M1(f,A) =
a∗ + b∗

2
.

For p > 1 the minimum is unique due to strict convexity and we denote it by Mp(f,A). For
example, for p = 2

M2(f,A) =
1

µ(A)

∫
A

f(x) dµ(x),

is the mean of f over the set A. If a set has measure 0, we simply put Mp(f,A) = 0.
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The next concept will play an important role in what follows.

Definition 9.1.3. Assume f ∈ Lp(Ω,F , µ), p ∈ [1,∞). A function g ∈ Gp,k

g =

q∑
i=1

ai1Ci
,

with 1 ≤ q ≤ k, is said in f -special form if there exist −∞ ≤ r1 < ... < rk < rk+1 ≤ ∞ such
that

• Ci = f−1([ri, ri+1)) for all i ∈ {1, ..., q − 1}, Cq = f−1([rq, rq+1]) and {Ci}1≤i≤q is a
partition of Ω;

• −∞ < a1 < ... < aq <∞;

• for all i ∈ {1, ..., q} such that µ(Ci) <∞, it holds ai is a p-th mean of f on Ci.

Suppose that g =
q∑
i=1

ai1Ci is in f -special form. Note that if µ is an infinite measure there

exists a unique 1 ≤ s ≤ q such that as = 0 and µ(Ci) < ∞ for all i ̸= s. We also have
that ai = Mp(f, Ci) for all i ∈ {1, ..., q} if p > 1. Moreover notice that g = h ◦ f , where

h =
∑q−1
i=1 ai1[ri,ri+1) + aq1[rq, rq+1] is a Borel function and g is f -measurable, that is, g is

measurable with respect σ(f) = f−1(B), where B is the Borel σ-field in R.

9.1.1 The case of a finite measure, p ∈ [1,∞)

If the measure if finite, we start by proving that there exists an approximation sequence which
is uniformly bounded:

Lemma 9.1.4. Let (Ω,F , µ) be a finite measure space and p ∈ [1,∞). Let f ∈ Lp(Ω,F , µ) and
k ≥ 1. Then there exists a uniformly bounded sequence (gn)n ⊂ Gp,k such that

∥f − gn∥p → Dp,k(f).

Proof. Let (hn)n ∈ Gp,k be a sequence such that ∥f − hn∥p → Dp,k(f). Assume that hn =∑m(n)
i=1 ci,n1Ai,n

, where (ci,n)1≤i≤m(n) are all different, {Ai,n}1≤i≤m(n) is a measurable partition
with sets of positive measure and m(n) ≤ k. We assume that m(n) = m is constant by
passing to a subsequence if necessary. We modify this approximating sequence by considering
ai,n = Mp(f,Ai,n) any of the p-th means of f in Ai,n. By definition of the p-th means we have,
for all i ∈ {1, ...,m} ∫

Ai,n

|f(x) − ai,n| dµ(x) ≤
∫
Ai,n

|f(x) − ci,n| dµ(x),

showing that h̃n =
∑m
i=1 ai,n1Ai,n ∈ Gk is a minimizing sequence since

Dp,k(f) ≤ ∥f − h̃n∥p ≤ ∥f − hn∥ → Dp,k(f)

If m < k, we define ai,n = 0 and Ai,n = ∅ for i ∈ {m + 1, ..., k}. We assume that {Ai,n}1≤i≤k
are ordered in decreasing order according to their measure

µ(A1,n) ≥ µ(A2,n) ≥ ... ≥ µ(Ak,n) ≥ 0.
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In this way, the vector vn = (µ(A1,n), µ(A2,n), ..., µ(Ak,n)) belongs to the compact set in Rk

∆ =

{
x ∈ Rk : x1 ≥ x2 ≥ ... ≥ xk ≥ 0,

∑
i

xi = µ(Ω)

}

By passing to a subsequence if necessary, we can assume that (vn)n converges to some vector
v = (v1, v2, ..., vk) ∈ ∆. If q is the largest index such that vq > 0 (q could be exactly k) then,
we have q ≥ 1 and v1 ≥ ... ≥ vq > 0 = vq+1 = ... = vk. We notice that q ≤ m. Now, define

Bn =
k⋃

i=q+1

Ai,n for all n ∈ N, that we take as the empty set if q = k, so

lim
n→∞

µ(Bn) = lim
n→∞

k∑
i=q+1

µ(Ai,n) = 0.

On the other hand, for all i ∈ {1, ..., q} we have

lim
n→∞

µ(Ai,n) = vi > 0,

and so, passing to a further subsequence we can assume there exists a finite constant Γ such
that for all n and all i ∈ {1, ..., q} it holds

1

µ(Ai,n)
≤ Γ (9.1)

The finite measure ν defined by

ν(A) =

∫
A

|f(x)|p dµ(x),

is absolutely continuous with respect to µ, which means that, for all ρ > 0 there exists a δ > 0
such that, for any measurable set A if µ(A) ≤ δ then ν(A) =

∫
A
|f(x)|p dµ(x) ≤ ρ. This

property shows that

lim
n→∞

∫
Bn

|f(x)|p dµ(x) = 0.

Now, we modify further the approximation sequence by defining

bi,n =

{
ai,n for i ∈ {1, ..., q}
0 for i ∈ {q + 1, ..., k}

, (9.2)

and define

gn =

k∑
i=1

bi,n1Ai,n
=

q∑
i=1

Mp(f,Ai,n)1Ai,n
+ 01Bn

∈ Gp,k. (9.3)

We need to show that (gn)n is a good approximation sequence and it is uniformly bounded. For
the first claim notice that for i ∈ {q + 1, ..., k}, we have∫

Ai,n

|f(x) − h̃n(x)|p dµ(x) =

∫
Ai,n

|f(x) −Mp(f,Ai,n)|p dµ(x) ≤
∫
Ai,n

|f(x)|p dµ(x),
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where we have used the optimality of Mp(f,Ai,n) in the last inequality. This shows that

Dp,k(f)p ≤ ∥f − h̃n∥pp =
m∑
i=1

∫
Ai,n

|f(x) −Mp(f,Ai,n)|p dµ(x)

≤
q∑
i=1

∫
Ai,n

|f(x) −Mp(f,Ai,n)|p dµ(x) +
∫
Bn

|f(x)|p dµ(x) = ∥f − gn∥pp

≤
m∑
i=1

∫
Ai,n

|f(x) −Mp(f,Ai,n)|p dµ(x) +
∫
Bn

|f(x)|p dµ(x)

≤ ∥f − h̃n∥pp +
∫
Bn

|f(x)|p dµ(x) → Dp,k(f)p

Now, we prove that (gn)n is uniformly bounded. We notice that gn = 0 on Bn, so we must
study gn on Bcn. For i ∈ {1, ..., q} and x ∈ Ai,n we have gn(x) = Mp(f,Ai,n) and so

∥Mp(f,Ai,n)1Ai,n
∥p ≤ ∥(f −Mp(f,Ai,n))1Ai,n

∥p + ∥f1Ai,n
∥p ≤ 2∥f1Ai,n

∥p ≤ 2∥f∥p,

where we have used again the optimality of Mp(f,Ai,n). This shows that

|Mp(f,Ai,n)| ≤ 2
∥f∥p

µ(Ai,n)
1
p

≤ 2∥f∥pΓ
1
p ,

where Γ is the constant obtained in (9.1).

The next result proves that Gp,k is proximinal in case of finite measure spaces. Remember
that PK is the metric projection over K.

Theorem 9.1.5. Let (Ω,F , µ) be a finite measure space, p ∈ [1,∞) and k ≥ 1. Then Gp,k is
proximinal.

Moreover, if f ∈ Lp(Ω,F , µ) and g =
q∑
i=1

bi1Ai
∈ PGp,k

(f) is a minimizer with q ≤ k,

−∞ < b1 < ... < bq < ∞ and {Ai}1≤i≤q a partition of Ω with sets of positive measure, there
exists a minimizer g̃ ∈ PGp,q (f) in f -special form:

g̃ =

q∑
i=1

Mp(f, f
−1(Ci)) 1f−1(Ci)

where

• r1 = −∞, rq+1 = ∞ and ri = bi−1+bi
2 for all i ∈ {2, ..., q};

• Ci = f−1([ri, ri+1)) for all i ∈ {1, ..., q − 1} and Cq = f−1([rq, rq+1]);

• bi is a p-th mean of f on f−1(Ci) for all i ∈ {1, ..., q} such that µ(f−1(Ci)) > 0.

If q is the smallest among all minimizers, then µ(Ci) > 0 for all i ∈ {1, ..., q}.

Proof. By Lemma 9.1.4, let (gn)n ⊂ Gp,k be a uniformly bounded sequence such that ∥f−gn∥p →

Dp,k(f). Let C > 0 such that |gn| < C for all n ∈ N. We write gn =
k∑
i=1

bi,n1Ai,n
where

{Ai,n}1≤i≤k is a partition of Ω and −C ≤ b1,n ≤ ... ≤ bk,n ≤ C. The vector un = (b1,n, ..., bk,n)
belongs to the compact set [−C,C]k and therefore, by taking a subsequence if necessary, we can
assume that (un)n converges to some u = (b1, ..., bk) ∈ [−C,C]k with b1 ≤ ... ≤ bk. Some of
the entries in u can be equal, for that we consider z1 < ... < zl the distinct entries in u where
1 ≤ l ≤ k. We define r1 = −∞, rl+1 = ∞ and rj =

zj−1+zj
2 for j ∈ {2, ..., l}. Consider the

intervals Ij = [rj , rj+1) for j ∈ {1, ..., l − 1} and Il = [rl, rl+1]. For j ∈ {1, ..., l}, we also define
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Lj = {i ∈ {1, ..., k} : bi = zj}, which is a partition of {1, ..., k}. For all n ∈ N, consider the
function

g̃n =

k∑
i=1

bi1Ai,n
.

Then, we have

∥f − g̃n∥p ≤ ∥f − gn∥p + ∥gn − g̃n∥p ≤ ∥f − gn∥p + max1≤i≤k |bi,n − bi|µ(Ω)
1
p → Dp,k(f),

proving that (g̃n)n is also a minimizing sequence. Finally, our candidate for minimizer is the

function g =
∑l
j=1 zj1f−1(Ij) ∈ Gp,k. For all i ∈ {1, ..., k}, all j ∈ {1, ..., l} and all n, we have∫
f−1(Ij)∩Ai,n

|f(x) − zj |p dµ(x) ≤
∫
f−1(Ij)∩Ai,n

|f(x) − bi|p dµ(x).

This is clear if i ∈ Lj because in that case zj = bi. Now, if i ∈ Lj′ with j′ ̸= j, we have bi = zj′

and for all x ∈ f−1(Ij) it holds |f(x) − zj | ≤ |f(x) − zj′ | = |f(x) − bi|. Now, summing over i, j
we get for all n that

Dp,k(f)p ≤ ∥f − g∥pp =
∑
i,j

∫
f−1(Ij)∩Ai,n

|f(x) − zj |p dµ(x) ≤
∑
i,j

∫
f−1(Ij)∩Ai,n

|f(x) − bi|p dµ(x)

≤ ∥f − g̃n∥pp → Dp,k(f)p,

proving that g ∈ PGp,k
(f).

Now, we prove the last part of the Theorem. Assume that g =
∑q
i=1 bi1Ai

∈ PGp,k
(f) is a

minimizer, with b1 < ... < bq, {Ai}1≤i≤q a partition of Ω where all the sets Ai have positive

measure and q ≤ k. Let r1 = −∞, rq+1 = ∞, ri = bi−1+bi
2 for i = {2, ..., q} and

Ci = f−1([ri, ri+1)) for i ∈ {1, ...q − 1}, Cq = f−1([ri, ri+1]).

For all i ∈ {1, ..., q}, we modify the sets Ai as

Ãi =
(
Ai ∪ f−1({ri})

)
\ f−1({ri+1}). (9.4)

Let us prove that µ(Ã1∆C1) = µ(Aj ∩ E2) = 0 for all j > 2 where E2 = f−1({r2}). Define

g′ = b11Ã1
+

q∑
i=3

bi1Ai\E2
+ b21A2∪E2

∈ Gp,k

and note that {Ã1, {Aj \E2}j>2, A2 ∪E2} is a partition of Ω. Consider the following decompo-
sition

∥f − g∥pp =
∑
j

∫
Aj

|f(x) − bj |p dµ(x) =
∫
Ã1

|f(x) − b1|p dµ(x) +
∑
j>2

∫
Aj\E2

|f(x) − bj |p dµ(x)

+
∑
j>2

∫
Aj∩E2

|f(x) − bj |p dµ(x) +
∫
A1∩E2

|f(x) − b1|p dµ(x) +
∫
A2

|f(x) − b2|p dµ(x)

≥
∫
Ã1

|f(x) − b1|p dµ(x) +
∑
j>2

∫
Aj\E2

|f(x) − bj |p dµ(x) +
∫
A2∪E2

|f(x) − b2|p dµ(x)

+(b3 − b2)p
∑
j>2

µ(Aj ∩ E2)

= ∥f − g′∥pp + (b3 − b2)p
∑
j>2

µ(Aj ∩ E2),

where the second equality follows from the fact that Ã1 = A1 \ E2 (up to a set of measure
zero). The inequality is proved noting that, for x ∈ Aj ∩ E2 with j > 2 it holds |f(x) − b2| =
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b2 − r2 < b3 − r2 ≤ bj − r2 = |f(x) − bj |, which implies |f(x) − bj | ≥ |f(x) − b2| + b3 − b2, and
for x ∈ A1 ∩ E2 it holds |f(x) − b1| = |f(x) − b2|. So, since g is a minimizer we deduce that
µ(Aj ∩ E2) = 0 for all j > 2. Thus, we get

∥f − g∥pp =

∫
Ã1

|f(x)− b1|p dµ(x) +
∑
j>2

∫
Aj

|f(x)− bj |p dµ(x) +

∫
A2∪f−1({r2})

|f(x)− b2|p dµ(x),

showing that

b11Ã1
+ b21A2∪f−1({r2}) +

∑
j>2

bj1Aj
∈ PGp,k

(f).

A similar argument shows that µ(Aj ∩ C1) = 0 and µ(Ã1 ∩ Cj) = 0 for all j ≥ 2. Since

{Ai}1≤i≤q is a partition we conclude that µ(C1) =
∑
i µ(Ai ∩ C1) = µ(C1 ∩ A1) = µ(C1 ∩ Ã1),

proving that C1 ⊂ Ã1 except for a set of measure 0. On the other hand, using again that
{Ã1, A2 ∪ f−1({r2}), {Aj \ f−1({r2})}j>2} is also a partition, we conclude that Ã1 ⊂ C1 except

for a set of measure 0. In a similar way, we prove µ(Ãi ∩ Cj) = µ(Ãi∆Ci) = 0, for all i ̸= j.

At this point we should mention that some of the Ãi could have measure 0. For example
this occurs if A1 = f−1({r2}). In any case, we have

∥f − g∥pp =

q∑
i=1

∫
Ãi

|f(x) − bi|p dµ(x) =

q∑
i=1

∫
Ci

|f(x) − bi|p dµ(x),

showing that

ĝ =

q∑
i=1

bi1Ci ∈ PGp,k
(f),

is a minimizer. On the other hand, if µ(Ci) > 0 we have
∫
Ci

|f(x) − Mp(f, Ci)|p dµ(x) ≤∫
Ci

|f(x) − bi|p dµ(x). The inequality cannot be strict, otherwise we contradict the minimality
of ĝ, showing that bi is a p-th means of f on Ci, and therefore,

g̃ =

q∑
i=1

Mp(f, Ci)1Ci
∈ PGp,k

(f),

is a minimizer in f -special form, as we wanted to prove. In case that q is the minimal among
all minimizers, we conclude that µ(Ci) > 0 for all i.

Remark 9.1.6. In the last part of the theorem, for any minimizer g, we have constructed a
minimizer g̃ in f -special form, but it may happens that some of the sets (Ci)i have measure 0,
which can be discarded to get a minimizer with fewer terms. An interesting question is if this
procedure applied to any minimizer gives always a minimizer with the smallest possible number
of terms (see Proposition 9.1.17).

Recall that given f ∈ Lp(Ω,F , µ), the distribution of f is the measure µf defined on (R,B)
given by, for all B ∈ B

µf (B) = µ(f−1(B)).

Let g be a minimizer of f in Gp,k in f -special form provided by Theorem 9.1.5

g =

q∑
i=1

ai1f−1([ri,ri+1)),
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So, g = ℓ ◦ f with

ℓ =

q∑
i=1

ai1[ri,ri+1),

and

∥f − g∥pp =
∫
Ω
|f(x) − g(x)|p dµ(x) =

∫
Ω
|f(x) − ℓ(f(x))|p dµ(x) =

∫
R |y − ℓ(y)|p dµf (y)

= ∥id − ℓ∥pLp(R,B,µf )
.

Thus, the problem of finding a minimizer for f is equivalent to find a minimizer for the identity
function id in Gp,k(R,B, µf ). The following result shows that when µf is continuous, this
search can be done over the subclass of simple functions in f -special form. Before stating the
result, let us fix some notations. The cumulative distribution associated to µf is the function
Ff (x) = µf ((−∞, x]) Notice that Ff (−∞) = 0 and Ff (∞) = µ(Ω). The convex support of µf
is the interval [af , bf ], where

af = sup{z : Ff (z) = 0}, bf = inf{z : Ff (z) = Ff (∞)}.

The following lemma is needed to study the uniqueness of minimizers, where p-th means
are characterized as roots of certain equations, suitable for our purposes. We include a proof,
inspired by exercise 1.4.23 in [157], for the sake of completeness.

Lemma 9.1.7. Let (Ω,F , µ) be a finite measure space and f ∈ Lp(Ω,F , µ), for p ∈ [1,∞).
For p = 1, we also assume that Ff is continuous and strictly increasing on [af , bf ]. Let I ⊂ R
be an interval with extremities c, d ∈ R such that µf (I) > 0. Then, the p-th mean m =
Mp(f, f

−1(I), µ) = Mp(id, I, µf ) is characterized as the unique solution of the equation∫
I∩(−∞,m]

(m− x)p−1 dµf (x) =

∫
I∩(m,∞)

(x−m)p−1 dµf (x), (9.5)

which for p = 1 is equivalent to

Ff (m) − Ff (c) =
1

2
(Ff (d) − Ff (c)). (9.6)

Proof. The proof is based on the following equality for all x, b ∈ R

|x− b|p = p

∫ b

−∞
(t− x)p−11{x≤t} dt+ p

∫ ∞

b

(x− t)p−11{t<x} dt,

which implies that

|x− b|p − |x− a|p = p

∫ b

a

(
(t− x)p−11{x≤t} − (x− t)p−11{t<x}

)
dt.

Fix m ∈ R. Define a function L : R → R by

L(b) =

∫
I

|x− b|p dµf (x) −
∫
I

|x−m|p dµf (x).

It is clear that m is a minimum of L if and only if m is a p-th mean. Using Fubini’s Theorem
and the previous equality, we obtain that for all b ∈ R

L(b) = p

∫ b

m

∫
I∩(−∞,t]

(t− x)p−1 dµf (x)dt− p

∫ b

m

∫
I∩(t,∞)

(x− t)p−1dµf (x)dt
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Note that L is convex, coercive and continuous and then reaches a minimum.
Suppose p > 1. The functions t 7→

∫
I∩[−∞,t]

(t − x)p−1 dµf (x) and t 7→
∫
I∩(t,∞)

(x −
t)p−1 dµf (x) are continuous, and therefore L is strictly convex and continuously differentiable,
which proves that L′(b) = 0 is the equation for the unique minima, that is,

L′(b) = p

∫
I∩(−∞,b]

(b− x)p−1 dµf (x) − p

∫
I∩(b,∞)

(x− b)p−1 dµf (x) = 0.

It follows that m is the p-th mean if and only if m fulfills (9.5).
For p = 1, using that Ff is continuous, we have

L(b) =

∫ b

m

Ff (t) − Ff (c) − (Ff (d) − Ff (t)) dt.

Again, since Ff is continuous we obtain that L is continuously differentiable. Then, if b is any
minima for L, it holds that L′(b) = 0, that is, Ff (b) − Ff (c) = 1

2 (Ff (d) − Ff (c)). Since Ff is
assumed to be strictly increasing, this equation has a unique solution, and then L has exactly
one minimum. Then, m is a 1-th if and only if Ff (m) − Ff (c) = 1

2 (Ff (d) − Ff (c)).

Notice that in the previous lemma we can replace (−∞,m] by (−∞,m) and (m,∞) by
[m,∞) in 9.5, because x = m does not add to the integrals. In the case Ff is just increasing,

I = (c, d] and p = 1, all the 1-th means satisfy the equations L
′+(m) ≥ 0 and L

′−(m) ≤ 0,
which are equivalent to

Ff (m) − Ff (c) ≥ 1

2
(Ff (d) − Ff (c)), Ff (m−) − Ff (c) ≤ 1

2
(Ff (d) − Ff (c)),

and the solution set is, in general, an interval.

The next result shows that when Ff is continuous all minimizers are in f -special form.

Corollary 9.1.8. Let (Ω,F , µ) be a finite measure space, p ∈ [1,∞) and k ≥ 1. Let f ∈
Lp(Ω,F , µ) and assume that Ff is continuous. Then any minimizer g ∈ PGp,k

(f) is of the
f -special form

g =

k∑
i=1

ai1f−1([ri,ri+1)), (9.7)

where

• [ri, ri+1) has positive µf -measure for all i ∈ {1, ..., k};

• af = r1 < ... < rk < rk+1 = bf and ri = ai+ai+1

2 for all i ∈ {2, ..., k};

• ai is a p-th mean of id on [ri, ri+1) under µf for all i ∈ {1, ..., k}. Moreover, if Ff is
strictly increasing on [af , bf ], then ai = Mp(id, [ri, ri+1), µf ) for all i ∈ {1, ..., k}.

Proof. Notice first that f /∈ Gp,k, because the image of f cannot be a finite set a.e., since µf is
not atomic. This implies that there is no minimizer in Gp,q, with q < k (see Proposition 9.1.17
below). So, any minimizer has the structure

g =

k∑
i=1

ai1Ai

where a1 < ... < ak, {Ai}1≤i≤k is a partition with sets of positive measure and ai is a p-th
mean of f in Ai, for all i ∈ {1, ..., k}. In the previous proof, we then modify this minimizer to
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get one in f -special form. If one goes over that proof and using the fact that Ff is continuous,

one realizes that in equation (9.4), we get Ãi = Ai a.e. and then Ai = Ci a.e., proving that
Ai = f−1([ri, ri+1)) a.e.

The fact that ai is a p-th mean is just the fact that g is a minimizer. For p > 1, the
uniqueness of the p-th mean shows that ai = Mp(id, [ri, ri+1), µf ). This is also true for p = 1,
when Ff is continuous and strictly increasing in [af , bf ] (see Lemma 9.1.7).

Remark 9.1.9. The previous result could be used as the basis of an algorithm to approximate
a minimizer. Assume that µf is a continuous distribution. For any s ∈ R, were s plays the
role of r2 in the representation (9.7), we define r1(s) = −∞, r2(s) = s and a1 = a1(s) =
Mp(id, (−∞, s), µf ). Then, we define a2(s) = 2r2(s) − a1(s), which is a relation that should
satisfy any minimizer. Then, compute r3(s) so that

a2(s) = Mp(id, [r2(s), r3(s)), µf ).

and continue in this way defining a3(s), r4(s), ..., ak(s), rk+1(s). It may happens that at some
iteration ri+1(s) is not well defined for some i ≤ k − 1 because, for all t ∈ [ri(s),∞]

ai(s) >Mp(id, [ri(s), t), µf ),

which shows that there is no minimizer starting with r2 = s. So, we say s is admissible if rk+1(s)
is well defined. For every admissible s we have a candidate

ℓs =

k−1∑
i=1

ai(s)1[ri(s),ri+1(s)) + Mp(id, [rk(s),∞), µf )1[rk(s),∞)

and we can compute R(s) =
∫
|x− ℓs(x)|p dµf (x). For s which is not admissible put R(s) = ∞.

Then a minimizer of R gives a minimizer for f . One expects that the set of admissible values
of s is an interval. We shall work on this algorithm in a forcoming paper.

For example, if µf is a normal N (0, 1), p = 2 and k = 3, this algorithm gives the following
approximation

h ≈ −1.2 1(−∞,−0.6) + 0 1[−0.6,0.6) + 1.2 1[0.6,∞).

Notice that ∥id∥2 = 1 and (D2,3(id))2 ≈ 0.18, which means that, in the language of statistics,
82% of the variance of f is explained by a simple function taking 3 values.

Uniqueness of minimizers is a much harder problem. Here, we present a partial result in case
µf satisfies a certain monotone likelihood ratio property.

Theorem 9.1.10. Let (Ω,F , µ) be a finite measure space, p ∈ [1,∞) and f ∈ Lp(Ω,F , µ).
Assume µf has a density with respect to the Lebesgue measure Ψ : (af , bf ) → (0,∞), which we
extend by 0 outside this interval. Consider for s ∈ (0, bf−af ) the function Gs : (af , bf ) → [0,∞)

given by Gs(y) = Ψ(y+s)
Ψ(y) and assume that Gs is decreasing. Moreover, we suppose that one of

the following hypotheses hold:

(H1) either af or bf is finite;

(H2) Gs((af , bf )) is an infinite set;

(H3) Ψ is continuous.

Then there exists a unique minimizer for f in Gp,k for all k ≥ 1.
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Proof. The case k = 1 is direct from the fact that Ff is is strictly increasing (because Ψ is
strictly positive on (af , bf )) and therefore the p-th means are unique. So, we assume that k ≥ 2.

According to Corollary 9.1.8, and since Ff is strictly increasing all minimizers for f have the
f -special form given in (9.7). Fix one of them g = ℓ ◦ f , where

ℓ =

k∑
i=1

ai1Ii

with r1 = af , rk+1 = bf , ri = ai−1+ai
2 for i ∈ {2, ..., k}, Ii = [ri, ri+1) for i ∈ {1, ..., k − 1},

Ik = [rk, rk+1], µf (Ii) > 0 for i ∈ {1, ..., k} and ai = Mp(id, Ii, µf ) for i ∈ {1, ..., k}. Assume

there exists another minimizer g̃ = ℓ̃ ◦ f with

ℓ̃ =

k∑
i=1

ãi1Ĩi

where r̃1 = af , r̃k+1 = bf , r̃i = ãi−1+ãi
2 for i ∈ {2, ..., k}, Ĩi = [r̃i, r̃i+1) for i ∈ {1, ..., k − 1},

Ĩk = [r̃k, r̃k+1], µf (Ĩi) > 0 for i ∈ {1, ..., k} and ãi = Mp(id, Ĩi, µf ) for i ∈ {1, ..., k}. We need to

prove that ℓ = ℓ̃. Consider s = r̃2 − r2. Switching g and g̃ if necessary, we can suppose without
loss of generality that s ≥ 0, and since r2, r̃2 ∈ (af , bf ) then s < bf − af . Define δi = ãi− ai for
all i ∈ {1, ..., k} and ηi = r̃i − ri for all i ∈ {2, ..., k}.

Case 1: Suppose that s = 0. We shall prove that ℓ = ℓ̃. Notice that I1 = Ĩ1 and ã1 =
Mp(id, I1, µf ) and by uniqueness of the p-th mean we deduce that a1 = ã1. But ã1, ã2 and
r̃2 are related by ã2 = 2r̃2 − ã1 = 2r2 − a1 = a2, showing that ã2 = a2. Using the fact that
a2 = Mp(id, I2, µf ) = Mp(id, Ĩ2, µf ) and Lemma 9.1.7, we have that∫ r̃3

a2

(x− a2)p−1Ψ(x)dx =

∫ r̃3

ã2

(x− a2)p−1Ψ(x)dx =

∫ ã2

r̃2

(a2 − x)p−1Ψ(x)dx

=

∫ a2

r2

(a2 − x)p−1Ψ(x)dx =

∫ r3

a2

(x− a2)p−1Ψ(x)dx.

Since r̃3 ≤ bf and since Ψ is strictly positive, we conclude that r̃3 = r3. Repeating this argument

we conclude that r̃i = ri for all i ∈ {2, ..., k} and ãi = ai for all i ∈ {1, ..., k}. Thus ℓ̃ = ℓ.
Case 2: Suppose that s > 0 and let us arrive to a contradiction if we suppose that (H1), (H2)

or (H3) holds. This part will be divided in several steps.
Step 1: We are going to show that the following properties hold:

(a) δk ≥ ηk ≥ δk−1 ≥ ηk−1 ≥ ... ≥ η2 ≥ δ1;

(b) if one of these inequalities is strict then all the inequalities on the left are also strict;

(c) all of these inequalities are in fact equalities if and only if af = −∞ and for all i ∈
{1, ..., k − 1} it holds

∀y ∈ (ri, ri+1)
Ψ(y + s)

Ψ(y)
=

Ψ(ai + s)

Ψ(ai)
.

Define a function ϕ : z 7→
∫ a1+z
af

(z+a1−x)p−1Ψ(x)dx−
∫ r̃2
a1+z

(x−a1− z)p−1Ψ(x)dx. It is clear

that ϕ is strictly increasing. Recall that ã1 = Mp(id, [af , r̃2), µf ), which is characterized by∫ ã1

af

(ã1 − x)p−1Ψ(x) dx =

∫ r̃2

ã1

(x− ã1)p−1Ψ(x) dx,
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so ϕ(δ1) = 0. Note also that

ϕ(0) =

∫ a1

af

(a1 − x)p−1Ψ(x)dx−
∫ r̃2

a1

(x− a1)p−1Ψ(x)dx

=

∫ r2

a1

(x− a1)p−1Ψ(x)dx−
∫ r̃2

a1

(x− a1)p−1Ψ(x)dx < 0,

since r̃2 − r2 = s > 0. Moreover, we have∫ a1+s

af

(a1 + s− x)p−1Ψ(x)dx ≥
∫ a1+s

af+s

(a1 + s− x)p−1Ψ(x)dx =

∫ a1

af

(a1 − x)p−1 Ψ(x+ s)

Ψ(x)
Ψ(x)dx

≥ Ψ(a1 + s)

Ψ(a1)

∫ a1

af

(a1 − x)p−1Ψ(x)dx =
Ψ(a1 + s)

Ψ(a1)

∫ r2

a1

(x− a1)p−1Ψ(x)dx

≥
∫ r2

a1

(x− a1)p−1 Ψ(x+ s)

Ψ(x)
Ψ(x) dx =

∫ r̃2

a1+s

(x− a1 − s)p−1Ψ(x)dx

proving that ϕ(s) ≥ 0. It follows that 0 < δ1 ≤ s = η2. The only way that δ1 = η2 = s is that

the previous inequalities are only equalities, which means that af = −∞ and Ψ(y+s)
Ψ(y) = Ψ(a1+s)

Ψ(a1)

holds for all y ∈ (af , r2) dy-a.e., but since Gs is decreasing this property holds for all y ∈ (af , r2).
We summarize this condition for future reference

af = −∞ and ∀y ∈ (af , r2)
Ψ(y + s)

Ψ(y)
=

Ψ(a1 + s)

Ψ(a1)
. (9.8)

On the other hand, since r̃2 = ã1+ã2
2 , we deduce

ã2 = 2r̃2 − ã1 = 2r2 − a1 + 2η2 − δ1 = a2 + 2η2 − δ1,

from where we deduce that δ2 = 2η2 − δ1 ≥ η2, with equality δ2 = η2 if and only if δ2 = η2 =
δ1 = s. Now, if there exists r̃3 ≤ bf such that

Mp(id, [r̃2, r̃3), µf ) = ã2,

we deduce that η3 ≥ δ2. Indeed, this follows from the inequalities∫ r̃3

ã2

(x− ã2)p−1Ψ(x)dx =

∫ ã2

r̃2

(ã2 − x)p−1Ψ(x)dx =

∫ a2+δ2

r2+η2

(ã2 − x)p−1Ψ(x) dx

≥
∫ a2+δ2

r2+δ2

(ã2 − x)p−1Ψ(x)dx =

∫ a2

r2

(a2 − x)p−1Ψ(x+ δ2)dx

=

∫ a2

r2

(a2 − x)p−1 Ψ(x+ δ2)

Ψ(x)
Ψ(x)dx ≥ Ψ(a2 + δ2)

Ψ(a2)

∫ a2

r2

(a2 − x)p−1Ψ(x)dx

=
Ψ(a2 + δ2)

Ψ(a2)

∫ r3

a2

(x− a2)p−1Ψ(x)dx ≥
∫ r3

a2

(x− a2)p−1 Ψ(x+ δ2)

Ψ(x)
Ψ(x)dx

=

∫ r3

a2

(x− a2)p−1Ψ(x+ δ2)dx =

∫ r3+δ2

a2+δ2

(x− ã2)p−1Ψ(x)dx

=

∫ r3+δ2

ã2

(x− ã2)p−1Ψ(x)dx

proving that r̃3 ≥ r3 + δ2, i.e. η3 ≥ δ2. Also, we notice that η3 = δ2 if and only if

η2 = δ2 and ∀y ∈ (r2, r3)
Ψ(y + δ2)

Ψ(y)
=

Ψ(a2 + δ2)

Ψ(a2)
, (9.9)
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which in particular implies that η3 = η2 = δ2 = δ1 = s and (9.8) holds. Iterating this idea, we
complete Step 1.

Step 2: Since g̃ has f -special form, we have that ãk = M1(id, [r̃k, bf ], µf ). Since δk ≥ ηk by
(a) in Step 1, we obtain that∫ bf

ãk

(x− ãk)p−1Ψ(x)dx =

∫ ãk

r̃k

(ãk − x)p−1Ψ(x)dx =

∫ ak+δk

rk+ηk

(ãk − x)p−1Ψ(x) dx

≥
∫ ak+δk

rk+δk

(ãk − x)p−1Ψ(x)dx =

∫ ak

rk

(ak − x)p−1Ψ(x+ δk)dx

=

∫ ak

rk

(ak − x)p−1 Ψ(x+ δk)

Ψ(x)
Ψ(x)dx ≥ Ψ(ak + δk)

Ψ(ak)

∫ ak

rk

(ak − x)p−1Ψ(x)dx

=
Ψ(ak + δk)

Ψ(ak)

∫ bf

ak

(x− ak)p−1Ψ(x)dx ≥ Ψ(ak + δk)

Ψ(ak)

∫ bf−δk

ak

(x− ak)p−1Ψ(x)dx

≥
∫ bf−δk

ak

(x− ak)p−1 Ψ(x+ δk)

Ψ(x)
Ψ(x)dx =

∫ bf

ak+δk

(x− ãk)p−1Ψ(x)dx

=

∫ bf

ãk

(x− ãk)p−1Ψ(x)dx

It follows that all the inequalities are in fact equalities and then the following properties hold:

(d) bf = ∞;

(e) ηk = δk;

(f) ∀y ∈ (rk,∞) Ψ(y+δk)
Ψ(y) = Ψ(ak+δk)

Ψ(ak)
.

We notice that (e) implies that all inequalities in (a) are equalities and then (c) holds. This
together with (d) and (f) implies that if g̃ is a minimizer then

(g) δk = ηk = δk−1 = ηk−1 = ... = η2 = δ1 = s;

(h) af = −∞, bf = ∞ and for all i ∈ {1, ..., k} it holds

∀y ∈ (ri, ri+1)
Ψ(y + s)

Ψ(y)
=

Ψ(ai + s)

Ψ(ai)
.

Step 3: Conclusion. Clearly under (H1) or (H2) the function g̃ cannot be a minimizer. It
remains to consider that (H3) holds. From (h) and the continuity of Ψ it holds that

∀y ∈ (−∞,∞)
Ψ(y + s)

Ψ(y)
=

Ψ(a1 + s)

Ψ(a1)
= C ∈ (0,∞)

Iterating this equality we have Ψ(y+2s) = Ψ(y+2s)
Ψ(y+s)

Ψ(y+s)
Ψ(y) Ψ(y) = C2Ψ(y), and then for all n ∈ Z

and all y

Ψ(y + ns) = CnΨ(y).

Then, if C ≥ 1, we have

Cn
∫ 1

0

Ψ(y) dy =

∫ 1

0

Ψ(y + ns) dy =

∫ ns+1

ns

Ψ(y) dy −→
n→∞

0,
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which is a contradiction. A similar contradiction is obtained if C < 1, because Ψ(y − ns) =
C−nΨ(y) and then

C−n
∫ 0

−1

Ψ(y) dy =

∫ 0

−1

Ψ(y − ns) dy =

∫ −ns

−(1+ns)

Ψ(y) dy −→
n→∞

0,

proving that g̃ cannot be a minimizer, and the result is shown.

Remark 9.1.11. Examples of distributions that satisfie the hypothesis of the previous propo-
sition are the exponential distribution µf (dx) = e−x dx for x ≥ 0, the normal distribution
N (0, 1) and the uniform distribution µf (dx) = dx for x ∈ [0, 1]. In the uniform case, we obtain
an explicit solution for the minimizer of f ∈ Lp(Ω,F , µ). For all k ≥ 1 this unique minimizer is
g = ℓ ◦ f , where

ℓ =

k∑
i=1

2i− 1

2k
1[ i−1

k , ik ),

independently of p ∈ [1,∞).

9.1.2 The case of an infinite measure, p ∈ [1,∞)

The case of infinite measure needs an extra work and use some ideas already developed in the
finite measure case.

Theorem 9.1.12. Let (Ω,F , µ) be an infinite measure space, p ∈ [1,∞) and k ≥ 1. Then Gp,k
is proximinal.

Moreover, if f ∈ Lp(Ω,F , µ) and g =
q∑
i=1

bi1Ai
∈ PGp,k

(f) is a minimizer, with q ≤ k,

−∞ < b1 < ... < bq < ∞, {Ai}1≤i≤q a partition of Ω such that µ(Ai) > 0 for all i ∈ {1, ..., q}
and a unique 1 ≤ s ≤ q such that bs = 0. Then, there exists a minimizer g̃ ∈ PGp,q

(f) in
f -special form

g̃ =

q∑
i=1,i̸=s

Mp(f, f
−1(Ci))1f−1(Ci) + 01f−1(Cs),

where

• r1 = −∞, rq+1 = ∞ and ri = bi−1+bi
2 for all i ∈ {2, ..., q} (notice that rs < 0 < rs+1);

• Ci = f−1([ri, ri+1)) for i ∈ {1, ..., q − 1} and Cq = f−1([rq, rq+1]);

• if µ(f−1(Ci)) > 0 and i ̸= s, then bi is a p-th mean of f on f−1(Ci);

If q is the smallest among all minimizers, then µ(Ci) > 0 for all i.

Proof. For k = 1 the result is obvious since Gp,1 = {0}. So for the rest of the proof we assume
that k ≥ 2.

Let f ∈ Lp(Ω,F , µ) and consider a sequence (gn)n ∈ Gp,k such that gn =
∑q(n)
i=1 ai,n1Ai,n ,

where a1,n < ... < aq(n),n ∈ R, {Ai,n}1≤i≤q(n) is a measurable partition with sets of positive
measure and q(n) ≤ k for all n ∈ N, and such that

∥f − gn∥p → Dp,k(f).

Since gn ∈ Lp(Ω,F , µ) there exists a unique 1 ≤ s(n) ≤ q(n) such that as(n),n = 0 and
we have that µ(Ai,n) < ∞ for all i ̸= s(n). Passing to a subsequence, we can assume that
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1 ≤ s(n) = s ≤ q(n) = q ≤ k. Define r1 = r1,n = −∞, rq+1,n = ∞ and ri,n =
ai−1,n+ai,n

2 for
i ∈ {2, ..., q}. We point out that if q = 1, then gn = 0, for all n and so h = 0 is a minimizer.
Then for the rest of the proof, we assume q ≥ 2.

Now, consider Ii,n = [ri,n, ri+1,n) and the corresponding Ci,n = f−1(Ii,n) for all i ∈ {1, ..., q}.
For all n ∈ N, define

g̃n =

q∑
i=1

ai,n1f−1(Ii,n).

If i, j ∈ {1, ..., q}, we have that |f(x) − ai,n| ≥ |f(x) − aj,n| for all x ∈ Cj . It follows that for all
n ∈ N

∥f − gn∥pp =

q∑
i=1

∫
Ai

|f(x) − ai,n|pdµ(x) =

q∑
j=1

q∑
i=1

∫
Ai∩Cj

|f(x) − ai,n|pdµ(x)

≥
q∑
j=1

q∑
i=1

∫
Ai∩Cj

|f(x) − aj,n|pdµ(x)

=

q∑
j=1

∫
Cj

|f(x) − aj,n|pdµ(x) = ∥f − g̃n∥pp

proving that (g̃n)n is also a minimizing sequence.
For all i ∈ {1, ..., q}, the sequence (ai,n)n has a convergent subsequence in R. Then we can

also assume that ai,n → ai ∈ R for all i ∈ {1, ..., q}. We denote by z1 < ... < zℓ the different
values in {a1, ..., aq}, where ℓ ≤ q. We point out that zt = 0 for some 1 ≤ t ≤ ℓ. For each
1 ≤ m ≤ ℓ, we denote Lm = {i : 1 ≤ i ≤ q and ai = zm}. Each Lm is an interval in N,
because we have assumed a1,n < ... < ai,n < ... < aq,n, for each n. We define i−m = min{Lm}
and i+m = max{Lm} for all m ∈ {1, ..., ℓ} and also i−ℓ+1 = ℓ+ 1. Note that Lm = {i−m, ..., i+m} for
all m ∈ {1, ..., ℓ}.

Assume that zℓ = ∞ or z1 = −∞. In this situation ℓ ≥ 2, because zt = 0. As in the case of
finite measure we can modify (g̃n)n to get a uniformly bounded minimizing sequence. Consider
first the case zℓ = ∞ and recall that i−ℓ = min{Lℓ} ∈ {s+ 1, ..., q}. Then, we have

ri−ℓ ,n
=
ai−ℓ −1,n + ai−ℓ ,n

2
→ ∞,

because ai−ℓ −1,n ≥ as,n = 0 and then ai−ℓ −1,n → ai−ℓ −1 = zℓ−1 ∈ [0,∞). Consider

ĝn =
∑
i<i−ℓ

ai,n1f−1(Ii,n) +ai−ℓ −1,n1f−1([r
i
−
ℓ

,n
,∞)) =

∑
i<i−ℓ −1

ai,n1f−1(Ii,n) +ai−ℓ −1,n1f−1([r
i
−
ℓ

−1,n
,∞))

An important fact is that
∫
{f≥r

i
−
ℓ

,n
} |f(x)−ai−ℓ −1,n|p dµ(x) → 0, because (ai−ℓ −1,n)n is a bounded

sequence and ri−ℓ ,n
→ ∞. Then

∥f − ĝn∥pp ≤ ∥f − g̃n∥pp +

∫
{f>r

i
−
ℓ

,n
}
|f(x) − ai−ℓ −1,n|

p dµ(x) → (Dp,k(f))p.

Then, the sequence (ĝn)n is a minimizing sequence, which is uniformly upper bounded. Similarly,
we can modify this sequence to get a minimizing sequence, which is uniformly bounded. Then,
in what follows we assume (g̃n)n is uniformly bounded and −∞ < z1, zℓ <∞.

Now we consider 2 different cases.
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Case 1: ℓ = 1. In this situation a1 = ... = aq = 0. Notice that rq,n =
aq−1,n+aq,n

2 → 0, so if
0 < f(x) < ∞, then g̃n(x) = aq,n for all large n and g̃n(x) → 0. In the same way, if f(x) < 0,
then g̃n(x) = a1,n for all large n and g̃n(x) → 0. On the other hand, if f(x) = 0, then g̃n(x) = 0.
Then by Fatou’s Lemma we conclude

lim inf
n

∥f − g̃n∥pp ≥
∫

lim inf
n

|f(x) − g̃n|p dµ(x) = ∥f∥pp,

and we obtain Dp,k(f) ≥ ∥f∥p, showing that h = 0 is a minimizer.
Case 2: ℓ ≥ 2. For all m ∈ {1, ..., ℓ} recall that i−m = min{Lm} and i−ℓ+1 = ℓ + 1. Then, for

all 2 ≤ m ≤ ℓ

ri−m,n → rm :=
zm−1 + zm

2
.

and r1 = −∞ < r2 < ... < rℓ < rℓ+1 := ∞. Now, we choose a particular subsequence (n′)n′ .
We start with (ri−2 ,n

)n. If there exist an increasing subsequence of (ri−2 ,n
)n, we fix one of these

subsequences as (n(2)) and we put T (2) = in, for increasing. Otherwise we take (n(2)) so that
(ri−2 ,n(2))n(2) is strictly decreasing, and we put T (2) = sd, for strictly decreasing. We repeat this

procedure for (ri−3 ,n(2))n(2) , to obtain, if possible, (n(3)) a subsequence of (n(2)) so (ri−3 ,n(3))n(3)

is increasing, and put T (3) = in. Otherwise we take (n(3)) a subsequence of (n(2)) so that
(ri−3 ,n(3))n(3) is strictly decreasing, and we put T (3) = sd. We continue until m = ℓ. We also

put T (1) = in and T (ℓ+ 1) = in. Denote by (n′) = (n(ℓ)).
Now, we define the intervals that give a minimizer. For all m ∈ {1, ..., ℓ} let

Im =


[rm, rm+1) if T (m) = in, T (m+ 1) = in

[rm, rm+1] if T (m) = in, T (m+ 1) = sd

(rm, rm+1) if T (m) = sd, T (m+ 1) = in

(rm, rm+1] if T (m) = sd, T (m+ 1) = sd

(9.10)

We notice that ∪ℓm=1Im = [−∞,∞), and for all m ∈ {1, ..., ℓ} and all n′, we define Jm,n′ =
∪i∈Lm

[ri,n′ , ri+1,n′) = [ri−m,n′ , ri−m+1,n
′). Then, it holds

1f−1(Jm,n′ ) → 1f−1(Im) a.e.

The last piece of information we need is that the set ∪m̸=tf
−1(Jm,n′) is contained in a fixed

set of finite measure Ã for large n′. If t = ℓ, then ∪m̸=tf
−1(Jm,n′) ⊂ f−1((−∞, rt,n′ ]) ⊂ Ã =

f−1((−∞, rt2 ]), for large n′, because rt,n′ → rt = zt−1

2 < zt = 0, and then Ã has finite measure.

Similarly, if t = 1, then ∪m ̸=tf
−1(Jm,n′) ⊂ f−1([r2,n′ ,∞]) ⊂ Ã = f−1([ r22 ,∞)), for large n′.

This set has finite measure because r2 > 0. In the general case, 1 < t < q, we have for large n′

∪m ̸=tf
−1(Jm,n′) ⊂ Ã = f−1((−∞, rt/2]) ∪ f−1([rt+1/2,∞)),

which has finite measure because rt < 0 < rt+1.
Now, consider the decomposition

∥f − g̃n′∥pp =
∫
|f(x) − g̃n′(x)|p1f−1(Jt,n′ ) dµ(x) +

∑
m̸=t

∫
f−1(Jm,n′ )

|f(x) − g̃n′(x)|p dµ(x).

We use now Fatou’s Lemma for the first term and the Dominated Convergence Theorem for the
second term. In the first term, we have the a.e. convergence

|f − g̃n′ |1f−1(Jt,n′ ) → |f |1f−1(It)
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With respect to the second term, for large n′, we have max1≤i≤q |ai,n′ | ≤ max{|z1|, zℓ}+1 := C,
also

|f(x) − g̃n′(x)|p 1∪m̸=tf−1(Jm,n′ ) ≤ 2p−1 (|f(x)|p + Cp) 1Ã ∈ L1(Ω,F , µ),

g̃n′1∪m̸=tf−1(Jm,n′ ) →
∑
m̸=t zm1f−1(Im) a.e. and f1∪m̸=tf−1(Jm,n′ ) → f1f−1(∪m ̸=tIm) a.e. So, we

get

lim inf
n′

∥f − g̃n∥pp ≥
∫
f−1(It)

|f(x)|p dµ(x) +
∑
m̸=t

∫
f−1(Im)

|f(x) − zm|p dµ(x)

and then h =
∑ℓ
m=1 zm1f−1(Im) is a minimizer, where the intervals {Im}1≤m≤t are either open,

closed or semi-closed, they are disjoint and ∪ℓm=1Im = R (see (9.10)).
From here it is clear that a minimizer exists in f -special form as we have done in the finite

measure case. Also notice that if m ̸= t and 0 < µ(f−1(Im)), we must have zm is a p-th mean
for f in f−1(Im), since h is a minimizer.

9.1.3 The case p = ∞
In this section we shall prove that G∞,k is proximinal. We start with a lemma.

Lemma 9.1.13. Let (Ω,F , µ) be a measure space and f ∈ L∞(Ω,F , µ). Then, for all k ≥ 1,
we have that D∞,k(f) = ηk(f) where

ηk(f) = inf
h=f a.e

inf{α > 0 | h(Ω) can be covered by at most k closed balls of radius α}.

Proof. Let ε > 0 and let g ∈ G∞,k such that ∥f − g∥∞ ≤ D∞,k(f) + ε. Write g =
∑k
i=1 ai1Ai

where {Ai}1≤i≤k is a partition of Ω. For every i, the set Ci = {x ∈ Ai : |f(x) − ai| >

∥(f − g)1Ai
∥∞} has measure 0 and therefore h = f1Ω\∪jCj

+
k∑
j=1

aj1Cj
satisfies h = f a.e. and

h(Ω) ⊂
k⋃
i=1

[ai − D∞,k(f) − ε, ai + D∞,k(f) + ε].

It follows that ηk(f) ≤ D∞,k(f) + ε and since ε is arbitrary, we obtain that ηk(f) ≤ D∞,k(f).
To prove the other inequality, let again ε > 0 and pick l ≤ k, a1, ..., al ∈ R and h = f a.e. such
that

h(Ω) ⊂
l⋃
i=1

[ai − ηk(f) − ε, ai + ηk(f) + ε].

For 1 ≤ i ≤ l, define Ai = h−1([ai − ηk(f) − ε, ai + ηk(f) + ε]) ∈ F . Now define B1 = A1

and Bi = Ai \
⋃i−1
j=1Ai for i ∈ {2, ..., l}. Then {Bi}1≤i≤l is a partition of Ω. Defining g =∑l

i=1 ai1Bi
∈ G∞,k, it is clear that ∥f − g∥∞ ≤ ηk(f) + ε. It follows that D∞,k(f) ≤ ηk(f) + ε

and then D∞,k(f) ≤ ηk(f).

Proposition 9.1.14. Let (Ω,F , µ) be a measure space. Then G∞,k is proximinal for all k ≥ 1.

Proof. For all n ∈ N, let αn = ηk(f) + 1
n . So, for all n ∈ N, there exist an1 , ..., a

n
ln

∈ R with

1 ≤ ln ≤ k and hn = f a.e. such that hn(Ω) ⊂
⋃ln
i=1[ani −αn, a

n
i +αn]. Of course there exists i0

such that µ(h−1
n ([ani0 −αn, a

n
i0

+αn])) > 0. If for some i it holds µ(h−1([ani −αn, ani +αn])) = 0,
we can redefine hn on a set of measure 0, to have hn(w) = ai0 for all w ∈ h−1

n ([ani −αn, ani +αn]).
So, we can assume for all i it holds µ(h−1

n ([ani − αn, a
n
i + αn])) > 0. Consider

ti,n =
1

µ(h−1
n ([ani − αn, ani + αn]))

∫
h−1
n ([ani −αn,ani +αn])

hn(x) dµ(x) ∈ [ani − αn, a
n
i + αn],
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which obviously satisfies |ti,n| ≤ ∥hn∥∞ = ∥f∥∞. Then, for all i, n, it holds

|ani | ≤ |ti,n| + |ani − ti,n| ≤ ∥f∥∞ + αn ≤ ∥f∥∞ + ηk(f) + 1,

which implies that the set {ani : 1 ≤ i ≤ ln n ∈ N} is bounded.
Considering a subsequence if necessary, we can suppose that ln = l ∈ {1, ..., k} for all n ∈ N.

By compactness and taking a further subsequence, we can also assume that ani → ai for all
i ∈ {1, ..., l}. Define

C = {ω ∈ Ω | ∀n ∈ N f(ω) = hn(ω)} ∈ F

and note that µ(Cc) = 0. Let us show that f(C) ⊂
⋃l
i=1[ai−ηk(f), ai+ηk(f)]. In fact, if ω ∈ C

then for all n ∈ N there exists i(ω, n) ∈ {1, ..., l} such that f(ω) = hn(ω) ∈ [ani(ω,n)−αn, a
n
i(ω,n)+

αn]. There exists a subsequence ϕ(n) = ϕ(n)(ω) such that the sequence (i(ω, ϕ(n)))n is constant
and equal to some i0(ω) ∈ {1, ..., l}. It follows that f(ω) ∈ [ai0(ω) − ηk(f), ai0(ω) + ηk(f)] ⊂⋃l
i=1[ai − ηk(f), ai + ηk(f)]. Define h = f1C + t1Cc where t is any real belonging to

⋃l
i=1[ai −

ηk(f), ai+ηk(f)]. We have that f = h a.e. and h(Ω) ⊂
⋃l
i=1[ai−ηk(f), ai+ηk(f)]. For 1 ≤ i ≤ l,

define Ai = h−1([ai − ηk(f), ai + ηk(f)]) ∈ F . Now define B1 = A1 and Bi = Ai \
⋃i−1
j=1Ai for

i ∈ {2, ..., l}. Then {Bi}1≤i≤l is a partition of Ω. Defining g =
∑l
i=1 ai1Bi ∈ G∞,k, it is clear

that ∥f − g∥∞ = ∥h− g∥∞ ≤ ηk(f). Moreover, we have that D∞,k(f) = ηk(f) by the previous
lemma and so we conclude that ∥f − g∥∞ = D∞,k(f).

9.1.4 Extra properties of minimizers and the sets (Gp,k)p,k

In this section we include some extra properties of the sets (Gp,k)p,k as well as some natural
questions like uniqueness of minimizers and the existence of a continuous selection for PGp,k

.
Let us start by proving that Gp,k is a closed set, for all p ≥ 1, k ≥ 1, something that it is not

straightforward to do. Nevertheless, this is a direct consequence of the previous results.

Corollary 9.1.15. Let (Ω,F , µ) be a measure space, p ∈ [1,∞] and k ≥ 1. Then Gp,k is closed.

Proof. Assume (gn)n ⊂ Gp,k converges in Lp(Ω,F , µ) to g. Then

inf{∥g − h∥p : h ∈ Gp,k} = 0.

From the previous results, there exists a minimizer h̄ ∈ Gp,k, that is g = h̄ a.e. and the result is
shown.

A question that appears when proving the existence of minimizers is the following. Assume
there exists a best approximation of f by an element of Gp,k which is in fact an element of Gp,m
for some m < k, then it is natural to think that f should belong to Gp,m. This is true when
p ∈ [1,∞) and it is not true for p = ∞. Before doing that we require the following lemma.

Lemma 9.1.16. Assume that f ∈ Lp(Ω,F , µ), for 1 ≤ p < ∞, and A = f−1(I) is a set of
positive and finite measure, where I is an interval. Assume b is a p-th mean of f on A, then
b ∈ Ī.

Proof. Assume the interval Ī = [c, d], where c, d ∈ R and let us prove that b ≥ c. If c = −∞
it is clear that c < b. So assume c is finite. By contradiction, if b < c we have |f(x) − b| =
f(x) − c+ (c− b) > f(x) − c = |f(x) − c|, for all x ∈ f−1(I) and then, since µ(f−1(I)) > 0, we
get ∫

f−1(I)

|f(x) − b|p dµ(x) >

∫
f−1(I)

|f(x) − c|p dµ(x),

which is contradiction. Similarly, it is shown that b ≤ d.
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Proposition 9.1.17. Assume f ∈ Lp(Ω,F , µ) with p ∈ [1,∞). Let m, k ∈ N such that 1 ≤
m < k. Suppose that there exists g ∈ Gp,m ∩ PGp,k

(f). Then f ∈ Gp,m.

Proof. Suppose that the measure is finite. We can assume that

g =

r∑
i=1

bi1f−1(Ii),

where r ≤ m, {Ii}1≤i≤r is a family of disjoint intervals such that {f−1(Ii)}1≤i≤r is a partition
of Ω and b1 < ... < br. Suppose by contradiction that f /∈ Gp,m. Then in particular it holds
that µ(f−1({b1, ..., br}c) > 0. Since Θ = {b1, ..., br}c is open, it is a countable union of open
intervals (Jn)n and therefore for some n0 we should have µ(f−1(Jn0)) > 0. By the continuity
of the measure, there exists a closed bounded interval J ⊂ Jn0

such that µ(f−1(J)) > 0, and
therefore µ(f−1(J ∩ Ii0)) > 0, for some i0. Hence, we obtain∫

f−1(Ii0∩J)
|f −Mp(f, f

−1(Ii0 ∩ J))|p dµ(x) <

∫
f−1(Ii0∩J)

|f − bi0 |p dµ(x),

since an equality in the previous formula would imply that bi0 ∈ Ii0 ∩ J ⊂ J ⊂ {b1, ..., br}c, by
the previous lemma. If we define

h =

r∑
i=1,i̸=i0

bi1f−1(Ii) + bi01f−1(Ii0∩Jc) + Mp(f, f
−1(Ii0 ∩ J))1f−1(Ii0∩J) ∈ Gp,r+1 ⊂ Gp,k,

we have that ∥f − h∥p < ∥f − g∥p which contradicts the minimality of g. We conclude that
f ∈ Gp,m.

In case the measure is infinite, with the same notation as above, we know that bi1 = 0 for
some i1. As above there exists a closed and bounded interval J ⊂ {b1, ..., br}c ⊂ {0}c, such that
µ(f−1(J)) > 0. Without loss of generality we can assume that J ⊂ [a,∞), for some a > 0.
Then

µ(f−1(J))ap ≤ ∥f∥p,
proving that f−1(J) has finite and positive measure. The argument now goes as in the case of
finite measure.

The following result shows that, for p ∈ [1,∞), the error in the approximation by functions
in Gp,k decreases strictly with k until eventually reaching zero.

Corollary 9.1.18. Assume that f ∈ Lp(Ω,F , µ) with p ∈ [1,∞) and consider Dp,∞(f) = 0.
Define k∗ = min{k : Dp,k(f) = 0} ∈ [1,∞]. Then, (Dp,k(f))k≤k∗ is strictly decreasing and
Dp,k(f) = 0 for all k ≥ k∗, that is

k∗ = min{k : Dp,k+1(f) = Dp,k(f)} = min{k : Dp,k(f) = 0}.

The previous results are not true for p = ∞. In fact, we have the following example:

Example 9.1.19. Consider the Lebesgue measure in [0, 1], the function

f(x) =

{
x for x /∈ ( 1

3 ,
2
3 )

1
3 for x ∈ ( 1

3 ,
2
3 )

and k = 3. It is not difficult to show that D∞,3(f) = 1
6 , where there are multiple minimizers,

for example

h =
1

6
1[0, 13 ]

+
1

2
1( 1

3 ,
2
3 )

+
5

6
1[ 23 ,1]
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is a minimizer, but also

g =
1

6
1[0, 23 )

+
5

6
1[ 23 ,1]

∈ G∞,2

is a minimizer, in particular D∞,3(f) = D∞,2(f) > 0. Nevertheless, f /∈ G∞,k for all k. This
also shows that G∞,3 is not Chebyschev.

In Proposition 9.1.10, we have shown that under certain conditions on f , there exists a
unique minimizer. An important question then is if Gp,k is Chebyschev, that is, if there is a
unique minimizer for all f . As we have seen in the previous example this is not true for p = ∞,
and we complement this for all p.

Example 9.1.20. Consider again the Lebesgue measure in [0, 1]. Then Gp,2 is not Chebyshev
for any p ∈ [1,∞]. To see that, let f = −1[0, 13 )

+ 01[ 13 ,
2
3 )

+ 1[ 23 ,1]
. A possible minimizer in

G2,2 has the form g = a1f−1((−∞,r2)) + b1f−1([r2,∞]), for suitable a, b, r2 (see Theorem 9.1.5). If
r2 ≤ −1 or r2 > 1, a candidate to be a minimizer is g1 = 0. For −1 < r2 ≤ 0 the candidate
is g2 = −1[0, 13 )

+ 1
21[ 13 ,1]

. Finally, for 0 < r2 < 1 the candidate is g3 = − 1
21[0, 23 )

+ 1[ 23 ,1]
. The

corresponding errors are

∥f − g1∥22 =
2

3
, ∥f − g2∥22 = ∥f − g3∥22 =

1

6
,

showing that g2 and g3 are two minimizers and then G2,2 is not Chebyschev. Finally, for every
p ∈ [1,∞] both g2 and g3 are minimizers in Gp,2, showing that this set is not Chebyschev for any
p. Moreover, for 1 < p < ∞, it can be proved that g2, g3 are the only minimizers. For p = 1,
there is a continuum of minimizers since

ga = −1[0, 13 )
+ a1[ 13 ,1]

is a minimizer for all a ∈ [0, 1]. For p = ∞, there is also a continuum of minimizers since

hb = b1[0, 13 )
+

1

2
1[ 13 ,1]

is a minimizer for all b ∈ [−3
2 ,

−1
2 ].

Remark 9.1.21. We have proved that Gp,k is proximinal and closed for all k ≥ 1 and p ∈ [1,∞].
However, Gp,k is not Chebyshev in general as we have shown in the previous examples. Then, it
is natural to ask if PGp,k

admits a continuous selection. If such continuous selection exists, then
Gp,k has to be almost-convex (see Lemma 5 in [168]). Remember that a subset K of a Banach
space is said to be almost-convex (see [168]) if for every closed ball B such that K∩B = ∅, there
exists a closed ball B′ of arbitrary large radius such that K ∩B′ = ∅ and B ⊂ B′. If p ∈ (1,∞),
a subset K is almost-convex if and only if K is convex (see Lemma 2 in [168]). So, the question
is if Gp,k can be convex. For k ≥ 2 and p <∞, Gp,k is convex if and only if Lp(Ω,F , µ) is finite
dimensional and Lp(Ω,F , µ)) = Gp,k. Indeed, assume k ≥ 2 and that Gp,k is convex. Then it is
direct to show that Gp,k is a vector space, because it is homogeneous. Then Gp,ℓ = Gp,k, for all

ℓ ≥ k. This is done by induction, so the only interesting case is ℓ = k+1. Take g =
∑k+1
i=1 ai1Ai

,
which can be seen as the sum of three elements g1, g2, g3 ∈ Gp,k

g1 =

k−1∑
i=1

ai1Ai
+ 01Ak∪Ak+1

, g2 = ak1Ak
+ 01∪j ̸=kAj

, g3 = ak+11Ak+1
+ 01∪j ̸=k+1Aj

.

Therefore, Gp,k = ∪ℓGp,l is dense and closed in Lp(Ω,F , µ), which implies Gp,k = Lp(Ω,F , µ).
The conclusion is that the unit ball of Lp(Ω,F , µ) is UA and then Lp(Ω,F , µ) is finite dimen-
sional (see Theorem 9.3.10 in Section 9.3.3).



162 CHAPTER 9. PROXIMINALITY AND UNIFORMLY APPROXIMABLE SETS IN Lp

9.2 The p-variation

In this part we introduce a new notion of variation for functions in Lp(Ω,F , µ). There are
several notions of variation or oscillation for functions. Our notion notion could be contrasted
with the definition of oscillation given in [26] (p.296), which helps to characterize compact sets
in L1. However, both concepts are not comparable, in general.

Definition 9.2.1. Let p ∈ [1,∞). For f ∈ Lp(Ω,F , µ) and A a measurable set of finite measure,
we define varp(f,A), the p-variation of f in A, as

varp(f,A)p =

{
1

µ(A)

∫
A×A |f(x) − f(y)|p dµ(x)dµ(y) if µ(A) > 0

0 otherwise.

Given P = (Ai)i, a finite collection of disjoint measurable sets each one of finite measure, which
we also assume it contains at least one set of positive measure, we define the total p-variation
of f in P as

varp(f,P) =

(∑
i

varp(f,Ai)
p

)1/p

=

 ∑
i:µ(Ai)>0

1

µ(Ai)

∫
Ai×Ai

|f(x) − f(y)|p dµ(x)dµ(y)

1/p

.

For a measurable set A of finite measure, we define the k-th total p-variation of f in A as

Varp,k(f,A) = inf
{
varp(f,P) : P is a partition of A, |P| ≤ k

}
where the infimum is taken over the set of finite measurable partitions of A consisting of at most
k measurable sets. Finally, we define the total k-th variation of f as

Varp,k(f) = sup
A∈F

µ(A)<∞

Varp,k(f,A)

Note that if µ is finite then Varp,k(f,Ω) ≤ Varp,k(f), and it is not clear if both measures of total
variation are equivalent, something that we study below (see Proposition 9.2.6).

Remark 9.2.2. Notice that the sets in P that have measure 0 can be removed by gluing them
to an element of P with positive measure. We redefine a new collection P̃, which has fewer
elements and varp(f,P) = varp(f, P̃). So, in what follows, we can always assume that P is a
collection with sets of positive and finite measure.

We compile some basic properties of Varp,k(•,Ω) and Varp,k(•) in the next result:

Proposition 9.2.3. Let (Ω,F , µ) be a measure space and p ∈ [1,∞). Then (Varp,k)k≥1 is a
decreasing family of continuous semi-norms on Lp(Ω,F , µ) such that Varp,k(•) ≤ 2∥ • ∥p for all
k ≥ 1. The same properties hold for (Varp,k(•,Ω))k≥1, in the case µ is a finite measure.

Proof. The fact that Varp,k is a semi-norm is easy and is left to the reader. The monotony of
(Varp,k)k≥1 follows directly from the definition. Let f ∈ Lp(Ω,F , µ) and A be a measurable
set of finite and positive measure. First note that varp(f,A) ≤ 2∥f1A∥p. In fact, using that
(a + b)p ≤ 2p−1(ap + bp) holds for all nonnegative numbers a, b and Fubini’s theorem, we have
that

varp(f,A)p =
1

µ(A)

∫
A×A

|f(x) − f(y)|p dµ(x)dµ(y)

≤ 2p−1

µ(A)

∫
A×A

|f(x)|p + |f(y)|pdµ(x)dµ(y) (9.11)

= 2p∥f1A∥pp.
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It follows that if P is a finite measurable partition of A then Varp(f,P) ≤ 2∥f1A∥p and therefore,
we deduce that Varp,k(f) ≤ 2∥f∥p. In particular, Varp,k is continuous. In case the measure is
finite we have

Varp,k(f,Ω) ≤ Varp,k(f) ≤ 2∥f∥p.

Remark 9.2.4. Assume that µ is a finite measure. We notice that for a fixed function f ∈
Lp(Ω,F , µ), we have limk→∞ Varp,k(f,Ω) = 0. Indeed, let k ∈ N and define the sets

Ai =

{
x :

i

k
≤ f(x) <

i+ 1

k

}
, for i ∈ {−k2, ..., k2 − 2},

Ak2−1 =
{
x : k − 1

k ≤ f(x) ≤ k
}

and Ak2 = {x : |f(x)| > k}. Then, we have, for all i ∈
{−k2, ..., k2 − 1}

varp(f,Ai) ≤
µ(Ai)

1
p

k

and for i = k2

varp(f,Ak2) ≤ 2∥f1Ak2 ∥p.

Thus,

Varp,k(f,Ω)p ≤ 1

kp
µ(Ω) + 2p

∫
|f |>k

|f(x)|p dµ(x),

and then limk Varp,k(f,Ω) = 0.
We also notice that the same property holds for (Varp,k(f))k, in general measure spaces, but

its proof is more involved and we postponed to Corollary 9.2.8.

The following lemma proves that the variation of a function can always be computed on a
σ-finite set if the measure has no atoms of infinite mass.

Lemma 9.2.5. Assume (Ω,F , µ) is a measurable space such that µ has no atoms of infinite
mass and p ∈ [1,∞). Let f ∈ Lp(Ω,F , µ) and fix k ≥ 1. Then there exists an increasing
sequence of finite measure sets (Ω∗

n)n ⊂ F such that

Varp,k(f) = lim
n

Varp,k,n(f) = Varp,k,∗(f),

where

• Varp,k,∗(f) is the total variation of f |Ω∗ computed in (Ω∗,F|Ω∗ , µ|Ω∗) with Ω∗ =
⋃
n Ω∗

n;

• Varp,k,n(f) is the total variation of f |Ω∗
n
computed in (Ω∗

n,F|Ω∗
n
, µ|Ω∗

n
).

Proof. We can obviously suppose that µ is infinite. Define F = {x : f(x) = 0}. In case F has

finite measure, we define D̃ = F . If F has infinite measure, we consider a subset D̃ ⊂ F which
is σ-finite and of infinite measure. Note that such a set exists. Indeed, take

a = sup
D∈F,D⊂F,µ(D)<∞

µ(D).

Let us prove that a = ∞. Consider a sequence (Dl)l of subsets of F , each one of finite measure

such that liml µ(Dl) = a. It is clear that D̃l = ∪i≤lDi is an increasing sequence of sets of finite

measure, included in F which satisfies µ(Dl) ≤ µ(D̃l), proving that µ(D̃l) ↑ a and D̃ = ∪lD̃l

satisfies µ(D̃) = a. If a is finite then, F \ D̃ has infinite measure. By hypothesis this set
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contains a set H of finite and positive measure. Then µ(D̃ ∪H) = µ(D̃) + µ(H) > a, which is
a contradiction.

Now consider a sequence of sets of finite measure (An)n such that

Varp,k(f,An) ≥ Varp,k(f) − 1

n
.

For every m ≥ 1 the set Cm =
{
x : |f(x)| > 1

m

}
has finite measure. The set Ω∗ = ∪nAn ∪

∪mCm ∪ D̃ is σ-finite and it has infinite measure, because µ(
⋃
m Cm ∪ F ) = µ(Ω) = ∞. We

consider

Ω∗
n =

{
∪i≤nAi ∪ Ci ∪ D̃ if µ(D̃) <∞
∪i≤nAi ∪ Ci ∪ D̃i if µ(D̃) = ∞

,

which is an increasing sequence of sets of finite and positive measure, such that Ω∗
n ↑ Ω∗. Define

Varp,k,n(f) the total variation of f |Ω∗
n

computed in (Ω∗
n,F|Ω∗

n
, µ|Ω∗

n
), that is

Varp,k,n(f) = sup
A∈F,A⊂Ω∗

n

Varp,k(f |Ω∗
n
, A) = sup

A∈F,A⊂Ω∗
n

Varp,k(f,A) ≤ Varp,k(f).

Similarly, we define Varp,k,∗(f), which is the total variation of f |Ω∗ computed in (Ω∗,F|Ω∗ , µ|Ω∗).
It is clear that for every n, by construction,

Varp,k(f) − 1

n
≤ Varp,k(f,An) ≤ Varp,k,n(f) ≤ Varp,k,∗(f) ≤ Varp,k(f),

and also that (Varp,k,n(f))n is increasing, showing that

Varp,k,n(f) ↑ Varp,k(f)

and Varp,k,∗(f) = Varp,k(f).

The next proposition shows that the variation and Dp,k have the same behaviour. This will
be a fundamental tool to caracterize the uniform approximability of sets.

Proposition 9.2.6. Assume (Ω,F , µ) is a measurable space and p ∈ [1,∞). For any k ≥ 1
and any f ∈ Lp(Ω,F , µ), we have

(i)
Dp,k+1(f) ≤ Varp,k(f) ≤ 2Dp,k(f).

(ii) If the measure µ is finite, it holds

Dp,k(f) ≤ Varp,k(f,Ω) ≤ Varp,k(f) ≤ 2Dp,k(f) ≤ 2Varp,k(f,Ω).

(iii) If µ has no atoms of infinite mass, we have that

Dp,k(f) ≤ Varp,k(f) ≤ 2Dp,k(f).

Proof. (i) For the upper bound, consider g ∈ Gk ∩ Lp(Ω,F , µ) a function such that

Dp,k(f)p = ∥f − g∥pp.

Assume that g =
∑k
i=1 ci1Ai

, where {Ai}1≤i≤k is a finite partition of Ω. Clearly if µ(Ai) = ∞,
then ci = 0. For A a set of finite measure define a partition of A by P = {A ∩ Ai}1≤i≤k.
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Using that (a+ b)p ≤ 2p−1(ap + bp) for all positive numbers a and b, we get for all i such that
µ(A ∩Ai) > 0

varp(f,A∩Ai)p =
1

µ(A ∩Ai)

∫
(A∩Ai)×(A∩Ai)

|f(x)−f(y)|pdµ(x)dµ(y) ≤ 2p
∫
A∩Ai

|f(z)−ci|pdµ(z).

Then,

varp(f,P)p ≤ 2p
∑
i

∫
A∩Ai

|f(z) − ci|pdµ(z) ≤ 2p∥f − g∥pp.

Therefore, we get
Varp,k(f,A) ≤ 2∥f − g∥p = 2Dp,k(f).

For the lower bound let ε > 0 and take a set A of finite measure such that ∥f1Ac∥pp < ε. By
definition of Varp,k(f,A), there exists a finite partition P = {Ai}1≤i≤n of A, with n ≤ k, such
that (we assume all the sets in P has positive measure)

varp(f,P)p =
∑
i

1

µ(Ai)

∫
Ai×Ai

|f(x) − f(y)|pdµ(x)dµ(y)

≤ (Varp,k(f,A))
p

+ ε ≤ (Varp,k(f))
p

+ ε.

For every i ≤ n by the definition of Mp(f,Ai), we have

1Ai
(y)

∫
Ai

|f(x) −Mp(f,Ai)|p dµ(x) ≤ 1Ai
(y)

∫
Ai

|f(x) − f(y)|p dµ(x),

and therefore, integrating over y we get∫
Ai

|f(x) −Mp(f,Ai)|p dµ(x) ≤ 1

µ(Ai)

∫
Ai×Ai

|f(x) − f(y)|p dµ(x),

and then ∑
i

∫
Ai

|f(x) −Mp(f,Ai)|p dµ(x) ≤ varp(f,P)p.

Finally, define g =
∑
iMp(h,Ai)1Ai

+ 01Ac ∈ Gp,k+1 ∩ Lp(Ω,F , µ) to obtain that

∥f1A − g∥pp ≤ varp(f,P)p ≤ (Varp,k(f))
p

+ ε

To finish this part, notice that

∥f − g∥pp = ∥f1A − g1A∥pp + ∥f1Ac − g1Ac∥pp
= ∥f1A − g∥pp + ∥f1Ac∥pp ≤ (Varp,k(f))

p
+ 2ε

which implies that Dp,k+1(f) ≤ Varp,k(f).

(ii) The proof is similar to (i). The upper bound follows immediately from the lower bound
to be proved. For the lower estimate, in the above proof we can take A = Ω.

(iii) Let (Ω∗
n)n ⊂ F and Ω∗ =

⋃
n Ω∗

n given by Lemma 9.2.5, such that

Varp,k(f) = lim
n

Varp,k,n(f) = Varp,k,∗(f).

We first assume that f is bounded by some constant C > 0. Then, using the result we have
shown for the finite measure case, we have on Ω∗

n

inf{∥f |Ω∗
n
− g∥p : g ∈ Gp,k(Ω∗

n)} ≤ Varp,k,n(f).



166 CHAPTER 9. PROXIMINALITY AND UNIFORMLY APPROXIMABLE SETS IN Lp

By Theorem 9.1.5, the left hand side is attained at some function gn defined in Ω∗
n, which is

also bounded by C. We can assume this minimizer has the following form

gn =

q(n)∑
i=1

bi,n1Bi,n
,

where {Bi,n}1≤i≤q(n) is a partition of sets of positive measure of Ω∗
n and

−C ≤ b1,n < ... < bq(n),n ≤ C,

r1,n = −C − 1, rq(n)+1,n = C + 1, ri,n =
bi−1,n + bi,n

2
for i ∈ {2, ..., q(n)},

Bi,n = f−1([ri,n, ri+1,n))∩Ω∗
n for i ∈ {1, ..., q(n)−1} and Bq(n),n = f−1([rq(n),n, rq(n)+1,n])∩Ω∗

n,

bi,n = Mp(f,Bi,n) for i ∈ {1, ..., q(n)}
and q(n) ≤ k. As before, we can assume by passing to a subsequence that q(n) = q is constant
and the vector vn = (r1,n, b1,n, r2,n, ..., rq,n, bq,n, rq+1,n) converges to a vector in [−C−1, C+1]3q,
which we denote by v = (r1, b1, r2, ..., rq, bq, rq+1). Also we denote by L = (b1, ..., bq) and
w1 < ... < wm the different values in L, where m ≤ q.

Let us show that wt∗ = 0 for some t∗. For that, remark that Ω∗
n = ∪qi=1Bi,n and therefore,

there exists an index i(n), such that

µ(Bi(n),n) ≥ 1

q
µ(Ω∗

n),

showing that limn µ(Bi(n),n) = ∞. We can assume that i(n) = i is constant, by passing to a
subsequence if necessary. Using the optimality of bi,n = Mp(f,Bi,n), we get

|bi,n|pµ(Bi,n) ≤ 2p−1
(∫

Bi,n
|f(x) −Mp(f,Bi,n)|p dµ(x) +

∫
Bi,n

|f(x)|p dµ(x)
)
≤ 2p∥f∥pp.

This shows that bi,n → bi = 0, and the claim holds by taking t∗ such that wt∗ = bi = 0.
Consider It = {j ∈ {1, ...q} : bj = wt} for t ∈ {1, ...,m}. Notice that each It is a

nonempty interval of I = {1, ..., q}. Assume that It = {l(t), ..., u(t)}, then we have rl(t)+1,n →
wt, ..., ru(t),n → wt, bl(t),n → wt, ..., bu(t),n → wt and

lim
n
rl(t),n = rl(t) =

bl(t)−1 + wt

2
< wt <

bu(t)+1 + wt

2
= ru(t)+1 = lim

n
ru(t)+1,n,

with the obvious modifications in the case l(t) = 1 or u(t) = q. By construction we have for all
i < l(t∗) it holds ri+1,n ≤ rl(t∗),n <

rl(t∗)

2 = r−, for all large n, because rl(t∗) < 0. Similarly, for

all i ≥ u(t∗) we have ri+1,n ≥ ru(t∗)+1,n >
ru(t∗)+1

2 = r+ > 0, for all large n. This implies that,
for large n ⋃

i<l(t∗)

Bi,n ⊂ f−1([−C − 1, r−]),

which is a set of finite measure: µ(f−1([−C− 1, r−])) <∞. Consider a modification of gn given
by

ℓn =
∑

i/∈[l(t∗),u(t∗)]

bi1Bi,n +
∑

l(t∗)≤i≤u(t∗)

bi,n1Bi,n .

We have ∥gn − ℓn∥p converges to zero. Indeed, this follows from the inequality

∥gn − ℓn∥pp =
∑

i/∈{l(t∗),...,u(t∗)}
|bi − bi,n|pµ(Bi,n)

≤ maxj |bj − bj,n|pµ
(
f−1([−C − 1, r−]) ∪ f−1([r+, C + 1])

)
→ 0.
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Using the triangular inequality and the optimality of gn, we get

∥f |Ω∗
n
− gn∥p ≤ ∥f |Ω∗

n
− ℓn∥p ≤ ∥f |Ω∗

n
− gn∥p + ∥gn − ℓn∥p,

and we plan to use Fatou’s Lemma. Before doing that, we will fix a subsequence with certain
monotonic properties. Since r1,n, rq+1,n are constant, there is no restriction here. For i ∈
{2, ..., q} we choose a subsequence in the following order. If (r2,n)n has an strictly decreasing
subsequence, we consider this as n(2) and define T (2) = sd (for strictly decreasing) otherwise, we
consider n(2) so that (r2,n)n is increasing along this subsequence and T (2) = in (for increasing).
Now, we construct n(3). If (r3,n(2))n(2) has an strictly decreasing subsequence we take this as

n(3) and T (3) = sd, otherwise we take n(3) so that (r3,n(3))n(3) is increasing, and T (3) = in.

We continue in this way until we define n(q). We put T (1) = in and T (q + 1) = sd. We call
n′ = n(q). In this way we have the a.e. convergence

1f−1([ri,n′ ,ri+1,n′ ))∩Ω∗
n′

→


1f−1([ri,ri+1])∩Ω∗ if T (i) = in, T (i+ 1) = sd

1f−1([ri,ri+1))∩Ω∗ if T (i) = in, T (i+ 1) = in

1f−1((ri,ri+1])∩Ω∗ if T (i) = sd, T (i+ 1) = sd

1f−1((ri,ri+1))∩Ω∗ if T (i) = sd, T (i+ 1) = in

We call Ji the interval, with extremes ri, ri+1, according to the above classification. An impor-
tant remark is that ∪iJi = [−C − 1, C + 1].

Using the Dominated Convergence Theorem we conclude that∑
i/∈{l(t∗),...,u(t∗)}

∫
Bi,n′

|f(x) − bi|p dµ(x) →
∑

i/∈{l(t∗),...,u(t∗)}

∫
f−1(Ji)

|f(x) − bi|p dµ(x).

On the other hand, using Fatou’s Lemma we conclude

lim inf
n′

∑
i∈{l(t∗),...,u(t∗)}

∫
Bi,n′

|f(x) − bi,n′ |p dµ(x) ≥
∫

lim inf
n′

|f(x) − gn(x)|p1Bn′ dµ(x)

≥
∫
|f(x)|p1f−1(J̄ )∩Ω∗ dµ(x).

where Bn′ =
⋃
i∈{l(t∗),...,u(t∗)}Bi,n′ and J̃ =

⋃
i∈{l(t∗),...,u(t∗)} Ji. Here, we have used that for

all x ∈ Bn′ we have
|gn′(x)| ≤ max

i∈{l(t∗),...,u(t∗)}
|bi,n′ | → 0.

Hence,
|f(x)|1Bi,n′ ≤ |f(x) − gn′(x)|1Bi,n′ + maxi∈{l(t∗),...,u(t∗)} |bi,n′ |1Bi,n′

|f(x) − gn′(x)|1Bi,n′ ≤ |f(x)|1Bi,n′ + maxi∈{l(t∗),...,u(t∗)} |bi,n′ |1Bi,n′ ,

showing that
lim inf
n′

|f(x) − gn′(x)|1Bi,n′ = |f(x)| lim inf
n′

1Bi,n′ .

Putting all together, we conclude that

Varp,k(f) ≥ lim inf
n′

∥f |Ω∗
n′ − gn′∥p ≥ ∥f |Ω∗ − ℓ∥p,

where the function ℓ ∈ Gp,q(Ω∗) is defined on Ω∗ as

ℓ =
∑

i/∈{l(t∗),...,u(t∗)}

bi1f−1(Ji)∩Ω∗ + 01f−1(J̃ )∩Ω∗ .
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Notice that for i /∈ {l(t∗), ..., u(t∗)}, we have µ(f−1(Ji)∩Ω∗) ≤ µ
(
f−1([−C − 1, r−] ∪ f−1([r+, C + 1])

)
<

∞ and so µ(f−1(J̃ ) ∩ Ω∗) = ∞.
Since bi = 0 for some i and f = 0 outside Ω∗, we can extend ℓ by 0 outside Ω∗ and still this

extension ℓ̄ belongs to Gp,q ⊂ Gp,k. So, we get that

Dp,k(f) ≤ ∥f − ℓ̄∥p ≤ Varp,k(f).

and the result is shown in the case f is bounded.
Now, for the general case, consider ε > 0 and a large C > 0, such that ∥f1|f |>C∥p ≤ ε. From

the domination Varp,k(•) ≤ 2∥f∥p, and the seminorm property of Varp,k we conclude

Varp,k(f1|f |≤C) ≤ Varp,k(f) + Varp,k(f − f1|f |≤C) ≤ Varp,k(f) + 2ε.

Using what we have shown, we get there exists and ℓ ∈ Gp,k such that

∥f1|f |≤C − ℓ∥p ≤ Varp,k(f1|f |≤C) ≤ Varp,k(f) + 2ε.

On the other hand, we have

∥f − ℓ∥p ≤ ∥f1|f |≤C − ℓ∥p + ∥f1|f |≤C − f∥p ≤ ∥f1|f |≤C − ℓ∥p + ε,

which shows that
Dp,k(f) ≤ Varp,k(f) + 3ε,

and the result is shown.

Remark 9.2.7. Examples that satisfies (iii) in the previous proposition are the σ-finite mea-
sures. In particular, it can be applied to ℓp = Lp(N,P(N), δ), where δ is the counting measure.
But, there are non σ-finite measures that satisfies that hypothesis as well, the counting measures
on any uncountable space.

Corollary 9.2.8. Assume (Ω,F , µ) is a measurable space and p ∈ [1,∞). For all f ∈ Lp(Ω,F , µ)
it holds that lim

k→∞
Varp,k(f) = 0.

Proof. This follows directly from the previous proposition since limk Dp,k(f) = 0 by density of
the simple functions.

A question of some interest is when Varp,k(f) = 0, for a function f ∈ Lp(Ω,F , µ). Clearly,
if f ∈ Gp,k then Varp,k(f) = 0. The next result answers the converse.

Proposition 9.2.9. Let (Ω,F , µ) be a measure space and p ∈ [1,∞). Let k ≥ 1. We have

(a) if µ is a general measure, then Gp,k ⊂ Var−1
p,k({0}) ⊂ Gp,k+1.

(b) if µ has no atoms of infinite mass, then Var−1
p,k({0}) = Gp,k.

Proof. (a). Let f ∈ Lp(Ω,F , µ) satisfying Varp,k(f) = 0. From (i) of Proposition 9.2.6, we have

Dp,k+1(f) ≤ Varp,k(f) = 0,

which implies that f = g a.e. for some g ∈ Gp,k+1 (see Theorems 9.1.5 and 9.1.12). The other
inclusion is obvious.

(b) The proof is similar to (i) and uses (iii) in Proposition 9.2.6.

Remark 9.2.10. Notice that if µ has an atom of infinite mass it may happens that Varp,k(f) =
0, but f ∈ Gp,k+1 \ Gp,k. Indeed, assume Ω = {1, ..., k + 1}, where the mass of each atom in
{1, ..., k} is one and the mass at atom {k + 1} is infinite. Every function in Lp(Ω,F , µ) for
p ∈ [1,∞) satisfies f(k + 1) = 0. The function f given by f(i) = i for i ∈ {1, ..., k} and
f(k+ 1) = 0 belongs to Gp,k+1 \ Gp,k. Nevertheless, Varp,k(f) = 0, which is exactly the case (a)
in Proposition 9.2.9. Also, this example explains why the lower bound in Proposition 9.2.6 (i)
is computed over Gp,k+1 and not over Gp,k, in general.
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9.3 Uniform approximability

In this section, we investigate some properties of uniformly approximable sets, whose definition
is the following:

Definition 9.3.1. Let (Ω,F , µ) be a measure space and p ∈ [1,+∞]. Let A ⊂ Lp(Ω,F , µ).
For ε > 0, we define

Np,ε(A ) = inf{k ≥ 1 : ∀f ∈ A , ∃h ∈ Gp,k ∥f − h∥p ≤ ε}.

As usual if the set where the infimum is taken is empty we set Np,ε(A ) = ∞. We say that A
is uniformly approximable (in short UA) in Lp(Ω,F , µ) if Np,ε(A ) <∞ for any ε > 0.

Concretely a set A is UA in Lp(Ω,F , µ) if for any ε > 0 there exists k ≥ 1 such that any
function in A can be ε-approximated in Lp(Ω,F , µ) by simple functions taking less than k
different values.

9.3.1 Uniform integrability

In this subsection, we prove that the class of uniform approximable sets is strictly larger than
the class of uniform integrable sets. Assume that (Ω,F , µ) is a measure space and let p ∈ [1,∞).
Remember that a subset A ⊂ Lp(Ω,F , µ) is uniformly integrable (in short, UI) if

inf
g∈Lp

+(Ω,F,µ)
sup
f∈A

∫
|f |>g

|f(x)|p dµ(x) = 0,

where Lp+(Ω,F , µ) is the set of nonnegative functions in Lp(Ω,F , µ). Note that if µ is a finite
measure, then this definition coincides with the usual one, that is A is UI in Lp(Ω,F , µ) if and
only if (see [101], page 254)

lim
a→∞

sup
f∈A

∫
|f(x)|≥a

|fp(x)| dµ(x) = 0.

Proposition 9.3.2. Let (Ω,F , µ) be a measure space and p ∈ [1,+∞). Assume A ⊂ Lp(Ω,F , µ)
is UI. Then, A is UA.

Proof. Consider ε > 0, and take g ∈ Lp+(Ω,F , µ), such that

sup
f∈A

∫
|f |>g

|f(x)|p dµ(x) ≤ εp

3
.

Fix f ∈ A . Consider n ∈ N, large enough such that
∫
g>n

gp(x) dµ(x) +
∫
g< 1

n
gp(x) dµ(x) ≤ εp

3 .

The set Bn =
{
x : 1

n ≤ g(x) ≤ n
}
∩ {x : |f(x)| ≤ g(x)} ⊂ Cn =

{
x : 1

n ≤ g(x) ≤ n
}

has finite

measure. Notice that over Bn we have |f | ≤ n. Take now k ≥ 2 such that
(
n
k

)p
µ(Cn) ≤ εp

3 and
define

Ai = Bn ∩
{
x :

ni

k
≤ f(x) <

n(i+ 1)

k

}
for i ∈ {−k, ..., k − 2}, Ak−1 = Bn ∩

{
x : n(k−1)

k ≤ f(x) ≤ n
}

and

h =

k−1∑
i=−k

in

k
1Ai + 01Bc

n
∈ Gp,2k+1.
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Then, we have

∫
Bn

|f(x) − h(x)|p dµ(x) =
k−1∑
i=−k

∫
Ai

|f(x) − h(x)|p dµ(x) ≤
(
n
k

)p k−1∑
i=−k

µ(Ai)

≤
(
n
k

)p
µ(Bn) ≤

(
n
k

)p
µ(Cn) ≤ εp

3 .

On the other hand, Bcn = (Ccn ∩ {x : |f(x)| ≤ g(x)}) ∪ {x : |f(x)| > g(x)} and so∫
Bc

n
|f(x) − h(x)|p dµ(x) =

∫
Bc

n
|f(x)|p dµ(x) =

∫
Cc

n∩|f |≤g |f(x)|p dµ(x) +
∫
|f |>g |f(x)|p dµ(x)

≤
∫
Cc

n
gp(x) dµ(x) +

∫
|f |>g |f(x)|p dµ(x) ≤ 2εp

3

Finally, we have ∥f − h∥p ≤ ε, and the result is shown.

Remark 9.3.3. Note that the converse of Proposition 9.3.2 is not true in general. In fact Gp,2
is UA, but this set is not UI in Lp(Ω,F , µ) in general. Indeed, assume the space has finite
measure and there exists a sequence (Bn)n of measurable sets with positive measure such that
µ(Bn) → 0. Then fn = µ(Bn)−1/p1Bn belongs to Gp,2, each one has norm 1 and the subfamily
(fn)n is not UI, since for all a ≥ 0, we have

sup
n

∫
fn>a

fpn dµ = 1.

The conclusion is that UA is weaker than UI.

Remark 9.3.4. If (Ω,F , µ) is a finite measure space, the following examples are UI in Lp(Ω,F , µ),
for p ∈ [1,∞),

- A is bounded in Lq(Ω,F , µ) for some q > p;

- A is bounded by a fixed function g ∈ Lp(Ω,F , µ).

The following result can be prove using the fact that totally boundedness implies UI in
Lp(Ω,F , µ) for p ∈ [1,∞). However, since the case p = ∞ needs a proof, we give a more direct
argument:

Proposition 9.3.5. Let (Ω,F , µ) be a measure space and p ∈ [1,+∞]. If A is totally bounded
in Lp(Ω,F , µ) then A is UA.

Proof. Let ε > 0. There exist finitely many functions f1, ..., fn such that A ⊂
⋃n
j=1B(fj , ε). By

density of the simple functions, there exist k ∈ N and gj ∈ Gp,k such that ∥fj − gj∥p ≤ ε for all
j ∈ {1, ..., n}. Now if f ∈ A then, there exists j0 = j0(f) ∈ {1, ..., n} such that ∥f − fj0∥p ≤ ε.
It follows that

∥f − gj0∥p ≤ ∥f − fj0∥p + ∥fj0 − gj0∥p ≤ 2ε

and the proof is complete.

9.3.2 Characterization of the uniform approximability

If M is a metric space, we recall that the covering numbers of M are defined for every ε > 0 by

N (M, ε) = inf {N ≥ 1 : M can be covered by N closed balls of radius ε} .

For more informations about covering numbers and its applications to Machine Learning, we
refer the reader to [169] and [8].
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If (Ω,F , µ) is a measure space, we define the covering numbers of a measurable function f
by

N (f, ε) = inf{N (g(Ω), ε) : g measurable function such that f = g a.e.}.

This notion allows us to caracterize the uniform approximability in L∞(Ω,F , µ) in terms of
uniformly bounded covering numbers. Before doing that, we notice that if f ∈ L∞(Ω,F , µ), then
N (f, ε) <∞. Indeed, we know that |f | ≤ ∥f∥∞ holds a.e., so by considering g = f1{|f |≤∥f∥∞},
we have g = f a.e. and

N (f, ε) ≤ 2

ε
∥f∥∞ + 1.

If f is a measurable function and N (f, ε) < ∞ then f ∈ L∞(Ω,F , µ). On the other hand, by
definition of infimum, there exists a measurable function g such that f = g a.e., and

N (f, ε) ≤ N (g(Ω), ε) ≤ N (f, ε) +
1

2
,

showing that N (f, ε) = N (g(Ω), ε).

Theorem 9.3.6. Let (Ω,F , µ) be a measure space and let A ⊂ L∞(Ω,F , µ). The following
assertions are equivalent:

(i) A is UA;

(ii) supf∈A N (f, ε) <∞ for all ε > 0.

In this case, we have that N∞,ε(A ) = supf∈A N (f, ε) for all ε > 0.

Proof. Let ε > 0 and suppose supf∈A N (f, ε) = ∞. Fix k ≥ 1 and choose f ∈ A such
that N (f, ε) ≥ 10(k + 1). Changing the representant of f is necessary, we can suppose that
mε := N (f, ε) = N (f(Ω), ε). So there exists a collection J of closed balls {Ii = [ai, bi]}1≤i≤mε

,
of radius ε, such that

f(Ω) ⊂
mε⋃
i=1

Ii

Using the minimality of this covering each interval cannot be covered by the other intervals, so
for i ̸= j we have Ii \ Ij ̸= ∅. Consider the measurable sets Ai = f−1(Ii). We shall prove that
the minimality of J implies that µ(Ai) > 0. Indeed, assume that for some i we have µ(Ai) = 0.
Take any j ̸= i (notice that we have assumed that mε is at least 10(k + 1) > 2) and a ∈ Ij \ Ii.
The measurable function

h = f1Ac
i

+ a1Ai

coincides with f up to measure 0 and h(Ω) ⊂
⋃
r ̸=i

Ir, so N (h(Ω), ε) ≤ mε − 1, which is a

contradiction.
We say that a subcollection C ⊂ J is ε-separated if for two different intervals I, J ∈ C, we

have the distance between them d(I, J) is greater than ε. Notice that a collection with only
one interval from J is ε-separated. Take C∗ a maximal ε-separated subcollection with respect
to inclusion. Now, if I ∈ J \ C∗ there exists an interval L = [a, b] ∈ C∗ such that d(I, L) ≤ ε,
otherwise the maximality of C∗ is contradicted. Then,

I ⊂ [a− 4ε, a− 2ε] ∪ [a− 2ε, a] ∪ [a, b] ∪ [b, b+ 2ε] ∪ [b+ 2ε, b+ 4ε],

showing that the collection

D = {[ai − 4ε, ai − 2ε], [ai − 2ε, ai], [ai, bi], [bi, bi + 2ε], [bi + 2ε, bi + 4ε] : [ai, bi] ∈ C∗},
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is a covering of f(Ω) with closed balls of radius ε. Therefore

mε ≤ |D| ≤ 5|C∗|,

showing that n = |C∗| ≥ 1
5mε (here |C∗| is the cardinal of C∗).

Consider now g ∈ G∞,k. We say that an interval I ∈ C∗ is unmarked if d(g(Ω), I) > ε. There
are at least n− 2k ≥ 1

5mε − 2k = 2( 1
10mε − k) > 1 unmarked intervals in C∗. Consider Ii ∈ C∗

any unmarked interval, then for all x ∈ Ai = f−1(Ii), we have

|f(x) − g(x)| > ε.

Since µ(Ai) > 0, we conclude that ∥f − g∥∞ > ε and therefore N∞,ε(A ) > mε

10 − 1, showing
that N∞,ε(A ) = ∞. So we have proved that (i) implies (ii).

Now, let us show that (ii) implies (i). So, we are assuming that Mε = supf∈A N (f, ε) <∞
for all ε > 0. Fix ε > 0 and let f ∈ A . Suppose that mε := N (f, ε) = N (f(Ω), ε) ≤Mε. Again
we can write

f(Ω) ⊂
mε⋃
i=1

Ii

where Ii = [ai, bi] are closed balls of radius ε. We assume that the left extremes are ordered
increasingly: a1 < a2 < ... < amε

. We define recursively ã1 = a1, b̃1 = b1 and for i ≥ 2

ãi = max{bi−1, ai}, b̃i = bi.

Define Ĩi = [ãi, b̃i] for i ∈ {1, ...,mε}. The fact that every interval Ii cannot be covered by the
intervals {Ij}j ̸=i allows us to show the following facts about the new intervals {Ĩi}1≤i≤mε

∀i Ĩi = Ii \
i−1⋃
j=1

[aj , bj), ∀i
i⋃

j=1

Ij =
i⋃

j=1

Ĩj ,

int(Ĩi) = (ãi, b̃i) ̸= ∅,

∀i < j : Ĩi ∩ Ĩj ⊂


∅ if j − i ≥ 2

{b̃i} if j = i+ 1

.

Thus, {Ĩi}1≤i≤mε
is a collection of closed balls of radii at most ε, that covers f(Ω), which are

disjoint except for consecutive intervals that can intersects at one extreme.

With this new intervals we can produce a partition of f(Ω), by choosing Î1 = Ĩ1 and for
i ≥ 2

Îi =


(ãi, b̃i] if Ĩi ∩ Ĩi−1 ̸= ∅

Ĩi otherwise

We now define Âi = f−1(Îi), which is a partition of Ω (maybe some of them are empty). If

x ∈ Âi then f(x) ∈ Îi ⊂ Ii = [ai, bi] and therefore |f(x)− ai+bi
2 | ≤ ε. Define the simple function

g(x) =

mε∑
i=1

ai + bi
2

1Âi
,
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that belongs to G∞,mε
and satisfies for all x ∈ Ω

|f(x) − g(x)| ≤ ε,

showing that ∥f − g∥∞ ≤ ε. We conclude that N∞,ε(A ) ≤ supf∈A N (f, ε).

To finish, we prove that N∞,ε(A ) = supf∈A N (f, ε). For that purpose consider k =
N∞,ε(A ), which means that for all f ∈ A , there exists g ∈ G∞,k, such that ∥f − g∥∞ ≤ ε. We

assume that g =
∑k
i=1 ci1Bi

, where (Bi)
k
i=1 is a partition of Ω. For any i ∈ {1, ..., k} we have

∥(f − ci)1Bi
∥∞ ≤ ∥f − g∥∞ ≤ ε,

which means that Ai = {x ∈ Bi : |f(x) − ci| > ε} is a measurable set of measure 0. Since
µ(Ω) > 0, not all the sets Bj can have measure 0, so we assume without loss of generality that

µ(B1) > 0. Consider B = Ω \
k⋃
i=1

Ai, h = f1B + c11Bc and g̃ = c11B1∪Bc +
∑k
i=2 ci1Bi\Ai

. We

notice that f = h a.e. and g̃ = g a.e. On the other hand, B1 ∪ Bc, B2 \ A2, ..., Bk \ Ak is a
partition and g̃ ∈ G∞,k. Also, it is clear that B1 \A1, ..., Bk \Ak, Bc is a partition and

g̃ = g1B + c11Bc .

With these modifications, we have for all x ∈ Ω

|h(x) − g̃(x)| ≤ ε.

This is clear for x ∈ B. For x ∈ Bc, we have h(x) = c1 = g̃(x) and the claim is shown. Finally,
the collection of closed ball of radius ε given by: {[ci − ε, ci + ε]}1≤i≤k is an ε-cover of h(Ω),
showing that N (f, ε) ≤ k. The conclusion is that

sup
f∈A

N (f, ε) ≤ k = N∞,ε(A ),

and the result is shown.

Corollary 9.3.7. Let (Ω,F , µ) be a finite measure space and A be a set of measurable functions.
Assume that A is UA in Lq(Ω,F , µ) for some q ∈ [1,∞], then A is UA in Lp(Ω,F , µ) for all
p ∈ [1, q] and for all ε > 0 it holds

Np,ε(A ) ≤ Nq,εµ(Ω)−r (A ),

where r = 1
p −

1
q .

In particular if supf∈A N (f, ε) < ∞ for all ε > 0, then A is UA in Lp(Ω,F , µ) for all

p ∈ [1,∞] and for all ε > 0 it holds Np,ε(A ) ≤ supf∈A N (f, εµ(Ω)
−1
p ).

Proof. This is a direct consequence of Hölder’s inequality. In fact, assume that p ≤ q and
consider g ∈ Gp,k, f ∈ A then, we have

∥f − g∥p ≤ ∥f − g∥q(µ(Ω))r

where r = 1
p −

1
q . From this it follows that A is UA in Lp(Ω,F , µ) and

Np,ε(A ) ≤ Nq,εµ(Ω)−r (A ).

The second assertion follows from Theorem 9.3.6
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The previous result gives a large class of UA sets when the measure is finite. For example
suppose that Ω is a bounded metric space, F is the Borel σ-algebra and µ is a finite measure
on F . Then the set of 1-Lipschitz functions is UA in Lp(Ω,F , µ) for any p ∈ [1,+∞].

The following result is a characterization of UA in Lp for p ∈ [1,∞), where we shall prove
that a class is UA if and only Varp,k(f) converges toward 0, when k → ∞, uniformly in the
class.

Theorem 9.3.8. Let (Ω,F , µ) be a measure space, p ∈ [1,∞) and let A ⊂ Lp(Ω,F , µ). Then,
the following assertions are equivalent:

(i) A is UA in Lp(Ω,F , µ);

(ii) limk→∞ supf∈A Varp,k(f) = 0.

In this case if we define rε(A ) = min{k ∈ N : supf∈A Varp,k(f) ≤ ε}, we have that for all
ε > 0

r2ε(A ) ≤ Np,ε(A ) ≤ rε(A ) + 1.

Moreover, if the measure µ is finite both properties (i), (ii) are equivalent to

(iii) limk→∞ supf∈A Varp,k(f,Ω) = 0.

In this case if we define mε(A ) = min{k ∈ N : supf∈A Varp,k(f,Ω) ≤ ε}, we have that for all
ε > 0

m2ε(A ) ≤ r2ε(A ) ≤ Np,ε(A ) ≤ mε(A ) ≤ rε(A )

Proof. Suppose that A is UA and fix ε > 0. Then we have that Dp,k(f) ≤ ε for all f ∈ A ,
where k = Np,ε(A ). By Proposition 9.2.6, we deduce that Varp,k(f) ≤ 2ε for all f ∈ A . It
follows that r2ε(A ) ≤ Np,ε(A ), implying that (ii) holds. Now suppose that (ii) holds. Using
Proposition 9.2.6 again, it is easy to see that Np,ε(A ) ≤ rε(A )+1, from what we deduce that (i)
is true. In the case that µ is finite, the equivalence between (ii) and (iii) and the last assertion
of the theorem follow directly from Proposition 9.2.6.

9.3.3 The unit ball of Lp

Now we investigate when the unit ball of Lp(Ω,F , µ) is UA. The case p = ∞ is simple:

Proposition 9.3.9. Let (Ω,F , µ) be a measure space. Then BL∞(Ω,F,µ) is UA. More precisely

we have that N∞,ε(BL∞(Ω,F,µ)) ≤
[
2
ε

]
+ 1 (where [.] is the integer part) for all ε > 0.

Proof. It is a direct consequence of theorem 9.3.6.

The main objective of this section is to prove the following result:

Theorem 9.3.10. Let (Ω,F , µ) be a measure space and p ∈ [1,+∞). The following assertions
are equivalent:

(i) BLp(Ω,F,µ) is UA;

(ii) Lp(Ω,F , µ) is finite dimensional;

(iii) µ is atomic and has only a finite number of atoms with finite measure, up to measure 0.

More precisely, if the previous assertions are false then Np,ε(BLp(Ω,F,µ)) = ∞ for all ε ∈ (0, 1).

This theorem will be proved thanks to several intermediary results. We start with the
following result:
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Proposition 9.3.11. Let (Ω,F , µ) be a measure space and p ∈ [1,+∞). Suppose that there
exists a sequence of disjoint measurable sets (An)n of positive measure such that µ(An) → 0.
Then BLp(Ω,F,µ) is not UA. More precisely, we have that Np,ε(BLp(Ω,F,µ)) = ∞ for all ε ∈ (0, 1).

Proof. We are going to prove that for all k ≥ 1

sup
f∈Lp(Ω,F,µ),f ̸=0

inf
h∈Gp,k

∥f − h∥pp
∥f∥pp

= 1. (9.12)

Note that this equality implies easily that Np,ε(BLp(Ω,F,µ)) = ∞ for all ε ∈ (0, 1). Consider
r ≥ 2 and consider a subsequence (nk)k such that µ(Ank

) ∈ (r−nk−1, r−nk ]. We further assume
that nk+1 − nk ≥ 2. With this sequence we consider

fN (x) =

N∑
j=1

µ(Anj
)

−1
p 1Anj

(x).

for all N ≥ 1 and note that ∥fN∥pp = N . Let h ∈ Gp,k and N > 2 + 2k. We say that an index

1 < j < N is unmarked if Im(h) ∩
(
r

nj−1
p , r

nj+1
p

)
= ∅. Note that there are at least N − 2 − 2k

unmarked indexes. For such unmarked index j, we have for x ∈ Anj

fN (x) = µ(Anj )
−1
p ≥ r

nj
p > r

nj−1

p > r
nj−1

p ≥ h(x), or

fN (x) = µ(Anj
)

−1
p < r

nj+1

p < r
nj+1

p ≤ h(x).

In the first case we have

fN (x) − h(x) ≥ fN (x) − r
nj−1

p ≥ fN (x) − r
−1
p fN (x) =

(
1 − r

−1
p

)
fN (x).

In the second case we get

h(x) − fN (x) ≥ r
nj+1

p − fN (x) ≥ r
nj+2

p − fN (x) = r
1
p r

nj+1

p − fN (x) >
(
r

1
p − 1

)
fN (x).

Notice that

θ = 1 − r
−1
p =

r
1
p − 1

r
1
p

< r
1
p − 1.

So, we have |fN (x) − h(x)| ≥ θfN (x) on Anj . Then, we conclude that

∥fN−h∥pp ≥
∑

j:unmarked

∫
Anj

|fN (x)−h(x)|p dx ≥ θp
∑

j:unmarked

∫
Anj

|fN (x)|p dx ≥ θp(N−2−2k).

Hence, we have
∥fN − h∥pp
∥fN∥pp

≥ θp
N − 2 − 2K

N
,

and we get

sup
f∈Lp(Ω,F,µ),f ̸=0

inf
h∈Gp,k

∥f − h∥pp
∥f∥pp

≥ θp = (1 − r
−1
p )p.

Now, it is enough to make r ↑ ∞.

An inmediate corollary is obtained for diffuse measures.
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Corollary 9.3.12. Assume that µ is a non trivial diffuse measure, then for all p ∈ [1,∞) the
unit ball BLp(Ω,F,µ) is not UA and Np,ε(BLp(Ω,F,µ)) = ∞, for all ε ∈ (0, 1).

Proof. This follows directly from Sierpiński’s theorem (see [152]). In fact, consider a measurable
set B0 such that 0 < µ(B0) = a <∞ (if such set does not exists then Ω is an atom of µ). Then,
there exists B1 ⊂ B0 such that µ(B1) = a

2 . Applying the same idea to B0 \ B1, there exists

B2 ⊂ (B0\B1) such that µ(B2) = µ(B0\B1)
2 = a

4 . Inductively, we construct a sequence of disjoint
subsets (Bk)k such that

Bk+1 ⊂ B0 \
k⋃
i=1

Bi,

and

µ(Bk+1) =

µ

(
B0 \

k⋃
i=1

Bi

)
2

=
a

2k+1

for all k ∈ N. The result follows from the previous proposition.

Proposition 9.3.13. Assume that (Ω,F , µ) is an atomic measure space and p ∈ [1,∞). Then
the following assertions are equivalent:

(i) µ has a finite number of atoms of finite measure, up to measure 0;

(ii) The space Lp(Ω,F , µ) is finite dimensional;

(iii) The unit ball BLp(Ω,F,µ) is UA.

Moreover, if the previous assertions are false then Np,ε(BLp(Ω,F,µ)) = ∞ for all ε ∈ (0, 1).

Proof. Assume (i) holds. Denote by {Ak}1≤k≤n a finite collection of atoms of finite measure,
such that all other atom C of finite measure coincides with some of them up to measure 0. Take
B = Ω \ ∪nk=1Ak. If µ(B) > 0 there there exists an atom C ⊂ B. This atom C satisfies that
µ(C \ Ak) = µ(C) > 0 and it cannot coincide with Ak up to measure 0. Then C has infinite
measure. Then either µ(B) = 0 or µ(B) = ∞ and contains no measurable subset of positive
finite measure. Then, Lp(Ω,F , µ) is generated by the finite collection {1Ak

}1≤k≤n, so (ii) holds.
Clearly (ii) ⇒ (iii).

So, for the rest of the proof we assume that there exists a countable collection of disjoint
atoms (An)n each one of finite positive measure. Here there are two different situations. The
first one is the existence of an infinite subsequence of atoms (Ank

)k such that µ(Ank
) → 0.

Then, we can apply Theorem 9.3.11, to conclude that the unit ball BLp(Ω,F,µ) is not UA.
The second possibility is the existence of a constant a > 0 such that µ(An) ≥ a, for all n.

We now procede to prove that BLp(Ω,F,µ) is not UA. We do it for p = 1, the other cases are
treated similary.

In what follows we fix k ≥ 2 and R > 1, and we consider the partial sums

Si =
∑

2i−1≤j<2i

µ(Aj) ≥ a2i−1,

for i ≥ 1, and we construct a strictly increasing sequence of integers (tq)q such that the interval
[Rtq , Rtq+1) contains at least one of these partial sums. We call Siq any such partial sums, for
example the smallest one, that is, for q such that [Rtq , Rtq+1) ∩ {Si}i≥1 ̸= ∅, we take

iq = min{r ∈ N : Rtq ≤ Sr < Rtq+1}.
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We also define

Bq =

2iq−1⋃
j=2iq−1

Aj ,

the union of the atoms that has mass Siq . We consider the function

f =

M+2∑
q=3

R−tq 1Bq
,

where M is a large integer. For the moment we choose M > 2kR. Take h ∈ G1,k and as before
we say that 3 ≤ q ≤M + 2 is an unmarked index if

Im(h) ∩ (R−tq−1, R−tq+1) = ∅.

There are at least M − 2k unmarked indexes. For an unmarked index q and x ∈ Bq, we either
have

f(x) − h(x) ≥ R−tq −R−tq−1 ≥ f(x)
(
1 − 1

R

)
= f(x)R−1

R , or

h(x) − f(x) ≥ R−tq+1 −R−tq ≥ f(x)(R− 1).

In any case, we have for x ∈ Bq

|f(x) − h(x)| ≥ f(x)
R− 1

R
,

and then

∥f − h∥1 ≥ R−1
R

∑
q: unmarked

R−tqµ(Bq) = R−1
R

(∑
q
R−tqµ(Bq) −

∑
q:marked

R−tqµ(Bq)

)

≥ R−1
R (∥f∥1 − 2kR) = ∥f∥1R−1

R

(
1 − 2kR

∥f∥1

)
Now, we estimate the norm of f . Clearly, we have ∥f∥1 =

∑
q R

−tqµ(Bq), which gives the lower
estimate

M ≤ ∥f∥1, (9.13)

and then the lower bound

∥f − h∥1 ≥ ∥f∥1
R− 1

R

(
1 − 2kR

M

)
. (9.14)

So, we conclude that for f̃ = f/∥f∥

inf{∥f̃ − g∥1 : g ∈ G1,k} ≥ R− 1

R

(
1 − 2kR

M

)
,

and therefore

sup
f∈BL1(Ω,F,µ)

inf{∥f − g∥1 : g ∈ G1,k} ≥ R− 1

R

(
1 − 2kR

M

)
Taking M ↑ ∞, we conclude that

sup
f∈BL1(Ω,F,µ)

inf{∥f − g∥1 : g ∈ G1,k} ≥ R− 1

R
.
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Now we take R ↑ ∞, to get finally that

sup
f∈BL1(Ω,F,µ)

inf{∥f − g∥1 : g ∈ G1,k} ≥ 1

independently of k ≥ 2. For k = 1, we point out that G1,1 = {0} and so

sup
f∈BL1(Ω,F,µ)

inf{∥f − g∥1 : g ∈ G1,1} = 1.

Hence, N1,ε(BL1(Ω,F,µ)) = ∞, for all ε < 1.

In order to prove Theorem 9.3.10, we shall use a result in [106], where the notion of atomic
and nonatomic are different from the (standard) notions we are using. In this discussion we
add an ∗ to distinguish the notions we are using and the corresponding in [106]. According to
[106] a measurable set A is an ∗-atom if µ(A) > 0 and for all E ∈ F either µ(A ∩ E) = 0 or
µ(A \E) = 0. It is direct to show that if A is an ∗-atom for µ, then it is an atom for µ. Indeed,
assume that B ⊂ A satisfies µ(B) < µ(A), then µ(A \ B) = µ(A) − µ(B) > 0 and we conclude
that 0 = µ(A ∩ B) = µ(B), proving that A is an atom for µ. The converse is not always true
(see the example below). It is true if A has finite measure. In fact, suppose that A is an atom of
finite measure and let E be a measurable set. If µ(A ∩ E) > 0 then µ(A) = µ(A ∩ E), showing
that µ(A \ E) = 0 since E ∩A has finite measure, and therefore A is an ∗-atom.

A measure is ∗-atomic if every measurable set A of positive measure contains an ∗-atom. A
measure that has no ∗-atoms is said ∗-nonatomic. Here is an example of a ∗-nonatomic measure
which is atomic in the standard sense. Consider (R,P(R)) as a measurable space and

µ(A) =

{
∞ if A is uncountable

0 otherwise

If µ(A) > 0, then A is uncountable and can be splitted into two uncountable disjoint sets B and
C. Then µ(A∩B) = ∞ and µ(A \B) = ∞. So, there are no ∗-atoms and then according to the
above definition µ is ∗-nonatomic.

The other concept we need is the notion of ∗-singular. Two measures ν and λ are said
∗-singular if for all measurable sets E, there exist two measurable sets F and G contained in E
such that

ν(F ) = ν(E), λ(F ) = 0, and λ(G) = λ(E), ν(G) = 0.

The main theorem we need is the following.

Theorem 2.1 in [106]. Assume (Ω,F , µ) is a measure space. Then µ can be decomposed as
µ = ν + λ, where ν is ∗-atomic and λ is ∗-nonatomic. We can assume that ν, λ are ∗-singular,
in which case the decomposition is unique.

We are now ready to prove the main result of this subsection:

Proof of Theorem 9.3.10. It is clear that (iii) =⇒ (ii) =⇒ (i). Now suppose that (i) holds,
that is, BLp(Ω,F,µ) is UA. By Theorem 2.1 in [106], there is a unique decomposition µ = ν + λ
where ν is ∗-atomic measure, λ is ∗-nonatomic and ν and λ are ∗-singular. Consider

C = {[A] : A is an ∗-atom for ν of finite ν-measure }

where [A] is the equivalence class of measurable sets B such that ν(A∆B) = 0. Notice that
[A] ∈ C if and only if A is an atom of finite ν-measure. Therefore, if [A] ̸= [B] ∈ C then
ν(A ∩B) = 0, that is, A and B are disjoint up to ν-measure 0.
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If C is infinite, we take a countable collection (En)n of atoms for ν, which are disjoint up
to ν-measure zero, and each one has finite and positive ν-measure. For every n there exists
Fn ⊂ En, such that ν(Fn) = ν(En) and λ(Fn) = 0. Clearly, (Fn)n is a countable class of
disjoint atoms for ν, which have positive and finite measure. The measurable set A = ∪∞

n=1Fn
satisfies λ(A) = 0. This shows that µ|A = ν|A, so Lp(A,F|A, µ|A) and Lp(A,F|A, ν|A) can be
identified.

On the other hand, the measure ν|A is atomic. Indeed, assume that D ⊂ A has positive
measure. Then for some n it holds ν(D ∩ Fn) > 0 and then D ∩ Fn contains an ∗-atom H
of ν, which has finite measure, and therefore it is an atom for ν. We can apply Proposition
9.3.13 to conclude that BLp(A,F|A,ν|A) is not UA, and a fortiori BLp(Ω,F,µ) is not UA, which is
a contradiction.

The conclusion is that ν has a finite number of atoms (An)n∈J of finite measure, up to
measure 0, where J is a finite (eventually empty) set. Therefore, if B = Ω \ ∪n∈JAn, then any
measurable C ⊂ B has 0 or infinite ν-measure.

On the other hand, there exists G ⊂ B such that ν(G) = 0 and λ(G) = λ(B). If there exists
H ⊂ B a measurable set such that 0 < λ(H) < ∞, then we arrive to a contradiction. Indeed,
consider K ⊂ H such that ν(K) = 0 and λ(K) = λ(H). Since λ(H) is finite, this means that
λ(H \ K) = 0. Now, λ|K is a diffuse measure, because if there exists L ⊂ K an atom for λ,
then this atom has finite measure and therefore it is an ∗-atom for λ, which is not possible. The
contradiction is obtained because BLp(K,F|K ,µ|K) and BLp(K,F|K ,λ|K) can be identified and the
latter is not UA, according to Corollary 9.3.12.

The conclusion is that λ(H) is 0 or infinite for every H ⊂ B. Since λ(Bc) = 0, we conclude
that λ(H) is either 0 or infinite for every measurable set H. Also, µ(H) is 0 or infinite, for any
H ⊂ B and µ = ν on A = Bc. Therefore, µ is an atomic measure and it has a finite collection
of disjoint atoms with finite measure, up to measure zero.

The last part of the Theorem follows from either Corollary 9.3.12 or Proposition 9.3.13.

9.3.4 Stability of the class of UA sets

In this subsection, we study the image of a UA set under classical operations. We start with
the following easy proposition:

Proposition 9.3.14. Let (Ω,F , µ) be a measure space and p ∈ [1,+∞]. Let A ,B ⊂ Lp(Ω,F , µ)
and ε > 0. Then:

(a) if A ⊂ B then Np,ε(A ) ≤ Np,ε(B);

(b) Np,ε(A ) = Np,ε(A );

(c) Np,|λ|ε(λA ) = Np,ε(A ) for all λ ∈ R;

(d) Np,ε(A + B) ≤ mint,s>0,t+s≤εNp,t(A )Np,s(B);

In particular if A and B are UA then A , λA and A + B are UA.

Proof. The proof is left to the reader.

In the next result, we prove that the closed convex hull of a bounded UA set is still UA.

Theorem 9.3.15. Let (Ω,F , µ) be a measure space and p ∈ (1,+∞). If A ⊂ Lp(Ω,F , µ) is
a UA set, then AK = {f ∈ co(A ) | ∀g ∈ A ∥f − g∥p ≤ K} is also UA for all K ≥ 0. More
precisely, we have that

Np,ε(AK) ≤ min
η∈(0,1)

(
Np,(1−η)ε(A )

)s(η)
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for all ε > 0, where s(η) =
[
CK
ηε

] min{p,2}
min{p,2}−1

+ 1 and C is a constant depending on (Ω,F , µ) and

p. In particular, if A is bounded then co(A) is UA.

Proof. Fix K ≥ 0. For n ∈ N, define

con(A ) =

{
n∑
i=1

aifi | ai ≥ 0,

n∑
i=1

ai = 1, fi ∈ A

}
.

Remember that Lp(Ω,F , µ) has non-trivial Rademacher type r = min{p, 2} (see Theorem 6.2.14
in [1]). By Theorem 2.5 of [59], one has that

d(con(A ), f) ≤ CK

n1−
1
r

for all f ∈ AK and n ∈ N where C is a constant depending on (Ω,F , µ) and p. Therefore, if

we take ε > 0, η ∈ (0, 1) and n0 =
[
CK
ηε

] r
r−1

+ 1, we will have that d(con0
(A ), f) < ηε, for all

f ∈ AK .
Thus, if f0 ∈ AK there exists g0 =

∑n0

i=1 aifi ∈ con0
(A ) such that ∥f0 − g0∥p < ηε. On the

other hand, since A is UA, there exists hi ∈ Gp,k where k = Np,(1−η)ε(A ) such that

∥fi − hi∥p ≤ (1 − η)ε

for all i ∈ {1, ..., n0}. One can deduce that∥∥∥∥∥f −
n0∑
i=1

aihi

∥∥∥∥∥
p

≤ ∥f0 − g0∥p +

∥∥∥∥∥
n0∑
i=1

aifi −
n0∑
i=1

aihi

∥∥∥∥∥
p

≤ ηε+

n0∑
i=1

ai(1 − η)ε = ε

with
∑n0

i=1 aihi ∈ Gp,kn0 . We conclude that Np,ε(AK) ≤ kn0 .

Remark 9.3.16. Note that if A is an unbounded UA set then co(A ) may not be UA. In fact,
Gp,2 is UA but co(Gp,2) = Lp(Ω,F , µ) (since co(Gp,2) is the set of simple functions) is not UA in
general for any p ∈ [1,∞]. Remark that the previous theorem is not interesting if p = ∞ since
any bounded set is UA by Proposition 9.3.9.

Remark 9.3.17. The previous theorem is false if p = 1. In fact remember that Bℓ1 =
co(ext(Bℓ1)) and ext(Bℓ1) = {±δn}n∈N. It follows that ext(Bℓ1) is UA but we have seen that
Bℓ1 is not UA (see Theorem 9.3.10). More generally, using the previous result, it is easy to show
that there exists a UA set A ⊂ ℓp such that Bℓp = co(A ) if and only if p ∈ {1,∞}.

In the next result we study stability properties of UA classes under Hölder transformations.
Recall that a real function Ψ is uniformly α-Hölder if there exists a constant K, such that

|Ψ(x) − Ψ(y)| ≤ K|x− y|α.

With this definition, the identity function is not uniformly α-Hölder for α < 1. To enlarge
the class of uniformly α-Hölder functions we consider the following classes of Hölder functions,
denoted H(K,α) for 0 < α ≤ 1, which consists of real functions Ψ such that for all x, y, it holds

|Ψ(x) − Ψ(y)| ≤ K(|x| + |y| + 1)1−α|x− y|α.

We can assume without loss of generality that K ≥ 1. We notice that H(K, 1) is the set of
K-Lipschitz functions. If 0 < β ≤ α, then H(K,α) ⊂ H(K,β). Also H(K,α) contains the class
of uniformly Hölder functions.
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Proposition 9.3.18. Assume that (Ω,F , µ) is a finite measure space and A is UA in Lq(Ω,F , µ),
for some q ∈ [1,∞]. Consider α ∈ (0, 1], and we assume further that A is bounded in Lq(Ω,F , µ)
when α < 1. Then, the H(K,α)-transform of A given by

H(K,α)(A ) = {Ψ(f) : f ∈ A , Ψ ∈ H(K,α)}

is UA in Lp(Ω,F , µ) for any 1 ≤ p ≤ q. Moreover, for ε ∈ (0, 1]

Np,ε(H(K,α)(A )) ≤ N
q,(ε/Γ)

1
α

(A ),

where

Γ = Γ(α, p, q) = Kµ(Ω)−r


(

2B + 1 + µ(Ω)
1
q

)1−α
if α < 1

1 if α = 1

with B a bound for A in Lq(Ω,F , µ) and r = 1
p −

1
q .

Proof. The case α = 1 is straightforward so, we assume α < 1. We assume first that p = q.
Consider ε ∈ (0, 1], k = Nq,ε(A ), f ∈ A , g ∈ Gq,k such that ∥f − g∥q ≤ ε and Ψ ∈ H(K,α). We
have∫

|Ψ(f(x)) − Ψ(g(x))|qdµ(x) ≤ Kq

∫
(|f(x)| + |g(x)| + 1)q(1−α) |f(x) − g(x)|qαdµ(x).

Now, we apply Hölder’s inequality for s = 1
α and its conjugated index t = 1

1−α to get∫
|Ψ(f(x))−Ψ(g(x))|qdµ(x) ≤ Kq

(∫
(|f(x)| + |g(x)| + 1)qdµ(x)

)1−α(∫
|f(x) − g(x)|qdµ(x)

)α
which implies

∥Ψ(f) − Ψ(g)∥q ≤ K (∥f∥q + ∥g∥q + ∥1∥q)(1−α) ∥f − g∥αq .

If B is a bound for A , we conclude that ∥g∥q ≤ B + 1, which shows

∥Ψ(f) − Ψ(g)∥q ≤ K
(

2B + 1 + µ(Ω)
1
q

)(1−α)
εα = Γεα.

Since Ψ(g) ∈ Gq,k, we deduce that

Nq,Γεα(H(K,α)(A )) ≤ Nq,ε(A ),

and the result is shown in this case. The case p < q follows from Corollary 9.3.7.

We point out that under the hypothesis of the Theorem, we have A ⊂ H(K,α)(A ).
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theorem. Revista Matemática Iberoamericana, 21(1):237–248, 2005.
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d’Analyse fonctionnelle (dit” Maurey-Schwartz”), pages 1–18, 1980.

[133] M. Mendel and A. Naor. Metric cotype. Annals of Mathematics, 168(1):247–298, 2008.

[134] S. Mercourakis. On cesaro summable sequences of continuous functions. Mathematika,
42(1):87–104, 1995.

[135] W. Moors and S. Somasundaram. A Gâteaux differentiability space that is not weak
Asplund. Proceedings of the American Mathematical Society, 134(9):2745–2754, 2006.

[136] T. Nishiura and D. Waterman. Reflexivity and summability. Studia Mathematica, 1, 1963.
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[158] J. Talponen. Lindelöf type of generalization of separability in Banach spaces. Topology
Appl., 156(5):915–925, 2009.

[159] J. Talponen. Uniform-to-proper duality of geometric properties of Banach spaces and their
ultrapowers. Proceedings of the American Mathematical Society, 121(1):111–120, 2017.

[160] D. Tingley. Uniform dentability, uniform smoothability and approximations to convex
sets. Rocky Mountain J. Math., 22(4):1565–1587, 1992.

[161] S. L. Troyanski. On nonseparable Banach spaces with a symmetric basis. Studia Math.,
53:253–263, 1975.

[162] S. L. Troyanski. Uniform convexity and smoothness in every direction in nonseparable
Banach spaces with unconditional bases. C. R. Acad. Bulgare Sci., 30(9):1243–1246, 1977.

[163] K. Tu. Convexification of super weakly compact sets and measure of super weak noncom-
pactness. Proceedings of the American Mathematical Society, 149(6):2531–2538, 2021.

[164] K. Tu. Equivalence of semi-norms related to super weakly compact operators. Bull. Aust.
Math. Soc., 104(3):506–518, 2021.

[165] E. K. van Douwen. The integers and topology. In Handbook of set-theoretic topology, pages
111–167, 1984.

[166] A. A. Vladimirov, Y. E. Nesterov, and Y. N. Chekanov. On uniformly convex functionals.
Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet, 3:12–23, 1978.

[167] A. A. Vladimirov, Y. E. Nesterov, and Y. N. Chekanov. On uniformly quasi-convex
functionals. Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet, 4:18–27, 1978.

[168] L. P. Vlasov. Chebyshev sets and approximately convex sets. Mathematical notes of the
Academy of Sciences of the USSR, 2:600–605, 1967.

[169] M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press, 2019.

[170] N. Weaver. Subalgebras of little Lipschitz algebras. Pacific J. Math., 173(1):283–293,
1996.

[171] N. Weaver. Lipschitz algebras, 2nd ed. World Scientific, 2018.



192 CHAPTER 9. BIBLIOGRAPHY

[172] J. Wenzel. Uniformly convex operators and martingale type. Rev. Mat. Iberoamericana,
18(1):211–230, 2002.

[173] Z. T. Yang, Y. F. Lu, and Q. J. Cheng. Super weak compactness and uniform Eberlein
compacta. Acta Math. Sin., 33(4):545–553, 2017.
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List of symbols

1A characteristic function of A

Ac complementary of A

A(n) family of all subsets of A with cardinal n

AU ultraproduct of a set

A∆B symmetric difference between A and B

ℵ1 cardinal of the set of all countable ordinal numbers

bc(xn)n basic constant of a basic sequence (xn)n

B family of Borel subsets of R
BX closed unit ball of X

BX(x0, α) closed ball of center x0 ∈ X and radius α

c cardinality of the continuum

Card(A) or |A| cardinal of A

[C]′ε derivation of C

[C]′F,ε derivation of C with respect to F

conv(A) convex hull of A

Dp,k(f) distance from f to Gp,k(Ω,F , µ)

δ isometric embedding of a metric space M into F(M)

δf modulus of convexity of f

δX modulus of convexity of a Banach space X

δC modulus of convexity of a uniformly convex set C

∆(C) measure of the Radon-Nikodym property

Dp,k(f) distance between f and Gp,k
dens(M) the density character of a metric space M

diam(A) diameter of A

dom(f) domain of f

∆Φ convex difference of Φ

Dz(C, ε) dentability index of a set C

Dz(F, ε) dentability index of a function F

epi(f) epigraph of f

expZ(C) set of Z-exposed points of C

ext(C) set of Z-exposed points of C

Fn2 Hamming cubes

Ff cumulative distribution associated to the distribution µf of f
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F(M) Lipschitz-free space over M

γ(A) measure of weak nomcompactness of A

Γ(A) measure of super weak noncompactness of A

Γ(X) class of lower semicontinuous convex proper functions on X

H(K,α) particular class of Hölder functions

J canonical injection of X into its ultapower XU

(f □ g) infimal convolution of f and g

f̆ closed convex hull of f

f∗ Fenchel transform of f

Gp,k set of simple functions in Lp taking less than k different values

Ks(X) symmetric Kottman constant of X

Ks(X) isomorphic symmetric Kottman constant of X

L family of Lebesgue measurable subsets of R
limU,i xi limit of (xi)i∈I with respect to U
Lip0(M) Banach space of Lipschitz functions on M vanishing at 0

Mp(f,A) p-th mean of f on A

M(S) space of Radon measures on a Polish space S

Wsuper ideal of SWC operators

µf distribution of f

Np,ε(A) measure of UA of A

N (M, ε) covering numbers of M

N (f, ε) covering numbers of f

pf gage of uniform convexity of f

P(I) power set of I

PK metric projection on K

P∞(I) or [I]ω family of all infinite subsets of I

ϕX measure of weak-(Ak)

ρf modulus of smoothness of f

(rn)n sequence of Rademacher functions

|s| length of a finite sequence s of {0, 1}
s ⌢ s′ concatenation of two finite sequences s and s′ of {0, 1}
S(C, x∗, α) slice of a set C

span(A) vector space generated by A

S(A, x∗, α) slice of A with parameters x∗ ∈ X∗ and α > 0

str-expZ(C) set of Z-strongly exposed points of C

str-ext(C) set of strongly extreme points of C

s splitting cardinal

T ∗ adjoint operator of T

TU ultraproduct of an operator T with respect to U
UWBS(X) UWBS-index of X

varp(f,A) p-variation of f in A

varp(f,P) total p-variation of f in P
Varp,k(f,A) k-th variation of f in A
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Varp,k(f) total k-th variation of f in A

ω first infinite countable ordinal

ω(A) De Blasi’s measure of weak noncompactness of A

ω1 first uncountable ordinal

XU ultraproduct of a Banach space X with respect to U
[x] integer part of x




