
Summary. Hepatocellular carcinoma (HCC) is the most
common primary malignant neoplasm of the liver
representing the fifth most common malignancy
worldwide. This tumor is more common in men than
women, with a ratio of 2.7:1. Unlike HCC, Dysplasia is
the precancerous nature of liver nodules and is
characterized by cellular and nuclear enlargement,
nuclear pleomorphism, and multinucleation. Area based
Adaptive Expectation Maximization (EM) uses texture,
layout, and context features of cells, and grows clusters to
obtain texton maps of nucleus. A discriminative model of
nucleus and cytoplastic changes of tumor is built by
incorporating texture, layout, and context information
efficiently. A bootsrap regression model of nuclei and
cytoplastic changes are built by incorporating the
aforementioned features efficiently. Mean squared error,
Peak Signal to Noise ratio and Dice similarity values are
used to evaluate the method's classification performance.
The proposed method provides high classification and
segmentation accuracy of nucleus and extra nuclear
content in HCC and dysplasia, which are exceedingly
textured in histopathology images, when compared to
Adaptive K means, EM method and the state-of-the-art
method, Convolutional Neural Networks (CNN). As
texton detection reduces the cluttered background of

nuclei, the proposed method would be a convenient
mechanism for the classification of nuclei and non-
nuclear features. In conclusion, this system can detect
more eligible cells of precancerous nature as well as
malignant cells even in a cluttered background of nuclei.
Key words: Histopatholgy, Dysplasia, Hepatocellular
Carcinoma, Hepatic tumor, Classification

Introduction

Hepatic Nodular lesions are predominantly
composed of either hepatocytes or neoplastic cells with
hepatocytic features. In dysplasia, cells with dysplastic
features often form groups, which were termed
“dysplastic foci” by the IWP. Dysplastic nodules are
nodular lesions with cytologic and structural atypia,
indicative of precancerous change (Wanless, 1995;
Andrea et al., 2016). The groups of crowded, small,
atypical hepatocytes of dysplastic foci were termed
“Small cell change” of hepatocytes by the IWP
(Hytiroglou et al., 2007). 

Molecular studies have provided the precancerous
nature of small cell change (Marchio et al., 2001; Plentz
et al., 2007; American Cancer Society, 2018). However,
the small sized hepatocytes are often seen in cirrhotic
livers, as a result of regeneration (Nakanuma and Hirata,
1993; American Cancer Society, 2018). Therefore, small
cell size alone is not sufficient evidence of precancerous
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change in the absence of cytologic atypia. This
cytological change was originally described as “liver cell
dysplasia” (Anthony et al., 1973; Stewart and Wild,
2014). These dysplastic lesions evolve into
Hepatocellular carcinoma over time (Takayama et al.,
1990; Sakamoto and Hirohashi, 1998). Therfore, focal
HCC may occasionally be found on microscopic
examination of dysplastic nodules (Arakawa et al.,
1986). 

Images of IR spectra were recorded (Perkin Elmer
Spotlight 300) using FTIR microscope. Instead of
evaluating more than 192 million measured
transmittances, the original spectrum of 1626 points at
each image pixel were reduced to 64 values at each pixel
using IR metrics (Fernandez at al., 2005). Using K-
means cluster analysis, 64 IR spectral points are
distinguished into 5 groups based on six IR metrics
(Zhaomin et al., 2013). The centroid for each pixel in
image was calculated per group based on similarity (or a
“distance”) between a particular image pixel and the
average metric scores of the group. According to the
minimization of sum of “distances” for each group,
membership of image pixels in each group changes.
Finally, each image pixel with similar metrics is
organised into a group. 

This paper investigates the problems of achieving
automatic detection, recognition, and segmentation of
nuclei in HCC and Dysplasia in histopathology images.
The proposed system should automatically partition the
given histopath image into meaningful regions, where
the required regions can be labeled with a specific object
class color. The treatment of liver tumor in early stage
can cure it in certain cases, yet the long term anticipation
essentially relies on upon the vicinity and severity of
liver damage and its extension (Andrea et al., 2016). 

A hybrid diagnosis method is proposed to detect the
nucleus and non-features of HCC and dysplasia

automatically by utilizing histopathology images of
cryostat sections. This paper is organized as follows.
Immediately below, we discuss related work. Various
clustering, segmentation methods and the proposed
method, which uses Conditional Random Field (CRF) to
generate a model for nucleus and other non-features, are
discussed in Section 2. In the aforementioned Section 2,
the discussion of system design consists of texture-
layout filters and their combination leads to segregation
of nucleus from non-features. Finally, the proposed
method is evaluated and compared with existing related
work. The performance of the proposed method is
discussed and concluded in Section 3. 
Materials and methods

As this work is a review examination, the images
utilized as a part of this examination work are the
records of already analyzed patients. We acquired four
normal, four dysplasia and five hepatocellular carcinoma
images from Global Hospital, Chennai with the
magnification factors of 10x, 200x and 400x sizes
respectively. The training dataset comprises two normal,
two dysplasia and three HCC images which roughly
incorporates 4900 nuclei and cytoplasmic cells. Also, the
testing set is comprised of the other two normal, two
dysplasia and two HCC images which include about
4200 nuclei and cytoplasm cells. The study is endorsed
by Institutional Ethics Committee and all sample images
had been stored in RGB color space in a Joint
Photographic Experts Group (JPEG) format where the
size of each image was 1600×1200 pixels.
Various approaches of segmentation

The regions found by bottom-up segmentation are
labelled with textual class labels of images, trained in a
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Fig. 1. Example results of new simultaneous tumor nucleus recognition and segmentation algorithm.



classifier (Duygulu et al., 2002). However, semantic
objects are not correlated with such segmentations and
hence in the proposed system, segmentation and
recognition of nuclei are performed in the same unified
framework rather than in two separate steps. At a high
computational cost, such a unified approach was
presented in the study (Zhuowen at al., 2005). However,
in images labeled using a unary classifier, spatially
coherent segmentations are not achieved (Konishi and
Yuille, 2000). In K-means clustering, it is not easy to
clearly identify initial K seeds of textual class labels of
nucleus and non-nuclei in the images (Rohit and
Gaikwad, 2013). Adaptive K-means algorithm partitions
the given dataset without the initial identification of
seeds to represent clusters (Bhagwati and Sinha, 2010).
Also this algorithm faces the problem of getting more
local optima, EM algorithm finds the solution for the
same (Tsai et al., 2001). EM algorithm assigns data
points partially to different clusters using a probabilistic
distribution, where each data point belongs to the cluster
with the highest probability (Moon et al., 2002). The
molecular analyses require the investigation of somatic
genetic alterations, gene or protein expression, or even
circulating tumour markers. However, histopathological
classification remains the gold standard for diagnosis in
most instances (Nagtegaal et al., 2019). The proposed
method grows clusters with the textons of images
without having the initial selection of clusters and also
stops the generation of clusters based on area function
automatically, and trained in the classifier, which

generates a descriminative model with bootstrap
regression coefficients to improve the classification
accuracy of nuclei from other components as shown in
Fig. 1a,b. Representation of a pixel in higher dimensions
always leads to high computational cost in the state-of-
art method (Shelhamer et al., 2017). However, the
existing methods and convolutional networks work on
the color images whose objects to be segmented are
highly textured and highly structured.
A conditional random field model of classes

Conditional distribution over the class labeling is
learned using a Conditional random field (CRF) model
(Lafferty et al., 2001; Shotton et al., 2006; Kuang et al.,
2012), for a given image. Texture layout, color, location,
and edge cues are incorporated into a single unified
model. Conditional probability of the class labels c for a
pixel to be either nucleus or non-nucleus is defined as

where ε is the set of edges, θ=(θψ,θγ,θλ,θφ) are the
model parameters corresponding to texture-layout, color,
location and edge respectively, i and j correspond to
positions of pixels in the image, gij(X) represents the
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Fig. 2. Proposed system
architecture.



edge feature and Z(θ, x) is the partition function which
normalizes the distribution.
Proposed system

The overall system architecture is explained in (Fig.
2). The system design describes the phases of modules
of the system under Textonization, building classifier
model, testing and performance evaluation.

Textonization
Histopathology images are convolved with 17

dimensional convolution filter bank to obtain 17D
responses. The filter operations can intensify or reduce

certain image details and enable an easier or faster
evaluation of the size of nucleus. 17-D Convolution
filter banks are generated by applying Gaussians to all
three HSV (Hue, Saturation and Value) channels, while
the other filters are applied only to the luminance. When
three Gaussian filters, are applied to HSV channels, 9D
responses are obtained and four Laplacian of Gaussian
filters (LoG) and the four first order Derivatives of
Gaussians are applied to luminance produce 4D
responses each; a total of 17D responses.

The 17D filter responses obtained are convolved
with the training images, which are automatically
clustered using Modified EM algorithm to generate a
texton map. In order to calculate texture-layout filter
responses in constant time, an integral image is built for
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Fig. 3. Algorithm for construction of
Texton map using area based
AdaptiveEM.



each channel. Area based Adaptive EM method runs on
these filter responses to generate clusters automatically,
thus providing the texton map. To compute the texture-
layout filter responses in constant time, an integral
histogram is computed for each texton with one bin
(Porikli, 2005).

Where rbr, rbl, rtr and rtl denote the bottom right,
bottom left, top right and top left corners of rectangle r.

A hybrid diagnosis method is proposed to detect the
aforementioned textons automatically in histopathology
images. An area function adaptation scheme that uses
the EM model grows the clusters without the need for
initial selection of clusters. With the feature responses
obtained, clusters are generated automatically. As no
component in any cluster is bigger than the texton of
nucleus, the algorithm stops generating the clusters after
the generation of texton of nucleus, whose cluster
number is k. Thus the n filter responses are partitioned
into k clusters where each response serves as a prototype
of a cluster, belongs to the nearest mean cluster. The
finding of these studies (Lafferty et al., 2001; Bryan et
al., 2008; Kuang et al., 2012) showed that parameters (μkmean, Σk var, p(ck) weights) are updated iteratively until
they converge. With these updated parameters, clusters
of textons are generated and the generation stops
automatically when the area of the biggest component
nucleus is found (Fig. 3).

Building Classifier Model
Automatic feature selection and learning of texture-

layout potentials are carried out by boosting process
(Freund and Schapire, 1999). A strong classifier H(ci)
can be built by summing up ‘weak classifiers’ iteratively
(Friedman et al., 2000). Using a thresholded feature
response as a decision stump, weak classifiers can be
found, in which the optimal parameter coefficients are
estimated using bootstrap regression coefficients to
improve the classification accuracy of nucleus of various
tumors in histopathology images (Hiroshi and Masaaki,
2003). Bootstrap can provide more accurate inferences
in small size nuclei and complex clustered samples of
nuclei. A decision stump of each weak-learner is defined
as

Where 

kc is the numbers of training features of each class

when c   C. f[i,r,t] represents the corresponding feature
response at position i.

To enable a single feature of nucleus or non-
features to classify several classes at once, a weak
classifier is shared between a set of classes. For those
classes that share the feature, weak learner gives hi(c)
belonging to a + b, b depending on the comparison of
feature. Round m chooses a new weak learner by
minimizing an error function E incorporating the
weights.

A strong classifier is built by summing the
classification confidence of M weak learners.

Testing image
The test image is textonized and extracts features

(nuclei) and non-features from it. These features are
tested with Adaboost algorithm to obtain an image,
classified as two classes of nucleus (red) and non-
features (black) (Fig. 4). The sample images are tested
and their segmented outputs are shown in Fig. 5.
Results

This work is mostly focused on segmenting the
nucleus and the extracellular nuclei changes of the
various tumors irrespective of their sizes. This
implementation should have the ability to obtain
histopathology images from patients. This
implementation is carried out in matlab. The texton
feature responses are trained in AdaBoost classifier for
100 rounds to build the discriminative model to gain
more accuracy using bootsrap regression coefficients
discussed in Table 1. The knowledge about the nuclei
provided by the expert pathologist from the Global
Hospital is used to verify the accuracy of the segmented
nuclei against the groundtruths. The diagnostication
accuracy of the method is very high when compared to
the conventional methods like Adaptive k-means and
EM, and state of art method, CNN. Also, the segmented
nuclei with this method provides a better understanding
in infected nuclei with respect to size of the same in a
malignant cell.
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Performance evaluation

Three metric is followed here by MSE, PSNR and
DSC. MSE is close to zero relative to the magnitude of
at least one of the estimated treatment effects. It
represents the mean squared error rate between 0 to 1.
The lower the value of MSE, the lower the error. From
the segmentation techniques, the error rate of the
proposed method is 0.01. The higher the PSNR, the
better the quality of image. Typical values for an image
are between 30dB and 50dB, when the PSNR is greater
than dB. Dice Similarity metric is always between 0 and
1 with higher values returning a better match between
automatic and manual segmentation (Casciaro et al.,
2012). 

being the total number of pixels in an image.

It is clear that to segment the nuclei of hepatic
tumors like HCC and dysplasia, the proposed method
results in a much higher efficiency than any of the
algorithms in this field (Table 1). 
Discussion

It is incredibly important for a patient to segment the
multi-nucleated liver tumors in histology images. The
segmentation of nuclei in HCC and dysplastic nodules is
carried out and analyzed with histological images.
Automatic segmentation techniques of identifying nuclei
in HCC and dysplasia from histological images have
been here implemented and the results are shown in
Table 1. Boosting classifier gradually selects new
texture-layout filters to improve classification accuracy.
As texture layout filters are added, the classification
accuracy improves greatly and after 100 rounds, a very
accurate classification is given. Furthermore, the
accuracy of classification with respect to the validation
set results in 89.51% for nuceli of HCC and dysplasia, in
which accuracy is measured as the pixelwise
segmentation accuracy. Our proposed method assists
greatly to detect all nuclei irrespective of their sizes
efficiently, and provides a better recall than EM without
compromising the computational cost and accuracy
unlike the convolutional networks and the
aforementioned conventional methods.
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Fig. 4. Testing application.



Conclusion

From the analyses of the performance metrics
calculated for the various automatic diagnosticating

techniques, it is observed that the algorithm results in a
much higher efficiency than any of the existing
algorithms, with respect to the nucleus and extra cellular
nucleus changes of the respective tumors. This system is
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Table 1. Quantitative comparison of existing approaches with the proposed system.

Segmentation Techniques MSE1 PSNR2 DSC3 Sensitivity Specificity FPR4 Accuracy %

Proposed 0.01 73.36 0.55 0.99 0.23 0.77 89.51
Adaptive-K-Means 0.13 58.76 0.33 0.86 0.12 0.88 52.11
EM5 0.05 63.04 0.29 0.86 0.16 0.84 56.95
Convolutional Networks 0.08 59.92 0.54 0.92 0.01 0.99 69.26

1, Mean Squared Error; 2, Peak signal-to-noise ratio; 3, Dice Similarity Coefficient; 4, False Positive Rate; 5, Expectation Maximization.

Fig. 5. Visual demonstration of nuclei detection.



low cost, non-invasive and can detect cells of
precancerous nature as well as malignant cells even in
cluttered backgrounds of nuclei with much higher
efficiency. However, it does not provide the etiology. In
the future, more histopathology images of infected cells
need to be collected and algorithm analyses performed to
diagnose cytoplastic changes along with the use of
stromal and cellular nuclei changes.
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