
Summary. SIRT1, a member of the sirtuin family,
belongs to the NAD+-dependent class III histone
deacetylase. SIRT1 can regulate gene expression by
catalyzing non-histone and histone lysine residues
deacetylation. SIRT1 also plays important roles in
glucose and lipid metabolism, cell aging, tumorigenesis
and inflammation. Recent studies indicate that SIRT1
can inhibit the inflammatory responses via regulating
several inflammatory signaling pathways. It is closely
related to the occurrence and development of sepsis and
other inflammatory diseases. Research has been done on
relevant signaling pathways of SIRT1 as well as its
target genes during inflammation. SIRT1 is a hot spot in
uncontrolled inflammatory response research. This
article focuses on the role of SIRT1 in inflammation,
especially its targets and involved signaling pathways in
sepsis, and tries to provide more convincing evidence for
the clinical treatment of sepsis and other inflammatory
diseases.
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Introduction

Sepsis should be defined as life-threatening organ
dysfunction caused by a dysregulated host response to
infection, which is a severe complication of burns,
trauma, and other critical injuries. The new definition
pays more attention to a series of pathophysiological
responses of the body's response to infection, not just
infection itself (Singer et al., 2016). The mortality of
sepsis is about 20% (Jones and Puskarich, 2014).

SIRT1 is a member of the Sirtuin family, and its
functions are complex and diverse. More and more
studies indicate that SIRT1 may be involved in the
process of sepsis, inflammation, oxidative damage, cell
apoptosis and metabolic disorders. Additionally, it
regulates multiple signaling pathways in sepsis.
Therefore, SIRT1 is seen as a promising candidate
molecule in the treatment of sepsis.
Introduction of SIRT1

In 1986, Ivy et al. (1986) discovered a gene that
prolonged cell life in lower organisms such as yeast,
nematodes, and fruit flies, and named it Silence
Information Regulator 2 (Sir2). In 1999, Frye found five
genes highly homologous to yeast Sir2 in human
belonging to the Sirtuin family, named Sirt1 to Sirt5.
Later, Sirt6 and Sirt7 were discovered. The members of
the Sirtuin family have different locations in cells and
perform different biological functions in life. SIRT1, 6
and 7 mainly function in the nucleus, while SIRT3, 4 and
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5 are localized in mitochondria. SIRT2 is mainly located
in cytoplasm (Houtkooper et al., 2012). The members of
the Sirtuin family play an important role in sepsis (Table
1). The Sirtuin family may be homeostasis protectors
that coordinate immunometabolism. SIRT1 is widely
studied. It is a star molecular in various fields. SIRT1, a
NAD+-dependent protein deacetylase with a highly
conserved amino region, performs different functions
mainly by catalyzing the deacetylation of histones or
non-histones. SIRT1 removes the acetyl moieties from
the ε-acetamido groups of lysine residues of histones and
other signaling proteins, thus promoting chromatin
condensation and suppressing gene transcription
(Rahman et al., 2012). A number of studies have shown
that SIRT1 is involved in the regulation of metabolism,
cellular senescence, inflammatory response and
oxidative stress, which is associated with the
development of metabolic syndrome, and tumorigenesis,
as well as neurodegenerative diseases (Martin et al.,
2015). SIRT1 participates in the deacetylation of
FOXO1, NF-κB, and p53, which makes it a key factor in
sepsis.
Recent research on sepsis and SIRT1

With the improvement of intensive care systems and
the standardization of sepsis treatment (Rhodes et al.,
2017), sepsis mortality rate has decreased significantly,
but it is still reported as a leading cause of death in
critically ill patients (Xavier et al., 2017). The
mechanism of sepsis is complex. During sepsis, the early
hyperinflammatory state evolves to a subsequent
hypoinflammatory state with significant immuno-
suppression characterized by loss of immune cells but no
enduring cell-autonomous defects in T-cell function
(Markwart et al., 2014). A few exemplary cytokines
which could be regarded as biomarkers change at
different stages of sepsis (Faix, 2013) (Table 2). A clear
difference in cellular metabolism can be observed
between the hyperinflammatory and the immunotolerant
state (Fig. 1) (Table 3) Glycolysis and pentose phosphate
pathway are up-regulated but oxidative phosphorylation
is suppressed in the hyperinflammatory state (Wang et
al., 2018a,b). While during immune tolerance, ATP
generation is dependent on fatty acid β-oxidation,
glycolysis is often down-regulated (Cheng et al., 2016).

Compared with TCA cycle and oxidative
phosphorylation, glycolysis can become highly up-
regulated following stimulation with rapid ATP
generation, which is more favorable in acute
inflammation (Arts et al., 2017). Nicotinamide adenine
dinucleotide (NAD+) is an important hydrogen carrier in
glycolysis and TCA cycle, which is an indispensable
cofactor for SIRT1 in regulating the inflammatory
response. Interestingly, NAD+ concentrations highly
differ between hyperinflammatory and immunotolerant
state. Therefore, SIRT1 has different roles at different
stages of sepsis.
Signaling pathways that involve in SIRT1 and sepsis

Multiple signaling pathways such as NF-κB,
MAPK, JAK/STAT, and PI3K/Akt are involved in the
development of sepsis (Zhang et al., 2016a,b). Several
processes, including uncontrolled inflammatory
response, immune dysfunction, coagulopathy,
mitochondria injury, autophagy and gene polymorphism,
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Fig. 1. Metabolic changes in sepsis. There is increased glycolysis in the
hyper-inflammatory phase, while the hypo-inflammatory phase is
associated with increased fatty acid oxidation.

Table 1. The role of different sirtuins during sepsis.

Sirtuin Biological Function

SIRT1 Decreases pro-inflammatory cytokine/chemokine and adhesion molecule expression (Wang et al., 2015a,b)
SIRT2 Represses adipocyte differentiation (Lin et al., 2013)
SIRT3 Represses mitochondrial OXPHOS and reduces mitochondrial biogenesis (Liu et al., 2015)
SIRT4 Increases glycolysis and glucose oxidation (Mathias et al., 2014)
SIRT5 Decreases interaction between SIRT2 and NF-ĸB p65; Enhances the pro-inflammatory response (Qin et al., 2017)
SIRT6 Modulates glucose and fatty acid homeostat (Long et al., 2017)
SIRT7 Regulates genomic stability and metabolic response of cells (Li et al., 2016)



are related in this process (Rizzo and Dudek, 2017).
During these, uncontrolled inflammatory response is
thought to be one of the most important factors. The
therapy of sepsis is still a tough problem. Among all
these studies, SIRT1 is one of the most promising
molecules for the alleviation of sepsis. SIRT1 can
suppress inflammation and oxidative stress as well as
change metabolism by regulating NF-κB, MAPK,
JAK/STAT and PI3K/Akt signaling pathways during
sepsis. And finally it could alleviate organ damage in
sepsis.
SIRT1 and NF-κB signaling pathway

NF-κB is a nuclear transcription factor that mediates
intracellular signaling transduction. NF-κB, a
heterodimer composed of p50 and p65, usually binds to
the IκB subunit and stays in an inactive state. During
sepsis, IκB kinase (IKK) catalyzes the phosphorylation
of IκB subunit and leads to the degradation of it. Then
NF-κB complex is released to enter the nucleus and

regulates inflammation related gene transcription (Shih
et al., 2015). NF-κB signaling pathway can be activated
by the acetylation of multiple lysine sites of p65 subunit
(eg, Lys218, Lys221, Lys310) to increase the
transcription of inflammatory factors (Greene and Chen,
2004). Recent studies have confirmed that SIRT1 can
alleviate NF-κB-mediated inflammation and metabolic
disorders (Xie et al., 2013; Edwards et al., 2013; Chen et
al., 2018). SIRT1 is able to bind to RelA/p65 (Lys310) to
deacetylate p65 subunit and to inhibit the activity of NF-
κB pathway, which finally reduces inflammatory
damage and apoptosis (Zhou et al., 2014). With the
deacetylation of RelA/p65 (Lys310), other lysine sites
(eg, Lys314, Lys315) of p65 are exposed and
methylated, which enhances the ubiquitination and
degradation of p65 (Yang et al., 2010) (Fig. 2). In
addition, the inhibitory RelB protein could suppress the
transcriptional expression of TNF-α by replacing the
deacetylated RelA/p65 protein, and SIRT1 could recruit
RelB protein (Liu et al., 2011). A number of studies have
shown that in SIRT1 knockout mice, cecal ligation and
puncture (CLP) induces phosphorylation and
degradation of IκBα and activation of NF-κB pathway
in lung. Then it increases precursor and mature forms of
IL-1 and finally aggravates inflammation (Gao et al.,
2015; Lan et al., 2017). Vice versa, NF-κB signaling
pathway can inhibit the expression of SIRT1 (Zhang et
al., 2010; Kauppinen et al., 2013). The promoter region
of SIRT1 gene contains multiple binding sites for NF-κB
transcription factors (Voelter-Mahlknecht and
Mahlknecht, 2006). Li et al. (2012a,b) have discovered
that NF-κB can increase the expression of miR-34a,
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Fig. 2. IκB kinase (IKK) catalyzes the
phosphorylation of IκBα subunit and leads to
the degradation of it. Then NF-κB complex is
released to enter the nucleus and regulates
inflammation related gene transcription.
However, SIRT1 is able to deacetylate
RelA/p65 and inhibit the activity of NF-κB
pathway and finally reduces the release of
inflammatory factors (eg, IL-1, TNF-α).

Table 2. Major cytokines at different stages of sepsis.

hyperinflammatory phase immunosuppressive phase

TNF-α IL-10
IL-1β TGF-β
IL-6 CTLA-4
IL-8 PD-1
MCP-1

Table 3. Metabolic changes in sepsis.

State/Metabolic Glycolysis PPP TCA Cycle OxPhos fatty acid oxidation

Hyperinflammatory up-regulated up-regulated down-regulated down-regulated up-regulated
Immunosuppressive down-regulated unknown or unchanged unknown or unchanged up-regulated up-regulated



which depends on the presence of p53. And miR-34a can
inhibit SIRT1 expression by targeting the 3 'UTR region
of SIRT1 (Yamakuchi et al., 2008). Research has shown
that NF-κB signaling pathway can increase the
expression of IFN-γ (Sica et al., 1997；Kang et al.,
2014), CIITA and HIC1, and thus inhibit the expression
of SIRT1 (Li et al., 2012b).
SIRT1 and MAPK signaling pathway

Mitogen-activated protein kinase (MAPK) is a group
of highly conserved serine-threonine protein kinase
expressed by eukaryotic cells that mediates signaling
transfer from cell surface to the nucleus (Lee et al.,
2016). Each of the MAPK signaling pathways consists
of three tiers of protein kinases termed MAP3K,
MAPKK and MAPK. It also has two additional tiers, the
upstream MAP4K and the downstream MAPKAPK
(Keshet and Seger, 2010). The five protein kinase
cascades are sequentially activated by phosphorylation,
and then activate downstream targets (such as
transcription factors, protein kinases, etc.). The signaling
pathway of MAPK family includes ERK, p38, JNK and
BMK-1 pathway (Cossa et al., 2013). MAPK signaling
pathway is involved in the release of inflammatory
cytokines, oxidative stress, cell apoptosis and calcium
overload (Koffel et al., 2014; de Oliveira et al., 2015),
which are important mechanisms of organ damage in
sepsis. Several studies have shown that SIRT1 can
regulate MAPK pathway via Akt/ASK1 signaling by
reducing p38 and JNK phosphorylation and increasing
ERK phosphorylation (Becatti et al., 2012, 2014),
improving organ functions in sepsis (Yang et al., 2018).
Studies have shown that in mice, macrophage specific
SIRT1 knockout can broadly activate the JNK pathway,
increasing JNK phosphorylation and LPS-stimulated
TNF-α secretion (Yoshizaki et al., 2009, 2010). It is also

reported that SIRT1 can inhibit the activity of MKK3,
which is an upstream kinase of p38, and then increase
the mitochondrial biogenesis in tissue and cell, reducing
the production of reactive oxygen species (ROS), and
inhibiting inflammation and lung injury in septic mice
(Mannam et al., 2014). Bai et al. (2015) has reported that
SIRT1 activation may attenuate the apoptosis of
pulmonary microvascular endothelial cells (PMVEC)
through p38 MAPK pathway. SIRT1 also has protective
and anti-apoptotic effects on severe burn induced acute
lung injury mice, suggesting that SIRT1 activation may
be a potential strategy for organ protection after severe
burns. 
SIRT1 and JAK/STAT signaling pathway

JAK/STAT signaling pathway can be activated by
various cytokines and growth factors. It is involved in
processes such as cell proliferation, differentiation,
inflammation and immune response (Ladyman and
Grattan, 2013; Palanivel et al., 2014; Arumuggam et al.,
2015; Villarino et al., 2017). The JAK/STAT signaling
pathway is mainly composed of three parts: tyrosine
kinase-related receptor, tyrosine kinase JAK and
transcription factor STAT. JAK is a family of non-
receptor tyrosine kinases, including four tyrosine kinases
named JAK1, JAK2, JAK3 and TYK2. The STAT
family, a signaling transduction and transcriptional
activator, is a substrate of JAK, including seven
transcription factors (STAT1, STAT2, STAT3, STAT4,
STAT5A, STAT5B and STAT6) (Villarino et al., 2015).
Dimerization of receptors occurs after ligand binding,
which activates JAK through phosphorylation of
tyrosine residues. Then JAK selectively phosphorylates
STAT, and dimeric STAT translocates to nucleus to
regulate gene transcription (Nicolas et al., 2013; Jang
and Baik, 2013). Studies have shown that JAK/STAT
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Table 4. Signaling pathways involved in SIRT1 and sepsis.

Signaling Pathway Interactions with SIRT1

NF-κB SIRT1 binds to RelA/p65 (Lys310) to deacetylate p65 subunit (Zhou et al., 2014)
SIRT1 recruits RelB protein to silence proinflammatory genes (Liu et al., 2011)
NF-κB inhibits SIRT1 by increasing the expression of miR-34a (Yamakuchi et al., 2008)

MAPK SIRT1 reduces p38 and JNK phosphorylation and increase ERK phosphorylation (Becatti et al., 2012; Becatti et al., 2014)
SIRT1 reduces the production of ROS by inhibiting MKK3 (Mannam et al., 2014)

JAK/STAT SIRT1 inhibits phosphorylation of JAK2/STAT3 pathway and then inhibits pro-inflammatory (Park et al., 2016)
JAK1 catalyzes the phosphorylation of tyrosine residues in SIRT1 (eg, Tyr280, Tyr301) (Gao et al., 2011)

PI3K/Akt SIRT1 promotes the inactivation of p300 acetyltransferase and inhibits PI3K acetylation (Shakibaei et al., 2011)
FoxO SIRT1 deacetylates FOXO3a, enhances the expression of SOD2 and reduces the expression of NOX4 (Shimada et al., 2014; Zhang et al., 2017)
Notch SIRT1 inhibits Notch signaling through NICD deacetylation and interactions with LSD1 (Mulligan et al., 2011)
PGC-1α SIRT1 deacetylates PGC-1α and regulates the translocation of NFE2L2 into the nucleus and binds to the ARE (Zschoernigand Mahlknecht, 2008)

SIRT1 activates GABPA to promote translocation of transcription factors in mitochondria (McCreath et al., 2016).
HMGB1 SIRT1 deacetylates HMGB1 and negatively regulates the nuclear export of HMGB1 (Hwang et al., 2015)
Other SIRT1 down-regulates lncRNA-CCL2 and then reduces the expression of inflammatory cytokines (Jia et al., 2018)

SIRT1 inhibits the NLRP3/IL-1β axis in the hippocampus of septic mice (Sui et al., 2016)



pathway is related to many important cytokines involved
in sepsis (Cai et al., 2015; Lv et al., 2015). The
interaction between SIRT1 and JAK2/STAT3 pathway
cannot be ignored. A study indicates that
SIRT1/JAK/STAT3 signaling pathway is an important
target for the inhibition of tumorigenesis of various
drugs (Xu et al., 2018a). Park et al. (2016) has reported
that activation of SIRT1 can inhibit phosphorylation of
JAK2/STAT3 pathway and then inhibit pro-
inflammatory responses and increase cell viability.
Recent research has shown that activation of JAK/STAT
signaling pathway in mice macrophages can increase
SIRT1 expression (Yoo et al., 2014). Further studies
reveal that JAK1 is a tyrosine kinase which catalyzes the
phosphorylation of tyrosine residues in SIRT1 (eg,
Tyr280, Tyr301), and thereby to promote the interaction
of SIRT1 and STAT3. It finally inhibits STAT3
transcription. JAK1 may feedback to regulate
JAK1/STAT3 signaling pathway by mediating the
phosphorylation of SIRT1 (Gao et al., 2011; Wang et al.,
2018a,b).
SIRT1 and PI3K/Akt signaling pathway

Phosphatidylinositol 3 kinase (PI3K) is a class of
kinases that specifically catalyzes the phosphorylation of
phosphatidylinositol at position 3 (Kong and Yamori,
2009). PI3K can be divided into three categories, in
which class I PI3K is most widely studied. Class I PI3K
is a heterodimer, composed of a catalytic subunit p110
and a regulatory subunit p85. In mammal, there are
seven kinds of regulatory subunits (p85α, p85β, p55α,
p55γ, p50α, p101 and p87) and four kinds of catalytic
subunits (p110α, p110β, p110γ and p110δ)
(Vanhaesebroeck et al., 2010). Various stimulus can
activate PI3K, including cytokines, growth factors, and
hormones (Guo et al., 2015). In addition, PI3K also
possesses serine/threonine (Ser/Thr) kinase activity. The
serine/threonine kinase Akt (also known as PKB) is a
serine/threonine-specific protein kinase comprising three
subtypes (AKT1, AKT2 and AKT3) (Jha et al., 2015).
Akt and its upstream kinase PDK1 interact with the
PI3K-producing phosphatidylinositol triphosphate
(PIP3) and form a complex. The complex enters cell
membrane via PH domain. PDK1 catalyzes
phosphorylation of Akt at Thr308 to partially activate
the Akt pathway. Phosphorylation of Akt at Ser473 by
the mammalian target of rapamycin (mTOR) stimulates
full Akt activity (Hemmings and Restuccia, 2012).
Studies have shown that PI3K/AKT signaling pathway
can improve LPS-induced acute lung injury by
regulating IκBα/NF-κB pathway (Kim et al., 2012).
Narsa et al. (Reddy et al., 2015) have found that the
PI3K/AKT signaling pathway may improve
inflammation by regulating the Nrf2-ARE signaling
pathway and thus protect hyperoxia-induced ALI.
Multiple studies have indicated that PI3K/AKT is
involved in pathological changes such as insulin
resistance and tumorigenesis. And the mechanism of

improving these diseases by SIRT1 is closely related to
PI3K/AKT pathway (Carnero et al., 2008; Frojdo et al.,
2011; Sarma et al., 2015; Wang et al., 2015a,b). In
addition, SIRT1 is reported to inhibit the PI3K/AKT
pathway and mediate the deacetylation of PI3K and NF-
κB to inhibit inflammation (Busch et al., 2012; Liu et al.,
2016). Shakibaei et al. (2011) found that SIRT1 can
promote the formation of SIRT1-p300 complex, leading
to the inactivation of p300 acetyltransferase and
inhibition of IL-1β-induced PI3K acetylation, and finally
improve inflammation such as rheumatoid arthritis.
SIRT1 and FoxO signaling pathway

The FoxO family is a subclass of the forkhead
transcription factor (Kousteni, 2011). The "forkhead
domain" of FoxO protein has three alpha helices (helix
1, 2, 3) and two winged structures formed by two large
loops (Maiese et al., 2008). Both nematodes and
drosophila have a homologous gene of FoxO (Webb and
Brunet, 2014). In human, there are four major FoxO
proteins (FoxO1a, FoxO3a, FoxO4 and FoxO6), which
are widely expressed in different tissues and participate
in oxidative stress response, antioxidant defense,
metabolism, cell death and proliferation (Monsalve and
Olmos, 2011). Studies have shown that FoxO
transcription factors play a role in anti-oxidative stress
by regulating the expression of genes encoding
antioxidant proteins (such as SOD, CAT, etc.)
intracellularly and extracellularly (Klotz et al., 2015). It
has been reported that SIRT1 can deacetylate and
activate FoxO, and then synthesize SOD and catalase
(CAT) (Daitoku et al., 2004). It could enhance the
antioxidant activity, and reduce LPS-induced oxidative
stress damage. Other studies have shown that SIRT1 can
reduce the oxidative damage of ROS and protect the
endothelial barrier. The mechanism is related to
deacetylating FOXO3a, enhancing the expression of
SOD2 and reducing the expression of NOX4 (Shimada
et al., 2014; Zhang et al., 2017). It is suggested that
SIRT1/FoxO/SOD pathway plays an important role in
the improvement of sepsis.
SIRT1 and Notch signaling pathway

Mammals have four Notch receptors (Notch 1-4)
and five ligands. Receptor-ligand interaction initiates
three times cleavage in the Notch receptor protein
extracellular domains and transmembrane domains, and
then releases Notch receptor intracellular domain
(NICD). NICD enters the nucleus and binds to
transcription factor (RBP)-Jκ and activates the
transcription of Notch target genes (Geisler and
Strazzabosco, 2015), including HES and HEY family.
Studies have shown that Notch signaling is closely
related to innate immunity and inflammation (Shang et
al., 2016). It has been reported that in the early stage of
sepsis, Notch signaling is activated and then participates
in the regulation of PD-1 expression. Conversely,
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inhibition of Notch signaling reduces PD-1 expression
and alleviates sepsis (Pan et al., 2015). Bai et al. (2018)
has also reported that SIRT1 knockout significantly
aggravates LPS-induced inflammation and organ
damage, since SIRT1 inhibits Notch signaling through
NICD deacetylation and ultimately alleviates sepsis. It
has also been reported that SIRT1 interacts with lysine
specific demethylase 1 (LSD1) directly, and then affects
histone deacetylation and inhibits the regulation of
Notch signaling pathway (Mulligan et al., 2011).
SIRT1 and PGC-1α pathway

PGC-1α is a transcriptional coactivator of
peroxisome proliferator-activated receptor (PPARγ) and
is a major regulator of mitochondrial biogenesis (Valero,
2014). PGC-1α interacts with different transcription
factors, such as nuclear receptor PPAR-γ, cAMP
response element binding protein (CREB) and nuclear
respiratory factor (NRFs), to regulate mitochondrial
biogenesis and fatty acid oxidation (Sweeney and Song,
2016). In addition, PGC-1α can increase the expression
of SOD and exert its anti-oxidative effect (Lu et al.,
2010). Mitochondrial destruction caused by oxidative
stress and dysregulated energy metabolism is a
prominent feature of sepsis (Larche et al., 2006). It leads
to multiple organ failures and is life threatening (Singer,
2008; Duran-Bedolla et al., 2014). SIRT1 plays an
important role in improving energy metabolism
disorders and releasing oxidative stress (Li et al., 2013b;
Xu et al., 2018b). It has been reported that NAD+/SIRT1
signaling can effectively alleviate oxidative stress in
sepsis, reduce myocardial dysfunction, and increase the
survival rate of sepsis (Hong et al., 2018). PGC-1α is
important for SIRT1 to improve sepsis (Lagouge et al.,
2006). Zschoernig and Mahlknecht (2008) have reported
that SIRT1 can catalyze the deacetylation of PGC-1α
and regulate the translocation of NFE2L2 into the
nucleus and bind to the antioxidant element (ARE) to
induce the up-regulation of key antioxidant enzymes. It
has also been reported that SIRT1 can catalyze the
deacetylation of PGC-1α and then activate GA-binding
protein transcription factor alpha (GABPA). It promotes
translocation of transcription factors in mitochondria and
ultimately leads to mitochondrial biogenesis and
improves energy metabolism disorders in sepsis
(McCreath et al., 2016).
SIRT1 and HMGB1-dependent signaling pathways

Many studies have shown that high mobility group
box-1 protein (HMGB1) is involved in immune response
in sepsis. It is an important late mediator in infection.
The mechanism of HMGB1-mediated signal
transduction is still unclear. However, receptors for
advanced glycation end products (RAGE) and toll-like
receptors 2/4 have been identified as important
functional receptors for HMGB (van Beijnum et al.,
2008). HMGB1 promotes the secretion of pro-

inflammatory cytokines from mononuclear-macrophages
via RAGE and TLRs receptor pathways and induces
inflammatory responses by activating NF-κB (Zurolo et
al., 2011). When inflammatory signals such as LPS and
TNF-α activate monocytes, the two major lysine
residues of HMGB1 are highly acetylated. Then
HMGB1 is transferred from nucleus to cytoplasm
(Bonaldi et al., 2003), and then released to extracellular
as a pro-inflammatory cytokine. Acetylation is a key
determinant of HMGB1 migration, while SIRT1 is
capable of deacetylating HMGB1 and negatively
regulates the nuclear export of HMGB1, and then
inhibits the extracellular releasing of HMGB1 and
improves inflammation (Hwang et al., 2015). Lan et al.
(2017) shows that the enhancement of SIRT1
significantly inhibits HMGB1-mediated inflammatory
pathway and alleviates lung injury in CLP mice. In
contrast, inhibition of SIRT1 leads to hyperacetylation of
HMGB1 and promotes its extracellular release (Hong et
al., 2018；Kim et al., 2018), suggesting that inhibition
of HMGB1-mediated inflammatory pathway may be an
important mechanism for SIRT1 to improve sepsis.
SIRT1 and other signaling molecules

Several studies have shown that miRNAs and
lncRNAs are involved in both proinflammatory and
anti-inflammatory responses in sepsis (Zhou et al.,
2015; Mao et al., 2015). It is reported that SIRT1 can
regulate miR-92 through the modulation of their
upstream TFs under oxidative stress (Chen et al.,
2013). Other studies have shown that SIRT1 can
regulate memory and plasticity via its suppression of
miR-134 by cooperating with YY1 (Gao et al., 2010).
Besides, miR-132 can increase the acetylation levels of
a SIRT1 target gene to regulate chemokine production
(Strum et al., 2009). In addition to alleviating sepsis
through the above pathways, SIRT1 has also been
reported to inhibit the expression of lncRNA-CCL2 via
sustaining a repressive chromatin state in the lncRNA-
CCL2 locus, and down-regulating lncRNA-CCL2 and
then reducing the expression of inflammatory cytokines
(Jia et al., 2018). Sui et al. (2016) showed that SIRT1
can inhibit the NLRP3/IL-1β axis in the hippocampus
of septic mice, and suppress the development of brain
diseases associated with sepsis. Other studies have
shown that SIRT1 significantly promotes the
deacetylation of p53, heat shock protein 1 (HSF1) and
H4K16, and reduces inflammation (Chen et al., 2016;
Wang et al., 2017a).
The application prospect of SIRT1 in the treatment of
sepsis

SIRT1 activators and inhibitors have been
discovered and been used in molecular biological
research, which may become a promising drug for the
treatment of sepsis. At present, SIRT1 activators include
paclitaxel, resveratrol, SRT1720, etc. SIRT1 inhibitors
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include Ex-527, AGK2, etc. (Dai et al., 2018).
Resveratrol is a potential SIRT1 activator with anti-
inflammatory effect. Studies have shown that resveratrol
can reduce the expression of VCAM-1, ICAM-1, CRP
and other molecules by inhibiting the activity of purified
human proteasome (X, Y, Z) and immune proteasome
(LMP7, LMP2, LMP10), and then decreasing organ
damage during sepsis (Silswal et al., 2017). Moreover,
changes of vascular permeability induced by LPS can be
relieved by RhoA-ROCK-MLCP pathway (Wang et al.,
2017a,b), and alleviates microcirculation disorders and
multiple organ damage. Li et al. (2013a,b) also reports
that resveratrol can reduce pulmonary edema in LPS-
induced septic mice and improve lung function as well
as reduce pathological changes of lung. SRT1720
reduces ROS production by activating SIRT1. It reverses
hemodynamic changes and microvascular barrier
dysfunction in sepsis. It then reduces the production of
pro-inflammatory cytokines and reduces the activation
of inflammasome, which finally reduces multiple organ
damage in septic mice (Khader et al., 2017；Zhang et
al., 2017). In addition, some medicines can suppress
inflammation and oxidative stress to effectively improve
sepsis and to decrease mortality by increasing the
activity of SIRT1. Qi et al. (2017) find that salidroside
can reduce the release of HMGB1 through activating
AMPK-SIRT1 signaling pathway. It inhibits HMGB1
acetylation and nuclear cytoplasmic metastasis,
ultimately reducing lung injury in septic rats.
Cudratricusxanthone A (CTXA) reduces the acetylation
of FoxO1, p53 and NF-κB/p65 by activating SIRT1
signaling, and finally suppresses inflammation and
sepsis-induced liver damage (Lee et al., 2018). However,
with one study of sepsis, it is found that most people
who survived early sepsis are often susceptible to
opportunistic pathogens and new serious infections
(Boomer et al., 2011). But this is highly controversial. In
spite of this, it would be better if patients could receive
stage-specific treatment. The role of SIRT1 in sepsis also
depends on the stage of sepsis. Unlike in the early stage,
SIRT1 may be harmful during the adaptation stage. It
has been reported that the inhibition of SIRT1, but not
activation, may be a new method for the treatment of
sepsis. Inhibition of SIRT1 can enhance immunity and
improve prognosis (Vachharajani et al., 2014a). Liu et al.
(2015) used TLR4 to stimulate human THP1 cells to
simulate the adaptation stage of sepsis, and found that
inhibition of SIRT1 by SIRT1 blocker Ex-527 in the
sepsis adaptation stage can reverse energy metabolism
changes caused by sepsis, increase the mitochondrial
biogenesis, improve the development of sepsis, and
prolong survival time. Other studies have shown that
after sepsis mice go from high inflammation to low
inflammation and immunosuppression, blocking SIRT1
can save almost all mice and reverse the abnormal
adhesion of MVI leukocyte (Vachharajani et al., 2014b).
This kind of difference may indicate that the treatment of
sepsis should be based on the stage of sepsis, which
means stage-specific treatment is necessary. 

Conclusion

Sepsis is a major problem in critical care medicine,
which seriously endangers human life and health. Till
now, the prevention and treatment of sepsis is not very
effective. SIRT1 could be a breakthrough to understand
the pathogenesis and referred signaling pathways of
sepsis. With the deepening of research, the role of SIRT1
in acute inflammation and sepsis is becoming more and
more prominent. Recent studies indicate that SIRT1 can
improve sepsis and survival by regulating multiple
signaling pathways such as NF-κB, MAPK, JAK/STAT
and PI3K/Akt. However, SIRT1 may be harmful during
the adaptation stage. The mechanism of SIRT1 in sepsis
is complex and still needs further understanding.
Nevertheless, with the continuous understanding of it,
SIRT1 may become a promising factor in the treatment
of sepsis.
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