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ABSTRACT
Atomic Read-Modify-Write (RMW) instructions are primitive syn-
chronization operations implemented in hardware that provide
the building blocks for higher-abstraction synchronization mecha-
nisms to programmers. According to publicly available documen-
tation, current x86 implementations serialize atomic RMW opera-
tions, i.e., the store buffer is drained before issuing atomic RMWs
and subsequent memory operations are stalled until the atomic
RMW commits. This serialization, carried out by memory fences,
incurs a performance cost which is expected to increase with deeper
pipelines.

This work proposes Free atomics, a lightweight, speculative,
deadlock-free implementation of atomic operations that removes
the need for memory fences, thus improving performance, while
preserving atomicity and consistency. Free atomics is, to the best of
our knowledge, the first proposal to enable store-to-load forwarding
for atomic RMWs. Free atomics only requires simple modifications
and incurs a small area overhead (15 bytes). Our evaluation us-
ing gem5-20 shows that, for a 32-core configuration, Free atomics
improves performance by 12.5%, on average, for a large range of par-
allel workloads and 25.2%, on average, for atomic-intensive parallel
workloads over a fenced atomic RMW implementation.

CCS CONCEPTS
• Computer systems organization→Multicore architectures;
• Theory of computation→ Parallel computing models.
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1 INTRODUCTION
Atomic Read-Modify-Write (RMW) instructions are primitive syn-
chronization operations provided by most instruction set architec-
tures (ISA), such as x86 [26], IBM Power [25], ARMv8 [4] (since
v8.1), and RISC-V [55]. Atomic RMWs are used either directly by
programmers or by operating-system libraries to provide higher-
abstraction synchronization mechanisms to programmers. These
synchronization mechanisms include mutually exclusive locks, bar-
riers, and other mechanisms used to negotiate mutual exclusion
among threads in parallel applications [23].

According to public documentation, current x86 processors im-
plement atomic RMWs by (1) acquiring exclusive permission for the
corresponding cacheline, (2) locking that cacheline (cache locking in
Intel terminology) thus preventing other cores from accessing the
same cacheline by denying their coherence requests, (3) reading-
modifying-writing a new value into the cacheline, and (4) unlocking
the cacheline [26].

Still according to documentation, those atomic RMWs serialize
all outstanding load and store operations, i.e., wait for them to
commit [26]. This means that the store buffer (SB) is drained before
an atomic RMW issues [39], and that subsequent memory opera-
tions cannot perform until the atomic RMW writes and releases
the cacheline lock. This serialization, easily implemented by sur-
rounding the atomic RMWs with memory fences [41], degrades
performance.

Figure 1 quantifies that cost, split into cycles waiting to drain
the SB (Drain_SB) and cycles waiting for the atomic RMW to com-
mit (Atomic) as measured in our simulation infrastructure using
gem5-20 [36] and running Splash-3 [47], Parsec-3 [8], and a modern
suite of write-intensive benchmarks [20, 30] (see Section 5.1 for
detailed information). The average cost of atomic RMWs, domi-
nated by Drain_SB cycles, is generally more than 100 cycles for
Skylake (224-entry reorder buffer –ROB–) and increases for Icelake
(352-entry ROB). In some applications, the cost per atomic RMW
can be much higher (e.g., almost 700 cycles for fft and radix and
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Figure 1: Cost in terms of performance of atomic RMWs

almost 400 cycles for ocean_ncp and canneal). A previous study [41]
reported a cost of 67 cycles for a Sandy Bridge machine (168-entry
ROB). This is consistent with our observation that the latency of a
fenced implementation of atomic RMWs increases with the ROB
size. Despite their importance [5], little effort has been dedicated
in the literature to optimizing atomic RMWs.

A key observation of this work is that the main role of fences
surrounding atomic RMWs as defined by the x86 architecture is
not to enforce order between memory operations, but to disable
any memory-related speculation mechanism by running the atomic
RMWs in isolation. The reason is that the total store order model
(TSO), supported by x86 (x86-TSO) [49], already enforces ordering
across atomic RMWs, since both load→load and store→store orders
are enforced and atomic RMWs guarantee the atomic execution of
the load and store. Hence, no loads or stores would appear to be
reordered across atomic operations, even in the absence of fences
(see Section 3.2.3 for details).

This work explores the feasibility of executing atomic RMW
instructions concurrently and out-of-order, that is, ignoring the
memory fences introduced in the ISA specification, while enforcing
x86-TSO semantics. To this end, we propose Free atomics, atomic
RMWs without memory fences. On the one hand, Free atomics
lock their target cacheline, and are therefore never cancelled due
to incoming invalidations or other external events, thus prevent-
ing starvation scenarios. On the other hand, Free atomics execute
speculatively, avoiding unnecessary costs such as draining the SB
before issuing subsequent instructions, while still enforcing the
memory consistency model and providing atomicity guarantees
(Section 3.4). However, unfencing atomics while performing cache
locking introduces deadlock scenarios. We elaborate on deadlocks
that Free atomics can face and how to avoid them in Section 3.2.

This work focuses on the x86-TSO memory model. Indeed, in
weaker memory models, such as the ARMv8 model, the fences
applied to atomic RMWs (e.g., acquire and release fences can be
added to fetch-and-add as needed in ARMv8.1) actually entail a
stronger ordering. Therefore, removing the fences would be a more
involved process, because by default, the implementation will not
provide the “safety net” that is used to implement stronger models.

The main contributions of this work are:
• Amechanism to efficiently squash atomic RMW instructions that
collectively hold multiple cacheline locks.

• An exhaustive description of possible livelock and deadlock sce-
narios that may appear when executing memory operations (in-
cluding atomic RMWs) out of order, and simple solutions to
recover from such deadlocks.

• Enabling store-to-load forwarding from/to atomic RMWs, while
enforcing both atomicity and consistency. This allows Free atom-
ics to be executed after each other without relinquishing the
permission of the target cacheline, improving performance by
increasing lock locality.
We evaluate Free atomics using the gem5-20 full-system simu-

lator, showing performance improvements of 12.5%, on average,
for a large range of parallel workloads and 25.2%, on average, for
atomic-intensive parallel workloads, over a fenced atomic RMW
implementation for a 32-core system. This is achieved with a simple
implementation of just 15 bytes.

2 BACKGROUND
At the ISA level, there are two main alternatives when designing
atomic memory operations, which are independent of the memory
consistency model enforced by the system: atomic RMW instruc-
tions and load linked/store conditional (LL/SC) pairs. Atomic RMWs
are single instructions that offer direct support for atomic opera-
tions such as fetch-and-increment, test-and-set, and compare-and-
swap [37]. LL/SC [29] are pairs of instructions that can be used to
implement, in software, the same atomic operations. The key differ-
ence is that since LL and SC are distinct architectural instructions,
the primitive (usually LL–op–SC) is interruptible (e.g., a context
switch may take place in between), whereas an atomic RMW in-
struction is not. Moreover, an LL/SC pair will fail due to relevant
external events such as coherence invalidations and cache evictions.
As a consequence, LL/SC pairs are commonly enclosed in a spin
loop that exits when the store conditional succeeds. Conversely,
from the programmer’s perspective, atomic RMWs always succeed.
This gives an advantage to atomic RMW instructions by simplify-
ing the code but more importantly, by avoiding the need for any
cleanup at the software level should an LL/SC pair be interrupted
before succeeding or failing.

Atomic RMW instructions are supported by architectures such as
x86 [26] (“locked atomic operations”), IBM Power [25], ARMv8 [4],
and RISC-V [55] (“atomic memory operations” or AMO). A conser-
vative way to implement atomic RMW instructions is to execute
them in isolation with other memory operations, i.e., all load in-
structions must commit and all store instructions must be drained
from the SB before the execution of the atomic RMW. Moreover, a
cache locking mechanism is triggered once the read-write permis-
sion has been acquired for the corresponding cacheline in order
to guarantee atomicity [11, 26, 39]. In this case, locking entails
preventing any remote request from invalidating or modifying the
cacheline.

Figure 2 describes the execution of a fetch-and-increment atomic
RMW instruction (Fetch&Inc) according to the x86 architecture
specification, that is decoded into five micro-operations (µops) [1,
48], explained below:

1. Mem_Fence1: This memory fence guarantees that the load
µop of an atomic RMW (i.e., load_lock) does not issue until
all previous memory operations commit and exit the SB. This
has a high performance cost (see Drain_SB in Figure 1). Fur-
thermore, this fence protects atomic RMWs against squashes,
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Figure 2: Implementation and execution of atomic RMWs. Instructions and µops follow the gem5-20 naming convention.

for example, due to mispeculation caused by a previous mem-
ory instruction. Finally, it also protects against deadlock sce-
narios that may arise when the cacheline lock is taken before
emptying the SB, as first described by Rajaram et al. [41].

2. Load_Lock: This µop is an ordinary load for which some
memory flags have been set to indicate its responsibilities
and specific features [1, 36]. First, it cannot execute specula-
tively, that is, it is not issued until all previous instructions
have committed. This guarantees that the load_lock cannot
be squashed. Second, it acquires read-write coherence permis-
sion for the target cacheline (not just read permission), as it
is always followed by a store operation [37]. Third, it locks
the cacheline, preventing both local and external requests
from accessing the cacheline.

3. Add: This is the arithmetic or logical µop (depends on the
atomic RMW, e.g. atomic_fetch_add [27, 31]). Due to data
dependencies, it cannot issue until the load_lock performs,
i.e., reads the value from memory.

4. Store_Unlock: When it performs (after committing), this
µop writes the data to the target cacheline, unlocks it, and
leaves the SB. This makes the cacheline available to other
memory requests (either local or external) [39].

5. Mem_Fence2: This fence prevents younger loads from issuing
until the atomic RMW commits [26, 52]. There is a perfor-
mance penalty associated with the wait time of subsequent
loads (see Atomic in Figure 1).

3 FREE ATOMICS
Free atomics aim to improve the performance of atomic RMWs
by removing the fences surrounding them and allowing them to
execute partially out-of-order. We iteratively build three flavours
of Free atomics: first, we allow out-of-order speculative execution,
second, we remove the fences surrounding atomic RMWs, and
third, we enable store-to-load forwarding to/from atomic RMW
instructions.

3.1 Allowing out-of-order speculative execution
As memory fences only impose order among memory operations,
atomic RMW instructions, and specifically load_lock µops, could
in fact issue before becoming the oldest instruction in the pipeline,
thus potentially executing out-of-order. Doing so, however, implies

CondBrLdLA
***StUA Add

ROB

Commit

A

...

2 Gets "unlock_on_squash"
responsibility

3 Mispredicted!

Squash

4 Release locked

cacheline D-Cache

1 Read

& Lock A

Figure 3: Unlock on squash

that the atomic RMW instruction may now be squashed due to
branch mispredictions or exceptions.

When an instruction is squashed, the micro-architectural state
updates performed by the squashed instruction have to be can-
celed [26]. The µops comprising an atomic RMW instruction are
similar to other µops in this aspect. Squashing them is straight-
forward, except for the cache locking mechanism. With specula-
tive execution of atomic RMW instructions, it is possible that the
load_lock has (speculatively) locked the target cacheline prior to
being squashed. At this time, the store_unlock cannot have per-
formed. Therefore, we must provide a mechanism to unlock the
cacheline if the atomic RMW instruction is squashed, otherwise,
the cacheline would remain locked and inaccessible to other mem-
ory requests forever, and the system would eventually deadlock.
To address this, each load_lock that successfully locked its target
cacheline is assigned the unlock_on_squash responsibility. When
the load_lock squashes, it unlocks the cacheline by carrying out the
same action that would have been carried out by the store_unlock
when performing. Figure 3 shows the squash of an atomic RMW
operation to address 𝐴. The load_lock (𝐿𝑑𝐿) that is responsible for
unlocking its target cacheline is squashedwhen an older conditional
branch (𝐶𝑜𝑛𝑑𝐵𝑟 ) is found to have been mispredicted. Then, the lock
is lifted and all subsequent µops, including the store_unlock (𝑆𝑡𝑈 ),
are squashed.

As we show in Section 5, issuing atomics (with fences) out-of-
order from control-speculative paths does not provide significant
performance gains. This is because branches tend to resolve fast
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if they do not depend on loads, or if the load they depend on has
already obtained data. Therefore, issuing a fenced atomic RMW
speculatively offers little performance advantage. However, the
ability to issue an atomic RMW speculatively and out-of-order
paves the road for our next optimization: removing the fences.

3.2 Unfencing
Fences surrounding atomic RMWs do not aim to enforce x86-TSO
consistency, since the load_lock and the store_unlock are performed
atomically, which means that the load_lock cannot execute ahead of
previous stores. The fences instead disable speculative re-ordering
mechanisms for memory operations, such as speculative load→load
reordering [19]. This section demonstrates that such fences can be
completely removed and resolves the associated challenge: prevent-
ing livelocks and deadlocks.

3.2.1 Concurrency and correctness. Unfencing gives the opportu-
nity to execute local memory requests concurrently with atomic
RMWs. Some of these requests may target cachelines that are al-
ready locked. Preserving atomicity does not require to lock the
cacheline against local requests, i.e., coming from the core that
locked the cacheline. Hence, Free atomics enable local accesses to
locked cachelines, which is not possible when using fenced atomic
RMWs.

Local loads older than a Free atomic can freely read from a locked
cacheline without jeopardizing atomicity, since they will always
read the value before the RMW operation (stores perform after the
loads). This is a safe behaviour since in an in-order execution the
cacheline would not be locked at the time the load performs. In
case the atomic is squashed, the loaded data remains correct data
and the older load is unaffected.

Similarly, local loads younger than a Free atomic can safely read
from a locked cacheline. If the load accesses the same (or overlap-
ping) bytes as the Free atomic, it should get the data through con-
ventional store-to-load forwarding from the previous store_unlock
if the data is ready. Otherwise, if obtaining the data from memory,
it will be squashed when the store_unlock resolves its address as a
consequence of a memory dependence misprediction. If the load
accesses different bytes than the Free atomic, reading the data does
not compromise atomicity.

Local stores older than a Free atomic can also write into a locked
cacheline. In this case, it is guaranteed that the store targets differ-
ent bytes than the Free atomic. Otherwise, a memory dependence
misprediction would have been detected when the store calculated
its target address, thus squashing the Free atomic. If the memory
dependence prediction is correct or the store address is known
at the time the Free atomic performs, the Free atomic load_lock
is re-scheduled,1 preventing it from executing when a previous
store to the same address is in flight. This condition is relaxed in
Section 3.3.

Local stores younger than the Free atomic will always perform
the write after the Free atomic, in order.

1A load_lock (or a normal load) is re-scheduled when it is not able to perform the
first time (e.g., cache miss). Re-scheduling assigns the responsibility of returning data
(and locking the cacheline for load_lock) to the load queue entry, through sending the
instruction to the memory pipeline a second time. We handle two consecutive atomic
RMWs to the same bytes in the same way.

3.2.2 Allowing concurrent execution of Free atomics. Free atomics
can speculatively execute out-of-order. It is therefore possible that
while a preceding Free atomic is outstanding (e.g., waiting to obtain
read-write coherence permission for the target cacheline, or waiting
for the store_unlock to perform), a younger Free atomic executes
and attempts to lock a cacheline. We enumerate three possible
scenarios, and highlight their implications:
• Multiple Free atomics target different cachelines. Implication 1:
The cache locking mechanism must support multiple cachelines.

• Multiple Free atomics access the same cacheline, but different
bytes: the cacheline is locked more than once. Implication 2:
Precise information about the number of Free atomics locking a
cacheline is required.

• Multiple Free atomics access the same (or overlapping) bytes,
(which implies that the cacheline is locked more than once), but
the cached data is stale from the point of view of the younger
load_lock. Implication 3: Younger atomic RMWs must read the
data stored by older atomic RMWs if their addresses overlap.
Section 4 presents a microarchitecture that implements Free

atomics by building on those implications.

3.2.3 Enforcing store→AtomicRMW→load order. In TSO mem-
ory model, load→load, store→store, and load→store orders are
preserved. Therefore, these orders are also enforced in the pres-
ence of atomic RMWs. Furthermore, atomic RMWs perform the
load (i.e., load_lock) and store (i.e., store_unlock) atomically. As
a consequence of these two implications, TSO should preserve
store→AtomicRMW→load order. However, the omitted store→load
order in TSOmight jeopardize the consistency definitions regarding
atomic RMWs when we blindly remove memory fences from the
micro-operations of atomic RMWs.

To guarantee store→load order across atomic RMWs, Free atom-
ics should enforce two sub-orders: a) store→AtomicRMW, and b)
AtomicRMW→load. The key aspects that guarantee those sub-
orders are that (i) Free atomics commit after draining older stores
from SB, so when the store_unlock enters the SB, it finds the SB
empty, and (ii) the target cacheline of a Free atomic is already
locked by the load_lock and the required write permission has been
obtained.

Store→AtomicRMW order is enforced by committing a Free
atomic only when the SB is empty. Yet, load_lock can speculatively
perform before an older store (that resides in SQ or SB) performs.
Since load_lock ensures that no remote core writes on its cacheline
from the time it performs, it is guaranteed that the value in memory
at the time of commit is the same as when performed, so the order
with previous stores is enforced.

For the AtomicRMW→load order it is important to note that
the store_unlock can first commit and then stay in the SB until it
writes to cache (which takes just the write latency as SB is empty).
However, during this time the target cacheline remains locked,
so no remote load or store can access it until the store_unlock
writes in cache and unlocks the cacheline. Moreover, any remote
write to the cacheline accessed by a load following the FreeAtomic,
while the Free atomic is not committed, would squash the load [19].
AtomicRMW→load is hence enforced.
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Yet, while the store_unlock waiting in SB to write in cache,
the speculative loads can commit after FreeAtomics commit (i.e,
in-order commit). However, these speculative loads can never be
reordered over older stores since they left the SB before the load
can commit, and the only store in the SB is the store_unblock.
Consequently, store→load order across Free atomics is preserved
as well.

3.2.4 Handling Livelocks by Preventing Evictions of Locked Cache-
lines. When executing memory requests concurrently with atomic
RMWs, cache evictions can take place while locks are held. Select-
ing a locked cacheline as a victim is tantamount to lifting the lock
and therefore squashing the atomic RMW. This can be a source of
livelock, as the eviction may happen indefinitely. Figure 4 depicts
one example of such livelock scenario. Two atomic RMWs lock
their respective cachelines, 𝐴 and 𝐵, which map to the same cache
set (1&2). When a third atomic RMW aims to lock a cacheline 𝐶
mapping to the same set (3b),𝐴 is selected for eviction first (3a). The
eviction causes the atomic RMW, and consequently all subsequent
instructions to be squashed (3c). This situation may repeat over
and over, thus creating a livelock scenario. To enforce liveness, we
guarantee that a locked cacheline is never selected as the victim by
the replacement policy. This restriction introduces new deadlock
scenarios in the presence of out-of-order RMWs execution, i.e., if
all ways of a cache set are locked and an older instruction (atomic
RMW or regular memory operation) needs to allocate a new cache-
line in the cache to retire. Those are handled through the deadlock
avoidance mechanism discussed next.

3.2.5 Squashing Atomic RMWs to Avoid Deadlocks. When execut-
ing atomic RMWs concurrently with other memory instructions, a
number of deadlock scenarios may appear. Rajaram et al. [41] re-
ports a deadlock scenario when atomic RMWs are executed before
draining the SB. We extend the deadlock analysis by showing new
deadlock scenarios introduced in Free atomics. We then present
a general solution that does not require changes in the coherence
protocol and that guarantees forward progress.

Deadlock analysis. We start our description with the arguably
most obvious deadlock, which is caused by re-ordering atomic
RMWs, similar to the problem of two threads trying to acquire
two software locks in the opposite order [12]. Figure 5 depicts a
RMW-RMW deadlock scenario, where younger load_locks execute
speculatively locking a cacheline, earlier than an older (in program
order) load_lock that still needs to acquire the lock. Core1 atomically
updates A and then B, while core2 atomically updates B and then A.

D-Cache

ROB Commit

B

1 Read &

Lock B

Core1

AddStUALdLBAddStUB LdLA

Waiting!
D-Cache

ROB

A

2 Read &

Lock A

Core2

AddLdLAStUBAddLdLB

Commit

3 GetX

StUA

4 GetX

Waiting!

Figure 5: RWM-RMW deadlock scenario

Core1 executes first 𝐿𝑑𝐿𝐵 and acquires the cache lock successfully
(1). Core2 executes first the 𝐿𝑑𝐿𝐴 and acquires the lock, too (2). The
deadlock happens because the 𝐿𝑑𝐿 of the older atomics cannot be
performed as the cacheline lock is held in another core, and cannot
commit; the 𝑆𝑡𝑈 of the younger atomic cannot commit and hence
be performed (stores perform after committing); and the cache locks
are never lifted (3&4).

We continue our analysis with the deadlock scenario reported
by Rajaram et al. [41], which may happen when atomic RMWs
acquire cacheline locks before the SB drains. Figure 6 depicts the
Store-RMW deadlock scenario. First, 𝐿𝑑𝐿𝐵 in core1 and 𝐿𝑑𝐿𝐴 in
core2 execute speculatively and lock two different cachelines (1&2).
Then, ordinary stores in the core’s respective SB try to obtain
write permission for the cachelines, which are already locked in
the other core (3&4). The GetX (get exclusive) coherence requests
generated by the stores can only be granted when the requested
cachelines are unlocked. The cachelines 𝐴 and 𝐵 will be unlocked
when the respective 𝑆𝑡𝑈 s perform and write their data. However,
since there is a stalled store at the head of each SB, both atomic
RMWs in core1 and core2 cannot commit and therefore their 𝑆𝑡𝑈 s
cannot perform (perform happens after commit) and unlock their
respective cachelines. Eventually, the system will deadlock. Stores
should ensure forward progress in order to avoid the deadlock.

Deadlock scenarios can also appear when atomic RMWs execute
before previous ordinary loads, as there may be no guarantee for
previous loads to perform and eventually commit. The only rea-
son a load cannot perform is when it finds a cacheline locked in
another core. Figure 7 depicts a load-RMW deadlock scenario. Core1
has locked cacheline 𝐵 (1) and Core2 has locked cacheline 𝐴 (2)
as a consequence of two atomic RMW instructions. The loads to
address 𝐴 in Core1 (Ld𝐴) and to address 𝐵 in Core2 (Ld𝐵 ) try to
access the cacheline which has been already locked in a remote
core (3&4). Therefore, the loads cannot perform and the subsequent
atomic RMWs cannot commit, so the cachelines remain locked for-
ever. Note that any combination of the previous scenarios, e.g., a
Load-RMW reordering in one core and a Store-RMW reordering in
another can similarly lead to a deadlock situation.

Finally, we discuss a deadlock situation caused by cache inclusion
properties, similar to the scenario discussed by MAD atomics [21].
The concept of cacheline locking is only considered for the core’s
private data cache. Indeed, locking a cacheline in the whole hier-
archy would incur significant latency and notably slow down the
common case (uncontended cacheline) by tens of cycles. As a result,
higher level caches such as the L2, the L3 and the directory (or
snoop filter) remain unaware of the fact that a cacheline is locked
in a private L1D. If any of those higher levels enforces inclusion
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–which is always the case of the directory– then a deadlock can
arise. Indeed, assume core0 has locked an L1D cacheline by specu-
latively performing a load_lock (𝐿𝑑𝐿) operation. Also assume there
exists an older unperformed store (𝑆𝑡 ) in the SB of core0: the store
is committed but waiting for write permission. The deadlock arises
if, at the directory, allocating an entry for 𝑆𝑡 leads to selecting the
entry relating to the locked cacheline as the victim. Because the
directory is inclusive, to evict the victim, all privately cached copies
have to be invalidated, including the copy that is currently being
locked in core0. Since locked cachelines cannot be evicted until
the atomic RMW is performed (Section 3.2.4), core0 will block the
invalidation request and the directory will not be able to allocate an
entry for the new cacheline, which will prevent the atomic RMW
from committing (and then unlocking the cacheline) due to the
non-empty SB, leading to a deadlock. While core0 could inform
the directory that it needs to pick another victim, this does not
solve the deadlock as it is possible for all possible directory victims
to actually be locked in private caches. Generally speaking, this
deadlock can be triggered at any inclusive cache, shared or not.

Solution. We address the depicted deadlocks with a single watch-
dog mechanism. Specifically, we implement a cycle counter that
is reset each time a load_lock performs (i.e., manages to lock a
cacheline). If the counter reaches a certain threshold and no atomic
RMWhas committed, the watchdog triggers a pipeline flush starting
from the oldest atomic RMW instruction that is holding a cacheline
lock. This mechanism is similar to the one used by DIVA [6] in
the context of –transiently– faulty hardware. This pipeline flush
unlocks all locked cachelines in the core, letting incoming coher-
ence request(s) and older unperformed memory operations left in
the pipeline progress. As Free atomics do not commit until the
SB drains, timeouts always find the older speculative Free atomic

holding a cacheline lock in the pipeline. We found Free atomics-
related deadlocks to be rare even with 32 cores. As a result, a large
timeout value (10000 cycles) results in firing just a handful of times
in specific applications (see Table 2).

Progress guarantees. Free atomics adhere to the following invari-
ant: only the core executing a Free atomic can squash it (thus lifting
the cache lock); invalidation requests from other cores that find the
cacheline locked have to wait until it is unlocked. That is, the deci-
sion of squashing a Free atomic always comes from within the core
executing the Free atomic. By squashing a Free atomic, a remote
request waiting for the newly unlocked cacheline will progress. In
other words, if a Free atomic is squashed and re-executed, it cannot
re-enter a deadlock scenario with the same memory instruction
that caused the initial deadlock that led to the squash.

3.3 Enabling store-to-load forwarding
Modern processors that execute loads out-of-order implement store-
to-load forwarding, letting loads obtain data from the youngest
previous store to the same address. This is a way to safeguard se-
quential semantics when previous stores have not written to cache
yet that does not stall loads as long as the store data is available.
Since fenced atomic RMWs execute in isolation, forwarding is not
possible.

However, Free atomics execute the load_lock in the presence
of previous unperformed stores, opening the possibility of for-
warding. Disallowing forwarding, as done in some IBM micro-
architectures [17, 24], is a sub-optimal alternative that prevents
MLP [46]. To extract maximum performance, Free atomics allow a
load_lock to read its data from previous unperformed stores, which
may benefit specific software idioms.

3.3.1 Forwarding from a store_unlock. When forwarding from a
store_unlock, correct execution is guaranteed by preserving atom-
icity between the forwarded (younger) Free atomic and the for-
warding (older) Free atomic. That is, both Free atomics perform
without releasing the cacheline lock. To keep the cacheline lock, the
forwarding store_unlock should not unlock its cacheline when per-
forming, but instead delegate that responsibility to the store_unlock
of the forwarded Free atomic. Hence, a do_not_unlock responsibility
is assigned to each store_unlock that forwards data to a load_lock,
making the store_unlock perform as an ordinary store. The for-
warded load_lock does not need to lock the cacheline as it is already
locked. The cacheline is eventually unlocked by the store_unlock
of the forwarded Free atomic.

Figure 8 depicts this scenario. First, 𝐿𝑑𝐿1𝐴 executes and locks the
cacheline 𝐴 (1). Then, 𝐿𝑑𝐿2𝐴 executes and accesses in parallel the
cache and the store queue (SQ).2 As 𝐿𝑑𝐿2𝐴 finds a match in the SQ
(2b), its request to the cache is discarded (2a).When 𝑆𝑡𝑈 1𝐴 forwards
data to 𝐿𝑑𝐿2𝐴 , 𝑆𝑡𝑈 1𝐴 sets the do_not_unlock responsibility (3).
When performing, 𝑆𝑡𝑈 1𝐴 just writes the new data to the cacheline,
leaving the cacheline locked (4). When 𝑆𝑡𝑈 2𝐴 performs, writes
and unlocks the cacheline 𝐴 (5), making it available for external
requests.

2The SQ contains all dispatched but not performed stores, while by SB we refer to the
part of the SQ that contains the stores that already committed.
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3.3.2 Forwarding from an ordinary store. The key for correctness
when forwarding from ordinary stores lies in the following obser-
vation made by Ros and Kaxiras [46]: When forwarding from a
store, the load effectively performs when the store writes to cache.
Free atomics should guarantee that when a forwarded load_lock
performs (i.e., the forwarding store performs) the target cacheline
is locked. Hence, a store that forwards data to a load_lock gets a re-
sponsibility called lock_on_access, which implies that the store must
lock the cacheline when it performs, on behalf of the load_lock.

Figure 9 depicts the described scenario. First, 𝐿𝑑𝐿𝐴 executes and
accesses the SQ and the cache. The cache request is discarded (1a) on
a SQ match (1b). When the store 𝑆𝑡𝐴 forwards data to 𝐿𝑑𝐿𝐴 , it gets
lock_on_access responsibility (2). When performing, 𝑆𝑡𝐴 locks the
cacheline (3) and writes the data. Eventually, when 𝑆𝑡𝑈𝐴 performs,
unlocks the cacheline (4).

3.3.3 Squashing a forwarded Free atomic. When a load_lock is
squashed, it must release its target cacheline lock (Section 3.1).
However, when a load_lock obtains its data through forwarding,
the forwarding store (either a store_unlock or an ordinary store)
becomes responsible for keeping the cacheline locked on behalf of
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Figure 10: Proof of type-1 atomicity usingDekker’s algorithm

the forwarded load_lock. Therefore, when squashing a forwarded
load_lock, if the forwarding store still resides in SQ, the responsi-
bility assigned to it (either do_not_unlock or lock_on_access) should
be taken back. Otherwise, the load_lock can freely perform the
unlock_on_squash, as the cacheline is guaranteed to be locked.

3.3.4 Chain of Forwarding. A forwarded Free atomic could also
forward the data to a subsequent Free atomic, thus creating a for-
warding chain of arbitrary length. This forwarding chain improves
lock locality by preventing other threads from stealing the cache-
line and allowing a number of Free atomics to perform without
releasing the cacheline lock. This, however, could lead to livelock
if the chain length is not controlled. Therefore, Free atomics only
permit a maximum number of consecutive forwarding (32 in our
evaluation).

3.4 Free atomics are Type-1 atomics
Rajaram et al. [41] define three types of atomicity for RMWs based
on the guarantees they provide. Type-1 is the strictest of the three
types and it is equivalent to fenced atomic RMWs. Specifically, type-
1 atomics prevent writes of any address from appearing between the
read and the write in the global memory order. We claim that Free
atomics adhere to the type-1 specification. A load_lock can perform
while older stores have not performed yet. However, the execution
is equivalent as executing the load_lock after all previous stores
perform since i) reading the value implies that it cannot be modified
by any write, as remote writes see the cacheline locked and local
writes to the same memory location as the load_lock would squash
the load_lock due to a memory-dependence violation and ii) the
load_lock does not commit until the SB drains (see Section 3.2.3).

Let us consider the example provided by Rajaram et al. –Dekker’s
algorithm– using atomic RMWs as barriers, shown in Figure 10a
(Figure 1 in Rajaram et al. [41]). In the example, atomic RMWs
should prevent the loads from being reordered across the stores.
Free atomics enforce that behaviour by not committing before the
SB drains. Figure 10b shows a running example where both loads
have executed and read an old value (1&2). Both stores are still in
the respective SBs, preventing the Free atomics from committing.
A write to either address 𝐴 or 𝐵 (3a&4a) would cause an invalida-
tion in the other core cache (3b&4b) and consequently squash the
corresponding load, therefore enforcing store→load order across
Free atomics.
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4 HARDWARE IMPLEMENTATION
In a baseline implementation of atomic RMWs [26], a single cache-
line can be locked at any given time. However, in Free atomics,
multiple atomic RMWsmay speculatively execute and lock multiple
cachelines, or even the same cacheline multiple times. A hardware
implementation should therefore provide i) a way to determine
if a given cacheline is currently locked and ii) an efficient sup-
port for managing the responsibilities granted and revoked due to
forwarding and squashes.

4.1 Determining locked cachelines
To determine the currently locked cachelines, we introduce the
Atomic Queue (AQ), which is able to track multiple cachelines
(Implication 1 in Section 3.2.2). This queue is managed as a FIFO,
and can conceptually be seen as a subset of the SQ. Each entry
of the AQ relates to one Free atomic, that is, the load_lock and
store_unlock share the same AQ entry. An entry is allocated in
the AQ when a load_lock is dispatched to the LQ and the ROB,
and deallocated when the corresponding store_unlock performs its
write and leaves the SQ. A lack of free entry in the AQ when an
atomic RMW has to dispatch stalls the front-end (much like when
the SQ is full and a store needs to dispatch). Figure 11 depicts the AQ
along with the LQ and the SQ. Each AQ entry consists of i) a Locked
bit, ii) the L1D set/way where the locked cacheline resides, iii) a
sequence number to handle flushes and load_lock re-scheduling,
and iv) a pointer to the SQ (SQid) to handle forwarding.

4.1.1 Locking. When a load_lock obtains exclusive permissions
and performs it locks the cacheline by writing the L1D set and way
where the cacheline resides in its AQ entry and setting the Locked
bit.3 A cacheline locked multiple times will simply have its set and
way information present in multiple AQ entries (Implication 2 in
Section 3.2.2).

3The Locked bit expresses that the set/way fields are valid. However, if the number of
ways is not a power of two, a specific way encoding can be used to express set/way
invalidity rather than implementing a dedicated Locked bit.

4.1.2 Unlocking. When a store_unlock at the head of the SQ per-
forms, a signal is sent to the AQ to commit its head entry, which
corresponds to the Free atomic of the performing store_unlock.
This gracefully removes the lock imposed on the cacheline by this
particular Free atomic. Note that the cacheline may remain locked
if a younger load_lock targeting the same cacheline has already
performed. This process is shown by the Perform (on the SQ) and
Unlock (on the AQ) arrows on the right portion of Figure 11.

4.1.3 Searching. The AQ is searched associatively to determine
the locked cachelines in the following two cases:
• External request (AQ searched by set/way): When a remote re-
quest performs its cache access and determines a hit, the AQ is
associatively searched (unless it is empty). Only AQ entries with
the Locked bit set participate in the search. If at least one set/way
match is found in the AQ, the cacheline is already locked and
the remote request must be blocked or retried. This search is
performed via the first AQ set & way CAM port (bottom part
of Figure 11.

• Cache replacement (AQ searched by set): To prevent livelocks,
we must not replace a locked cacheline in the L1D. As a result,
the AQ participates in the replacement policy by being searched
using the L1D set as input and providing all ways stored in entries
that have Locked bit set and whose set matches the set suffering
the eviction. This search is performed via the AQ set CAM port
shown at the bottom of Figure 11. A suitable victim may not
always exist since all ways of the set can be locked, potentially
leading to a deadlock. Since in our implementation, the number
of entries of the AQ (4) is smaller than the associativity of the L1D
(12), this situation is not possible. If the AQ size is strictly greater
than the L1D associativity, a deadlock may arise as all ways can
be locked by younger load_locks, but the timeout mechanism
will eventually trigger and break this deadlock. The same applies
if the AQ size is same as the L1D associativity and all ways are
locked: If an older regular instruction needs to allocate in the L1D
to retire, it will not be able to do so, and the timeout mechanism
will also trigger.
Performing an associative search facilitates handling pipeline

flushes compared to keeping track of locked cachelines through
dedicated counters or L1D tag metadata: a squashed Free atomic
is flushed from the AQ (the same way any instruction is flushed
from ROB, LQ, SQ) and will therefore not participate in the search
anymore, automatically unlocking the cacheline. Flushing an AQ
entry only requires resetting the Locked bit. The sequence number
is used to determine the AQ flush point and to let re-scheduled
load_locks determine which AQ entry they relate to.

4.2 Managing store-to-load forwarding
Weprovide a generic implementation that supports both forwarding
from a previous store and from a previous store_unlock, which
covers Implication 3 in Section 3.2.2. Specifically, the SQid field
is populated when the corresponding load_lock forwarded from
either an ordinary store or a store_unlock. In this case, any set/way
information that it obtained from the cache if a hit took place is
ignored, and the Locked bit is untouched. When a store leaves the
SQ and writes to L1D, it broadcasts its SQid to the AQ, along with
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L1D set/way information. Any AQ entry that matches on the SQid
will capture the set/way information and the Locked bit, thereby
locking the cacheline.4 This mechanism, which relies on another
associative search port (on SQid), is shown at the exit of the SQ in
Figure 11 (perform time). The forwarding cases are detailed next:
• A regular store is performing, and it forwarded to a load_lock in
the AQ: that store has the lock_on_access responsibility (Section
3.3.2). Having the AQ capture L1D set/way information based on
the SQid will lock the cacheline, implementing lock_on_access
for the store.

• A store_unlock is performing, and it forwarded to a load_lock
in the AQ: the store_unlock retiring from the SQ is also retir-
ing from the AQ, meaning that it will release its lock on the
cacheline. However, since it forwarded to another Free atomic,
the lock should not be released. This is achieved by having the
AQ entry of the younger Free atomic capture the set/way infor-
mation based on the SQid broadcast by the SQ. This is tanta-
mount to having the older store_unlock perform both unlock and
lock_on_access responsibility (in this order), which is equivalent
to the store_unlock performing the do_not_unlock responsibility
(Section 3.3.1).

4.3 Storage Overhead and Complexity
The area requirements of Free atomics are minimal compared to
other structures in the core. Each AQ entry requires a total of 29 bits
for an Icelake-like design: locked bit (1 bit), L1D set/way locator (6+4
bits, for a 48K 12-way L1D), sequence number (9+2 bits for a ROB
below 512 entries with wrap around), and SQid (7 bits for a 72-entry
SQ). According to our sensitivity analysis over AQ size, 4 entries
is enough to provide the required concurrency for atomic RMWs
in the analyzed benchmarks, amounting to just 116 bits (15 bytes)
in total. The AQ has four CAM ports to implement the required
functionalities: one for invalidation requests (10-bit comparators
for set/way), one for replacement policy (6-bit comparators for
set), one to handle locking in the presence of forwarding (7-bit
comparators for SQid), and finally, for flushing and re-scheduling
(11-bit comparators for seqNum). This amounts to a total of 136 bit
comparisons. A 14-bit register to store the current timeout cycle
count is also needed.

5 EVALUATION
5.1 Methodology
We simulate a multicore processor consisting of 32 out-of-order
cores using the gem5-20 full-system simulator [36]. The simulated
system runs Ubuntu 16.04 with Linux kernel 4.9.4. The processor
parameters, mimicking an Intel Icelake processor, are shown in Ta-
ble 1. We use Ruby and SLICC to model the memory hierarchy with
a three-level MESI coherence protocol. The crossbar interconnect
is modeled with GARNET [3]. Execution latencies are modeled as
measured on real hardware by Fog [16]. We integrated a modified
McPAT [32, 56] into gem5 to measure energy consumption using a
process technology of 22nm, a voltage of 0.6V and the default clock

4A single AQ entry will generally match, but due to out-of-order execution, multiple
entries may –incorrectly– match. If so, a memory dependency misprediction occurs
and resolving it will gracefully restore the AQ state.

Table 1: System Configuration

Processor
Width Fetch/Decode 5 instr. Issue/Commit 10 𝜇ops
ROB, LQ, SQ 352, 128 entries, 72 entries
Predictors StoreSet [10], L-TAGE [50]
Processor prefetch At-commit store prefetch [54]

Memory
Private L1I 32KB, 8 ways, 1 hit cycle
Private L1D 48KB, 12 ways, 4 hit cycles, pipelined,

stride prefetcher [7]
Private L2 cache 256KB, 8 ways, 4 cycles tags, 10 cycles data
Shared L3 cache 16MB, 16 ways, 5 cycles tags, 45 cycles data
Directory 400% coverage, 16 ways
Memory 80ns access time
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Figure 12: Frequency of atomic RMWs per kilo-instruction

gating scheme for the core. We do not measure energy for uncore
(memory controller, network, etc).

We run parallel applications from the SPLASH-3 [47] (simmedium
inputs), PARSEC 3.0 [9] (simmedium inputs) and a suite of write-
intensive benchmarks [20, 30]. We pinned the threads to the cores
to prevent the scheduler from generating an unbalanced load. We
omit applications from PARSEC that did not finish execution on the
baseline gem5 simulator when running with 32 cores. In addition
we run Volrend from SPLASH-3 with simsmall input for the same
aforementioned reason. We report statistics for the region of in-
terest (ROI), that is, code after initialization and before output. We
account for variability by running applications ten times. Each run
is preceded by a randomized sleep timer to alter the architectural
state. We then remove the three slowest runs (outliers) and compute
the average of the other seven.

5.2 Frequency of Atomic RMWs
First, we analyze the frequency of atomic RMWs in the evaluated ap-
plications. Figure 12 shows the number of committed atomic RMWs
per kilo-instruction (APKI). The more an application uses atomic
RMWs, the more opportunity is given to Free atomics to improve
performance. Hence, in order to highlight the performance im-
provement achieved by Free atomics, we define as atomic-intensive
applications those that show at least 0.75 APKI. This includes 11 ap-
plications:three from SPLASH (radiosity, volrend, and barnes); two
from PARSEC (canneal and fluidanimate), and all write-intensive
benchmarks. Canneal synchronizes purely with atomic operations.
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Table 2: Characterization of Free atomics. MDV: Memory De-
pendency Violations as % of total squashes. FbA: Forwarded
by Atomic and FbS: Forwarded by Store as % of total atomics

Benchmark Omitted Time- MDV (% FbA (% FbS (%
Fences (%) outs squashes) atomics) atomics)

watersp 96.73 0 4.18 2.66 0.11
blackscholes 95.98 0 2.37 3.88 0.28
waternsq 99.63 2 3.04 25.15 0.01
freqmine 99.11 1 2.30 1.74 6.62
facesim 96.94 10 8.15 6.55 1.81

fft 98.50 1 3.32 0.70 9.85
raytrace 97.39 0 2.92 20.98 0.03
lu_ncb 95.74 0 5.70 4.73 0.03
lu_cb 95.70 9 6.91 3.56 0.03
radix 99.53 4 2.55 1.59 10.66

swaptions 99.91 0 1.31 0.08 0.02
ocean_ncp 97.24 21 2.32 3.72 2.38
ocean_cp 97.05 19 2.63 3.17 3.11
fmm 99.15 3 1.62 28.19 0.67

cholesky 96.98 6 1.98 8.78 0.86
TATP 95.34 0 0.15 12.36 0.001
PC 96.27 1 0.27 21.79 0.001

TPCC 96.65 0 0.42 17.01 0.0005
AS 96.35 0 0.45 16.91 0.003
CQ 95.84 3 0.47 9.19 0.26

barnes 97.50 2 0.40 31.16 0.01
volrend 96.42 5 1.56 8.85 0.02
radiosity 97.94 1 1.09 34.01 0.001

fluidanimate 99.98 1 0.69 37.37 0.0005
RBT 99.11 0 0.23 0.14 0.002

canneal 99.98 1 0.04 2.77 0.001
Average 97.58 3.46 2.19 11.81 1.41

Fluidanimate has millions of non-contended locks. Radiosity, vol-
rend, barnes and the write-intensive benchmarks utilize a consider-
able amount of locks and barriers for synchronization.

5.3 Characterization of Free Atomics
Table 2 characterizes Free atomics. The first column shows the
evaluated applications. The second column, shows that Free atom-
ics are able to omit virtually all the fences (97.58%, on average),
as the only fences in x86, disregarding the ones using for atomic
RMWs, are placed to ensure store→load order. The third column
shows timeout counts, that trigger in 17 out of 26 applications.
We employed a large timeout value to avoid unnecessary squashes
due to long-latency requests that eventually succeed in locking a
contended cacheline. Hence, the number of timeouts is extremely
low, peaking in ocean_cp and ocean_ncp. The fourth column shows
that only 2.19% of squashed Free atomics have violated a memory
dependency. In other words, the main reasons of squashing Free
atomics is due to branch misprediction. The fifth column presents
the percentage of Free atomics which resolved by store-to-load for-
warding from a preceding store_unlock. In some applications like
barnes, radiosity, and fluidanimate this number exceeds 30%. For in-
stance, in barnes the recursive function “walksub” is by far the most
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Figure 13: Locality of atomics

store-to-load forwarding intensive function, as this function uses a
pair of “pthread_mutex_lock” and “pthread_mutex_unlock” for in-
teractions between different nodes. Interestingly, store-forwarding
to Free atomics is generally carried out by a preceding Free atomic.
There are few cases (1.41%) where store-forwarding comes from an
ordinary store (sixth column).

5.4 Locality of Atomics
Figure 13 compares the locality ratio of Free atomics against base-
line atomic RMWs. Locality in this context relates to how many
times a load_lock finds the data in the SQ or with write permission
in the L1/L2. Free atomics increase hardware lock locality for all of
the evaluated applications, except fluidanimate. Furthermore, Free
atomics provide additional locality through store-to-load forward-
ing, while baseline atomic RMWs, on the other hand, rely merely
on local cache(s) to obtain local lock. In applications, like radiosity,
barnes, fmm, PC, and AS most of the lock locality is provided by
enabling store-to-load forwarding for atomic RMWs. Consequently,
the lock acquisition latency in Free atomics will be lower than in
the baseline atomic RMWs case. In addition to unfencing, enhanc-
ing lock locality inevitably translates to a further reduction of the
performance overhead of atomic RMWs, as shown next.

5.5 Performance Improvement
Figure 14 shows the execution time of Free atomics normalized to
baseline atomic RMWs. Each bar represents the inclusion of addi-
tional features over the previous design, starting with out-of-order
speculative execution (baseline+Spec), followed by removing fences
surrounding atomic RMWs (FreeAtomics), and finally enabling
store-to-load forwarding to/from Free atomics (FreeAtomics+Fwd).
The shaded fraction of the bar represents active CPU time of the
slowest thread, while unshaded represents its quiescent (i.e., sleep)
cycles, which appear when halt instructions are inserted by the
scheduler upon detecting idle cores.

The benefits of speculative execution are strongly application
dependent and vary from 4.96% gain for TATP to 1.48% loss for swap-
tions. The potential gains are limited since uncommitted load(s)
or unperformed store(s) preceding the atomic still prevent it from
issuing. In addition, in case there is no memory operation before
the atomic, the branches tend to resolve fast and therefore no signif-
icant performance gain is obtained from control-speculative paths
(with the presence of fences). Nevertheless, allowing out-of-order
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Figure 14: Normalized execution time. The bottom (shaded) part represents working time, while the top (light) part represents
sleep time.
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Figure 15: Normalized energy consumption. The bottom (shaded) part represents dynamic and the top (light) part represents
static energy of the processor.

speculative execution is necessary to take full advantage of unfenc-
ing.

By unfencing atomic RMWs, Free atomics breaks the stall im-
posed by draining the SB before issuing atomic RMWs. Furthermore,
Free atomics allows multiple atomic RMWs to concurrently lock
cachelines and enables local access to locked cachelines. Unfencing
provides the highest performance gain, with an average time re-
duction of 12.5% considering all applications and 25.2% when only
considering atomic-intensive (i.e., AI) applications.

Finally, by enabling store-forwarding, Free atomics improves lock
locality of atomic RMWs. This translates into a reduction in lock
acquisition latency, further reducing the performance overhead of
atomic RMWs, except for a few applications (e.g., facesim, raytrace,
PC). Two applications, TPCC and AS, show a reduction of over 40%
in their execution time, when using all Free atomics features. The
hotspot ofAS consists of a loop that selects two random data entries,
locks both entries, swaps their values and unlocks. Meanwhile,
TPCC creates a list of locks (randomized between 5 and 15 locks),
acquires them and performs some computations before unlocking.
A similar behavior is observed in TATP and PC (30% gain), but the
hotspot loop only acquires one lock entry per iteration. In all cases,
whenever there is contention for a lock between several cores,
the pipeline of the waiting cores stalls due to fences. However,
Free atomics allows for multiple atomic RMWs to run in parallel,
improving memory-level parallelism for atomic RMWs.

5.6 Energy Efficiency
A breakdown of the energy savings in processor (the shaded part
for dynamic and the light part for static) is presented in Figure 15.

Static energy savings are directly proportional to performance gains.
Dynamic energy is also improved due to two reasons. First, Free
atomics significantly reduces wasted energy in spinning thanks
to the reduction in the time atomics need to execute, mainly for
those applications that show high lock contention (TATP, PC, TPCC,
and AS). Second, to the increased locality of Free atomics due to its
unique store-to-load forwarding feature. Indeed, we observed less
committed instructions when using Free atomics with respect to
the baseline atomic RMWs implementation. These reductions lead
to average energy savings of 11% when considering all applications
and 23% for atomic-intensive (i.e., AI) ones.

6 RELATEDWORK
Moir [38] introduce restricted load-linked (RLL) and store-conditional
(RSC), that are then used to implement compare-and-swap (CAS) op-
erations. CAS operations are then used to implement regular LL/SC
pairs with reduced costs, even though efficient implementations of
multi-word LL/SC are proposed in [28]. These works discuss wait-
free primitives at the algorithm level, and provide little information
about hardware requirements for different consistency models.

Michael and Scott propose an efficient implementation of atomic
RMWs [37], that relies on compare-and-swap, implemented with
comparators in the caches, a write-invalidate coherence policy, and
an auxiliary load exclusive instruction. Our baseline configuration
is quite similar to this implementation. Designs from Intel [11, 26]
include locked atomic operations whereas IBM Power [25] and
RISC-V [55] include atomic memory operations (AMO). For x86
platforms, a detailed description of atomic RMWs can be found in
Sewell et al. [49].
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Speculative lock elision [42] can bypass the code (including
atomic RMWs) guarding critical sections. Atomic RMWs, however,
appear in other synchronization constructs (e.g., barriers, signal-
wait) and also as standalone operations. Free atomics eliminates
the cost of fences in all these cases.

Lin et al. [33] extend the ISA with Conditional Fences (C-Fences).
C-Fences use compiler information to decide at runtime if the fence
should be enforced or not. Conversely, we transparently remove
all fences associated to atomic RMWs.

Speculative and selective memory fences [53] combine optimiza-
tions to reduce wait time due to memory fences. First, write-ahead
and read-speculation let the execution window advance past a
fence while the fence is active (based on [18, 19, 22]). Second, se-
lective fences differentiate thread-local and shared data and con-
strain only the execution order among operations on shared data.
WeeFence [14] and Address-Aware Fences [34] let post-fence loads
commit before the fence. Deadlocks are avoided with significant
coherence protocol modifications, additional broadcast messages,
and the use of centralized structures.

Aga et al. [2] observes that the SB drain time is mainly dominated
by stores that miss in cache, and propose Zfences, a mechanism
that allows the on-chip directory cache to respond immediately
by sending a message granting coherence permission (without
data) for the requested memory write before a barrier. Fences are
prevented from committing only when the SB contains stores with-
out the coherence permission. Other proposals attempt to limit
the scope of addresses affected by a fence [35], or combine dif-
ferent types of fences in fence groups, weak fences and strong
fences, according to the criticality of a thread [13]. However, and
contrary to Free atomics, these proposals are not transparent to
the programmer/compiler and introduce programming challenges.
Moreover, Asymmetric fences [13] require checkpointing to recover
from deadlock scenarios. Asymmetric fences remain in the code,
as their presence is necessary to initiate checkpointing. However,
Free atomics completely remove the fence µ-ops without requiring
programmer intervention and with minimal changes (no check-
pointing, no coherence protocol modifications).

Deadlock avoidance has been also studied in proposals allow
loads [43, 45] and stores [44] to be non-speculatively reordered
while offering an ordered behaviour to the programmer. Writers-
Block [43] resolves the deadlocks by guaranteeing the loads always
to progress through tear-off copies. Non-speculative store coalesc-
ing [44] relies on a predetermined order of writes to solve deadlocks.
Applying a predetermined order to Free atomics could lead to a
reduction in timeouts, when a predetermined order in performing
the stores older than the Free atomic can be guaranteed.

Shull et al. [51] propose Execution Dependencies Extensions
(EDE) to eliminate fences. EDE requires extensions in the ISA to
encode dependencies detected by the compiler/programmer and
propagate them to the hardware. EDE targets fences used for per-
sistent memories.

Finally, Rajaram et al. [41] propose two weaker atomicity defini-
tions of RMWs with the goal of removing the cost of draining the
SB. They avoid deadlocks by broadcasting the list of addresses to
all cores and waiting for confirmation. Free atomics do not require
broadcasts nor protocol modifications and address the problem of
managing multiple cache locks (issuing multiple atomic RMWs)

with a simple implementation (i.e., Atomic Queue). Free atomics
further enable local accesses to locked cachelines and store-to-load
forwarding to/from atomic RMWs (similar to [40] but in hardware)
including from regular stores to atomics while other proposals
only allowed forwarding from store unlock to regular loads [15].
All this is achieved without relaxing atomic semantics, which en-
ables a seamless and transparent substitution in all synchronization
idioms.

7 CONCLUSION
This work proposes and evaluates Free atomics, atomic RMW in-
structions implemented in hardware that are not surrounded by
fences. We show that Free atomics can be executed speculatively
while respecting consistency and atomicity, and discuss and address
the implications of speculative and concurrent execution on correct-
ness. Free atomics benefits from available memory-level parallelism
and enables store-to-load forwarding, thus improving lock locality.
Overall, Free atomics improves performance by 12.5%, on average,
for a large range of parallel workloads and 25.2%, on average, for
atomic-intensive parallel workloads over a fenced atomic RMW
implementation.
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