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Resumen

Este trabajo está dedicado al estudio de desigualdades geométricas discretas y, en particular, a la dis-
cretización de desigualdades en el campo de la Geometría Convexa. En este contexto, por discretización
hacemos referencia al proceso de obtención de análogos de desigualdades ya conocidas en Geometría
Convexa, preservando la estructura y cualidades originales en la medida de lo posible, en un marco en el
que el espacio ambiente, las medidas involucradas, los objetos de estudio, los funcionales implicados,
o cualquier combinación de éstos, son discretos. Conviene aclarar que, en el campo de la Geometría
Discreta, “discreto” se entiende a menudo en un sentido más restrictivo que el topológico habitual. En
concreto, diremos que un conjunto es discreto si existe una distancia mínima universal entre cualquier
pareja de puntos del conjunto.

Por razones operacionales, habitualmente es necesario asumir una mayor estructura aparte de la
discreción del espacio ambiente. En particular, es común considerar que el espacio sea también un grupo
aditivo. Un conjunto verificando las dos propiedades anteriores es un “retículo”. Trabajaremos con
retículos embebidos en Rn, y como dichos retículos son precisamente las imágenes lineales del retículo
entero Zn, la mayor parte del análisis en este trabajo se centrará en el mismo, indicando ocasionalmente
cómo adaptar los resultados al caso general de retículos arbitrarios.

De todos los posibles marcos de trabajo en el contexto anterior, quizá los dos más comunes sean el
estudio de subconjuntos finitos de Zn con la medida de cardinalidad | · |, y el estudio de subconjuntos
acotados de Rn con la medida dada por el “enumerador de puntos del retículo” Gn(·) = | ·∩Zn|. Nuestro
trabajo se centra principalmente en éste último, aunque el primero cobrará especial relevancia en el
capítulo 2.

Además de preservar la estructura general de las desigualdades durante el proceso de discretización,
procuraremos a menudo obtener la propiedad adicional de que las nuevas desigualdades permitan recuperar
las originales en el contexto continuo. Esto, aparte de proveer un indicador general de la calidad de la
discretización, proporciona un potencial método alternativo de progresar en el contexto continuo. Para
este propósito el enumerador de puntos del retículo es particularmente apropiado, ya que tiene un mejor
comportamiento con respecto a la dilatación de conjuntos, y buena parte de los métodos para obtener
versiones continuas de desigualdades a partir de análogos discretos derivan de argumentos estándar de
integración Riemann, o de otras aproximaciones de teoría de la medida, que pasan precisamente por
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dilatar los conjuntos implicados y tomar límites. En cualquier caso, en ocasiones esto también puede
llevarse a cabo únicamente con la cardinalidad.

La estructura general de la tesis es la siguiente. Por un lado, los primeros tres capítulos se ocupan
de la discretización de tres conocidas desigualdades en Geometría Convexa, a saber, la desigualdad de
Brunn-Minkowski, la desigualdad isoperimétrica y la desigualdad de Rogers-Shephard, respectivamente.
El último capítulo, por otro lado, parte ya de un origen discreto, el segundo teorema de Minkowski,
aunque también puede entenderse como un proyecto de discretización, dado que está dedicado a conectar
el funcional volumen con el enumerador de puntos del retículo mediante los mínimos sucesivos de
Minkowski (véase la definición 4.1), así como a obtener un análogo del segundo teorema de Minkowski
para este último funcional.

La estrategia del proceso de discretización empleado en los tres primeros capítulos fue introducida en
varios artículos recientes, incluyendo [63, 69], dedicados a la desigualdad de Brunn-Minkowski. Esta
desigualdad afirma que para cualesquiera conjuntos compactos no vacíos K,L ⊂ Rn (aunque el resultado
es cierto para familias más generales de conjuntos medibles) se tiene que

vol
�
(1−λ )K +λL

�1/n ≥ (1−λ )vol(K)1/n +λ vol(L)1/n.

Es fácil ver que los evidentes candidatos discretos
��(1−λ )A+λB

��1/n ≥ |A|1/n + |B|1/n,

para conjuntos finitos A,B ⊂ Zn, y

Gn
�
(1−λ )K +λL

�1/n ≥ (1−λ )Gn(K)1/n +λ Gn(L)
1/n,

para conjuntos acotados no vacíos K,L ⊂ Rn, no son ciertos en general. Por tanto, si uno quiere mantener
intacta la estructura de la desigualdad, es preciso alterar los conjuntos implicados. Los autores de los
artículos anteriormente mencionados mostraron que, extendiendo los conjuntos de la cota superior de
forma apropiada, las desigualdades podían cumplirse en general. En particular, en [69] se demostró que
para todo par de conjuntos acotados no vacíos K,L ⊂ Rn, y cualquier λ ∈ (0,1), se tiene

Gn
�
(1−λ )K +λL+(−1,1)n

�1/n ≥ (1−λ )Gn(K)1/n +λ Gn(L)
1/n.

La desigualdad es ajustada, y el cubo sumado no puede reducirse. Asimismo, implica la desigualdad de
Brunn-Minkowski clásica. Esta idea, y algunos de los principios subyacentes, constituyen los cimientos
de gran parte de los resultados de discretización contenidos en los tres primeros capítulos.

En el capítulo 1 comenzamos obteniendo una versión de la última desigualdad para coeficientes
positivos arbitrarios. En concreto, en el teorema 1.2 mostramos que

Gn
�
tK + sL+(−1,�t + s�)n

�1/n ≥ t Gn(K)1/n + sGn(L)
1/n

para todo t,s ≥ 0 y cualesquiera conjuntos acotados no vacíos K,L ⊂ Rn con Gn(K)Gn(L) > 0. Esta
extensión, que en el contexto continuo se sigue de forma trivial de la homogeneidad de orden n del
funcional volumen, ha de ser probada independientemente en el caso discreto, ya que el enumerador de
puntos del retículo no es homogéneo. La prueba, no obstante, se basa en las mismas ideas. En concreto,
primero se obtiene una versión discreta de una desigualdad funcional más general, conocida como la
“desigualdad de Borell-Brascamp-Lieb” (véase el teorema 1.3). Particularizando esta desigualdad con las
funciones apropiadas (específicamente, con las funciones características de los conjuntos involucrados),
se desprende el resultado buscado. La extensión de conjuntos mediante la suma de cubos en el marco
geométrico se traslada de forma natural al marco funcional definiendo una extensión particular de
funciones por medio del producto de Asplund (véase (4)).
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Tras esto, extendemos los análogos discretos anteriores al marco Lp, para un parámetro p ≥ 1. Este
marco, en el campo de la Geometría Convexa, fue introducido por Firey en los años 60 al definir una
extensión apropiada de la suma de Minkowski, la p-suma +p (así como el producto p-escalar ·). Esta
operación estaba originalmente restringida a los conjuntos compactos y convexos conteniendo al origen,
sin embargo, más tarde fue generalizada por diversos autores a conjuntos acotados no vacíos arbitrarios.
En este contexto, se verifica que para toda pareja de conjuntos compactos no vacíos K,L ⊂ Rn, todo
λ ∈ (0,1) y cualquier p ≥ 1,

vol
�
(1−λ ) ·K +p λ ·L

�
p/n ≥ (1−λ )vol(K)p/n +λ vol(L)p/n.

Aquí demostramos en el teorema 1.10 que, de modo análogo, para todo λ y p en las mismas condiciones,
y para cualesquiera conjuntos acotados no vacíos K,L ⊂ Rn con Gn(K)Gn(L)> 0,

Gn
�
(1−λ ) ·K +p λ ·L+(−1,1)n

�
p/n ≥ (1−λ )Gn(K)p/n +λ Gn(L)

p/n.

Como antes, el cubo no puede ser reducido (ni tampoco p-sumado, véase la observación 1.15), la
desigualdad es óptima, e implica su análogo continuo para el volumen (véase el teorema 1.19). El
enfoque consiste nuevamente en obtener primero una versión funcional discreta más fuerte, en concreto,
una desigualdad discreta de tipo Lp Borell-Brascamp-Lieb (véase el teorema 1.12), la cual implica su
correspondiente versión continua (véase el teorema 1.18), para luego particularizarla.

Concluimos el capítulo estudiando el marco anterior para valores del parámetro p entre 0 y 1. En este
contexto, la definición de la p-suma ha de ser nuevamente ajustada, esta vez, por medio de la llamada
“forma de Wulff” de una función (véase (3)). Para p = 0 en particular, esto da lugar a un problema
conocido habitualmente como la “conjetura log-Brunn-Minkowski” (véase [26]), que afirma que para todo
λ ∈ (0,1) y para cualesquiera conjuntos compactos, convexos y simétricos respecto del origen K,L ⊂ Rn

se tiene que
vol

�
(1−λ ) ·K +0 λ ·L

�
≥ vol(K)1−λ vol(L)λ .

La conjetura ha sido demostrada en varios escenarios, incluyendo el caso plano en el artículo original
[26], y el caso en el que los conjuntos implicados son incondicionales (véase [95], así como [78] para
el resultado general con 0 < p < 1). Aquí probamos que, en los mismos escenarios y con las mismas
hipótesis (véase el teorema 1.20),

Gn

�
(1−λ ) ·

�
K +Cn

�
+0 λ ·

�
L+Cn

�
+
�
−1

2
,
1
2

�
n
�
≥ Gn(K)1−λ Gn(L)

λ ,

donde Cn = [−1/2,1/2]n. En esta ocasión la aproximación se desvía de la explotada en secciones
anteriores, y en su lugar, surge directamente de relaciones entre el volumen y el enumerador de puntos
del retículo. En cualquier caso, los cubos involucrados nuevamente no pueden reducirse (véase la
observación 1.22), y la desigualdad implica su versión continua por argumentos similares a los anteriores.

El caso más general con 0 < p < 1 también se estudia en está sección, obteniendo resultados análogos
(véase el teorema 1.23). Finalmente, consideramos enumeradores de puntos y medidas alternativas para
las cuales pueden obtenerse resultados de similar índole, en el espíritu de la desigualdad discreta de
log-Brunn-Minkowski (véanse la proposición 1.25, el corolario 1.27 y los teoremas 1.28 y 1.29).

En el capítulo 2 nos centramos en la desigualdad isoperimétrica, quizás uno de los resultados ge-
ométricos más clásicos, y adicionalmente hoy día, una de las primeras consecuencias de la desigualdad de
Brunn-Minkowski. Este resultado, en el contexto continuo habitual, sostiene que el área de superficie
S(·) de un conjunto compacto y convexo de Rn se minimiza, entre aquéllos con igual volumen, cuando
el conjunto es una bola euclídea. Alternativamente, el funcional S(·)n/vol(·)n−1 es minimizado por las
bolas euclídeas.
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Una formulación equivalente de la desigualdad isoperimétrica es su versión para paralelos exteriores,
a saber, que las bolas euclídeas minimizan el funcional vol(K + tBn) para todo t ≥ 0 entre los conjuntos
con igual volumen, donde Bn es la bola unidad euclídea cerrada. Esta versión tiene la ventaja de involucrar
únicamente una medida, y en consecuencia, es más apropiada a la hora de extender la desigualdad
isoperimétrica a otros espacios. En el contexto discreto, Radcliffe y Veomett demostraron en [86] que el
funcional

��·+{−1,0,1}n
��, en la familia de subconjuntos de Zn con cardinalidad prescrita, es minimizado

por los segmentos iniciales de un orden de Zn adecuadamente definido, es decir, por los conjuntos que
consisten en los primeros r puntos de Zn en este orden, para r ∈ N \ {0}. También extendieron este
resultado a Nn. Los autores ya observaron, no obstante, que estos segmentos iniciales no son los únicos
conjuntos minimizantes de dicho funcional, y es de hecho sencillo encontrar contraejemplos.

Aquí extendemos este estudio en dos direcciones. En primer lugar, obtenemos una caracterización de
la igualdad bajo condiciones específicas. En concreto, demostramos que cuando la cardinalidad fijada es
de la forma ρn para algún ρ ∈N\{0}, los correspondientes segmentos iniciales, que son cubos reticulares
estándar, son de hecho los únicos conjuntos que minimizan el funcional

��·+ {0, . . . ,s}n
�� para todo

s ∈ N\{0} (véase el teorema 2.16), y por tanto, en particular, de
��·+{−1,0,1}n

�� (debido a la invarianza
por traslaciones enteras, véanse los teoremas 2.14 y 2.15). Este resultado de caracterización se obtiene
mediante un proceso de reducción que llamamos “normalización” (véase la definición 2.27), ya que, como
mostraremos, es suficiente probar la caracterización para conjuntos que son invariantes bajo este proceso
(véanse el corolario 2.32 y el lema 2.33). Esta caracterización nos permitirá adicionalmente caracterizar el
caso de igualdad en otras desigualdades discretas preestablecidas, incluyendo una desigualdad de tipo
Brunn-Minkowski probada en [69] (véase el teorema 2.34).

En segundo lugar, obtenemos una desigualdad en el mismo espíritu para el enumerador de puntos
del retículo. En particular, encontramos conjuntos que minimizan el funcional Gn

�
K + t[0,1]n

�
para

todo t > 0 en la familia de conjuntos acotados no vacíos con Gn(K)> 0 fijado (véase el teorema 2.37).
Asimismo, obtenemos un resultado de caracterización de la igualdad cuando Gn(K) = (ρ +1)n para algún
ρ ∈N. Esta última propiedad se extiende a retículos arbitrarios (véase la observación 2.40), lo cual resulta
útil para recuperar la correspondiente versión para paralelos exteriores de la desigualdad isoperimétrica
para el volumen (véase el corolario 2.44).

En el capítulo 3 estudiamos la desigualdad de Rogers-Shephard y otras relacionadas. Esta desigualdad
provee de una cota superior para el volumen del cuerpo diferencia K −K de un conjunto compacto y
convexo K ⊂ Rn (la correspondiente cota inferior se deriva de la desigualdad de Brunn-Minkowski). En
concreto, se tiene que

vol(K −K)≤
�

2n

n

�
vol(K).

Esta desigualdad puede extenderse con el fin de involucrar a dos conjuntos del siguiente modo:

vol(K +L)vol
�
K ∩ (−L)

�
≤
�

2n

n

�
vol(K)vol(L).

Aquí obtenemos análogos discretos de las desigualdades anteriores para el enumerador de puntos del
retículo mediante diversas aproximaciones. Por un lado, relacionando el volumen con el enumerador de
puntos del retículo directamente podemos obtener las cotas

Gn(K −K)≤
�

2n

n

�
Gn

�
K +

�
−3

4
,
3
4

�
n
�

y

Gn(K +L)Gn

�
K ∩ (−L)

�
≤
�

2n

n

�
Gn

�
K +(−1,1)n

�
Gn

�
L+(−1,1)n

�

(véanse los teoremas 3.6 y 3.7). Por otro lado, una versión discreta del enfoque original de Rogers
y Shephard basado en el “covariograma” nos permite obtener unas desigualdades adicionales de tipo
Rogers-Shephard (véase el teorema 3.5) que, de hecho, no son comparables con las anteriores.
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Análogamente, estudiamos también una versión discreta de una conocida desigualdad de tipo
“proyección-sección” obtenida igualmente por Rogers y Shephard en [89]. Esta desigualdad propor-
ciona una cota superior para el producto de los volúmenes de una sección y una proyección de un conjunto
compacto y convexo con respecto a subespacios lineales de Rn. En concreto, demostraron que para
cualquier subespacio lineal H ⊂ Rn de dimensión k ∈ {1, . . . ,n−1}, y para todo conjunto compacto y
convexo K ⊂ Rn, se tiene

voln−k(PH⊥K)volk(K ∩H)≤
�

n

k

�
vol(K),

donde PH denota la proyección ortogonal sobre H y volk es el volumen k-dimensional. En este trabajo
probamos que, bajo las mismas hipótesis,

Gn−k(PH⊥K)Gk(K ∩H)≤
�

n

k

�
Gn

�
K +(−1,1)n

�

(véase el teorema 3.1), donde Gk es el enumerador de puntos del retículo restringido a un subespacio lineal
de dimensión k. Este resultado requiere la asunción adicional de que el subespacio lineal sea coordenado.

Finalmente, también obtenemos un análogo discreto de la desigualdad de Berwald (véase el teo-
rema 3.10), que, en el contexto continuo, proporciona una relación de monotonía entre ciertos momentos
normalizados de funciones cóncavas (véase el teorema L). Este resultado es particularmente relevante
en nuestro estudio porque procura una demostración unificada de las dos desigualdades para el volumen
anteriormente mencionadas, simplemente particularizándola con funciones específicas (véase la discusión
de la página 64). En el contexto discreto, no obstante, esta desigualdad no permitirá recuperar las nuevas
desigualdades mencionadas arriba, y en su lugar, obtendremos otras alternativas que combinan el volumen
con el enumerador de puntos del retículo (véanse los corolarios 3.14 y 3.15).

Al igual que en los capítulos anteriores, probaremos que las nuevas desigualdades discretas obtenidas
permiten recuperar las correspondientes desigualdades para el volumen, tanto en el caso de las desigual-
dades de Rogers-Shephard y de tipo “proyección-sección” (véase el teorema 3.17) como en el caso de la
desigualdad de Berwald (véase el teorema 3.19).

Para concluir, el capítulo 4 está dedicado a estudiar relaciones directas entre el volumen y el enumer-
ador de puntos del retículo. La motivación principal es obtener un análogo discreto del segundo teorema
de Minkowski (véase el teorema N), que proporciona las cotas

1
n!

n

∏
i=1

2
λi(K)

≤ vol(K)≤
n

∏
i=1

2
λi(K)

,

donde K ⊂Rn es un conjunto compacto y convexo y λi(K) es el i-ésimo mínimo sucesivo de K, i= 1, . . . ,n,
es decir, el menor número positivo tal que la correspondiente dilatación del simetrizado central (K−K)/2
contiene al menos i puntos linealmente independientes de Zn.

El enfoque deriva de una serie de conjeturas planteadas por Betke, Henk y Wills (véanse las conje-
turas 4.2 y 4.3) que, de ser ciertas, implicarían una versión de la desigualdad anteriormente mencionada
para el enumerador de puntos del retículo. En este trabajo demostramos una versión algo más débil de
esta última conjetura, en concreto, probamos las cotas

Gn(K)≤ vol(K)
n

∏
i=1

�
1+

nλi(K)

2

�

y, si λn(K)≤ 2/n,

Gn(intK)≥ vol(K)
n

∏
i=1

�
1− nλi(K)

2

�
,
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(véase el teorema 4.11). En el teorema 4.15 mejoramos estas cotas en el plano, confirmando (al menos
asintóticamente) la conjetura original. Estas desigualdades, además de recuperar cotas clásicas de
Blichfeldt, van der Corput, Minkowski y otros, permiten también obtener que

Gn(K)≤
n

∏
i=1

�
2

λi(K)
+n

�

(véase el corolario 4.12), es decir, un análogo discreto de la cota superior del segundo teorema de
Minkowski (una cota inferior óptima ya fue probada por Betke, Henk y Wills).

La estrategia fundamental consiste en reducir el estudio a una clase mucho más limitada de conjuntos,
los llamados “cuerpos convexos anti-blocking” (véanse la definición 4.8 y la proposición 4.9). Esta
reducción se lleva a cabo mediante una transformación conocida como el “Blaschke shaking” (véase la
definición 4.6), un proceso que guarda semejanza con la simetrización de Steiner y que pertenece a una
clase más amplia de transformaciones denominadas “shakings”. A fin de demostrar los resultados más
fuertes en el plano, generalizamos este procedimiento al caso no ortogonal (véase la definición 4.17). Otra
herramienta importante que desarrollamos es una desigualdad de Davenport-Schymura inversa (véase el
teorema 4.21).

Los resultados originales de esta tesis están recogidos en los trabajos [9, 43, 64, 65, 66, 67].



Abstract

This work is concerned with the study of discrete geometric inequalities and, in particular, with the
discretization of inequalities in the field of Convex Geometry. In this context, by discretization we refer
to the process of obtaining analogues of already known inequalities in Convex Geometry, preserving as
much of the original structure and qualities as possible, in a setting where the ambient space, the measures
involved, the objects of study, the implicated functionals, or any combination of these, are discrete. It is
worth clarifying that, in the field of Discrete Geometry, “discrete” is often understood in a sense stronger
than the standard topological one. Namely, we will say that a set is discrete if there exists a minimum
universal distance between any two points of the set.

For operational purposes it is often necessary to enforce additional structure on top of the discreteness
of the space, and in particular, it is rather common to consider the space to also be an additive group. A
set verifying the two properties above is called a “lattice”. We will consider lattices embedded in Rn, and
since any such lattice is just a linear image of the integer lattice Zn and viceversa, most of the analysis
in this work will be restricted to Zn, with eventual indications of how the results can be adapted to the
setting of arbitrary lattices.

Among all the possible frameworks of choice in the above setting, perhaps two of the most common
ones are the study of finite subsets of Zn together with the cardinality measure | · |, and the study of
bounded subsets of Rn together with the “lattice point enumerator” measure Gn(·) = | ·∩Zn|. Our work
is primarily focused on the latter, although the former will also play an important role, specifically, in
Chapter 2.

On top of preserving the general structure of the inequalities during the process of discretization, we
will often strive for the additional property that the new inequalities allow one to retrieve the original ones
in the continuous setting. This, apart from serving as an overall indicator of how fit the discrete version
is, also provides a potential new method for furthering progress in the continuous field. For this purpose
the lattice point enumerator is particularly well suited, since it is better behaved than the cardinality with
respect to set dilations, and a vast number of methods to retrieve the continuous inequalities from the
discrete ones are derived from standard Riemann integration arguments, or other similar measure-theoretic
approaches that involve progressively dilating sets and taking limits. Nonetheless, this can at times be
achieved with the cardinality alone as well.



x Abstract

The overall structure of the thesis is the following one. On the one hand, the first three chapters
deal with the discretization of three well-known inequalities in Convex Geometry, namely, the Brunn-
Minkowski inequality, the isoperimetric inequality, and the Rogers-Shephard inequality, respectively. The
fourth chapter, on the other hand, already starts from a discrete source, since it stems from Minkowski’s
Second Theorem, although it can also be understood as a discretization effort, since it deals with
connecting the volume functional with the lattice point enumerator via Minkowski’s successive minima
(see Definition 4.1), and obtaining an analogue of Minkowski’s Second Theorem for the latter functional.

The strategy for the discretization processes employed in the first three chapters was introduced in
several recent papers, including [63, 69], that dealt with the Brunn-Minkowski inequality. This classical
inequality states that for any non-empty compact sets K,L ⊂ Rn (although the result holds true for more
general measurable sets) one has

vol
�
(1−λ )K +λL

�1/n ≥ (1−λ )vol(K)1/n +λ vol(L)1/n.

It is easy to see that the obvious potential discrete analogues
��(1−λ )A+λB

��1/n ≥ |A|1/n + |B|1/n,

for finite sets A,B ⊂ Zn, and

Gn
�
(1−λ )K +λL

�1/n ≥ (1−λ )Gn(K)1/n +λ Gn(L)
1/n,

for non-empty bounded sets K,L ⊂ Rn, do not hold in general. Therefore, should one want to maintain
the structure of the inequality untouched, the sets involved would have to be altered. The authors of the
aforementioned papers showed that, by suitably extending the sets on the left-hand side, the inequalities
could be made to hold. In particular, in [69] it was proved that for any pair of non-empty bounded sets
K,L ⊂ Rn, and any λ ∈ (0,1), one has

Gn
�
(1−λ )K +λL+(−1,1)n

�1/n ≥ (1−λ )Gn(K)1/n +λ Gn(L)
1/n.

This inequality is tight, and the cube being added cannot be reduced. Furthermore, it implies the classical
Brunn-Minkowski inequality. This idea, and some of the underlying principles, are the foundation of
many of the discretization results of the first three chapters.

In Chapter 1 we begin by obtaining a version of the last inequality for arbitrary positive coefficients.
Namely, we show in Theorem 1.2 that

Gn
�
tK + sL+(−1,�t + s�)n

�1/n ≥ t Gn(K)1/n + sGn(L)
1/n

for any t,s ≥ 0 and any non-empty bounded sets K,L ⊂ Rn with Gn(K)Gn(L) > 0. This, which in the
continuous setting follows trivially from the homogeneity of degree n of the volume functional, needs to
be proved independently in the discrete setting, since the lattice point enumerator is not homogeneous. The
proof, nonetheless, follows the same ideas. In particular, a discrete version of a more general inequality,
known as the “Borell-Brascamp-Lieb” inequality, is obtained first (see Theorem 1.3). Particularizing this
inequality for suitable functions (specifically, for the characteristic function of the sets involved), then
yields the desired result. The extension of the sets by adding cubes in the geometric inequalities gets
translated in a natural way to this functional setting by defining a particular extension of a function via the
Asplund product (see (4)).

We follow this with an extension of the above discrete analogues to the Lp setting, for a parameter
p ≥ 1. This setting, in the field of Convex Geometry, was introduced by Firey in the 60’s by defining a
suitable extension of the Minkowski addition, the p-addition +p (as well as a p-scalar product ·). This
was originally restricted to the setting of compact convex sets containing the origin, although it was later
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extended by various authors to arbitrary non-empty bounded sets. In this context, it holds that for any pair
of non-empty compact sets K,L ⊂ Rn, any λ ∈ (0,1) and any p ≥ 1,

vol
�
(1−λ ) ·K +p λ ·L

�
p/n ≥ (1−λ )vol(K)p/n +λ vol(L)p/n.

Here, we show in Theorem 1.10 that, accordingly, for any such λ and p, and for any non-empty bounded
sets K,L ⊂ Rn with Gn(K)Gn(L)> 0,

Gn
�
(1−λ ) ·K +p λ ·L+(−1,1)n

�
p/n ≥ (1−λ )Gn(K)p/n +λ Gn(L)

p/n.

As before, the cube cannot be reduced (nor substituted by its p-addition, see Remark 1.15), the inequality
is sharp, and it implies the continuous one for the volume (see Theorem 1.19). The approach is again
to obtain a stronger discrete functional inequality first, an Lp Borell-Brascamp-Lieb type inequality
(see Theorem 1.12), which implies its corresponding continuous version (see Theorem 1.18), and then
particularize it.

We finish the chapter by studying the setting above for values of the parameter p between 0 and 1. In
this setting, the definition of the p-addition needs to be adjusted again, by means of the “Wulff shape” of
a function (see (3)). For p = 0 in particular, this leads to a problem often referred to as the “log-Brunn-
Minkowski conjecture” (see [26]), which states that for any λ ∈ (0,1) and any origin-symmetric compact
convex sets K,L ⊂ Rn,

vol
�
(1−λ ) ·K +0 λ ·L

�
≥ vol(K)1−λ vol(L)λ .

This conjecture has been proved in several scenarios, including the planar case in the original paper [26],
as well as when the sets involved are unconditional (see [95], as well as [78] for the general 0 < p < 1
result). Here, we show that, in the same scenarios and with the same hypothesis (see Theorem 1.20),

Gn

�
(1−λ ) ·

�
K +Cn

�
+0 λ ·

�
L+Cn

�
+
�
−1

2
,
1
2

�
n
�
≥ Gn(K)1−λ Gn(L)

λ ,

where Cn = [−1/2,1/2]n. The approach this time diverts from the one exploited in the previous sections,
and instead arises directly from relations between the volume and the lattice point enumerator. Never-
theless, the cubes involved again cannot be reduced (see Remark 1.22), and the inequality implies the
continuous one by similar arguments as before.

The more general 0 < p < 1 setting is also studied, obtaining analogous results (see Theorem 1.23).
Finally, we consider some alternative point enumerators and discrete measures for which results in a similar
spirit to the discrete log-Brunn-Minkowski one can also be shown (see Proposition 1.25, Corollary 1.27,
Theorem 1.28 and Theorem 1.29).

In Chapter 2 we shift our focus to the isoperimetric inequality, possibly one of the most classical
geometric results, and additionally nowadays, one of the first consequences of the Brunn-Minkowski
inequality. This result, in the continuous setting, states that the surface area S(·) of a compact convex set
of Rn is minimized, among the family of those with the same volume, when the set is an Euclidean ball.
Alternatively, the functional S(·)n/vol(·)n−1 is minimized by the Euclidean balls.

An equivalent formulation of the isoperimetric inequality is the so-called “neighbourhood form”,
which states that Euclidean balls minimize the functional vol(K + tBn) for all t > 0 among the family of
sets with prescribed volume, where Bn is the closed unit Euclidean ball. This form has the advantage of
only involving a single measure, and is thus more suitable to be extended to other spaces. In the discrete
setting, Radcliffe and Veomett showed in [86] that the functional

��·+{−1,0,1}n
�� is minimized, among

the subsets of Zn with prescribed cardinality, by the initial segments in a suitable order, i.e., by the sets
consisting of the first r points of Zn in this order, for r ∈ N\{0}. They also extended this result to Nn.
The authors already pointed out, however, that these initial segments are not the only minimizing sets, and
the counterexamples are indeed easy to find.
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Here, we further this study in two directions. First, we obtain a characterization of the equality
under special conditions. Namely, we show that when the cardinality is ρn, for some ρ ∈ N \ {0},
then the corresponding initial segments, which are standard lattice cubes, are in fact characterized as
being the only minimizers of the functional

��·+{0, . . . ,s}n
�� for any s ∈ N\{0} (see Theorem 2.16), and

thus, in particular, of
��·+{−1,0,1}n

�� (due to the invariance by integer translations, see Theorems 2.14
and 2.15). This characterization result is obtained via a reduction process we denote by “normalization”
(see Definition 2.27), since, as we will show, it suffices to obtain the characterization for sets that are
invariant under this process (see Corollary 2.32 and Lemma 2.33). The characterization result will
further allow us to characterize the equality case in other pre-established discrete inequalities, including a
Brunn-Minkowski type one proved in [69] (see Theorem 2.34).

Second, we obtain an inequality in the same spirit for the lattice point enumerator. Namely, we obtain
minimizers for the functional Gn

�
K + t[0,1]n

�
for all t > 0 among the family of non-empty bounded

sets K ⊂ Rn with Gn(K) > 0 fixed (see Theorem 2.37), and also show a characterization result when
Gn(K) = (ρ + 1)n for some ρ ∈ N. This latter result can again be extended to arbitrary lattices (see
Remark 2.40), and is then utilized to retrieve the corresponding neighbourhood form of the isoperimetric
inequality for the volume (see Corollary 2.44).

In Chapter 3 we study the Rogers-Shephard inequality. This inequality provides an upper bound for
the volume of the difference body K −K of a compact convex set K ⊂ Rn (a corresponding lower bound
is provided by the Brunn-Minkowski inequality). Namely, one has that

vol(K −K)≤
�

2n

n

�
vol(K).

This inequality can be extended to involve two different sets as follows:

vol(K +L)vol
�
K ∩ (−L)

�
≤
�

2n

n

�
vol(K)vol(L).

Here, we obtain discrete analogues of the inequalities above for the lattice point enumerator using several
different approaches. On the one hand, relating the volume with the lattice point enumerator directly
allows us to obtain the bounds

Gn(K −K)≤
�

2n

n

�
Gn

�
K +

�
−3

4
,
3
4

�
n
�

and
Gn(K +L)Gn

�
K ∩ (−L)

�
≤
�

2n

n

�
Gn

�
K +(−1,1)n

�
Gn

�
L+(−1,1)n

�

(see Theorems 3.6 and 3.7). On the other hand, a discrete version of Rogers and Shephard’s original “co-
variogram” approach allows us to get further discrete Rogers-Shephard type inequalities (see Theorem 3.5)
which, in fact, are not comparable with the previous ones.

Similarly, we also study a discrete version of a well-known “projection-section” type inequality
obtained by Rogers and Shephard in [89]. This inequality provided an upper bound for the product of
the volumes of a section and a projection of a compact convex set with respect to a linear subspace of
Rn. Namely, they proved that for any linear subspace H ⊂ Rn of dimension k ∈ {1, . . . ,n−1}, and any
compact and convex set K ⊂ Rn, one has

voln−k(PH⊥K)volk(K ∩H)≤
�

n

k

�
vol(K),

where PH denotes the orthogonal projection onto H and volk is the k-dimensional volume. Here we show,
under the same hypothesis, that

Gn−k(PH⊥K)Gk(K ∩H)≤
�

n

k

�
Gn

�
K +(−1,1)n

�
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(see Theorem 3.1), where Gk is the lattice point enumerator restricted to a linear subspace of dimension k.
This result requires the additional assumption that the linear subspace be a coordinate one.

Finally, we also obtain a discrete analogue of Berwald’s inequality (see Theorem 3.10), which, in the
continuous setting, provides a monotonicity relation between certain normalized moments of a function
(see Theorem L). This result is particularly relevant in this context since it also yields a unified proof for
both of the inequalities for the volume discussed above, by particularizing it with specific functions (see
Section 3.2, page 64). In the discrete setting, however, our inequality will not retrieve the discrete ones
mentioned above, but rather, some alternative ones (see Corollaries 3.14 and 3.15).

As in the previous chapters, we show that the discrete inequalities proved here allow one to retrieve the
corresponding continuous ones for the volume, both in the case of the Rogers-Shephard and the projection-
section inequalities (see Theorem 3.17) and in the case of Berwald’s inequality (see Theorem 3.19).

To conclude, Chapter 4 is devoted to study direct relations between the volume and the lattice point
enumerator. The motivation is to obtain a discrete analogue of Minkowski’s Second Theorem (see
Theorem N), which provides the bounds

1
n!

n

∏
i=1

2
λi(K)

≤ vol(K)≤
n

∏
i=1

2
λi(K)

,

where K is a compact convex set and λi(K) is the i-th successive minima of K, i = 1, . . . ,n, i.e., the
minimum positive number such that the corresponding dilation of the central symmetral (K −K)/2
contains i linearly independent points of Zn.

The approach stems from a series of conjectures posed by Betke, Henk and Wills (see Conjectures 4.2
and 4.3) which, if proved true, would imply a version of the aforementioned inequality for the lattice point
enumerator. We show a weakened version of the latter conjecture, namely, we prove in Theorem 4.11 the
bounds

Gn(K)≤ vol(K)
n

∏
i=1

�
1+

nλi(K)

2

�

and, if λn(K)≤ 2/n,

Gn(intK)≥ vol(K)
n

∏
i=1

�
1− nλi(K)

2

�
.

These bounds are improved in the planar case (see Theorem 4.15), confirming (at least asymptotically)
the original conjecture. The inequalities, apart from retrieving classical bounds by Blichfeldt, van der
Corput, Minkowski and others, also allow us to obtain

Gn(K)≤
n

∏
i=1

�
2

λi(K)
+n

�

(see Corollary 4.12), i.e., a discrete analogue of the upper bound in Minkowski’s Second Theorem (a
sharp lower bound was already shown by Betke, Henk and Wills).

The main strategy is to reduce the study to a much narrower class of sets, the so-called “anti-blocking
convex bodies” (see Definition 4.8 and Proposition 4.9). This reduction is done via a transformation
known as the “Blaschke shaking” (see Definition 4.6), a process which bares resemblance to Steiner’s sym-
metrization and which belongs to a broader class of transformations called “shakings”. In order to prove
the stronger planar results we generalize this process to the non-orthogonal setting (see Definition 4.17).
Another important tool is a reversal of an inequality of Davenport-Schymura (see Theorem 4.21).

The original results of this thesis are collected in [9, 43, 64, 65, 66, 67].





Background

We will denote the non-negative integers by N. As usual, we will write Rn to represent the n-dimensional
Euclidean space endowed with the standard inner product �·, ·� and the Euclidean norm �·�. The n-
dimensional integer lattice will be denoted by Zn. We will further write Nn to refer to the points in Zn with
coordinates in N. More generally, an n-dimensional lattice Λ ⊂ Rn is the set of all integer combinations
of n linearly independent vectors v1, . . . ,vn, with the set B = {v1, . . . ,vn} being called a basis of Λ.

For any set A ⊂ Rn, the smallest convex set containing A is called the convex hull of A, and is
denoted by convA. Similarly, linA (resp. affA) is the linear (resp. affine) hull of A, i.e., the smallest
linear (resp. affine) subspace of Rn containing A. As usual, dimA = dim(affA) is the dimension of A.
Furthermore, intA, clA and bdA are, respectively, the interior, closure and boundary of A with respect
to the Euclidean topology. Additionally, we will denote the set of all k-dimensional linear subspaces of
Rn by Ln

k
, k = 0, . . . ,n. For any H ∈ Ln

k
, the set H

⊥ ∈ Ln

n−k
is the orthogonal complement of H, and the

operator PH is the orthogonal projection onto H. For the sake of simplicity, for u ∈ Rn we will just write
u
⊥ :=

�
lin{u}

�⊥.

The Euclidean closed unit ball will be represented by Bn. We will also work with lattice cubes, i.e.,
intersections of cubes with sides parallel to the coordinate hyperplanes and Zn. For all i = 1, . . . ,n, the
i-th canonical unit vector will by denoted by ei, and, for the sake of brevity, we will write �i = lin{ei} to
denote the i-th coordinate line. As usual, �x� will represent the floor function of x ∈ R, i.e., the greatest
integer less than or equal to x, and �x� will denote the ceiling function of x, i.e., the least integer greater
than or equal to x. For x,y ∈ Rn, we will write [x,y] to represent the closed segment with endpoints x and
y, i.e.,

[x,y] =
�
(1−λ )x+λy : 0 ≤ λ ≤ 1

�
,

and analogously, we will set

(x,y) =
�
(1−λ )x+λy : 0 < λ < 1

�

for the open segment with endpoints x,y. The semi-open and semi-closed intervals will be denoted
accordingly. Moreover, given v1, . . . ,vn ∈ Rn, we will write (v1 · · ·vn) to represent the square matrix
having the vi’s as columns.
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For a measurable set M ⊂Rn with dimM = k for some k = 0, . . . ,n, volk(M) signifies its k-dimensional
Lebesgue measure. In particular, vol(M) := voln(M) is its standard volume, and when integrating, as
usual, dx will stand for dvol(x). As discrete counterparts we use |X | to denote the cardinality of any finite
set X ⊂ Rn, together with the lattice point enumerator Gn(K) = |K ∩Zn| for any bounded set K ⊂ Rn.
The next fact will turn out to be crucial throughout the dissertation: it follows from standard measure
theory arguments (see Figure 1) that, for any compact convex set K ⊂ Rn (and, in fact, for any Jordan
measurable set, see e.g. [53, (3), page 120]), the volume and the lattice point enumerator are equivalent
“on a big scale”, in the sense that

lim
r→∞

Gn(rK)

rn
= vol(K). (1)

Figure 1: Illustration of (1).

Additionally, S(M) represents the surface area (Minkowski content) of a non-empty compact convex
set M ⊂ Rn, i.e.,

S(M) = lim
ε→0+

vol(M+ εBn)−vol(M)

ε
. (2)

Given any non-empty set M ⊂ Rn, any t ∈ R and any i ∈ {1, . . . ,n}, we shall denote by M
i(t) the

section of M at height t orthogonal to ei, i.e.,

M
i(t) =

�
(x1, . . . ,xn−1) ∈ Rn−1 : (x1, . . . ,xi−1, t,xi, . . . ,xn−1) ∈ M

�
.

For the sake of brevity, we will also just use M(t) = M
n(t). Furthermore, for any t ∈ R we will write

M≥t =
�
(x1, . . . ,xn) ∈ M : xi ≥ t, i = 1, . . . ,n

�
,

a notation which will be adapted in the natural sense for other inequality signs.

The Minkowski addition of two non-empty sets A,B ⊂Rn is defined as A+B = {a+b : a ∈ A : b ∈ B}.
Moreover, λA represents the set {λa : a ∈ A} for any λ ∈ R, and as usual, we write −A = (−1)A, that
is, the reflection of A at the origin. We will similarly denote by A−B = A+(−B). Furthermore, A

is origin-symmetric if −A = A. In this setting, we have the following standard properties, which are
straightforward to verify.

Proposition 1 Let A,B,C ⊂ Rn and λ ,µ > 0. Then:

• (A∪B)+C = (A+C)∪ (B+C),
• (A∩B)+C ⊂ (A+C)∩ (B+C),
• (A∪B)+(A∩B)⊂ A+B,
• λA+λB = λ (A+B),
• λA+µA ⊃ (λ +µ)A.

A convex body is a non-empty compact and convex set K ⊂ Rn. More generally, a set A ⊂ Rn is
star-shaped if there exists a point x0 ∈ A such that [x0,x]⊂ A for all x ∈ A. In the setting of convex bodies,
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all the inclusions in Proposition 1 are equalities, provided that A∪B is also a convex body (see, e.g., [97,
Section 3.1]).

The support function of a convex body K is given by hK(u) = maxx∈K�x,u� for all u ∈ Rn. It is
well-known that the support functions are exactly the sublinear forms of R, and that they characterize
the convex bodies (see, e.g., [97, Theorem 1.7.1]). This, together with the fact that the unit balls of the
real normed spaces are precisely the origin-symmetric convex bodies, yields a strong and fruitful bond
between the fields of Convex Geometry and Functional Analysis.

A useful way to construct convex bodies is the so-called Wulff shape of a function (see, e.g., [97,
Section 7.5]). Given a positive continuous function f : Sn−1 −→ R>0, the set

W( f ) =
�

u∈Sn−1

�
x ∈ Rn : �x,u� ≤ f (u)

�
(3)

is clearly a convex body containing the origin in its interior, known as the Wulff shape of f (here, Sn−1

denotes the unit sphere of Rn). We certainly also have hW( f ) ≤ f , with equality if and only if f is sublinear.
Moreover, the following property holds:

Lemma 2 [97, Lemma 7.5.2] If
�

f j : Sn−1 −→R>0
�

j∈N converges uniformly to f , then
�
W( f j)

�
j∈N

converges to W( f ) in the Hausdorff metric.

We will denote the characteristic function of a set A ⊂ Rn by χ
A
, i.e.,

χ
A
=

�
1 if x ∈ A,

0 if x /∈ A.

Additionally, for a function φ : Rn −→R≥0 we write φ � : Rn −→R≥0 to represent the function defined by

φ �(z) = sup
u∈(−1,1)n

φ(z+u) for all z ∈ Rn, (4)

unless otherwise stated. Such an extension of φ is just the Asplund product � of the functions φ and
χ(−1,1)n , which can be seen as the functional analogue of the Minkowski sum of sets in the setting of
log-concave functions. Indeed,

φ �(z) = sup
u∈(−1,1)n

φ(z+u) = sup
u∈(−1,1)n

φ(z−u) = sup
u∈Rn

φ(z−u)χ(−1,1)n(u)

= sup
u1+u2=z

φ(u1)χ(−1,1)n(u2) =
�
φ �χ(−1,1)n

�
(z).

(5)

For more information on the Asplund product, also known as the sup-convolution, we refer the reader to
[97, Section 9.5] and the references therein. In addition, as usual, |φ |∞ = sup

x∈Rn φ(x).
We will need to utilize the inequality between the arithmetic and geometric means. We recall that

given {ai}r

i=1 ⊂ R≥0 for some r ∈ N\{0}, this inequality states that

1
r

r

∑
i=1

ai ≥
�

r

∏
i=1

ai

�1/r

, (6)

with equality if and only if a1 = · · ·= an.

Finally, we will make extensive use of Hölder’s inequality. In one of its general forms (see, e.g.,
[56, Theorem 11]), it states that given some r ∈ N\{0}, if we have

�
ai = (ai1, . . . ,ain)

�
r

i=1 ⊂ Rn

≥0 and
{λi}r

i=1 ⊂ R≥1 with ∑r

i=1 1/λi = 1, then

n

∑
j=1

r

∏
i=1

ai j ≤
r

∏
i=1

�
n

∑
j=1

a
λi

i j

�1/λi

, (7)
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with equality if and only if the points {ai}r

i=1 are linearly dependent. For r = 2, when λ1,λ2 ∈ R≤1 with
1/λ1 +1/λ2 = 1, the reverse inequality holds with the same equality case:

n

∑
j=1

a1 ja2 j ≥
�

n

∑
j=1

a
λ1
1 j

�1/λ1
�

n

∑
j=1

a
λ2
2 j

�1/λ2

, (8)

(see, e.g., [56, Theorem 13]).



1
Brunn-Minkowski type inequalities

The Brunn-Minkowski theorem is a core foundation of the Brunn-Minkowski theory, and its impact
far outreaches this field, yielding results in many related mathematical disciplines. It states that the
functional vol

�
(1−λ )K +λL

�1/n, for K,L ⊂ Rn convex bodies, is concave in λ ∈ [0,1]. Generalizations
and analogues of this result have proved to be a fruitful field of study, involving other operations, spaces
and measures, as well as obtaining related inequalities and simpler proofs of already known ones, being
the isoperimetric inequality one of the most remarkable examples in this respect. We refer the reader to
[14, 45] for extensive survey articles on the topic, as well as to the updated monograph [97, Chapter 9]
and the references therein.

In this chapter we will obtain several discrete analogues of the Brunn-Minkowski inequality for the
lattice point enumerator Gn(·). The common approach that we will follow in almost all scenarios is to
first obtain stronger functional versions, then particularize these, and finally discuss some consequences
and applications.

1.1 The Brunn-Minkowski inequality: different versions and extensions

A classical result connecting the notions of volume and Minkowski addition is the Brunn-Minkowski

inequality (see, e.g., [45]).

Theorem A — Brunn-Minkowski inequality. Let K,L ⊂ Rn be non-empty compact sets. Then

vol(K +L)1/n ≥ vol(K)1/n +vol(L)1/n. (1.1)

If K and L are also convex, equality holds if and only if the sets are either homothetic or they lie in
parallel hyperplanes.

Furthermore, for any λ ∈ (0,1),

vol
�
(1−λ )K +λL

�
≥ vol(K)1−λ vol(L)λ . (1.2)
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This inequality is known as the multiplicative Brunn-Minkowski inequality, and is a simple consequence
of (1.1) and the arithmetic-geometric mean inequality. Indeed, both inequalities (1.1) and (1.2) are
equivalent.

Due to the homogeneity of degree n of the volume (i.e., vol(λA) = λ n vol(A), for A ⊂ Rn and λ ≥ 0),
(1.1) is equivalent to the fact that vol(·)1/n is a concave functional. The original hypothesis can be
significantly relaxed, as the Brunn-Minkowski inequality holds for arbitrary measurable sets.

One of the first, and most well-known, functional equivalent versions of the Brunn-Minkowski
inequality is the Prékopa-Leindler inequality ([83, 84]).

Theorem B — Prékopa-Leindler inequality. Let λ ∈ (0,1) and let f ,g,h : Rn −→ R≥0 be Lebesgue
integrable functions verifying

h
�
(1−λ )x+λy

�
≥ f (x)1−λ

g(y)λ

for all x,y ∈ Rn. Then

�

Rn

h(x)dx ≥
��

Rn

f (x)dx

�1−λ ��

Rn

g(x)dx

�λ
. (1.3)

To see that this inequality implies (1.2), it suffices to consider f = χ
K
, g = χ

L
and h = χ

(1−λ )K+λL
. For

the converse, one can apply (1.2) to the superlevel sets of f , g, and h.

A powerful generalization of Prékopa-Leindler’s inequality is the Borell-Brascamp-Lieb inequality
([23, 27]), which provides a uniparametric family of analogues.

Before stating it, we recall the notions of α-sum and α-mean, α ∈ R∪{±∞}. For any t,s > 0 and
any a,b > 0 we will write

St,s
α (a,b) =






min{a,b} if α =−∞,

(taα + sb
α�1/α if α ∈ R\{0},

max{a,b} if α = ∞,

and

Mλ
α(a,b) =

�
S1−λ ,λ

α (a,b) if α �= 0,
a

1−λ
b

λ if α = 0.

If ab= 0, we set St,s
α (a,b) =Mλ

α(a,b) = 0. For a general reference for α-means of non-negative numbers,
we refer the reader to the classic text of Hardy, Littlewood and Pólya [56] and to the handbook [28]).

Theorem C — Borell-Brascamp-Lieb inequality. Let λ ∈ (0,1) and let −1/n ≤ p ≤ ∞. Consider
Lebesgue integrable functions f ,g,h : Rn −→ R≥0 verifying

h
�
(1−λ )x+λy

�
≥Mλ

p

�
f (x),g(y)

�
(1.4)

for all x,y ∈ Rn. Then
�

Rn

h(x)dx ≥Mλ
p

np+1

��

Rn

f (x)dx,
�

Rn

g(x)dx

�
. (1.5)

The case p = 0 recovers the Prékopa-Leindler inequality (1.3), whereas taking p = ∞ and f = χ
K
,

g = χ
L

and h = χ
(1−λ )K+λL

retrieves the additive form of the Brunn-Minkowski inequality (1.1).
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In subsequent sections we will prove discrete analogues of the above result, and this will enable us
to obtain multiple consequences, including the announced discrete versions of the Brunn-Minkowski
inequality.

1.1.1 The Lp Brunn-Minkowski inequality

The Lp Brunn-Minkowski theory is a recent and remarkable extension of the classical Brunn-Minkowski
theory which groundworks were laid by Lutwak after initiating a deep and systematic study of p-additions
and their consequences in [74, 75]. This is not only a very active area of research nowadays, but it
has further supposed to be the starting point for new developments and generalizations. An example of
the latter can be seen in [48, 49, 80] and the references therein, where the authors perform a thorough
investigation into the fundamental characteristics of operations between sets and provide an elegant
construction that allows one to define a general pointwise operation between sets. For more information
on the Lp Brunn-Minkowski theory and its consequences we refer the reader to [97, Section 9.1].

The Lp sum K +p L, p ≥ 1, of two convex bodies K,L ⊂ Rn containing the origin was originally
defined by Firey in [41] as the only convex body whose support function is given by

hK+pL(·) =
�
hK(·)p +hL(·)p

�1/p
. (1.6)

Naturally associated with the p-addition one finds a p-scalar product: r ·K = r
1/p

K for any r > 0. This
p-scalar multiplication depends on p, but for the sake of simplicity we will just write “·” instead of “·p”.

It is easy to see that +1 is the standard Minkowski sum, and thus, that this notion provides a
uniparametric generalization of the Brunn-Minkowski inequality. Additionally, it can be seen that
K +∞ L = conv(K ∪L).

This operation is order reversing in the parameter p, that is, if 1 ≤ p ≤ q, then K+q L ⊂ K+p L. On the
contrary, it is order preserving for p-convex combinations, i.e., (1−λ ) ·K +p λ ·L ⊂ (1−λ ) ·K +q λ ·L,
for λ ∈ (0,1).

Of particular interest for us is the Lp version of the Brunn-Minkowski inequality. This was proved by
Firey in [41], and states that for any two convex bodies K,L ⊂ Rn containing the origin, any λ ∈ (0,1),
and all p ≥ 1, one has

vol
�
(1−λ ) ·K +p λ ·L

�
p/n ≥ (1−λ )vol(K)p/n +λ vol(L)p/n. (1.7)

We note that the hypothesis for the sets in the previous definition, unlike in the standard Brunn-
Minkowski inequality, cannot be relaxed. Indeed, compactness and convexity are required so that the
support functions characterize the sets, and the bodies need to contain the origin for the support function
to be non-negative.

In order to elude this inconvenience, Lutwak, Yang and Zhang (see [76]) introduced an alternative
pointwise definition which is valid for arbitrary sets. Specifically, for any two non-empty bounded sets
K,L ⊂ Rn and any p ≥ 1, they defined

K +p L =
�
(1−µ)1/q

x+µ1/q
y : x ∈ K,y ∈ L, µ ∈ [0,1]

�
, (1.8)

where q ∈ [1,∞] is the Hölder conjugate of p, i.e., such that 1/p+1/q = 1, and showed that when K and
L are convex bodies containing the origin, the definition coincides with the one of Firey. We note that
if p = 1 then q = ∞, and thus the above notion again reduces to the standard Minkowski addition. The
authors also proved the corresponding Lp Brunn-Minkowski inequality (1.7) in this general setting.

It is desirable to extend the aforementioned notions to the case 0 ≤ p < 1, and, in particular, to the
case p = 0. A strong reason for this is that the corresponding and recently conjectured Brunn-Minkowski
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inequality in this setting for symmetric convex bodies, known in the literature as the log-Brunn-Minkowski

inequality, would be stronger than all other Lp versions of the form

vol
�
(1−λ ) ·K +p λ ·L

�
≥ vol(K)1−λ vol(L)λ (1.9)

for any p > 0 (see [26]).

Conjecture 1.1 — log-Brunn-Minkowski inequality. Let K,L ⊂ Rn be origin-symmetric convex
bodies, and let λ ∈ (0,1). Then

vol
�
(1−λ ) ·K +0 λ ·L

�
≥ vol(K)1−λ vol(L)λ . (1.10)

However, it is easy to see that both definitions for K +p L given above can be problematic when p < 1.
Indeed, the former fails since the p-sum of support functions is no longer sublinear when p < 1, and thus,
is not the support function of any convex body; whereas for the latter, difficulties may arise due to the
fact that q would be negative. Therefore, the extension is obtained, in the setting of convex bodies, by
means of the Wulff shape (see (3)) determined by the support functions of the sets. In particular, given
two convex bodies K,L ⊂ Rn containing the origin and a fixed λ ∈ (0,1),

(1−λ ) ·K +p λ ·L :=W
��

(1−λ )hK(u)
p +λhL(u)

p
�1/p

�
.

It can be seen that this definition coincides with the one of Firey when p ≥ 1. In the case p = 0, the
previous notion translates into the limit case

(1−λ ) ·K +0 λ ·L =W
�

hK(u)
1−λ

hL(u)
λ
�
.

Conjecture 1.1 was solved in the plane already in [26], and the corresponding equality cases, both for
(1.9) and (1.10) were characterized. The authors also noted that the central symmetry hypothesis cannot
be removed. The conjecture can be solved in the complex case as a consequence of a generalization of the
Blaschke-Santaló inequality due to Cordero-Erausquin, as shown by Rotem in [90].

Since then, other symmetric scenarios have been considered. For the case of unconditional convex
bodies (i.e., convex bodies that have orthogonal symmetry with respect to all the canonical hyperplanes)
in general dimension, Conjecture 1.1 was solved by Saroglou in [95]. In [78], Marsiglietti proved the
more general inequality

vol
�
(1−λ ) ·K +p λ ·L

�
p/n ≥ (1−λ )vol(K)p/n +λ vol(L)p/n (1.11)

for all 0 < p < 1 and λ ∈ (0,1), when K and L are unconditional convex bodies. These results were
generalized by Böröczky and Kalantzopoulos in [25] to the setting of convex bodies which have linear
symmetry (not necessarily orthogonal) with respect to n hyperplanes with linearly independent normal
vectors. In a more functional setting, Saroglou also showed in [96] that the conjecture implies the
corresponding inequality for any log-concave measure.

Furthermore, the question of the stability of Brunn-Minkowski type inequalities of this form has also
been studied, and local results (with respect to the Hausdorff topology) have been obtained, for instance,
in [33, 35, 73, 85].

For further information on the log-Brunn-Minkowski, we refer the reader to the previous manuscripts
and the references therein.

1.1.2 Discrete versions of the Brunn-Minkowski inequality

As already stated, another common approach to extend the Brunn-Minkowski inequality is to consider
alternative spaces and measures. In this regard, the integer lattice Zn endowed with the cardinality measure
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has been extensively studied. Perhaps the first naive inequality in this context is the classic one given by
|X +Y | ≥ |X |+ |Y |−1 for any non-empty finite sets X ,Y ⊂ Zn.

Ruzsa obtained in [93, 94] some of the first strengthenings of this inequality. In particular, he showed
that if also |Y | ≤ |X | and dim(X +Y ) = n then

|X +Y | ≥ |X |+n|Y |− n(n+1)
2

. (1.12)

In [46] Gardner and Gronchi obtained a powerful discrete analogue of the following form of the Brunn-
Minkowski inequality, in the setting of Zn with the cardinality: vol(K+L)≥ vol(BK +BL), where BK and
BL denote the centered Euclidean balls of the same volume as K and L, respectively. More precisely, they
proved that if X ,Y are non-empty finite subsets of the integer lattice Zn, with dimension dimY = n, then

|X +Y | ≥
��DY

|X |+D
Y

|Y |
��. (1.13)

Here D
Y

|X |,D
Y

|Y | are Y -initial segments: for m ∈ N\{0}, D
Y

m
is the set of the first m points of Zn

≥0 in the
so-called “Y -order”, which is a particular order defined on Zn

≥0 depending only on the cardinality of Y .
For both a proper definition and a deep study of it we refer the reader to [46]. As consequences of (1.13),
they also got two additional engaging discrete Brunn-Minkowski type inequalities improving Ruzsa’s
inequality (1.12):

|X +Y |1/n ≥ |X |1/n +
1

(n!)1/n

�
|Y |−n

�1/n

and, if |Y | ≤ |X |, then

|X +Y | ≥ |X |+(n−1)|Y |+
�
|X |−n

�(n−1)/n
�
|Y |−n

�1/n − n(n−1)
2

.

In [63], a discrete Brunn-Minkowski type inequality in the classical form (1.1) was proved: for
X ,Y ⊂ Zn non-empty finite sets,

|X +Y |1/n ≥ |X |1/n + |Y |1/n,

where X is a suitable extension of X (not depending on Y ).

Another way of extending the set in the left-hand side in order to obtain a discrete Brunn-Minkowski
type inequality is to sum the discrete unit cube {0,1}n. This has been performed, e.g., in [50, 69]. In
particular, we have the following result:

Theorem D [69, Theorem 3.2] Let X ,Y ⊂ Zn be non-empty finite sets. Then
��X +Y +{0,1}n

��1/n ≥ |X |1/n + |Y |1/n. (1.14)

Equality holds if both X and Y are lattice cubes.

Recently, other discrete analogues of the Brunn-Minkowski inequality have been obtained for the
cardinality [50, 63, 69], functional extensions of it [55, 64, 65, 68, 69, 71, 100] and versions for the lattice
point enumerator Gn(·) [55, 64, 65, 67, 69], some of which we will discuss in subsequent sections. In this
respect, in [69] the authors show the necessity of extending (1−λ )K +λL to (1−λ )K +λL+(−1,1)n

in order to get a discrete analogue of (1.1) for all λ ∈ (0,1), as follows:

Theorem E Let λ ∈ (0,1) and let K,L ⊂ Rn be non-empty bounded sets. Then

Gn
�
(1−λ )K +λL+(−1,1)n

�1/n ≥ (1−λ )Gn(K)1/n +λ Gn(L)
1/n. (1.15)

The inequality is sharp.
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Apart from the above-mentioned discrete Brunn-Minkowski type inequalities, various discrete coun-
terparts, for the lattice point enumerator Gn(·), of classical results in Convex Geometry have been recently
proven. Some examples of such results are Koldobsky’s slicing inequality [2], Meyer’s inequality [42],
an isoperimetric type inequality [67] (which we will discuss in Chapter 2), or a Rogers-Shephard type
inequality [9] (which we will discuss in Chapter 3). We refer the reader to these articles and the references
therein for other connected problems, questions and results.

1.2 The Brunn-Minkowski inequality for positive combinations of sets

In the continuous setting, due to the homogeneity of the volume, (1.1) is equivalent to

vol(tK + sL)1/n ≥ t vol(K)1/n + svol(L)1/n (1.16)

for any t,s ≥ 0 and any non-empty compact sets K,L ⊂ Rn. However, since Gn(·) is not homogeneous,
it is not possible to directly obtain this generalization from (1.15). Nonetheless, the proof itself can be
adapted. The results of this section are contained in [67] unless otherwise stated. In particular, in this
section we will prove:

Theorem 1.2 [67, Theorem 1.1] Let t,s ≥ 0 and let K,L ⊂ Rn be non-empty bounded sets such that
Gn(K)Gn(L)> 0. Then

Gn
�
tK + sL+(−1,�t + s�)n

�1/n ≥ t Gn(K)1/n + sGn(L)
1/n. (1.17)

Equality is attained, when t + s ∈ Z, if K = [0,a]n and L = [0,b]n are cubes with a,b, ta+ sb ∈ Z.

We will also show that (1.17) implies (1.16) for non-empty compact sets (see Theorem 1.9).

In [67] a direct geometrical proof is provided. Here, we will use a different approach: we will show
Theorem 1.2 by proving a more general functional result, from which Theorem 1.2 will be derived as an
immediate consequence. Indeed, we will show the following result:

Theorem 1.3 Let t,s > 0 and let K,L ⊂ Rn be non-empty bounded sets. Let −1/n ≤ α ≤ ∞, α �= 0,
and let f ,g,h : Rn −→ R≥0 be non-negative functions such that

h(tx+ sy)≥
�
t f (x)α + sg(y)α�1/α (1.18)

for all x ∈ K, y ∈ L with f (x)g(y)> 0. Then

∑
z∈(M+(−1,�t+s�)n)∩Zn

h
�̄(z)≥ St,s

α
nα+1

�

∑
x∈K∩Zn

f (x), ∑
y∈L∩Zn

g(y)

�
, (1.19)

where M = tK + sL and h
�̄(z) = sup

u∈(−1,�t+s�)n h(z−u).

The proof follows the same steps to those of the proof of [69, Theorem 2.2], replacing convex
combinations (1−λ )x+λy, for λ ∈ (0,1), by linear combinations tx+ sy, with t,s > 0, and making the
suitable adaptations. We nonetheless include it here for the sake of completeness. We observe that the
adjustment in the definition of h

�̄(·) (compared to h
�(·), see (5)) stems from the lack of symmetry of the

cube
�
−1,�t + s�

�
n when t + s �= 1.

We start by proving the following result, which will be used to obtain the 1-dimensional case of
Theorem 1.2. It again turns out to be the corresponding analogue of [69, Lemma 2.1] (by suitably replacing
the parameters 1−λ and λ by t and s, respectively).
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Lemma 1.4 Let t,s ≥ 0 and let K,L,M ⊂ R be non-empty sets verifying that tK + sL ⊂ M. If
M =

�
r

i=1[ai,bi], with ai,bi ∈ Z for all i = 1, . . . ,r, is a finite union of pairwise disjoint compact
intervals with integer extremes then

G1(M)+ r(t + s−1)≥ t G1(K)+ sG1(L).

Proof. We prove the result by induction on r. For the case r = 1, i.e., when M = [a1,b1] is a (non-empty)
compact interval (with a1,b1 ∈Z), we have on the one hand that G1(M) = b1−a1+1. Moreover, denoting
by a = infK, b = supK, c = infL and d = supL, we clearly get G1(K) ≤ G1([a,b]) = �b�− �a�+ 1
and G1(L) ≤ G1([c,d]) = �d�− �c�+ 1. On the other hand, the inclusion tK + sL ⊂ M implies that
b1 ≥ t�b�+ s�d� and a1 ≤ t�a�+ s�c�, and thus b1 −a1 ≥ t (�b�−�a�)+ s(�d�−�c�). Altogether, we
get G1(M)−1 ≥ t(G1(K)−1)+ s(G1(L)−1), showing the case r = 1.

So, we suppose that the inequality is true for r ≥ 1 and assume that M =
�

r+1
i=1 [ai,bi], where bi < ai+1

for all 1 ≤ i ≤ r.

Denoting by M1 = [a1,b1] and M2 =
�

r+1
i=2 [ai,bi], we may assume, without loss of generality, that

M1∩ (tK+ sL) �= /0. Hence, we may define m = sup
�
M1∩ (tK+ sL)

�
and then, since K and L are bounded

(because tK + sL ⊂ M), there exist k ∈ clK and l ∈ clL (where cl · denotes the topological closure) such
that t k+ s l = m. Thus, considering the sets K1 = {x ∈ K : x ≤ k}, K2 = K \K1, L1 = {x ∈ L : x ≤ l}
and L2 = L \L1, we have that tK1 + sL1 ⊂ M1 and tK2 + sL2 ⊂ M2. Therefore, applying the induction
hypothesis (and taking into account that M1 are M2 are disjoint), we finish the proof:

G1(M)+(r+1)(t + s−1) = G1(M1)+(t + s−1)+G1(M2)+ r(t + s−1)
≥ t G1(K1)+ sG1(L1)+ t G1(K2)+ sG1(L2) = t G1(K)+ sG1(L).

Now we prove the case n = 1 of Theorem 1.2, which will be necessary in the proof of Theorem 1.3.

Lemma 1.5 Let t,s ≥ 0 and let K,L ⊂ R be non-empty bounded sets. Then

G1

�
tK + sL+

�
−1,�t + s�

��
≥ t G1(K)+ sG1(L). (1.20)

Equality is attained, when t + s ∈ Z, if K = [0,a] and L = [0,b] are intervals with a,b, ta+ sb ∈ Z.

Proof. Let M =
�

x∈tK+sL

�
�x�,�x�

�
. Clearly, since K and L are bounded, M is a finite union of compact

disjoint intervals, say M =
�

r

i=1[ai,bi] for some ai,bi ∈ Z, i = 1, . . . ,r.

For I =
�

1 ≤ i < r : ai+1 −bi ≤ �t + s−1�
�

, let M
� = M∪ (

�
i∈I[bi,ai+1]) and let

M
�� = M

�+
�
0,�t + s−1�

�
= M+

�
0,�t + s−1�

�
.

From Lemma 1.4 we obtain

G1(M
��) = G1(M

�)+
�
r−|I|

��
�t + s−1�

�
≥ G1(M

�)+
�
r−|I|

�
(t + s−1)≥ t G1(K)+ sG1(L).

This yields (1.20) since M∩Z=
�
tK + sL+(−1,1)

�
∩Z and

M
�� ∩Z=

�
tK + sL+

�
−1,�t + s−1�+1

��
∩Z.

Finally, in order to show that equality may be attained (for some t,s ≥ 0), it is enough to consider
a,b, t,s > 0 such that a,b, t + s, ta+ sb ∈ Z, and take K = [0,a] and L = [0,b], for which we have

tK + sL+
�
−1,�t + s�

�
= (−1, ta+ sb+ t + s),

and thus
G1

�
tK + sL+

�
−1,�t + s�

��
= t(a+1)+ s(b+1) = t G1(K)+ sG1(L).
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Before proving Theorem 1.3 we need to state an auxiliary result, which can be regarded as a discrete
counterpart of the well-known Cavalieri Principle for the lattice point enumerator (see [69] and the
references therein).

Lemma 1.6 [69, Corollary 2.1] Let Ω ⊂ Rn be a bounded set, let f : Rn −→ [0,∞) and consider a set
{ki}r

i=0 such that 0 = k0 < k1 < · · ·< kr and f (Ω∩Zn)⊂ {ki}r

i=0. Then

∑
x∈Ω∩Zn

f (x) =
r

∑
i=1

(ki − ki−1)Gn
�
{x ∈ Ω : f (x)≥ ki}

�
.

We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3. We may assume that

�
∑x∈K∩Zn f (x)

��
∑y∈L∩Zn g(y)

�
> 0, since otherwise the

result is trivial. We will prove it by induction on the dimension. So, we let n = 1, and we write

a = max
x∈K∩Z

f (x)> 0, b = max
y∈L∩Z

g(y)> 0 and c = (taα + sb
α)1/α > 0.

We also consider the normalized functions F,G,H,H �̄ : R−→ R≥0 given by

F(x) =
f (x)

a
, G(y) =

g(y)

b
, H(z) =

h(z)

c
and H

�̄(z) =
h
�̄(z)

c
.

We will first show that, for all x ∈ K and all y ∈ L, we have

H(tx+ sy)≥ min
�

F(x),G(y)
�
. (1.21)

Without loss of generality we can assume that f (x)g(y)> 0. Then, setting θ = sb
α/c

α , we have on the
one hand, for any α �= ∞,

h(tx+ sy)≥
�
t f (x)α + sg(y)α�1/α

= c

�
ta

α
F(x)α + sb

α
G(y)α

cα

�1/α

=
�
(1−θ)F(x)α +θG(y)α�1/α ≥ c ·min

�
F(x),G(y)

�
,

where in the last step we have used that min{·, ·}=Mλ
−∞(·, ·) and that Mλ

α(·, ·) is increasing in α ∈ R.
On the other hand, if α = ∞, we clearly have

h(tx+ sy)≥ max
�

f (x),g(y)
�
= c ·max

�
a

c
F(x),

b

c
G(y)

�
≥ c ·min

�
F(x),G(y)

�
,

since c = max{a,b} in this case. This shows (1.21).

Let us now define, for any τ ∈ R≥0, the level sets

Kτ =
�

x ∈ K : F(x)≥ τ
�
, Lτ =

�
y ∈ L : G(y)≥ τ

�
,

Mτ =
�

z ∈ M : H(z)≥ τ
�
, Nτ =

�
z ∈ M+

�
−1,�t + s�

�
: H

�̄(z)≥ τ
�
.

By construction, these sets are non-empty for all τ ∈ [0,1]. Then, on the one hand, (1.18) implies that
tKτ + sLτ ⊂ Mτ for every τ ∈ [0,1], and thus, Lemma 1.5 yields that

G1

�
Mτ +

�
−1,�t + s�

��
≥ t G1(Kτ)+ sG1(Lτ), (1.22)

for all τ ∈ [0,1]. On the other hand, it is clear by definition that H
�̄(z+u)≥ H(z) for any u ∈

�
−1,�t+s�

�
,

and this implies that
Mτ +

�
−1,�t + s�

�
⊂ Nτ , (1.23)

for every τ ∈ [0,1].
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Next we consider, for some r ∈ N\{0}, points {ki}r

i=0 ⊂ R≥0 with 0 = k0 < k1 < · · ·< kr such that

{ki}r

i=0 ⊃ F(K ∩Z)∪G(L∩Z)∪H
�̄
��

M+(−1,�t + s�)
�
∩Z

�
.

By construction, there exists σ ∈ {0, . . . ,r} with kσ = maxx∈K∩Z F(x) = maxy∈L∩Z G(y) = 1. Then, by
applying Lemma 1.6, together with (1.22) and (1.23), we get

∑
z∈(M+(−1,�t+s�))∩Z

h
�̄(z) = ∑

z∈(M+(−1,�t+s�))∩Z
cH

�̄(z) = c

r

∑
i=1

(ki − ki−1)G1(Nki
)

≥ c

σ

∑
i=1

(ki − ki−1)G1(Nki
)≥ c

σ

∑
i=1

(ki − ki−1)G1

�
Mki

+
�
−1,�t + s�

��

≥ c

σ

∑
i=1

(ki − ki−1)
�
t G1(Kki

)+ sG1(Lki
)
�

= c

�
t ∑

x∈K∩Z
F(x)+ s ∑

y∈L∩Z
G(y)

�
= c

�
t

a
∑

x∈K∩Z
f (x)+

s

b
∑

y∈L∩Z
g(y)

�
.

(1.24)

To finish, we observe that if α �= ∞, then by setting

λ1 =−α, λ2 =
α

α +1
, a1 =

��
t
1/α

a
�−1

,
�
s

1/α
b
�−1

�
and

a2 =

�
t
(α+1)/α ∑

x∈K∩Z
f (x), s

(α+1)/α ∑
y∈L∩Z

g(y)

�
,

and applying the reverse Hölder inequality (8) to the last term in (1.24) yields (1.19) for n = 1, as desired.
If α = ∞ this last inequality is trivial, since in that case α/(α +1) = 1.

Now, we assume the result holds for all dimensions up to n−1. The n-dimensional case will follow
from the successive application of the (n−1)-dimensional and 1-dimensional cases.

First, we fix points τK ∈ π(K), τL ∈ π(L) and τ = tτK + sτL, where π(M) =
�

r ∈ R : M(r) �= /0
�

for
M ⊂ Rn. We also consider the functions f1,g1,h1 : Rn−1 −→ R≥0 given by

f1(x) = f (x,τK), g1(y) = g(y,τL) and h1(z) = h(z,τ).

For any x ∈ K(τK) and any y ∈ L(τL), (1.18) implies that h1(tx+sy)≥
�
t f1(x)α +sg1(y)α�1/α . Therefore,

the induction hypothesis (i.e. (1.19) for dimension n−1) yields

∑
z∈Ω1∩Zn−1

h1
�̄(z)≥



t

�

∑
x∈K(τK)∩Zn−1

f1(x)

�β

+ s

�

∑
y∈L(τL)∩Zn−1

g1(y)

�β



1/β

, (1.25)

where Ω1 = tK(τK)+ sL(τL)+
�
−1,�t + s�

�
n−1 and β = α/

�
(n−1)α +1

�
. By convexity, it is clear that

Ω1 ⊂Ω2(τ), where Ω2= tK+sL+
�
−1,�t+s�

�
n−1×{0}. If we write h

�(z,r) = sup
u∈(−1,�t+s�)n−1 h(z−u,r)

for any z ∈ Rn−1 and any r ∈ R, then (1.25) implies

∑
z∈Ω2(τ)∩Zn−1

h
�(z,τ)≥



t

�

∑
x∈K(τK)∩Zn−1

f1(x)

�β

+ s

�

∑
y∈L(τL)∩Zn−1

g1(y)

�β



1/β

. (1.26)

Now, if we consider the functions f2,g2,h2 : R−→ R≥0 given by

f2(r) = ∑
x∈K(r)∩Zn−1

f (x,r), g2(r) = ∑
y∈L(r)∩Zn−1

g(y,r) and h2(r) = ∑
z∈Ω2(r)∩Zn−1

h
�(z,r),
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then (1.26) translates into h2(tτK + sτL) ≥
�
t f2(τK)β + sg2(τL)β�1/β

. Since this reasoning is valid for
any τK ∈ π(K) and any τL ∈ π(L), we can apply the 1-dimensional result to the sets π(K),π(L) and the
functions f2,g2,h2 to obtain

∑
r∈Ω3∩Z

h2
�̄(r)≥

�
t

�

∑
τK∈π(K)∩Z

f2(τK)

�γ

+ s

�

∑
τL∈π(L)∩Z

g2(τL)

�γ�1/γ

, (1.27)

where Ω3 = tπ(K)+sπ(L)+
�
−1,�t+s�

�
=π

�
tK+sL+

�
−1,�t+s�

�
n
�

and γ = β/(β +1) =α/(nα+1).

On the one hand, it is clear that

∑
τK∈π(K)∩Z

f2(τK) = ∑
x∈K∩Zn

f (x) and ∑
τL∈π(L)∩Z

g2(τL) = ∑
y∈L∩Zn

g(y). (1.28)

On the other hand, we get
∑

r∈Ω3∩Z
h2

�̄(r)≤ ∑
z∈(M+(−1,�t+s�)n)∩Zn

h
�̄(z).

Indeed, since clearly

Ω2(r−w) =
�

M+
�
−1,�t + s�

�
n−1 ×{0}

�
(r−w)⊂

�
M+

�
−1,�t + s�

�
n
�
(r)

for all w ∈
�
−1,�t + s�

�
, we have that

∑
r∈Ω3∩Z

h2
�̄(r) = ∑

r∈Ω3∩Z
sup

w∈(−1,�t+s�)
∑

z∈Ω2(r−w)∩Zn−1

h
�(z,r−w)

≤ ∑
r∈Ω3∩Z

∑
z∈(M+(−1,�t+s�)n)(r)∩Zn−1

sup
w∈(−1,�t+s�)

h
�(z,r−w).

A straightforward computation shows that the above expression is equal to ∑
z∈(M+(−1,�t+s�)n)∩Zn h

�̄(z).
This, together with (1.27) and (1.28), finishes the proof.

Finally, we can easily derive Theorem 1.2 from Theorem 1.3:
Proof of Theorem 1.2. It suffices to apply Theorem 1.3 with α = ∞, f = χ

K
, g = χ

L
and h = χ

tK+sL
, for

which we clearly have that h
�̄ = χ

tK+sL+(−1,�t+s�)n . The equality check is trivial.

Remark 1.7 Theorem 1.2 can be extended to the setting of an arbitrary n-dimensional lattice Λ ⊂ Rn.
Indeed, if B = {v1, . . . ,vn} is a basis of Λ, we may consider ϕ : Rn −→ Rn the linear bijection given by
ϕ(x) = ∑n

i=1 xivi for any x = (x1, . . . ,xn) ∈ Rn. Then, denoting by GΛ(M) = |M∩Λ|, Theorem 1.2 yields

GΛ

�
tK + sL+ϕ

�
(−1,�t + s�)n

��1/n

≥ t GΛ(K)1/n + sGΛ(L)
1/n

for any non-empty bounded sets K,L ⊂ Rn with GΛ(K)GΛ(L)> 0 and all t,s ≥ 0. �

Theorem 1.2 allows us to obtain a property for the lattice point enumerator that resembles the
homogeneity of the volume:

Corollary 1.8 Let t ≥ 0 and let K ⊂ Rn be a non-empty bounded set. Then

Gn

�
tK +

�
−1,�t�

�
n
�
≥ t

n Gn(K).

Proof. We may assume, without loss of generality, that Gn(K) > 0. Then the result follows from
Theorem 1.2 for s = 0 and L = {0}.

To conclude the section, we point out that in [69, Corollary 2.3] it was shown that the discrete
inequality (1.17) with t = 1−λ and s = λ (for λ ∈ (0,1)) implies the corresponding form of the classical
Brunn-Minkowski inequality (i.e., for such values of t and s). Since the latter is equivalent, by homogeneity,
to (1.16) for arbitrary t,s ≥ 0, we immediately get the following result.
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Theorem 1.9 [67, Theorem 1.3] The discrete Brunn-Minkowski inequality (1.17) implies the classical
Brunn-Minkowski inequality (1.16) for non-empty compact sets.

Furthermore, a direct proof of this result can be given in a way similar to what is performed in
Section 2.5 within the proof of Theorem 2.43, by directly approximating the volume by means of the
lattice point enumerator, as the lattice shrinks.

1.3 A discrete Lp Brunn-Minkowski inequality for p ≥ 1

In this section we will prove a discrete analogue of the Lp Brunn-Minkowski inequality (1.7) for the
lattice point enumerator (see Theorem 1.10). We will also show that this new discrete inequality implies
its continuous analogue (1.7) (see Theorem 1.19). In both cases, the approach will be to first obtain a
more general functional version of the result, namely, an appropriate discrete Borell-Brascamp-Lieb type
theorem (see Theorems 1.12 and 1.18). The results are collected in [65]. The main theorem of this section
is the following one:

Theorem 1.10 [65, Theorem 1.1] Let λ ∈ (0,1) and p ≥ 1, and let K,L ⊂ Rn be bounded sets with
Gn(K)Gn(L)> 0. Then

Gn
�
(1−λ ) ·K +p λ ·L+(−1,1)n

�
p/n ≥ (1−λ )Gn(K)p/n +λ Gn(L)

p/n. (1.29)

The inequality is sharp.

For any fixed p ≥ 1, the Minkowski addition of the cube (−1,1)n on the left-hand side of the latter
inequality cannot be, in general, neither reduced (by means of a smaller cube) nor substituted by its p-sum
(see Remark 1.15). And again, as in the classical framework, the case p = 1 of this result recovers (1.15).

1.3.1 Functional results: Background and main theorems

Following the spirit of [69], we will prove Theorem 1.10 for the lattice point enumerator Gn(·) by
showing (the more general version of) its functional counterpart (see Theorem 1.12). In particular, in
[69], Theorem E was obtained by first proving the following discrete analogue of Borell-Brascamp-Lieb’s
inequality (Theorem C).

Theorem F Let λ ∈ (0,1) and let K,L ⊂ Rn be non-empty bounded sets. Let −1/n ≤ α ≤ ∞ and let
f ,g,h : Rn −→ R≥0 be non-negative functions such that

h
�
(1−λ )x+λy

�
≥
�
(1−λ ) f (x)α +λg(y)α�1/α

for all x ∈ K, y ∈ L with f (x)g(y)> 0. Then

∑
z∈(M+(−1,1)n)∩Zn

h
�(z)≥Mλ

α
nα+1

�

∑
x∈K∩Zn

f (x), ∑
y∈L∩Zn

g(y)

�
,

where M = (1−λ )K +λL.

Taking into account the definition of p-sum given by (1.8), it is natural to wonder about the possibility
of extending Theorem C to the Lp setting by suitably modifying the condition on the functions there
involved (cf. (1.4)). Such an expected Lp version of the Borell-Brascamp-Lieb inequality has been very
recently obtained in [92] (shown independently, for the case α > 0, in [103]):
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Theorem G Let λ ∈ (0,1) and p ≥ 1. Let −1/n ≤ α ≤ ∞ and let f ,g,h : Rn −→ R≥0 be integrable
functions such that

h

�
(1−λ )1/p(1−µ)1/q

x+λ 1/pµ1/q
y

�
≥
�
(1−λ )1/p(1−µ)1/q

f (x)α +λ 1/pµ1/q
g(y)α

�1/α
(1.30)

for all x,y ∈ Rn with f (x)g(y)> 0 and all µ ∈ [0,1]. Then
�

Rn

h(x)dx ≥Mλ
pα

nα+1

��

Rn

f (x)dx,
�

Rn

g(x)dx

�
.

Before continuing, we would like to clarify the special case of α = 0 in condition (1.30) of the
previous result:

Remark 1.11 On the one hand, it is clear that

lim
α→0+

�
sa

α + rb
α�1/α

=

�
a

1−r
b

r if s+ r = 1,
0 if s+ r < 1.

On the other hand, we have
(1−λ )1/p(1−µ)1/q +λ 1/pµ1/q = 1

if µ = λ , and
(1−λ )1/p(1−µ)1/q +λ 1/pµ1/q < 1

for all µ ∈ [0,1] with µ �= λ , by Hölder’s inequality (7) (jointly with its equality case). Then, by convention,
the case α = 0 in (1.30) will be understood as

h
�
(1−λ )x+λy

�
≥ f (x)1−λ

g(y)λ

for all x,y ∈ Rn. In other words, the case α = 0 in Theorem G is the same to the one in Theorem C, i.e.,
the classical Prékopa-Leindler inequality (see Theorem B). �

We will now show the corresponding Lp version of Theorem F. In other words, we prove a discrete
analogue of Theorem G, which, in particular, will imply Theorem 1.10. We follow here the underlying
idea of the original proof of (1.7) given in [76].

Theorem 1.12 [65, Theorem 2.1] Let λ ∈ (0,1) and p ≥ 1, and let K,L ⊂ Rn be non-empty bounded
sets. Let −1/n ≤ α ≤ ∞ and let f ,g,h : Rn −→ R≥0 be non-negative functions such that

h

�
(1−λ )1/p(1−µ)1/q

x+λ 1/pµ1/q
y

�
≥
�
(1−λ )1/p(1−µ)1/q

f (x)α +λ 1/pµ1/q
g(y)α

�1/α
(1.31)

for all x ∈ K, y ∈ L with f (x)g(y)> 0 and all µ ∈ [0,1]. Then

∑
z∈(Mp+(−1,1)n)∩Zn

h
�(z)≥Mλ

pα
nα+1

�

∑
x∈K∩Zn

f (x), ∑
y∈L∩Zn

g(y)

�
, (1.32)

where Mp = (1−λ ) ·K +p λ ·L.

As in the classical framework, the case α = 0 in this result is that of Theorem F (see Remark 1.11).
Proof. Along the proof, we will assume that

�

∑
x∈K∩Zn

f (x)

��

∑
y∈L∩Zn

g(y)

�
> 0,
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since the result is trivial otherwise. Now we set, for any given µ0 ∈ [0,1] (to be suitably chosen later),

t = t(µ0) := (1−λ )1/p(1−µ0)
1/q and s = s(µ0) := λ 1/pµ1/q

0 ,

for which one has, by Hölder’s inequality (7), that t + s ≤ 1. Notice that the assumption (1.31) can be
then rewritten, in terms of t,s, as

h(tx+ sy)≥
�
t f (x)α + sg(y)α�1/α

for all x ∈ K and y ∈ L with f (x)g(y)> 0, and thus Theorem 1.3 yields

∑
z∈(tK+sL+(−1,�t+s�)n)∩Zn

h
�(z)≥ St,s

α
nα+1

�

∑
x∈K∩Zn

f (x), ∑
y∈L∩Zn

g(y)

�
. (1.33)

Moreover, from (1.8) we clearly have

Mp = (1−λ ) ·K +p λ ·L ⊃ (1−λ )1/p(1−µ0)
1/q

K +λ 1/pµ1/q

0 L = tK + sL.

This, together with (1.33) and the fact that (−1,1)n ⊃
�
−1,�t + s�

�
n, allows us to conclude that

∑
z∈(Mp+(−1,1)n)∩Zn

h
�(z)≥ St,s

α
nα+1

�

∑
x∈K∩Zn

f (x), ∑
y∈L∩Zn

g(y)

�
.

Notice also that if α =−1/n then α/(nα +1) =−∞ and hence we are done. Then, in the following we
may assume that α �= 0,−1/n (cf. Remark 1.11). For the sake of brevity we write

β :=
α

nα +1
∈ (−∞,0)∪

�
0,

1
n

�
, F := ∑

x∈K∩Zn

f (x) and G := ∑
y∈L∩Zn

g(y).

Thus, taking

µ0 :=
λ
�
∑y∈L∩Zn g(y)

�
pβ

(1−λ )
�
∑x∈K∩Zn f (x)

�
pβ

+λ
�
∑y∈L∩Zn g(y)

�
pβ =

λG
pβ

(1−λ )F pβ +λGpβ ,

a straightforward computation yields

St,s
β (F,G) =

�
(1−λ )1/p(1−µ0)

1/q
F

β +λ 1/pµ1/q

0 G
β
�1/β

=

�
(1−λ )1/p

�
(1−λ )F pβ

(1−λ )F pβ +λGpβ

�1/q

F
β +λ 1/p

�
λG

pβ

(1−λ )F pβ +λGpβ

�1/q

G
β

�1/β

=

�
(1−λ )Fβ (1+p/q) +λG

β (1+p/q)

�
(1−λ )F pβ +λGpβ

�1/q

�1/β

=
�
(1−λ )F pβ +λG

pβ
�1/(pβ )

=Mλ
pβ (F,G) .

This concludes the proof.

Remark 1.13 Following the same approach as the one in the proof of Theorem 1.12, just replacing the
sums of the functions f , g and h by their integrals on Rn, one may also derive Theorem G. For this, one
can similarly exploit the suitable version of Theorem 1.5 for linear combinations tx+ sy instead of the
one for means (1−λ )x+λy (see [23]). �
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An analogous result for arbitrary lattices can be obtained. Given an n-dimensional lattice Λ with basis
B = {v1, . . . ,vn}, let ϕ : Rn −→ Rn be the linear (bijective) map defined by ϕ(x) = ∑n

i=1 xivi for each
x = (x1, . . . ,xn) ∈ Rn. Taking into account the pointwise definition of the p-sum given in (1.8), we have

ϕ
�
(1−λ ) ·ϕ−1(K)+p λ ·ϕ−1(L)

�
= (1−λ ) ·K +p λ ·L.

This allows us to extend the statement of Theorem 1.12 to the setting of an n-dimensional lattice Λ ⊂ Rn,
by considering the auxiliary functions fB,gB,hB : Rn −→ R≥0 given by

fB(x) = f
�
ϕ(x)

�
, gB(x) = g

�
ϕ(x)

�
and hB(x) = h

�
ϕ(x)

�

for any x ∈ Rn, as follows:

Corollary 1.14 Let λ ∈ (0,1), −1/n≤α ≤∞, and p≥ 1. Consider non-empty bounded sets K,L⊂Rn.
Let f ,g,h : Rn −→ R≥0 be non-negative functions such that

h

�
(1−λ )1/p(1−µ)1/q

x+λ 1/pµ1/q
y

�
≥
�
(1−λ )1/p(1−µ)1/q

f (x)α +λ 1/pµ1/q
g(y)α

�1/α

for all x ∈ K, y ∈ L with f (x)g(y)> 0 and all µ ∈ [0,1]. Let Λ ⊂ Rn be an n-dimensional lattice with
basis B = {v1, . . . ,vn} and let ϕ(x) = ∑n

i=1 xivi for x ∈ Rn. Then

∑
z∈(Mp+ϕ((−1,1)n))∩Λ

h
�B (z)≥Mλ

pα
nα+1

�

∑
x∈K∩Λ

f (x), ∑
y∈L∩Λ

g(y)

�
,

where Mp = (1−λ ) ·K +p λ ·L and h
�B (z) = sup

u∈ϕ((−1,1)n) h(z+u) for all z ∈ Rn.

1.3.2 Some geometric consequences

We start by showing, as previously announced, that, as in the classical setting, the geometric inequality
(1.29) can be derived from the functional one (1.32):
Proof of Theorem 1.10. By applying (1.32) with α = ∞ to the characteristic functions f = χ

K
, g = χ

L

and h = χ
(1−λ )·K+pλ ·L , for which h

� = χ
(1−λ )·K+pλ ·L+(−1,1)n , one immediately gets (1.29).

Finally, to show that the equality can be attained, it is enough to consider K = L = [0,m]n with m ∈ N,
for which Gn

�
(1−λ ) ·K +p λL+(−1,1)n

�
= (m+1)n = Gn(K) = Gn(L).

Now, for bounded sets K,L ⊂ Rn with Gn(K)Gn(L)> 0, it was shown in [69] that

Gn

�
K +L

2
+[0,1]n

�1/n

≥ Gn(K)1/n +Gn(L)1/n

2
,

i.e., that (1.15) for λ = 1/2 also holds by replacing the cube (−1,1)n by [0,1]n. However, the latter
inequality is in general not true for any λ ∈ (0,1). Thus, and regarding (1.29), it is a natural question to
wonder whether (−1,1)n might be similarly reduced to a smaller cube.

Remark 1.15 We notice on the one hand that the set (−1,1)n cannot be reduced to a strictly smaller
cube of the form (−1,a]n (or [−a,1)n) with a ∈ (0,1), for any fixed value of p ≥ 1. Indeed, it is enough
to consider, as an example, the sets K = [0,1], L = [0,2] in dimension n = 1 and the combination

M = (1−λ ) ·K +p λ ·L+(−1,a] =
�
−1,Mλ

p
(1,2)+a

�
=
�
−1,(1−λ +λ2p)1/p +a

�

(observe that K,L ⊂ Rn are n-dimensional convex bodies containing the origin and hence, as mentioned
in the introduction, the p-sum defined by (1.8) agrees with the classical definition given by (1.6)).
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Then, since G1(M) =
�
Mλ

p
(1,2)+a

�
+ 1 and Mλ

p
(1,2) ∈ [1,2], it is enough to find λ > 0 such that

Mλ
p
(1,2)+a < 2. But this is always possible because

lim
λ→0+

Mλ
p
(1,2) = lim

λ→0+
(1−λ +λ2p)1/p = 1,

and therefore we have G1(M) = 2 for λ > 0 small enough. However, for the right-hand side of (1.29) we
have G1(K) = 2 and G1(L) = 3, and thus

Mλ
p

�
G1(K),G1(L)

�
=Mλ

p
(2,3) ∈ [2,3].

Since λ > 0, we know that Mλ
p

�
G1(K),G1(L)

�
> 2, which shows that

G1
�
(1−λ ) ·K +p λ ·L+(−1,a]

�
<Mλ

p

�
G1(K),G1(L)

�
.

On the other hand, taking a look at (1.15), one could think that its natural Lp version could be given
by considering the p-sum of the cube (−1,1)n on the left-hand side of (1.29) (instead of its Minkowski
addition). In fact, when dealing with n-dimensional convex bodies K,L ⊂ Rn containing the origin, one
has that

(1−λ ) ·K +p λ ·L+p [−1,1]n ⊂ (1−λ ) ·K +p λ ·L+[−1,1]n

for any p ≥ 1 (see [41]). So, p-summing the cube (−1,1)n on the left-hand side of (1.29) would be,
sometimes, tighter than (Minkowski) adding it. Nevertheless, this is not possible either. Indeed, by again
considering the sets K = [0,1], L = [0,2] in dimension n = 1 and p = 2, for which we have by (1.6) that

1
2
·K +2

1
2
·L =

�
0,
√

2.5
�
,

we get, now using (1.8),

G1

�
1
2
·K +2

1
2
·L+2 (−1,1)

�
≤ G1

��
−1,

√
3.5

��
=2<

√
6.5 =M1/2

2 (2,3) =M1/2
2

�
G1(K),G1(L)

�
,

as desired. �

We observe now that Theorem 1.10 holds also true for arbitrary non-negative (Lp) linear combinations
of K and L, albeit with a suitable modification of the cube. More precisely, we have:

Corollary 1.16 Let t,s ≥ 0 and p ≥ 1, and let K,L ⊂ Rn be bounded sets such that Gn(K)Gn(L)> 0.
Then

Gn

�
t ·K +p s ·L+

�
−1,

�
(t + s)1/p

��n
�

p/n

≥ t Gn(K)p/n + sGn(L)
p/n.

Proof. The proof follows the same argument to that of Theorem 1.12, by replacing 1−λ and λ by t

and s, respectively, for the characteristic functions f = χ
K
, g = χ

L
and h = χ

t·K+ps·L . So, in this case, it is
enough to set

t̄ = t̄(µ0) := t
1/p(1−µ0)

1/q and s̄ = s̄(µ0) := s
1/pµ1/q

0 ,

for which t̄ + s̄ ≤ (t + s)1/p by Hölder’s inequality (7), and then
�
−1,

�
(t + s)1/p

��n

⊃
�
−1,

�
t̄ + s̄

��n

.

The proof is now concluded as the one of Theorem 1.12.

Regarding Theorem D, it makes no sense to wonder about an Lp version of inequality (1.14), by just
replacing A+B by A+p B on the left-hand side, since A+p B is no longer finite (see (1.8)), for p > 1.
However, from Corollary 1.16 for K = A, L = B and t = s = 1 we get the following result:
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Corollary 1.17 Let A,B ⊂ Zn be finite, A,B �= /0. Then

Gn
�
A+p B+(−1,2)n

�
p/n ≥ |A|p/n + |B|p/n. (1.34)

Clearly, for p = 1, the latter inequality is exactly (1.14), since A+B ⊂ Zn and the sole integer points
in (−1,2)n are those in {0,1}n.

We would further like to note that unlike in the linear case (p = 1), the cube (−1,2)n on the left-hand
side of (1.34) cannot be, in general, reduced to {0,1}n or even to [0,1]n. To see this, it is enough to
consider n = 1, A = {0, . . . ,a} and B = {0, . . . ,b} for some a,b ∈ N with 0 < a ≤ b. Indeed, on the one
hand, taking into account that S

p
(·, ·) is decreasing in p, we have (see e.g. [56, Theorem 19])

S
p

�
|A|, |B|

�
= S

p
(a+1,b+1) ∈ [b+1,a+b+2],

and moreover, S
p
(a+1,b+1)> a+b+1 for p > 1 small enough. On the other hand, if we denote by

K = [0,a] and L = [0,b], then K +p L =
�
0,S

p
(a,b)

�
since K and L are 1-dimensional convex bodies

containing the origin (and thus their p-sum is also given by (1.6)). Furthermore, due to the fact that
S

p
(a,b)< a+b for all p > 1, we obtain

�
S

p
(a,b)

�
+1 ≤ a+b. Therefore, altogether we get

G1
�
A+p B+[0,1]

�
≤ G1

�
K +p L+[0,1]

�
=
�
S

p
(a,b)

�
+2

≤ a+b+1 < S
p
(a+1,b+1) = S

p

�
|A|, |B|

�

for any p > 1 small enough. In fact, taking for instance a = b = 1 and p = 3/2, the latter inequality holds,
which shows that [0,1]n cannot replace (−1,2)n on the left-hand side of (1.34).

1.3.3 From the discrete setting to the continuous one

Next we show that our discrete counterpart, Theorem 1.12, implies the continuous result collected in
Theorem G, under mild assumptions for the functions there involved, in the spirit of what happens for
p = 1 (see [69, Theorem 2.4]).

Theorem 1.18 [65, Theorem 2.2] The discrete Lp Borell-Brascamp-Lieb type inequality (Theo-
rem 1.12) implies the (continuous) Lp Borell-Brascamp-Lieb inequality (Theorem G), provided that the
functions f ,g are Riemann integrable and h is upper semicontinuous.

Proof. Let f ,g,h : Rn −→ R≥0 be functions in the conditions of Theorem G, namely, verifying (1.30)
for all x,y ∈Rn with f (x)g(y)> 0 and all µ ∈ [0,1], for some fixed p ≥ 1, λ ∈ (0,1) and −1/n ≤ α ≤ ∞.

We will first prove that, given k ∈ N\{0} and C = [−k,k]n, we have
�

C

h(z)dz ≥Mλ
pα

nα+1

��

C

f (x)dx,
�

C

g(x)dx

�
. (1.35)

Theorem G will then follow simply by taking limits as k → ∞. To this aim, we may assume that the
functions f , g and h vanish outside C (multiplying them by the characteristic functions of C, if necessary).
We shall also write C0 = [−k,k)n.

For each m ∈N, we let Rm = [0,2−m) and Om = Rm−Rm = (−2−m,2−m), and we define the functions
fm,gm,hm : Rn −→ R≥0 given by

fm(x) = sup
z∈x+Rm

f (z), gm(x) = sup
z∈x+Rm

g(z) and hm(x) = sup
z∈x+Rm

h(z).

Moreover, for the sake of simplicity, we set t := (1−λ )1/p(1−µ)1/q and s := λ 1/pµ1/q for any given
µ ∈ [0,1], for which we get, as a consequence of Hölder’s inequality (7), that t + s ≤ 1. Again, condition
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(1.30) can be rewritten in terms of t, s as

h(tz1 + sz2)≥
�
t f (z1)

α + sg(z2)
α�1/α

for all z1,z2 ∈ Rn with f (z1)g(z2)> 0. Thus, since (t + s)Rm ⊂ Rm, we have

hm(tx+ sy) = sup
z∈tx+sy+Rm

h(z)≥ sup
z∈t(x+Rm)+s(y+Rm)

h(z) = sup
z1∈x+Rm,z2∈y+Rm

h(tz1 + sz2)

≥ sup
z1∈x+Rm,z2∈y+Rm

�
t f (z1)

α + sg(z2)
α�1/α

=

�
t

�
sup

z1∈x+Rm

f (z1)

�α

+ s

�
sup

z2∈y+Rm

g(z2)

�α�1/α

=
�
t fm(x)

α + sgm(y)
α�1/α

for all x,y ∈C (and so, in particular, for all x,y ∈C0) with fm(x)gm(y)> 0 and all µ ∈ [0,1]. Hence, the
functions fm,gm,hm are in the conditions of Corollary 1.14 and we may apply it for the sets K = L =C0
and the lattice 2−mZn. Note that in this case ϕ

�
(−1,1)n

�
= Om and thus we obtain

∑
z∈[Mp+Om]∩2−mZn

h
�m

m
(z)≥Mλ

pα
nα+1

�

∑
x∈C0∩2−mZn

fm(x), ∑
y∈C0∩2−mZn

gm(y)

�
, (1.36)

where Mp = (1−λ ) ·C0 +p λ ·C0 and h
�m

m
(z) = sup

u∈Om hm(z+ u). Now, since C is an n-dimensional
convex body containing the origin, from (1.6) we get

(1−λ ) ·C0 +p λ ·C0 ⊂ (1−λ ) ·C+p λ ·C =C,

which, jointly with the fact that (C+Om)∩2−mZn =C∩2−mZn, allows us to deduce (from (1.36)) that

∑
z∈C∩2−mZn

h
�m

m
(z)≥Mλ

pα
nα+1

�

∑
x∈C0∩2−mZn

fm(x), ∑
y∈C0∩2−mZn

gm(y)

�
. (1.37)

We now consider the function h : Rn −→R≥0 given by h(x) = supθ∈3Om h(x+θ), and show that, for every
fixed z ∈ Rn and any x ∈ z+Om, we have h(x)≥ h

�m

m
(z). Indeed,

h(x) = sup
θ∈3Om

h(x+θ) = sup
w∈Om

sup
v∈Om

sup
u∈Om

h(x+u+ v+w)≥ sup
w∈Om

sup
v∈Om

sup
u∈Rm

h(x+u+ v+w)

= sup
w∈Om

sup
v∈Om

hm(x+ v+w) = sup
w∈Om

h
�m

m
(x+w)≥ h

�m

m
(z).

(1.38)

Furthermore, for any r > 0 let

Cr =
�

x ∈C : h(x)≥ r
�

and Cr =
�

x ∈C+Rm : h(x)> r
�
.

Notice that the superlevel sets Cr are compact, since h is upper semicontinuous and C is compact (see,
e.g., [87, Theorem 1.6]), and then we clearly have Cr =

�∞
m=1(Cr +3Om). Moreover, since h vanishes

outside C, from the definition of h we get Cr ⊂Cr +3Om for all r > 0. Thus, by Fubini’s theorem and the
monotone convergence theorem, we obtain

�

C

h(x)dx =
� ∞

0
vol(Cr)dr =

� ∞

0
vol

�
∞�

m=1
(Cr +3Om)

�
dr =

� ∞

0
lim

m→∞
vol(Cr +3Om)dr

= lim
m→∞

� ∞

0
vol(Cr +3Om)dr ≥ lim

m→∞

� ∞

0
vol(Cr)dr = lim

m→∞

�

C+Rm

h(x)dx.

This, together with (1.38) and the fact that C+Rm =C∩2−mZn +Rm, implies that
�

C

h(x)dx ≥ lim
m→∞

�

C+Rm

h(x)dx ≥ lim
m→∞

2−mn ∑
z∈C∩2−mZn

h
�m

m
(z).
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Finally, since f is Riemann integrable and

2−mn ∑
x∈C0∩2−mZn

fm(x)

is an upper Riemann sum of f for the partition

�
x+Rm : x ∈C0 ∩2−mZn

�

of C, we clearly have

lim
m→∞

2−mn ∑
x∈C0∩2−mZn

fm(x) =
�

C

f (x)dx.

The same holds for the function g and then, taking limits on both sides of (1.37), we get (1.35). This
finishes the proof.

We conclude this section by showing that the Lp Brunn-Minkowski inequality (1.7), in the setting of
n-dimensional convex bodies, can be derived as a consequence of the new discrete inequality (1.29) for
the lattice point enumerator Gn(·):

Theorem 1.19 [65, Theorem 1.2] The discrete Lp Brunn-Minkowski type inequality (1.29) implies the
Lp Brunn-Minkowski inequality (1.7) for n-dimensional convex bodies K and L.

Proof. Due to the well-known fact that a function is Riemann integrable if and only if it is continuous
almost everywhere, since the boundary of a convex set has null measure, and also taking into account the
characterization of the upper semicontinuity in terms of the level sets, we directly get the desired result as
a consequence of Theorem 1.18.

We emphasize the necessity of assuming convexity in Theorem 1.19: if one considers, for instance,
bounded measurable sets K,L ⊂ Rn of positive volume containing no rational points, one clearly cannot
expect to recover the Lp Brunn-Minkowski inequality (1.7) by shrinking the lattice Zn by means of
successively considering 2−mZn, m ∈ N.

1.4 A discrete log-Brunn-Minkowski inequality. The Lp case for 0 < p < 1.

In this section we will obtain discrete versions of the log-Brunn-Minkowski inequality (1.10) for various
point enumerators (including the lattice point enumerator) in some special cases, namely, when the
convex bodies involved are unconditional, or simply origin-symmetric in the plane (see Theorem 1.20
and Corollary 1.26). The methods developed will also be extended to the Lp setting for 0 < p < 1, thus
yielding discrete analogues of (1.11) (see Theorem 1.23). Finally, inequalities for some alternatives
measures will also be obtained using a similar technique to the one employed in the previous section, i.e.,
functionalization via Borell-Brascamp-Lieb type inequalities (see Theorems 1.28 and 1.29). The results
contained in this section have been collected in [64].

1.4.1 Preliminaries and notation

To begin with, let us establish some notation, for the sake of simplicity. Given x,y ∈ Rn, we will write
xy ∈ Rn to denote the point with coordinates (xy)i = xiyi for all i = 1, . . . ,n, while, if x ∈ Rn

≥0, x
λ will

be the point such that (xλ )i = x
λ
i

for any given λ > 0, i = 1, . . . ,n. Analogously, we will denote by
AB = {ab ∈ Rn : a ∈ A,b ∈ B} for any A,B ⊂ Rn, as well as A

λ = {a
λ : a ∈ A} for any set A ⊂ Rn

≥0 and
any scalar λ > 0. Finally, for any bounded set K ⊂ Rn and any discrete set Λ, we will use the functional
GΛ(K) = |K ∩Λ|.
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Next we introduce an operation closely related to the standard p-sum of convex bodies, which was
utilized in [95] and [78] for the Lp Brunn-Minkowski inequalities discussed in Section 1.1.1. Given two
non-empty sets K,L ⊂ Rn

≥0 and λ ≥ 0,

(1−λ ) ·K ⊕p λ ·L =

���
(1−λ )xp

1 +λy
p

1
�1/p

, . . . ,
�
(1−λ )xp

n
+λy

p

n

�1/p
�

:

(x1, . . . ,xn) ∈ K,(y1, . . . ,yn) ∈ L

�
.

(1.39)

Again, the case p = 0 must be understood as its limit case, and thus,

(1−λ ) ·K ⊕0 λ ·L = K
1−λ

L
λ .

It was proved in [78] that (1− λ ) ·K ⊕p λ ·L ⊂ (1− λ ) ·K +p λ ·L for any p ∈ [0,1], which implies
that, in order to obtain an Lp Brunn-Minkowski type inequality for p ∈ [0,1], it suffices to consider the
set (1−λ ) ·K ⊕p λ ·L in the left-hand side (cf. (1.11)). Using this approach, Marsiglietti proved that if
K,L ⊂ Rn are unconditional convex bodies, λ ∈ (0,1) and 0 < p < 1, then

vol
�
(1−λ ) ·K ⊕p λ ·L

�
≥Mλ

p/n

�
vol(K),vol(L)

�
. (1.40)

Furthermore, in order to obtain additional inequalities for different point enumerators, we shall
consider, for any p > 0, the change of variables ϕp : Rn

≥0 −→ Rn

≥0 given by ϕp(x)i = x
1/p

i
, i = 1, . . . ,n.

Analogously, we will denote by ψa : Rn

≥0 −→ Rn

≥1 the change of variables given by ψa(x)i = a
xi , for

any a > 1 (so that ψa is bijective). These changes of variables will allow us to establish the spaces and
functionals with which we will obtain our results. We will write Γp = ϕp(Zn

≥0) and Λa = ψa(Zn

≥0).

1.4.2 Log-Brunn-Minkowski type inequalities for different point enumerators

Our initial result provides a discretization of Saroglou’s result (see Section 1.1.1), i.e., a discrete version
of the conjectured inequality (1.10) for the lattice point enumerator of unconditional convex bodies,
as well as of (1.10) for origin-symmetric planar convex bodies. For the sake of brevity, the (closed)
origin-symmetric unit cube will be denoted as Cn := [−1/2,1/2]n.

Theorem 1.20 [64, Theorem 2.1] Let K,L ⊂ Rn be origin-symmetric convex bodies and let λ ∈ (0,1).
If either K,L are unconditional convex bodies or n = 2, then

Gn

�
(1−λ ) ·

�
K +Cn

�
+0 λ ·

�
L+Cn

�
+
�
−1

2
,
1
2

�
n
�
≥ Gn(K)1−λ Gn(L)

λ . (1.41)

Furthermore, it is equivalent to the log-Brunn-Minkowski inequality (1.10) both for unconditional
convex bodies or when n = 2.

The proof relies on several relations between the volume and the lattice point enumerator of a convex
bounded set K ⊂ Rn. On the one hand, it is well-known that

Gn(K)≤ vol
�

K +
�
−1

2
,
1
2

�
n
�

and vol(K)≤ Gn

�
K +

�
−1

2
,
1
2

�
n
�
. (1.42)

The first inequality can be found in [51, (3.3)]. The second one is gathered in [52, page 877]. On the other
hand, we recall the remarkable fact that, roughly speaking, the volume and the lattice point enumerator of
a convex body K ⊂ Rn are equivalent when K is large enough, i.e.,

lim
r→∞

Gn(rK)

rn
= vol(K)

(see (1)). We will also need the following more general version of this relation (whose proof can be found
in [9, (3.14)]):
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Lemma 1.21 Let K ⊂ Rn be a convex body and let M ⊂ Rn be a bounded set containing the origin.
Then

lim
r→∞

Gn(rK +M)

rn
= vol(K). (1.43)

Proof. Given ε > 0 and a large enough r > 0, it follows that M ⊂ (rεK)+ zr for some zr ∈ Zn, and thus

vol(K) = lim
r→∞

Gn(rK)

rn
≤ liminf

r→∞

Gn(rK +M)

rn
≤ limsup

r→∞

Gn(rK +M)

rn

≤ lim
r→∞

Gn

�
r(K + εK)

�

rn
= vol(K + εK) = (1+ ε)n vol(K).

Since ε > 0 was arbitrary, (1.43) holds.

Now we are in the conditions to prove Theorem 1.20.
Proof of Theorem 1.20. Clearly, if K ⊂ Rn is an unconditional convex body (or just origin-symmetric),
so is K +Cn. Thus, using (1.42) and Saroglou’s result (inequality (1.10) for unconditional convex bodies)
we obtain

Gn(K)1−λ Gn(L)
λ ≤ vol(K +Cn)

1−λ vol(L+Cn)
λ ≤ vol

�
(1−λ ) ·

�
K +Cn

�
+0 λ ·

�
L+Cn

��

≤ Gn

�
(1−λ ) ·

�
K +Cn

�
+0 λ ·

�
L+Cn

�
+
�
−1

2
,
1
2

�
n
�
,

as required. The case of n = 2 is analogous but using the known log-Brunn-Minkowski inequality
(1.10) for origin-symmetric planar convex bodies. This shows, moreover, that the log-Brunn-Minkowski
inequality yields the discrete version (1.41).

In order to conclude the proof, we show that (1.41) implies (1.10) when K and L are unconditional
sets (respectively, when n = 2). We observe that, for any convex bodies K,L ⊂ Rn and any r > 0,

(1−λ ) · (rK)+0 λ · (rL) = r
�
(1−λ ) ·K +0 λ ·L

�
.

Now, let K,L ⊂ Rn be unconditional convex bodies (respectively, let n = 2), and fix ε > 0. Then, using
(1), (1.41) and (1.43) we get, on one hand,

vol(K)1−λ vol(L)λ = lim
r→∞

Gn(rK)1−λ Gn(rL)λ

rn

≤ lim
r→∞

Gn

�
(1−λ ) · (rK +Cn)+0 λ · (rL+Cn)+

�
− 1

2 ,
1
2
�

n
�

rn

= lim
r→∞

Gn

�
r

�
(1−λ ) ·

�
K + 1

r
Cn

�
+0 λ ·

�
L+ 1

r
Cn

��
+
�
− 1

2 ,
1
2
�

n

�

rn

≤ lim
r→∞

Gn

�
r
�
(1−λ ) · (K + εBn)+0 λ · (L+ εBn)

�
+
�
−1

2 ,
1
2
�

n
�

rn

= vol
�
(1−λ ) · (K + εBn)+0 λ · (L+ εBn)

�
,

(1.44)

which is valid for all ε > 0. On the other hand, one clearly has that

hK+εBn
(u)1−λ

hL+εBn
(u)λ =

�
hK(u)+ ε

�1−λ�
hL(u)+ ε

�λ

for any ε > 0 (for K and L fixed). Furthermore, since each sequence of functions
�

hK +ε
�

ε and
�

hL+ε
�

ε
converges uniformly to hK and hL, respectively, and the function (x,y) �→ x

1−λ
y

λ is uniformly continuous
in any closed rectangle [0,a]× [0,b], we get that

�
(hK +ε)1−λ (hL+ε)λ�

ε , and so also
�

h
1−λ
K+εBn

h
λ
L+εBn

�
ε ,
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converges uniformly to h
1−λ
K

h
λ
L

. Then Lemma 2 ensures that the sequence of Wulff shapes associated to
the functions h

1−λ
K+εBn

h
λ
L+εBn

, namely,

(1−λ ) · (K + εBn)+0 λ · (L+ εBn),

converges to (1−λ ) ·K +0 λ ·L in the Hausdorff metric. Finally, the continuity of the volume yields

lim
ε→0

vol
�
(1−λ ) · (K + εBn)+0 λ · (L+ εBn)

�
= vol

�
(1−λ ) ·K +0 λ ·L

�
.

This, together with (1.44), shows (1.10) and concludes the proof.

Remark 1.22 We note that the cube Cn cannot be removed in the left-hand side of (1.20), not even
summing up a bigger cube instead of (−1/2,1/2)n; i.e., an inequality of the form

Gn

��
(1−λ ) ·K +0 λ ·L

�
+(−β ,β )n

�
≥ Gn(K)1−λ Gn(L)

λ (1.45)

for all convex bodies K,L ⊂ Rn does not hold for any constant β > 0. Indeed, it suffices to consider
the sets K = [−a,a] and L = [−b,b] in R, where 0 < b < 1/2 and a ∈ N is large enough in order for the
inequality

a
1−λ

��
1+

1
2a

�1−λ 1
2λ −b

λ

�
> β +

1
2

to hold. Then, the above expression rewrites as

2a
1−λ

b
λ +2β +1 < (2a+1)1−λ , (1.46)

and since
�
(1−λ ) ·K +0 λ ·L

�
+(−β ,β ) = (−a

1−λ
b

λ −β ,a1−λ
b

λ +β ), we have

G1

��
(1−λ ) ·K +0 λ ·L

�
+(−β ,β )

�
≤ 2(a1−λ

b
λ +β )+1.

Furthermore, G1(K) = 2a+1 and G1(L)≥ 1 and, consequently, (1.46) contradicts (1.45), as desired.

Finally, the Minkowski addition of (−1/2,1/2)n is also necessary i.e., an inequality of the form

Gn
�
(1−λ ) · (K +Cn)+0 λ · (L+Cn)+(−β ,β )n

�
≥ Gn(K)1−λ Gn(L)

λ (1.47)

does not hold, in general, if 0 ≤ β < 1/2. To show it, we consider the sets K = [−a,a] and L = [−b,b] in
R, for fixed a,b > 0. Then, it is clear that

G1
�
(1−λ ) · (K +C1)+0 λ · (L+C1)+(−β ,β )

�
≤ 2

��
a+

1
2

�1−λ �
b+

1
2

�λ
+β

�
+1.

Note that, if β < 1/2, we may choose 0 < λ < 1 such that (2b+1)λ < 2(1−β ), because 2(1−β )> 1
and limλ→0+(2b+1)λ = 1. This condition is equivalent to (1/21−λ )(b+1/2)λ +β < 1, and a simple
continuity argument then shows that, for sufficiently small values of a, we also have the inequality
(a+1/2)1−λ (b+1/2)λ +β < 1. Consequently, in this case we have

G1
�
(1−λ ) · (K +C1)+0 λ · (L+C1)+(−β ,β )

�
= 1,

which contradicts (1.47) when b > 1 because, in that case, G1(K)≥ 1 and G1(L)> 1. �

Following the same argument as the one in the proof of Theorem 1.20, but now using (1.40), one can
get the Lp version of that theorem when 0 < p < 1, i.e., a discrete version of Marsiglietti’s result. Again,
neither Cn nor (−1/2,1/2)n can be removed from the inequality.
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Theorem 1.23 [64, Theorem 3.1] Let K,L ⊂Rn be two unconditional convex bodies and let λ ∈ (0,1).
Then, for any 0 < p < 1,

Gn

�
(1−λ ) ·

�
K +Cn

�
⊕p λ ·

�
L+Cn

�
+
�
−1

2
,
1
2

�
n
�
≥Mλ

p/n

�
Gn(K),Gn(L)

�
. (1.48)

Furthermore, it is equivalent to the Lp Brunn-Minkowski inequality (1.40) for unconditional convex
bodies.

Next we will deal with the point enumerator GΛa
(·) (and GΓp

(·)). First, we prove the following simple
properties of the functions ψa and ϕp, which will be useful throughout the rest of the section.

Lemma 1.24 Let K,L ⊂ Rn

≥1 be non-empty bounded sets and let λ ∈ (0,1). Then

i) GΛa
(K) =

��ψ−1
a

(K)∩Zn
�� and

ii) ψ−1
a

�
K

1−λ
L

λ�= (1−λ )ψ−1
a

(K)+λψ−1
a

(L).

Furthermore, if K,L ⊂ Rn

≥0 then, for any 0 < p < 1,

iii) GΓp
(K) =

��ϕ−1
p

(K)∩Zn
�� and

iv) ϕ−1
p

�
(1−λ ) ·K ⊕p λ ·L

�
= (1−λ )ϕ−1

p
(K)+λϕ−1

p
(L).

Proof. On the one hand

GΛa
(K) = |K ∩Λa|=

���K ∩ψa

�
Zn

≥0
����=

��ψ−1
a

(K)∩Zn

≥0
��=

��ψ−1
a

(K)∩Zn
��.

On the other hand

ψ−1
a

�
x

1−λ
y

λ�
i
= log

a

�
x

1−λ
i

y
λ
i

�
= (1−λ ) log

a
xi +λ log

a
yi = (1−λ )ψ−1

a
(x)i +λψ−1

a
(y)i

for all x ∈ K,y ∈ L and all i = 1, . . . ,n. Completely analogous arguments yield properties iii) and iv).

The following result for GΛa
can now be shown.

Proposition 1.25 Let a > 1 and λ ∈ (0,1), and let K,L ⊂ Rn

≥1 be non-empty bounded sets with
GΛa

(K)GΛa
(L)> 0. Then

GΛa

�
(1,a2)n

K
1−λ

L
λ
�1/n

≥ (1−λ )GΛa
(K)1/n +λGΛa

(L)1/n, (1.49)

and the inequality is sharp.

Proof. We observe that the cube (−1,1)n in inequality (1.15) can be replaced by (0,2)n due to the
invariance by integer translations, and so, we may apply it to the sets ψ−1

a
(K) and ψ−1

a
(L) to obtain

���
�
(1−λ )ψ−1

a
(K)+λψ−1

a
(L)+(0,2)n

�
∩Zn

���
1/n

≥ (1−λ )
��ψ−1

a
(K)∩Zn

��1/n

+λ
��ψ−1

a
(L)∩Zn

��1/n

.

Now, using both items i) and ii) of Lemma 1.24, and taking into account that ψa

�
(0,2)n

�
= (1,a2)n, we

get (1.49).

To see that equality may be attained, we consider K = L = [1,am]n for any m ∈ N, for which one has
(1,a2)n

K
1−λ

L
λ = (1,am+2)n and

GΛa

�
[1,am]n

�
= GΛa

�
(1,am+2)n

�
= (m+1)n.

In particular, using the arithmetic-geometric mean inequality, a discrete log-Brunn-Minkowski type
inequality for GΛa

(·) is obtained as a direct consequence:
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Corollary 1.26 Let a > 1 and λ ∈ (0,1), and let K,L ⊂ Rn

≥1 be non-empty bounded sets. Then

GΛa

�
(1,a2)n

K
1−λ

L
λ
�
≥ GΛa

(K)1−λ GΛa
(L)λ ,

and the inequality is sharp.

Proposition 1.25 can be adapted to the 0 < p < 1 setting using items iii) and iv) of Lemma 1.24:

Corollary 1.27 Let 0 < p < 1 and λ ∈ (0,1), and let K,L ⊂ Rn

≥0 be non-empty bounded sets with
GΓp

(K)GΓp
(L)> 0. Then

GΓp

�
(1−λ ) ·K ⊕p λ ·L⊕p

�
0,21/p

�
n
�1/n

≥ (1−λ )GΓp
(K)1/n +λGΓp

(L)1/n.

1.4.3 A log-Brunn-Minkowski type inequality for an alternative discrete measure

Next, we observe that the proofs of the log-Brunn-Minkowski inequality for unconditional convex bodies
by Saroglou [95] and of the 0 < p < 1 case by Marsiglietti [78] strongly rely on the Prékopa-Leindler
inequality and on the more general Borell-Brascamp-Lieb inequality, respectively. Since discrete versions
of these inequalities have been recently obtained (see Theorem F), we wonder whether a similar approach
could yield new discrete versions of the log-Brunn-Minkowski inequality (as well as of (1.40) in the case
0 < p < 1). To this end, we define an alternative (discrete) measure for which a result in the same spirit as
the ones in the previous section can also be proved. For any a > 1 and any bounded set M ⊂ Rn, let

µa(M) = ∑
z∈M∩Λa

φ(z), (1.50)

where the density function φ : Rn −→ R is given by

φ(z) =
n

∏
i=1

zi.

We note that µa coincides with GΛa
when the density function φ ≡ 1. We will use a similar technique as

the one used in [95] to approach the problem in the discrete setting.

Theorem 1.28 [64, Theorem 2.2] Let K,L ⊂ Rn

≥1 be non-empty bounded sets, and let a > 1 and
λ ∈ (0,1). Then

a
nµa

��
a
−1,a

�
n
K

1−λ
L

λ
�
≥ µa(K)1−λ µa(L)

λ .

Proof. To begin with, we clearly have

a
nµa

��
a
−1,a

�
n
K

1−λ
L

λ
�
= a

n ∑
w∈[(a−1,a)nK1−λ Lλ ]∩Λa

φ(w)≥ ∑
w∈[(a−1,a)nK1−λ Lλ ]∩Λa

sup
v∈(a−1,a)n

φ(v)φ(w).

Applying the change of variables defined by ψa, and using the fact that ψ−1
a

�
(a−1,a)n

�
= (−1,1)n and

the symmetry of (−1,1)n, the above expression rewrites into

∑
z∈ψ−1

a ((a−1,a)nK1−λ Lλ )∩Zn

sup
u∈(−1,1)n

a
∑n

i=1 uia
∑n

i=1 zi = ∑
z∈ψ−1

a ((a−1,a)nK1−λ Lλ )∩Zn

sup
u∈(−1,1)n

a
∑n

i=1 ui+zi .

Next, we denote by h(z) = a∑n

i=1 zi , and use Lemma 1.24 to get that the last sum equals to

∑
z∈ψ−1

a ((a−1,a)nK1−λ Lλ )∩Zn

sup
u∈(−1,1)n

h(u+ z) = ∑
z∈ψ−1

a ((a−1,a)nK1−λ Lλ )∩Zn

h
�(z)

= ∑
z∈[(1−λ )ψ−1

a (K)+λψ−1
a (L)+(−1,1)n]∩Zn

h
�(z).
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Now, if we consider the functions f = g = h, it is straightforward to verify that they are under the
conditions of the discrete Prékopa-Leindler inequality (Theorem F for p = 0), that is,

h
�
(1−λ )x+λy

�
≥ f (x)1−λ

g(y)λ

for all x ∈ ψ−1
a

(K) and y ∈ ψ−1
a

(L), which yields

∑
z∈[(1−λ )ψ−1

a (K)+λψ−1
a (L)+(−1,1)n]∩Zn

h
�(z)≥



 ∑
x∈ψ−1

a (K)∩Zn

f (x)




1−λ 

 ∑
y∈ψ−1

a (L)∩Zn

g(x)




λ

.

Finally, performing the change of variables to f and g similarly to how we did it for h, and putting it all
together, we can conclude the result:

a
nµa

��
a
−1,a

�
n
K

1−λ
L

λ
�
≥
�

∑
x∈K∩Λa

φ(x)

�1−λ �

∑
y∈L∩Λa

φ(y)

�λ

= µa(K)1−λ µa(L)
λ .

In order to extend the previous result to the 0 < p < 1 setting, we need to consider the density function
φ : Rn −→ R≥0 given by

φ(z) =

�
n

∑
i=1

z
p

i

�1/p

,

and the measure νp defined as
νp(A) = ∑

z∈A∩Γp

φ(z),

for any non-empty bounded set A ⊂ Rn.

Additionally, since ϕp can only be defined for points with non-negative coordinates, the definition of
φ � must be adapted (for this result only) to

φ �(z) = sup
u∈(0,2)n

φ(z−u),

which, due to the invariance by integer translations of the standard lattice point enumerator, still allows
one to apply results like Theorem F or Theorem 1.12.

With these ingredients, and using a similar argument to the one employed in the proof of Theorem 1.28,
we can show the following result.

Theorem 1.29 [64, Theorem 4.1] Let K,L ⊂ Rn

≥0 be non-empty bounded sets and let λ ∈ (0,1). Then,
for any 0 < p < 1,

νp

�
(1−λ ) ·K ⊕p λ ·L⊕p

�
0,41/p

�
n
�
≥Mλ

p

np+1

�
νp(K),νp(L)

�
.

Proof. By definition we have

νp

�
(1−λ ) ·K ⊕p λ ·L⊕p

�
0,41/p

�
n
�
= ∑

z∈[(1−λ )·K⊕pλ ·L⊕p(0,41/p)n]∩Γp

�
n

∑
i=1

z
p

i

�1/p

,

and since clearly
�
0,21/p

�
n ⊕p

��
21/p, . . . ,21/p

��
⊂
�
0,41/p

�
n
,
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the above expression can be bounded by

νp

�
(1−λ ) ·K ⊕p λ ·L⊕p

�
0,41/p

�
n
�
≥ ∑

z∈[(1−λ )·K⊕pλ ·L⊕p(0,21/p)n]∩Γp

�
n

∑
i=1

z
p

i
+2

�1/p

≥ ∑
z∈[(1−λ )·K⊕pλ ·L⊕p(0,21/p)n]∩Γp

sup
u∈(0,21/p)n

�
n

∑
i=1

z
p

i
+u

p

i

�1/p

.

Next, applying the change of variables defined by ϕp, and denoting by h(z) =
�
∑n

i=1 zi

�1/p, the last term
rewrites into

∑
z∈[ϕ−1

p ((1−λ )·K⊕pλ ·L⊕p(0,21/p)n)]∩Zn

sup
u∈(0,2)n

�
n

∑
i=1

zi +ui

�1/p

= ∑
z∈[ϕ−1

p ((1−λ )·K⊕pλ ·L⊕p(0,21/p)n)]∩Zn

sup
u∈(0,2)n

h(z+u)

= ∑
z∈[ϕ−1

p ((1−λ )·K⊕pλ ·L⊕p(0,21/p)n)]∩Zn

h
�(z)

= ∑
z∈[(1−λ )ϕ−1

p (K)+λϕ−1
p (L)+(0,2)n)]∩Zn

h
�(z),

where the last identity arises from Lemma 1.24 iv).

Now, if we consider the functions f = g = h, it is immediate that the condition

h
�
(1−λ )x+λy

�
=Mλ

p

�
f (x),g(y)

�

holds, and thus, Theorem F yields

∑
z∈[(1−λ )ϕ−1

p (K)+λϕ−1
p (L)+(0,2)n]∩Zn

h
�(z)≥Mλ

p

np+1



 ∑
x∈ϕ−1

p (K)∩Zn

f (x), ∑
y∈ϕ−1

p (L)∩Zn

g(y)



 .

Finally, performing the change of variables defined by ϕp, it is easy to check that the above expression is
equal to

Mλ
p

np+1

�
νp(K),νp(L)

�
,

and so we can conclude that

νp

�
(1−λ ) ·K ⊕p λ ·L⊕p

�
0,41/p

�
n
�
≥Mλ

p

np+1

�
νp(K),νp(L)

�
,

as desired.





2
Isoperimetric type inequalities

The isoperimetric inequality is one of the most renowned classical inequalities in mathematics, dating back
to the hellenistic period. As a result, it is perhaps one of the most outstanding and striking consequences
of the Brunn-Minkowski inequality (1.1). Its form for convex bodies in Rn states that the volume vol(·)
and the surface area S(·) of any n-dimensional convex body K satisfy

�
S(K)

S(Bn)

�
n

≥
�

vol(K)

vol(Bn)

�
n−1

. (2.1)

In other words, Euclidean balls minimize the surface area among those convex bodies with prescribed
positive volume.

There exist various facets of the isoperimetric inequality (see e.g. [97, Section 7.2] and the references
therein), having different ramifications into other settings such as its versions in the spherical and
hyperbolic spaces (see e.g. [29]), or its version for mixed volumes known as Minkowski’s first inequality

(cf. [97, Theorem 7.2.1]). The isoperimetric inequality has been the starting point for new engaging
related results, such as a reverse isoperimetric inequality (see [12]), and it has led to various remarkable
consequences not only in geometry but also in analysis (see e.g. [32]), such as an equivalent analytic
version due to Sobolev (see e.g. [45, Section 5]). Other related inequalities, which can be consulted in [97,
Section 7.2], include Diskant’s inequality or the Bonnesen-type inequalities in the plane. For an extensive
survey article on this inequality we refer the reader to [82].

The isoperimetric inequality (2.1) admits the following (slightly more general) “neighbourhood form”
(see e.g. [79, Proposition 14.2.1]), which is a direct consequence of the Brunn-Minkowski inequality: for
any n-dimensional compact set K ⊂ Rn, and all t ≥ 0, we have

vol(K + tBn)≥ vol(rBn + tBn), (2.2)

where rBn, r > 0, is a ball of the same volume as K. In fact, if K is in addition convex, by subtracting
vol(K) = vol(rBn), dividing both sides of (2.2) by t, and taking limits as t → 0+, one immediately gets
(2.1) from (2.2) (see (2)).

The neighbourhood K + tBn, t ≥ 0, of an n-dimensional compact set K coincides with the set of all
points of Rn having (Euclidean) distance from K at most t. Exchanging the role of the unit ball Bn in (2.2)
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by another (n-dimensional) convex body E ⊂ Rn, i.e., changing the involved “distance”, one is naturally
led to the fact that

vol(K + tE)≥ vol(rE + tE) (2.3)

for all t ≥ 0, where again r > 0 is such that rE has the same volume as K. Thus, the advantage of using
the volume of a neighbourhood of K, instead of its surface area, is that it can be extended to non-convex
compact sets, and, moreover, to other spaces in which the latter notion makes no sense; it just suffices to
consider a metric and a measure on the given space.

A brief survey on the neighborhood form of the isoperimetric inequality can be found in [79, Sec-
tion 14.2], where different spaces are considered (e.g. the Gauss space and the n-dimensional discrete
unit cube {0,1}n). In [104] and [37], this type of inequalities are studied in Zn endowed with the L1 norm,
characterizing the equality in some particular cases. Similar inequalities also hold in other discrete metric
spaces, in the settings of combinatorics and graph theory (for which we refer the reader to [57]).

In this chapter we will present several new discrete analogues of the isoperimetric inequality, both
for the cardinality (see Theorem 2.9 and Corollary 2.11) and for the lattice point enumerator (see
Theorems 2.37 and 2.41). We will further obtain some characterizations of the equality in special cases
(see Theorems 2.14, 2.15, 2.16, 2.37 and Corollary 2.34), and finally, we will also show that these
inequalities imply the classical versions for the volume (see Theorem 2.43 and Corollary 2.44). The
results collected in this chapter can be found in [67, 66].

2.1 Discrete isoperimetric inequalities. Preliminaries

In [86], Radcliffe and Veomett proved an exceptional discrete isoperimetric inequality in the spirit of (2.3)
for the integer lattice Zn endowed with the L∞ norm considering the cardinality as the measure. To this
end, the authors defined the following complete order in Zn.

Definition 2.1 If n = 1, the order ≺ in Z is defined by

0 ≺ 1 ≺−1 ≺ 2 ≺−2 ≺ ·· · ≺ m ≺−m ≺ . . .

For n ≥ 2 and for any vector w = (w1, . . . ,wn) ∈ Zn, let

mw = max
≺

{wi : i = 1, . . . ,n}, iw = min
�

i : wi = mw

�

and
w
� = (w1, . . . ,wiw−1,wiw+1, . . . ,wn) ∈ Zn−1.

Then, ≺ is defined recursively as follows: for any u,v ∈ Zn with u �= v, one has u ≺ v if either

1. mu ≺ mv or
2. mu = mv and then either iv < iu or (iv = iu and) u

� ≺ v
�.

Moreover, we write u � v if either u ≺ v or u = v.

We note that, in order to define ≺ in Nn, one could see that order as the restriction of the order in Zn

to the subset Nn, or as the generalization of the usual order in N, to which one applies the same process
described in Definition 2.1.

For any r ∈ N\{0}, we denote by Ir (resp., Jr) the initial segment in Zn (resp., Nn) of cardinality r,
that is, the set of the first r points with respect to the order ≺ of Zn (resp., Nn). The following figure shows
examples of initial segments, both in Zn and in Nn.
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Figure 2.1: The initial segments I23 (left) and J23 (right) for n = 2.

The authors then showed that the initial segments Ir ⊂ Zn minimize the functional
��X +{−1,0,1}n

��,
among all sets X ⊂ Zn with |X |= r:

Theorem H [86, Theorem 1] Let X ⊂ Zn with r = |X | ∈ N\{0}. Then
��X +{−1,0,1}n

��≥
��Ir +{−1,0,1}n

��. (2.4)

Radcliffe and Veomett also considered the restriction of the order to Nn to show an analogous result
for the corresponding initial segments Jr ⊂ Nn.

Theorem I [86, Corollary 1] Let X ⊂ Nn with r = |X | ∈ N\{0}. Then
���X +{−1,0,1}n

�
∩Nn

��≥
���Jr +{−1,0,1}n

�
∩Nn

��. (2.5)

Remark 2.2 It can be easily verified from the definition of ≺ that for r = (ρ + 1)n, with ρ ∈ N, the
initial segments Ir ⊂ Zn and Jr ⊂ Nn are both lattice cubes. More precisely, Ir = {−ρ/2, . . . ,ρ/2}n for
ρ even and Ir =

�
−(ρ + 1)/2+ 1, . . . ,(ρ + 1)/2

�
n for ρ odd, whereas Jr = {0, . . . ,ρ}n for all ρ ∈ N.

See Remark 2.6 for a more precise description of the structure of the initial segments. �

For any given x ∈ Zn we denote its rank, i.e., its position with respect to the order ≺ in Zn, by
r(x) ∈ N\{0}. Furthermore, for any non-empty finite set X ⊂ Zn, the rank of X is defined as

r(X) = ∑
x∈X

r(x).

We will use the same notation when working with ≺ in Nn, without specifying if there is no ambiguity.

Definition 2.3 [86, Definition 2] A non-empty set X ⊂ Nn, n > 1, is said to be downward compressed
in the i-th coordinate, i = 1, . . . ,n, with respect to x = (x1, . . . ,xn−1) ∈ Nn−1 if the set

�
y ∈ N : (x1, . . . ,xi−1,y,xi, . . . ,xn−1) ∈ X

�

is either empty or of the form {y ∈ N : 0 ≤ y ≤ a} for some a ∈ N.

Moreover, we say that X ⊂ Nn is downward compressed in the i-th coordinate if it is downward
compressed in the i-th coordinate with respect to all x ∈ Nn−1.

Finally, we say that X ⊂ Nn is downward compressed if it is downward compressed in the i-th
coordinate for all i = 1, . . . ,n (see Figure 2.2).

2.1.1 Comparing the initial segments in Zn and Nn

Let us obtain in this section several useful properties of the order from Definition 2.1 and the corresponding
initial segments. These will be useful throughout the rest of the chapter. First, we make a few observations.
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Figure 2.2: From left to right: a finite set, a downward compressed set in the 2nd coordinate and
a downward compressed set.

Remark 2.4 Let x,y,z ∈ Zn (resp. Nn). Then:

1. If for some i ∈ {1, . . . ,n} we have xi ≺ yi and x j = y j for all j �= i, then x ≺ y.
2. In particular, if xi � yi for all i = 1, . . . ,n, then x � y.
3. If x ≺ y, then x+ z ≺ y+ z. �

On the one hand, a straightforward consequence of the above observation is that every initial segment
Jr ⊂ Nn is downward compressed. And since clearly every downward compressed set X ⊂ Nn verifies

�
X +{−1,0,1}n

�
∩Nn = X +{0,1}n, (2.6)

then so does Jr for all r ∈ N.

On the other hand, in [86, page 11], the authors show that
���Jr +{−1,0,1}n

�
∩Nn

��+2l(x) =
���Jr+1 +{−1,0,1}n

�
∩Nn

��,

where x ∈Nn satisfies Jr ∪{x}= Jr+1 and l(x) ∈ {0, . . . ,n} is the number of coordinates equal to zero in
x. Putting all this together immediately yields the following result.

Lemma 2.5 Let r ∈ N and let x ∈ Nn be such that Jr ∪{x}= Jr+1. Then
��Jr +{0,1}n

��+2l(x) =
��Jr+1 +{0,1}n

��.

We will now analyze the (n−1)-dimensional sections of the initial segments, providing a description
which will become crucial in subsequent sections. We note that, for any x ∈ Zn (resp. Nn), all but the “last”
section of Ir(x) (resp. Jr(x)) are uniquely determined by mx and ix. Indeed:

Remark 2.6 For x ∈ Zn, let r = r(x). Then, from the fact that Ir = {z ∈ Zn : z � x} we get that the only
non-empty (n−1)-dimensional sections of Ir (with respect to eix

) are

(Ir)
ix(m) = {t ∈ Z : t ≺ mx}ix−1 ×{t ∈ Z : t � mx}n−ix (2.7)

for all m ≺ mx, and

(Ir)
ix(mx) = {z ∈ Zn−1 : z � x

�} ⊂ {t ∈ Z : t ≺ mx}ix−1 ×{t ∈ Z : t � mx}n−ix . (2.8)

Now, let y ∈ Nn and r = r(y). Then, since Jr = {z ∈ Nn : z � y} ⊂ Nn and {t ∈ N : t ≺ my} =
{0, . . . ,my −1}, the prior relations translate into

(Jr)
iy(m) = {0, . . . ,my −1}iy−1 ×{0, . . . ,my}n−iy (2.9)

for all 0 ≤ m < my, and

(Jr)
iy(my) = {z ∈ Nn−1 : z � y

�} ⊂ {0, . . . ,my −1}iy−1 ×{0, . . . ,my}n−iy (2.10)

(see Figure 2.3). �
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(a) The initial segment I44 ⊂ Z3, whose last point
is x = (−1,2,1) with mx = 2 and ix = 2.

(b) The initial segment J44 ⊂ N3, whose last point
is y = (2,3,1) with my = 3 and iy = 2.

Figure 2.3: The sections of the initial segments I44 and J44.

Before proceeding it is convenient to make the following useful observation.

Remark 2.7 We note that the sequence

1, 2, . . . , 2n−2, 2n−1,
2n, 2n−1 ·3, . . . , 22 ·3n−2, 2 ·3n−1,
3n, 3n−1 ·4, . . . , 32 ·4n−2, 3 ·4n−1,

...

is strictly increasing, and therefore,
��

s
i(s+1)n−i,si−1(s+1)n−i+1�∩N : s ∈ N\{0}, i = 1, . . . ,n

�

is a partition of N\{0}. �

This allows us to obtain a fundamental connection between the initial segments in Zn and Nn:

Lemma 2.8 Let r ∈ N, r > 0. Then
��Ir +{0,1}n

��=
��Jr +{0,1}n

��.

Proof. We proceed by induction on the dimension n. The case n = 1 is immediate since we have��Ir +{0,1}
��= r+1 =

��Jr +{0,1}
��.

Now, let n > 1, and assume that the (n−1)-dimensional case is already proved. Let x ∈ Zn, y ∈Nn be
the last points in the order ≺ of Ir and Jr, respectively (so, r(x) = r = r(y)), and let

s =
��{m ∈ Z : m ≺ mx}

��,

i.e., the number of sections of Ir of the form (2.7). Then, using (2.7) and (2.8), we have

s
ix(s+1)n−ix < r ≤ s

ix−1(s+1)n−ix+1. (2.11)

Analogously, from (2.9) and (2.10), we get

m
iy
y (my +1)n−iy < r ≤ m

iy−1
y (my +1)n−iy+1. (2.12)

Therefore, using Remark 2.7, (2.11) and (2.12) imply that s = my and ix = iy and, consequently,
��{z ∈ Zn−1 : z � x

�}
��= r− s

ix(s+1)n−ix =
��{z ∈ Nn−1 : z � y

�}
��.

Remark 2.6 also yields that both initial segments are the union of a lattice box of cardinality s
ix(s+1)n−ix

with an (n− 1)-dimensional initial segment of cardinality r− s
ix(s+ 1)n−ix , in their respective orders.

Moreover, we have
��Ir +{0,1}n

��= (s+1)ix(s+2)n−ix +
��{z ∈ Zn−1 : z � x

�}+{0,1}n−1��
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and ��Jr +{0,1}n
��= (s+1)ix(s+2)n−ix +

��{z ∈ Nn−1 : z � y
�}+{0,1}n−1��.

This concludes the proof since the induction hypothesis implies that
��{z ∈ Zn−1 : z � x

�}+{0,1}n−1��=
��{z ∈ Nn−1 : z � y

�}+{0,1}n−1��.

2.2 New discrete isoperimetric inequalities for the cardinality

As suggested by the work in the previous section (see (2.6) or Lemma 2.8), and as we will further see in
this section (see Corollary 2.13), in order to develop a framework that allows us to obtain results that can
be applied to the settings of Zn and Nn simultaneously, it will be convenient to work with the functional��X +{0,1}n

��, X ⊂ Zn.

Therefore, following the ideas from [104, 86], we now prove the following new discrete isoperimetric
type inequality. We will later show that it is, in fact, equivalent to Theorem I (see Proposition 2.12). In
Section 2.4 we will see that this result for the cardinality can be used to obtain discrete isoperimetric-type
inequalities in the setting of compact sets of Rn for the lattice point enumerator (see Theorems 2.37
and 2.41), which will in turn enable us to recover the original continuous versions of the isoperimetric
inequality for the volume (see Theorem 2.43).

Theorem 2.9 [66, Lemma 2.6] Let X ⊂ Nn be a non-empty finite set with |X |= r. Then
��X +{0,1}n

��≥
��Jr +{0,1}n

��. (2.13)

Proof. If n = 1, since Jr = {0, . . . ,r − 1} ⊂ N, by applying Theorem D to the sets X ,{0} ⊂ N we
immediately get ��X +{0,1}

��≥ r+1 =
��Jr +{0,1}

��. (2.14)

Let n > 1. If X is downward compressed then the result is a direct consequence of Theorem I, together
with the fact that Jr is also downward compressed and (2.6).

If X is not downward compressed, it is enough to show that we can find a downward compressed set
Z ⊂ Nn such that |X |= |Z| and

��X +{0,1}n
��≥

��Z +{0,1}n
��, and apply the previous case.

So, we assume that X is not downward compressed in the i-th coordinate, for some i ∈ {1, . . . ,n}, and
we define the set Y ⊂ Nn as

Y =
�

x∈X

�
(x1, . . . ,xi−1, t,xi+1, . . . ,xn) ∈ Nn : t <

��(x+ �i)∩X

���.

The set Y is downward compressed in the i-th coordinate and satisfies
��(x+�i)∩X

��=
��(x+�i)∩Y

�� for
all x ∈Nn. Therefore, |Y |= |X |. Furthermore, since Y is downward compressed in the i-th coordinate, then
for all x ∈Nn one has that (x+�i)∩Y has no “holes”, i.e., it is formed by consecutive points of Nn in x+�i.
Hence,

��(x+�i)∩
�
Y +{0,1}n

���≤
��(x+�i)∩

�
X +{0,1}n

���, and therefore,
��Y +{0,1}n

��≤
��X +{0,1}n

��.
We also note that, by repeatedly “compressing” the set X with respect to different coordinates as many

times as necessary, we eventually get a downward compressed set Z ⊂ Nn after a finite number of steps.
Indeed, by looking at the ranks of X and Y , we note that r(X)≥ r(Y ) with an strict inequality if X �= Y

(cf. Remark 2.4), and so it is a consequence of the fact that r(X) is bounded from below.

Remark 2.10 We note that Jr +{0,1}n is an initial segment, which follows from (2.6) and the fact that�
Jr +{−1,0,1}n

�
∩Nn is an initial segment (cf. [86, page 11]). �

As a consequence of the previous remark, by iterating Theorem 2.9, one gets the following corollary.
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Corollary 2.11 Let X ⊂ Nn be a non-empty finite set with |X |= r. Then, for all s ∈ N,
��X +{0, . . . ,s}n

��≥
��Jr +{0, . . . ,s}n

��. (2.15)

Since for every r ∈ N\{0} the set Ir +{−1,0,1}n is an initial segment in Zn (see [86, Lemma 1]),
iterating Theorem H similarly yields that

��X +{−s, . . . ,s}n
��≥

��Ir +{−s, . . . ,s}n
�� (2.16)

for any X ⊂ Zn and all s ∈N, which is equivalent to Theorem H. It is also easy to show that Corollary 2.11
and Theorem I are equivalent.

Proposition 2.12 The discrete isoperimetric inequalities (2.5) and (2.15) are equivalent.

Proof. Since the proof of Corollary 2.11 uses Theorem 2.9 (and thus, Theorem I), we only need to show
that (2.15) implies (2.5). But this is a direct consequence of the fact that

���X +{−1,0,1}n
�
∩Nn

��≥
��X +{0,1}n

��≥
��Jr +{0,1}n

��=
���Jr +{−1,0,1}n

�
∩Nn

��,

for all finite sets X ⊂ Nn with |X | ≥ r (cf. (2.6)).

We finish the section by noting the strong connection between the initial segments in Zn and Nn that
was already pointed out in the previous section.

On the one hand, just like Ir, the initial segments Jr also give equality in (2.16) for any s ∈ N, and
thus, also in (2.4). Indeed, it suffices to apply Corollary 2.11 with the cube {0, . . . ,2s}n, together with the
translation invariance of the cardinality.

On the other hand, the initial segments Ir ⊂ Zn also attain the equality in (2.15) (and thus in (2.5)).
In fact, since for every r ∈ N \ {0} the set Ir + {−1,0,1}n is an initial segment in Zn, and likewise,
Jr + {0,1}n is an initial segment in Nn (see Remark 2.10), by iterating these properties, using (2.15),
(2.16) and Lemma 2.8, and due to the translation invariance of the cardinality, we have the following
result which generalizes Lemma 2.8:

Corollary 2.13 Let r ∈ N, r > 0. Then
��Ir +{0, . . . ,s}n

��=
��Jr +{0, . . . ,s}n

�� for all s ∈ N.

2.3 Characterization of the equality cases for the cardinality

Radcliffe and Veomett already observed in [86] that it is not possible to fully characterize (in general)
the equality case in (2.4) and (2.5), since there are examples of sets that reach the equality and are not
isomorphic to any initial segment.

Nevertheless, here we show, on the one hand, that lattice cubes can be characterized as the only sets
(of the appropriate cardinality) attaining equality in Theorem H and Theorem I:

Theorem 2.14 [66, Theorem 1.1] Let X ⊂ Zn with |X | = (ρ + 1)n for some ρ ∈ N. Then equality
holds in (2.4) if and only if X is a lattice cube.

Theorem 2.15 [66, Theorem 1.2] Let X ⊂ Nn with |X | = (ρ + 1)n for some ρ ∈ N. Then equality
holds in (2.5) if and only if X = {0, . . . ,ρ}n.
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We will do this by showing a stronger characterization of lattice cubes as the only minimizers of the
functional

��X +{0, . . . ,s}n
�� for all s ∈ N\{0}:

Theorem 2.16 [66, Theorem 3.1] Let X ⊂ Nn with |X |= (ρ +1)n for some ρ ∈ N and let s ∈ N with
s > 0. If ��X +{0, . . . ,s}n

��=
��J(ρ+1)n +{0, . . . ,s}n

��,

then X is a lattice cube.

This will further allow us to characterize lattice cubes in a wider family of discrete inequalities, for
instance, in the Brunn-Minkowski type inequality given in Theorem D (see Corollary 2.34), or in the
inequalities for the lattice point enumerator that we will prove in Section 2.4.

We first set further new definitions and get some initial results. The next subsections address separately
the 2-dimensional and the general case of Theorem 2.16 for s = 1. An additional inductive argument then
shows Theorem 2.16 in its full generality. Finally, as a consequence, we obtain Theorems 2.14 and 2.15.
We refer the reader to [104] and [37] for similar studies with other norms.

Definition 2.17 We say that a non-empty finite set X ⊂ Nn is optimal if for all A ⊂ Nn with |A|= |X |
we have

��A+{0,1}n
��≥

��X +{0,1}n
��.

Definition 2.18 Given a finite set X ⊂ Nn, we define the (n-dimensional) neighborhood of X as
Nn

X
=

�
X +{0,1}n

�
\X if X �= /0, and Nn

X
= /0 if X = /0. Moreover, its cardinality will be denoted by

n(X) =
��Nn

X

��.

We note that the optimality of a finite set can be defined in terms of the functional n(·), since any set
X ⊂ Nn is optimal if and only if n(A)≥ n(X) for each A ⊂ Nn with |A|= |X |.

Lemma 2.19 Let n > 1 and let X ⊂ Nn be a non-empty finite set. If |X |> (ρ +1)n for some ρ ∈ N,
then

��X +{0,1}n
��> (ρ +2)n and n(X)> (ρ +2)n − (ρ +1)n.

Proof. Let Ja ⊂Jb ⊂Jc ⊂Nn with a = (ρ +1)n, b = (ρ +1)n+1 and c = |X |. Then, Ja = {0, . . . ,ρ}n

and Jb = Ja ∪ (0, . . . ,0,ρ +1) (see Remark 2.2), and Theorem 2.9 yields
��X +{0,1}n

��≥
��Jc +{0,1}n

��>
��Ja +{0,1}n

��= (ρ +2)n.

In the following, we show that for any r ∈N, r > 0, we have n(Jr+1)≥ n(Jr). Let x0 ∈Nn be the last
point in the order ≺ of Jr+1. Then, using Remark 2.4, and since x � (1, . . . ,1) for all x ∈ {0,1}n, we get

z+ x � z+(1, . . . ,1)≺ x0 +(1, . . . ,1),

for all z ≺ x0. This implies that x0 +(1, . . . ,1) ∈
�
Jr+1 +{0,1}n

�
\
�
Jr +{0,1}n

�
. Consequently,

��Jr+1 +{0,1}n
��≥

��Jr +{0,1}n
��+1,

and, since |Jr+1|= |Jr|+1, we deduce that

n(Jr+1) =
��Jr+1 +{0,1}n

��−|Jr+1| ≥
��Jr +{0,1}n

��−|Jr|= n(Jr),

as desired. This concludes the proof, since we also have

n(Ja) = (ρ +2)n − (ρ +1)n and n(Jb) = (ρ +2)n +2n−1 −
�
(ρ +1)n +1

�

(see, e.g., Lemma 2.5), and therefore,

n(X) =
��X +{0,1}n

��−|X | ≥
��Jc +{0,1}n

��− c = n(Jc)≥ n(Jb)> (ρ +2)n − (ρ +1)n.
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Definition 2.20 We say that a non-empty finite set X ⊂ Nn is connected if for each x,y ∈ X , each
i ∈ {1, . . . ,n}, and any m ∈ N such that xi < m < yi, there exists z ∈ X satisfying zi = m.

An important observation is that any optimal set (see Definition 2.17) is connected. Indeed, a similar
argument to the one in [37, Proposition 1.4], translating one connected component next to the boundary
of another one (without overlapping) to strictly decrease the functional n(·), shows the following result:

Proposition 2.21 If X ⊂ Nn is optimal, then X is connected.

2.3.1 Characterization in dimension 2

The 2-dimensional case of Theorem 2.16 is based on the fact that any connected set X can be enlarged up
to a suitable lattice box without increasing the functional n(X).

Thus, for a finite non-empty set X ⊂ N2, we denote by B (X) ⊂ N2 the smallest lattice box (with
respect to set inclusion) such that X ⊂ B (X), i.e., B (X) =

�
[a1,b1]× [a2,b2]

�
∩N2, where, for i = 1,2,

ai = min
�

xi : (x1,x2) ∈ X
�

and bi = max
�

xi : (x1,x2) ∈ X
�
.

Lemma 2.22 Let X ⊂ N2 be a non-empty connected finite set. Then

n
�
B (X)

�
≤ n(X).

Proof. We may assume, by applying a translation to X if necessary, that B (X) =
�
[1,b1]× [1,b2]

�
∩N2

for some b = (b1,b2) ∈ N2. Then,

|B (X) |= b1b2,
��B (X)+{0,1}n

��= (b1 +1)(b2 +1)

and therefore n
�
B (X)

�
= (b1 +1)(b2 +1)−b1b2 = b1 +b2 +1.

Let X1,X2 ⊂
�
X +{0,1}2�\X be defined as

X1 =
�
(x1,x2) ∈ X : �(m,x2) ∈ X with m > x1

�
+ e1 and

X2 =
�
(x1,x2) ∈ X ∪X1 : �(x1,m) ∈ X ∪X1 with m > x2

�
+ e2.

We note that X1 ⊂ (X + e1)\X and X2 ⊂
�
X +{0,1}2�\ (X + e1). Therefore X1 ∩X2 = /0 and, since X is

connected, |X1|= b2 and |X2|= b1 +1. Altogether we conclude the proof since we have

n
�
B (X)

�
= b1 +b2 +1 = |X1|+ |X2| ≤ n(X).

We are now under the conditions to prove the following lemma, which corresponds to the 2-
dimensional case of Theorem 2.16 for s = 1.

Lemma 2.23 Let X ⊂ N2 be a non-empty finite set with |X |= (ρ +1)2 for some ρ ∈ N. If
��X +{0,1}2��= (ρ +2)2,

then X is a lattice cube.

Proof. By the hypothesis on X , we deduce that X is optimal and, consequently, by Proposition 2.21, it is
connected. Furthermore, it must satisfy X = B (X). Otherwise we would have

��B (X)
��> |X |= (ρ +1)2

and, by Lemma 2.22, n
�
B (X)

�
≤ n(X) = (ρ +2)2 − (ρ +1)2, which would contradict Lemma 2.19.
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We assume, by applying a translation to X if necessary, that X = B (X) =
�
[0,b1]× [0,b2]

�
∩N2

for some b = (b1,b2) ∈ N2. Then, the equality condition in the well-known arithmetic-geometric mean
inequality (see, e.g., [28, page 71]) shows that the equations

(ρ +1)2 = |X |= (b1 +1)(b2 +1) and 2(ρ +1)+1 = n(X) = b1 +b2 +3

imply ρ = b1 = b2, as desired.

2.3.2 Characterization in general dimension

The proof when n > 2 in Theorem 2.16 is based on a process that we call “normalization” (see Defini-
tion 2.27). It extends the process of normalization introduced in [104, Section 4] and adapts it to the L∞
setting. The next lemma shows that the functional n(·) can be estimated in terms of the sections of the set.

Lemma 2.24 Let n > 1 and i ∈ {1, . . . ,n}, and let X ⊂ Nn be a non-empty finite set. Then

n(X)≥

�����

� �

m∈N
X

i(m)
�
+{0,1}n−1

�����+ ∑
m∈N

���Nn−1
Xi(m)

��� . (2.17)

Furthermore, if the sections X
i(m) form a decreasing sequence, namely, X

i(0) ⊃ X
i(1) ⊃ . . . , then

equality holds in (2.17).

Proof. In order to prove (2.17), we consider the sets

Ym = {y ∈ X : yi = m}+
�
{0,1}i−1 ×{0}×{0,1}n−i

�

for all m ∈ N such that {y ∈ X : yi = m} �= /0, and

Y =
�

y ∈ X +{0,1}n : y+ kei /∈ X +{0,1}n for all k > 0
�
.

Clearly, the sets Ym are pairwise disjoint and do not intersect with Y . Furthermore, Ym ⊂ X +{0,1}n

and |Ym|=
��Xi(m)+{0,1}n−1

�� for all m ∈ N with X
i(m) �= /0. Moreover, observe that |Y |=

��Pe⊥
i

Y

�� and

Pe⊥
i

Y = Pe⊥
i

�
X +{0,1}n

�
=
� �

m∈N
X

i(m)
�
+{0,1}n−1.

Therefore,
��X +{0,1}n

��≥ |Y |+ ∑
m∈N

|Ym|=

�����

� �

m∈N
X

i(m)
�
+{0,1}n−1

�����+ ∑
m∈N

X
i(m)�= /0

��Xi(m)+{0,1}n−1��.

By subtracting |X |= ∑m∈N |Xi(m)| we conclude the proof of (2.17). Now, if we have m0 ∈ N such that
X

i(m) = /0 for all m > m0 and

X
i(0)⊃ X

i(1)⊃ X
i(2)⊃ ·· · ⊃ X

i(m0) �= /0,

then ���
�

y ∈ X +{0,1}n : yi = 0
����=

��Xi(0)+{0,1}n−1��

and ���
�

y ∈ X +{0,1}n : yi = m+1
����=

��Xi(m)+{0,1}n−1��

for all 0 ≤ m ≤ m0. With this we can conclude the proof:
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��X +{0,1}n
��=

m0+1

∑
m=0

���
�

y ∈ X +{0,1}n : yi = m
����=

��Xi(0)+{0,1}n−1��+
m0

∑
m=0

��Xi(m)+{0,1}n−1��

=

�����

� �

m∈N
X

i(m)
�
+{0,1}n−1

�����+ ∑
m∈N

X
i(m)�= /0

��Xi(m)+{0,1}n−1��.

We note that any optimal set X ⊂ Nn must reach equality in Lemma 2.24: indeed, simply by changing
each section X

i(m) by an initial segment in Nn−1 of the same cardinality, and then rearranging the sections
in decreasing order, we get a new set Z ⊂ Nn that gives equality in Lemma 2.24. Therefore

n(Z) =

�����

� �

m∈N
Z

i(m)
�
+{0,1}n−1

�����+ ∑
m∈N

���Nn−1
Zi(m)

���=
��Zi(0)+{0,1}n−1��+ ∑

m∈N

���Nn−1
Zi(m)

���

≤
��Xi(0)+{0,1}n−1��+ ∑

m∈N

���Nn−1
Xi(m)

���≤

�����

� �

m∈N
X

i(m)
�
+{0,1}n−1

�����+ ∑
m∈N

���Nn−1
Xi(m)

���≤ n(X),

(2.18)

and thus n(Z) = n(X) due to the optimality of X . This allows us to deduce the following result.

Corollary 2.25 Let n > 1 and i ∈ {1, . . . ,n}, and let X ⊂ Nn be an optimal set. Then the sections
X

i(m) are optimal (as (n−1)-dimensional sets) and satisfy

n(X) =

�����

� �

m∈N
X

i(m)
�
+{0,1}n−1

�����+ ∑
m∈N

���Nn−1
Xi(m)

��� . (2.19)

We note that the converse is not true: there are examples of non-optimal sets satisfying (2.19) for all
i = 1, . . . ,n, and having all (n−1)-dimensional sections optimal (see Figure 2.4).

Figure 2.4: Left: A set X ⊂ N3 (in black) and X +{0,1}3 (in white). Right: J9 ⊂ N3 (in black) and J9 +{0,1}3 (in
white). X satisfies (2.19) and its 2-dimensional sections are optimal, but n(X) = 23 > 22 = n(J9).

The following result shows, roughly speaking, that in order to minimize the expression n(Ja)+n(Jb)
for a,b ∈ N with a+ b fixed, one may begin by choosing a,b such that one of the resulting initial
segments is the largest possible lattice box of the form {0, . . . ,ρ −1} j ×{0, . . . ,ρ}n− j for some ρ ∈N and
j ∈ {1, . . . ,n}. Furthermore, it shows that a single initial segment Ja+b does never exceed this minimum.

Lemma 2.26 Let a,b,c ∈ N \ {0} with max{a,b} < c < a+ b and such that c = ρ j(ρ + 1)n− j for
some ρ ∈ N and j ∈ {1, . . . ,n}. Then

n(Ja)+n(Jb)≥ n(Ja+b−c)+n(Jc). (2.20)

Moreover,
n(Ja)+n(Jb)> n(Ja+b). (2.21)
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Proof. We proceed by induction on the dimension n. Both inequalities are clear for n = 1 since for every
initial segment Jr ⊂ N we have n(Jr) = 1.

Assume now that n > 1 and that the lemma holds for every value of the dimension up to n− 1. It
suffices to show that if 1 < a ≤ b < c = ρ j(ρ +1)n− j, then it is possible to find d ∈N with 0 < d < a and
d ≤ c−b such that

n(Ja)+n(Jb)≥ n(Ja−d)+n(Jb+d), (2.22)

and iterating this process will prove the lemma. Indeed, notice on the one hand that the conditions above
imply that 1 ≤ a−d < b+d ≤ c, and if c < a+b, it is easy to check that the process will necessarily
conclude when the upper bound is reached, i.e., (2.20). On the other hand, if c ≥ a+ b, then it will
necessarily conclude when the lower bound is reached, i.e.,

n(Ja)+n(Jb)≥ n(J1)+n(Ja+b−1),

which implies (2.21) since Lemma 2.5 yields 2n −1+n(Ja+b−1)> n(Ja+b).

Now, in other to prove (2.22), we let x,y∈Nn be the last points with respect to ≺ in Ja, Jb, respectively.
Also, for the sake of brevity, we denote by G,H ⊂ Nn−1 the last non-empty sections of Ja,Jb ⊂ Nn, i.e.,
G = (Ja)

ix(mx) and H = (Jb)
iy(my).

We note that since 1 < a, Ja has at least two non-empty sections (with respect to the direction eix
),

and therefore |G|< a. Using Remark 2.6 (in particular, (2.9) and (2.10)), we know that

a = m
ix
x
(mx +1)n−ix + |G| and b = m

iy
y (my +1)n−iy + |H| (2.23)

with
|G| ≤ m

ix−1
x

(mx +1)n−ix and |H| ≤ m
iy−1
y (my +1)n−iy . (2.24)

Also, since a ≤ b then x � y, and thus either mx < my, or mx = my with ix ≥ iy. This implies (see
Remark 2.7) that

|G| ≤ m
ix−1
x

(mx +1)n−ix ≤ m
iy−1
y (my +1)n−iy . (2.25)

Likewise, since
m

iy
y (my +1)n−iy < b < c = ρ j(ρ +1)n− j,

then Remark 2.7 implies that c ≥ m
iy−1
y (my +1)n−iy+1. This, together with (2.23), shows that

m
iy−1
y (my +1)n−iy −|H| ≤ c−b. (2.26)

Now, we consider the following cases, which are exhaustive as a consequence of (2.24):

(i) |G|> |H|.
(ii) |G| ≤ |H|< m

iy−1
y (my +1)n−iy .

(iii) |G| ≤ |H|= m
iy−1
y (my +1)n−iy and iy > 1.

(iv) |G| ≤ |H|= m
iy−1
y (my +1)n−iy and iy = 1.

In case (i) we choose d = |G|− |H|, and so we may, roughly speaking, interchange the last sections G

and H, i.e., we have H = (Ja−d)
ix(mx) and G = (Jb+d)

iy(my). The rest of the sections (and their union)
remain the same, i.e., (Ja−d)

ix(m) = (Ja)
ix(m) for all 0 ≤ m < mx and (Jb+d)

iy(m) = (Jb)
iy(m) for all

0 ≤ m < my. Therefore, by using Corollary 2.25, we get (2.22) with equality. Clearly 0 < d ≤ |G|< a,
and d ≤ c−b follows from (2.25) and (2.26).

In case (ii) we set ā = |G|, b̄ = |H| and c̄ = m
iy−1
y (my +1)n−iy , and we use the induction hypothesis

(in dimension n−1). We choose d = min(ā, c̄− b̄) and so, we get
���Nn−1

Jā

���+
���Nn−1

J
b̄

���≥
���Nn−1

J
ā+b̄−c̄

���+
���Nn−1

Jc̄

���
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if c̄ < ā+ b̄, and ���Nn−1
Jā

���+
���Nn−1

J
b̄

���>
���Nn−1

J
ā+b̄

���

if c̄ ≥ ā+ b̄. Again, from Remark 2.6 we get that (Ja−d)
ix(m) = (Ja)

ix(m) for all 0 ≤ m < mx and
(Jb+d)

iy(m) = (Jb)
iy(m) for all 0 ≤ m < my, and the union of the sections remains likewise unchanged.

Thus, an application of Corollary 2.25 yields (2.22). We again trivially have 0 < d ≤ |G| < a, and
d ≤ c−b follows directly from (2.26).

In case (iii) we have Jb = {0, . . . ,my −1}iy−1 ×{0, . . . ,my}n−iy+1 (see Remark 2.6). Therefore, we
may choose d = |G|, and, by applying Remark 2.6 again, we get that the only non-empty sections of
Ja−d are (Ja−d)

ix(m) = (Ja)
ix(m) for all 0 ≤ m < mx. Moreover, the only non-empty sections of Jb+d

are (Jb+d)
iy−1(m) = (Jb)

iy−1(m) for all 0 ≤ m < my and (Jb+d)
iy−1(my) = G. So, since the union of all

these sections has not changed, by using Corollary 2.25 we obtain (2.22), once more with equality. It is
straightforward that 0 < d = |G|< a, and since b = m

iy−1
y (my +1)n−iy+1 and b < c, Remark 2.7 implies

c ≥ m
iy−2
y (my +1)n−iy+2, and so from (2.25) it follows that d ≤ c−b.

Finally, in case (iv) we have Jb = {0, . . . ,my}n. Again, we may choose d = |G|, which yields the
same sections for Ja−d as in the previous case, whereas for the non-empty sections of Jb+d we have
(Jb+d)

n(m) = (Jb)
n(m) for all 0 ≤ m ≤ my and (Jb+d)

n(my +1) = G. Once more, Corollary 2.25 yields
(2.22) with equality. It is again trivial that 0 < d = |G|< a, and this time, since b = (my +1)n and b < c,
Remark 2.7 implies c ≥ (my +1)n−1(my +2), and so d ≤ c−b follows from (2.25).

This completes the proof of (2.22), and thus, of the result.

Now, for any a,n ∈ N, a,n > 0, let C ⊂ Ja ⊂ Nn be the largest lattice box (with respect to the
cardinality) of the form C = {0, . . . ,ρ − 1} j ×{0, . . . ,ρ}n− j for some ρ, j ∈ N, 1 ≤ j ≤ n. Then, we
denote by c(a,n) = |C| = ρ j(ρ + 1)n− j. Furthermore, for any i ∈ {1, . . . ,n} and any non-empty set
X ⊂ Nn, we denote by c

i(X) = maxm∈N c
�
|Xi(m)|,n−1

�
.

We proceed to define the notion of “normalization”, which extends the normalization process defined
in [104] and also utilized, among others, in [86] (see Figure 2.5 for an example of this construction).

Definition 2.27 Let n > 1 and k ∈ {1, . . . ,n}, and let X ⊂ Nn be a non-empty finite set. Let ρ ∈ N
and j ∈ {1, . . . ,n− 1} be such that c

k(X) = ρ j(ρ + 1)n−1− j. The k-normalization of X , denoted by
Xk ⊂ Nn, is the result of the following process:

(i) Replacing each non-empty section X
k(m), m ∈ N, by the (n−1)-dimensional initial segment of

the same cardinality.
(ii) Reordering the sections in decreasing order (with respect to set inclusion) such that the largest

section corresponds to m = 0.
(iii) Starting with m1 = 1 and m2 = max{m ∈ N : X

k(m) �= /0}, and while m1 ≤ ρ < m2, we repeat
both of these steps:

1. If |Xk(m1)|< c
k(X), we replace the sections X

k(m1) and X
k(m2) by the initial segments

of cardinality |Xk(m1)|+h and |Xk(m2)|−h, respectively, where

h = min
�
|Xk(m2)|, c

k(X)−|Xk(m1)|
�
.

2. If |Xk(m2)|= 0, we decrease m2 by 1, whereas if |Xk(m1)|= c
k(X), we increase m1 by 1.

Furthermore, we say that X ⊂ Nn is stable if X = Xk for all k = 1, . . . ,n.

Remark 2.28 We note that the end result Xk of a k-normalization, k ∈ {1, . . . ,n}, is a set such that its
non-empty sections, (Xk)

k
(m), m∈N, are (n−1)-dimensional initial segments ordered in decreasing order,

i.e., (Xk)
k
(0)⊃ (Xk)

k
(1)⊃ (Xk)

k
(2)⊃ . . . , and we have either (Xk)

k
(ρ +1) = /0 or |(Xk)

k
(m)|= c

k(X)
for all m ∈ {1, . . . ,ρ} (where ρ is as in Definition 2.27). �
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Figure 2.5: From left to right: a finite set, together with the same set after each step of the 3-normalization is
applied.

Next we show that neither the rank nor the functional n(·) increase under the normalization process.

Lemma 2.29 Let X ⊂ Nn be a non-empty finite set. If X �= Xk for k ∈ {1, . . . ,n}, then r(X)> r(Xk).

Proof. We proceed by proving that if any of the 3 steps of the normalization changes the set, then the
rank of X strictly decreases.

First, it is straightforward from the definition of the order ≺ that if some section is not an ((n−1)-
dimensional) initial segment, then the (n-dimensional) rank of the set will decrease under step (i).

Next, since all sections are initial segments, if |Xk(m1)| < |Xk(m2)| for some m1 < m2 then we
have X

k(m1) ⊂ X
k(m2). Therefore, interchanging these sections is equivalent to translating the points

in
�

X
k(m2)\X

k(m1)
�
×{m2} by reducing their k-th coordinate by m2 −m1, which decreases the rank

strictly due to Remark 2.4.

In the third step, if we move a point z with mz ≥ zk > ρ (with ρ as specified in Definition 2.27) to a
point y ∈ Nn with my ≤ ρ , then again from the definition of the order ≺ the rank strictly decreases.

Lemma 2.30 Let X ⊂ Nn be a non-empty finite set. Then n(X)≥ n(Xk) for all k = 1, . . . ,n.

Proof. Let k ∈ {1, . . . ,n}. To begin with, we prove that the first two steps of the normalization process
do not increase n(·). Let us denote this resulting intermediate set by Z. By construction, we know there
exists a permutation σ : N−→ N such that, for every m ∈ Nn, Z

k(m) is either empty or an initial segment
with |Zk(m)|=

��Xk
�
σ(m)

���. Then, the optimality of the initial segments (cf. Theorem 2.9) implies that��Nn−1
Zk(m)

��≤
��Nn−1

Xk(σ(m))

�� for every m ∈ N, and, taking into account that the sections of Z form a decreasing
sequence, Lemma 2.24 yields n(Z)≤ n(X) (cf. (2.18)).

To finish, we prove that the third step of the normalization process does not increase n(·) either. We
observe that the equality case in Lemma 2.24 gives

n(Z) =
��Zk(0)+{0,1}n−1��+ ∑

m∈N

���Nn−1
Zk(m)

��� and

n(Xk) =
���Xk

�
k
(0)+{0,1}n−1��+ ∑

m∈N

���Nn−1
(Xk)

k

(m)

���.
(2.27)

Note that Z
k(0) =

�
Xk

�
k
(0). Now, we let m1, m2 and h be as in the third step of Definition 2.27, and we

set a = |Zk(m1)|, b = |Zk(m2)| and c = c
k(Z). So, clearly h = min{b,c−a}. Then, on the one hand, if

h = b ≤ c−a, we have |Zk(m1)|+h = a+b and |Zk(m2)|−h = 0, and thus (2.21) (in dimension n−1)
ensures that this step strictly decreases the sum of the cardinalities of the above (n− 1)-dimensional
neighborhoods. On the other hand, if h = c−a < b, then c < a+b, and as per Definition 2.27 we also
clearly have max{a,b} < c. Therefore (2.20) (in dimension n− 1) again yields that this step does not
increase the sum of the cardinalities of the (n−1)-dimensional neighborhoods above. Consequently, from
(2.27) we conclude that n(Z)≥ n(Xk), as desired.
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The stability property allows us to decompose the set in a precise way:

Lemma 2.31 Let n ≥ 3, ρ ≥ 1 and let X ⊂ Nn be a non-empty finite set with |X |= (ρ +1)n. If X is
stable, then there exist A,B ⊂ Nn such that

A ⊂ {0, . . . ,ρ −1}n−1 ×{ρ +1}, /0 �= B ⊂ {ρ}×{0, . . . ,ρ}n−1

and
X = A∪B∪

�
{0, . . . ,ρ −1}×{0, . . . ,ρ}n−1�.

Proof. For the sake of brevity we write C = {0, . . . ,ρ}n. If X =C, then the result holds by taking A = /0
and B = {ρ}×{0, . . . ,ρ}n−1, and so we assume that X �=C.

For any i ∈ {1, . . . ,n}, since X is stable, we know that the non-empty sections X
i(m) are initial

segments verifying
X

i(0)⊃ X
i(1)⊃ X

i(2)⊃ . . . , (2.28)

and so (ρ, . . . ,ρ) /∈ X because X �=C.

First, we show that if X
i(m) �= /0 for some i ∈ {1, . . . ,n} and m ≥ 2, then {0, . . . ,m−2}n ⊂ X must

hold. To see this, let x ∈ X with xi = m. Then, for any j �= i, since X
j(x j) is an initial segment, we

get {0, . . . ,m− 1}n−1 ⊂ X
j(x j). Fixing such an index j �= i, this implies in particular that we have

(m− 1, . . . ,m− 1,x j,m− 1, . . . ,m− 1) ∈ X , and thus just like before, for any k �= j, we obtain that
{0, . . . ,m− 2}n−1 ⊂ X

k(m−1), since X
k(m−1) is an initial segment (observe how it is crucial in this

step that n ≥ 3). This in particular implies that (m−2, . . . ,m−2) ∈ X , which together with (2.28) yields
{0, . . . ,m−2}n ⊂ X , as desired.

It is easy to check that the previous property applied to m = ρ +1 and m = ρ +2, respectively, together
with the fact that X �=C, yields

{0, . . . ,ρ −1}n ⊂ X ⊂ {0, . . . ,ρ +1}n.

In fact, we further have
X ⊂ {0, . . . ,ρ}n−1 ×{0, . . . ,ρ +1}. (2.29)

Indeed, if X
i(ρ +1) �= /0 for some i < n, then there exists x ∈ X such that xi = ρ +1. Fixing any j �= i,n

and using a very similar argument to the previous one, exploiting that X
j(x j) is an initial segment, we

obtain that ρ ei +(ρ +1)en ∈ X . But this yields {0, . . . ,ρ}n−1 ⊂ X
i(ρ) (since X

i(ρ) is an initial segment),
contradicting that (ρ, . . . ,ρ) /∈ X . This proves (2.29), as desired.

Now, on the one hand, (2.29) yields X
1(ρ) �= /0, since otherwise we would have

|X | ≤
��{0, . . . ,ρ −1}×{0, . . . ,ρ}n−2 ×{0, . . . ,ρ +1}

��= ρ(ρ +1)n−2(ρ +2)< (ρ +1)n,

a contradiction. Since X
1(ρ) is an initial segment then (0, . . . ,0) ∈ X

1(ρ), and thus (ρ,0, . . . ,0) ∈ X .
Hence, (ρ,0, . . . ,0) ∈ X

n(0), and therefore, since X
n(0) is an initial segment, we have

{0, . . . ,ρ −1}×{0, . . . ,ρ}n−2 ⊂ X
n(0). (2.30)

Both (2.29) and (2.30), together with the fact that X �=C and thus X
n(0) �= {0, . . . ,ρ}n−1, yield the bounds

ρ(ρ +1)n−2 ≤ |Xn(0)|< (ρ +1)n−1.

This implies that c
n(X) = ρ(ρ +1)n−2.
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On the other hand, since X �=C, it follows from (2.29) that X
n(ρ +1) �= /0. Therefore, as X is stable

(and thus X = Xn), Remark 2.28 for k = n implies that we have |Xn(m)| ≥ ρ(ρ+1)n−2 for all m= 0, . . . ,ρ .
Consequently, since X

n(m) is an initial segment, we have

{0, . . . ,ρ −1}×{0, . . . ,ρ}n−2 ⊂ X
n(m) (2.31)

for all m = 0, . . . ,ρ .

Finally, we note that, in fact,

X
n(ρ +1)⊂ {0, . . . ,ρ −1}n−1. (2.32)

Indeed, if x ∈ X
n(ρ +1) with xi = ρ for i < n, then since X

i(ρ) is an initial segment, we would have
{0, . . . ,ρ}n−1 ⊂ X

i(ρ), contradicting that (ρ, . . . ,ρ) /∈ X .

This concludes the proof by setting A = X
n(ρ +1)×{ρ +1} and B = {ρ}×X

1(ρ), as a consequence
of (2.29), (2.31) and (2.32).

Finally, we prove that in order to characterize the lattice cubes we only need stability and, either
cardinality 2n, or optimality.

Corollary 2.32 Let n ≥ 3 and let X ⊂ Nn be a non-empty finite set with |X |= 2n. If X is stable, then
X = {0,1}n.

Proof. Let A,B ⊂ Nn be the sets arising from Lemma 2.31 for ρ = 1. We notice that X = {0,1}n if and
only if A = /0. Therefore, if X �= {0,1}n, then we must have |A|= 1 and, since |A|+ |B|= 2n−1, we also
have |B|= 2n−1 −1. Moreover, since X is stable, B is an (n−1)-dimensional initial segment, and so

X =
�
{0,1}n \ (1, . . . ,1)

�
∪ (0, . . . ,0,2).

This contradicts the stability of X since Xn = {0,1}n �= X .

Lemma 2.33 Let n ≥ 3, ρ ≥ 2 and let X ⊂ Nn be a non-empty finite set with |X |= (ρ +1)n. If X is
optimal and stable, then X = {0, . . . ,ρ}n.

Proof. Assume that X �= {0, . . . ,ρ}n and let A,B ⊂ Nn be the sets arising from Lemma 2.31. Observe
that, since X is not a lattice cube, the set A �= /0. Then, |A|> 0 and

|A|+ |B|= (ρ +1)n−1. (2.33)

If
�
A+ {0,1}n

�
∩
�
B+ {0,1}n

�
= /0 then, since A = X

n(ρ +1)×{ρ + 1} and B = {ρ}×X
1(ρ), we

clearly have, on the one hand, that

n(X) =
���Nn

{0,...,ρ−1}×{0,...,ρ}n−1

���+
���Nn−1

Xn(ρ+1)

���+
���Nn−1

X1(ρ)

���.

On the other hand, the optimality of X yields

n(X) = n
�
{0, . . . ,ρ}n

�
=
���Nn

{0,...,ρ−1}×{0,...,ρ}n−1

���+
���Nn−1

{0,...,ρ}n−1

���,

a contradiction because (2.21) for a =
��Xn(ρ +1)

�� and b =
��X1(ρ)

�� implies (see also (2.33)) that
���Nn−1

Xn(ρ+1)

���+
���Nn−1

X1(ρ)

���>
���Nn−1

{0,...,ρ}n−1

���.

Now, if
�
A+{0,1}n

�
∩
�
B+{0,1}n

�
�= /0, then (ρ−1,0, . . . ,0,ρ+1)∈ A. This, together with the fact that

A = X
n(ρ +1)×{ρ +1} is an (n−1)-dimensional initial segment, implies, on the one hand, that there are
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(ρ −1)ρn−2 points in X
n(ρ +1) strictly smaller, in the order ≺, than (ρ −1,0, . . . ,0) ∈ X

n(ρ +1), and
therefore, |A|> (ρ −1)ρn−2. On the other hand, they ensure that (ρ −2,ρ −1, . . . ,ρ −1,ρ +1) ∈ A ⊂ X .

From now on we will write (x1, . . . , �xi, . . . ,xn) to indicate that the i-th coordinate xi does not appear in
the point (x1, . . . ,xn), being henceforth a point in Rn−1. Thus, considering the section X

n−1(ρ −1), which
is also an (n−1)-dimensional initial segment, one has that

(ρ, . . . ,ρ, �ρ−1,ρ)≺ (ρ −2,ρ −1, . . . , �ρ−1,ρ +1) in X
n−1(ρ −1),

and hence (ρ, . . . ,ρ, �ρ−1,ρ) ∈ X
n−1(ρ −1), i.e., (ρ, . . . ,ρ,ρ −1,ρ) ∈ X .

Next we observe that, since X is stable and X
n(ρ +1) �= /0, then the set

D =
�
(ρ, . . . ,ρ,m) ∈ Nn : m = 0, . . . ,ρ

�
⊂ {ρ}×{0, . . . ,ρ}n−1

satisfies that D∩X = /0, since otherwise we would have c
n(X) = (ρ +1)n−1 and thus, by Remark 2.28,

that X = {0, . . . ,ρ}n, a contradiction. Furthermore,

B = {ρ}×X
1(ρ)⊂ {ρ}×{0, . . . ,ρ}n−1,

which yields |B| ≤
��{ρ}×{0, . . . ,ρ}n−1

��−|D|= (ρ +1)n−1 − (ρ +1), and we are going to see that, in
fact, equality holds. Firstly, it is easy to see that if

(�ρ,ρ, . . . ,ρ,ρ −1,ρ)≺ x0 � (�ρ,ρ, . . . ,ρ),

for some x0 ∈Nn, then x0 = (�ρ,ρ, . . . ,ρ,m) for some m∈ {0, . . . ,ρ}. Since r
�
(�ρ,ρ, . . . ,ρ)

�
= (ρ+1)n−1,

this implies that
r
�
(�ρ,ρ, . . . ,ρ,ρ −1,ρ)

�
= (ρ +1)n−1 − (ρ +1).

Now, given that (�ρ,ρ, . . . ,ρ,ρ −1,ρ) ∈ X
1(ρ), and that X

1(ρ) is an (n−1)-dimensional initial segment,
we know that |X1(ρ)| ≥ r

�
(�ρ,ρ, . . . ,ρ,ρ −1,ρ)

�
. Consequently, we have that

|B|=
��X1(ρ)

��≥ r
�
(�ρ,ρ, . . . ,ρ,ρ −1,ρ)

�
= (ρ +1)n−1 − (ρ +1).

To sum up, |B| = (ρ + 1)n−1 − (ρ + 1), and by (2.33), |A| = ρ + 1. This contradicts the fact that
|A|> (ρ −1)ρn−1, except when n = 3 and ρ = 2. In this case, a direct computation proves that X is not
optimal (see Figure 2.6): indeed, in that case, |X |= 33 and n(X) = 41 > 37 = n(J33).

Figure 2.6: The stable set X ⊂ N3 from the proof of Lemma 2.33. The sets A and B are shown in red and blue,
respectively.

We are now in the position to prove Theorem 2.16.
Proof of Theorem 2.16. We proceed by induction on s ∈N. Let s = 1. Since J(ρ+1)n = {0, . . . ,ρ}n, then��J(ρ+1)n +{0,1}n

��=
��{0, . . . ,ρ +1}n

��= (ρ +2)n, and so we have to prove that

if

��X +{0,1}n
��= (ρ +2)n

, then X is a lattice cube. (2.34)

If ρ = 0 the result is trivial. Thus, we assume ρ ≥ 1 and we proceed by induction on the dimension. If
n = 1 then, in order to have

��(X +{0,1})\X

��= 1, necessarily it must be X = {0, . . . ,ρ} up to translations,
i.e., a lattice cube. The case n = 2 is Lemma 2.23.
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So we assume n ≥ 3. Then, there exists a sequence of sets {Xj}r

j=1 given recursively by Xj+1 = (Xj)i j

for some i j ∈ {1, . . . ,n}, j = 1, . . . ,r, with X1 = X , such that Xr is stable. Indeed, since the normalization
process either leaves the set unchanged or strictly decreases its rank (see Lemma 2.29), which is bounded
from below, such a sequence always exists.

By Theorem 2.9 the set X is optimal, and so Lemma 2.30 ensures that all Xj are also optimal for
j = 1, . . . ,r. Therefore, if ρ = 1, Corollary 2.32 ensures that Xr is the lattice cube {0,1}n, whereas for
ρ ≥ 2, Lemma 2.33 shows that Xr = {0, . . . ,ρ}n.

Let us now focus on Xr−1. Since Xr−1 is optimal, Corollary 2.25 yields

n(Xr−1) =

�����

� �

m∈N
(Xr−1)

ir−1(m)
�
+{0,1}n−1

�����+ ∑
m∈N

���Nn−1
(Xr−1)

ir−1 (m)

��� . (2.35)

Moreover, we have
(Xr−1)ir−1

= Xr = {0, . . . ,ρ}n.

We show next that this last normalization procedure does not involve the third step of the normalization
process. Indeed, since all non-empty sections of the lattice cube Xr = {0, . . . ,ρ}n are of the form
{0, . . . ,ρ}n−1, applying step (iii) of the normalization process to Xr−1 would imply the existence of
a section (Xr−1)

ir−1(m0), for some m0 ∈ N, that becomes empty during such a step. But then, due to
(2.35), an analogous argument to the one of the proof of Lemma 2.30 would show that n(Xr−1)> n(Xr),
contradicting the optimality of Xr−1.

Therefore, only the steps (i) and (ii) in Definition 2.27 are used in the last normalization (Xr−1)ir−1
,

which ensures that Xr−1 has exactly ρ +1 non-empty sections (Xr−1)
ir−1(m), each of them with cardinality

(ρ +1)n−1. We also know that all these (non-empty) sections (Xr−1)
ir−1(m) are optimal sets in Nn−1 (see

Corollary 2.25), and so ���(Xr−1)
ir−1(m)+{0,1}n−1

���= (ρ +2)n−1.

Thus, the induction hypothesis allows us to conclude that every (non-empty) section (Xr−1)
ir−1(m) is

an (n−1)-dimensional lattice cube. Furthermore, since Xr−1 is optimal, Proposition 2.21 ensures it is
connected, and hence all these sections are consecutive. Finally, they must all be equal as well: indeed,
otherwise, for any non-empty section (Xr−1)

ir−1(m0), m0 ∈ N, we would have

(Xr−1)
ir−1(m0)+{0,1}n−1 �

� �

m∈N
(Xr−1)

ir−1(m)
�
+{0,1}n−1,

and hence we could translate the sections such that for every non-empty (Xr−1)
ir−1(m), m ∈ N, we had

(Xr−1)
ir−1(m) = (Xr−1)

ir−1(m0), strictly reducing the functional n(·) (see (2.35)); this would contradict the
optimality of Xr−1. Therefore, Xr−1 is itself a lattice cube. The same conclusion is naturally obtained for
all Xj, j = 1, . . . ,r. In particular, X = X1 is a lattice cube, which concludes the proof of the case s = 1.
Thus we have shown (2.34).

Finally, assume now that s > 1 and that the result holds for s−1. On the one hand, Corollary 2.11
ensures that ��X +{0, . . . ,s−1}n

��≥
��J(ρ+1)n +{0, . . . ,s−1}n

��= (ρ + s)n.

On the other hand, if
��X +{0, . . . ,s−1}n

��> (ρ + s)n, then Lemma 2.19 would imply that
��X +{0, . . . ,s}n

��> (ρ + s+1)n =
��J(ρ+1)n +{0, . . . ,s}n

��,

a contradiction. Therefore,
��X + {0, . . . ,s− 1}n

�� =
��J(ρ+1)n + {0, . . . ,s− 1}n

��, and thus, the induction
hypothesis yields that X is a lattice cube, as desired.



2.3 Characterization of the equality cases for the cardinality 45

2.3.3 Characterizations of the equality cases in other inequalities

As a consequence of Theorem 2.16, we derive several equality characterizations in discrete isoperimetric-
type and Brunn-Minkowski-type inequalities. We begin by proving Theorems 2.14 and 2.15, thus
providing the announced characterizations of Radcliffe and Veomett’s results, Theorems H and I.

Proof of Theorem 2.14. Let r = (ρ +1)n. By the translation invariance of the cardinality we may assume,
without loss of generality, that X ⊂ Nn. Then Corollaries 2.11 and 2.13 yield

��X +{−1,0,1}n
��=

��X +{0,1,2}n
��≥

��Jr +{0,1,2}n
��=

��Ir +{0,1,2}n
��=

��Ir +{−1,0,1}n
��.

Thus, if
��X +{−1,0,1}n

��=
��Ir +{−1,0,1}n

��, we get that
��X +{0,1,2}n

��=
��Jr +{0,1,2}n

��, and Theo-
rem 2.16 shows that X is a lattice cube. The converse is obvious.

Proof of Theorem 2.15. Let r = (ρ +1)n. By Corollary 2.11 and (2.6) for Jr, we have

���X +{−1,0,1}n
�
∩Nn

��≥
��X +{0,1}n

��≥
��Jr +{0,1}n

��=
���Jr +{−1,0,1}n

�
∩Nn

��.

Thus, if equality holds in (2.5), we get, in particular, that
��X +{0,1}n

��=
��Jr +{0,1}n

��, and Theorem 2.16
shows that X is a lattice cube. Furthermore, in order to have

���X +{−1,0,1}n
�
∩Nn

��=
��X +{0,1}n

��, it
must in fact be X = {0, . . . ,ρ}n, as desired. The converse is obvious.

Furthermore, as a consequence of Theorem 2.16, we can also characterize the equality case in (1.14)
in some particular cases:

Corollary 2.34 Let X ⊂ Zn be a finite set with |X |= (ρ +1)n for some ρ ∈ N and let Y be a lattice
cube. Then ��X +Y +{0,1}n

��1/n
= |X |1/n + |Y |1/n

if and only if X is a lattice cube.

Proof. If X is a lattice cube then Theorem D shows the result. So we assume that

��X +Y +{0,1}n
��1/n

= |X |1/n + |Y |1/n,

and let Y = {0, . . . ,s}n for some s ∈ N. Then, by applying Corollary 2.11, we have

(ρ + s+2)n =
��X +Y +{0,1}n

��≥
��J(ρ+1)n +Y +{0,1}n

��= (ρ + s+2)n.

Thus,
��X +{0, . . . ,s+1}n

��=
��J(ρ+1)n +{0, . . . ,s+1}n

�� and Theorem 2.16 concludes the proof.

Remark 2.35 We note that there are examples of sets (even with the cardinality of a lattice cube)
reaching equality in Theorem D which are not lattice cubes (see Figure 2.7). �

Figure 2.7: A set X ⊂ Z2 with |X |= 16 which is not a lattice cube (left), and X +X +{0,1}2 (right), satisfying
the equality in (1.14):

��X +X +{0,1}2��1/2
= 8 = 2|X |1/2.
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2.4 New discrete isoperimetric inequalities for the lattice point enumerator

Let K be a non-empty bounded set with Gn(K) = Gn
�
r[−1,1]n

�
= (2r+1)n for some r ∈ N. Then, from

Theorem 1.2 for t = 1 and s ∈ N,

Gn

�
K + s[−1,1]n +

�
−1,�1+ s�

�
n
�
≥
�

Gn(K)1/n + sGn
�
[−1,1]n

�1/n
�

n

= (2r+3s+1)n

= Gn

�
r[−1,1]n + s[−1,1]n +

�
−1,�1+ s�

�
n
�
,

which gives a particular discrete analogue of (2.3) for the lattice point enumerator Gn(·). Here we will
show how such a type of inequality can be extended to the setting of arbitrary non-empty bounded sets of
Rn, i.e., with an arbitrary amount of integer points, and any s ≥ 0. This inequality will be generalized
to arbitrary lattices (see Remark 2.40). The main tool for this will be the discrete isoperimetric-type
inequality for the cardinality obtained in Corollary 2.11.

Before stating the theorem, we need further notation. Using the initial segments Ir ⊂ Zn we may
define the family of extended cubes CIr

⊂ Rn: a uniparametric family of star-shaped sets characterized as
the largest sets (with respect to inclusion) such that CIr

+(−1,1)n ⊂Ir +(−1,1)n. Analogously, extended
cubes CJr

⊂ Rn

≥0 can be defined.

Definition 2.36 For a non-empty bounded set M ⊂ Rn, we write

CM =
�
(λ1x1, . . . ,λnxn) ∈ Rn : (x1, . . . ,xn) ∈ M,λi ∈ [0,1] for i = 1, . . . ,n

�
.

For the sake of brevity, we just write Cx := C{x} for any x ∈ Rn.

Figure 2.8: The set CX ⊂ R2 for a finite set X ⊂ R2 (left) and the set CJ44 ⊂ R3 (right).

Theorem 2.37 [66, Theorem 1.3] Let K ⊂ Rn be a non-empty bounded set. If r = Gn(K)> 0, then

Gn
�
K + t[0,1]n

�
≥ Gn

�
CJr

+ t[0,1]n
�

(2.36)

for all t ≥ 0. When Gn(K) = (ρ +1)n for some ρ ∈ N, equality holds for t ≥ 0 if and only if K ∩Zn is
a lattice cube and we have

�
K + t[0,1]n

�
∩Zn = (K ∩Zn)+

�
t[0,1]n ∩Zn

�
.

Proof. First, we show that for every λ ∈ [0,1) we have

CJr
+[0,λ ]n ⊂ Jr +[0,1)n. (2.37)

Indeed, if y ∈ CJr
+ [0,λ ]n, then y ∈ Cx + [0,λ ]n for some x ∈ Jr. Hence yi ≤ xi + λ and xi ∈ N for

all i = 1, . . . ,n, and so �yi� ≤ xi, i = 1, . . . ,n. Then Remark 2.4 implies that
�
�y1�, . . . ,�yn�

�
� x, and

therefore
y ∈

�
�y1�, . . . ,�yn�

�
+[0,1)n ⊂ Jr +[0,1)n.
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Let t > 0 (the case t = 0 is trivial). By applying (2.37) with λ = t −�t� and adding the cube [0,�t�]n,
we immediately get

CJr
+ t[0,1]n ⊂ Jr +

�
1+ �t�

�
[0,1)n.

This completes the proof since, by applying Corollary 2.11 with s = �t�, we get

Gn
�
K + t[0,1]n

�
≥ Gn

�
(K ∩Zn)+ t[0,1]n

�
=
��(K ∩Zn)+{0, . . . ,�t�}n

��≥
��Jr +{0, . . . ,�t�}n

��

= Gn

�
Jr +

�
1+ �t�

�
[0,1)n

�
≥ Gn

�
CJr

+ t[0,1]n
�
.

(2.38)

Now, we assume that Gn(K) = (ρ + 1)n for some ρ ∈ N. In order to characterize the equality in
(2.38), we first note that we have
�
Jr +

�
1+ �t�

�
[0,1)n

�
∩Zn = Jr +

�
0, . . . ,�t�

�
n
= (CJr

∩Zn)+
�
t[0,1]n ∩Zn

�
⊂
�
CJr

+ t[0,1]n
�
∩Zn,

which gives equality in the last inequality of (2.38).

So we have equality in (2.38) if and only if the relations Gn
�
K + t[0,1]n

�
= Gn

�
(K ∩Zn)+ t[0,1]n

�

and
��(K ∩Zn)+

�
0, . . . ,�t�

�
n
��=

��Jr +
�

0, . . . ,�t�
�

n
�� hold. The first one is equivalent to

�
K + t[0,1]n

�
∩Zn = (K ∩Zn)+

�
t[0,1]n ∩Zn

�
,

whereas the second one holds if and only if we have equality in Corollary 2.11, i.e., when K ∩Zn is a
lattice cube (see Theorem 2.16), as desired.

Remark 2.38 In order to find a global optimal set for inequality (2.36), i.e., a set attaining equality in
Theorem 2.37 for all values of t ≥ 0, we observe that if we have a non-empty bounded set K ⊂ Rn such
that

�
K +[0,1)n

�
∩Zn = K ∩Zn, then, by repeatedly adding the lattice cube {0,1}n, one gets

�
K + t[0,1]n

�
∩Zn = (K ∩Zn)+

�
t[0,1]n ∩Zn

�

for all t ≥ 0. This shows that we have equality in Theorem 2.37 for all t ≥ 0 if and only if K ∩Zn is a
lattice cube and K satisfies

�
K +[0,1)n

�
∩Zn = K ∩Zn, provided Gn(K) = (ρ +1)n for some ρ ∈ N. �

Remark 2.39 We note that the role of the set CJr
in Theorem 2.37 can also be played by any non-empty

bounded set M ⊂Rn with Gn(M) = r such that M+[0,1)n ⊂Jr +[0,1)n. Nevertheless, CJr
are the largest

sets (with respect to set inclusion) contained in Rn

≥0 satisfying this property. Indeed, for any x ∈ Rn

≥0 with
x+[0,1)n ⊂ Jr +[0,1)n we have x ∈ C{y}, where y ∈ Nn is given by yi = �xi� for all i = 1, . . . ,n. Since
y ∈

�
x+[0,1)n

�
∩Nn ⊂

�
Jr +[0,1)n

�
∩Nn = Jr, we get x ∈ CJr

. �
Remark 2.40 Theorem 2.37 also holds for an arbitrary lattice Λ ⊂ Rn: if B = {v1, . . . ,vn} is a basis of

Λ, we denote by GΛ(M) = |M∩Λ| for any M ⊂Rn and by ϕ : Rn −→Rn the linear (bijective) map given
by ϕ(x) = ∑n

i=1 xivi for any x = (x1, . . . ,xn) ∈ Rn, then Theorem 2.37 yields

GΛ

�
K + tϕ

�
[0,1]n

��
≥ GΛ

�
ϕ(CJr

)+ tϕ
�
[0,1]n

��

for any bounded set K ⊂ Rn with GΛ(K) = r > 0 and all t ≥ 0. �

As a consequence of Theorem 2.37, a discrete isoperimetric inequality in the setting of Zn can also be
obtained, which we independently proved in [67].

Theorem 2.41 [67, Theorem 1.2] Let K ⊂ Rn be a non-empty bounded set. If r = Gn(K)> 0, then for
all t ≥ 0 we have

Gn
�
K + t[−1,1]n

�
≥ Gn

�
CIr

+ t[−1,1]n
�
. (2.39)
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Proof. For t ≥ 0 and r > 0, let r
� = Gn

�
CJr

+ t[0,1]n
�
. It is clear from the definition that, if A,B ⊂ Rn

≥0,
then CA+B = CA + CB. In particular, since Jr� = Jr +

�
0, . . . ,�t�

�
n, we have CJ

r� = CJr
+ �t�[0,1]n.

Furthermore, Corollary 2.13 implies that

Gn
�
CIr

+ t[−1,1]n
�
= Gn

�
CIr

+ �t�[−1,1]n
�
= Gn

�
CJr

+ �t�[−1,1]n
�
.

Therefore,

Gn
�
CIr

+ t[−1,1]n
�
= Gn

�
CJr

+ �t�[−1,1]n
�
= Gn

�
−CJr

+ �t�[−1,1]n
�

= Gn
�
−CJr

+ �t�[−1,0]n + �t�[0,1]n
�
= Gn

�
−CJ

r� + �t�[0,1]n
�

≤ Gn
�
CJ

r� + t[0,1]n
�
.

Finally, using Theorem 2.37 with the set −K, we have

r
� = Gn

�
CJr

+ t[0,1]n
�
≤ Gn

�
−K + t[0,1]n

�
= Gn

�
K + t[−1,0]n

�
.

And, consequently, Theorem 2.37 applied now to the set K + t[−1,0]n yields

Gn
�
CIr

+ t[−1,1]n
�
≤ Gn

�
CJ

r� + t[0,1]n
�
≤ Gn

�
K + t[−1,0]n + t[0,1]n

�
= Gn

�
K + t[−1,1]n

�
.

2.5 From the discrete setting to the continuous one

We finish the chapter by showing that the discrete isoperimetric-type inequalities for the lattice point
enumerator obtained in Section 2.4 (which are themselves consequences of the inequalities for the
cardinality obtained in Section 2.2) imply the continuous version of the isoperimetric inequality for the
volume in its neighborhood form in the setting of compact subsets of Rn, i.e., (2.3) when E ⊂Rn is a cube.
It suffices to prove that Theorem 2.41 implies (2.3) for E = [−1,1]n. The homogeneity and translation
invariance of the volume then yields the result for any cube, and thus, we also obtain that Theorem 2.37
implies the neighborhood form of the isoperimetric inequality.

We first fix some additional notation. For each m∈N, we denote by Gm,n(·) the lattice point enumerator
with respect to the lattice 2−mZn, that is,

Gm,n(L) =
��L∩ (2−mZn)

��=
��(2m

L)∩Zn
��= Gn

�
2m

L
�
,

for any L ⊂Rn. Moreover, as in the proof of Theorem 1.18, for each m ∈N, we write Rm = [0,2−m)n ⊂Rn

and Om = Rm −Rm = (−2−m,2−m)n. Finally, for any compact set M ⊂ Rn and each m ∈ N we denote by

Mm =
�

z ∈ 2−mZn : (z+Rm)∩M �= /0
�
,

for which we clearly have
M ⊂ Mm +Rm ⊂ M+Om. (2.40)

Before stating the main result we prove the following auxiliary one. The existence of all sequence
limits appearing in the succeeding proofs follows from standard arguments (e.g. due to the sequences
being monotonic and bounded), and thus, for the sake of clarity, we omit them.

Lemma 2.42 Let K ⊂ Rn be a non-empty compact set. If {pm}m∈N ⊂ N is a sequence satisfying
(2pm +1)n ≤ |Km|< (2pm +3)n then

lim
m→∞

pm

2m
=

vol(K)1/n

2
. (2.41)
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Proof. First we show that limm→∞ 2−mn|Km|= vol(K). Using (2.40) we have

vol(K)≤ vol(Km +Rm)≤ vol(K +Om).

This, together with the identity vol(Km +Rm) = 2−mn|Km| and the fact that {K +Om}m∈N is a decreasing
sequence with

∞�

m=0
(K +Om) = K,

shows that

vol(K)≤ lim
m→∞

|Km|
2mn

≤ lim
m→∞

vol(K +Om) = vol

�
∞�

m=0
(K +Om)

�
= vol(K).

Furthermore, from

lim
m→∞

(2pm +1)n

2mn
≤ lim

m→∞

|Km|
2mn

= vol(K),

we infer the existence of a constant c > 0 such that pm < 2pm +1 < 2m
c for all m ∈ N. Thus, applying

that (x+2)n − x
n ≤ 3n

x
n−1 for any x ≥ 1, we have

0 ≤ |Km|− (2pm +1)n < (2pm +3)n − (2pm +1)n ≤ 3n
�
2pm +1

�
n−1 ≤ 3n

�
2m+1

c+1
�

n−1
,

and since we may assume, without loss of generality, that c ≥ 1/4, then

0 ≤ |Km|− (2pm +1)n < 3n
�
2m+1

c+1
�

n−1 ≤ 3n
�
2m+1

c+2m+1
c
�

n−1
= 2mn−m+2n−23n

c
n−1.

Hence,

0 ≤ lim
m→∞

|Km|− (2pm +1)n

2mn
≤ lim

m→∞
2−m+2n−23n

c
n−1 = 0.

Finally, we have

vol(K)1/n

2
=

1
2

�
lim

m→∞

|Km|
2mn

�1/n

=
1
2

�
lim

m→∞

|Km|− (2pm +1)n

2mn
+ lim

m→∞

(2pm +1)n

2mn

�1/n

=
1
2

lim
m→∞

2pm +1
2m

= lim
m→∞

pm

2m
,

which shows (2.41). This concludes the proof.

We observe that, considering the partition
��

(2k+1)n,(2k+3)n
�
∩N

�

k∈N

of N\{0}, then the relation (2pm +1)n ≤ |Km|< (2pm +3)n given in Lemma 2.42 uniquely determines
such a sequence {pm}m∈N ⊂ N.

We are now ready to prove the main result of the section. The underlying idea is simply to successively
shrink the lattice and then to approximate the volume by means of the lattice point enumerator.

Theorem 2.43 [67, Theorem 1.4] The discrete isoperimetric inequality (2.39) implies the classical
isoperimetric inequality (2.3), with E = [−1,1]n, for non-empty compact sets.

Proof. Let {pm}m∈N ⊂ N be a sequence satisfying the conditions of Lemma 2.42 and, for the sake of
brevity, we write rm = (2pm +1)n. Since

Gn
�
2m

Km +2mRm
�
= Gm,n(Km +Rm) = |Km| ≥ (2pm +1)n =

��Irm

��= Gn
�
CIrm

�
,
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applying (2.39) we get

Gm,n
�
Km +Rm + t[−1,1]n

�
= Gn

�
2m

Km +2mRm +2m
t[−1,1]n

�
≥ Gn

�
CIrm

+2m
t[−1,1]n

�

= Gm,n
�
2−mCIrm

+ t[−1,1]n
�

for all m ∈ N. Therefore

lim
m→∞

Gm,n
�
Km +Rm + t[−1,1]n

�

2mn
≥ lim

m→∞

Gm,n
�
2−mCIrm

+ t[−1,1]n
�

2mn
. (2.42)

Applying (2.40) again to the set M = Km +Rm + t[−1,1]n, we get

Km +Rm + t[−1,1]n⊂
�
Km +Rm + t[−1,1]n

�
m
+Rm⊂ Km +Rm + t[−1,1]n +Om⊂ K + t[−1,1]n +2Om

and then

Gm,n
�
Km +Rm + t[−1,1]n

�

2mn
≤

���
�
Km +Rm + t[−1,1]n

�
m

���
2mn

= vol
��

Km +Rm + t[−1,1]n
�

m
+Rm

�

≤ vol
�
K + t[−1,1]n +2Om

�
.

Since
�

K + t[−1,1]n +2Om
�

m∈N is a decreasing sequence with

∞�

m=0

�
K + t[−1,1]n +2Om

�
= K + t[−1,1]n,

we have
lim

m→∞
vol

�
K + t[−1,1]n +2Om

�
= vol

�
K + t[−1,1]n

�
.

Therefore

lim
m→∞

Gm,n
�
Km +Rm + t[−1,1]n

�

2mn
≤ vol

�
K + t[−1,1]n

�
. (2.43)

Finally, we note that
Gm,n

�
2−mCIrm

+ t[−1,1]n
�
=
�
2(pm + tm)+1

�
n
,

where tm := �2m
t� for all m ∈ N (which clearly satisfies that tm/2m → t as m → ∞). Thus, writing

r = vol(K)1/n/2 and applying Lemma 2.42, we get

lim
m→∞

Gm,n
�
2−mCIrm

+ t[−1,1]n
�

2mn
= lim

m→∞

�
2(pm + tm)+1

2m

�
n

=
�
2(r+ t)

�
n
= vol

�
r[−1,1]n + t[−1,1]n

�
.

This, together with (2.42) and (2.43), shows (2.3), as desired.

The following result is a straightforward consequence of Theorem 2.43 and the proof of Theorem 2.41.

Corollary 2.44 The discrete isoperimetric inequality (2.36) implies the classical isoperimetric inequal-
ity (2.3), with E = [0,1]n, for non-empty compact sets.



3
Rogers-Shephard type inequalities

One particularly significant application of the Brunn-Minkowski inequality, given any non-empty compact
set K ⊂ Rn, is a lower bound for the volume of the set K −K. In particular, (1.1) with L =−K yields

vol(K −K)≥ 2n vol(K).

When K is a convex body, the set K −K is known as the difference body, and it plays an important role
in scenarios where central symmetry is critical. In fact, the modified version (1/2)(K −K) is known as
the central symmetral of K, where the constant is added merely for scaling purposes. This set is trivially
origin-symmetric, and it constitutes one of the most essential symmetrizations in Convex Geometry.

A corresponding upper bound for the volume of the difference body K −K is given by the Rogers-

Shephard inequality, originally proven in [88]. For more details about this inequality, we also refer the
reader to [97, Section 10.1].

Theorem J — Rogers-Shephard inequality. Let K ⊂ Rn be a convex body. Then

vol(K −K)≤
�

2n

n

�
vol(K). (3.1)

Equality holds if and only if K is a simplex.

This relation can be generalized to the Minkowski addition of two convex bodies K,L ⊂ Rn as follows:

vol(K +L)vol
�
K ∩ (−L)

�
≤
�

2n

n

�
vol(K)vol(L). (3.2)

The Rogers-Shephard inequality was recently extended to the functional setting [4, 6, 10, 34], gener-
alized to different types of measures [8, 91], as well as studied in the Lp setting [3, 18]. Moreover, it was
recently extended to other geometric functionals [7], and a reverse form of Rogers-Shephard’s inequality
in the setting of log-concave functions was given in [3]. The role of this inequality in characterization
results of the difference body was also studied in [1], and an optimal stability version of it was proved in
[24]. It is also interesting to note that a strengthening of this inequality for mixed volumes was conjectured
independently by Godbersen and Makai Jr. (see [97, Note 5 for Section 10.1] and the references therein);
a conjecture on which engaging progress was recently made in [10].
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In [89, Theorem 1], Rogers and Shephard also gave the following lower bound for the volume of a
convex body K ⊂ Rn in terms of the volumes of a projection and a section of K.

Theorem K Let k ∈ {1, . . . ,n−1} and H ∈ Ln

k
. Let K ⊂ Rn be a convex body. Then

voln−k(PH⊥K)volk(K ∩H)≤
�

n

k

�
vol(K). (3.3)

On a related note, a classical result due to Berwald [16] (see also [4, 5] for other extensions and
considerations) relates certain weighted power means of a concave function, as follows:

Theorem L — Berwald inequality. Let K ⊂ Rn be a convex body with dimK = n and consider a
concave function f : K −→ R≥0. Then, for any 0 < p < q,

� �
n+q

n

�

vol(K)

�

K

f
q(x)dx

�1/q

≤
� �

n+p

n

�

vol(K)

�

K

f
p(x)dx

�1/p

. (3.4)

Remarkably, this result provides an alternative unified proof of both Theorems J and K (see Section 3.2,
page 64 for the computations).

In this chapter we will use methods in a similar spirit to the ones employed in the previous ones to
obtain several new Rogers-Shephard type inequalities for the lattice point enumerator. We will also get a
discretization of Berwald’s inequality (3.4) and use it to prove further alternative Rogers-Shephard type
inequalities, although as we will see, one cannot expect to retrieve the first ones. Finally, we will show
that these new discrete analogues imply their corresponding continuous versions for the volume discussed
in this introduction. The results from this chapter are collected in [9].

3.1 New discrete Rogers-Shephard type inequalities

A very elegant discrete analogue of the Rogers-Shephard inequality (3.1) in the planar case (in fact,
a stronger version of it) was shown in [46], as a consequence of Pick’s theorem jointly with (3.1):

Theorem M Let P ⊂ R2 be a convex polygon with integer vertices. Then

G2(P−P)≤ 6G2(P)−b(P)−5, (3.5)

where b(P) denotes the number of integer points in the boundary of P.

However, when dealing with an arbitrary convex body K ⊂ Rn, one cannot expect to get a discrete
counterpart of (3.1) for the lattice point enumerator Gn(·), namely,

Gn(K −K)≤
�

2n

n

�
Gn(K).

Indeed, just considering K = [−1/2,1/2]n one would obtain 3n ≤
�2n

n

�
, which is false for n = 1,2,3,4.

Moreover, as pointed out in [42], where the authors consider certain simplices with integer vertices, there
is neither a possible extension of (3.5) in dimension n ≥ 3 nor even a hope to get Gn(K −K)≤ cn Gn(K)
for some constant cn > 0 depending only on the dimension n, for n ≥ 3.

Altogether, and taking into account the “behavior” of the discrete version of the Brunn-Minkowski
inequality collected in (1.15), an alternative to get such an inequality for the lattice point enumerator
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would be to consider some extension of K (by Minkowski adding a certain cube) on the upper bound side
of the different Rogers-Shephard type inequalities.

We will develop the discrete versions of these inequalities with two different approaches. The first one
will adapt the argument based on the covariogram used in the original proofs by Rogers and Shephard.
The second one will exploit the relations between the volume and the lattice point enumerator (1.42),
which were already used in Section 1.4 to obtain the discrete log-Brunn-Minkowski analogues (1.41) and
(1.48). These methods will produce alternative inequalities which are not necessarily comparable in some
cases, as well as provide alternative proofs of the same inequalities in other cases.

For the sake of brevity, we introduce some further notation for this section. We will write

hyp( f ) =
�
(x, t) : x ∈ M, t ∈ R, f (x)≥ t

�
⊂ Rn+1

for the hypograph of a non-negative function f : M −→ R≥0, where M ⊂ Rn is non-empty. Moreover,
for a vector subspace of the form H = lin{e1, . . . ,ek} ∈ Ln

k
, k ∈ {1, . . . ,n−1}, and any M ⊂ x+H with

x ∈ H
⊥, we denote by

Gk(M) =
���M∩

�
x+

�
Zk ×{0}n−k

�����.

Analogously, for each M ⊂ y+H
⊥ with y ∈ H, we use

Gn−k(M) =
���M∩

�
y+

�
{0}k ×Zn−k

�����.

Furthermore, we will write CH := (−1,1)n∩H for the sake of simplicity. Finally, as usual in the literature,
we will utilize the following conventional notation:

�
r

s

�
:=

Γ(r+1)
Γ(s+1)Γ(r− s+1)

for any r,s > 0, where Γ(·) is the Gamma function.

3.1.1 Projection-section type inequalities

The main result of this section is the following theorem, which provides a discrete analogue of (3.3) for
the lattice point enumerator.

Theorem 3.1 Let k ∈ {1, . . . ,n−1} and H = lin{e1, . . . ,ek} ∈ Ln

k
. Let K ⊂Rn be a non-empty convex

bounded set. Then
Gn−k(PH⊥K)Gk(K ∩H)≤

�
n

k

�
Gn

�
K +(−1,1)n

�
. (3.6)

As anticipated in the previous section, we will provide two different proofs. The first one is a direct
consequence of the following, stronger inequality.

Theorem 3.2 Let k ∈ {1, . . . ,n−1} and H = lin{e1, . . . ,ek} ∈ Ln

k
. Let K ⊂ Rn be a convex bounded

set containing the origin. Then
�

n−k

∑
i=0

k

n− i

�
n− k

i

��
n

i

�−1

Gn−k(PH⊥K)i/(n−k)

�
Gk(K ∩H)≤ Gn

�
K +(−1,1)n

�
. (3.7)

Indeed, taking only the term corresponding to i = n− k, Theorem 3.1 follows immediately, under the
additional mild assumption that K contains the origin.
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Proof. First, for any r ≥ 0, we define the superlevel set

Dr =
�

x ∈ P
H⊥

�
K +(−1,1)n

�
: Gk

��
K +(−1,1)n

�
∩ (x+H)

�
≥ r

�

=
�

x ∈ P
H⊥K +C

H⊥ : Gk

��
(K +C

H⊥)∩ (x+H)
�
+CH

�
≥ r

�

(see Proposition 1). Now, let x ∈ D0, y ∈ C
H⊥ and λ ∈ [0,1]. So, from the convexity of K, we have

Gk

��
(K +C

H⊥)∩
�
(1−λ )x+λy+H

��
+CH

�1/k

≥ Gk

�
(1−λ )

�
(K +C

H⊥)∩ (x+H)
�
+λ

�
(K +C

H⊥)∩ (y+H)
�
+CH

�1/k

.

(3.8)

We notice that, since x ∈ D0 = P
H⊥K +C

H⊥ and y ∈ C
H⊥ ⊂ P

H⊥K +C
H⊥ (because 0 ∈ K), the sets

(K +C
H⊥)∩ (x+H),(K +C

H⊥)∩ (y+H) are non-empty and then the above sum

(1−λ )
�
(K +C

H⊥)∩ (x+H)
�
+λ

�
(K +C

H⊥)∩ (y+H)
�
+CH

is well-defined. Hence, from (1.15) we get

Gk

�
(1−λ )

�
(K +C

H⊥)∩ (x+H)
�
+λ

�
(K +C

H⊥)∩ (y+H)
�
+CH

�1/k

≥ (1−λ )Gk

�
(K +C

H⊥)∩ (x+H)
�1/k

+λ Gk

�
(K +C

H⊥)∩ (y+H)
�1/k

≥ λ Gk(K ∩H)1/k,

(3.9)

where in the last inequality we have used that

Gk

�
(K +C

H⊥)∩ (y+H)
�
≥ Gk

�
(y+K)∩ (y+H)

�
= Gk(K ∩H)

for every y ∈ C
H⊥ . Thus, setting

λs =

�
s

Gk(K ∩H)

�1/k

for any 0 ≤ s ≤ Gk(K ∩H) (observe that Gk(K ∩H) �= 0 since 0 ∈ K), from (3.8) and (3.9) for λ = λs we
conclude that

(1−λs)
�
P

H⊥K +C
H⊥

�
+λsCH⊥ ⊂ Ds.

In other words, for any 0 ≤ s ≤ Gk(K ∩H) we have

(1−λs)PH⊥K +C
H⊥ ⊂ Ds

and then, by (1.15), we get

(1−λs)Gn−k(PH⊥K)1/(n−k) +λs Gn−k({0}n−k)1/(n−k) ≤ Gn−k(Ds)
1/(n−k).

Consequently,
n−k

∑
i=0

�
n− k

i

�
(1−λs)

iλ n−k−i

s
Gn−k(PH⊥K)i/(n−k) ≤ Gn−k(Ds) (3.10)

for all 0 ≤ s ≤ Gk(K ∩H).

Now, on the one hand, doing the change of variables θ = λs, we get that
� Gk(K∩H)

0
(1−λs)

iλ n−k−i

s
ds = k Gk(K ∩H)

� 1

0
θ n−i−1(1−θ)i dθ

= k Gk(K ∩H)
Γ(n− i)Γ(i+1)

Γ(n+1)
=

k

n− i

�
n

i

�−1

Gk(K ∩H)
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and hence, integration on s ∈ [0,Gk(K ∩H)] on the left-hand side of (3.10) yields
�

n−k

∑
i=0

k

n− i

�
n− k

i

��
n

i

�−1

Gn−k(PH⊥K)i/(n−k)

�
Gk(K ∩H).

On the other hand, we have
� Gk(K∩H)

0
Gn−k(Ds)ds =

� Gk(K∩H)

0
∑

x∈(P
H⊥K+C

H⊥ )∩Zn

χDs
(x)ds

= ∑
x∈(P

H⊥K+C
H⊥ )∩Zn

min
�

Gk

��
(K +C

H⊥)∩ (x+H)
�
+CH

�
,Gk(K ∩H)

�

≤ ∑
x∈(P

H⊥K+C
H⊥ )∩Zn

Gk

��
(K +C

H⊥)∩ (x+H)
�
+CH

�

= ∑
x∈(P

H⊥K+C
H⊥ )∩Zn

Gk

��
K +(−1,1)n

�
∩ (x+H)

�
= Gn

�
K +(−1,1)n

�
.

This concludes the proof.

Remark 3.3 The role of H = lin{e1, . . . ,ek} in the above result can be played by any other k-dimensional
coordinate (vector) subspace. �

As anticipated, we can also obtain a direct proof of Theorem 3.1 using the relations (1.42) between
the volume and the lattice point enumerator, as well as the original projection-section inequality for the
volume (3.3) (for which the assumption on the convex set K to be closed is not necessary), taking into
account the properties of the Minkowski addition from Proposition 1.
Alternative proof of Theorem 3.1. We have

Gn−k(PH⊥K)Gk(K ∩H)≤ voln−k

��
P

H⊥K
�
+

1
2

C
H⊥

�
volk

��
K ∩H

�
+

1
2

CH

�

≤ voln−k

�
P

H⊥

�
K +

�
−1

2
,
1
2

�
n
��

volk
��

K +

�
−1

2
,
1
2

�
n
�
∩H

�

≤
�

n

k

�
vol

�
K +

�
−1

2
,
1
2

�
n
�
≤
�

n

k

�
Gn

�
K +(−1,1)n

�
,

as desired.

We point out that, with the argument above, there is no need to assume that 0 ∈ K. However, such a
method does not allow one to show the statement of the stronger inequality collected in Theorem 3.2.

3.1.2 Sum-intersection type inequalities

First we derive a discrete analogue of the Rogers-Shephard inequality (3.2) (and, as a consequence, of
(3.1)), by considering a suitable (2n)-dimensional convex bounded set and applying the projection-section
inequality collected in Theorem 3.1, following the original idea of Rogers and Shephard in [89]:

Theorem 3.4 Let K,L ⊂ Rn be convex bounded sets containing the origin. Then

Gn(K +L)Gn

�
K ∩ (−L)

�
≤
�

2n

n

�
Gn

�
K +(−1,1)n

�
Gn

�
L+(−2,2)n

�
. (3.11)

In particular, taking L =−K, we have

Gn(K −K)≤
�

2n

n

�
Gn

�
K +(−1,1)n

�Gn

�
K +(−2,2)n

�

Gn(K)
. (3.12)
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Proof. Consider the (2n)-dimensional convex bounded set containing the origin defined by

F =
�
(x,y) ∈ R2n : x ∈ K, x− y ∈ −L

�

and let H = lin{e1, . . . ,en} ∈ L2n

n
. Notice that P

H⊥F is the set of points (0,y) such that (x,y) ∈ F

for some x ∈ Rn, which is equivalent to the fact that y ∈ x + L for some x ∈ K, and hence we get
P

H⊥F = {0}n × (K +L). Moreover, we clearly have that

F ∩H =
�
K ∩ (−L)

�
×{0}n.

Now, given (x,y)∈F+(−1,1)2n, we have that x∈ x1+(−1,1)n for some x1 ∈K and that y∈ y1+(−1,1)n

for some y1 ∈ x1 + L ⊂ x+ (−1,1)n + L. So, for every (x,y) ∈ F + (−1,1)2n, x ∈ K + (−1,1)n and
y ∈ x+L+(−2,2)n. Thus,

G2n

�
F +(−1,1)2n

�
≤ ∑

x∈(K+(−1,1)n)∩Zn

Gn

�
x+L+(−2,2)n

�
= Gn

�
K +(−1,1)n

�
Gn

�
L+(−2,2)n

�
.

Therefore, from Theorem 3.1 (applied to the convex bounded set F containing the origin and the vector
subspace H) we obtain

Gn(K +L)Gn

�
K ∩ (−L)

�
≤
�

2n

n

�
Gn

�
K +(−1,1)n

�
Gn

�
L+(−2,2)n

�
,

which clearly further implies (3.12). This concludes the proof.

Next we prove another discrete Rogers-Shephard type inequality which is actually stronger than the
one collected in Theorem 3.4. Indeed, (3.11) may be obtained as a consequence of it. Before stating the
result, we make some additional considerations.

When dealing with the (proof of the) Rogers-Shephard inequality (3.1), one is naturally led to the
notion of the covariogram of a convex body K ⊂ Rn, that is, the function f : Rn −→ R≥0 given by
f (x) = vol

�
K ∩ (x+K)

�
. Its discrete version for finite sets A ⊂ Rn, x �→

��A∩ (x+A)
��, has been studied

in [47], where the authors show elegant relations of the latter with the continuous version. Here, we
will consider the following slight modification of the corresponding discrete version for Gn(·) of the
covariogram of K:

x �→ Gn

��
K +(−1,1)n

�
∩
�
x+K +(−1,1)n

��
.

By using this, and exploiting the classical proof of the Rogers-Shephard inequality (3.1) that is based
on the covariogram, we can obtain the following discrete version. Again, we will present it in the more
general setting of two convex bounded sets K,L ⊂ Rn. We recall that given A,B ⊂ Rn, the set

A ∼ B :=
�

x∈B

(A− x) = {x ∈ Rn : x+B ⊂ A} (3.13)

is the Minkowski difference (or Minkowski subtraction) of A and B. It is clear that (A+B) ∼ B = A,
whereas the inclusion (A ∼ B)+B ⊂ A also holds. For more on this notion and its connection with the
Minkowski sum, we refer the reader to [97, Section 3.1].

Theorem 3.5 Let K,L ⊂Rn be convex bounded sets containing the origin such that (−1,1)n ⊂ L. Then
�

n

∑
i=0

n

2n− i

�
n

i

��
2n

i

�−1

Gn

�
(K +L)∼ (−1,1)n

�
i/n

�
Gn

�
K ∩

�
(−L)∼ (−1,1)n

��

≤ Gn

�
K +(−1,1)n

�
Gn

�
L+(−1,1)n

�
.

(3.14)
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In particular, taking L =−K (for a convex set K ⊂ Rn with (−1,1)n ⊂ K), we have

n

∑
i=0

n

2n− i

�
n

i

��
2n

i

�−1

Gn

�
(K −K)∼ (−1,1)n

�
i/n ≤

Gn

�
K +(−1,1)n

�2

Gn

�
K ∼ (−1,1)n

� . (3.15)

Before showing the result, we observe that taking only the term corresponding to i = n in the above
expressions we obtain, respectively,

Gn

�
(K +L)∼ (−1,1)n

�
Gn

�
K ∩

�
(−L)∼ (−1,1)n

��
≤
�

2n

n

�
Gn

�
K +(−1,1)n

�
Gn

�
L+(−1,1)n

�

and

Gn

�
(K −K)∼ (−1,1)n

�
≤
�

2n

n

�
Gn

�
K +(−1,1)n

�2

Gn

�
K ∼ (−1,1)n

� .

Proof. First, for any r ≥ 0, we consider the superlevel set

Dr =
�

x ∈ (K +L)+(−2,2)n : Gn

��
K +(−1,1)n

�
∩
�
x−L+(−1,1)n

��
≥ r

�
.

Now, let x ∈ K +L, y ∈ (−1,1)n and λ ∈ [0,1]. Then, from the convexity of K and L, we have

Gn

��
K +(−1,1)n

�
∩
�
(1−λ )x+λy−L+(−1,1)n

��1/n

≥ Gn

�
(1−λ )

�
K ∩ (x−L)

�
+λ

�
K ∩ (y−L)

�
+(−1,1)n

�1/n

.

(3.16)

Notice that, since x ∈K+L and y∈ (−1,1)n ⊂ L ⊂K+L (because 0∈K), the sets K∩(x−L),K∩(y−L)
are non-empty and then the above sum

(1−λ )
�
K ∩ (x−L)

�
+λ

�
K ∩ (y−L)

�
+(−1,1)n

is well-defined. Hence, from (1.15) we get

Gn

�
(1−λ )

�
K ∩ (x−L)

�
+λ

�
K ∩ (y−L)

�
+(−1,1)n

�1/n

≥ (1−λ )Gn

�
K ∩ (x−L)

�1/n
+λ Gn

�
K ∩ (y−L)

�1/n

≥ λ Gn

�
K ∩

�
(−L)∼ (−1,1)n

��1/n

,

(3.17)

where in the last inequality we have used that, for every y ∈ (−1,1)n,

Gn

�
K ∩ (y−L)

�
≥ Gn

�
K ∩

�
(−L)∼ (−1,1)n

��
.

Observing also that Gn

�
K ∩

�
(−L)∼ (−1,1)n

��
�= 0 since 0 ∈ K ∩

�
(−L)∼ (−1,1)n

�
, we may define

λs =



 s

Gn

�
K ∩

�
(−L)∼ (−1,1)n

��




1/n

for any 0 ≤ s ≤ Gn

�
K ∩

�
(−L)∼ (−1,1)n

��
. Thus, from (3.16) and (3.17) for λ = λs we conclude that

(1−λs)(K +L)+λs(−1,1)n ⊂Ds.

In particular, for any 0 ≤ s ≤ Gn

�
K ∩

�
(−L)∼ (−1,1)n

��
we have

(1−λs)
�
(K +L)∼ (−1,1)n

�
+(−1,1)n = (1−λs)

��
(K +L)∼ (−1,1)n

�
+(−1,1)n

�
+λs(−1,1)n

⊂ (1−λs)(K +L)+λs(−1,1)n ⊂Ds.
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Then, by (1.15), we get

(1−λs)Gn

�
(K +L)∼ (−1,1)n

�1/n
+λs Gn({0})1/n ≤ Gn(Ds)

1/n

and, consequently,
n

∑
i=0

�
n

i

�
(1−λs)

iλ n−i

s
Gn

�
(K +L)∼ (−1,1)n

�
i/n ≤ Gn(Ds) (3.18)

for all 0 ≤ s ≤ Gn

�
K ∩

�
(−L)∼ (−1,1)n

��
.

Now, writing s0 = Gn

�
K ∩

�
(−L)∼ (−1,1)n

��
, we observe that

�
s0

0
(1−λs)

iλ n−i

s
ds = n Gn

�
K ∩

�
(−L)∼ (−1,1)n

��� 1

0
θ 2n−i−1(1−θ)i dθ

= n Gn

�
K ∩

�
(−L)∼ (−1,1)n

��Γ(2n− i)Γ(i+1)
Γ(2n+1)

=
n

2n− i

�
2n

i

�−1

Gn

�
K ∩

�
(−L)∼ (−1,1)n

��

and hence, integration on s ∈ [0,s0] on the left-hand side of (3.18) yields
�

n

∑
i=0

n

2n− i

�
n

i

��
2n

i

�−1

Gn

�
(K +L)∼ (−1,1)n

�
i/n

�
Gn

�
K ∩

�
(−L)∼ (−1,1)n

��
.

Finally, integrating the right-hand side of (3.18) we can conclude the proof:
�

s0

0
Gn(Ds)ds =

�
s0

0
∑

x∈(K+L+(−2,2)n)∩Zn

χDs
(x)ds

= ∑
x∈(K+L+(−2,2)n)∩Zn

min
�

Gn

��
K +(−1,1)n

�
∩
�
x−L+(−1,1)n

��
,s0

�

≤ ∑
x∈(K+L+(−2,2)n)∩Zn

Gn

��
K +(−1,1)n

�
∩
�
x−L+(−1,1)n

��

= ∑
x∈(K+L+(−2,2)n)∩Zn

∑
y∈Zn

χ
K+(−1,1)n (y)χx−L+(−1,1)n (y)

= ∑
x∈(K+L+(−2,2)n)∩Zn

∑
y∈Zn

χ
K+(−1,1)n (y)χy+L+(−1,1)n (x)

= ∑
y∈Zn

χ
K+(−1,1)n (y) ∑

x∈(K+L+(−2,2)n)∩Zn

χ
y+L+(−1,1)n (x)

= Gn

�
K +(−1,1)n

�
Gn

�
L+(−1,1)n

�
.

We observe that, given convex bounded sets K,L ⊂Rn containing the origin, applying Theorem 3.5 to
the sets K and L+(−1,1)n, and taking only the term corresponding to i = n (bearing in mind the relations
between the Minkowski difference and addition), one gets

Gn(K +L)Gn

�
K ∩ (−L)

�
≤
�

2n

n

�
Gn

�
K +(−1,1)n

�
Gn

�
L+(−2,2)n

�
, (3.19)

i.e., Theorem 3.4.

What we have just seen shows that, in contrast to what happens in the continuous case, in the discrete
setting the inequalities obtained directly using the covariogram method (Theorem 3.5) are in fact stronger
than the ones derived as a consequence of the projection-section inequality (Theorem 3.4).

As in the previous section, we can also obtain an alternative discrete Rogers-Shephard type inequality
by exploiting the relations (1.42) between the volume and the lattice point enumerator and using the
original inequality for the volume (3.1). In this regard, here we show the following:



3.1 New discrete Rogers-Shephard type inequalities 59

Theorem 3.6 Let K ⊂ Rn be a non-empty convex bounded set. Then

Gn(K −K)≤
�

2n

n

�
Gn

�
K +

�
−3

4
,
3
4

�
n
�
. (3.20)

Proof. Using (1.42) jointly with the classical Rogers-Shephard inequality (3.1) (for which the assumption
on the convex bounded set K to be closed is actually not necessary, due to the facts that the boundary of a
convex set has null measure and the closure of the Minkowski sum of bounded sets is the Minkowski sum
of their closures), we get

Gn(K −K)≤ vol
�

K −K +

�
−1

2
,
1
2

�
n
�
= vol

�
K +

�
−1

4
,
1
4

�
n

−
�

K +

�
−1

4
,
1
4

�
n
��

≤
�

2n

n

�
vol

�
K +

�
−1

4
,
1
4

�
n
�
≤
�

2n

n

�
Gn

�
K +

�
−3

4
,
3
4

�
n
�
.

When considering the Minkowski sum of two non-empty convex bounded sets K,L ⊂ Rn, instead of
K −K, we have the following discrete counterpart of (3.2):

Theorem 3.7 Let K,L ⊂ Rn be non-empty convex bounded sets and let

c
K,L =

vol
�

K +L+
�
− 1

2 ,
1
2
�n
�

vol
�
K +L+(−1,1)n

� ∈ (0,1).

Then
Gn(K +L)Gn

�
K ∩ (−L)

�
≤
�

2n

n

�
c

K,L Gn

�
K +(−1,1)n

�
Gn

�
L+(−1,1)n

�
. (3.21)

In particular, taking L =−K, with 0 ∈ K,

Gn(K −K)≤
�

2n

n

�
c

K,−K

Gn

�
K +(−1,1)n

�2

Gn(K)
. (3.22)

Proof. By (1.42) and Proposition 1, we get

Gn(K +L)Gn

�
K ∩ (−L)

�
≤ vol

�
K +L+

�
−1

2
,
1
2

�
n
�
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�

K ∩ (−L)+

�
−1

2
,
1
2

�
n
�

≤ c
K,L vol

�
K +L+(−1,1)n

�
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��
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�
−1

2
,
1
2

�
n
�
∩
�
−L+

�
−1

2
,
1
2

�
n
��

.

Now, applying the classical Rogers-Shephard inequality (3.2) (again, the assumption on the convex sets
K,L to be closed is not needed) jointly with (1.42) once more, we have

c
K,L vol

�
K +L+(−1,1)n

�
vol

��
K +

�
−1

2
,
1
2

�
n
�
∩
�
−L+

�
−1

2
,
1
2

�
n
��

≤
�

2n

n

�
c

K,L vol
�

K +

�
−1

2
,
1
2

�
n
�
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�

L+

�
−1

2
,
1
2

�
n
�

≤
�

2n

n

�
c

K,L Gn

�
K +(−1,1)n

�
Gn

�
L+(−1,1)n

�
.

We note that, as we will see (Remark 3.18), both (3.20) and (3.21) (and thus also (3.22)) are asymp-

totically sharp, in the sense that, for any of these inequalities, there exist convex bodies containing the
origin such that the ratio between the right-hand side and the left-hand side is arbitrarily close to 1.
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Since we have at this point obtained several alternative discrete analogues of Rogers-Shephard’s
inequality that involve extensions of K by Minkowski adding certain cubes, it is natural to wonder about
how they compare. We finish the section by performing such a contrast.

On the one hand, given a convex bounded set K containing the origin, if we apply (3.14) to the sets K

and L
� :=−K +(−1,1)n we get

n

∑
i=0

n

2n− i

�
n

i

��
2n

i

�−1

Gn(K −K)i/n ≤
Gn

�
K +(−1,1)n

�
Gn

�
K +(−2,2)n

�

Gn(K)
. (3.23)

On the other hand, we have the previously obtained inequalities (3.20) and (3.22). So, does there exist a
relation between (3.20), (3.22) and (3.23)?

First, to compare (3.23) with (3.20), we need to relate

Gn

�
K +(−1,1)n

�
Gn

�
K +(−2,2)n

�

Gn(K)
−

n−1

∑
i=0

n

2n− i

�
n

i

��
2n

i

�−1

Gn(K −K)i/n

and
Gn

�
K +

�
−3

4
,
3
4

�
n
�
.

Although, unfortunately, we do not have a full answer to this question, next we show that in dimension
n = 2 the latter expression provides a smaller upper bound for

Gn(K −K)

�
2n

n

�−1

and hence, in the plane, (3.20) is tighter than (3.23). This is a direct consequence of the following result.

Proposition 3.8 Let K ⊂ R2 be a planar convex bounded set containing the origin. Then

G2
�
K +(−1,1)2�< G2

�
K +(−2,2)2�− 1

2
− 1

3
G2(K −K)1/2 (3.24)

Proof. Let Hi =
�

x ∈ R2 : �x,ei�= 0
�

, i = 1,2, and set

m := max
i=1,2

G1(PHi
K),

for which we will assume without loss of generality that m = G1(PH1K). Then, K is contained in a
rectangle [−a1,b1]× [−a2,b2], with ai,bi ≥ 0 and G1

�
[−ai,bi]

�
≤ m, i = 1,2.

So, we clearly have that G2(K) ≤ m
2 and G2(K −K) ≤ (2m+ 1)2. Moreover, since K +(−1,1)2

is open and thus, for any x ∈ (PH1K)∩Z2,
�
K +(−2,2)2�∩ (x+ �1) contains at least two more integer

points than
�
K +(−1,1)2�∩ (x+ �1), we get

G2
�
K +(−2,2)2�≥ G2

�
K +(−1,1)2�+2m.

Altogether, since m ≥ 1 (because 0 ∈ K), we have

1
2
+

1
3

G2(K −K)1/2 ≤ 1
2
+

1
3
(2m+1)< 2m ≤ G2

�
K +(−2,2)2�−G2

�
K +(−1,1)2�,

which shows (3.24).

Since clearly

G2

�
K+

�
−3

4
,
3
4

�2
�
<G2

�
K+(−1,1)2� and G2

�
K+(−2,2)2�<

G2
�
K +(−1,1)2�G2

�
K +(−2,2)2�

G2(K)
,

we obtain the desired comparison. Next we relate (3.20) and (3.22).
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Remark 3.9 Inequalities (3.20) and (3.22) are not comparable. Indeed, taking K = [−r,r]n with r > 0,
one has

c
K,−K

=

�
4r+1
4r+2

�
n

< 1.

So, on the one hand, if r ∈ N\{0} we get

Gn(K) = Gn

�
K +

�
−3

4
,
3
4

�
n
�
= Gn

�
K +(−1,1)n

�

and thus

c
K,−K

Gn

�
K +(−1,1)n

�2

Gn(K)
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�
K +

�
−3

4
,
3
4

�
n
�
.

On the other hand, if r /∈ N\{0} then

c
K,−K

Gn

�
K +(−1,1)n

�

Gn(K)
=

(4r+1)n
�
2�r�+3

�
n

(4r+2)n
�
2�r�+1

�
n =

�
1+ 2

2�r�+1

1+ 1
4r+1

�n

> 1,

and hence

c
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�
K +(−1,1)n

�2

Gn(K)
> Gn

�
K +

�
−3

4
,
3
4

�
n
�
. �

3.2 A discrete version of Berwald’s inequality

The main result of this section is the following discrete analogue of Berwald’s inequality (3.4):

Theorem 3.10 Let K ⊂ Rn be a convex bounded set containing the origin and let f : K −→ R≥0 be a
concave function with f (0) = | f |∞. Then, for any 0 < p < q,

� �
n+q

n

�

Gn(K) ∑
x∈K∩Zn

f
q(x)

�1/q

≤
� �

n+p

n

�

Gn(K) ∑
x∈(K+(−1,1)n)∩Zn

�
f
��p

(x)

�1/p

. (3.25)

We note that since f in the above result (and in the rest of the section) is defined in K ⊂ Rn, rather
than in Rn, the extension f

� must be understood as being applied to the zero-extension of f , i.e., the
function that is equal to f in K and 0 otherwise.

Remark 3.11 We note that the assumption on the origin in the theorem above could be substituted by
| f |∞ = f (x0) for some x0 ∈ K ∩Zn. The assumption that the maximum of f is attained in a point of Zn is,
however, necessary in our proof. �

To begin, let K ⊂ Rn be a convex bounded set containing the origin, let f : K −→ R≥0 be a non-
negative function and set p > 0. We will write µ to denote the counting measure on Zn, considered as a
measure on Rn, namely, µ(M) = Gn(M) for any M ⊂ Rn. First we observe that we have

∑
x∈K∩Zn

f (x)p =
� ∞

0
pt

p−1 Gn

��
x ∈ K : f (x)> t

��
dt. (3.26)

Indeed, by Fubini’s theorem, we obtain

∑
x∈K∩Zn

f (x)p =
�

Rn

f (x)pχ
K
(x)dµ(x) =

�

Rn

��
f (x)

0
pt

p−1 dt

�
χ

K
(x)dµ(x)

=
� ∞

0

�

Rn

pt
p−1χ

K
(x)χ

(0, f (x)) (t)dµ(x)dt =
� ∞

0
pt

p−1
�

Rn

χ{x∈K: f (x)>t}(x)dµ(x)dt

=
� ∞

0
pt

p−1 Gn

��
x ∈ K : f (x)> t

��
dt.

To prove Theorem 3.10, we need the following auxiliary results.



62 Chapter 3. Rogers-Shephard type inequalities

Lemma 3.12 Let K ⊂ Rn be a convex bounded set containing the origin and let m > 0. Consider
also the concave function hm : K + (−1,1)n −→ R≥0 whose hypograph is the closure of the set
conv

�
(K ×{0})∪ ({0}n,m)

�
+
�
(−1,1)n ×{0}

�
. Then, for every p > 0,

� �
n+p

n

�

Gn(K) ∑
x∈(K+(−1,1)n)∩Zn

hm(x)
p

�1/p

≥ m. (3.27)

Proof. Observe that, for any 0 ≤ t < m,
�
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�
(K ×{0})∪ ({0}n,m)

�
+
�
(−1,1)n ×{0}

��
∩
�
Rn ×{t}

�
=
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1− t

m

�
K +(−1,1)n

�
×{t}

and thus �
x ∈ K +(−1,1)n : hm(x)> t

�
=
�
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m

�
K +(−1,1)n.

Then, using (1.15) we get
� ∞

0
pt

p−1 Gn

��
x ∈ K +(−1,1)n : hm(x)> t

��
dt =

�
m

0
pt
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��
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m

�
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�
dt

≥
�

m

0
pt

p−1
�

1− t

m

�n

Gn(K)dt

= pm
p Gn(K)

� 1

0
s

p−1(1− s)n ds

= pm
p Gn(K)

Γ(p)Γ(n+1)
Γ(n+ p+1)

= m
p Gn(K)

�
n+ p

n

�−1

.

This, together with (3.26) applied to the function hm, shows (3.27).

Now, given a concave function f : K −→R≥0 defined on a convex bounded set K ⊂Rn, we will relate
the number of integer points of the superlevel sets of both the function f and its extension f

� (whose
hypograph is the closure of the Minkowski addition of the hypograph of f and (−1,1)n ×{0}) in terms
of a suitable (1/n)-concave function (on its support). To see this, for any fixed p > 0, we set

m =

� �
n+p

n

�

Gn(K) ∑
x∈(K+(−1,1)n)∩Zn

�
f
��p

(x)

�1/p

,

and we consider the function g : R≥0 −→ R≥0 given by

g(t) =

� �
1− t

m

�
n Gn(K) if t ≤ m,

0 otherwise.

Lemma 3.13 Let K ⊂ Rn be a convex bounded set containing the origin, and let f : K −→ R≥0 be
a concave function with f (0) = | f |∞ > 0. For any p > 0, consider m and g defined as above. Then,
there exists t0 ∈ R≥0 such that

Gn

��
x ∈ K +(−1,1)n : f

�(x)> t
��

> g(t) (3.28)

for all 0 ≤ t < t0 and
g(t)≥ Gn

��
x ∈ K : f (x)> t

��
(3.29)

for all t ≥ t0.
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Proof. First we will show that m ≥ | f |∞. To this aim, assume by contradiction that m < | f |∞ and set
hm : K +(−1,1)n −→ R≥0 the concave function whose hypograph is the closure of

conv
�
(K ×{0})∪ ({0}n,m)

�
+
�
(−1,1)n ×{0}

�
.

Then, by the concavity of f , hyp( f ) ⊃ conv
�
(K ×{0})∪ ({0}n,m)

�
, and so hyp

�
f
�� ⊃ hyp(hm). This

also implies that
�

x ∈ K +(−1,1)n : f
�(x) > t

�
⊃

�
x ∈ K +(−1,1)n : hm(x) > t

�
for all 0 ≤ t < | f |∞.

Therefore, assuming that m < | f |∞, the latter inclusion jointly with (3.26) applied to the functions f
� and

hm, Lemma 3.12 and the fact that Gn

��
x ∈ K +(−1,1)n : f

�(x)> t
��

≥ 1 for every 0 ≤ t < | f |∞ (since
f (0) = | f |∞), imply the contradiction
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Now, since f
� ≤ | f |∞, we trivially have

0 = Gn

��
x ∈ K +(−1,1)n : f

�(x)> | f |∞
��

≤ g
�
| f |∞

�
,

and thus we may consider

t0 := inf
�

t > 0 : Gn

��
x ∈ K +(−1,1)n : f

�(x)> t
��

≤ g(t)
�
< ∞.

Then, on the one hand, we obtain by the definition of t0 that (3.28) holds for all 0≤ t < t0 ≤ | f |∞. Moreover,
since

�
x ∈ K+(−1,1)n : f

�(x)> t
�
=
�

x ∈ K : f (x)> t
�
+(−1,1)n (which is an open convex bounded

set) for every 0 ≤ t < | f |∞, we have that the function t �→ Gn

��
x ∈ K + (−1,1)n : f

�(x) > t
��

is
continuous from the right on R≥0. Therefore, we obtain that

Gn

��
x ∈ K +(−1,1)n : f

�(x)> t0
��

≤ g(t0).

On the other hand, given t ∈
�
t0, | f |∞

�
and taking λ ∈ (0,1] such that t0 = λ t, from (1.15) we get
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��1/n
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��
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�
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��1/n

(3.30)

and also (taking into account that t0 ≤ | f |∞ ≤ m)

g(t0)
1/n =

�
1− t0

m

�
Gn(K)1/n = (1−λ )Gn(K)1/n +λ

�
1− t

m

�
Gn(K)1/n. (3.31)

Thus, using (3.30) and (3.31), we get that (3.29) holds for all t0 ≤ t ≤ | f |∞. This concludes the proof,
since (3.29) is further trivially true for any t ∈

�
| f |∞,∞

�
.
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Proof of Theorem 3.10. We may assume, without loss of generality, that | f |∞ > 0, and let m and g be
defined as in Lemma 3.13. Observe also that, for any r > 0,

� �
n+r

n

�

Gn(K)

�
m

0
rt

r−1
�

1− t

m

�n

Gn(K)dt
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= m. (3.32)

From (3.26) applied to f
� jointly with the definition of g and m, the latter implies, in particular, that
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0
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0
t
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Hence, with t0 as provided by Lemma 3.13 we obtain, from (3.28) and (3.29), that
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Moreover, we have

t
q−p

0

�
t0

0
t

p−1
�
Gn

��
x ∈ K +(−1,1)n : f

�(x)> t
��

−g(t)
�

dt

+ t
q−p

0

� ∞

t0

t
p−1

�
Gn

��
x ∈ K : f (x)> t

��
−g(t)

�
dt

≤ t
q−p

0

� ∞

0
t

p−1
�
Gn

��
x ∈ K +(−1,1)n : f

�(x)> t
��

−g(t)
�

dt = 0,

where the latter equality follows from (3.33).

Altogether, we have shown that
�

t0

0
t
q−1 Gn

��
x ∈ K +(−1,1)n : f

�(x)> t
��

dt +
� ∞

t0

t
q−1 Gn

��
x ∈ K : f (x)> t

��
dt ≤

� ∞

0
t
q−1

g(t)dt

and hence � ∞

0
t
q−1 Gn

��
x ∈ K : f (x)> t

��
dt ≤

� ∞

0
t
q−1

g(t)dt.

Consequently, from (3.32) for r = q, we have
� �

n+q

n

�

Gn(K)

� ∞

0
qt

q−1 Gn

��
x ∈ K : f (x)> t

��
dt

�1/q

≤
� �

n+q

n

�

Gn(K)

�
m

0
qt

q−1
�

1− t

m

�n

Gn(K)dt

�1/q

= m

and thus, from (3.26) applied to f and q, we conclude the proof:
� �

n+q

n

�

Gn(K) ∑
x∈K∩Zn

f
q(x)

�1/q

≤
� �

n+p

n

�

Gn(K) ∑
x∈(K+(−1,1)n)∩Zn

�
f
��p

(x)

�1/p

.
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As briefly pointed out within the introduction, the continuous version of Berwald’s inequality (Theo-
rem L) allows us to derive the Rogers-Shephard inequalities (3.3) and (3.1). To show this, first notice that
Stirling’s formula for the gamma function yields the asymptotic formula

lim
x→∞

Γ(x)�
2π
x

�
x

e

�
x
= 1,

which implies, in particular, that
�

n+q

n

�1/q → 1 as q → ∞. Moreover, given a convex body K ⊂ Rn with
dimK = n and a concave function f : K −→ R≥0, it is well-known that

lim
q→∞

��

K

f
q(x)dx

�1/q

= | f |∞

(here we notice that, since f is concave, | f |∞ agrees with esssup
x∈K

f (x)). Thus, applying Theorem L
with p = k (and n

� = n−k) and the concave function (cf. (1.1)) f : P
H⊥K −→R≥0 given by the expression

f (x) = volk
�
K ∩ (x+H

��1/k for H ∈ Ln

k
, we get Theorem K by taking limits as q → ∞. Indeed, we have

volk(K ∩H)1/k ≤ | f |∞ = lim
q→∞

� �
n−k+q

n−k

�

voln−k(PH⊥K)

�

P
H⊥K

f
q(x)dx

�1/q

≤
� �

n

k

�

voln−k(PH⊥K)

�

P
H⊥K

f
k(x)dx

�1/k

=

� �
n

k

�

voln−k(PH⊥K)
vol(K)

�1/k

,

where the last equality follows from Fubini’s theorem.

Analogously, from Theorem L for p = n and the concave function (cf. (1.1)) f : K−K −→R≥0 given
by f (x) = vol

�
K ∩ (x+K)

�1/n, for which we have
�

K−K

f
n(x)dx =

�

Rn

�

Rn

χ
K
(y)χ

x+K
(y)dydx =

�

Rn

�

Rn

χ
K
(y)χ

y−K
(x)dxdy = vol(K)2,

we get

vol(K)1/n = | f |∞ = lim
q→∞

� �
n+q

n

�

vol(K −K)

�

K−K

f
q(x)dx

�1/q

≤
� �2n

n

�

vol(K −K)

�

K−K

f
n(x)dx

�1/n

=

� �2n

n

�

vol(K −K)
vol(K)2

�1/n

,

and so Theorem J follows.

We finish the section by pointing out that, arguing in a similar way in the discrete setting, but now
applying Theorem 3.10 (for the above-mentioned functions and values of p, and letting q → ∞), we get
the following results:

Corollary 3.14 Let k ∈ {1, . . . ,n−1} and H ∈ Ln

k
. Let K ⊂ Rn be a convex bounded set containing

the origin. Then

Gn−k(PH⊥K)volk(K ∩H)≤
�

n

k

�
∑

x∈(P
H⊥K+C

H⊥ )∩Zn

sup
z∈C

H⊥

volk
�

K ∩
�
(x+ z)+H

��
.



66 Chapter 3. Rogers-Shephard type inequalities

Corollary 3.15 Let K ⊂ Rn be a convex bounded set containing the origin. Then

Gn(K −K)vol(K)≤
�

2n

n

�
∑

x∈(K−K+(−1,1)n)∩Zn

sup
z∈(−1,1)n

vol
�

K ∩
�
(x+ z)+K

��
.

We point out that the more general result, involving convex bounded sets K,L ⊂ Rn containing the
origin such that maxx∈K+L vol

�
K ∩ (x−L)

�
= vol

�
K ∩ (−L)

�
may be also derived, obtaining that

Gn(K +L)vol
�
K ∩ (−L)

�
≤
�

2n

n

�
∑

x∈(K+L+(−1,1)n)∩Zn

sup
z∈(−1,1)n

vol
�

K ∩
�
(x+ z)−L

��
.

Remark 3.16 We also observe that one cannot immediately derive, in principle, other discrete versions
of the Rogers-Shephard inequalities (3.3) and (3.1) from Theorem 3.10, despite counting with the discrete
analogue (1.15) of the classical Brunn-Minkowski inequality, because of the lack of concavity of the
functional Gn(·)1/n. This is the reason for which Theorem 3.10 yields the above discrete counterparts
of (3.3) and (3.1), where the volume arises jointly with the lattice point enumerator. Some engaging
examples of discrete analogues of classical inequalities where these two functionals appear together can
be found in [2]. �

3.3 From the discrete setting to the continuous one

We begin by proving that the discrete versions of the projection-section and the Rogers-Shephard inequal-
ities we have shown in Section 3.1 imply their corresponding continuous analogues, by exploiting the
relations (1.4.2) and (1.43) between the lattice point enumerator and the volume. To this aim, regarding
the discrete projection-section type inequalities, we will show that (3.6) already implies (3.3) (and hence,
the same is obtained from the stronger inequality (3.7)). In the same way, we will prove that (3.11) is
enough to derive (3.2) (and thus, the same happens for the more powerful inequalities (3.21) and (3.14)).
Moreover, in particular, (3.12) implies (3.1) (and so, the same is true for the stronger versions (3.20),
(3.22) and (3.15)).

Theorem 3.17 Let K,L ⊂ Rn be convex bodies containing the origin with dimK = dimL = n. Then

1. The discrete inequality (3.6) for the lattice point enumerator implies the classical projection-
section inequality (3.3) for the volume.

2. The discrete inequality (3.11) for the lattice point enumerator implies the classical Rogers-
Shephard inequality (3.2) for the volume.

Proof. Applying (3.6) with rK (for r > 0), taking limits as r → ∞ and using (1.4.2) and (1.43), we get

voln−k(PH⊥K)volk(K ∩H) = lim
r→∞

Gn−k(rP
H⊥K)

rn−k
·

Gk

�
r(K ∩H)

�

rk
= lim

r→∞

Gn−k

�
P

H⊥(rK)
�

Gk

�
(rK)∩H

�

rn

≤ lim
r→∞

�
n

k

�
Gn

�
rK +(−1,1)n

�

rn
=

�
n

k

�
vol(K).

Analogously, but now applying (3.11) with rK and rL (for r > 0), we obtain

vol(K +L)vol
�
K ∩ (−L)

�
= lim

r→∞

Gn

�
r(K +L)

�
Gn

�
r
�
K ∩ (−L)

��

r2n
= lim

r→∞

Gn(rK + rL)Gn

�
(rK)∩ (−rL)

�

r2n

≤ lim
r→∞

�
2n

n

�
Gn

�
rK +(−1,1)n

�
Gn

�
rL+(−2,2)n

�

r2n
=

�
2n

n

�
vol(K)vol(L).

This concludes the proof.
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Remark 3.18 Since (3.3) and (3.2) are sharp, from the proof above, we have that their discrete analogues
(3.6) and (3.11) (and hence their corresponding stronger related versions) are asymptotically sharp. �

To conclude the chapter, we show that the discrete version of Berwald’s inequality obtained in
Section 3.2, Theorem 3.10, implies its continuous analogue, Theorem L.

Before stating and proving this result we observe the following. Given a convex body K ⊂ Rn and a
concave function f : K −→ R≥0, we have

lim
r→∞

�
1
rn ∑

x∈(rK)∩Zn

f

�
x

r

��
= lim

r→∞

�
1
rn ∑

y∈K∩((1/r)Zn)

f (y)

�
=

�

K

f (x)dx, (3.34)

since f is Riemann integrable (because it is concave on the convex set K, whose boundary has null
Lebesgue measure).

Moreover, we may assume without loss of generality that f is upper semicontinuous. Indeed, otherwise
we would work with its upper closure, which is determined via the closure of the superlevel sets of f

(see [87, page 14 and Theorem 1.6]) and thus has the same integral on Rn because of Fubini’s theorem
together with the facts that all the superlevel sets of f are convex (since f is concave) and the boundary of
a convex set has null (Lebesgue) measure. Notice then that, for any decreasing sequence {rk}k∈N ⊂ R≥0
with rk → 0 as k → ∞, we have

∞�

k=0

��
x ∈ K : f (x)≥ t

�
+ rk(−1,1)n

�
=
�

x ∈ K : f (x)≥ t
�

(3.35)

due to the fact that {x ∈ K : f (x)≥ t
�

is closed for all t ≥ 0.

Theorem 3.19 Let K ⊂ Rn be a convex body with dimK = n and let f : K −→ R≥0 be a concave
function. Then the discrete inequality (3.25) implies the classical Berwald inequality (3.4).

Proof. On the one hand, from (3.25) applied to the function h : rK −→ R≥0 given by h(x) := f (x/r),
r > 0, we get

� �
n+q

n

�

Gn(rK) ∑
y∈(rK)∩Zn

h
q(y)

�1/q

≤




�

n+p

n

�

Gn(rK) ∑
y∈(rK+(−1,1)n)∩Zn

�
h
��p

(y)




1/p

.

On the other hand, given ε > 0, for sufficiently large r > 0 we have that

∑
y∈(rK+(−1,1)n)∩Zn

�
h
��p

(y) = ∑
y/r∈[K+(1/r)(−1,1)n]∩[(1/r)Zn]

�
sup

u∈(−1,1)n

f

�
y+u

r

��p

= ∑
x∈[K+(1/r)(−1,1)n]∩[(1/r)Zn]

�
sup

v∈(1/r)(−1,1)n

f (x+ v)

�
p

≤ ∑
x∈[K+ε(−1,1)n]∩[(1/r)Zn]

�
sup

v∈ε(−1,1)n

f (x+ v)

�
p

≤ ∑
x∈[K+ε(−1,1)n]∩[(1/r)Zn]

�
f
�ε
�

p
(x),

where f
�ε : K + ε(−1,1)n −→ R≥0 is the function given by

f
�ε (z) = sup

u∈ε(−1,1)n

f (z+u)

for all z ∈ Rn.
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Thus, for r large enough, we get

� �
n+q

n

�

Gn(rK) ∑
y∈(rK)∩Zn

h
q(y)

�1/q

≤




�

n+p

n

�

Gn(rK) ∑
x∈[K+ε(−1,1)n]∩[(1/r)Zn]

�
f
�ε
�

p
(x)




1/p

which implies, using (3.34) and (1.4.2), that

� �
n+q

n

�

vol(K)

�

K

f
q(x)dx

�1/q

≤
� �

n+p

n

�

vol(K)

�

K+ε(−1,1)n

�
f
�ε
�

p
(x)dx

�1/p

.

Since ε > 0 was arbitrary, to conclude the proof it is enough to show that

inf
ε>0

�

K+ε(−1,1)n

�
f
�ε
�

p
(x)dx ≤

�

K

f
p(x)dx. (3.36)

To this aim first observe that, by Fubini’s theorem, we have (cf. (3.26))
�

K+ε(−1,1)n

�
f
�ε
�

p
(x)dx =

� ∞

0
pt

p−1 vol
��

x ∈ K + ε(−1,1)n : f
�ε (x)> t

��
dt. (3.37)

Now, since �
x ∈ K + ε(−1,1)n : f

�ε (x)> t
�
=
�

x ∈ K : f (x)> t
�
+ ε(−1,1)n,

we have

vol
��

x ∈ K + ε(−1,1)n : f
�ε (x)> t

��
≤ vol

��
x ∈ K : f (x)≥ t

�
+ ε(−1,1)n

�

and hence, from (3.35),

lim
ε→0+

vol
��

x ∈ K + ε(−1,1)n : f
�ε (x)> t

��
≤ vol

��
x ∈ K : f (x)≥ t

��
. (3.38)

Therefore, taking limits as ε → 0+ in both sides of (3.37), applying the monotone convergence theorem
and using (3.38), we get

inf
ε>0

�

K+ε(−1,1)n

�
f
�ε
�

p
(x)dx = lim

ε→0+

�

K+ε(−1,1)n

�
f
�ε
�

p
(x)dx

≤
� ∞

0
pt

p−1 vol
��

x ∈ K : f (x)≥ t
��

dt =
�

K

f
p(x)dx.

So (3.36) follows, which concludes the proof.



4
Inequalities for the successive minima

As the work in the previous chapters suggests, inequalities relating the volume and the lattice point
enumerator functionals can be a very powerful asset. This type of inequalities has been explored since
the inception of Convex Geometry. Minkowski himself showed in 1891 ([81]) that if K ⊂ Rn is an
origin-symmetric bounded and convex set with vol(K)> 2n, then Gn(intK)> 1, in what is now known as
Minkowski’s 1st Theorem. This inequality is tight, as shown e.g. by the set (−1,1)n.

Analogously, one of Blichfeldt’s most well-known results, obtained in 1921 ([21]), states that if
K ⊂ Rn is a bounded convex set with dim(K ∩Zn) = n, then Gn(K)≤ (n+1)!vol(K). It can be checked
that the inequality is again tight by considering, for instance, the standard simplex Sn = conv{0,e1, . . . ,en}.
Conversely, van der Corput obtained a lower bound in 1935 ([54, Chapter 2, Theorem 7.1]). In particular,
he showed that if K is, in addition, origin-symmetric, then Gn(intK)≥ 2−n vol(K), which is once again
tight, for example, for [−1,1]n. Clearly, this result strengthens that of Minkowski.

Since all these inequalities are already sharp (yet sometimes vastly inaccurate), one way to improve
them is to introduce parameters depending on the actual sets involved. This technique was already
exploited by Minkowski to improve the bound in his original fundamental theorem. To present this, let
us first observe that if we denote by λ1 = min

�
λ > 0 : Gn(λK)> 1

�
, then said theorem translates into

vol(λ1K)≤ 2n, and thus vol(K)≤ 2n/λ n

1 . Minkowski generalized this and defined the succesive minima

of an origin-symmetric convex body:

Definition 4.1 Let K ⊂ Rn be an origin-symmetric convex body. Then

λi(K) = min
�

λ > 0 : dim(λK ∩Zn)≥ i
�
, (4.1)

for each i = 1, . . . ,n.

If a linearly independent set {ui}n

i=1 ⊂ Zn satisfies ui ∈ λi(K)K for all i = 1, . . . ,n, we say that the ui’s
realize the successive minima λi(K). Though we will not need it, the above definition (and the subsequent
result) can be extended to arbitrary lattices in a natural way.

More generally, if K is not origin-symmetric, one may define λi(K) := λi

�
cs(K)

�
, where cs(K) is

the central symmetral (1/2)(K −K) of K. It is clear that 0 < λ1(K) ≤ λ2(K) ≤ ·· · ≤ λn(K) and that
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λi(µK) = µ−1λi(K) for all µ > 0. With this notion, Minkowski refined the bound of his first theorem and
proved the following powerful result in 1896:

Theorem N — Minkowski Second Theorem. Let K ⊂ Rn be a convex body. Then

1
n!

n

∏
i=1

2
λi(K)

≤ vol(K)≤
n

∏
i=1

2
λi(K)

. (4.2)

The lower and upper bounds in (4.2) are attained, e.g., by the standard simplex Sn and the cube
[−1,1]n, respectively.

For origin-symmetric K, this was proved by Minkowski [54, Chapter 2, Theorems 9.1 and 9.2]. In
the general case, the upper bound follows directly from the inequality vol(K) ≤ vol

�
cs(K)

�
, which in

turn is a special case of the Brunn-Minkowski inequality (1.1). The lower bound can also be proved by
an inclusion argument, similar to the symmetric case: one considers the convex hull of the 2n vectors
±ui/λi(K) of cs(K) that realize the λi(K) [60, Remark 1.1].

Many alternatives to Minkowski’s complicated original proof have been obtained. One of the first short
proofs was given by Davenport [38]. More analytic proofs were obtained by Weyl [105] and Estermann
[40]; whereas Bambah, Woods and Zassenhaus provided three new proofs in [13]. A more recent example
was obtained by Henk [59].

The result has been extended, for instance, to more general successive minima functionals by Hlawka
[54, Section 9.5]; to more general discrete sets, not necessarily lattices, by Woods [106]; to intrinsic
volumes by Henk [58]; or to surface area measures by Henk, Henze and Hernández Cifre [60].

In this chapter we will study and obtain inequalities that simultaneously relate the volume, the lattice
point enumerator, and the successive minima (see Theorems 4.11 and 4.15), following conjectures by
Betke, Henk and Wills (see Conjecture 4.3). These inequalities recover, in particular, all the classical
inequalities by Minkowski, Blichfeldt and van der Corput, as well as (1) (see Remark 4.4). Furthermore,
one powerful application of these inequalities will be a discrete analogue of Minkowski’s 2nd Theorem
for the lattice point enumerator (see Corollary 4.12). The key method to obtain these results will be a
reduction to a special class of sets called “anti-blocking” (see Definition 4.8). The results of this chapter
are collected in [43].

4.1 Discrete analogues of Minkowski’s 2nd Theorem

Betke, Henk and Wills studied in [17] the relation between the lattice point enumerator and the successive
minima of K and obtained, for origin-symmetric convex bodies, that

1
n!

n

∏
i=1

�
1

λi(K)
−1

�
≤ Gn(K)≤

n

∏
i=1

�
2i

λi(K)
+1

�
,

where, for the lower bound, λn(K)≤ 2 is needed. While the lower bound is best-possible, it is conjectured
in [17, Conjecture 2.1] that the upper bound can be strengthened as follows:

Conjecture 4.2 — Betke, Henk, Wills. Let K ⊂ Rn be a convex body. Then

Gn(K)≤
n

∏
i=1

�
2

λi(K)
+1

�
. (4.3)

Equality would be attained, e.g., for boxes of the form [−m1,m1]× ·· ·× [−mn,mn], where mi ∈ Z>0.
In dimension 2 the conjecture was confirmed by Betke, Henk and Wills themselves [17, Theorem 2.2],
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whereas in dimension 3 it was shown by Malikiosis [77, Section 3.2]. Moreover Malikiosis also proved in
[77, Theorem 3.2.1] that

Gn(K)≤ 4
e

3(n−1)/2
n

∏
i=1

�
2

λi(K)
+1

�
. (4.4)

To this day, (4.4) is the best known upper bound for Gn(K) in terms of the successive minima in general
dimension. Betke, Henk and Wills additionally pointed out in [17, Proposition 2.2] that any inequality of
the form

Gn(K)≤
n

∏
i=1

�
2

λi(K)
+ ci

�
, (4.5)

for some numbers ci ∈ R, i = 1, . . . ,n, independent of K (but not necessarily of n), would imply the upper
bound in Minkowski’s Second Theorem (4.2). Indeed, one can asymptotically approximate the volume of
K by the lattice point enumerator using (1), to which (4.5) could then be applied, and the resulting limit is
precisely Minkowski’s bound.

In this paper, we use Minkowski’s Second Theorem (Theorem N) to show (4.5) with ci = n (see
Corollary 4.12). In order to do so, we aim to express the deviation between Gn(K) and vol(K) in terms of
the successive minima λi(K), i = 1, . . . ,n. Our approach stems from another conjecture by Betke, Henk
and Wills that relates the volume, the lattice point enumerator and the successive minima simultaneously.

Conjecture 4.3 Let K ⊂ Rn be a convex body. Then,

Gn(K)≤ vol(K)
n

∏
i=1

�
1+

iλi(K)

2

�
(4.6)

and, if λn(K)≤ 2/n,

Gn(intK)≥ vol(K)
n

∏
i=1

�
1− iλi(K)

2

�
. (4.7)

Moreover, if K is origin-symmetric and λn ≤ 2, we have

Gn(intK)≥ vol(K)
n

∏
i=1

�
1− λi(K)

2

�
. (4.8)

On the one hand, the bound (4.8) is stated as Conjecture 2.2 in [17], where it is formulated for arbitrary
n-dimensional lattices. However, there is no loss of generality in restricting to the integer lattice Zn. On
the other hand, (4.6) and (4.7) have been posed to the authors by Martin Henk personally. In this chapter,
we will confirm a slightly weakened version of these inequalities in the general n-dimensional setting (see
Theorem 4.11), as well as obtain tight confirmations (either asymptotically, see Theorem 4.15, or in some
special cases, completely, see Proposition 4.16) in the 2-dimensional setting.

All inequalities in Conjecture 4.3 have equality cases that are invariant with respect to integer scaling.
Indeed, (4.6) is tight, e.g., for integer multiples of the standard simplex Sn, since λi(Sn) = 2 and therefore,

vol(mSn)
n

∏
i=1

�
1+

iλi(mSn)

2

�
=

1
n!

n

∏
i=1

(m+ i),

where the right-hand side is exactly the Ehrhart polynomial of Sn (see [15, Theorem 2.2 (a)]). In view of
[15, Theorem 2.2 (b)], we also have

Gn
�
int(mSn)

�
=

1
n!

n

∏
i=1

(m− i) =
m

n

n!

n

∏
i=1

�
1− i

m

�
= vol(mSn)

n

∏
i=1

�
1− iλi(mSn)

2

�

and so (4.7) is tight for integer multiples of Sn as well. As it was mentioned already in [17], equality cases
for (4.8) are given, for example, by boxes parallel to the coordinate axes with integer side lengths.
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One immediate application of Conjecture 4.3 is that it would yield a discrete analogue of Minkowski’s
2nd Theorem. Indeed, (4.6) together with the upper bound in Minkowski’s 2nd Theorem (4.2) yields

Gn(K)≤
n

∏
i=1

�
2

λi(K)
+ i

�
,

which, though weaker than (4.3), is nonetheless of the form (4.5), and thus, it would imply the upper
bound in (4.2). Consequently, it would result in an equivalent discrete analogue of the upper bound in
Minkowski’s 2nd Theorem.

Remark 4.4 Apart from this discrete analogue, Conjecture 4.3 is interesting in its own right. On the one
hand, one can deduce (1) from it, since λi(rK) tends to 0 as r → ∞. On the other hand, if K contains an
n-dimensional set of lattice points it follows that λi(K)≤ 2, and if K is also origin-symmetric, one has
λi(K)≤ 1 for all i = 1, . . . ,n. Therefore, from Conjecture 4.3 we retrieve the universal bounds

Gn(K)≤ (n+1)! vol(K),

in the general case, and
Gn(intK)≥ 2−n vol(K),

in the symmetric case, i.e., the classical results by Blichfeldt and van der Corput. �

4.2 Reduction of the problem to a simpler class of sets

The main goal of this section is to obtain results that will allow us to reduce the analysis of Conjecture 4.3
to a simpler class of convex bodies, the so-called anti-blocking convex bodies. For this, we will make use
of a powerful tool, similar to Steiner’s symmetrization, known as the Blaschke shaking, which is part of a
wider class of transformations known as “shakings”.

Before doing this, it is necessary to introduce the gauge function. If K ⊂ Rn is an origin-symmetric
convex body, its gauge function | · |K : Rn −→ R≥0 is given by

|x|K = min{r ≥ 0 : x ∈ rK}.

The gauge function of K is a norm in Rn whose unit ball is precisely K.

Remark 4.5 As an alternative to (4.1), one can use the gauge function of cs(K) to define the successive
minima. Namely, one has that λ1(K) = min |z|cs(K), where z ranges over Zn \{0}, and λi(K) = min |z|cs(K),
where z ranges over Zn \ lin

�
λi−1(K)cs(K)∩Zn

�
�

We finally note that if Λ ⊂ Rn is a lattice, then so is P(linX)⊥Λ for every set X ⊂ Λ.

4.2.1 Properties of the Blaschke shaking

An important tool for the simplification of Conjecture 4.3 is the following one (see Figure 4.1):

Definition 4.6 — Blaschke shaking. Let K ⊂Rn be a convex body and let u ∈Rn \{0}. The Blaschke
shaking of K with respect to u

⊥ is given by

shu(K) =
�

x∈P
u⊥K

�
x, x+vol1

��
x+ lin{u}

�
∩K

�
u

�u�

�
.

The Blaschke shaking was introduced in [20]. This process, which bares resemblance to Steiner’s
symmetrization, belongs to a wider class of transformations known as “shakings”. These processes
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were explored, for instance, to obtain discrete isoperimetric inequalities by Kleitman [72], and more
recently by Bollobás and Leader [22]. Stability results, akin to that of Gross for Steiner’s symmetrization,
were obtained by Biehl [19], Schöpf [98], and more recently, by Campi, Colesanti and Gronchi [31], for
example. Other applications can be found in [30] and [102].

⇐=⇐=⇐=

������

Kshe1(K)

she2

�
she1(K)

�

Figure 4.1: Illustration of two consecutive Blaschke shakings.

The operator shu is known to preserve convexity [31, Lemma 1.1], and we have the following result:

Proposition 4.7 Let K ⊂ Rn be a convex body and let u ∈ Rn \{0}. For the Blaschke shaking shu(K),
the following relations hold:

i) P
u⊥K ⊂ shu(K),

ii) vol(K) = vol
�
shu(K)

�
,

iii) |u|cs(K) = |u|cs(shu(K)) and
iv) |x|cs(K) ≥ |P

u⊥x|cs(shu(K)) for all x ∈ Rn.

If u = ei, for some i ∈ {1, . . . ,n}, we also have

v) Gn(K)≤ Gn
�
shei

(K)
�
,

vi) Gn(intK)≥ Gn
�
int shei

(K)
�
.

Proof. i) and ii) follow directly from the definition of shu(K). For iii), if u = (r/2)(x− y) for any
x,y ∈ Rn and any r ∈ R\{0}, projecting onto u

⊥ yields P
u⊥x = P

u⊥y. For each z ∈ P
u⊥K, and denoting by

�z =
�
z+ lin{u}

�
∩K, let dz ∈R be such that �z = dzu+ shu(�z). Then dx = dy and, by definition, z ∈ K if

and only if z−dzu ∈ shu(K). Therefore, given r > 0 and considering

r
x− y

2
= r

(x−dxu)− (y−dxu)

2

we obtain that u ∈ r cs(K) if and only if u ∈ r cs
�
shu(K)

�
, i.e. iii).

For iv) let r = |x|−1
cs(K). Then there are a,b ∈ K such that rx = (a−b)/2, and from i) it follows that

r P
u⊥x =

1
2
�
P

u⊥a−P
u⊥b

�
∈ cs

�
shu(K)

�
.

Thus |r P
u⊥x|cs(shu(K)) ≤ 1, which implies iv) by the choice of r.
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In order to prove v), we show that the number of lattice points in a segment [a,b]⊂ R of length b−a

is maximized, e.g., when a ∈ Z. Otherwise, we could let δ = a−�a� and observe that

G1
�
[a−δ ,b−δ ]

�
= �b−δ�−�a−δ�+1 = �b−δ�−�a�+1 ≥ �b�−�a�= �b�−�a�+1 = G1

�
[a,b]

�
.

It is then enough to note that the lattice points in K and shei
(K) are contained in segments parallel to ei of

equal length, and that the ones in shei
(K) start at a lattice point. Therefore, they contain at least as many

lattice points as the corresponding segments in K (cf. Figure 4.1).

vi) is proved with the same argument, but since the segments involved are now open, translating them
such that one endpoint is a lattice point will never increase their lattice point count.

4.2.2 Properties of anti-blocking convex bodies

We now prove a series of useful properties for the following class of sets.

Definition 4.8 — Anti-blocking convex body. A convex body K ⊂ Rn

≥0 is anti-blocking if for every
(x1, . . . ,xn) ∈ K, �

(x�1, . . . ,x
�
n
) ∈ Rn

≥0 : x
�
i
≤ xi, i = 1, . . . ,n

�
⊂ K.

Given the convexity of K, the condition above translates into K ∩ e⊥
i
= Pe⊥

i

K for all i = 1, . . . ,n. Equiva-
lently, the anti-blocking convex bodies are exactly the first orthants of the unconditional convex bodies.

Anti-blocking convex bodies were introduced in [44]. Their volumes were extensively studied in [11].
We observe that, in the discrete setting, the set of lattice points K ∩Zn inside an anti-blocking convex
body K is a (downward) compressed set (see Definition 2.3). Compressed sets were considered in [50] (in
the context of sum-set estimates) and in [86] (in the context of discrete isoperimetric inequalities), for
instance.

The goal of this section is to prove the following statement, from which it follows that it is enough to
show (4.6) and (4.7) for the special class of anti-blocking convex bodies.

Proposition 4.9 For any convex body K ⊂ Rn, there exists an anti-blocking convex body A ⊂ Rn

≥0
such that the following holds:

i) vol(K) = vol(A),
ii) Gn(K)≤ Gn(A),

iii) Gn(intK)≥ Gn(intA) and
iv) λi(K)≥ λi(A) for all i = 1, . . . ,n.

Proof. Let v1, . . . ,vn ∈ Zn be linearly independent such that |vi|cs(K) = λi(K). Since all the functionals
involved are invariant with respect to integer unimodular transformations, we may assume that the matrix
(v1 · · ·vn) is an upper triangular matrix (e.g., a Hermite normal form, see e.g. [99, Section 4.1]). Let
K0 = K, and for j ∈ {1, . . . ,n}, let Kj = she j

(Kj−1). We will show that A := Kn is the desired body.

First, we observe that items i)–iii) follow immediately from a repeated application of items ii), v)
and vi) of Proposition 4.7. In order to prove item iv), it suffices to show that for any j = 0, . . . ,n there
exist linearly independent vectors u1, . . . ,un ∈ Zn such that |ui|cs(Kj)

≤ λi(K), and such that the matrix
(u1 · · ·un) is of the form �

D j 0
0 Tn− j

�
, (4.9)

where D j is a ( j× j)-diagonal matrix and Tn− j is an
�
(n− j)× (n− j)

�
-upper triangular matrix; note that

in this way we would get that ui /∈ lin
�
λi−1(K)cs(K)∩Zn

�
, i = 2, . . . ,n (see Remark 4.5).
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For j = 0, the statement is clearly true for ui = vi, i = 1, . . . ,n. So we assume that the claim holds for
some j−1 < n and we apply induction. We choose u

�
i
= Pe⊥

j

ui, for i �= j, and u
�
j
= u j. On the one hand,

since Kj = she j
(Kj−1), then in view of Proposition 4.7 iv) and our induction hypothesis we have

��u�
i

��
cs(Kj)

=
���Pe⊥

j

ui

���
cs(Kj)

≤ |ui|cs(Kj−1)
≤ λi(K)

for all i �= j. From Proposition 4.7 iii) it also follows that

��u�
j

��
cs(Kj)

=
��u j

��
cs(Kj−1)

≤ λ j(K).

On the other hand, the matrix (u�1 · · ·u�n) differs from (u1 · · ·un) only by the zeros in the j-th row after the
diagonal entry. Therefore, the system u

�
1, . . . ,u

�
n
∈ Zn is also linearly independent and is of the form (4.9).

Altogether, the claim is proved, and taking j = n shows item iv).

It only remains to prove that A is indeed anti-blocking. To this end, it suffices to show that for any
j = 0, . . . ,n and any x ∈ Kj we have Pe⊥

i

x ∈ Kj for all i = 1, . . . , j.

For j = 0 the statement is trivial. So we assume the claim holds for some j − 1 ∈ {1, . . . ,n− 1}
and apply induction. Let x ∈ Kj. By item i) of Proposition 4.7 it follows that Pe⊥

j

x ∈ Kj, and so, we
consider i ∈ {1, . . . , j−1}. Now, let x j be the j-th entry of x, and consider the point y with minimum j-th
coordinate in (x+ � j)∩Kj−1 (cf. Figure 4.2).

⇐=⇐=⇐=

Kj Kj−1
Pe⊥

j

Pe⊥
i

y

Pe⊥
j

Pe⊥
i

y+x je j Pe⊥
i

y Pe⊥
i

y+x je j

Pe⊥
j

x

x y y+x je j

e⊥
i

e⊥
j

Figure 4.2: Construction for the proof that A is anti-blocking in Proposition 4.9.

Then,
�
y, y+ x je j

�
⊂ Kj−1. By induction, it follows that

�
Pe⊥

i

y, Pe⊥
i

y+ x je j

�
⊂ Kj−1. Due to the fact

that Pe⊥
j

Pe⊥
i

y = Pe⊥
j

Pe⊥
i

x, we have that
�
Pe⊥

j

Pe⊥
i

x, Pe⊥
j

Pe⊥
i

x+ x je j

�
⊂ Kj, and since Pe⊥

j

Pe⊥
i

x+ x je j = Pe⊥
i

x,
the statement is proved for j. Altogether, we get that the desired claim holds, and taking j = n yields that
A is anti-blocking.

The inductive proof of the second claim in the previous proof essentially corresponds to the argument
given in the proof of [31, Lemma 1.2].

One of the reasons why anti-blocking convex bodies are beneficial when dealing with successive
minima problems is that the successive minima are always realized by the canonical basis of Zn.

Lemma 4.10 Let K ⊂ Rn be an anti-blocking convex body. Then the coordinates can be permuted
such that |ei|cs(K) = λi(K). In this case, one also has

�
2/λi(K)

�
ei ∈ K, i = 1, . . . ,n.

Proof. Let v1, . . . ,vn ∈ Zn be linearly independent with |vi|cs(K) = λi(K), i = 1, . . . ,n. Then there exists
a permutation σ of {1, . . . ,n} such that the σi-th entry of vi is non-zero, since otherwise we would get
det(v1 · · ·vn) = 0, a contradiction. For the sake of simplicity we assume that σ is the identity. Since K is
anti-blocking,

wi := P�i
vi = P�

j �=i e⊥
j

vi ⊂ K,
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and thus a repeated application of item iv) of Proposition 4.7 shows that |wi|cs(K) ≤ |vi|cs(K) = λi(K). By
the minimality of the λi’s and the fact that wi ∈ �i ∩Zn, we obtain that wi = ei and |ei|cs(K) = λi(K).

For the second part, we deduce from |ei|cs(K) = λi(K) that

1
λi(K)

ei =
1
2
(a−b),

for some a,b ∈ K. Since 1/λi(K) is the maximum number r such that rei ∈ cs(K), and K is anti-blocking,
bi must be zero. Therefore b ∈ e⊥

i
, and the anti-blocking property again implies that

2
λi(K)

ei = P�i

�
2

λi(K)
ei +b

�
= P�i

a ∈ K,

as desired.

4.3 Slightly weakened n-dimensional results

The main result of this section is a slightly weakened version of Conjecture 4.3 in the general n-dimensional
setting. In particular, we prove the following theorem, which provides a weakening of (4.6) and (4.7):

Theorem 4.11 [43, Theorem 1.1] Let K ⊂ Rn be a convex body. Then

Gn(K)≤ vol(K)
n

∏
i=1

�
1+

nλi(K)

2

�
. (4.10)

Moreover, if λn(K)≤ 2/n, we have

Gn(intK)≥ vol(K)
n

∏
i=1

�
1− nλi(K)

2

�
. (4.11)

As anticipated in Section 4.1, from this we can deduce immediately, by applying the upper bound in
(4.2) to the volume in (4.10), the following inequality:

Corollary 4.12 Let K ⊂ Rn be a convex body. Then

Gn(K)≤
n

∏
i=1

�
2

λi(K)
+n

�
. (4.12)

While our bound is tight for convex bodies rK, r → ∞, it is weaker than Malikiosis’s bound (4.4) if,
e.g., λi(K) = 1/c for some fixed number c > 0. Then the bound in (4.12) is of order n

n, while the bound
in (4.4) is of order

√
3n.

We will use the following result due to van der Corput (see [54, Ch.2, Theorem 6.1]):

Theorem O Let M ⊂ Rn be a Jordan-measurable set. Then there exists a vector z ∈ Rn such that

vol(M)≤ Gn(M+ z). (4.13)

We first provide the following bounds in terms of the covering radius µ(K) of a convex body K ⊂ Rn,
i.e., the smallest number µ > 0 such that µK +Zn = Rn.
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Proposition 4.13 Let K ⊂ Rn be a convex body. Then

Gn(K)≤ vol(K)
�
1+µ(K)

�
n
. (4.14)

If µ(K)≤ 1, i.e., K +Zn = Rn, we also have

Gn(intK)≥ vol(K)
�
1−µ(K)

�
n
. (4.15)

Both inequalities are tight.

Proof. We write µ = µ(K) for the sake of brevity. For the upper bound, it is enough to show that µK

contains a measurable set S that Zn-tiles Rn, i.e., with S+Zn = Rn and (intS)∩ (z+ intS) = /0 for all
z ∈ Zn \{0}. Indeed, in that case, since vol(S) = 1 (see, e.g., [54, Theorem 1, page 82]), we have

Gn(K) = ∑
z∈K∩Zn

vol(S) = vol
�
(K ∩Zn)+S

�
≤ vol(K +µK) = (1+µ)n vol(K).

In order to find S, let P = [0,1]n. There are finitely many translates µK + xi, xi ∈ Zn, i = 1, . . . ,m, that
cover P. We define inductively P1 = P∩ (µK + x1) and

Pi =

�
P\

�

j<i

Pj

�
∩ (µK + xi).

Now, let Si = Pi − xi ⊂ µK and S =
�

m

i=1 Si. We claim that S is the desired set. To prove this, we show
that S has volume 1 and that its Zn-translates do not overlap (see again [54, Theorem 1, page 82]).

Clearly the Pi’s are non-overlapping, i.e., (intPi)∩ (intPj) = /0, and satisfy
�

m

i=1 Pi = P. The Si’s are
non-overlapping too. Indeed, if there were i �= j such that intSi intersected intS j, then intPi would intersect
xi − x j + intPj. Since the Zn-translates of P are non-overlapping, we would have xi = x j, a contradiction.
Therefore the Si’s are non-overlapping and it follows that

vol(S) =
m

∑
i=1

vol(Si) =
m

∑
i=1

vol(Pi) = vol(P) = 1.

Now assume that (intS)∩ (x+ intS) �= /0 for some x ∈ Zn. Then there exist i, j ∈ {1, . . . ,m} such that
−xi + intPi intersects −x j + x+ intPj. Again, since the Zn-translates of P are non-overlapping, as well as
the Pi’s, we must have i = j and x = 0. Hence, the Zn-translates of S are non-overlapping, and so S is as
desired. This finishes the proof of the upper bound.

For the lower bound, we apply (4.13) to K
� = (1− µ) intK and obtain a vector z ∈ Rn such that

vol(K�)≤ Gn(K�+ z). Since µK +Zn = Rn, we may assume that z ∈ µK. Thus,

vol(K)(1−µ)n = vol(K�)≤ Gn(K
�+ z)≤ Gn

�
(1−µ) intK +µK

�
= Gn(intK).

In order to see that both inequalities are tight, consider K = [0,m]n, where m ∈ Z>0. For such cubes one
has vol(K) = m

n, Gn(K) = (m+1)n, Gn(intK) = (m−1)n and µ(K) = 1/m. So equality is achieved in
both bounds.

The upper bound (4.14) was also shown independently by Dadush in [36, Lemma 7.4.1]. The strategy
of finding an appropriate tiling that we used in the proof of (4.14) was also applied earlier, for instance, in
the proof of a classical result by Blichfeldt (see [54, Chapter 2, Theorem 5.2]). Moreover, in [107], the
authors showed that convex tilings in these conditions (i.e., of the form S+Zn with S ⊂ K, where K +Zn

is a prescribed covering) need not exist.

On the one hand, the disadvantage of (4.14) in comparison to the upper bound (4.10) is that it cannot
benefit from K being large in a lattice subspace. To see this, it suffices to consider the convex body
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K = [−r,r]n−1 × [−1/2,1/2], where r is “large”. Then it holds that µ(K) = 1, and so the constant in
(4.14) is 2n. But the constant in (4.10) is of order n+1, since λi(K)→ 0 as r → ∞ for i < n.

On the other hand, (4.15) is actually stronger than the lower bound (4.11) in Theorem 4.11. In fact,
we will use (4.15) to prove (4.11).

Remark 4.14 Applied to the special class of convex lattice tiles, i.e., convex bodies K with K+Zn =Rn

and (intK)∩ (z+ intK) = /0 for all z ∈ Zn \{0}, Proposition 4.13 yields, for r ≥ 1, that

(r−1)n ≤ Gn
�
int(rK)

�
and Gn(rK)≤ (r+1)n,

since vol(K) = µ(K) = 1 and µ(rK) = µ(K)/r, which is sharp for K = [0,1]n and r ∈ Z>0. �

We will also need to make use of an inequality of Davenport (see [39]), which states that for any
convex body K ⊂ Rn one has the bound

Gn(K)≤ ∑
I⊂{1,...,n}

voln−|I|
�
P�⊥

I

K
�
, (4.16)

where �I = lin{ei : i ∈ I}. We note that the extremal terms in the above expression are vol(K) (corre-
sponding to I = /0, by setting � /0 = {0}) and 1 = vol0

�
{0}

�
(corresponding to I = {1, . . . ,n}). The same

convention will be used from now on. For the sake of consistency, we will further convene that an empty
sum be equal to 0 and an empty product be equal to 1.

Since K will be anti-blocking in our case, (4.16) can also be derived directly as follows:

Gn(K) = vol
�
(K ∩Zn)+ [−1,0]n

�
≤ vol

�
K +[−1,0]n

�
= ∑

I⊂{1,...,n}
voln−|I|

�
P�⊥

I

K
�
,

where the last identity follows from the fact that, since K is anti-blocking, the Minkowski sum can be
decomposed into a union of disjoint prisms:

K +[−1,0]n =
�

I⊂{1,...,n}

�
x = (x1, . . . ,xn) ∈ Rn : P�⊥

I

x ∈ P�⊥
I

K and xi ∈ [−1,0] for all i ∈ I
�
.

We are now ready to prove Theorem 4.11.
Proof of Theorem 4.11. Let us denote by λi = λi(K), i= 1, . . . ,n, for the sake of brevity. In order to prove
(4.10), we may suppose that K is anti-blocking by Proposition 4.9. After renumbering the coordinates, we
can also assume that |ei|cs(K) = λi holds for all i = 1, . . . ,n (see Lemma 4.10). For any set I ⊂ {1, . . . ,n},
let �I = lin{ei : i ∈ I}. The Rogers-Shephard inequality (3.3) then yields

volk(K ∩ �I)voln−k

�
P�⊥

I

K
�
≤
�

n

k

�
vol(K), (4.17)

for any I ⊂ {1, . . . ,n} with |I| = k, k ∈ {0, . . . ,n}. By Lemma 4.10 we have (2/λi)ei ∈ K and so, from
(4.17), we deduce that

voln−k

�
P�⊥

I

K
�
≤
�

n

k

�
vol(K)

volk(K ∩ �I)
≤
�

n

k

�
vol(K)

volk
�

conv
�
(2/λi)ei : i ∈ I

��

= k!
�

n

k

�
vol(K)∏

i∈I

λi

2
≤ vol(K)∏

i∈I

nλi

2
.

Combining this with Davenport’s inequality (4.16) we get

Gn(K)≤ vol(K) ∑
I⊂{1,...,n}

∏
i∈I

nλi

2
= vol(K)

n

∏
i=1

�
1+

nλi

2

�
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as desired. In order to prove (4.11), we use the lower bound (4.15) in terms of µ(K), as well as the relation

µ(K)≤
n

∑
i=1

λi

2
(4.18)

(see, e.g., [70, Lemma 2.4]). Since λn ≤ 2/n, (4.18) yields µ(K)≤ 1. Thus, we may apply Proposition 4.13
to obtain

Gn(intK)≥ vol(K)
�
1−µ(K)

�
n ≥ vol(K)

�
1−

n

∑
i=1

λi

2

�
n

= vol(K)

�
1
n

n

∑
i=1

�
1− nλi

2

��n

≥ vol(K)
n

∏
i=1

�
1− nλi

2

�
,

where the last step follows from the inequality (6) between the arithmetic and geometric means.

4.4 The stronger 2-dimensional results

The main result of this section is the following theorem, which confirms Conjecture 4.3 in the planar case,
either exactly in the case of the upper bound (4.6), or asymptotically in the case of the lower bound (4.7).

Theorem 4.15 [43, Theorem 1.4] Let K ⊂ R2 be a planar convex body. Then

G2(K)≤ vol(K)

�
1+

λ1(K)

2

��
1+λ2(K)

�
(4.19)

and
G2(intK)≥ vol(K)

�
1− λ1(K)

2
−λ2(K)

�
. (4.20)

In particular, for any ε > 0, if λ1(K)≤ 2ε/(1+ ε) it follows from (4.20) that

G2(intK)≥ vol(K)

�
1− λ1(K)

2

��
1− (1+ ε)λ2(K)

�
,

which is the announced asymptotic confirmation.

Before proving this result though, we show that (4.8) can in fact be confirmed exactly for the special
class of origin-symmetric lattice polygons (i.e. origin-symmetric sets which are the convex hull of finitely
many integer lattice points).

Proposition 4.16 Let P ⊂ R2 be a planar origin-symmetric lattice polygon. Then we have

G2(intP)≥ vol(P)
�

1− λ1(P)

2

��
1− λ2(P)

2

�
.

Proof. On the one hand, Pick’s Theorem (see, e.g., [15, Theorem 2.8]) states that for a lattice polygon P

one has
G2(intP) = vol(P)− G2(bdP)

2
+1. (4.21)

On the other hand, an inequality of Henk, Schürmann and Wills ([61, (1.6)]) for origin-symmetric lattice
polygons yields

G2(bdP)

2
≤ vol(P)

�
λ1(P)

2
+

λ2(P)

2

�
. (4.22)
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Combining (4.21) with (4.22) we obtain

G2(intP)≥ vol(P)−vol(P)
�

λ1(P)

2
+

λ2(P)

2

�
+1.

By the upper bound in Minkowski’s second theorem (4.2), we have 1 ≥ vol(P)λ1(P)λ2(P)/4. Hence,

G2(intP)≥ vol(P)
�

1− λ1(P)

2
− λ2(P)

2
+

λ1(P)λ2(P)

4

�
≥ vol(P)

�
1− λ1(P)

2

��
1− λ2(P)

2

�
,

and the proof is finished.

Now, in order to prove the general planar results established in Theorem 4.15, we need to take the
reduction developed in Section 4.2 a step further.

4.4.1 Non-orthogonal shakings

We extend the notion of the Blaschke shaking to the setting of non-orthogonal projections. This will
enable us to transform a convex body K in such a way that it is not only anti-blocking, but in addition,
also located below the diagonal line passing through (2/λ1(K))e1 and (2/λ1(K))e2 (see Figure 4.3).

For any affine line �⊂ R2 and any vector u ∈ R2 \{0} which is not parallel to �, let πu,� denote the
projection onto � in the direction of u.

Definition 4.17 Let K ⊂ R2 be a planar convex body and fix u ∈ R2 \{0}. Let � ⊂ R2 be an affine
line that is not parallel to u. Then, the shaking of K with respect to � along u is given by

shu,�(K) =
�

x∈πu,�(K)

�
x, x+vol1

��
x+ lin{u}

�
∩K

�
u

�u�

�
.

Clearly, shu = sh
u,u⊥ . We will use the fact that non-orthogonal Blaschke shakings are monotonous,

which is a widely known fact for classical orthogonal Blaschke shakings (see, e.g., [31, Lemma 1.1 (iii)]).

Lemma 4.18 Let K,L ⊂ R2 be planar convex bodies with K ⊂ L. Also, consider an affine line �⊂ R2

and a vector u ∈ Rn \{0} not parallel to �. Then we have

shu,�(K)⊂ shu,�(L).

Proof. If x ∈ shu,�(K), then clearly x ∈ πu,�(K)⊂ πu,�(L). By inclusion, we also have

l1 := vol1
��

x+ lin{u}
�
∩K

�
≤ vol1

��
x+ lin{u}

�
∩L

�
=: l2.

Hence, since x ∈ shu,�(K), we have

x ∈
�

πu,�(x), πu,�(x)+ l1
u

�u�

�
⊂
�

πu,�(x), πu,�(x)+ l2
u

�u�

�
⊂ shu,�(L),

as desired.

As we saw in Section 4.2, it is enough to prove Theorem 4.15 when K is anti-blocking. Starting
with an anti-blocking convex body K that satisfies |ei|cs(K) = λi(K), i = 1,2 (see Lemma 4.10), here we
construct a new convex body A by first shaking K vertically and then horizontally with respect to a lattice
diagonal of the form

D =
�
(x1,x2) ∈ R2 : x1 + x2 = m

�
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for some m ∈ Z, and finally shaking back down to e⊥2 . More formally, we set A = T (K), where

T = she2 ◦ sh−e1,D ◦ sh−e2,D.

Note that the value m ∈ Z may be chosen arbitrarily since the parameters involved are invariant by lattice
translations.

������

=⇒=⇒=⇒

K

sh−e2,D(K)

D ������

(sh−e1,D ◦ sh−e2,D)(K)

A

Figure 4.3: Illustration of the shaking process T .

Lemma 4.19 Let K ⊂ R2 be a planar convex body and set A = T (K). Then the following statements
hold:

i) A is convex,
ii) A is anti-blocking,

iii) vol(A) = vol(K),
iv) G2(A)≥ G2(K),
v) G2(intA)≤ G2(intK),

vi) λ1(A)≤ λ1(K),
vii) λ2(A) = λ2(K) and

viii) A ⊂
�
(x1,x2) ∈ R2 : x1 + x2 ≤ 2/λ1(A)

�
.

Proof. For i) we show that shu,�(K) is convex for all u ∈R2 \{0} and every affine line �⊂R2 not parallel
to u. To see this, we consider x,y ∈ shu,�(K). Let x and y denote the extreme points of the segments
K ∩

�
x+ lin{u}

�
and K ∩

�
y+ lin{u}

�
, respectively, that minimize �·,u�. Then, the points

�z = z+�z−πu,�(z)�
u

�u� , z ∈ {x,y},

are contained in K, and thus, Lemma 4.18 implies that

conv
�

πu, �(x), πu,�(y), x, y
�
= shu,�

�
conv{x, �x, y, �y}

�
⊂ shu,�(K).

In particular, [x,y]⊂ shu,�(K), which shows that shu,�(K) is convex, and therefore, that A is convex too.

Next we consider, on the one hand, the box

B =

�
0,

2
λ1(K)

�
×
�

0,
2

λ2(K)

�
.

Clearly, we have K ⊂ B, and by Lemma 4.18, it follows that A ⊂ T (B). Both sh−e2,D and she2,D do not
change the length of the vertical segments, whereas it is easy to see that sh−e1,D cannot increase them



82 Chapter 4. Inequalities for the successive minima

either (cf. Figure 4.3 for K = B). Since the vertical segments of B are all of length 2/λ2(K), we conclude
that all vertical segments in T (B) (and thus also in A) are of length at most 2/λ2(K).

On the other hand, by considering the triangle

∆ = conv
�

0,
2

λ1(K)
e1,

2
λ2(K)

e2

�
⊂ K,

which verifies T (∆) = ∆ due to the fact that λ1(K) ≤ λ2(K), we see that A∩ �2 has length precisely
2/λ2(K). Since by construction we have A∩ e⊥2 = Pe⊥2

A, we obtain from this that A∩ e⊥1 = Pe⊥1
A as well.

Therefore, A is anti-blocking and satisfies |e2|cs(A) = λ2(K), together with |e1|cs(A) ≤ |e1|cs(∆) = λ1(K).
Altogether, we have proved items ii), vi) and vii).

iii) follows from Fubini’s theorem applied to lin{u} and u
⊥, since also for arbitrary non-orthogonal

shakings one has that P
u⊥shu,�(K) = P

u⊥K and

vol1
�

shu,�(K)∩
�
x+ lin{u}

��
= vol1

�
K ∩

�
x+ lin{u}

��

for any x ∈ u
⊥.

iv) and v) are proved in the same way as items v) and vi) of Proposition 4.7: since π−ei,D(Z2) =Z2∩D

for i = 1,2, all the segments in the direction of ei of the set sh−ei,D(K) containing lattice points have an
endpoint in D∩Z2.

Finally, for viii), let z ∈ D be the point with minimum 2nd coordinate in sh−e1,D
�
sh−e2,D(K)

�
. Then

sh−e1,D
�
sh−e2,D(K)

�
⊂ conv

�
me2, Pe⊥1

z, z
�
,

where m ∈ Z is such that me2 ∈ D (cf. Figure 4.3), and applying she2 to both sides of the inclusion yields

A ⊂ conv
�

0,
2

λ1(A)
e1,

2
λ1(A)

e2

�
⊂
�
(x1,x2) ∈ R2 : x1 + x2 ≤

2
λ1(A)

�
,

as desired.

4.4.2 Proof of Theorem 4.15

For the proof of Theorem 4.15 we will need the following estimates, which follow from elementary
properties of concave functions:

Lemma 4.20 Let f : [a,b]−→ R be a concave function. Then, we have
�

b

a

f (t)dt ≥ 1
2
�

f (a)+ f (b)
�
(b−a).

Moreover, if f
�(a) exists, then also

�
b

a

f (t)dt ≤ (b−a)

�
f (a)+

1
2
(b−a) f

�(a)

�
.

Proof. For the lower bound, let g be the affine function given by g(a) = f (a) and g(b) = f (b), i.e.,

g(t) =
f (b)− f (a)

b−a
(t −a)+ f (a).

By concavity we have f ≥ g, and therefore
�

b

a

f (t)dt ≥
�

b

a

g(t)dt =
1
2
�

f (a)+ f (b)
�
(b−a).
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For the upper bound let h be the tangent of f at a, i.e.,

h(t) = f
�(a)(t −a)+ f (a).

Again, by concavity we get h ≥ f , and thus
�

b

a

f (t)dt ≤
�

b

a

h(t)dt ≤ (b−a)

�
f (a)+

1
2
(b−a) f

�(a)

�
.

Before proving Theorem 4.15 we need one more ingredient, which is in fact valid in general dimension.
Schymura generalized Davenport’s inequality (4.16) and obtained, for an arbitrary linearly independent
set {b1, . . . ,bn} ⊂ Zn, that

Gn(K)≤ ∑
I⊂{1,...,n}

voln−|I|
�
P�⊥

I

K
�

volk(PI),

where �I = lin{bi : i ∈ I} and PI = ∑i∈I[0,bi] (see [62, Lemma 1.1]). We reverse it in the following way.

Theorem 4.21 [43, Theorem 1.3] Let K ⊂ Rn be a convex body and let B = {b1, . . . ,bn} ⊂ Zn be a
linearly independent set. Then

vol(K)≤ ∑
I⊂{1,...,n}

GP
�⊥
I

Zn

�
P�⊥

I

(intK)
�
, (4.23)

where �I = lin{bi : i ∈ I}. The inequality is tight.

Proof. It suffices to prove that, given a general n-dimensional lattice Λ ⊂ Rn and a linearly independent
set B = {b1, . . . ,bn} ⊂ Λ, then, for every convex and bounded (not necessarily closed) set K ⊂ Rn and
any z = (z1, . . . ,zn) ∈ Rn,

GΛ(K + z)≤ ∑
I⊂suppB(z)

GP
�⊥
I

Λ
�
P�⊥

I

K
�
, (4.24)

where suppB(z) =
�

i ∈ {1, . . . ,n} : αi �= 0
�

for z = ∑n

i=1 αibi. Indeed, (4.24) for Λ = Zn yields

Gn(z+ intK)≤ ∑
I⊂{1,...,n}

GP
�⊥
I

Zn

�
P�⊥

I

(intK)
�

for any z ∈ Rn, and hence (4.23) follows from (4.13).

If z= 0 there is only one term in (4.24) corresponding to I = /0, and so (4.24) reads as GΛ(K)≤GΛ(K),
a tautology. Thus, from now on we assume that z �= 0.

First we note that if n = 1, then (4.24) states for non-zero z that

GΛ(K + z)≤ GΛ(K)+1. (4.25)

Since any convex body K ⊂ R is an interval, the statement is trivial. Now, for any n > 1, we will prove
(4.24) by induction on

��suppB(z)
��. If

��suppB(z)
��= 1 then z = α1b1 for some α1 �= 0, and thus

GΛ(K + z) = ∑
x∈(P

b
⊥
1

K)∩(P
b
⊥
1

Λ)
GΛ

�
(K + z)∩

�
x+ lin{b1}

��
.

Since the bodies on the right-hand side are segments parallel to b1, we can apply (4.25) to obtain

GΛ(K + z)≤ ∑
x∈(P

b
⊥
1

K)∩(P
b
⊥
1

Λ)

�
GΛ

�
K ∩

�
x+ lin{b1}

��
+1

�
= GΛ(K)+GP

b
⊥
1

Λ
�
P

b
⊥
1

K
�
, (4.26)

which corresponds to (4.24) in this case.
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Finally, let z = ∑n

i=1 αibi be an arbitrary non-zero vector, and consider any j ∈ suppB(z). We define
z
� = z−α jb j and z

�� = P
b
⊥
j

z
�, as well as B� = B\{b j} and B�� = P

b
⊥
j

B�. Then, we observe that

suppB(z
�) = suppB��(z��) = suppB(z)\{ j}.

Therefore, setting ��I = lin
�

P
b
⊥
j

bi : i ∈ I
�

, using (4.26) and applying the induction hypothesis (4.24) to
both K, Λ, B, z

�, and P
b
⊥
j

K, P
b
⊥
j

Λ, B��, z
��, we obtain that

GΛ(K + z)=GΛ
�
K + z

�+α jb j

�
≤GΛ

�
K + z

��+GP
b
⊥
j

Λ

�
P

b
⊥
j

�
K + z

��
�
=GΛ

�
K + z

��+GP
b
⊥
j

Λ
�
P

b
⊥
j

K + z
���

≤ ∑
I⊂suppB(z)\{ j}

GP
�⊥
I

Λ
�
P�⊥

I

K
�
+ ∑

I⊂suppB(z)\{ j}
GP��I

⊥P
b
⊥
j

Λ
�
P��I

⊥P
b
⊥
j

K
�

= ∑
I⊂suppB(z)\{ j}

�
GP

�⊥
I

Λ
�
P�⊥

I

K
�
+GP

�⊥
I∪{ j}

Λ
�
P�⊥

I∪{ j}
K
��

= ∑
I⊂suppB(z)

GP
�⊥
I

Λ
�
P�⊥

I

K
�
.

This finishes the proof of (4.24), and hence, of (4.23).

Finally, to see that (4.23) is tight, take bi = ei and let K = [0,k1]×·· ·× [0,kn], where k1, . . . ,kn ∈ Z>0.
Then we have

vol(K) =
n

∏
i=1

ki =
n

∏
i=1

�
(ki −1)+1

�
= ∑

I⊂{1,...,n}
∏
i∈I

(ki −1) = ∑
I⊂{1,...,n}

GP
�⊥
I

Zn

�
P�⊥

I

(intK)
�
,

as desired.

We are now in the conditions to prove Theorem 4.15.
Proof of Theorem 4.15. We write λi = λi(K), i = 1, . . . ,n, for the sake of brevity. In view of Proposi-
tion 4.9 and Lemma 4.19, we can assume that K is an anti-blocking convex body with |ei|cs(K) = λi and
such that K ⊂

�
(x1,x2)∈R2 : x1+x2 ≤ 2/λ1

�
. Consequently, hK(e2) = 2/λ2 holds. Consider the function

f : [0,2/λ2]−→R given by f (t) = vol1
�
K∩(te2+�1)

�
. Since K is convex, f is concave. Moreover, since

K is anti-blocking, f is decreasing. Furthermore, from the inclusion K ⊂
�
(x1,x2) ∈R2 : x1 +x2 ≤ 2/λ1

�

it follows that
f (t)≤ f (0)− t =

2
λ1

− t (4.27)

for all t ∈ [0,2/λ2]. First, we observe that we have

G2(K) =
�2/λ2�

∑
i=0

G1
�
K ∩ (te2 + �1)

�
≤

�2/λ2�

∑
i=0

�
f (i)+1

�

=
1
2

�
f (0)+ f

��
2
λ2

���
+

�2/λ2�

∑
i=1

�
1
2
�

f (i−1)+ f (i)
��

+

�
2
λ2

�
+1.

Applying the lower bound in Lemma 4.20 to the terms
�

f (i−1)+ f (i)
�
/2 and using (4.27) for t = �2/λ2�

we deduce that

G2(K)≤ 2
λ1

− 1
2

�
2
λ2

�
+

� �2/λ2�

0
f (t)dt +

�
2
λ2

�
+1 ≤ vol(K)+

2
λ1

+
1
λ2

+1

≤ vol(K)

�
1+λ2 +

λ1

2
+

λ1λ2

2

�
= vol(K)

�
1+

λ1

2

��
1+λ2

�
,

where the last inequality follows from the lower bound in Minkowski’s second theorem (4.2). This shows
the upper bound (4.19).

For the lower bound, we can assume that f is differentiable. Otherwise, we could approximate f with
a linear spline ϕ from below, which in turn could be approximated by a smooth concave function g from
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below by rounding its corners. This function would satisfy that g(0) = f (0), and thus, the anti-blocking
convex body

K
� =

�
(x1,x2) ∈ R2 : 0 ≤ x2 ≤

2
λ2

, 0 ≤ x1 ≤ g(x2)

�
⊂ K

would be located underneath the diagonal
�
(x1,x2) ∈ R2 : x1 + x2 = 2/λ2(K�)

�
as well, as desired.

We observe that �2/λ2 − 1� is the height of the highest horizontal integer line that intersects intK.
Therefore, we can estimate the number of interior lattice points of K as follows:

G2(intK) =
�2/λ2−1�

∑
i=1

G1
�
(intK)∩ (ie2 + �1)

�
≥

�2/λ2−1�

∑
i=1

�
f (i)−1

�
=

�2/λ2−1�

∑
i=1

f (i)−
�

2
λ2

−1
�
.

Now, on the one hand, we can use the upper bound in Lemma 4.20 in order to get

f (i)≥
�

i+1

i

f (t)dt − 1
2

f
�(i)

for all i = 1, . . . ,�2/λ2 − 1�. On the other hand, since 2/λ2 − �2/λ2 − 1� ≤ 1, we also have from
Lemma 4.20 that

f

��
2
λ2

−1
��

≥
� 2/λ2

�2/λ2−1�
f (t)dt − 1

2

�
2
λ2

−
�

2
λ2

−1
��

f
�
��

2
λ2

−1
��

.

Altogether, we obtain the estimate

G2(intK)≥
�2/λ2−1�−1

∑
i=1

�
i+1

i

f (t)dt +
� 2/λ2

�2/λ2−1�
f (t)dt

− 1
2

�
�2/λ2−1�−1

∑
i=1

f
�(i)+

�
2
λ2

−
�

2
λ2

−1
��

f
�
��

2
λ2

−1
���

−
�

2
λ2

−1
�

= vol(K)−
� 1

0
f (t)dt

− 1
2

�
�2/λ2−1�−1

∑
i=1

f
�(i)+

�
2
λ2

−
�

2
λ2

−1
��

f
�
��

2
λ2

−1
���

−
�

2
λ2

−1
�
.

(4.28)

Next, due to (4.27), we have � 1

0
f (t)dt ≤ 2

λ1
− 1

2
. (4.29)

Furthermore, in order to bound the last sum in (4.28), we observe that f
� is decreasing and non-positive,

due to the facts that f is concave and K is anti-blocking, respectively. Therefore, we obtain that
�2/λ2−1�−1

∑
i=1

f
�(i)+

�
2
λ2

−
�

2
λ2

−1
��

f
�
��

2
λ2

−1
��

≤
�2/λ2−1�−1

∑
i=1

�
i

i−1
f
�(t)dt +

��
2
λ2

−1
�
−
��

2
λ2

−1
�
−1

��
f
�
�

2
λ2

−1
�

≤
� 2/λ2−1

0
f
�(t)dt = f

�
2
λ2

−1
�
− f (0)≤ 1− 2

λ2
,

where we have used (4.27) in the last step. Substituting this and (4.29) into (4.28) yields

G2(intK)≥ vol(K)− 2
λ1

+
1
2
+

1
2

�
2
λ2

−1
�
−
�

2
λ2

−1
�
≥ vol(K)− 2

λ1
− 1

λ2

= vol(K)

�
1− 1

vol(K)

�
2
λ1

+
1
λ2

��
≥ vol(K)

�
1− λ1

2
−λ2

�
,

where the last inequality follows from the lower bound in Minkowski’s second theorem (4.2). Therefore,
the proof of the lower bound (4.20) is finished.
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