
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Accelerated QFT interval automatic loop shaping algorithm

Isaac Martínez-Forte | Joaquín Cervera*

1Dpto. de Informática y Sistemas,
Universidad de Murcia, Murcia, Spain

Correspondence
*Joaquín Cervera, Facultad de Informática,
Campus de Espinardo, 30100 Murcia, Spain.
Email: jcervera@um.es

Summary

The quest for an efficient QFTAutomatic Loop Shaping algorithm is an open research
problem. Different approaches have been adopted in the literature to efficiently solve
this optimization problem, which is computationally hard due to its nonlinear and
non-convex nature. The first algorithms focused on different forms of simplifica-
tion of the original problem, leading to faster but not accurate results. Stochastic
algorithms have been another popular way of dealing with the complexity of this
problem. These algorithms are faster than an exhaustive search, but do not guarantee,
in general, the globally optimal solution. A third, more recent, approach, consists of
using interval analysis global search algorithms, which are able to accurately solve
the original problem, and are very suitable for execution speed optimization. In this
work, one of these algorithms is taken as a basis to propose and develop an improved
algorithm which is more efficient in terms of the execution time needed to solve a
given problem. This improved efficiency is achieved by using two new information
sources: Phase information and feasible boxes information. The main contribution
of this work is to propose the use of these two new information sources to reduce
execution time and to integrate this idea in the original algorithm. Their individual
and joint associated speedups are measured by solving two classical QFT example
problems: Matlab R© QFT Toolbox example 2 and ACC ’90 benchmark problem. The
results show that the new algorithm’s performance is significantly better.

KEYWORDS:
Control design, uncertain systems, robust control, Quantitative Feedback Theory, automatic loop shaping,
interval optimization, CACSD

1 INTRODUCTION

Quantitative Feedback Theory (QFT) is a robust frequency domain control design technique, successfully applied in different
domains (1,2,3,4). Loop shaping of the nominal open loop gain function L0(s) is a key design step. It is performed consid-
ering a set of restrictions (boundaries) resulting from design specifications and the (uncertain) model of the plant (template),
plus the QFT traditional design objective of minimizing the high-frequency gain (Kℎf) (5). Loop shaping constitutes the QFT
optimization problem: design of L0(s) satisfying boundaries (constraints) and minimizing Kℎf .
In QFT origins, Loop shaping was performed by hand. The subsequent use of Computer Aided Control System Design tools

(e.g., the classical Matlab R© QFT Toolbox6 or the more modern QFT Control Toolbox for Matlab R© – QFTCT7) made manual
loop shaping much simpler, but still a certain degree of expertise and some time is needed. Thus, the problem of automatic loop
shaping (QFT ALS) is of enormous practical interest and has been addressed from various viewpoints, especially in the last

2 MARTINEZ-FORTE AND CERVERA

four decades. Optimal loop computation is a nonlinear and non-convex optimization problem for which it is difficult to find a
computationally efficient solution. Various approaches to solve it have been adopted in the literature.
The first approach, four decades ago, was to consider a simplified version of the problem, and it yielded conservative results.

Some examples are:8, where the problem is convexified by using rectangular templates,9, which uses linear approximations
of boundaries, or10, where the problem in modeled in terms of LMIs. Another way of simplifying the problem is to consider
particular controller structures with a certain (limited) degree of freedom, e.g.11,12,13.
A second, more recent, approach, has been the use of stochastic optimization algorithms, which are able to directly handle

nonlinear and non-convex optimization problems. For instance, evolutionary algorithms are used in14,15,16. The main drawback
of these algorithms is that they do not guarantee, in general, an optimal solution, including the possibility of not finding any
solution or finding a local optimum. Furthermore, their computational burden is significantly higher as the number of controller
parameters increases. An interesting approach to reduce this number is the use of fractional structures, e.g.17,18,19.
The third approach is the use of interval arithmetic based search in order to ensure that the whole space of solutions is

explored. Thus, for a certain QFT problem, finding the global optimum is guaranteed if there is any solution; and, if not, the
algorithm will be able to state it. These features can be very important. For example, if no solution is found the designer knows
that the specifications should be relaxed. Another framework in which accurately obtaining the global optimum is essential is
the comparison of different controller structures, as performed in17,18,19. This exhaustive search is computationally slow, with
execution times depending exponentially on the number of controller parameters. But the structure of these algorithms make
them very suitable for execution time acceleration. The first algorithm of this kind was introduced in20 (algorithm NT). In21

(algorithm NK) NT acceleration is achieved by combining geometric constraints (GCP), applied to all controller parameters,
with a hybrid optimization scheme able to launch local searches from certain points of the global search. Algorithm NK obtains
better results but is still slow when the number of controller parameters grow.
Based on these ideas, several algorithms using an ICSP (Interval Constraint Satisfaction Problem) scheme have been devel-

oped (22,23,24). This approach is sophisticated but computationally too intense. In25 this approach is accelerated by an interval
consistency technique. In these proposals there is an equation to be solved at each search iteration for each template representative
considered, so increasing accuracy in uncertainty modeling results in slower computation times.
The aim of this work is to start from algorithms NT and NK, both simple, general, and where arbitrary template accuracy

can be obtained without affecting execution performance and to develop a faster algorithm which is able to solve the same QFT
problems in a fraction of NK execution time. The ultimate goal would be to compute controllers with tens of parameters in a
few seconds, allowing the designer to fluently interact with the computer aided control design tool: for a certain problem, the
designer could establish a set of specs, a controller structure, and immediately obtain the results, so that specs or controller
structure could be interactively modified accordingly. This work is a step towards that goal.
This work is structured as follows. In section 2 some basic material about QFT, interval arithmetics and interval global search,

is presented, including algorithms NT and NK. Section 3 presents two speedup proposals, together with a new algorithm, MC,
corresponding to their application to the NK algorithm. In section 4 theMC algorithm is applied to a couple of traditional QFT
example problems, and its execution time is analyzed and compared to NT’s and NK’s. Finally, in section 5 the results obtained
are discussed and some potential future directions are suggested.

2 PRELIMINARIES

2.1 Quantitative Feedback Theory
QFT (1) focuses on an accurate plant uncertainty model and its qualitative implications in terms of the control effort needed to
cope with this uncertainty. The usual QFT control system configuration (Fig. 1) has two degrees of freedom: A controller C(s),
in the closed loop, which manages uncertainty and disturbances affecting u(t) or y(t); and a precompensator, F (s), devoted to
satisfy tracking specifications.
Let P be an uncertain plant defined as a set of transfer functions P

.
= {P (s)} representing uncertainty, with P0(s) ∈ P the

(arbitrarily chosen) nominal plant. For a certain frequency !, the template TP(!) is defined as the Nichols Chart (NC) region

TP(!)
.
= {(∠P (j!), |P (j!)|dB) ∈ NC, P ∈ P}, (1)

with NC = {(∠p, |p|dB), p ∈ ℂ}. The open loop transfer function is defined as L(s)
.
= P (s)C(s) and the nominal open loop

transfer function as L0(s)
.
= P0(s)C(s) .

MARTINEZ-FORTE AND CERVERA 3

+

_

r(t)
C(s) P(s)

e(t) u(t) y(t)
F(s)

FIGURE 1 Two degrees of freedom control system configuration.

The controller C(s) is designed in the Nichols Chart by shaping L0(s). The designer establishes a discrete set Ω of design
frequencies and a set SΩ of quantitative specifications on robust stability and robust performance on the closed loop system.
Typically SΩ includes the following specs:

• Robust stability1:
|

|

|

|

L(j!)
1 + L(j!)

|

|

|

|

≤ �,∀! ∈ Ω (2)

It is usually convenient to use a Universal High Frequency Boundary (UHFB), a special robust stability boundary called
universal because the region inside it should be avoided by L0(j!) ∀! ∈ ℝ+.

• Robust tracking performance:
�(!) ≤

|

|

|

|

L(j!)
1 + L(j!)

F (j!)
|

|

|

|

≤ �(!) ,∀! ∈ Ω (3)

• Robust output disturbance rejection performance:
|

|

|

|

1
1 + L(j!)

|

|

|

|

≤ �o(!) ,∀! ∈ Ω (4)

• Robust input disturbance rejection performance:
|

|

|

|

P (j!)
1 + L(j!)

|

|

|

|

≤ �i(!) ,∀! ∈ Ω (5)

where �, �, �o and �i are chosen by the designer.
Based on SΩ and the set of templates TΩ

.
= {TP (!), ! ∈ Ω}, a set of boundaries BΩ = {B!, ! ∈ Ω} is computed. Each

B! is a curve in NC which separates allowed (A!) and forbidden (F!) regions for L0(j!). L0(j!) ∈ A!∀! ∈ Ω (boundaries
satisfaction) implies specification satisfaction by L(s) ∀P (s) ∈ P. Conversely, ∃! ∈ Ω ∣ L0(j!) ∈ F! (boundaries violation)
implies specifications are not met.
On Fig. 5 a typical example of BΩ can be observed, where both open and closed boundaries are present 2:

• Open boundaries: The open lines horizontally crossing NC from −360o to 0o, in this example (tracking) performance
boundaries. For each ! ∈ Ω = {0.1, 0.2, 1, 2, 15}, A! is defined as the allowed region, above B!, and F! as the forbidden
region, below.

• Closed boundaries: The closed line around (0 dB,−180o) is a robust stability boundary, more precisely, an UHFB, defining
A! as the region outside B!, and F! as the region inside, ∀! ∈ ℝ+.

Loop shaping, the main QFT design stage, consists of a constrained optimization problem: Design of L0(s) satisfying
boundaries (constraints) and minimizing

Kℎf
.
= lim

s→∞
speL0(s), (6)

where pe is L0 excess of poles over zeros. Note this optimization criterion focuses on reduction of sensor noise at high frequen-
cies. However, its application can result in controllers that are worse regarding other criteria. Hence, the designer should choose
the most adequate criterion depending on the specific problem characteristics. The algorithm proposed in this work uses Kℎf
minimization as optimization criterion. Adapting this algorithm to other criteria could be considered elsewhere.

1Note this definition of robust stability, based on the complementary sensitivity function, common in some QFT literature, is adopted here. But robust stability margin,
defined in terms of the distance between L and the critical point (−180o, 0dB) ∈ NC is described by the sensitivity function as ||

|

1
1+L(j!)

|

|

|

≤ �.
2Note both open and closed NC boundaries are closed curves in the arithmetic complex plane (Nyquist diagram).

4 MARTINEZ-FORTE AND CERVERA

Since P0(s) is fixed, L0(s) design is equivalent to C(s) design. A rational controller general structure can be expressed as

NLC(s, x) = k

∏nrz
i=1(s + zi)

∏ncz
j=1(s

2 + 2�jvjs + v2j)
∏nrp

l=1(s + pl)
∏ncp

m=1(s
2 + 2�mums + u2m)

(7)

where
x = (k, z1,… , znrz , �1,… , �ncz , v1,… , vncz , p1,… , pnrp , �1,… , �ncp , u1,… , uncp) (8)

is a vector containing the n controller parameters, n = 1+ nrz+2ncz+ nrp+2ncp. In the particular way of expressing C(s) given
by (7), it happens k = Kℎf , which, without loss of generality, is quite convenient for optimization, because it simplifies objective
function computation. A particular pole-zero structure (values for nrz, ncz, nrp and ncp) is a priori chosen by the designer. The
optimization variables are the controller parameters x for that particular structure, and L0 can thus be expressed as

L0(s, x) = P0(s)C(s, x). (9)

2.2 Interval arithmetics
For the following basic interval arithmetics definitions and properties,26 and27 are used; further details can be obtained there.
The notation has been slightly adapted:

• An interval number X is defined as the real interval [X,X] = {x|X ≤ x ≤ X}.

• A real number x is equivalent to a zero width interval X = [x, x], called degenerate interval.

• An n-dimensional interval vector x, or n-dimensional box, is an ordered column n-tuple of intervals: x = (X1,… , Xn)T .

• These operators are defined:

– sup(X)
.
= X and sup(x)

.
= (X1,… , Xn)T

– inf(X)
.
= X and inf(x)

.
= (X1,… , Xn)

T

– subs(x, j, S)
.
= (X1,… , Xj−1, S,Xj+1,… , Xn)T (It returns a new version of x whereXj has been substituted by S.)

• An interval functionF is an interval-valued function of one ormore interval argumentsX1,… , Xn, i.e., it maps the value of
one or more interval arguments onto an interval. This can also be regarded as mapping a box argument x = (X1,… , Xn)T

onto an interval: F (x) = F ((X1,… , Xn)T). For convenience and readability, both interpretations will be interchangeably
used, so that F (x) = F ((X1,… , Xn)T) = F (X1,… , Xn), written preferably as F (x) or F (X1,… , Xn).

• In the following definitions, let f (x1,… , xn) be a real multivariate function with real codomain, i.e., f ∶ ℝn → ℝ.

• An interval extension of f is an interval function F I (x) such that F I (x1,… , xn) = f (x1,… , xn),∀x1,… , xn, i.e., if the
arguments of F I are degenerate intervals, then F I (x1,… , xn) is a degenerate interval equal to f (x1,… , xn).

• The natural interval extension (NIE) of f , FNIE, is an interval extension obtained by replacing, in the expression for
f (x1,… , xn), every real variable xi, i = 1,… , n, with a corresponding interval variable Xi, and every real operator or
function with corresponding interval operations and functions.

• An interval function F is inclusion isotonic if, for any pair of boxes x and y,

x ⊆ y ⇐⇒ F (x) ⊆ F (y). (10)

• The range of a function f ∶ ℝn → ℝ over a box x is defined as the real numbers set range(f, x)
.
= {f (x)|x ∈ x}.

range(f, x) can also be expressed as f (x) for short.

• The Fundamental Theorem of Interval Analysis (26) establishes that, if F is an inclusion isotonic interval extension of
f ∶ ℝn → ℝ, then

range(f, x) ⊆ F (x). (11)

• With the NIE being an inclusion isotonic interval extension, by direct application of (11), for any f ∶ ℝn → ℝ,

range(f, x) ⊆ FNIE(x), (12)

which constitutes the base for algorithms NT and NK.

MARTINEZ-FORTE AND CERVERA 5

2.3 Interval global search
A solution for QFT ALS optimization problem consists of a n-tuple of values instantiating the n controller parameters in x (8),
such that C(s, x) (7) is instantiated to a particular C(s). Since it is a nonlinear and non-convex problem, in general a global
exhaustive search in the solutions space (a certain box x ⊂ ℝn) is required in order to guarantee an optimal result, or to otherwise
be able to state no solution exists. Since an exhaustive search in this infinite space is not possible, a possible approach could
be to discretize x, for instance choosing e uniformly distributed points in each x dimension. This idea has two main drawbacks:
In general, a) how far the solution obtained is from the real optimum is not known; and, b) the fact that no solution is obtained
does not necessarily mean no solution exists.

2.3.1 Algorithm NT
Algorithm NT (20), and its improved version NK (21), introduce, for the first time, the use of an interval global branch and
bound search (27,28) to solve this problem. The basic idea is to use the inclusion isotonicity property (12) in the following sense.
Assume:

• a QFT ALS problem is given by specifying a plant P, a set of design frequencies Ω, a set of specifications SΩ, and a
controller structure (nrz, ncz, nrp, ncp);

• corresponding TΩ and BΩ are computed;

• an initial search box of controller parameter values x is given 3;

• expressions mag(x, !) and ang(x, !), natural interval extensions of functions |L0(j!, x)| and ∠L0(j!, x), magnitude and
angle of L0(j!, x) (9), respectively, are given.

Application of mag(x, !) and ang(x, !) to x at a certain frequency ! yieldsM and H , magnitude and phase intervals, respec-
tively, which define a rectangle (two-dimensional box in NC) Rx! containing, as (12) guarantees, all the possible values of
L0(j!, x)∀x ∈ x:4

Rx!
.
= (M,H)← (mag(x, !), ang(x, !)) (13)

Depending on the relation between Rx! and boundaries B!, three situations can happen regarding x:

• Rx! ⊂ A!, meaning x is feasible for !, i.e., L0(j!, x) respects boundaries B!∀x ∈ x.

• Rx! ⊂ F!, meaning x is infeasible for !, i.e., L0(j!, x) violates boundaries B!∀x ∈ x.

• Otherwise x is ambiguous for !, i.e., some part of x is feasible and some is infeasible.

Given a box x and frequency !, their associated

• Infeasible rectangle, iRx!, is defined as the largest 5 infeasible rectangle contained in Rx!.

• Feasible rectangle, fRx!, is defined as the largest feasible rectangle contained in Rx!.

Fig. 3 shows some examples of rectangles, infeasible rectangles and feasible rectangles for different boxes and frequencies.
The concept of feasibility can be generalized to: x is feasible if it is feasible ∀! ∈ Ω and infeasible if it is infeasible for any

! ∈ Ω. Otherwise it is ambiguous. A feasibility test procedure (FT) can be created to check the feasibility of a given box x: It
receives as argumentsRxΩ

.
= {Rx!|! ∈ Ω} (13) and BΩ, and returns flagx, a label with value infeasible, feasible, or ambiguous.

If x is infeasible, no solution exists and the algorithm ends. If it is feasible, any x ∈ x is a solution, and any x ∈ x such that
x[1] = inf(x[1]) (any xwith minimumKℎf) can be used as solution. If x is ambiguous, then it should be split into smaller pieces
(subboxes) to individually check their feasibility until a suitable solution (feasible or ambiguous with a designer prescribed �
accuracy) is reached. This is precisely howNT algorithm proceeds. Each parameters subbox z is a node in an implicit search tree,
implemented by means of a to-be-processed nodes list NL. NL elements (nodes) are triples (z, z, flagz), being z the parameter
box itself, z, z the minimum of the objective function over z, i.e., z = inf(z[1]), and flagz a flag representing z feasibility.
Its pseudocode is listed as Algorithm 1 (page 6). Note this kind of search tree typically leads to exponential order execution

times with respect to the number of controller parameters.

3Note parameters in x are restricted to be greater than zero for an stable and minimum phase controller and to guarantee mag and ang images are finite intervals.
4Note Rx! is an overbounding of the set {L0(j!, x), x ∈ x}.
5Largest NC area, using dB and degrees as units for magnitud and phase, respectively.

6 MARTINEZ-FORTE AND CERVERA

Algorithm 1 Pseudocode for NT algorithm

Inputs: BΩ and x, initial search box.
Output: z, box of computed optimal values of controller parameters, or message "No feasible solution in x".

1. Check feasibility of the initial search box:

(a) z ← x (initialize current box to initial box).
(b) RzΩ ← (mag(z, !), ang(z, !)),∀! ∈ Ω.
(c) flagz ← FT(RzΩ,BΩ).

(d) IF flagz = infeasible, PRINT "No feasible solution in z" and EXIT.

2. Initialize the list NL:

(a) z← inf(z[1]) (z initialization).
(b) NL ← {(z, z, flagz)}.

3. IF flagz = feasible, PRINT "Optimal controller parameter box is z" and EXIT.

4. Bisect z along its maximum width coordinate direction d into two subboxes v1 and v2 such that z = v1 ∪ v2.

5. Do the feasibility test for the new subboxes and discard any infeasible ones, i.e., for l = 1, 2:

(a) RvlΩ ← (mag(vl, !), ang(vl, !)),∀! ∈ Ω
(b) flagvl ← FT(RvlΩ,BΩ)

(c) vl ← inf(vl[1])
(d) Form the triple (vl, vl, flagvl).
(e) IF flagvl = infeasible, discard (vl, vl, flaglv).

6. Sort the list NL

(a) NL ← NL − {(z, z, flagz)} .
(b) Add any remaining triple(s) from step 5.(e) to NL.

(c) IF NL is empty, there is no feasible solution in x, so PRINT "No feasible solution in x" and EXIT.
(d) Sort NL such that the second members of all triples in NL do not decrease in value.

(e) Denote the first item of list NL as (z, z, flagz).

7. Go to step 3.

2.3.2 Algorithm NK
In order to improve the speed of the NT algorithm, the NK algorithm was developed. It is very similar to the NT algorithm
except for some small details and especially because of the addition of two features: a) A parameter box reduction, called Quick
Solution (QS) algorithm, executed for every new box at its creation, and b) a Local Optimization (LO) algorithm, executed only
sometimes, according to a heuristic decision rule (executing LO for every iteration would slow down algorithm NK, see (21)
for details). Note that the use of this heuristic rule does not imply discarding any solution, it only affects algorithm acceleration,
so finding the global optimum is still guaranteed. LO addition converts the NK algorithm into a hybrid optimization algorithm,
i.e., one that combines global and local search. This work focuses on the first addition, QS, described in section 2.3.3, since
the authors found its improvement to be the most promising way to speedup the NK algorithm. Since NK is very similar to NT,
instead of listing NK completely, which would be highly redundant, the following approach is adopted in Algorithm 2 (page 7):

MARTINEZ-FORTE AND CERVERA 7

the NT algorithm’s structure is used as a basis, and the only pseudocode lines that are listed are those corresponding to places
where QS is added to NK.

Algorithm 2 Pseudocode for NK algorithm

Inputs: BΩ and x, initial search box.
Output: z, box of computed optimal values of controller parameters, or message "No feasible solution in x".

1. ...
...
1.(b). ...
1.(b-bis). z ← QS(RzΩ,BΩ,Ω, z)
1.(c). ...
...
4. ...
4.bis. For l = 1, 2: vl ← QS(RvlΩ,BΩ,Ω, vl)
5. ...
...

2.3.3 Algorithm QS
This algorithm is restricted to controllers containing only real poles and zeros, whose values are greater than 0, and so it is
algorithm NK, because it uses QS. The controller general structure given in (7) is reduced to

C(s, x) = k
∏nrz

i=1(s + zi)
∏nrp

l=1(s + pl)
(14)

and the parameters vector x is also reduced accordingly:

x = (k, z1,… , znrz , p1,… , pnrp). (15)

Themain idea behind this algorithm is to use the information about the relative vertical (magnitude) position of the NC rectangles
given byRzΩ and the boundaries BΩ.QS takes advantage of the fact that |L0(j!, x)| varies monotonically 6 with each individual
parameter in x (15), i.e., with gain and each pole and zero parameter, to decrease the size of the parameters box z. QS algorithm
is explained in detail and exemplified in21. A simplified explanation, for the particular case (without loss of generality) of open
boundaries with A! above B! (as examples in Fig. 5 for ! ∈ {0.1, 0.2, 1, 2}) is:
For each ! ∈ Ω, and for each x(j) in x, j = 1, ..., n, perform the following steps:

• For each � = 1...n, � ≠ j, assign to x(�) the value in z[�] maximizing x(�) contribution to |L0(j!, x)|.

• Let S be the largest z[j] subinterval such that subs(z, j, S) is infeasible for !.

• iz ← ijz!, being i
j
z!defined as subs(z, j, S).

• z shrinks by subtracting S from z[j], i.e., z ← z − iz.

Remark: Note that Riz! ⊆ iRz!, so L0(j!, x) violates B! ∀x ∈ iz, which allows us to ignore solutions contained in iz.
The formal expression of the described algorithm is given as pseudocode as in Algorithm 3 (page 8).

6For real poles and zeros with values greater than 0.

8 MARTINEZ-FORTE AND CERVERA

Algorithm 3 Pseudocode for QS algorithm

Inputs: RzΩ, BΩ, Ω and z.
Output: z, reduced version of original z.

For ! ∈ Ω,
For j ∈ {1, ..., n}
y ← z // y is a copy of z
For � ∈ {1, ..., n}−{j} // In this for, y[�] receives the value r in z[�] that maximizes x(�) contribution to |L0(j!, x)|.
If 1 ≤ � ≤ 1 + nrz + 2ncz // gain (k) or zero
r← sup(z[�])

Else // pole
r← inf(z[�])

Endif
y ← subs(y, �, [r, r]) // interval y[�]← r

Endfor
S ← largest subinterval of y[j] such that subs(y, j, S) is infeasible for !
iz ← subs(z, j, S)
z ← z − iz

Endfor
Endfor

3 NK ALGORITHM SPEEDUP

Being faster than the NT algorithm, NK algorithm is still very costly in terms of computation burden. Thus, there is a clear
interest in speeding it up. Two ways of reducing its computation time are proposed here: a) Improving the QS algorithm by
using phase information (apart frommagnitude information); and b) by using information about feasible boxes (apart from about
infeasible ones).
As previously stated, the main idea used by QS to accelerate NT was to study the relation between NC boxes given by RzΩ

and boundaries BΩ.
These proposals focus on this idea and take it further, in the sense of exploiting more information. They are explained in the

following subsections, using boundaries from theMatlab R© QFT Toolbox (6) design example 2 (section 4.1). Once the individual
speedup proposals have been explained, in section 4 they are applied to the resolution of two typical QFT problems and their
individual and combined contributions to NK algorithm speedup are studied.

3.1 Using phase information
As previously explained, the NK algorithm, by means of QS, uses information about the vertical (magnitude) relation of the
rectangles in RzΩ and the boundaries BΩ in order to decrease the size of a certain parameters box. For an example, consider Fig.
2, where for a certain parameter box a and frequency ! = 0.1, their associated rectangle Ra 0.1 and infeasible rectangle iRa0.1
are shown. Thanks to the use of QS in NK, for each parameter x(j), j = 1...n, a certain portion ia = ija0.1 of a can be removed
from a. As previously stated, corresponding rectangles Ria 0.1 are subsets of iRa0.1, which guarantees each ia is an infeasible box
and thus can be safely removed from a.
This kind of parameter box reduction is very important, and the most intuitive, because: a) It especially affects controller

parameter k, directly connected to the optimization goal, Kℎf minimization; and b) Because open boundaries are similar to
horizontal lines in the sense that they naturally act as a limit for the vertical extension of rectangles.
However, information about the horizontal relation between the rectangles in RzΩ and the boundaries BΩ, i.e., their relation

in terms of phase, could also contribute to z reduction. This happens, trivially, for the vertical parts of closed boundaries, for
instance the UHFB in Fig. 2: Some Ric100 subsets of iRc100 (in gray), could be used to shrink c. But this also happens with open
boundaries: Since they are not completely horizontal lines, when rectangles become smaller after some subdivisions in step 4 of

MARTINEZ-FORTE AND CERVERA 9

FIGURE 2 Boundaries B0.1 and B100 and rectangles and infeasible rectangles (light grey) corresponding to given boxes a and
b at ! = 0.1 rad/s, and box c and ! = 100 rad/s.

algorithms NT and NK, the situation ofRb0.1 rectangle, with an infeasible (gray) part that can be separated by a phase reduction,
becomes common, and phase information can be used to shrink b.
Note that, in order to be able to perform this phase based boxes reductions, as happened with magnitude, it is necessary that

∠L0(j!, x) varies monotonically over the intervals of the parameters in x (8). There are three types of terms in C(s, x) (7). It
can be easily checked that the contributions of the first and the second type to ∠L0(j!, x) are monotonic:

• k has no effect on ∠L0(j!, x), so its effect is monotonic.

• Real poles or zeros, with structure j! + q, whose contribution to ∠L0(j!, x) is given by arctan(!∕q) for poles and
−arctan(!∕q) for zeros, which are monotonic with respect to q.

The contribution to ∠L0(j!, x) of the third type of term, complex poles or zeros, is not monotonic in general. Their structure,
(j!)2 + 2rtj! + t2, yields a contribution to ∠L0(j!, x) described by arctan(2rt!∕(t2 − !2)), monotonic respect to r, but not
with respect to t. However, this difficulty can be overcome by splitting, for each ! ∈ Ω, the interval corresponding to t, T , into
two subintervals T1 = [T , !] and T2 = [!, T] such that there is monotonicity respect to t in both subintervals. This leads to
splitting the parameters box z into two boxes at each ! ∈ Ω, which complicates the algorithm. For simplicity, and without loss
of generality, this mechanism is not included in this work, so the programmed algorithm is restricted to real zeros and poles, as
algorithm NK is, so the controller structure will be also reduced to (14) and the parameters vector to (15).

3.2 Using feasible boxes information
Fig. 3 shows some examples of feasible rectangles: It is a second version of Fig. 2 where feasible rectangles fRa0.1, fRb0.1 and
fRc100 have been added, corresponding to boxes a and b and ! = 0.1 rad/s, and box c and ! = 100 rad/s. Given an arbitrary
box z and frequency !, any z’ ⊆ z such that Rz’! ⊆ fRz!, z’ is feasible. To extract information from the existence of feasible
subrectangles and, consequently, z’ feasible subboxes of z, in order to reduce z, is an interesting possibility. But there are some
important differences with respect to the use of infeasible boxes in the QS algorithm that must be considered. In QS algorithm,
pieces of z are removed in an iterative process, returning a new z, which can be expressed as infeasible subboxes ijz! at each
! ∈ Ω and parameter x(j), j = 1, ..., n, which is joined and then subtracted from z, which can be expressed as

z ← z −
⋃

!∈Ω
iz! (16)

with iz!
.
=

⋃

j=1...n
ijz!.

10 MARTINEZ-FORTE AND CERVERA

FIGURE 3 Second version of Fig. 2 (infeasible rectangles in light grey) where feasible rectangles (dark grey) have been added.

Again, the input is a box, z, and the output is a reduced version of that box where the subtracted parts are discarded. However,
when dealing with infeasible subboxes:

• Compared to (16), feasible subboxes at each frequency !, fz!, should be intersected instead of joined, since a feasible box
must be so ∀! ∈ Ω:

z’ ←
⋂

!∈Ω
fz!. (17)

• In a similar fashion, computation of fz! at each ! also involves intersection instead of junction:

fz!
.
=

⋂

j=1...n
fjz!, (18)

where each fjz! is computed in a QS-like way:

– For each � = 1...n, � ≠ j, assign to x(�) the value in z[�] minimizing x(�) contribution to |L0(j!, x)|.
– Let F be the largest z[j] subinterval such that subs(z, j, F) is feasible for !.
– fjz!

.
= subs(z, j, F).

• QS algorithm receives a box z and returns a shrunk version of z. However, the result of the process of exploiting feasible
subboxes information is double: a) z’, a feasible box, and b)

U = {u1, ...,um}, (19)

a set of subboxes of z, with m = 2n − 1, such that
⋃

u∈U
= z − z’. (20)

Each of these m boxes in U can be feasible, infeasible or ambiguous, and so they should go through steps 5 and 6 in NT
and NK algorithms in order to be discarded or included in list NL in their right position, as any ordinary box from step 4
would, depending on their feasibility. Note that m grows exponentially with the number of parameters n, so a good trade-
off between the better prune achieved and extra computation cost must be chosen. In this work, as a first approach, the
choice was to use only the first parameter in x (x(1) = k), for computing z’. The idea, which has provided good speedup
results, is to focus on this parameter because it is unique in the sense that it directly represents the objective function. This
approach simplifies U, with m = 1:

U = {u}
.
= z − z’. (21)

MARTINEZ-FORTE AND CERVERA 11

Note that, being z ambiguous, in general u is an ambiguos box. Otherwise it is infeasible, but this can only happen under
very unusual circumstances, like completely straight boundaries.

• Compared to iz treatment, z’ should not be discarded because it can include the optimal solution. In fact a feasible box
like z’ is a very special box, because it certainly contains a solution. Moreover, any x ∈ z’ is a solution, and the best
solutions are those with k = x(1) = inf(z’[1]). This very valuable information can be used for a better prune in the branch
and bound process underlying NT and NK algorithms. This can be implemented by using a prune variable C which stores
the value inf(z’[1]) of the best (minimum inf(z’[1])) feasible box found. Additionally, this new step 3bis is added to NK:

3bis Prune and boxes reduction by C information:

3bis.(a) If C ≤ z,

- discard (z, z, flagz): NL ← NL − {(z, z, flagz)}.
- If NL is empty, there is no feasible solution in x (initial search box), so PRINT "No feasible solution in x" and EXIT.
3bis.(b) Else reduce z using C information:

- K ← [z, C] (initialize interval variable K)

- z ← subs(z, 1, K)
- Update (z, z, flagz) with updated z.

Remarks: Note condition in step 3bis.(a) will be never satisfied when using the particular sorting criterion given by step 6.(d)
in NT and NK algorithms. So this step could be omitted in this particular implementation. But it is still included in the text in
order to emphasize the additional acceleration that could be achieved in the case of using a different sorting criterion. Note that,
in that case, step 3 should be reformulated, since the solution analyzed at that step would be, in general, not optimal.

3.3 Proposed algorithm - MC
In this section the proposed algorithm, MC, which formalizes the proposals in the previous subsections, is presented. The
source code is available at https://github.com/Isaac-Martinez-Forte/QFTbx. A new QS function, QS2, must be implemented
(Algorithm 4, page 12). It receives the same information as QS, applies the procedures described in sections 3.1 and 3.2, and
as a result returns:

• z’, a feasible box, or ∅, indicating not found.

• uz, a box whose feasibility is unknown, or ∅ if z’ = z.

For the sake of simplicity, and without loss of generality, algorithm QS2 is written for these particular cases in each of its
three stages:

• Stages 1 and 3, open boundaries with A! above B!, crossing the vertical sides of considered rectangle, as exemplified by
fRa0.1 in Fig. 3.

• Stage 2, open or closed boundary, with A! on the right of B!, crossing horizontal sides of considered rectangle, as
exemplified by fRb0.1 or fRc100 in Fig. 3.

MC algorithm is detailed and commented in Algorithm 5 on page 13.

https://github.com/Isaac-Martinez-Forte/QFTbx

12 MARTINEZ-FORTE AND CERVERA

Algorithm 4 Pseudocode for QS2 algorithm

Inputs: RzΩ, BΩ, Ω and z.
Output: z’ and u.

// STAGE 1, QS is used to reduce z using magnitude info
z ← QS(RzΩ,BΩ,Ω, z)

// STAGE 2, reduce z using phase information
For ! ∈ Ω,
For j ∈ {2, ..., n} // k does not influence phase
y ← z // y is a copy of z
For � ∈ {2, ..., n}− {j} // In this for, y receives the value r in z[�] that maximizes x(�) contribution to ∠L0(j!, x)...
If 2 ≤ j ≤ 1 + nrz + 2ncz // zero
r← sup(z[�])

Else // pole
r← inf(z[�])

Endif
y ← subs(y, �, [r, r]) // interval y[�]← r

Endfor
S ← largest subinterval of y[j] such that subs(y, j, S) is infeasible for !
iz ← subs(z, j, S)
z ← z − iz

Endfor
Endfor

// STAGE 3, use feasible boxes information to split z into z’ and uz in the direction of k (first parameter in x)
y ← z // y is a copy of z
For � ∈ {2, ..., n}
If 2 ≤ � ≤ 1 + nrz + 2ncz // zero
r← inf(z[�])

Else // pole
r← sup(z[�])

Endif
y ← subs(y, �, [r, r]) // interval y[�]← r

Endfor
kmin ← inf(z[1]), kmax ← sup(z[1]), kf ← kmin
For ! ∈ Ω,
k! ← minimum value in z[1] such that subs(y, 1, [kf, kmax]) is feasible for !, or∞ if no value exists.
kf ← max(k!, kf) // intersection

Endfor
If kf = ∞ // there is no feasible box
z’ ← ∅

Else
z’ ← subs(z,1,[kf , kmax])

Endif
u ← z − z’

MARTINEZ-FORTE AND CERVERA 13

Algorithm 5 Pseudocode for MC algorithm

Inputs: BΩ and x, initial search box.
Output: z, box of computed optimal values of controller parameters, or message "No feasible solution in x".

1. Check feasibility of the initial search box
(a) z ← x (initialize current box to initial box).
(b) RzΩ ← (mag(z, !), ang(z, !)),∀! ∈ Ω.
(b-bis) (z’, z)← QS2(RzΩ,BΩ,Ω, z) // Note z receives the result u from QS2.
(c) flagz ← FT(RzΩ,BΩ).
(d) IF flagz = infeasible and z’ = ∅, PRINT "No feasible solution in z" and EXIT.

2. Initialize the list NL
(a) Initialization of z, minimum achievable Kℎf , and prune variable C:
If z’ = ∅, C ←∞, z← inf(z[1])
Else C ← z’[1], z← min(inf(z[1]), inf(z’[1]))
Endif

(b) List NL initialization:
If z’ = ∅, NL ← {(z, z, flagz)},
Else
If inf(z[1]) < inf(z’[1]), NL ← {(z, z, flagz), (z’, inf(z’[1]), feasible)}
Else, NL ← {(z’, inf(z’[1], feasible), (z, z, flagz))}, z ← z’, flagz ← feasible
Endif

Endif
3. IF flagz = feasible, PRINT "Optimal controller parameter box is, z" and EXIT.
3bis. Prune and boxes reduction by C information:
3bis.(a) If C < z, 1
- NL ← NL − {(z, z, flagz)} // discard (z, z, flagz)
- If NL is empty, there is no feasible solution in x, so PRINT "No feasible solution in x" and EXIT.
3bis.(b) Else reduce z using C information:
- K ← [z, C]
- z ← subs(z, 1, K)
- Update (z, z, flagz) with updated z.

4. Bisect z along its maximum width coordinate direction d into two subboxes v1 and v2 such that z = v1 ∪ v2.
4.bis. For j = 1, 2: (zj , vj)← QS2(RvjΩ,BΩ,Ω, vj)
5. Do the feasibility test for the new subboxes v1 and v2 and discard any infeasible ones, i.e., for j = 1, 2:
(a) RvjΩ ← (mag(vj , !), ang(vj , !)),∀! ∈ Ω
(b) flagvj ← FT(RvjΩ,BΩ)
(c) vj ← inf(vj[1])
(d) Form the triple (vj , vj , flagvj).
(e) IF flagvj = infeasible, drop (vj , vj , flagjv).

5bis. Process z1 and z2 boxes, i.e., for j = 1, 2:
If zj ≠ ∅,
(a) C = min(C, inf(zj[1])
(b) Form the triple (zj , inf(zj[1], feasible).

Endif
6. Sort the list NL
(a) NL ← NL − {(z, z, flagz)} .
(b) Add any remaining triple(s) from steps 5.(e), and triples from step 5bis, to NL.
(c) IF NL is empty, there is no feasible solution in x, so PRINT "No feasible solution in x" and EXIT.
(d) Sort NL such that the second members of all triples in NL do not decrease in value.
(e) Denote the first item of list NL as (z, z, flagz).

14 MARTINEZ-FORTE AND CERVERA

4 DESIGN EXAMPLES AND RESULTS

In the following two subsections two example problems typically used in QFT literature examples are introduced and solved by
using these five algorithms:

• NT

• NK

• MC

• MC2: MC algorithm, deactivating stage 3

• MC3: MC algorithm, deactivating stage 2

Algorithms MC2 and MC3 are included in order to observe individual contributions of phase information and feasible boxes
information, respectively. NK is used as a baseline to determine the speedup achieved byMC. NT is included in order to observe
NK speedup respect to NT.
For a given problem and algorithm, the fundamental parameter determining execution time is n, the number of controller

parameters. So, in order to compare how execution time evolves with respect to n, for both problems, the five algorithms are
executed for real poles/zeros controller structures with an increasing n, up to the n value where the faster algorithm’s execution
time is below 1 minute. An initial search box of controller parameter values, x, common to the five algorithms, has been chosen
in each example such that the slower algorithm can shape the 5 parameters controller in a maximum of 5 minutes. These limits
were chosen so that the experiments size was enough to observe the differences between the five algorithms and, at the same
time, the experiments remain agile. The experiments were performed on an IntelR CoreTM i7-6700HQ CPU at 2.60GHz, with
8 GB RAM, running ArchLinux. gcc 8.2 C++ compiler was used, with optimization -o2 activated. All the code involving QFT
functions was programmed from scratch in C++ and Qt.
For any value of n, the controller structure used in the following examples is given by

C(s, x) = k
∏nrz

i=1(s + zi)
∏nrp

j=1(s + pj)
(22)

with
x = (k, z1,… , znrz , p1,… , pnrp) (23)

and where nrz = ⌊

n−1
2
⌋ and nrp = ⌈

n−1
2
⌉. Note C(s, x) is strictly proper for odd n and proper for even n.

4.1 Matlab QFT Toolbox design example 2
This example is introduced in6 as the second design example used to introduce Matlab R© QFT Toolbox (from now on QFT
Toolbox for short). It is an easy to solve by hand example, suitable to train beginners:

P =
{

P (s) = ka
s(s + a)

, k ∈ [1, 10], a ∈ [1, 10]
}

Ω = {0.1, 0.5, 1, 2, 15, 100} is defined, and SΩ is given by this robust stability spec:
|

|

|

|

P (j!)C(j!)
1 + P (j!)C(j!)

|

|

|

|

≤ = 1.2, ∀P ∈ P, ! ∈ ℝ+

and this robust performance tracking spec:

�(!) ≤
|

|

|

|

F (j!)
P (j!)C(j!)

1 + P (j!)C(j!)
|

|

|

|

≤ �(!),∀! ∈ Ω

with
�(!) =

|

|

|

|

0.6584(j! + 30)
(j!)2 + 4j! + 19.752

|

|

|

|

and
�(!) =

|

|

|

|

120
(j!)3 + 17(j!)2 + 82j! + 120

|

|

|

|

.

MARTINEZ-FORTE AND CERVERA 15

TABLE 1 Execution time (seconds) for each algorithm, for n = 1..9, for QFT toolbox design example 2. Blank: >5m.

n NT NK MC2 MC3 MC

1 0.01 0.03 0.03 0.03 0.03
2 0.10 0.11 0.11 0.11 0.10
3 0.88 0.66 0.59 0.40 0.35
4 15.46 3,90 3.51 2.56 2.40
5 38.98 8.88 8.30 2.68 2.29
6 21.10 16.69 7.57 5.01
7 48.41 40.99 15.90 12.10
8 98.07 86.34 32.10 24.79
9 62.99 50.49
10 101.09

FIGURE 4 Execution time (seconds) for each algorithm, for n = 1..10, for QFT toolbox design example 2.

Table 1 shows the execution times for the different algorithms for n = 1...10. A blank cell indicates no time was measured
because the execution took more than 5 minutes. The same information is graphically represented in Fig. 4.

In order to allow some form of quantitative comparison between execution times, an exponential regression has been per-
formed for each of the execution times in Fig. 4, obtaining a coefficient of determination R2 > 0.96 in all cases, and values �
and � for the expression y(x) = � + �x shown in Table 2.

16 MARTINEZ-FORTE AND CERVERA

TABLE 2 Exponential regression y(x) = � + �x coefficients for execution times for solving QFT toolbox design example 2.

parameter NT NK MC2 MC3 MC

� 0.0011 0.014 0.0167 0.021 0.022
� 9.055 3.27 3.15 2.56 2.45

FIGURE 5 QFT toolbox example problem 2, boundaries B!, and example of L0(s) obtained as solution from MC algorithm.

As an example of the results obtained by theMC algorithm, Fig. 5 shows open loop L0(s) given as solution by the algorithm
executed with n = 10, together with associated boundaries BΩ. The corresponding controller CQFTex2(s) is given by structure
(22) with x = (7.012e6, 1.47, 1089, 1987.5, 3212.9, 575, 998, 1995, 2700, 3010).

4.2 ACC ’90 benchmark example
This example corresponds to the ACC ’90 benchmark problem proposed in29, a non-trivial problem, previously used in, for
instance,30,1 and21.
The plant is given by

P (s) =
Y (s)
U (s)

= e

m1s2
(

m2s2 + e
(

1 + m1
m2

)) , (24)

where m1 = m2 = 1 and e ∈ [0.5, 2]. It is an undamped spring-mass system (Fig. 6).
The control objective is to obtain robust stability with a reasonable control effort. Impulse response settling time should be

around ts = 15 s. The main difficulty comes from the pair of complex undamped poles at s = ±
√

−2e , because they lead to an
infinite magnitude resonance peak at frequency !p, dependent on e value. In order to be able to plot L0(s) in a finite area of NC,
these poles are considered as lightly damped. e0 = 0.5 is chosen as the nominal value for e, which leads !p = 1 rad/s. So Ω is
chosen with special emphasis around that frequency: Ω = {0.1, 0.98, 0.99, 1, 2, 5, 7, 8.5, 10, 15, 20, 100}. The corresponding set
of boundaries BΩ, constituted by only (closed) stability boundaries, is depicted in Fig. 8.
Table 3 shows the execution times for the different algorithms for n = 1...12. Again blank cells indicate no time was measured

because the execution took more than 5 minutes. The same information is graphically represented in Fig. 7.

MARTINEZ-FORTE AND CERVERA 17

FIGURE 6 ACC ’90 benchmark problem.

TABLE 3 Execution time (seconds) for each algorithm, for n = 1..12, for ACC ’90 benchmark problem. Blank: >5m.

n NT NK MC2 MC3 MC

1 0.03 0.03 0.08 0.02 0.02
2 0.26 0.03 0.09 0.05 0.03
3 0.47 0.04 0.14 0.07 0.07
4 9.06 0.11 0.31 0.19 0.13
5 50.84 0.27 0.53 0.54 0.58
6 0.55 0.99 1.05 1.07
7 2.79 1.51 2.91 1.76
8 44.57 10.08 18.45 2.24
9 15.76 36.75 5.30
10 57.63 8.65
11 25.44
12 60.85

TABLE 4 Exponential regression y(x) = � + �x coefficients for execution times for solving ACC ’90 benchmark problem.

parameter NT NK MC2 MC3 MC

� 0.0046 0.0026 0.0183 0.0057 0.088
� 6.26 2.96 2.1 2.56 2.07

Again, an exponential regression has been performed for execution times in Fig. 7, obtaining R2 > 0.96 in all cases, except
for NK, with R2 > 0.92, and values � and � for the expression y(x) = � + �x shown in Table 4.

As an example of the results obtained by theMC algorithm, Fig. 8 shows open loop L0(s) given as solution by the algorithm
executed with n = 12, together with associated boundaries BΩ.
The corresponding controller CACC90(s) is given by structure (22) with x = (1.14e7, 0.075, 0.35, 0.39,

25, 34.87, 7.2, 30.1, 39.8, 95.9, 96.25).

18 MARTINEZ-FORTE AND CERVERA

FIGURE 7 Execution time (seconds) for each algorithm, for n = 1..12, for ACC ’90 design example.

FIGURE 8 ACC ’90 benchmark problem, boundaries B!, and example of L0(s) obtained as solution from MC algorittm.

4.3 Results analysis
In both example problems algorithmMC significantly improved the results obtained by the base algorithm, NK:

• QFT toolbox example 2: This improvement can be observed graphically in Fig. 4. The NK algorithm takes less than one
minute up to 7 parameters, while theMC obtains the same results for 9 parameters. Table 2 shows how theMC decreases
the base of the exponential time (�) from 3.27 to 2.45, which is a large difference, especially for a higher number of
parameters.

• ACC ’90 benchmark: In this example the improvement is higher, which is apparent in Fig. 7. The NK algorithm takes less
than one minute for up to 8 parameters, while theMC raises this value to 11 to 12 parameters. Table 4 shows how theMC
decreases � even more than in the previous problem, from 2.96 to 2.07.

MARTINEZ-FORTE AND CERVERA 19

An interesting result that can be observed is the different individual effects of the use of phase information (MC2) and feasible
boxes information (MC3), in each example:

• QFT toolbox example 2: In Fig. 5MC2 if very close toNK, with a very slight � improvement (from 3.27 to 3.15). However,
MC3 if very close toMC, i.e.,MC improvement in this problem has to do basically with the addition of information about
feasible boxes, and phase information makes almost no difference. This behavior is coherent with the type of boundaries
on this problem (Fig. 5): Open boundaries (which allow feasible boxes information use), with almost no vertical parts
(except for the UHFB and part of B0.1), which makes phase information use almost impossible.

• ACC ’90 benchmark: In contrast, in this problem in Fig. 8 MC2 improves the algorithm performance more than MC3,
although both lead to a significant improvement in NK, from � = 2.96 to 2.1 and 2.56 respectively. Again, this behavior is
coherent with the type of boundaries on this problem (Fig. 8): Closed boundaries, with large vertical parts, which permit
phase information use, and also with large horizontal parts, which also allow feasible boxes information use.

5 CONCLUSIONS

Two possible ways of speeding up NK are proposed: Using phase information and using feasible boxes information. Algorithm
MC,NK plus both improvements, was proposed and implemented. In order to be able to compare the algorithms, and in particular
to measure the speedup obtained by theMC, algorithms NT and NK were also implemented, and all the algorithms were used to
solve two classical QFT example problems: QFT toolbox example 2 andACC ’90 benchmark problem. The results obtained show
that the MC, like the NT and NK, exhibits an exponential execution time (with respect to n, number of controller parameters),
but significantly reduces the base of the exponential time function. In practice this means that, for the example problems used,
the number of controller parameters for which the algorithm needs less than one minute is increased by 2 to 4 parameters.
AlgorithmsMC2 andMC3 have been defined as theMC deactivating stage 3 or stage 2, respectively, in order to detect which

part of the speedup was due to the use of phase information of feasible boxes information. In QFT toolbox example 2 feasible
boxes information became more important, whereas in ACC ’90 benchmark problem phase information was the most important
factor. An explanation for this phenomenon has been given. These results suggest that both improvements are complementary,
although each of them can become more important depending on the shape of the boundaries.
Note this work is limited to the case of a real, right half complex plane, poles and zeros controller. The algorithmmodifications

needed to include complex poles and zeros have been mentioned, but not developed. This issue only affects the use of feasible
boxes information, and not the use of phase information. The possibility for unstable or non minimum phase controllers will be
included in future versions of the algorithm.
Another limitation is that the proposed version of theMC is specific forKℎf minimization, although it could be reformulated

to handle different optimization criterions.
There are various ways in which the obtained speedup can be increased. One has to do with the fact that, regarding the use

of feasible boxes information, only the k controller parameter has been considered. A promising path to explore is to study the
use of other parameters, including heuristics in order to determine which parameters or parameter combinations are the most
convenient to use at each point of the algorithm execution. Another interesting possibility has to do with how the list NL is
sorted. In algorithms NK and MC it is sorted by the minimum k of the box z, i.e., by inf(z[1]), which is the best possible result
achievable from that box. But the most common case is that this result cannot really be achieved. So it would be very interesting
to develop some heuristically estimated benefit that can be gained from a certain box, and to sort NL accordingly. In this way
the algorithm would be guided to explore better solutions first, so those solutions could be obtained sooner and then could be
used to prune worse solutions, making the overall algorithm become faster.

References

1. Horowitz I. Quantitative Feedback Design Theory - QFT (Vol.1). Boulder, Colorado, USA: QFT Press . 1993.

2. Yaniv O. Quantitative Feedback Design of Linear and Non-linear Control Systems. Norwell, MA.: Kluwer Academic
Publisher . 1999.

20 MARTINEZ-FORTE AND CERVERA

3. Sidi M. Design of Robust Control Systems: From Classical to Modern Practical Approaches. Malabar, FL.: Krieger
Publishing . 2002.

4. García-Sanz M. Robust Control Engineering: Practical QFT Solutions. USA: CRC Press, Taylor and Francis . 2017.

5. Horowitz I. Optimum Loop Transfer Function in Sigle-Loop Minimum-Phase Feedback Systems. Int. J. of Control 1973;
18: 97-113.

6. Borghesani C, Chait Y, Yaniv O. Quantitative Feedback Theory Toolbox. The MathWorks, Inc.; Natick, MA, USA: 1995.

7. García-Sanz M. The QFT Control Toolbox for Matlab–QFTCT. http://codypower.com/CDP_QFTCT.htm; 2020.

8. Thomson D. Optimal and Sub-Optimal Loop Shaping in Quantitative Feedback Theory. PhD thesis. School of Mechanical
Eng., Purdue University, West Lafayette, IN, USA; 1990.

9. Gera A, Horowitz I. Optimization of the Loop Transfer Function. Int. J. of Control 1980; 31: 389-398.

10. Bokharaie V, Khaki-Sedigh A. An LMI Approach to Automatic Loop-Shaping of QFT Controllers. In: ; 2006; Glasgow,
UK.

11. Chait Y, Chen Q, Hollot CV. Automatic Loop-Shaping of QFT Controllers Via Linear Programming. ASME J. Dynamic
Systems, Measurement, and Control 1999; 121: 351-357.

12. Fransson C, Lennartson B, Wik T, Holmström K, Saunders M, Gutman P. Global Controller Optimizacion Using Horowitz
Bounds. In: IFAC. ; 2002.

13. Yaniv O, Nagurka M. Automatic loop shaping of structured controllers satisfying QFT performance. In: . 127(3). ASME. ;
2005; Glasgow, UK: 472-477.

14. Chen W, Ballance D, Li Y. Automatic loop-shaping in QFT using genetic algorithms. tech. rep., Centre for Systems and
Control, University of Glasgow; Glasglow, UK: 1998.

15. García-Sanz M, Guillén J. Automatic Loop Shaping of QFT Controllers Via Genetic Algorithm. In: . 2. IFAC. Elsevier Sci.;
2000; Kidlington, UK: 603-608.

16. Raimúndez C, Baños A, Barreiro A. QFT Controller Synthesis Using Evolutive Strategies. In: ; 2001; Pamplona, Spain:
291-296.

17. Cervera J, Baños A. Automatic Loop Shaping in QFT by Using CRONE Structures. In: IFAC. ; 2006; Porto, Portugal.

18. Cervera J, Baños A. Automatic loop shaping in QFT by using CRONE structures. Journal of Vibration and Control 2008;
14: 1513-1529.

19. Cervera J, Baños A. QFT loop shaping with fractional order complex pole-based terms. Journal of Vibration and Control
2013; 19: 294-308.

20. Nataraj P, Tharewal S. An interval analysis algorithm for automated controller synthesis in QFT designs. Journal of Dynamic
Systems Measurement and Control-Transactions of the ASME. 2007; 129: 311-321.

21. Nataraj P, Kubal N. Automatic loop shaping in QFT using hybrid optimisation and constraint propagation techniques.
International Journal of Robust and Nonlinear Control - Special Issue: Quantitative Feedback Theory. In memoriam of
Isaac Horowitz. 2006; 17: 251-264.

22. ManojM,Nataraj P. Automated Synthesis of fixed structure QFT controller using Interval Constraint satisfaction techniques.
In: IFAC. ; 2008; Seoul, Korea: 4976-4981.

23. Rambabu K, Nataraj P. Synthesis of fractional order QFT controllers using interval constraint satisfaction technique. In:
IFAC. ; 2010; Badajoz, Spain: 4976-4981.

http://codypower.com/CDP_QFTCT.htm

MARTINEZ-FORTE AND CERVERA 21

24. Mukesh D, Nataraj P. Automated synthesis of multivariable QFT controller using interval constraint satisfaction technique.
Journal of Process Control 2012; 22(8): 751–765.

25. Jeyasenthil R, Nataraj P. An interval-consistency-based hybrid optimization algorithm for automatic loop shaping in
quantitative feedback theory design. Journal of Vibration and Control 2015; 23(3): 414–431.

26. Moore RE. Methods and applications of interval analysis. Philadelphia, PA, EE.UU.: SIAM . 1979.

27. Hansen E,Walster G.Global optimization using interval analysis: revised and expanded. NewYork, NY: CRC Press . 2003.

28. Kearfott R. Rigorous Global Search: Continuous Problems. Dordrecht, The Netherlands: Kluwer Academic Publishers .
2003.

29. Wie B, Bernstein D. A benchmark problem for robust control system design. In: ACC. ; 1990; San Diego, CA, USA.

30. Chiang Y, Safonov R. Robust Control Toolbox for use with MatLab. Natick, MA, USA: The MathWorks, Inc. . 2001.

22 MARTINEZ-FORTE AND CERVERA

AUTHOR BIOGRAPHY

Isaac Martínez-Forte. Isaac Martínez-Forte was born in Yecla (Murcia), Spain, in 1989. He received his
graduate degree in Computer Engineering from the University of Murcia, Spain, in 2015. From 2014 to 2019
he has worked as a predoc student on QFT automatic loop shaping. During 2018 and 2019 he worked as
lecturer at the Computer Engineering Faculty of the University of Murcia, and since 2020 at the Computer
Engineering Polytechnic School of the University of Alicante. His research interests include robust control,
especially QFT, with applications in process control.

Joaquín Cervera López. Born in Cartagena (Murcia), Spain, in 1976, he received the graduate and Ph.D.
degrees in Computer Engineering from the University ofMurcia, Spain, in 1999 and 2006, respectively. From
1999 to 2001 he held a grant from the Séneca Foundation (Spain) as a Ph.D. Student, working on nonlinear
QFT at the University of Murcia and on port-Hamiltonian systems on the Applied Mathematics Faculty of
the University of Twente (Netherlands). Since 2001 he has worked as lecturer and researcher at the Computer
Engineering Faculty of the University of Murcia, and as assistant professor sinc 2019. His research interests
include robust control, applied to process control, and CACSD tools, especially QFT ALS.

How to cite this article: I. Martínez-Forte, and J. Cervera (2019), Speedup of QFT interval automatic loop shaping algorithm,
IJRNC, 2019;xx:x–x.

	Accelerated QFT interval automatic loop shaping algorithm
	Abstract
	Introduction
	Preliminaries
	Quantitative Feedback Theory
	Interval arithmetics
	Interval global search
	Algorithm NT
	Algorithm NK
	Algorithm QS

	NK algorithm speedup
	Using phase information
	Using feasible boxes information
	Proposed algorithm - MC

	Design examples and results
	Matlab QFT Toolbox design example 2
	ACC '90 benchmark example
	Results analysis

	Conclusions
	References
	Author Biography

