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Un Metamodelo de Datos Unificado para
Bases de Datos Relacionales y NoSQL:

Extracción y Consulta de Esquemas

Resumen en Español

Con la aparición de las aplicaciones modernas que hacen un uso intensivo de datos (por
ejemplo, Big Data, redes sociales o internet de las cosas), surgieron los nuevos sistemas de
base de datos NoSQL (Not only SQL) con el objetivo de superar las limitaciones que los
sistemas relacionales evidenciaron para soportar tales aplicaciones, como son escalabilidad,
disponibilidad, flexibilidad y capacidad para representar objetos complejos.

Estos sistemas de bases de datos se clasifican en varios paradigmas, pero normalmente
el término NoSQL se refiere a cuatro de ellos: columnar, clave-valor, documentos y grafos. Los
sistemas NoSQL de un mismo paradigma pueden tener diferencias significativas en las ca-
racterísticas y en la estructura de los datos. Esto es debido a que no existe una especificación
estándar o teoría que establezca el modelo de datos de un paradigma en particular. Por tan-
to, en esta tesis asumiremos el modelo de datos de las bases de datos más populares de cada
categoría.

En los últimos años, a medida que ha ido aumentando la popularidad de los sistemas
NoSQL, ha aparecido el término persistencia políglota (polyglot persistence). Este término
refiere a sistemas de bases de datos heterogéneos y ha ganado aceptación como la arquitec-
tura de datos del futuro: aplicaciones que utilizan un conjunto de bases de datos que mejor
se adaptan a sus necesidades. Hoy en día, las bases de datos relacionales siguen siendo clara-
mente las más utilizadas por un amplio margen, pero los sistemas relacionales más populares
están evolucionando para admitir características de NoSQL. Este interés en polyglot persis-
tence [111, 98] se debe a dos motivos principalmente: (i) la complejidad y variedad de datos
que deben ser administrados por los sistemas de software, y (ii) un solo tipo de sistema de
base de datos no satisface todas las necesidades de un número creciente de aplicaciones (por
ejemplo, tiendas online, redes sociales o sistemas de gestión del aprendizaje).

Losmodelos de datos (data models) determinan cómo se pueden organizar y manipular los
datos en las bases de datos. Se aplican a un dominio en particular mediante la definición
de esquemas que expresan la estructura y las restricciones para las entidades del dominio.
Dicha información es necesaria para implementar muchas de las herramientas de base de
datos. Sin embargo, la mayoría de los sistemas NoSQL son schemaless (también conocido
como schema-on-read), es decir, los datos se pueden almacenar directamente sin requerir la
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declaración previa de un esquema. Esta característica está motivada por el hecho de que
el ritmo de los cambios en la estructura de datos es considerablemente más rápida en las
nuevas aplicaciones de uso intensivo de datos. Por tanto, no hay una comprobación de los
datos con el esquema, y los datos de una misma entidad se pueden almacenar con diferentes
estructuras, a las que nos referiremos como variaciones estructurales (structural variations).

La gestión de datos siempre requiere que los desarrolladores o administradores de bases
de datos diseñen, creen y desarrollen esquemas de bases de datos. Los desarrolladores siem-
pre deben tener en cuenta el esquema para escribir código, y los administradores deben
conocer el esquema para poder realizar tareas comunes como la optimización de consultas.
Por lo tanto, las herramientas de base de datos para administrar esquemas son tan esenciales
para los sistemas NoSQL como lo han sido para los sistemas relacionales.

Motivación En el informe de Dataversity [18] se expone que la adopción exitosa de los
sistemas NoSQL requiere herramientas de base de datos similares a las disponibles para
los sistemas relacionales. Las herramientas necesitan el esquema lógico de la base de datos
para proporcionar funcionalidades comunes de la base de datos como consulta de esquema,
visualización, duplicación de datos o generación de código.

Esto implica investigar cómo las herramientas de bases de datos comunes pueden estar
disponibles para los sistemas NoSQL. Además, estas herramientas deben construirse te-
niendo en cuenta el predominio esperado de la persistencia políglota. Por lo tanto, deben
admitir bases de datos relacionales generalizadas, así como también bases de datos NoSQL.
En el caso de las herramientas de modelado de datos, el cambio hacia soluciones multimode-
lo (multi-model) es evidente: las herramientas de modelado relacional más populares se están
ampliando para integrar bases de datos NoSQL (por ejemplo, ErWin y ER/Studio propor-
cionan funcionalidad para MongoDB) y nuevas han aparecido que soportan una serie de
bases de datos relacionales y NoSQL (por ejemplo, Hackolade). La naturaleza multi-model
debe tenerse en cuenta para las herramientas de bases de datos, es decir, las herramientas
deben admitir múltiples modelos de datos (data models).

Las bases de datos schemaless no implican que haya una ausencia de un esquema, sino que
la información del esquema está implícita en los datos y en el código de las aplicaciones.
Por lo tanto, los esquemas implícitos en las bases de datos NoSQL tienen que ser obtenidos
mediante ingeniería inversa para construir las herramientas para las bases de datos NoSQL
con esta característica. Este proceso de ingeniería inversa debe abordar el hecho de que los
sistemas de schema-on-read pueden almacenar datos con una estructura diferente incluso
perteneciendo al mismo tipo de entidad de base de datos (y tipo de relación en las bases
de datos de grafos), es decir, cada entidad o tipo de relación puede tener una o más structu-
ral variation. Recientemente, se han publicado varios enfoques de extracción de esquemas
NoSQL [101, 84, 119, 39], y algunas herramientas de modelado de datos como las menciona-
das anteriormente proporcionan algún tipo de funcionalidad de ingeniería inversa.

En la creación de herramientas de base de datos multi-model, la definición de un meta-
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modelo genérico, universal o unificado puede proporcionar beneficios [48, 21, 17, 83, 118],
debido a que ofrece una visión unificada de diferentes modelos de datos, por lo que sus
esquemas se representarán de manera uniforme. Esta uniformidad facilita la creación de he-
rramientas genéricas que son independientes de la base de datos. Con el predominio de las
bases de datos relacionales, el interés en las herramientas multimodelo disminuyó y se ha
prestado poca atención a la definición de metamodelos unificados. Una propuesta notable
es el enfoque DB-Main [48, 77] que definió el metamodelo genérico GER [70] basado en el
modelo de datos EER (Extended Entity Relationship) [113]. Más recientemente, se han crea-
do algunos metamodelos universales [17, 83] en el contexto del Model Management [21, 20].
Con la aparición de los sistemas NoSQL, se ha propuesto que algunos metamodelos unifi-
cados tengan un acceso uniforme a los datos [17, 15], y la idea de un metamodelo unificado
para herramientas de modelado de datos se describió en [118].

A veces los datos no están disponibles y es más difícil todavía acceder a las instrucciones
de inserción de datos. Debido a esto, las aplicaciones estructuran los datos y controlan la
mayoría de las restricciones de los datos, haciendo posible obtener información del código
de las aplicaciones como el esquema e incluso referencias entre datos que no se pueden
obtener analizando los datos. Por esta razón, el análisis de código puede ser la única forma
de obtener el esquema, especialmente en tiempos de desarrollo o evolución de la aplicación.
Un trabajo en este área es [86] donde se realiza un análisis de código sobre código Java y se
aplica a diferentes versiones del código para comprender la evolución de los datos.

La visualización de los esquemas de bases de datos NoSQL puede no ser práctica, espe-
cialmente en aquellas schemaless, debido a que los esquemas pueden tener muchas structural
variations en sus entidades y, por lo tanto, es conveniente disponer de un lenguaje de con-
sulta de esquemas. En las bases de datos relacionales, este lenguaje puede ser SQL, ya que
el estándar SQL-92 especifica cómo se puede representar la información de los esquemas
en forma de tablas. Las structural variations complican la visualización del esquema NoSQL,
en particular si la mayoría de las entidades tienen structural variations o alguna entidad
tiene una gran cantidad de ellas. De hecho, se han encontrado miles de variaciones de una
entidad en bases de datos en algunos dominios, como DBpedia o biología molecular. El uso
de lenguajes de consulta se propone en [119]. Por lo tanto, la utilidad de un lenguaje de
consulta de esquemas para esquemas NoSQL es mayor que para los esquemas relacionales.

Esta tesis está motivada principalmente por la falta de un modelo de datos genérico
que integre los modelos de datos NoSQL más populares y el modelo de datos relacional.
Además, observamos que los enfoques de extracción de esquemas basados en el análisis de
código habían recibido poca atención, así como tampoco la automatización de refactoring
de bases de datos NoSQL.

Definición del problema y Objetivos Cuando varios paradigmas de bases de datos se vuel-
ven populares, las herramientas de modelado de datos y las herramientas de bases de datos
deben admitir todos ellos para que se utilicen ampliamente. Por lo que disponer de un mo-
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delo de datos genérico o unificado ofrece la posibilidad de construir herramientas multi-
model. Con la creciente adopción de las bases de datos NoSQL y el papel predominante
que seguirán jugando las bases de datos relacionales, se hace evidente la necesidad de un mo-
delo lógico unificado, de la misma forma que ocurrió a principios de los noventa cuando
surgieron las bases de datos orientadas a objetos y relacionales.

Esta tesis aborda la definición de un modelo de datos unificado con el objetivo de inte-
grar el modelo relacional con los modelos de datos de los cuatro paradigmas más comunes
de NoSQL: columnar, documento, clave-valor y grafos. Debido a que no existe una especi-
ficación estándar para los modelos de datos NoSQL, se establece una definición para cada
paradigma. La definición del modelo de datos unificado debe tener en cuenta: (i) la exis-
tencia de structural variations, (ii) la necesidad de diferenciar entre los diferentes tipos de
relaciones entre entidades (agregación, referencias, relaciones en grafos y generalización),
y (iii) todas las especificidades de las bases de datos NoSQL, como la presencia de tipos de
relaciones en las bases de datos de grafos, además de los tipos de entidades.

La construcción de un modelo de datos unificado conlleva definir mappings bidireccio-
nales entre el modelo de datos unificado y cada uno de los modelos de datos de cada sistema
de base de datos. La implementación de los mappings es útil para validar el modelo de datos,
y también para obtener los extractores de esquema, creados para el sistema más popular de
cada paradigma NoSQL: Cassandra y Hbase para columnar, MongoDB para documento,
Redis para clave-valor y Neo4j para grafos. Además, los esquemas relacionales de MySQL
se han representado en el modelo de datos unificado. En el caso de MongoDB, también se
ha creado un extractor de esquemas aplicando un análisis de código.

En cuanto a las aplicaciones del modelo de datos, se ha creado un lenguaje de consulta de
esquema genérico, que permite lanzar consultas sobre los esquemas que están representados
en el modelo de datos unificado. Los resultados de la consulta se visualizan en una notación
visual diseñada e implementada en esta tesis. Además, se explora la posibilidad de utilizar
el modelo unificado para definir un lenguaje de consulta de datos genérico. Finalmente, se
investiga la automatización del refactoring de bases de datos NoSQL abordando la elimina-
ción de consultas join en una base de datos de documentos. Esto implica analizar el código
de las aplicaciones de bases de datos.

En el desarrollo de la tesis se ha utilizado Model-Driven Engineering (MDE) para repre-
sentar los esquemas en forma de modelos que se ajusten a su metamodelo. De esta forma, los
esquemas se representan con un alto nivel de abstracción, lo que facilita su manipulación,
en particular con transformaciones de modelos. El modelo de datos unificado se ha creado
como un metamodelo y los esquemas son instancias de este metamodelo. Además, se ha
definido el lenguaje de consultas basado en un metamodelo.

Por lo tanto, los objetivos de investigación de esta tesis son:

Objetivo 1. Crear un metamodelo unificado (U-Schema: Unified Schema) capaz de repre-
sentar esquemas lógicos. Este metamodelo debe admitir los tipos más comunes de
sistemas NoSQL y relacionales, y debe incluir las siguientes características: (i) la no-
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ción de structural variation, (ii) los cuatro tipos de relaciones entre tipos de entidad
típicos en el modelado de datos lógicos, (iii) la presencia de tipos de relaciones ade-
más de los tipos de entidad.

Objetivo 2. Definir los mappings bidireccionales entre U-Schema y los diferentes mode-
los de datos. Se utilizarán los términos forward and reverse mappings para referirse,
respectivamente, a los mappings desde los datamodels a U-Schema y al revés. Se con-
siderará un datamodel por cada sistema NoSQL para establecer los mappings. Se
implementarán los forward and reverse mappings para varios sistemas NoSQL, lo
que implica tener que extraer primero los esquemas implícitos conforme datamodel
específico de ese sistema y luego aplicar los mappings de ese datamodel a U-Schema.

Objetivo 3. Crear un lenguaje genérico para consultar esquemas U-Schema. El lenguaje
debe incluir construcciones para expresar fácilmente consultas para buscar informa-
ción sobre los esquemas extraídos en forma de modelos U-Schema. Al estar definido
sobre U-Schema, el lenguaje es independiente de la plataforma. Los esquemas se po-
drán navegar a través de las diferentes relaciones entre tipos de entidades: agregados
y referencias.

Objetivo 4. Diseñar una notación para visualizar esquemas U-Schema. Este objetivo tiene
su origen en el anterior ya que los resultados de las consultas deben mostrarse en
forma de diagrama. El resultado podría ser un esquema completo o un subesquema.

Objetivo 5. Diseñar e implementar una estrategia de análisis de código estático para descu-
brir esquemas NoSQL implícitos en el código de las aplicaciones. La estrategia debe
ser lo más reutilizable posible. Esto requiere definir representaciones del código y de
la información descubierta (operaciones de base de datos y estructuras de datos) que
no estén vinculadas a un lenguaje orientado a objetos en partícular ni a una base de
datos en concreto.

Objetivo 6. Eliminar de forma automática consultas join en el código. La información ex-
traída en la estrategia de análisis de código del objetivo 5 se utilizará para automatizar
un refactoring de base de datos, en particular, eliminar consultas join para mejorar
el rendimiento de la aplicación. Eliminar estas consultas conlleva tener que duplicar
datos desde el tipo entidad referenciado al tipo entidad que referencia.

Objetivo 7. Explorar la utilidad de U-Schema para definir un lenguaje de consulta de base
de datos. Realizar un estudio para identificar los requisitos para crear un lenguaje de
consulta universal basado en U-Schema, proponer una posible sintaxis y una posible
arquitectura de ejecución.

Por último, la tesis tiene como objetivo desarrollar la infraestructura central para un
proyecto a largo plazo del grupo ModelUM. El propósito de este proyecto es construir un
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entorno genérico de modelado de datos que integre diferentes utilidades esenciales de bases
de datos como: visualización de esquemas, consulta de esquemas, evolución de esquemas,
migración de esquemas y generación de datos sintéticos.

Metodología Para lograr los objetivos de la tesis, hemos seguido la metodología Design
Science Research Methodology (DSRM) descrita en [97, 115, 120]. En esta metodología
se proponen procesos de investigación iterativos organizados en varias etapas o activida-
des para lograr un objetivo. Las actividades que normalmente constituyen estos procesos
son: (i) Identificación del problema y motivación, (ii) Definición de los objetivos de la so-
lución, (iii) Diseño y desarrollo, (iv) Demostración, (v) Evaluación, y (vi) Conclusiones y
comunicación. En un proceso DSRM, la actividad de investigación avanza iterativamente,
el conocimiento producido en cada iteración se utiliza como retroalimentación para lograr
un mejor diseño e implementación del artefacto final.

Discusión de los resultados Se ha definido un metamodelo unificado para la represen-
tación de los esquemas lógicos de diferentes bases de datos. Entre sus características más
importantes que se diferencian del resto de metamodelos están: (i) proporciona soporte
para representar el modelo de datos de los cuatro tipos más comunes de sistemas NoSQL
(documento, grafos, clave-valor y columnar) y relacional. (ii) incluye la noción de structu-
ral variation para representar las diferentes estructuras de datos dentro de un mismo ti-
po, (iii) incluye tipos de relación para representar las entidades de las referencias en bases
de datos de grafos que también incluyen structural variations, y (iv) incluyen los cuatro tipos
de relaciones entre entidades: agregación, referencias, relaciones en grafos y generalización.
Hemos validado el metamodelo inyectando los esquemas de diferentes sistemas de bases de
datos.

Se ha establecido la noción de canonical mapping en el que existe una correspondencia
natural entre cada elemento de un modelo de datos y elementos de U-Schema. Hemos de-
finido formalmente estos mappings desde los modelos de datos relacionales y los cuatro
tipos más comunes de sistemas NoSQL a U-Schema (forward mappings), y desde U-Schema
a los modelos de datos (reverse mappings). También hemos establecido la correspondencia
entre las diferentes formas de representar los datos en diferentes tipos de bases de datos,
por ejemplo, la representación de relaciones con atributos en bases de datos de grafos como
agregados en sistemas de documentos, y viceversa. Los mappings se han validado de la mis-
ma forma que el metamodelo, implementando la extracción de los esquemas de diferentes
tipos de bases de datos.

Se ha implementado una estrategia común para la extracción de esquemas de diferentes
tipos de bases de datos y para representar los esquemas en modelos U-Schema implementan-
do los canonical mappings previamente definidos. Las implementaciones se han realizado
a través de una serie de map-reduce, algunos de ellos comunes entre ellos, que utilizan una
representación común de los esquemas, permitiendo la reutilización de componentes y de
los mappings a U-Schema. Hemos validado las implementaciones utilizando una base de
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datos común adaptada para cada sistema de base de datos y utilizando una base de datos
real de cada tipo. También hemos medido el tiempo de inferencia para cada base de datos.
Esta validación ha servido para la validación de la implementación, los mappings y de la
adecuación del metamodelo unificado para la representación de los diferentes esquemas.

Se ha desarrollado un proceso MDE de análisis de código para aplicaciones Javascript
que utilizan la API de MongoDB para acceder a la base de datos. Hemos creado diferentes
metamodelos que pueden ser útiles para representar una gran parte de las sentencias de
código de los lenguajes de programación imperativos y orientados a objetos diferentes de
JavaScript. El análisis de código se ha utilizado para obtener el esquema de la base de datos
producido por la aplicación y se puede aplicar a diferentes versiones de código desde un
repositorio de código para obtener la evolución del esquema de la base de datos a lo largo
del tiempo. El análisis de código ha permitido encontrar referencias entre objetos de la base
de datos que no se podían encontrar con el análisis de los datos almacenados en la base de
datos. El análisis de código junto con el esquema ha permitido realizar un refactoring de
la base de datos gracias al conocimiento del uso de la base de datos a través de consultas.
Hemos validado este proceso con un proceso round-trip en el que desarrollamos un mode-
lo U-Schema junto a una serie de refactorings y después desarrollamos una aplicación que
hacía uso de este esquema. Finalmente, aplicamos el proceso de análisis de código y com-
probamos ambos modelos comparando el obtenido con el previamente diseñado. También
se ha comprobado el refactoring de la base de datos comparándolo con los previamente
diseñados.

Se ha creado un lenguaje de consultas de esquemas para poder consultar los modelos
U-Schema haciendo uso de las principales características de U-Schema como structural va-
riations y los tipos de relaciones, permitiendo conocer la estructura de grandes bases de datos
con una gran cantidad de structural variations fácilmente. Los resultados de las consultas
se muestran en una notación gráfica en forma de grafo donde los nodos son los structural
variations y los arcos son las referencias de U-Schema. Hemos validado este proceso a través
de una evaluación en la que han participado expertos del mundo de las bases de datos, quie-
nes han dado su opinión sobre el lenguaje y la notación gráfica creada. También, hemos
validado el lenguaje con métricas comúnmente utilizadas en la evaluación de lenguajes y
comparándolas con las métricas de otros lenguajes parecidos.

Contribuciones Esta tesis contribuye con un metamodelo lógico unificado (U-Schema)
que integra los paradigmas de bases de datos más utilizados: relacional y NoSQL. La crea-
ción de este metamodelo ha supuesto también otras aportaciones: (i) La definición de dos
modelos lógicos de datos para sistemas NoSQL: uno para sistemas basados en agregación
(columnar, documento y clave-valor) y otro para sistemas de grafos. Estos modelos de datos
son más complejos que los publicados anteriormente porque incluyen diferentes tipos de
relaciones, así como variaciones estructurales, (ii) La especificación formal de mappings bi-
direccionales entre el metamodelo unificado y los modelos de datos individuales, y (iii) La
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definición de una arquitectura con componentes reutilizables para crear un extractor de
esquemas para cualquier sistema NoSQL. Los resultados del trabajo relacionado con la de-
finición del metamodelo unificado, la especificación de los mappings y la implementación
de los extractores, se han publicado en un extenso artículo de 26 páginas en Information
Systems Journal [29].

El metamodelo unificado representa esquemas lógicos de bases de datos, pero en oca-
siones es necesario conocer información sobre aspectos físicos como los relacionados con
índices o particiones de datos. Por esta razón, los resultados de esta tesis permitieron definir
el primer enfoque que aborda la conexión entre esquemas lógicos y físicos. Los resultados
obtenidos fueron publicados en el workshop CoMoNoS (Conceptual Modeling for NoSQL
data stores) que forma parte de la conferencia Conceptual Modeling 2020 [93]. En este ar-
tículo, se presentan los mappings entre el metamodelo U-Schema y un metamodelo físico
creado para MongoDB.

En cuanto al trabajo de análisis estático de código, contribuimos con la primera propues-
ta de extracción de esquemas lógicos del código. Al comienzo de esta tesis, solo Meurice
y Cleve [86] habían publicado un trabajo sobre análisis estático de código para aplicacio-
nes NoSQL. Aunque este trabajo se limitó a extraer el union schema de cada colección de
MongoDB, y no se abordaron las relaciones ni las structural variations. Nuestra propuesta
de análisis de código se realizó en colaboración con el Dr Cleve en una estancia predocto-
ral en el grupo PRECISE (Universidad de Namur, Bélgica). Además de la extracción del
esquema lógico, nuestra estrategia de análisis de código también abordó la automatización
de los cambios de esquema (refactoring). Se ha creado una infraestructura con diferentes
metamodelos de código para facilitar la detección de las líneas de código a modificar. He-
mos aplicado esta infraestructura para implementar la “eliminación de consultas join” para
las aplicaciones JavaScript que acceden a bases de datos MongoDB. Los modelos de código
y DOS desarrollados son útiles para detectar “code smells” de aplicaciones NoSQL iden-
tificados en [19]. Hasta donde sabemos, nuestra propuesta es el primer trabajo sobre la
automatización de cambios de esquema NoSQL.

En esta tesis se ha definido la primera propuesta de un lenguaje de consulta genérico
de esquemas NoSQL y relacional (SkiQL). SkiQL permite a los desarrolladores expresar
consultas sobre esquemas lógicos representados como modelos U-Schema. El artículo que
describe SkiQL y la representación gráfica de los resultados de las consultas se ha enviado
a Data & Knowledge Engineering, y está disponible en arxiv [53]. Antes de crear SkiQL, ex-
perimentamos con el lenguaje Cypher para consultar los modelos U-Schema inyectados en
las bases de datos Neo4j, y se utilizó la herramienta Neo4j Browser para visualizar los resul-
tados de la consulta (es decir, grafos). Publicamos esta prueba de concepto en el Congreso
Español de Ingeniería del Software y Bases de Datos de 2019 [54].

Se ha realizado un estudio sobre la utilidad de U-Schema para crear un lenguaje genérico
para consultar los datos de cualquier tipo de bases de datos NoSQL y relacional. Identifi-
camos los tipos de consultas que serían necesarias y se propuso una sintaxis [29]. También,
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se ha realizado una comparación de diferentes metamodelos genéricos para representar es-
quemas de bases de datos.

El uso de Model-Driven Engineering (MDE) se ha aplicado para implementar todos los
enfoques ideados en esta tesis: metamodelo unificado y mappings bidireccionales (es decir,
extractores de esquema), el lenguaje SkiQL como DSL y el proceso de ingeniería inversa para
el análisis de código. Se realizó una comparación de lenguajes de transformaciones modelo
a modelo para elegir la solución más conveniente para la tesis. Este estudio fue presentado
en las Jornadas Españolas de Ingeniería del Software y Bases de Datos de 2018 [52]. También,
se utilizó y validó la metodología de desarrollo diseñada por el autor de esta tesis [28]. Esta
metodología se ha aplicado para desarrollar el enfoque de análisis de código de la tesis.
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A Unified Data Metamodel for
Relational and NoSQL databases:

Schema Extraction and Query

Abstract

The Database field is undergoing significant changes. Although relational systems are
still predominant, the interest in NoSQL systems is continuously increasing. In this sce-
nario, polyglot persistence is envisioned as the database architecture to be prevalent in the
future. Therefore, database tools and systems are evolving to support several data models.

Most NoSQL systems are schema-on-read: data can be stored without first having to de-
clare a schema that imposes a structure. This schemaless feature offers flexibility to evolve
data-intensive applications when data frequently change. Such an absence of schema decla-
ration makes structural variability possible, i.e., stored data of the same entity type can have
different structure. Moreover, data relationships supported by each data model are differ-
ent; For example, document stores have aggregate objects but not relationship types, whereas
graph stores offer the opposite. However, freeing from declaring schemas does not mean
its absence, but rather they are implicit in data and code, and they must be designed and
evolved by developers and administrators. Therefore, tools similar to those available for
relational systems are also needed to help understand NoSQL schemas.

Multi-model database tools normally use a generic or unified logical metamodel to repre-
sent schemas of the data models that they support. Such metamodels facilitate developing
database utilities, as they can be built on a common representation. Also, the number of
mappings required to migrate databases from a data model to another is reduced. Structural
variability complicate NoSQL schemas, in particular if most of entities have variations or
some entity has a large number of variations. Therefore, NoSQL schema management tools
will have three main components: schema extraction, schema query and schema visualiza-
tion.

In this thesis, we present the U-Schema unified metamodel able to represent logical
schemas for the four most popular NoSQL paradigms (columnar, document, key-value, and
graph) and relational schemas. We will formally define the mappings between U-Schema
and the data model defined for each database paradigm. How these mappings have been
implemented and validated for the schema extraction will be discussed. Also we present
our static code analysis approach of applications for the schema extraction and database
refactoring. Finally, we present the SkiQL generic schema query language aimed to query
U-Schema schemas and a graphical notation to visualize U-Schema schemas.
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1
Introduction

With the advent of modern data-intensive applications (e.g., Big Data, social networks, or

IoT), NoSQL (Not only SQL) database systems emerged to overcome the limitations that

relational systems evidenced to support such applications, namely, scalability, availability,

flexibility, and ability to represent complex objects. These systems are normally classified in

four categories or paradigms according to the data model: columnar, document, key-value,

and graph [98].

Although the popularity of NoSQL systems increased over last years,* relational systems

are still predominant today, and new high-performance architectures are appearing for re-

lational systems (“New SQL” movement). However. the idea of “one size does not fit all”

has been gaining acceptance and polyglot persistence (a new term coined for heterogeneous

database systems) is considered the data architecture of the future [111]: applications us-

ing the set of databases that better fit their needs. This is supported by the growth of

multi-model systems: the first eight databases in the DB-engines ranking† are multi-model,

and the main relational database vendors are including support of NoSQL systems in their

products. Two facts have mainly motivated the interest in polyglot persistence [111, 98]: (i) the

*Three of the top 10 being NoSQL systems in the DB engines ranking (https://db-engines.com/en/
ranking) as of May 2022: MongoDB (5th), Redis (6th), and Elasticsearch (8th).

†https://db-engines.com/en/ranking.
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complexity and variety of data to be managed by software systems, and (ii) a single type

of database system does not fit all the storage needs of an growing number of increasingly

complex systems (e.g., learning management systems, online retail systems, or social net-

works.)

Data models determine how data can be organized and manipulated in databases. They

are applied to a particular domain by defining schemas that express the structure and con-

straints for the domain entities. Such information, provided by schemas, is necessary to im-

plement many database tools. However, most NoSQL systems are schemaless (a.k.a schema-

on-read), that is, data can be directly stored without requiring the previous declaration of

a schema. This feature is motivated by the fact that the pace of data structure changes

is considerably faster in the new data-intensive applications. Therefore, there is no data

checking against the schema, and data of the same entity can be stored with different struc-

tures, which we will refer as structural variations.

Being schemaless does not mean the absence of a schema, managing databases always

requires to design, create and evolve database schemas by developers or database admin-

istrators (DBA). Developers must always have in mind the schema to write code, and ad-

ministrators have to know the schema in order to perform common tasks as optimizing

queries. Therefore, database tools to manage schemas are as essential for NoSQL systems

as they have been for relational systems [18].

NoSQL systems of the same paradigm can have significant differences in features and in

the structure of the data. This is because there is no specification, standard, or theory that

establishes the data model of a particular paradigm. In this thesis, we will assume the data

model of the most popular stores of each category. Table 1.1 shows the main features of the

four mentioned NoSQL paradigms.

The four categories of NoSQL stores can be classified in two groups depending on the

kind of relationship that is prevalent to organize data. In “aggregate-based data models,”

databases store semi-structured data which form aggregation hierarchies, and references

are established by using object identifiers. Columnar, Document, and Key-value systems

are based on aggregation. Instead, graph-based systems are organized as a graph of objects

connected through arcs denoting a binary relationship between the entity types to which

connected objects belong, and aggregation is normally not supported. In aggregate-based

2



NoSQL System Types

Type Data structure Appropriateness Database Systems

Key-
value

Associative array of
key-value pairs

Frequent small read and writes with
simple data

Redis, Memcache

Columnar Tables of rows with
varying columns.
Column-based physi-
cal storage

High performance, availability, scal-
ability, and large volumes of data for
OLAP queries

HBase, Cassandra

Document JSON-like document
collections

Nested Objects, structural variation,
and large volumes of heterogeneous
data

MongoDB,
Couchbase

Graphs Data connected in a
graph

Highly connected objects, refer-
ences prevail over nested objects

Neo4j, OrientDB

Table 1.1: Types of NoSQL systems and some example implementations.

systems, objects stored are instances of entity types, while both entity and relationship

types can be instantiated in graph-based systems.

The purpose of this thesis is to define a generic or unified metamodel able to integrate

NoSQL and relational data models, and establish the bidirectional mapping between each

individual data model and the unified metamodel. Regarding the extraction of schemas,

reverse engineering strategies have been devised to analyze stored data and database code.

Also, applications of the generic metamodel has been investigated.

The rest of this introduction chapter is organized as follows. First, we motivate the work

in Section 1.1. Then, we state the problem and the goals of the thesis in Section 1.2. Later,

the research methodology is described in Section 1.3. Last, the structure of the rest of the

thesis in Section 1.4.

1.1 Motivation

The DataVersity report [18] exposes that the successful adoption of NoSQL systems requires

database tools similar to those available for relational systems. Tools that requires the

database schema in order to provide common database functionalities like schema query,

visualization, database refactoring, or code generation. This entails a research effort to

study how these utilities can be developed for each of the NoSQL data models. In addi-

3



tion, the tools should be built taking into account the expected predominance of polyglot

persistence. Thus, they should support widespread relational databases as well as NoSQL

databases, i.e. they should support multiple data models. In fact, the shift of data model-

ing tools towards multi-model solutions is evident: the most popular relational modeling

tools are being extended to integrate NoSQL stores (e.g., ErWin‡ and ER/Studio§ provide

functionality for MongoDB) and new tools supporting a number of relational and NoSQL

databases have appeared (e.g., Hackolade¶). This multi-model nature should be considered

in the most of database tools.

Most of NoSQL systems do not force to declare a schema prior to manage a database, but

schemas are implicit in code and stored data. Therefore, they must be reverse engineered

always that the development of a database tool requires to know the schema information

at run-time in order to implement some functionality, e.g., schema visualization, database

refactoring, or code generation. This reverse engineering process must tackle the fact that

schema-on-read systems can store data with different structure even belonging to the same

database entity type (and relationship type in graphs), i.e., each entity or relationship type

can have one or more structural variations.

Several NoSQL schema extraction strategies have been published. They analyze stored

data to discover the database schema, and most of them only consider the document data

model as reflected in the MongoDB system� [84, 101, 119]. Schemas can also be derived from

data insert scripts as shown in [39], where an approach is proposed for Neo4j stores. Ana-

lyzing database code is a third alternative to obtain NoSQL schemas. Query, constraints

and code using query results are an information source to discover the implicit schema.

Code analysis is necessary to automate code updating when the data structure evolves. A

code analysis approach to discover how schemas evolve along time was proposed by Loup

Meurice and Anthony Cleve [86] for MongoDB stores and different versions of Java appli-

cations. Also, some data modeling tools, as those mentioned above, provide some kind of

reverse engineering functionality based on the stored data or data insert statements.

When building multi-model database tools, the definition of a generic, universal, or uni-

‡Erwin website: http://erwin.com/products/erwin-data-modeler.
§ER/Studio website: https://www.idera.com/er-studio-enterprise-architecture-solutions.
¶Hackolade website: https://hackolade.com/.
�MongoDB website: https://www.mongodb.com/.

4

http://erwin.com/products/erwin-data-modeler
https://www.idera.com/er-studio-enterprise-architecture-solutions
https://hackolade.com/
https://www.mongodb.com/


fied metamodel can provide some benefits [48, 21, 17, 83, 118]. It offers a unified view of

different data models, so that their schemas will be represented in a uniform way. This

uniformity facilitates building generic tools that are database technology agnostic. With

the predominance of relational databases, interest in multi-model tools decreased in the

late 1990s, and little attention has been paid to the definition of unified metamodels. A

remarkable proposal is the DB-Main approach [48, 77] that defined the GER generic meta-

model [70] based on the EER (Extended Entity Relationship) data model [113]. More re-

cently, some universal metamodels [17, 83] have been created in the context of Model Man-

agement [21, 20]. With the emergence of NoSQL systems, some unified metamodels have

been proposed to have a uniform access to data [17, 15], and the idea of an unified metamodel

for data modeling tools was outlined in [118]. More recently, the creation of a generic data

model has been announced for Hackolade, but it has not been presented yet.

Unified data models can also be used to define data query generic language. Three

decades ago, the ODMG standard [31] specifies a unified object-oriented data model along

with a SQL-like language to make it easier for programmers to use object-oriented databases.

Currently, the growing use of NoSQL and other kinds of data stores, at the same time

that relational systems continue being predominant, is motivating the definition of some

generic data models on which generic query languages are defined. For example, Amazon

has recently developed the PartiQL data model and query language [7] to offer uniformity in

the treatment of the variety of data models (relational, document, columnar and key-value)

and data processing engines (NoSQL, relational, and data lakes) used in the company. At

this moment, PartiQL does not integrate graph data models. It should be noted that Par-

tiQL was available after the inception of this thesis.

Diagramming is not practical when schemas include many entities (e.g., tables in a rela-

tional schema), and a schema query language is then convenient. In relational databases,

this language can be the proper SQL since that the standard SQL-92 specifies how informa-

tion on schemas could be represented in form of tables. In the case of schemaless NoSQL

stores, structural variations can complicate the visualization of a readable schema, in particu-

lar if most of entities have variations or any entity has a large number of variations. In fact,

thousands of variations for a database entity have been found in datasets of some domains,

such as DBpedia or molecular biology, so that using query languages is suggested in [119].
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In [74], a visual notation was proposed for NoSQL schemas, and that work evidenced that

diagramming is not useful when information on variations is desired, although the number

of variations is small, and therefore a query language is essential to inspect NoSQL schemas.

Our thesis work was mainly motivated by the lack of a generic data model that integrates

the most popular NoSQL data models and the relational model. Also, we observed that

schema extraction approaches based on code analysis had received little attention, as well

as automating database refactorings for NoSQL systems.

1.2 Problem statement and Goals

When several database paradigms are popular, data modeling tools and database tools

should support all of them to be widely used. Then, a generic or unified data model offer a

convenient solution to build multi-model tools. With the increasingly adoption of NoSQL

systems and other kinds of storage, and the predominant role that relational systems will

continue playing, the need of a unified logical model is evident, in the same way as occurred

in the early nineties when object-oriented and object-relational databases emerged. This

thesis has tackled the definition of such a generic data model with the goal of integrating

the relational model with the data models of the four main NoSQL paradigms: columnar,

document, key-value, and graph. Since there is no standard specification for NoSQL data

models, a definition has to be established for each paradigm. The definition of the unified

data model should have into account (i) the possible existence of structural variations of the

entity types, (ii) the need of differentiate between different types of relationship between

entities, and (iii) all the specificity of NoSQL stores, as the presence of relationship types

in graph stores, in addition to entity types.

Building a unified data model entails to define the bidirectional mappings between the

unified data model and each of the individual data models. The implementation of the

mapping from data of a database system to the unified data model is useful to validate the

data model, and also to have the schema extractors. In the thesis, extractors are created

for the most popular system of each NoSQL paradigm: Cassandra and Hbase for columnar,

MongoDB for document, Redis for key-value, and Neo4j for graph. Moreover, MySQL rela-

tional schemas have been represented with the unified data model. In the case of MongoDB,

an schema extractor has been also created by applying a code analysis.
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Regarding the applications of the data model, a schema query generic language is created,

which allow queries to be issued on schemas that are represented in the unified data model.

Query results are visualized in a visual notation designed and implemented in this thesis.

Also, the usefulness of the unified model to define a generic query language is explored.

Finally, the automation of NoSQL database refactorings has been investigated by tack-

ling the removal of join queries in a document database. This involves to analyze code of

database applications.

For the development of the work, Model Driven Engineering (MDE) technology is ap-

plied to represent schemas in form of models that conforms to its metamodel. In this way,

schemas are represented at a high level of abstraction, which makes it easier their manip-

ulation, in particular model transformations. The unified data model will be created as a

metamodel, and schemas are instances of this metamodel. Also, a metamodel-based lan-

guage definition workbench has been used to create the schema query language.

Therefore, the research goals of this work are as follows:

Goal 1: Create a unified metamodel able to represent logical schemas. This metamodel

must support both the most common kinds of NoSQL systems and relational systems,

and and include the following features: (i) the notion of structural variation for entity

and relationship types, as most NoSQL systems are schemaless; and (ii) the four

kinds of relationships between entity types that are typical in logical data modeling:

aggregation, references, graph relationships, and generalization; (iii) the presence

of relationship types in addition to entity types. This metamodel has been called

U-Schema (Unified Schema).

Goal 2: Define the bidirectional mappings between U-Schema and the different individ-

ual data models. The terms forward and reverse mappings will be used to refer, re-

spectively, the mapping from individual data models to U-Schema and the opposite

one. A data model will have to be determined for each considered NoSQL system

in order to establish the mappings. Forward mappings will be implemented for sev-

eral NoSQL systems, which implies to first extract implicit schemas in form of the

data model specified for that system, and then apply the mapping of that model to

U-Schema.
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Goal 3: Build a generic language aimed to query U-Schema schemas. This language must

include constructs to easily express queries to find information on the schemas ex-

tracted in form of U-Schema models. Being defined on U-Schema, the language

would be platform-independent. Schemas could be traversed through relationships

between entity types: aggregates and references.

Goal 4: Design a notation to visualize U-Schema schemas. This goal is originated by the

previous one as query results should be shown in form of diagram always that their

size allows it. The result could be a complete schema or a subschema.

Goal 5: Design and implement a code analysis strategy to discover implicitNoSQL schemas

in the application code. The strategy should be as reusable as possible. This requires

to define representations of the code and the information discovered (database oper-

ations and data structure) which are not tied to a particular object-oriented language

and database.

Goal 6: Automating the removal of join queries. The information extracted by means of

the code analysis strategy that constitutes the goal 5 will be used to automate a com-

plex database refactoring, in particular the removal of join query to improve the

performance of queries. This removal entails duplicate data of the referenced entity

type in the referencing entity type of the join.

Goal 7: Explore the usefulness of U-Schema to define a database query language. Perform

a study to identify the requirements to create a universal query language based on

U-Schema, and show query examples to illustrate the different kinds of queries.

It is worth noting that the thesis is aimed to develop the core infrastructure for a long-

term project of ModelUM group. The purpose of this project is to build a data modeling

generic environment that integrates different essential database capabilities as: schema di-

agramming, schema query, schema evolution, schema migrators, and synthetic data genera-

tion. The motivation to create this environment can be found in the conclusions of several

reports, as “Insights into Modeling NoSQL” [18]: Schemas and data modeling are necessary

for NoSQL stores, and their successful adoption demands to build a database tooling simi-
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lar to that available for relational databases. But, the polyglot persistence has increased the

need to apply the same techniques to different kind of databases in a uniform way.

1.3 Research methodology

Design science (DS) is a research paradigm focused on the building of artifacts that are

designed to help human beings in a particular task [106]. That is, the artifacts are de-

signed and implemented to achieve a concrete goal. Computer Science is a discipline

where DS is applicable in most of its areas. In fact, several design science research meth-

ods (DSRM) have been published for Information Systems and Software Engineering [97,

115, 120]. These methods propose iterative research processes organized in several stages

or activities to achieve the goal. Figure 1.1 shows the activities that normally constitute

these processes: (i) Identification of the problem and motivation, (ii) Definition of the ob-

jectives of the solution, (iii) Design and development, (iv) Demonstration, (v) Evaluation,

and (vi) Conclusions and communication.

In a DSRM process, the research activity iteratively progresses: the knowledge produced

in each iteration is used as feedback to achieve a better design and implementation of the

final product.

Figure 1.1: Design Science Research Methodology Process.

Next, it will be explained how DS has been applied in this thesis. Regarding to the prob-

lem addressed, it was identified with the experience gained in a previous thesis supervised

by the same advisors of this thesis [51]. In that work, a metamodel to represent aggregate-

based databases was proposed along with a schema extraction process for MongoDB stores.

Since a polyglot persistence scenario is imposing as future trend for databases [111], this

thesis was conceived to convert the previous metamodel in a generic metamodel, and build
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extractors for the main store of each NoSQL paradigm. Diagramming schemas is crucial to

provide developer a visual representation of schemas that makes it easier its understanding.

Thus, a definition of NoSQL logical schema along with a notation to visualize such schemas

were presented in the Severino Feliciano’s thesis [51] and a paper of Alberto Hernandez et

al. [74]. Both works concluded the convenience of defining a schema query language for

large schemas, in the same way that SQL can be used to query relational schemas. Also,

code analysis approaches to extract NoSQL logical schemas had not been published, and

automating database refactoring there was not received attention.

In the previous sections of this chapter, we motivated the problem and defined the goals

of the thesis. The goals basically are: (i) Define the U-Schema unified metamodel able to rep-

resent NoSQL y relational schemas; (ii) Define and implement the bidirectional mappings

between U-Schema and the integrated data models; (iii) Create the SkiQL schema query

language; (iv) Design and implement a graphical notation for U-Schema models; (v) Design

and implement an code analysis approach to infer schemas from code of NoSQL database

applications; (vi) Automate a non trivial database refactoring: remove join queries. (vii) Ex-

plore the definition of a data query language based on U-Schema.

We started by defining the unified metamodel. We tried to extend the metamodel pro-

posed for document data model in [51], but the difficulties encountered motivated to create

the metamodel from scratch. Once created, we expressed the forward and backward map-

pings, which serve to test the metamodel. As we wrote mapping rules we found details

to be modified in the metamodel. Then schema extractors were built for a system of each

paradigm. This implied to define a data model for that system, to implement an extraction

of schemas for the data model, and then to implement the forward mapping between that

data model and U-Schema. This allowed to validate the set of mappings.

Extractors were developed as follows. Firstly, we added the implementation of the for-

ward mapping to the existing extractor for document stores, in particular MongoDB. In

addition, we rewrite the map-reduce operation of the process to be multi-threading. Then,

we decided to tackle the inference of schemas for the Neo4j graph store, because document,

key-value and columnar are aggregate-based systems, but graph systems are a completely

different database data model where references are prevalent. Building this extractor, some

errors in U-Schema were detected and modified, which concerns to aspects related to graph
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stores. Also, we realized that the inference process to discover the schema for document

and graph data models differed slightly. Therefore, we established a general strategy, and

adapted both processes to this strategy. Next, we built the extractors for columnar and key-

value stores. At this point, we observed that if a particular pattern is followed to record

aggregation in these two systems, a single data model can be defined to represent schemas

of columnar, document, and key-value stores. Redis and Hbase was the stores chosen for

key-value and columnar, respectively. For columnar, we also developed the inference pro-

cess for Cassandra because schemas must be declared for Cassandra stores, and we could

easily validate the obtained schemas by comparing then with the schemas available. We also

tackled the extraction for the MySQL relational system. The definition of the U-Schema

metamodel and the development of the extractors take about 14 months, and the elabora-

tion of the paper that present the results takes about 4 months. It is worth noting that

the task of analyzing the applicability of U-Schema to define a data query generic language

was requested by the editor of the journal where the paper mentioned above was published,

which took about 3 months.

The schema extraction from code was chosen the task to be started during the 3-months

predoctoral stay in the Precise group of the Namur University. The code analysis strategy

to extract logical schemas was implemented as a 3-steps model transformation chain. In the

first step, the code is represented by using two metamodels: Code and Control Flow. First,

source code is injected in a model that represents statements of object-oriented languages.

Next, the model that represents the control flow is obtained from the Code model, which

hold references to the former. In the second step, the control flow model is traversed to

generate a model that represents the CRUD database operations and the data physical struc-

ture, and the relationships between operations and data structures. For this, the Database

Operations and Structure (DOS) metamodel was create. In the third step, the U-Schema

logical schema is obtained from the physical schema that is part of the DOS model. After-

ward, we investigated how DOS models could also be useful to automate NoSQL database

refactorings. In particular, we tackled to discovery join queries in order to provide database

administrators information helpful to decide whether a determined join query should be

removed by duplicating data accessed on the referenced entity into the referencing entity.

Once database administrators choose a join query to be removed, the schema change oper-
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ation is applied, that is, schema, data and code are automatically updated. Each step of the

process consisted in a complex model-to-model transformation that was implemented and

tested following the methodology presented in [28], in which each transformation is tested

before to validate the complete process. At this moment, we have prepared a paper where

we explain the process of static code analysis to obtain the schema and refactoring of the

database.

Regarding the SkiQL schema query language, we first created a solution that used the

Cypher language [42] to express queries [54]. For this, unified schemas were represented

as Neo4j graph databases [95]. A a model-to-text transformation was created to obtain

the Neo4j schema, which generates INSERT operations from U-Schema models. A visual

representation was designed to graphically show query results in the Neo4j browser [5].

Analyzing this solution, we observed that Cypher queries were difficult to write and not

concise. Then, we decided to build a language tailored to express queries on U-Schema

schemas, which were translated to Cypher to be executed on Neo4j graph schemas. How-

ever, we detected that Neo4j browser diagrams were difficult to understand. This latter

was mainly due to that properties had to be represented as nodes connected to its entity

type. At this point, we decided to design and implement a graphical notation from scratch,

and discard the use of the graph database. The development of all this tools took around 12

months, including first solution based on Neo4j, the new visualization and the design and

implementation of the language. This work resulted in a paper sent to Data & Knowledge

Engineering, the pre-print version can be found in arxiv [53],

In this thesis, MDE has been used as implementation technology: (i) U-Schema is an

Ecore/EMF metamodel [110] and extractors manage schemas in form of models; (ii) a model

transformation chain has been built to implement the extraction of schemas from database

code; and (iii) a metamodel-based DSL definition workbench has been used to create the

concrete syntax of SkiQL, and its engine manages schemas represented as models. Using

MDE we have achieved the benefits exposed in [102], where it was analyzed the application

of MDE techniques to relational data engineering.

Finally, we will comment how the tools created were evaluated. The extractors were first

validated by creating several synthetic databases, and after we used databases injected from

real datasets. In the case of SkiQL, some language metrics defined in [41] were calculated
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and the survey mentioned above was carried out. To validate the schema extraction from

code, we built a small Web application that managed a MongoDB database whose schema

had previously been established as a U-Schema model, we then launched the reverse engi-

neering process to extract the schema, and we compared the obtained schemas with the

previously defined schema. The code analysis process has also been tested in the differ-

ent stages of the chain as commented above: Code models were validated by generating

code that was compared with the original code (small code fragments); Control Flow mod-

els were validated by creating Neo4j graphs, and visually inspecting these graphs to check

whether or not they match the control flow in code scripts. Finally, DOS models were man-

ually checked against the corresponding code script to see whether or not data structure

and queries were correctly represented.

1.4 Outline

The structure of the this thesis is as follows:

• Chapter 2 introduces the background needed to understand the following sections.

Here, some aspect of the Model-Driven engineering and database data models are

presented.

• Chapter 3 shows an analysis of the current state of the art of works in schema generic

metamodels, NoSQL schemas inference, metamodels to represents application soruce

code, schema queries and schema visualization.

• Chapter 4 describes the unified metamodel U-Schema defined in deep. The most

relevant and differentiating aspects are exposed.

• Chapter 5 describes in detail the bidirectional mappings between U-Schema and the

different individual data models, the common reverse engineering strategy and the

implementation and validation for each kind of databases.

• Chapter 6 describes the code analysis approach to extract the schema and the refac-

toring of join queries. The metamodels defined to represent the code and the static

code analysis algorithms are also presented.
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• Chapter 7 describes the schema query language developed and the implemented vi-

sualization of the U-Schema schemas.

• Chapter 8 we stated the achievement of the goals defined, we expose the contribu-

tions and the publications of the results of the thesis and we present future work.
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2
Background

This chapter introduces the background needed for the better understanding of this thesis.

First, we will describe the data models for the different database paradigms addressed in

our work. Next, we will introduce the basics of Model-Driven Software Engineering (MDE),

and after, we will define the data models integrated in our unified metamodel. Before of

this data model description, we will introduce a conceptual schema example which be used

to illustrate each of the data models.

2.1 Model-Driven Engineering

Model-Driven Software Engineering (Model-Driven Engineering, MDE) is a discipline within

Software Engineering that deals with the systematic use of software models to improve

productivity and other aspects related to software quality, such as evolution and interop-

erability between systems. Since MDE emerged at early years of this century, this vision

of software construction has shown its potential to automate most tasks involved in the

software development life cycle, both in forward engineering and reverse engineering.

MDE is based on four main foundations: (i)metamodels are used to represent the structure

of software aspects as code, data, behavior, or tests , or also application domains. (ii) models

are instances of metamodels, which represents an use for a particular scenario, e.g. the
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control flow of a Java program, a state machine of an automatic teller machine, or a database

schema of a MongoDB store; (iii) Domain-Specific languages   (DSL) are created to provide

notations with which to express the models, and (iv) model transformations are used to

automate software development tasks We will briefly introduce these principles below.

2.1.1 Metamodeling

A metamodel is a formalism that describes concepts and relationships that describes a par-

ticular software aspect or domain of interest. Just as grammars describe the structure of

valid programs, metamodel describe the structure of valid models. For example, a UML

state machine metamodel determines the structure of any UML state diagram. A meta-

model is normally defined as an object-oriented conceptual model expressed in a meta-

modeling language. Metamodeling languages provide four main elements for expressing

metamodels:

• Classes (also called metaclasses) to represent domain concepts.

• Attributes to represent properties of the domain concepts, whose values are primi-

tives types or arrays.

• Aggregations and references between pairs of classes to represent relationships be-

tween concepts.

• Generalizations between child classes and parent classes to represent specializations

between domain concepts.

An aggregation from A class to B class means that B instances are part of A instances,

while a reference from A to B means that A instances hold some kind of reference to B

instances.

Eclipse Modeling Framework(EMF) [110] is the more widely used platform to apply MDE.

Its core element is the Ecore metamodeling language, and EMF integrates a set of tools

aimed to tasks as graphically defining metamodels, creating the concrete syntax of DSLs,

or writing model transformations. Ecore includes the elements indicated above to define

metamodels.
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Typically, a subset of the UML Class diagram notation is used to represent metamod-

els because they are similar a domain class models. For example, figure 2.1 shows a Ecore

metamodel for expressing business entity models. This metamodel includes the root class

EntityModel that aggregates a set of one or more Entities (relation entities), and each entity

aggregates, in turn, zero or more Properties (relation props) and zero or moreRelationships (re-

lation rels). Entity, Property and Relationship classes inherit fromNamedElement that includes

the name attribute. A property also has a data type (attribute type) and a relationship has

a cardinality enumeration attribute and a composite boolean attribute. This latter indicates

whether or not the relationship is an aggregate or reference. Note that this metamodel

has similar concepts to those used to represent it, i.e. Ecore metamodel, but it is conve-

nient differentiate between a metamodel (Business Entity) and the metamodeling language

(meta-metamodel) used to create it (e.g. Ecore).

Figure 2.1: A simple example of metamodel: Entity metamodel.

A metamodel also includes a set of rules that impose restrictions on the models that can

be instances, which cannot be expressed in the metamodeling language. These rules are

commnly expressed in the OCL language [65] or languages inspired by it. For example, the

following rule expressed that an entity model cannot have two entities with the same name:

invariant DifferentNames4Entities('Two entities cannot have the same name'):
self.entities->forAll(e1,e2|e1 <> e2 implies e1.name <> e2.name);

invariant NotSymmetricAggregation:
self.entities->forAll(e1,e2| e1.aggregates(e2) implies not e2.

aggregates(e1));
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In this thesis, all the devised metamodels have been defined with Ecore.

2.1.2 Domain-Specific Languages (DSLs)

Models are normally created from textual or graphic specifications In MDE, a DSL consists

of three elements [61]: (i) its abstract syntax: it is expressed by means of a metamodel that

defines the DSL concepts and the relationships between them; (ii) its concrete syntax: tex-

tual or graphical notation defined on the metamodel; and (iii) its semantics: it is normally a

translational semantics expressed in form of a model transformation chain that establishes

a mapping between the DSL and another language that has a well-defined semantics, e.g.,

general-purpose programming languages (GPL) as Java or Python.

Eclipse Modeling Project includes two popular DSL definition workbenches: Xtext [22]

for textual DSLs and Sirius [107] for graphical DSLs. These tools automatically generate an

model editor and injector. A model injector is a tool that parses DSL code or graphical

diagrams to generate the corresponding model that conforms to the DSL metamodel.

In this thesis, the SkiQL language has been created by using Xtext.

2.1.3 Model transformations

An MDE solution consists of a chain of model transformations that generate software arte-

facts from one or more input models. There are three types of transformations: model to

model (M2M), model to text (M2T) and text to model (T2M).

The M2M transformations generate a target model from a source model establishing a

mapping between the elements defined in both metamodels. The transformations are usu-

ally expressed in declarative languages such as ATL [81] and QVT [64]. They can also be

implemented with GPLs that access a model management API, e.g. EMF API [110].

TheM2T transformations generate textual information (for example, source code or XML

documents) from an input model, and they are usually the last step in the model transfor-

mation chains. They are usually expressed in template languages such as Acceleo [1] or

template mechanisms provided by GPL as Xtend [9]. M2M transformations are often used

as intermediate stages in the transformation chains to reduce the semantic gap between the

input models and the artefacts that must be generated.
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The case of T2M transformations are needed in software reengineering or reverse engi-

neering scenarios, where initial models are obtained from text, normally GPL code. A text

to model transformation process is commonly named “model injection”, and it can be im-

plemented in three forms: using a DSL definition workbench; GPL along with a model

management API; and, rarely, using a language tailored to the kind of transformation as

Gra2MoL [80].

In this thesis, M2M transformations have been written in Java and EMF API is used to

manage Ecore metamodels. No M2M transformation languages were used mainly due to the

complexity of the involved transformations, as discussed in [28]. All M2T transformations

have been written with the template mechanism of Xtend.

2.2 The User Profiles Running Example

The “User Profiles” running example used along this thesis is shown in Figure 2.2. The fig-

ure shows the conceptual schema that will be used to build a database example for each

paradigm integrated in our unified model. The extraction algorithms will be executed for

that databases. The schema will also be used to validate the algorithms developed for the

static code analysis, and to illustrate examples of SkiQL queries. In this chapter, this schema

example will allow illustrating each presented data model.

“User Profiles” schema could be an excerpt of the conceptual schema of a movie streaming

platform, which is expressed as a UML class model. It has 3 entities labeled Movie, User, and

Address, and 3 relationships: a user aggregates an address, a user has zero or more favorite

movies, and a user has zero or more watched movies. User has the attributes name, surname,

and email; Address has city, street, number, and postcode; and Movie has title, year, and genre.

When instantiating each database, we will suppose that there are 2 variations for the Ad-

dress entity type: {street, number, city}, and {street, number, city, postcode}; and 2 variations

for User that vary in the relationships: either favoriteMovies and watchedMovies coexist, or

only watchedMovies is present, and in the attributes: the surName attribute is only present

when both relationships are.
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Figure 2.2: “User profile” running example schema.

2.3 Data Modeling

A data model provides a set of concepts to specify the structure and constraints of a database

type, and a schema results of applying a concrete data model on a domain or problem. A

schema is therefore an instance of a data model. Given a particular data model, textual and

graphical languages can be defined to express schemas.

Data models (and therefore schemas) can be defined at different levels of abstraction.

Typically, they are classified in three categories: conceptual, logical, and physical. Concep-

tual schemas represent the domain of an application in a platform-independent way. Logical

schemas describe data structures and constraints, but providing physical independence. Fi-

nally, Physical schemas include all details needed to implement a logical schema on a specific

database system.

At the logical or physical level, a unified or generic data model can be defined to integrate

concepts from several data models with the purpose of offering a uniform representation.

When using a unified model for n data models, instead of managing n× (n− 1) mappings

(each data model with the others), only n + n mappings are needed (between the unified

and each of the integrated data models in both directions.)

Relational data model is the most common data model used, which represents the data in

form of tables that are organized in columns. NoSQL database systems are classified in sev-
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eral data models, but commonly the term NoSQL refers to four of them: columnar, key-value,

document, and graph systems. In the following sections we will describe each NoSQL data

model as well as the relational model. Unlike relational model, there is not a specification

or standard for NoSQL models, and systems classified in the same paradigm have differ-

ences in the form of structuring data. Therefore, the data models here presented reflect our

understanding of the logical structure for the most popular system of each paradigm.

2.3.1 The Graph Data Model

In graph systems (e.g., Neo4j and OrientDB), a database is organized as a graph whose nodes

(a.k.a. vertex) and edges (a.k.a. arcs) are data items that correspond to database entities

and relationships between them, respectively. Edges are directed from an origin node to a

destination node, and more than one edge can exist for the same pair of nodes. Both nodes

and edges can have labels and properties. Labels denote the entity or relationship type to

which nodes or relationships belong, and properties are key-value pairs. This is the so called

labeled property graph data model [12], that most NoSQL graph systems implement.

Graph databases are commonly schemaless, so there may exist nodes and relationships

with the same label but different set of properties. Moreover, the same label can be used

to name relationships that differ in the type of the origin and/or destination nodes. Thus,

graph databases can have structural variations as explained in Chapter 4.

For this kind of graph store, more specifically Neo4j graph stores, we have abstracted

the following notion of logical graph data model, which is represented in form of UML class

diagram in Figure 2.3:

i) A graph schema has a name (that of the database) and is formed by a set of entity

types and a set of relationship types.

ii) An entity type denotes the set of nodes with the same label (or set of labels).

iii) Entity types can be single-label or multi-label depending on whether they have one

or more labels.

iv) A relationship type denotes the set of relationships with the same label (or set of

labels). A relationship type has origin and destination entity types.
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v) Entity and relationship types can have structural variations.

vi) A structural variation is characterized by a set of properties that is shared by elements

with the same set of labels.

vii) A property is a pair that mimics the property of a node or relationship in the graph,

having a key and the scalar data type that corresponds to the values of the property.

Figure 2.3: Graph Data Model.

Figure 2.4 shows a graph database for the “User Profiles” running example. It has three en-

tity types labeled Movie, User, and Address, and three relationship types labeled FAVORITE_

MOVIES, WATCHED_MOVIES, and ADDRESS. In the figure, nodes are represented as cir-

cles, and relationships as arrows. Nodes having the same labels (i.e. entity type) are filled

with the same color. In this example, gray for Address, white for User, and black for Movie.

Nodes only show a property for each entity type: title for Movie, name for User, and street

for Address. Relationships are tagged with their relationship types, and no properties are

shown. We suppose that there are the variations indicated in Section 2.2.

2.3.2 The Document Data Model

Document databases (e.g., MongoDB and Couchbase) are organized in collections of data

recorded for a particular database entity (e.g., Movie, User, and Address in the running ex-

ample). Data are stored in the form of semi-structured objects or documents [10, 27] that

consist of a tuple of key-value pairs (a.k.a. fields). Keys denote properties or attributes of

the entity, and the values can be atomic data (e.g. Number, String, or Boolean), nested or
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Figure 2.4: User Profiles Graph Database Example.

embedded documents, or an array of values. Also, a string or integer value can act as a ref-

erence to another document, similar to foreign keys in relational systems, although usually

no support for consistency is provided.

Semi-structured data is characterized by having its schema implicit in itself [27]. Thus,

document databases are commonly schemaless, and a collection can store different varia-

tions of the entity documents. Usually, document databases maintain data in some JSON-

like format.

For document databases, more specifically MongoDB stores, we have abstracted the fol-

lowing notion of document data model, which is represented in form of a UML class diagram

in Figure 2.5:

i) A document schema has a name (that of the database) and is formed by a set of entity

types.

ii) An entity type denotes a collection of documents stored in the database.

iii) Entity types have one or more structural variations.

iv) A structural variation is characterized by a set of properties that are shared by doc-

uments of the same collection.

v) Properties have a name and a type, and can be attributes, aggregates, or references.
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vi) Attributes denote object’s fields whose value is of scalar or array type. An attribute

is specified by the name of the field and the type of its value. We suppose that there

exists an attribute that acts as the key of the Entity type (e.g., “_id” in MongoDB).

vii) Aggregates denote object’s fields whose value is an embedded object. An aggregate is

specified by the name of the field and the variation schema of the embedded object.

viii) References denote object’s fields whose values are references. A reference is specified

by the name of the field and the type of its value.

Figure 2.5: Document Data Model.

Figure 2.6 shows how the “User Profiles” running example would be stored in a document

database. Instead of using JSON notation, we depicted the database objects in a represen-

tation that remarks their nested structure and the references between objects. There are

two collections: User and Movie objects, and the relationships are as follows. User objects

aggregate watchedMovies objects with two properties: the stars attribute and the movie_id

reference that records the id value of a movie object (arrow from movie_id to Movie objects);

watchedMovies objects are recorded in an array. To record favorite movies, User has the fa-

voriteMovies array of references to Movie objects. The user addresses are stored as an address

aggregate object of users. While graph databases rely on references (i.e. relationships in

graph store terminology) to connect data items, and aggregation is normally not available

to compose data, the opposite is true in document database systems.
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Figure 2.6: “User Profiles” Document Database Example.

2.3.3 The Key-Value Data Model

Key-Value (K/V) stores conform to the simplest physical data model of NoSQL systems. A

K/V store is an associative array, dictionary, map, or keyspace, that holds a set of key-value

pairs, usually lexicographically ordered by key. As such, they are used to record data with

a simple structure, and references and aggregations are not primitive constructs to build

up data. They usually store a single entity type (e.g. user profile, user login, or a shopping

cart), although data of several entity types could co-exist in the same keyspace.

Like document and columnar systems, K/V stores can record semi-structured objects.

Several techniques can be used to encode a tree-like structure into key-value pairs, which use

normally namespaces to build hierarchical key values. We chose one of the most commonly

used encoding patterns * to which we will call the flattened key pattern of compound objects

or simply flattened object-key pattern.

*Encoding pattern, Redis website: https://redis.com/redis-best-practices/
data-storage-patterns/object-hash-storage/.
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When using this pattern, the key of every pair not only acts as the identifier of the object,

but also encodes the name of a property of the entity type, in a similar format to XPath or

JSONPath [60]. Keys are built with a separator to differentiate between the object identifier

and the property name (e.g., a colon: “<id>:<property>”). It can also be used to differ-

entiate the entity type if different namespaces are not used (e.g., “<entity-type>:<id>:

<property>”). When a property aggregates an object, it is possible to use another separator

to express properties of the aggregated object (e.g., a dot: “<id>:<property>.<aggregated-

property>”), or an index to represent objects of an array (e.g., “<id>:<property>[<index>]”),

that can have properties (e.g., “<id>:<property>[<index>].<aggregated-property>”).

Figure 2.7 shows an K/V database example that illustrates the usage of this encoding for

the “User Profile” running example. Using this pattern, a database object consists of several

entries in the database, all of them sharing the same object identifier. Note that the order

of the separated elements of the key may vary depending on the specific queries needed by

the application, as the keys are lexicographically ordered.

Figure 2.7: Key-Value Database Example for running example.
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K/V systems are schemaless, and several structural variations of an entity type can there-

fore exist in the database. In Figure 2.7, the variations of the running example can be ob-

served.

Taking into account the use of the flattened object-key pattern, the document data model

presented in Section 2.3.2, and shown in Figure 2.5, can also be used for K/V systems by

modifying the Key notion. In this case, every database object also has a key, but it is not as-

sociated to any attribute. A namespace would correspond to an entity type or either, if only

one namespace is used, each different entity type will have a different “<entity-type>” key

prefix. We will use the term aggregate-oriented data model to group the Document, Key-Value,

and Columnar data models, as suggested in [98], because they include the same concepts in

their respective data models.

A set of data types are available for keys and values, which vary on each system. Keys

are normally stored as byte-arrays or strings, which can follow formats as those indicated

above. Regarding the data types of values, they usually provide basic scalar types as well as

common collection types.

2.3.4 The Columnar Data Model

In columnar databases, data is structured in a similar way to relational databases. In the

most popular columnar databases (Hbase [73] and Cassandra [30]),† a database or Keyspace

schema S is composed of a set of tablesT = {ti}, i = 1..n, and each table ti usually stores data

of a single entity type. As in relational databases, each table has a name, and is organized in

rows and columns, but rows have a more complex structure than in relational tables because

they are organized in column families. A table t is therefore defined in terms of a set of

column families Ft = {Ftj}, j = 1..m. Moreover, each row r belonging to a table t contains a

row key. Figure 2.8 shows an example of columnar database for the running example, which

has the User and Movie tables. The User table contains three column families: User, Address,

and WatchedMovies. The Address and WatchedMovies relationships of the running example

are represented as column families, and the FavoriteMovies relationship is represented as a

column of the User family, which records an array of references to Movie. In the case of

†This can be observed in https://db-engines.com/en/ranking. Cassandra appears in the 10nd position
and HBase in the 22nd position as of March, 2021.
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Cassandra, column families will be equivalent to User Defined Types (UDTs): in a Cassandra

table, the type of an attribute can be either a predefined type or a UDT. Thus, the User table

could have the four attributes: name and email whose type would be Text, and address and

watchedMovies whose types would be the UDTs Address and Movie, respectively.

Figure 2.8: Columnar database example for the running example.

Columnar databases also record semi-structured data, and they are normally schemaless,

which means that structural variation is possible: the set of columns present for each col-

umn family can vary in different rows. In the Figure 2.8, the structure of the Address object

is different for each of the two User objects; moreover, the second row has an additional

surname column for the User column family.

We will suppose that a table has a default column family that includes the attributes of

the root entity type that corresponds to the table. The rest of column families represent

aggregated entity types. (Again, in the case of Cassandra, the set of attributes in the ta-

ble that are not UDTs will form the default column family.) In the example, the default

column family is User, with Address and WatchedMovies as aggregated entities. Note that

WatchedMovies aggregates an array of objects, so the name of the columns is formed by using

the flattened object-key pattern‡ (“<property>.<index>.<aggregated-property>”), where

the property name is the name of the column family and can be omitted. For example:

“0.stars”, “0.movie_id” in Figure 2.8.

As column families are considered a way of embedding objects into a root object, the

data model defined for Key-Value and Document stores is applicable for columnar stores,

that is, the aggregate-oriented data model.

‡Flattened object-key pattern, HBase website: https://hbase.apache.org/book.html#schema.
casestudies.custorder.obj.denorm.
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2.3.5 The Relational Data Model

Unlike NoSQL logical data models, there exists a standard relational data model which

is formally defined through relational algebra and calculus. Being “schema-on-write” is an-

other significant feature that differentiates relational databases from NoSQL stores: schemas

must be declared prior to store data in tables. The relational model is based on the mathe-

matical concept of relation and its representation in form of tables [37]. A detailed descrip-

tion of the relational model can be found in [113, 47].

A relational schema consists of a set of relation schemas. Each relation schema speci-

fies the relation name, the attribute names and the domain (i.e., type) of each attribute.

Relationships between relations are implicitly represented by key propagation from a rela-

tion schema to another (one-to-one and one-to-may relationships) or either by a separated

relation schema (many-to-many relationships). Therefore, relation schemas can represent

entity types or relationship types. A relational schema is instantiated by adding tuples to

each relation. Each relation has one or more attributes that form the key (primary key), and

each tuple is uniquely identified by the values of the key attributes. Relations are repre-

sented as tables, and the term column is used to refer to the attributes, while rows name the

tuples of a relation. A table can declare foreign keys: one or more columns that reference to

the primary key of another table in a key propagation.

Figure 2.9: “User Profile” relational example.

Figure 2.9 shows a relational database example for the schema of the running example.

User and Movie tables represent the entity types of identical name, WatchedMovies and Fa-

voriteMovies tables represent the many-to-many relationships from User and Movie in the

conceptual schema of the running example, and User aggregates Address by incorporating
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its attributes. Note that Address could be a separate table related by foreign key, but it has

been integrated into User because they hold a one-to-one relationship.

In the last four decades, conceptual and logical schemas for relational systems have been

extensively studied, and a lot of methods and tools are available for using them in the whole

database life cycle. Entity-Relationship (ER) [113], Extended ER (EER) [47] and Object-

Orientation modeling are the most widely used formalisms to model conceptual and logical

schemas for relational databases.
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3
State of the Art

In our research work, we have tackled four problems in the Data Engineering area: (i) def-

inition of a unified metamodel for NoSQL and relational databases, (ii) design and imple-

mentation of schema extractors from NoSQL data and database code, (iii) development of

a schema query language, and (iv) automate a NoSQL database refactoring. In this chapter,

we have therefore organized the study of the related work in the following sections. First,

other unified or generic metamodels will be presented. Next, we have separated the study

of schema extraction into two sections, one dedicated to extraction from data and another

from database application code. In this latter, we have also included Code metamodels

published so far. In the fourth section, schema query language proposal will be discussed.

and we will finally detail some data modeling tools. At the end of each section, works will

be contrasted to our proposals.

3.1 Generic Schema Metamodels

The definition of generic or unified data models to integrate different data models is not

a novelty, but that this idea has been applied from early years of nineties, for instance

unified models were considered to develop heterogeneous distributed database systems, as

indicated in [99], and build generic database engineering environments as GER [77, 72].
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With the predominance of relational databases, the interest by them disappeared. Now,

unified models are resurfacing because to the adoption of NoSQL stores. For example,

Amazon has defined PartiQL [2] to access its variety of storage systems, and the Hackolade

data modeling tool recently announced the creation of a generic model to represent all

the data models that it supports [69]. For the ErWin data modeling tool, Allen Wang also

proposed a unified model in 2015 [118], but its architecture has not been implemeted yet, as

far as we know. Also, Atzeni et al. have defined a unified model to access NoSQL stores in a

platform-independent way [16, 14]. In the area of model management, unified models have

also been proposed to uniformly represent different data formats, and are remarkable the

proposal of Atzeni et al. [17], and GeRoMe metamodel [83]. In this section, we will analyze

all these proposals of unified models.

3.1.1 Generic Entity/Relationship (GER)

DB-Mainwas a long-term project initially aimed at tackling the problems related to database

evolution [77, 72]. For this, the creators will consider to develop a platform able to sup-

port the main data models, namely relational, object-oriented, object-relational, and ear-

lier models as network and hierarchical. The DB-Main approach was based on three main

elements: (i) The Generic Entity/Relationship (GER) metamodel to achieve platform- in-

dependence; (ii) A transformational approach to implement operations such as reverse and

forward engineering, and schema mappings; and (iii) A history list to record the schema

changes [77].

Here, our interest is focused on the two former elements. The GER generic metamodel

was defined as an extension of the ER metamodel [113]. Conceptual, logical, and phys-

ical models could be represented in GER. Models for a particular paradigm, system, or

methodology were obtained by means of (i) selecting necessary GER elements, (ii) defining

structural predicates to establish legal assemblies of that elements, and (iii) choosing an ap-

propriate visual diagram. Regarding schema transformations, a set of basic transformations

were defined, and the signature of each of them (name, input, and output) was specified

in a particular format to be used to record changes in the history list. When obtaining a

schema, it is necessary to define a sub-model for a specific database system and develop an

extractor for each database system.
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GER metamodel is the EER metamodel [59] extended with (i) Entity domains, (ii) Value

domains, (iii) Entity Relation schemata, iv) Relationship Relation schemata, and (v) Constraints.

Figure 3.1 shows the five new elements and the connections between them in order to facil-

itate the understanding of these elements that are defined below.

Figure 3.1: The new aspects of the Generic Entity/Relation (GER) metamodel.

An Entity belong to one Entity Domain and each Entity Domain can belong to another

Entity Domain, called superdomain. An entity domain can be created by performing set opera-

tions like union, intersection or difference of other entity domains. All entities of an entity

domain conform to an entity type that results of the union of all the common properties of

all entities that belong to the entity domain.

A value domain refers to the set of values (i.e., a piece of data) of a simple basic or com-

plex type. A simple type has atomic values as real, integers or strings, and a complex type

is formed has several simple or complex types. Thus, a complex value is any element or

elements of the constituent value domain or the Cartesian product or powerset of them.

An entity relation schemata establishes the connection between different attributes of dif-

ferent entities and it is defined as the primary key of the relation schema. A relationship

is a set of connected-entities with a set of values, and it conforms to a relationship type.

Relationship types are constructed with all the common properties of the relationships to
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which the type belongs. For this, a relationship relation schemata defines the attributes of the

relationship types. Relationship constraints such as cardinality are supported.

There are three types of constraints: Keys, Dependencies and Inclusion. All entities and

relationships have one or more keys represented with attributes. A Dependency is the union

of attributes of different entities, and an Inclusion is the connection between two entity sets

(as entity domains), value sets (attributes) or relations (relationship relation schemata).

Over the years, DB-Main becomes a powerful data engineering environment that can

currently be acquired from the Rever company.*

3.1.2 Generic metamodels for Model Management

Model Management (MM) is an approach aimed to solve data programmability problems which

normally involve complex mappings between data schemas of different sources [21, 20]. A

set of operators between models are proposed, such as match, union, merge, diff, or the model-

gen operator that generates a schema from another. In [21], building a universal metamodel

is considered a feasible way of developing tools to specify mappings, although it does not

seems the more adequate alternative because of the large complexity of the required meta-

model. In this section, we will present two universal metamodels created for applying

model management [17] and [83].

Paolo Atzeni et al. defined a universal metamodel based on a three-level architecture sim-

ilar to those defined in the EMF framework: a metamodeling language is used to define

metamodels, which, in turn, are used to create models (schemas in our case) [17].

In [17], a set of 13 meta-constructs were defined to represent the concepts used in differ-

ent data formalisms as can be seen in the table 3.1 and are shown in Figure 3.2 (extracted

from [17]).

This proposal overlooked the already existing MDE frameworks, in particular EMF/Ecore.

Instead, the authors started from scratch, and they even proposed a dictionary structure to

store models as instances of the universal metamodel. Schemas are expressed by indicating,

for each element, the construct at the level of the data model from which is instantiated,

and for each of these constructs its meta-construct at the level of the universal metamodel.

They offer the possibility of mapping the following data schema: Entity-Relationship, Bi-

*DB-Main website: https://www.dataengineers.eu/en/db-main/.
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Figure 3.2: The Meta-Construct of the Supermodel of Atzeni et al. (Extracted from [17]).

nary Entity-Relationship, Objects (UML class diagram), Object-Relational, Relational and

XSD. The metamodel was accompanied by a basic tooling for textual and graphical visual-

ization.

In the case of GeRoMe [83], role-based modeling was applied to define a metamodel able

to represent different data models to allow manipulating them. To define the GeRoMe

metamodel, EER, Relational, OWL-DL, XML Schema, and UML were analyzed with the

aim to identify their similarities and differences. Then, a set of roles was established, and

the role-based metamodel created.

An element of a GeRoMe model is an empty object without any characteristic, as charac-

teristics are included in roles in form of properties. Whenever a role is assigned to an object,

this object will be able to play that role, i.e., the role properties (attributes and methods)

are added. An object can play different roles. The existing roles cannot be modified, the ob-

jects can only be modified as they can change the role played at any time. Role inheritance

is supported.

Figure 3.3 shows the GeRoMe metamodel as exposed in [83]. All the roles and the con-
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Meta-construct Definition

Abstract Represents concepts such as ER entities or OO classes.
Aggregation Set of elements with heterogeneous structure, such a table in

relational schemas.
StructOfAttributes An abstract or aggregate element, and it can also recursively ag-

gregate other StructOfAttributes.
AbstractAttribute A reference from an abstract, an aggregation, or a StructOfAt-

tributes to an abstract.
Generalization Indicates that an abstract is the parent element of an inheritance

hierarchy between two abstracts.
ChildOfGeneralization Similar toGeneralization, it indicates that an abstract is the child

in an inheritance hierarchy between two abstracts.
Nest Used to join different StructOfAttributes.
Lexical Any value attribute with type. Relational columns are mapped

to this element.
ForeignKey A constraint of relation between Abstract, Aggregation or

StructOfAttributes. Foreign keys of relational schemas are an
example.

ComponentOfForeignKey Similar to the previous one, specifies the lexicals involved in a
relationship, for example columns that conform to a foreign key
in a relational schema.

BinaryAggregation
OfAbstracts

Denotes that two abstracts are related in binary form.

AggregationOfAbstracts Denotes an aggregate relation of two o more abstracts.
ComponentOfAggregation
OfAbstracts

Denotes that an abstract belongs to an aggregationOfAbstracts.

Table 3.1: Set of 13 Meta-constructs defined in [17].

nections between them are shown in the figure. GeRoMe specifies a total of 48 roles that

are classified into three categories: structural elements, derivations, and constraints. The most

important roles are described in the table 3.2.

In mid-nineties, role-based modeling approaches received attention in the context of

object-oriented programming to model the multiple-classification and object collabora-

tions [100]. However, that interest has decreased over the years because languages and

tools do not support the notion of role.
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Figure 3.3: The GeRoMe metamodel (Extracted from [83]).

3.1.3 The NoSQL abstract model

More recently, several metamodels have been proposed to represent NoSQL generic data

models. SOS is a metamodel designed to represent schemas of aggregate-based stores [15],

with the purpose of achieving a uniform accessing. SOS is shown in Figure 3.4 (taken

from [15]), where a NoSQL schema consists of a set of collections (Setmetaclass), which can

contain Structs and Attributes. An Attribute represents a key-value property, and a group of

key-value pairs is modeled as a Struct. Struct and Set can be nested.

Figure 3.4: The SOS Metalayer of Atzeni et al. (Taken from [15]).

Later, SOS evolved to the NoAM (NoSQL Abstract Model) metamodel [14], which was

defined as part of a design method for aggregate-based NoSQL databases [16]. NoAM was
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Structural roles of GeRoMe

Aggregate An element with structure that contains a set of attributes. It can model
concepts as entity type, relationships type or class.

Attribute Subrole of Property (which in turn is a subrole of Particle) defines a data
with cardinality constraints (inherited from particle).

Type Superclass that defines the type system of the metamodel, subtypes are
primitive types (Domain) or Aggregate.

Domain Predefined basic simple types such integer or string.
Association A relationship between objects.
AssociationEnd The properties of associations.

Derivations roles of GeRoMe

BaseElement Element to be extended.
DerivedElement Element created as result of other existing BaseElements.
DerivationLink Connect different BaseElements to a DerivedElement.
IsA Define a specialization relationship. If used connected to other De-

rivedElements defines a new type with their properties.

Constraints roles of GeRoMe

Disjointness To define two or more types to be joint.
Functional Declares a property as a function.
Identifier Names an object.
Injective Declares a relationship between two elements. If along with Identifier

role acts like a primary key.
ForeignKey A set of references defines a reference to a object with role Identifier.

Table 3.2: The most important roles of the GeRoMe metamodel [83].

designed as an intermediate representation to transform aggregate objects of database ap-

plications into NoSQL data. A NoAM database, as can be seen in figure 3.5, is a set of

collections that contains a set of blocks. A block contains a set of key-value pairs, and each

block is uniquely identified by a key. In [16], several strategies are described to represent a

collection of aggregate objects in form of a NoAM database.

3.1.4 ERwin Unified Metamodel

ERwin Unified Data Modeler (ModelSet) is a project outlined by Allen Wang in an article

published in infoQ [118]. The aim of this project is very close to ours, however, to our
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Figure 3.5: The NoSQL Abstract Model (NoAM) metamodel.

knowledge, no results have not been published yet, and ErWin has not developed ModelSet.

Wang proposed a simple unified logical model to integrate three kind of schemas: columnar,

document, and relational. The logical/conceptual metamodel only includes four elements

that refers to the schema representations.

The Figure 3.6 shows the main modeling constructs of the metamodel for schema defini-

tion: (i) Entity is used represent tables in relational stores, collections in documents stores

and columns families in columnar stores. (ii) Relationship models different references be-

tween entities, this is used to represent foreign keys in relational stores. (iii) Attribute

(of entities only) represent the minimal object of data such as columns in relational and

columnar or key-value of a document in documents stores,and (iv) Tags used to extends

other elements.

Figure 3.6: The ERwin Logical/Conceptual Metamodel (Taken from [118]).

The proposal also considered the creation of a physical model for each database system.
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Query and data production patterns are defined on the logical model for its transforma-

tion into physical model. Several notations to represent schemas were proposed such as

ER-Diagram, IE Notation, Document base Notation, and Column Family Notation. Wang

indicated that the tool based on the unified model should support forward and reverse

engineering. However, the Wang’s article did not provide any detail related to the imple-

mentation, as the use of machine learning to infer schemas.

3.1.5 Typhon Modeling Language Metamodel

The Typhon project† is an European project aimed to create a methodology and tooling to

design and develop solutions for polystore database systems. As part of this project, the

TyphonML [114] language has been built, which allows schemas to be defined in a database

system-independent way. Columnar, document, key-value, graph, and relational schemas

can be defined with TyphonML. Typhon schemas can also express mappings from schemas

to the physical representation.

Figure 3.7: The TyphonML Metamodel (Taken from [114]).

Figure 3.7 shows the TyphonML metamodel, whose root element is Database. This class

that represents the kind of database (RelationalDB, DocumentDB, ColumnDB or GraphDB).

A DataType class model the data type that can be primitive types (PrimitiveDataType, text

†Typhon project website: https://www.typhon-project.org/.
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FreeText), a user-defined types (CustomDataType) or database entities Entity. An entity is

formed by a set of Attributes and Relations. Attributes are a name and data type pair, and

embedded objects can be represented: attributes whose type is another Entity type. Ref-

erences and aggregate are distinguished using the property type. Structural variation is

not considered. To inspect TyphonML, we have observed that the support of graph is not

completed, e.g. relationhip types are not represented.

3.1.6 PartiQL

Given the widespread usage of different data models, developers and companies face the

problem of managing several query languages. Therefore, there exists a great interest in

creating a universal query language for the variety of data managed in modern applications,

and some proposals have recently appeared. Among them, the most relevant is the PartiQL

model.

PartiQL [2, 7] is a query language created in Amazon to achieve independence of format

and data store in accessing the variety of data stored (NoSQL, relational, and data lakes)

used in the company. To achieve format and data store independence, PartiQL has been

built on a generic data model able of representing tabular, nested, and semi-structured data,

but not graph data. Moreover, it works both with schema-on-write and schema-on-read

database engines. The parser of PartiQL is open-source and provides a reference implemen-

tation architecture to companies interested in its implementation [2].

PartiQL is backwards compatible with SQL-92, and its data model is formed by a set

of types that represent the following kinds of values: (i) Scalar data whose type is defined

with the Ion’s type system [79]; (ii) Absent types in order to represent nulls and not present

values; (iii) Arrays the elements of arrays and bags can be heterogeneous; (iii) Complex

values can be formed by composing arrays, bags and tuples. Tuples are composed of pairs

of key-values; (iv) Null-valued attributes are distinguished of missing attributes.

3.1.7 Data Modeling Tools

With the emergence of NoSQL systems, multi-paradigm data modeling commercial tools

have proliferated. In our study of some of the most popular of these tools, we have found

no evidence showing the use of a unified metamodel. Next, we contrast features of these
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Figure 3.8: The PartiQL data model.

tools with those considered in our U-Schema approach.

These tools can be classified in two categories. A first category are existing tools for re-

lational databases which are incorporating some NoSQL systems. At this moment, these

tools have only added support for document systems, being MongoDB the system inte-

grated in the most of them.

For example, ER/Studio [49] and ERwin [50] provide utilities to extract and visualize

schemas for MongoDB and CouchDB since 2015. They extract schemas as a set of entity

types whose properties are the union of all fields discovered in objects of that entity, but

variations and relationships are not addressed. Recently, ERwin Data Modeler provides

an integrated view of conceptual, logical and physical data models to help stakeholders

understand data structures and meaning.

The second group is formed by new tools developed with the purpose of offering data

modeling for polyglot persistence. As far as we know, Hackolade [69] is the only tool that

integrates database systems for the four most common NoSQL paradigms as well as a wide

number of relational systems and other leading data technologies. Recently, it has been

announced the creation of a unified model named Polyglot Data Model but no details have

been published. Unlike U-Schema, Hackolade does not address variation and references in

the NoSQL schema extraction. Entities extracted are represented as the union of all the
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fields discovered in different variations of the entity. The collision of fields with the same

name but different type is not considered but that modeler should make a decision.

DBSchema [43] is a tool similar to Hackolade: It allows the developer to define schemas

with a graphical layout, but also to apply a reverse engineering process to an existing database

in order to extract the schema, as long as there is a JDBC Java driver for it. Queries can be

created in an intuitive way or either using SQL. In this tool, variations are not considered

at all, since it applies a SQL approach to infer the schema, in which variations are not taken

into account.

3.1.8 Comparison of generic metamodel proposals

Next, we will contrast the metamodel proposed in this thesis with those described above.

In this way, we will expose the contributions of our proposal to the state of the art.

GER (DB-Main) Like the GER metamodel [77, 72] for DB-Main, our U-Schema generic

metamodel is meant to be the core element of a data engineering tool. However, DB-Main

was focused mainly on relational systems, and also on earlier database systems. Instead,

we are interested in both structured and semi-structured data, specially in the emerging

NoSQL stores and relational databases. U-Schema is intended to represent logical schemas,

so that conceptual and physical schemas are separately modeled to have a simpler database

schema representation. Because of this concern separation, reusability is promoted, and

models are kept simple and readable. Because of this concern separation, reusability is pro-

moted, and models are kept simple and readable. The conceptual and physical metamodels

are out of the scope of this thesis, but an exploration of the connection between logical and

physical schemas has been performed for MongoDB. Unlike GER, we do not have to define

a sub-model of U-Schema for each database system. U-Schema acts as a pivot representa-

tion, able to represent NoSQL and relational schemas for all paradigms. The set of rules

that maps each data model to U-Schema determines the U-Schema elements involved, and

therefore the valid structures. A central notion of U-Schema is structural variation. Vari-

ations of entity and relationship types can be represented while GER do not include ele-

ments specific of NoSQL stores like structural variations. This information can be useful in

different tasks like analyzing the database evolution. We have defined U-Schema with the
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Ecore metamodeling language with the purpose of taking advantage of MDE technology

integrated in the EMF framework [110]. In DB-Main, a different schema extractor had to

be developed for each database system. In our case, a common strategy have been defined

which address the scalability and performance issues. In DB-Main, a different schema ex-

tractor had to be developed for each database system. In our case, a common strategy have

been defined which address the scalability and performance issues.

Universal metamodel . While the universal metamodel of Atzeni et al. is aimed to instan-

tiate data models, U-Schema is a unified metamodel able to represent schemas of a variety

of databases. Therefore, the metamodeling architectures are different: Universal metamod-

el/Data Model/Database Schemas vs. Ecore/U-Schema/Database Schemas. It is worth not-

ing that our approach does not prevent the definition of metamodels for representing any

existing data model that is integrated in U-Schema. However, we have considered that

creating these metamodels would not provide any benefit as intermediate representation,

as the variation schema to data model transformations would be very close to the variation

schema to U-Schema transformation. The expressiveness of the Universal metamodel is

covered by U-Schema elements. In addition, U-Schema includes the notions of relation-

ship types and structural variations, which are convenient to represent schemas of NoSQL

stores, specially graph stores. Atzeni et al. metamodel has not evolved to include elements

specific of NoSQL stores such as structural variations. While we have used the EMF meta-

modeling architecture to create U-Schema, Atzeni et al. had to implement their own meta-

modeling architecture from scratch, as well reporting and visualization tools. Instead, EMF

provides tools supporting model comparison (EMF Compare)‡ and model diff/merge op-

erations (EMF Diff/Merge),§ as well as model-transformation languages to implement the

modelgen operator. Therefore, our availability of tools for basic model operations is larger

than the Atzeni et al. solution, an we have not to devote effort to build such tools.

GeRoMe . U-Schema clearly differs of GeRoMe in its purpose and the kind of represen-

tation of the generic metamodel. Our unified metamodel has been defined by applying

object-oriented conceptual modeling, the technique commonly used currently to create

‡EMF Compare website: https://www.eclipse.org/emf/compare/.
§EMF Diff/Merge website: https://wiki.eclipse.org/EMF_DiffMerge.
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metamodels, and using a well-know metamodeling architecture, while GeRoMe uses role-

based modeling.

As far as we know, neither of the three generic metamodels here considered (GER, Atzeni

et al., and GeRoMe) has evolved to include elements specific of NoSQL stores. Therefore,

none of them has addressed the representation of structural variations or relationship types.

In the case of GER and Universal metamodels, an extension is not feasible, and new roles

could be created in GeRoMe but this would further complicate the metamodel.

NoAM [14] and SOS [15] were also designed with a purpose different to U-Schema. SOS

aims to achieve a uniform accessing, and NoAM is part of a design method. Instead,

U-Schema has been devised to have a uniform representation able to capture data models

of NoSQL and relational data models, with the aim of facilitating the building of database

tools supporting several database systems. Therefore, U-Schema offers a higher level of ab-

straction than SOS and NoAM. These representations are closer to the physical level than

the logical. Thus, some key aspects for a logical schema are neglected, such as the relation-

ships between entities. In addition, the existence of structural variations is not considered.

Finally, MDE technology was not used in their definition.

ERwin’s Unifiedmetamodel . Several significant differences are found between U-Schema

and the ERwin metamodel [118]: (i) U-Schema is not only able to represent aggregate-based

systems, but also graph stores; (ii) U-Schema is more expressive, ModelSet only includes

the three basic constructs of modeling, but this is similar to our variation schemas that

are input to the analysis process; (iii) Being U-Schema a representation at higher level

of abstraction, the definition and implementation of operations such as schema mapping,

visualization, or schema discovery are easier; (iv) U-Schema represents structural varia-

tions; (v) Instead of a proprietary tool, U-Schema is part of a free data modeling tool.

TyphonML was designed to be a generic metamodel for NoSQL stores. However, some re-

markable differences can be identified between TyphonML and U-Schema: (i) TyphonML

was defined as abstract syntax for a schema definition language, instead U-Schema is sepa-

rated from any language. In fact, we have created the Athena language on U-Schema [35],

and other languages could be defined [36] (ii) The existence of structural variation in
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NoSQL systems is not considered; (iii) As can be observed in [114], the TyphonML meta-

model integrates logical and physical aspects for each paradigm; instead, our choice is to

separate both levels of abstraction in two metamodels; (iv) Although graph stores are con-

sidered, the concept of relationship type is not included in TyphonML, therefore we are not

able to understand como graph schemas are represented; (v) Aggregates are not modeled as

a separate concept, but the same metaclass Reference represents both aggregates and refer-

ences by using the boolean attribute isComposite to record the kind of relationship; Instead,

aggregates and references are two different metaclasses in U-Schema, which allows us to

have a complete semantics. The logical elements of TyphonML are limited to Entities that

aggregate Attributes and References, while our unified metamodel has a wider and richer set

of semantic concepts.

Table 3.3 summarizes the above discussion. Several comparison criteria have been drawn

of our analysis of the published proposals: Aim of the generic metamodel, database paradigms

that integrates, elements that includes, formalism used to create it, levels of the meta-

modeling architecture with which is defined, how schemas are instantiated, ability to rep-

resent structure variations, levels of schema supported, how schemas extracted are repre-

sented, schema extraction strategy applied and whether or not the extraction approach

takes into account scalability.

3.2 Schema Extraction

Several approaches to extract schemas from NoSQL document stores have been published [119,

84]. Moreover, some works on schema extraction from JSON datasets have also been pre-

sented like [38]. A detailed study of these four works can be found in the thesis of Severino

Feliciano [51], where they were contrasted to the document data metamodel designed in

that thesis [101]. Also, schema extraction for Neo4j graph databases has been addressed in

[39], where data insertion statements are analyzed to discover the implicit schema. While

all these works extract schemas from stored data, document schemas are discovered thor-

ough a code analysis in [86]. In that work, the aim is to discover the evolution of the schema.

Next, we will present a discussion of the cited works.
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3.2.1 Meike Klettke, Uta Störl and Stefanie Scherzinger [84]

Meike Klettke et al. defined an approach to extract schemas from document stores in [84],

which is based on a strategy aimed to extract DTD schemas from XML documents [92]. Ac-

tually, the aim of its research work was to detect and remove outlier data. The algorithm

devised to discover the implicit schema analyzes stored objects, i.e. JSON documents, and

creates a graph that represents the structure of the documents stored in each collection of

the database. Once the graph is completed, the schema is derived from it. Figure 3.9 shows

the four steps of the process followed in [84]: (i) Document Selection, (ii) Structure extrac-

tion, (iii) Construction of the Structure Identification Graph (SG), and (iv) Generation

of the JSON Schema.

Figure 3.9: Schema extraction process of Klettke et al. (taken from [84]).

In the first step, documents to be analyzed are selected, and users can either select a

collection of documents or processing all documents. This selection allows reducing the
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execution time if the analysis does not affect all documents. The second and third steps,

Structure extraction from JSON-Documents and Construction of the Structure Identification Graph

(SG), are carried out together, the SG graph is built as the documents are inspected. The

extraction algorithm begins by creating the root node and setting an identifier to each

document. Then, the algorithm processes each document as follows. First, a top node

representing the structure of the document is created and connected to the root node. Then,

for each new property or feature found in a document: (i) a node representing the property

is created, (ii) the type of the property is recorded, (iii) a graph identifier is created by

joining the document identifier along with the node number, and it is recorded in a node

list, and (iv) connects the property node to the top node that represents the document

structure, these edges also store the identifier of the top node in a list. When a visited

property is an object, an additional node is created and connected to the top node. This

new node corresponds to the top node of the embedded object. The same processing applied

on a root document is recursively applied to the embedded object. If a node already existed

for the visited property, the only processing is to create the graph identifier joining the

document identifier along with the node number and adding it to the list of identifiers

of the node and its edge. In the fourth step, the resulting schema is obtained from the

SG graph and represented in JSON Schema format [82]. The SG graph is traversed with a

width-first algorithm. The graph identifiers are used to know if a property is required or

optional, depending on the property is present or not in all the documents of an entity type.

This is calculated by checking whether or not the edge list and node list of identifiers have

the same size. When they have the same size, all the documents of a collection (i.e. an entity

type) have the property, and therefore it is required. Given a collection of documents, The

algorithm groups all the properties found in the same entity type, i.e. a union schema. Two

or more properties with the same name can have different types, the algorithm then record

all the types found for the property.

Figure 3.10, taken from [84], shows the Structure Identification Graph obtained from a col-

lection that contains documents that correspond to posts of a blog. In the figure, the doc-

uments are presented as a hexagon, and the properties as circles. The root document (first

hexagon) represents a base document that has 7 properties (_id, title, content, author,

date, likes, and commentObj). The last property commentObj is an array of two objects,
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these objects are called comments and have two properties (Content and Date). All the prop-

erties of the example are required except the (likes and commentObj) properties. Note that

the edges incoming to these two nodes have a list of identifiers whose size does not match

the size of the list of identifiers of the nodes (hexagons).

Figure 3.10: Structure identification graph of Klettke et al. (taken from [84]).

The list of identifiers on the edges can be used to obtain some statistics like the per-

centage of documents that contains a property. These statistics are used to detect outliers

as well as missing properties (when very high percentage of documents has a property) or

additional properties (properties with very low percentage).

3.2.2 Lanjun Wang et al. [119]

A framework aimed to manage document stores was presented by L. Wang et al. in [119].

These authors observed that well-known datastores have entity types with tens of thousands

of variations, which largely complicates the extraction and visualization of schemas. Their

work focused on document databases, in particular MongoDB, and a document schema

management framework is presented to tackle the problem. This framework includes a set

of utilities intended to extract, persist and query schemas along with the presentation of the
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schemas. In his research work, they first tested a method based on applying the Canonical

Form (CF) algorithm explained in [34]. This algorithm produces schema diagrams in form

of a tree, as shown in part (c) of Figure 3.12, which is taken from [119].

The algorithm of Wang et al. processes input documents extracted from a MongoDB

database, for example, the sample documents shown in Figure 3.11, also extracted from [119].

For each document, an initial level is created that represents it and for each embedded

object a new level is added. A label is associated at each property, which can have two

possible structures: ”<property name> : <identifier>” for simple properties, or ”<property

name>,<list of ids> : <identifier>” for embedded objects, where <identifier> denotes a unique

identifier assigned to the property, and <list of ids> denote a list of identifiers of properties

in the lower level, and identifiers are separated by comma. These identifiers correspond to

the properties of the embedded object (lower level).

The part (a) of Figure 3.12 is the result of applying the algorithm to the first document

on the left of Figure 3.11. The first level corresponds to the root object that has 3 properties:

article_id, author, textwhose identifiers, respectively, are 1,2 and 3, and they are part of

the level 2. Therefore, the label of the first level is root,1,2,3:1. In the level 2, the label of

the author property is author,1,2:2 as the value is an embedded document. Whenever a

document is processed, if it has a structure different to those previously found, a new label

is added on the first level, whose <list of ids> will not match to those of existing labels. That

is, each element in the first level corresponds to a structural variation of an entity type.

If the new variation has some property that do not exist in the lower level, then it will be

added with a new identifier. In this way, the algorithm is applied recursively, and new levels

are created if needed.

In Figure 3.12, the first level has three structural variations because S1 and S4 are docu-

ments that have the same structure in the example. The S3 document is the most complex,

its label includes the identifiers 1,3 and 6 which correspond, respectively, to the properties

article_id, text and author of the level 2. Note that level 3 has finally 3 different la-

bels for the property author, because this property has embedded objects with 3 different

structure.

Due the inefficiency of the Canonical Form (CF)-based algorithm, the authors decided

to represent the schemas in another format, in particular the encoded Schema in Bucket Tree

51



Figure 3.11: Documents Examples of Wang et al. (Extracted from [119]).

(eSiBu-Tree, EST). Figure 3.12 shows the example used to illustrate the EST representation

in [119]. The EST-Based Record Schema Grouping algorithm reduces the number of sorts

and resizes the map by using a local map for embedded objects instead of a global schematic

map.

This new version of the algorithm processes documents in a similar way to the Canoni-

cal Form algorithm. For each kind of document, a top node is created that includes a label

for each property of the root document; the label is formed by the property name and a

unique identifier, which are separated by a semicolon. Embedded document properties are

represented by adding a new node that is referenced by the root node, and the property

label is formed by the identifier of the aggregate property, as shown in Figure 3.13(a) for

the aggregate property author: _id andname properties are in a node referenced from the

root node, and their labels start with the number 3 that is the identifier of author. A leaf

node is created to indicate the end of a nesting branch that corresponds to a particular vari-
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Figure 3.12: Canical Form example of Wang et al. (Extracted from [119]).

ation. Except for the top node (node for the root document), each node has a list with the

identifiers of properties in the upper level, and these nodes have a flag that is marked with

T(rue) in a leaf node, and F(false) in the rest of non-root nodes of a branch. Figure 3.13(a)

shows the tree obtained if S1 is the first document analyzed; the tree has has only a branch

and the nesting level is 1. Figure 3.13(b) shows the tree after S2 is inspected, a new branch is

added for the new structure found for the embedded object into author, and the nesting

level is still 1. Finally, Figure 3.13(c) corresponds to the document S3, the nesting level is 2

because the name property in the first branch has an embedded object with two properties:

first_name and last_name.

Efficiency is achieved thanks to the new branches that appear in relation to the previous

algorithm, reducing the number of sorts.Searching for documents is optimized by using

the list of identifiers in each node. For instance, the root object of S3 has the structure

previously found for S1, that is {1,2,3}, then this list is used to find the lower node for the

author property in order to check if the embedded object structure has changed.
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Figure 3.13: eSiBu-Tree example of Wang et al. (Extracted from [119]).

3.2.3 Dario Colazzo, Giorgio Ghelli and Carlo Sartiani [38]

In [38], a two-stages process is presented. In the first stage, a type inference is performed,

which uses a MapReduce to obtain a collection of key-value pairs from an input JSON

dataset. In each pair, the key is a document specifying the structure or type of a JSON

object, and the value records the number of elements of the that type in the dataset. In the

second step, similar types are merged by applying a set of heuristics.

3.2.4 Isabelle Comyn-Wattiau and Jacky Akoka [39]

A model-driven reverse engineering approach to extract conceptual graph schemas is de-

scribed in [39]. The authors apply CREATE Cypher statements are analyzed to obtain a

graph model: a graph is formed by nodes and edges, and nodes have incoming and outgo-

ing edges. Then, a model-to-model transformation generates an Extended Entity-Relation
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(EER) conceptual schema model, whose elements are entities, relationships, attributes, and

IS-A relationships.

3.2.5 Comparison of Schema Extraction approaches

The main differences of the schema extraction approach proposed in this thesis with the

previously published strategies by Klettke et al. [84], Wang et at. [119], Colazzo et al. [38]

are follows. First, they are focused on document stores. Instead, we have defined a general

strategy applicable to the four main NoSQL paradigms and the relational model. Second,

like the proposal of Colazzo et al. for JSON document, our approach use a MapReduce

operation to improve the efficiency of the extraction process; Third, our strategy discov-

ers relationships between entity types, and structural variations of entity and relationship

types. Wang et al. obtain structural variations of entities whereas Klettke et al. obtain

the union schema of each collection of the database. A union schema has a name and data

type pair for each feature that is present in the documents of a collection. These features

are classified into two categories: required if they are present on all documents contained

in the collection, or optional. Fourth, the output of our inference process is a model that

conforms to an Ecore unified metamodel. In this way, we can take advantage of benefits

offered by MDE, which were commented in Section 2.1. Meike et al. use JSON Schema to

represent the union schemas extracted whereas Wang et al. use a tree structure to repre-

sent all the variations extracted optimizing search operations on the schema. In both works,

relationships between entity types are not inferred.

This thesis was conceived from the experience gained in the thesis of Severino Feli-

ciano [51, 101]. Instead of only inferring document schemas, we have addressed the design

and implementation of a generic schema management approach: a unified metamodel and

a common strategy to extract schemas.

With regard to the work of Comyn-Wattiau and Akoka [39], our proposal differs in sev-

eral significant aspects, apart from being a generic strategy and use a MapReduce to consid-

erably improve the efficiency: (i) We infer schemas from stored data and database access

code , instead of using CREATE statements. Comparing with our code analysis approach,

we analyze the query and not the creating statements. (ii) Our strategy allows us to obtain

the cardinality of each relationship. (iii) We extract a graph logical schema that include
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structural variations for relationship and entity types. (iv) The output of the process is a

model that conforms to an Extended Entity-Relation (EER) metamodel, while we extract a

U-Schema model.

3.3 Code Metamodels and Code Analysis

This section is devoted to discuss work related to our code analysis approach devised to

extract schemas and apply database refactorings. Firstly, some metamodels proposed to

represent GPL code are introduced, and then we will describe some database code analysis

strategies aimed to discover the complete schema or some schema elements as foreign keys.

Building generic metamodels to represent application code with the purpose of analyzing

it has always aroused interest. Some metamodels proposed are: KDM [68], MoDisco [25]

and FAMIX [45]. Regarding research works on database code analysis is remarkable the

work performed by the Precise group of the Namur University (Belgium) in the last two

decades [86, 55, 85, 88, 103, 87, 94, 19]

3.3.1 KDM Metamodel

The ADM (Architecture Driven Modernization) [67] initiative was launched in 2003 by OMG

to promote the use of MDE in software modernization processes. ADM proposed to create

a set of standard metamodels for common tasks in software modernization. Knowledge Dis-

covery Metamodel (KDM) [68] is the main metamodel of ADM since it represents the code of

an application at different levels of abstraction. KDM is a very large metamodel composed

by different packages that allow to define any type of application and language, these pack-

ages are used to represent aspects from the code to other levels such as the physical one.

Among all the packages, the code and the action packages are used to represent the code

and data package to represent the data of the application, even aspects from the code to

other levels such as the physical one. In addition, it can be extended with Micro-KDM to

specify aspects of a specific language.

Figures 3.14, extracted from the specification in [68], shows the main elements of the

Code package, and Figure 3.15, also extracted from the specification, shows the elements of

the Action package.
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In figure 3.14 you can see the Code package. A CodeModel represents a software system and

is made up of a set of AbstractCodeElements. From this class inherit classes: (i) DataType,

which are extended to represent types, (ii) ComputationalObject, extended to represent func-

tions and procedures (CallableUnit), or methods (MethodUnit), and (iii)Module, to represent

a software component or artifact.

Figure 3.14: Excerpt of the Code Package of the KDM Metamodel (Extracted from the specification in [68]).

In figure 3.15 the main elements of the Action package are shown. This package shows the

ActionElement, which is the main element used to represent the behavior of the code, the

ActionElement also inherits from the AbtractCodeElement of the Code package. The elements

to direct the flow inherit from ControlFlow and are used to represent the flow in conditional

statements, and the data is passed between ActionElements through Reads and Writes classes

that store the data in a DataElement. There is also the Calls class that joins an ActionElement

with a CallableUnit representing a function, procedure or method call. Another interesting

element is BlockUnit, which inherits from ActionElement, and is used to represent a block of
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code.

Figure 3.15: Excerpt of the Action Package of the KDM Metamodel (Extracted from the specification in [68]).

In addition to KDM, ADM includes the Abstract Syntax Tree Metamodel (ASTM) [63] to

represent the code in AST form, the Software Metrics Metamodel (SMM) [66] that repre-

sents software metrics and Automated Function Point (AFP) [62] that defines an algorithm to

automate the calculation of function points. All ADM metamodels make use of KDM.

3.3.2 Modisco Metamodel

MoDisco is a framework defined to modernize legacy applications [24, 25], which is inte-

grated into the Eclipse Modeling Project. Several MoDisco metamodels were defined to

represent code of several software languages, for example metamodel for GPL as Java [90]

and C# [91]. The framework incorporates several injectors, named Discoverers, to parse code

and generate models that conform to these metamodels, which can also be transformed into

KDM models.

MoDisco metamodels are higher level thanKDM and easy to read because the metaclasses

represent code statements of a particular software language, instead of being generic ele-

ments. Figure 3.16 shows an excerpt of the Java Modisco metamodel, most of metaclasses

are similar or even the same to the C# metamodel. In these metamodels, an abstract class,

named Statement, is the root of all classes representing statements of the represented lan-

guage, e.g., ForStatement and IfStatement, including Block to represent a set of Statements.

They also have a set of classes to model the expressions, which inherit from the Expres-

sion abstract metaclass, e.g., Assignment, FieldAccess, or ConditionalExpression. Methods are

modeled by means of the AbstractMethodDeclaration metaclass and AbstractMethodInvocation
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represents method calls. Those metaclasses represent common statements of all GPL lan-

guages. As we indicate later, our metamodel aimed to represent JavaScript code is inspired

by the Modisco metamodels.

Figure 3.16: Excerpt of the Java Modisco Metamodel (Extracted from [90]).

3.3.3 FAMIX Metamodel

FAMIX is another code metamodel defined to represent code of any object-oriented pro-

gramming language, which was defined as part of the FAMOOS project [46] [45]. Like

Modisco framework, FAMOOS aimed to build a tooling to be applied in software reengi-

neering or modernization. FAMIX provided a core metamodel which must be extended to

represent a specific programming language. FAMIX has been used in many projects, for

instance, it is part of theMoose¶ code analyisis tool [13] or the work described in [112] where

FAMIX is used to automate code refactoring.

Figure 3.17 shows the main metaclasses of the core package ofFAMIX metamodel [46].

Metaclasses for the more common constructs can be observed, as Namespace and Package

to model class groupings, Class for class definitions, Method for methods, and Attribute for

properties.

¶Moose website: www.moosetechnology.org.
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Figure 3.17: Main metaclasses of FAMIX Metamodel (taken from its specification [46]).

Accessing to properties is modeled by theAccessmetaclass, and method calls by Invocation.

There are several classes to represent the different kinds of variables: GlobalVariable, Implicit-

Variable, LocalVariable, Parameter, or the before mentioned Attribute. The data type concept

is modeled by Type, which has subclasses as Class and PrimitiveType. A FAMIX extension

for Java is provided in the FAMIX-java package, which includes metaclasses for handling

exceptions as Exception, DeclaredException, ThrowException and CaughtException. Metaclasses

for representing Enumerates with Enum and EnumValue, metaclasses ParameterizableClass

and ParameterType to represent parameterized classes and types, and ParameterizedType to

indicate the type of a parameterizable class or type. CodeCritics is a tool that performs

static analysis of PL/SQL code with the purpose of measuring its quality by applying some

rules or metrics [44]. This tool uses an extension of FAMIX to model SQL code.

3.3.4 Francisco Bermúdez, Jesús García-Molina and Óscar Díaz [103]

Francisco Bermúdez et al. [103] presents a reengineering approach to improve the logical

schema of a relational database in the scenario of data migration for data-intensive Java ap-

plications. The schema is improved by detecting if foreign keys are missing, or if declared

foreign key are not used, and the the schema is also normalized if needed. An MDE ap-

proach is applied, and several metamodels are defined: Schema Defect (only Fks missed are

considered), Data Definition Language (DDL) and Data Manipulation Language (DML).

DDL metamodel is used to represent declared schemas and the DML metamodel to repre-
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sent queries and data insert scripts.

The process is organized in the three stages characterizing a re-engineering process: re-

verse engineering, restructuring and forward engineering. In the first stage, three models

are injected from database code, and DDL and DML scripts, which are analyzed to obtain

the defect model from three different sources. Such an analysis is implemented by means

of a M2M transformation. Regarding the code analysis, the source code is parsed to ob-

tain the String literal containing Select queries. Also, if the query is splitted in different

strings or variables, the code analysis join them in a single string. When the query string

is complete, it is analyzed to discover the tables and condition of the FROM and WHERE

clauses, respectively. The condition is then analyzed to search for join between tables. This

information is used to check if all the foreign keys are declared. In the Restructuring stage,

the schema is modified to remove defects detected ans selected by the administrator. Af-

ter the schema quality is analyzed, a normalization process is applied if needed Finally, all

artifacts necessary to modify the database and code are generated in the forward engineering

stage, e.g., SQL scripts to update the database and the code of the JPA classes needed to

access the new schema.

3.3.5 Works of the Precise Group

Recently, Boris Cherry et al. [33] defined a 3-steps process to find databases accesses in

JavaScript applications using Node Mongodb Driver API and Mongoose API. The process

first uses CodeQL� to parse the JavaScript source code. The code representation obtained

is stored in a relational database. This representation uses a language-specific database

schema, but there is no a public specification of the schema. The code is accessed using the

classes defined in the API.** Second, CodeQL queries are issued on that database to search

for database access methods. Finally, the methods returned are filtered by applying some

heuristics. This filter is necessary because some methods may have same names to the APIs

methods.

Jehan Bernard and Thomas Kintziger have addressed the detection of bad smells for

NoSQL stores in their Master’s thesis [19]. In this thesis, they first define 11 code bad smell

�CodeQL website: https://codeql.github.com/.
**CodeQL library for JavaScript: https://codeql.github.com/codeql-standard-libraries/

javascript/.
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of MongoDB database usage, which include simple bad smell as Storage of empty values or

Too long attribute names, and more complex as Inconsistent order of attributes inside a collection

or Next, a static code analysis is applied to detect bad smell in the code. For this, each code

bad smell detector is expressed as a CodeQL rule.

In MongoDB community [40], Separating data accessed together pattern refers to accessing

two or more collections to obtain data that could be in a single collection. For its detection,

Bernard and Kintziger created a rule for searching, in the same function, join queries issued

on different collections.

As further work, they commented the extraction of the schema to improve the detec-

tion of code bad smells, and they noted that having the schema is necessary for several

bad smells. They propose some ways to obtain the schema for different Object Document

Mapper (ODM), but they were not implemented.

Jérôme Fink and Maxime Gobert and Anthony Cleve have defined an approach to up-

date queries when schema evolves in hybrid polystores [55], as part of the Typhon project

mentioned in the first section of this chapter. This updating requires to analyze the query

code. For this analysis, they have considered that polystore schemas are declared with the

TyphonML language and queries are expressed with the TyphonQL language. Both DSLs were

defined as part of the Typhon project [85]. A TyphonML script consists of three parts: the

logical schema, a mapping from the logical schema to a physical schema for a concrete

system, and a list of schema modification operations [114]. The input to the process is there-

fore (i) the schema modeled with TyphonML, (ii) the queries expressed with TyphonQL,

and (iii) the list of schema changes to be applied. TyphonML scripts are parsed to ob-

tain the schema, then the TyphonQL queries are traversed and modified according to the

schema changes. The results of the process are the modified queries or unchanged queries if

the changes could not be applied to certain queries. The results may also include warnings

for some of the modified queries.

Loup Meurice and Anthony Cleve addressed NoSQL schema evolution for MongoDB

stores in the work described in [86]. Its approach extracts the physical schema of a Mon-

goDB store by analyzing database code. A process is applied to search for queries, and then

query arguments and returned results are analyzed to discover collections, properties of

stored objects, and references between objects. This process is applied to different versions
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of the application code in a control version system. The evolution of the database schema is

recorded in a historical database schema that contains the schema of each database entity

(i.e, collection) found: their properties (name and type), as well as possible property re-

naming and date of insertion or removal of a property. Schema evolution is represented in

tabular form, where properties that can cause problems are marked on the table. Different

color and icons are used to differentiate the kinds of errors as data corruption, or the types

of warnings to developers as renaming of a property or collection.

Loup Meurice, Csaba Nagy and Anthony Cleve applied code static analysis to detect

queries in Java applications which access relational databases through three different tech-

nologies: JDBC, JPA and Hibernate [88]. They defined a different algorithm for each tech-

nology. Because SQL queries can be splitted in different part of the code, the three algo-

rithms applied the Call Graph technique to implement an inter-procedural analysis. First,

the code is parsed to obtain the abstract syntax tree (AST), then a visitor [58] is applied

to traverse the AST and search for queries. In the JDBC algorithm, SQL queries are rep-

resented in string format, and they are analyzed to find the table(s) and column(s) used in

FROM and SELECT clauses, respectively. The Hibernate algorithm is an extension of the

JDBC algorithm since that Hibernate also allows expressing JDBC-like queries; in this case,

the purpose is only to find the location of the queries. The JPA algorithm is similar to the

implemented for Hibernate, in fact Hibernate is an implementation of JPA specification.

The approach is validated using three real source code applications and could detect from

71.5% to 99% of database accesses.

Loup Meurice et al. defined a strategy to detect referential integrity constraints (RICs)

that are implicit in the code and data, but they are not declared [87]. More specifically,

their approach discovers FK candidates by means of a 3-steps process where three infor-

mation sources are analyzed: database schema, stored data, and the program source code.

Firstly, PK columns of a table are used to find columns of other tables with similar name.

In this way, several FK candidates are detected. In the second step, data are analyzed to

measure to what extent each FK candidate is really a FK: number of rows whose columns

effectively references to the primary key of the target table. In this way, a a percentage of

matching rows is calculated for each FK candidate. Finally, the application code is analyzed

depending on the used technology. For JDBC, the SQL queries are represented in strings
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andWHERE clauses are analyzed to find joins by applying the algorithm commented above

for [103]. In the case of Hibernate, the mapping files are used for finding the implicit FKs,

and Java annotations are analyzed for JPA, in the same way as Hibernate. The approach

was validated wiht a real database of a very large hospital [105].

Csaba Nagy and Anthony Cleve implemented SQLInspect [94]. This tool is aimed to help

developers dealing with SQL queries. SQLInspect is able to find and locate SQL queries

in Java code and provide some metrics like query complexity, number of queries in a class,

or queries with too much joins. Eclipse Abstract Syntax Tree (JDT) is used in the code

analysis to search for API calls which issue SQL queries. If the call uses a prepared statement

as parameter, then the code is also backward analyzed to find the prepared query. Then,

the queries (API calls) found are passed to the Query Extractor, defined in [88], to obtain

the query in string format. The query strings are parsed and the result is the input to

three components: Smell Detector, SQL Metrics and Table Access Analyzer. These components

provide metrics and possible warnings on the query.

3.3.6 Comparison of static analysis approaches for code accessing NoSQL stores

The KDM [68] metamodel is remarkably complex since that it was designed to represent ap-

plications of any domain. In particular, the Code and Action packages are complex because

they are GPL-independent generic metamodels. Instead of using these two metamodels, we

considered more convenient to create a simpler and more usable code metamodel- Taking

into account some existing object-oriented code metamodels, such as FAMIX and Modisco,

we have defined a metamodel that integrates the essential constructs of object-oriented lan-

guages as Java or JavaScript. As we were analyzing code, the metamodel was extended to

achieve the final version that includes aspects as code blocks (lambda expressions in Java 8

or anonymous functions in JavaScript). The simplicity of our metamodel has made it easier

to inject code into models. Our metamodel has 55 metaclasses, while the code and action

packages sum up 109. In addition, the structure of Code and Action models is most difficult

to understand: code statements are represented by using data read and write operations to

express how data are moved.

FAMIX [46] and the MoDisco metamodels for Java [90] and C# [91] model the language

constructs at the same level of abstraction, and they represent object-oriented code in a
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similar way. While Modisco has a metamodel for each language, FAMIX provided a set

of core metaclasses along with an extension mechanism to specialize it for a concrete lan-

guage. In our case, we decided to define a single metamodel by adding metaclasses for

language-specific constructs. At this moment, the metamodel has been validated for Java

and JavaScript, but more metaclasses could be needed for other languages. FAMIX is used

in the CodeCritics tool [44] that only analyzes the SQL code of the applications. Unlike our

code analysis stratey, CodeCritics does not extract the schema schema but it is provided as

an input.

Next, we will compare our code analysis approach to those exposed in related works. In

Loup Meurice et al. [86], the data access code is only analyzed, while we address all the

application code. This is because we are interested in extracting schemas and applying

refactorings. This, we have devised an MDE solution that represents code by means of two

metamodels: Code and Control Flow. We have tackled a non trival database refactoring:

removal joins between data containers (e.g. MongoDB collections). Automating this refac-

toring entails to modify queries and the code that use data returned from the queries.

Boris Cherry et al. [33] presented an code static analysis strategy aimed to find database

access statements, which has been applied to MongoDB applications. For this aim, they

use CodeQL to query the code. Instead, we represent code in form of models that are

programmatically navigated. Injecting code into models, we are able to extract schemas and

apply database refactorings, for instance, removing joins to improve the performance of the

database. Therefore, the aim of the work of Cherry et al. is more limited than ours. The code

analysis of Cherry et al. has been applied in a work of Bernard and Kintziger [19] aimed to

detect NoSQL database refactorings. They first identified a list of refactoring that includes

the one considered in our work: join query removals that is named “Separating Data That

is Accessed Together”, a well-known MongoDB schema design anti-pattern. Refactorings

are located but their automated application is not tackled.

An MDE-based re-engineering process to automate a database refactoring is defined by

Bermúdez Ruiz et al. [103], where static analysis is applied on SQL code. Our approach

mainly differs from that work as follows: (ii) We analyze all the code of the application,

not only SQL statements; (ii) We extract the schema from application code, instead of

analyzing insert statements; and (iii) We update application code, while object–relational
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mapping classes are regenerated in the work of Bermúdez et al.

3.4 Schema Query and Visualization

A data dictionary is managed in relational database systems to register metadata on the

stored data. This metadata includes the database schema and information about physical

implementation, security and programs, among other aspects. The SQL-92 standard spec-

ifies the structure of data dictionaries in form of tables and views. SQL can therefore be

used to recover information from data dictionaries, e.g. queries returning information on

the logical schema as tables without primary keys or tables that are not referenced by for-

eign keys. In fact, data dictionary information is used to visualize relational schemas in

data modeling and metadata management tools. In [3], useful queries to explore schema in

a set of popular databases can be found.

In the case of NoSQL systems, a schema query native facility is only provided in systems

in which a schema may or must be declared, as OrientDB [96] or Cassandra [30]. OrientDB

is a multidatabase system (graph, document and object-oriented) that allows to work in

schemaless way or declaring schemas. When developers declare the database schema, they

can issue SQL queries on the schema, index or storage. These queries return information

in form of tables [8]. Cassandra is a popular columnar store which was introduced in Sec-

tion 2.3.4. It offers a schema query support similar to OrientDB. In both systems, queries

are issued on a physical schema.

The ability of performing queries on entity variations is addressed in a work by Wang

et al. [119] whose schema extraction has been previously reviewed. Extracted schemas are

recorded in a data structure defined as part of the work to facilitate queries on schemas:

eSiBuTree trees. A SQL-like language is proposed to express queries, but the authors only

show a couple of examples: (i) to check if a particular variation, which is specified by a list

of properties, exists for a given entity, and (ii) to find which variations of a given entity

have a concrete property. A limitation of this proposal is that queries are issued only on

entities because relationships between entities are not inferred: references and entities for

embedded objects are not inferred.

Other query solutions are available but they does not support relationships or entity

variations. Variety [116] is a database tool developed for MongoDB, which provides sup-
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port to analyze schemas. The queries are expressed in Javascript code, instead of using a

language tailored to query schemas. Apache Drill [56] is a SQL-based query engine that

support access to any kind of database (relational, NoSQL, Hadoop, etc.). Drill represents

the extracted schema in form of relational schema, so that SQL queries can be issued on it.

As far as we know, the query language suggested by Wang et al. [119] has not been com-

pletely defined and implemented yet. SkiQL differs of that approach in several aspects:

(i) It is a completely defined language. (ii) It has been devised for NoSQL and relational

systems. (ii) Queries are performed on schemas that include relationships either between

entities or between entity variations. (iv) Queries can return information on entities, en-

tity and relationship variations, and relationships.
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4
The U-Schema Unified Metamodel

In this chapter, we shall present the unified metamodel proposed in this thesis, which we

have called U-Schema. The description of U-Schema will be accompanied by the definition

of the mappings from the individual data models to U-Schema (forward mappings), and in

the opposite direction (reverse mappings). Since there are no standard specifications for

NoSQL data models, before specifying each mapping, a definition of the corresponding

data model will be given. Several applications of U-Schema will finally be commented.

4.1 Concepts in the U-Schema unified data model

U-Schema is a unified logical model that integrates the concepts and rules of both the

relational model and the four most common NoSQL data models: columnar, document,

graph, and key-value. While the relational model is a well-defined data model, there is no

specification, standard, or theory that establishes the data model of a particular NoSQL

paradigm. In fact, NoSQL systems of the same kind can have significant differences in

features and in the structure of the data. We have therefore defined a logical model for

each NoSQL category by abstracting from the logical/physical data organization of the

most popular stores of each category. This section will present U-Schema, while the logical

model defined for each particular NoSQL paradigm will be presented in the section devoted
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to describe how that data model has been integrated into U-Schema.

U-Schema includes the basic concepts traditionally used to create logical schemas, which

are part of well-known formalisms such as Entity-Relationship (ER) [32] and UML Class Mod-

els [104]: entity type, simple and multivalued attributes, key attribute, and three kinds of re-

lationships between entity types: aggregation, reference, and inheritance. Also, U-Schema

incorporates some additional concepts, such as relationship types (as they are considered in

the graph data model [12]), and structural variations of entity and relationship types. Before

presenting the U-Schema metamodel, we will define all these concepts. Not all concepts

will be present in all of the data models supported by U-Schema. For example, the relation-

ship type is exclusive of the graph model, but conversely, it does not define aggregation.

In data models, an entity type ε is normally characterized by a set Pε = {Pεi }, i =

1 . . . n of named properties. Properties can be of several kinds depending on the type of

the object or value a property can hold. Three common kinds are: attributes, aggregations,

and references. Given a property Pεi , it would be an attribute if it can take values of scalar

type (e.g. Number) or structured type (i.e. Array or Set), and it would be an aggregation or

reference if it is associated to an entity type ε′ whose objects are, respectively, embedded

in or referenced from objects of the entity type ε, to which the Pεi property belongs. Keys

are a special kind of attribute able to record values used as identifiers of instances of entity

types.

Graph data models include relationship types in addition to entity types. While nodes are

instances of entity types, arcs are instances of relationship types, which can have attributes.

Hereafter, we will use “schema type” to gather both entity and relationship types.

Schemas play a similar role to types in programming languages. Given a database schema

S, only data conforming to S can be stored in the database. Therefore, all data of an entity

type E (resp. a relationship type R) will have the same structure, that defined for E (resp. R)

in S. In absence of schema declarations, however, data of E and R can have different struc-

ture, that is, E and R will have one or more structural variations.

A structural variation of a schema type ε is formed by a set of properties Qε ⊂ Pε,

and each pair of variations of ε differ, at least, in one property. The set Pε is therefore

the union of the sets of properties of each of its variations. The set Pε is commonly called

union schema of a schema type in a schemaless system. The properties of an schema type can
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therefore be classified as common or specific, depending on whether they are present in all

the variations, or in a subset of them. It is worth noting that specifying a schema type as

the union schema, the information on its structural variability is lost. We have considered

convenient to record this structural variability in data models defined for NoSQL databases,

and therefore the notion of “variation” will be part of U-Schema.

When structural variations are considered, entity and relationship types can be defined

as follows.

• An entity type has a name and is formed by a set of structural variations.

• A relationship type (only for graph stores) has a name, is formed by a set of structural

variations, and refers to both a source and a target entity type.

• A structural variation is formed by a set of named properties. The kind of properties

depend on the data model, and can be: attributes, keys, aggregates, and references.

Table 4.1 shows the correspondence between concepts of each of the considered database

kinds and the logical modeling concepts that we will use in U-Schema. We will use these

concepts to abstract a logical data model for the most popular systems of each NoSQL

paradigm. These models will be presented in sections 2.3.1 to 5.5.

4.2 The U-Schema Metamodel

Data models are commonly expressed formally in form of metamodels. A metamodel is a

model that describes a set of concepts and relationships between them. That description

determines the structure of models that can be instantiated from the metamodel elements,

i.e. a metamodel is a model of a model. Object-oriented conceptual modeling is usually applied

to create metamodels: concepts and their properties are modeled with classes, and refer-

ence, aggregation, and inheritance relationships are used to model relationships between

concepts. Figure 4.1 shows the metamodel of the U-Schema data model in form of a UML

class diagram. Below, we describe this metamodel.

A U-Schema model represents a schema formed by a collection of types (SchemaType)

that can be either entity types (EntityType) or relationship types (RelationshipType).
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Logical modeling
concepts

Relational Columnar Document Graph Key/Value

Schema Schema Database or
Keyspace

Database Graph Database or
Namespace

Entity Type Table Table with
column
families

Collection
and nested
object

Node label Multirow
entities

Relationship Type Relationship
Table

N/A N/A Relation type N/A

Structural
Variation

Table (only
one
variation)

Rows with
different
structure
within
column
families

Documents
with
different
structure in a
collection

Same label
with
different
structure

Multirow
entities with
different
structure

Key Primary key Row key Document
key

N/A Pair key

Reference Foreign key Join between
tables

Join between
documents

N/A Join between
pairs

Aggregation N/A Nested
object

Nested
object

N/A Nested
object

Attribute Column Column Document
property

Node and
Relation
property

Pair Value

Primitive Types Scalar Types Scalar Types Scalar Types Scalar Types Scalar Types

Structured Types N/A Collections Collections Array Collections

Table 4.1: Mapping between logical modeling concepts and NoSQL/Relational Database Systems.

Both types have two common properties: They include one or more structural variations

(StructuralVariation), and they can form a type hierarchy (parent relationship).

A StructuralVariation has an identifier and is characterized by a set of logical and

structural features. StructuralFeatures determine the structure of database objects, and

include Attributes and Aggregates, while logical features specify what identifies an ob-

ject (Key), and which References an object has to other objects.

Each attribute has a name and a data type. The data types included are: Primitive
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Figure 4.1: U-Schema Metamodel.

(e.g., Number, String, Boolean), collections (sets, maps, lists, and tuples), and the special

Null type. Also, the JSON and BLOB primitive types are included to support relational

systems. An aggregation has a name, a cardinality (upper and lower bound), and refers to

the structural variation it aggregates, or to a list of variations, if the aggregated object is an

heterogeneous collection.

Unlike aggregations, references refer to an entity type (via refsTo), and one or more

attributes that match the set of key attributes of the referenced object (all the variations

of an entity type must have the same key.) References also have a name, a cardinality, and

an optional inverse reference (opposite). Additionally, references can have their own at-

tributes when they represent graph arcs. This entails that a reference has to specify which

variation (of its RelationshipType) its set of attributes corresponds to (isFeaturedBy).

Key represents the set of attributes playing the role of key for an entity type, holding a

unique set of values for each element of the type. Reference also points to the set of at-

tributes that form the referenced key (attributes property).

The aggregation relationship allows objects to be recursively embedded, then forming
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aggregation hierarchies. In these hierarchies, the identification of the root element is im-

portant. Thus, an entity type includes a boolean attribute named root to indicate whether

or not their entities are aggregated by others (aggregates relationship).

U-Schema also records information that could be useful to implement some database

tasks. For example, as shown in Figure 4.1, StructuralVariations have a count attribute

to record the number of objects that belong to each variation, and two timestamps that

hold the creation dates for the first and last stored object of a variation (firstTimestamp

and lastTimestamp).

The U-Schema metamodel has been defined with the Ecore metamodeling language.

Ecore is the central element of Eclipse Modeling Framework (EMF) [110], a framework widely

used to develop Model-Driven Software Engineering (MDE) solutions [23]. EMF-provided

tools such as model transformation languages, model comparison and diff/merge tools, or

workbenches for the creation of domain-specific languages (DSLs) could be used to build

database tools based on U-Schema models. Metamodeling has traditionally been applied

to define data models, and transformational approaches have been proposed to tackle prob-

lems involving schema mappings [71, 20]. However, the database engineering community

has paid little attention to MDE techniques and tools, although metamodeling and model

transformations foundations are well established in the MDE field. Using Ecore, we ob-

tain two benefits: leveraging the EMF tooling to develop database utilities, and favor their

interoperability with other tools [103].

4.3 U-Schema Flavors: Full Variability vs. Union Schema

U-Schema allows to accommodate the definition of two model flavors:

• Full Variability: All structural variations of all entity and relationship types are

stored.

• Union Schema: Only one structural variation is stored for each schema type. Struc-

tural variability is recorded by using the optional boolean attribute of Feature

to indicate if a feature is present or not in all the objects of an schema type. Union

schemas are the schemas normally obtained in NoSQL schema discovering processes [84,

119], and visualized in NoSQL modeling tools.
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Note that it is easy to convert a U-Schema model from the Full to the Union flavors. This

conversion loses information, and thus it is not reversible: Given a schema type t with a set

of n variations t.variations = {Vti}, i = 1 . . . n,, then t will be replaced by a schema type s

with the same name (t.name = s.name), and the set s.variations will have a single variation

Ws with Ws.features =
⊎n

i=1 V
t
i , where

⊎
is a function that returns the union set of all the

features of all the variations with the following rules:

1. If the same structural feature appears in all variations Vti , then it is included in the

result set with its optional attribute set to false (common structural features).

2. Each structural feature that appears at least in a variation is included in the result

set, but with its optional attribute set to true.

3. Structural features that appear with the same name (name attribute of StructuralFeature)

but with different type (they belong to a different sub-metatype of StructuralFeature

or have different values of their attributes), are included with a numeric identifier

appended to their name, and with their optional attribute set to true.

Example of an union schema for the running example presented in Section 2.2 is shown

in Figure 5.4. StructuralVariations are omitted for clarity, and optional features are

shown in cursive and green color.

We will use the Full Variability flavor through the rest of the article, as it contains more

information and can be trivially converted to the Union Schema if desired.

4.4 Mappings between U-Schema and the Logical Data Models

A unified metamodel is intended to represent all the concepts of the individual data models

that it integrates. Therefore, a mapping must be established between the unified metamodel

and each data model. We will call forward mapping to a mapping from a NoSQL or relational

model to U-Schema, and reverse mapping to a mapping in the opposite direction.

As indicated above, we had to define a logical data model for each NoSQL paradigm. As

most NoSQL databases are schemaless, the schemas are implicit in data and code. Therefore,

the implementation of a forward mapping must first capture all the logical information of
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the implicit schema, as described in Section 5.1, and then apply the mapping to obtain the

U-Schema schema (i.e., a U-Schema model).

As U-Schema is richer in concepts than each individual data model, forward and reverse

mappings are not unique for a particular data model. In addition, U-Schema concepts not

present in a specific data model could be mapped in different ways in a reverse mapping.

This has led us to introduce the notion of canonical mapping. A canonical mapping satisfies

two conditions:

1. It must be forward-complete, that is, the rules must correctly map all the characteristics

of the data model to U-Schema concepts.

2. As a consequence, it must be trivially bidirectional within a data model. This is because

given a U-Schema model, the original database schema could always be reproduced

(as the U-Schema model holds all its information.)

While the canonical mapping rules cover the characteristics of each of the logical data

models, there may be cases where a reverse mapping has to be performed on a U-Schema

model that contains elements not present in a given data model. Specialized forward and

reverse mappings could also be defined for each data model, and even for a given database

implementation. These mappings could be devised for specific needs within a development

such as a database migration that involves different source and target data models. The need

for these mappings raises the interest in creating a mapping language able to specify how the

constructs of a given database paradigm are translated into the abstractions of U-Schema,

and vice versa. This is out of the scope of this work.

In the following Chapter, the common strategies devised to implement and validate all

the forward mappings will be described. In sections 2.3.1 to 2.3.4, we will define a logical

model for each database paradigm addressed and formally express the canonical mapping

between each data model and U-Schema. Additionally, reverse mapping examples will be

shown for characteristics not supported in each of the data models. For each paradigm,

the forward mapping implementation and validation will be commented. Here, we will

introduce the notation used to define the mappings.

• A mapping between an element u of U-Schema and an element m of a data model is
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expressed as:

u↔ m∥{list of property relations}

where property relations are expressed as indicated below, and the↔ operator is com-

mutative.

• A property relation p1 = p2 expresses that a property p1 of u and an property p2 of m

have the same value. The = operator is commutative.

• A property relation p← v expresses that the value v is assigned to the p property of

u or m.

• Let e1 be a property of u and let e2 be a property of m, a property relation e1 ↔ e2

expresses an enclosed mapping between e1 and e2.

• In a property relation that expresses a mapping between two elements, the map(e, t)

function can be used to obtain the target element of type t that maps to the source

element e; if e maps to a single target element, then the second argument is optional.

• Given an instance of a meta-class in U-Schema, dot notation is used to refer to its

properties. For example, given an instance e of EntityType, e.name refers to the

attribute name.

• Functions will be applied on elements of the data model to obtain the value of their

properties. Functions will have the same name as the property. For example, given

an entity type e, name(e) will refer to its name property. Other functions will be

introduced in some rules, and their proper definition will be shown.

4.5 Applications of the U-Schema Metamodel

The usefulness of generic metamodels is well known, and has been extensively discussed in

the database literature for more than 30 years. In this section, we shall show how U-Schema

metamodel can be used to define generic solutions that involve SQL and NoSQL systems.

We will first outline an approach to build a generic query language. Next, we will describe

a data migration process and analyze how U-Schema facilitates such migrations. Finally, it
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will be briefly commented the usefulness of U-Schema to query schemas, generate synthetic

data for testing purposes, and visualize schemas in a data format-independent way.

4.5.1 A U-Schema-based Generic Query Language

Given the widespread usage of different data models, developers and companies face the

problem of managing several query languages. Therefore, there exists a great interest in

creating a universal query language for the variety of data managed in modern applications,

and some proposals have recently appeared. PartiQL [2, 7] is a query language created in

Amazon to achieve independence of format and data store in accessing the variety of data

stored in the company. The language is built on a generic data model able of representing

tabular, nested, and semi-structured data. Also, a model-independent query language is

convenient in multi-model systems, as it is the case of OrientDB [6]. Both languages are

based on the SQL standard due to its widespread adoption.

Main design issues

The U-Schema data model could be used to create a generic language to manage NoSQL

and relational stores. This language would have specialized components to manipulate data

and to create and evolve schemas. Here, we will focus on the data query. Next, the main

design issues that arise in the building of such a language are dealt with.

• Data representation: Data returned as result of a query and data inserted into a database

must be represented in some format. In a way similar to PartiQL, a JSON-based

format could be used to represent data. JSON should be extended to represent speci-

ficities of U-Schema as collection types and references.

• SQL extension: Because SQL is a very popular language, most query languages for

post-relational databases (e.g., object-oriented, NoSQL, spatial) have been defined

as extensions of the SQL standard. In fact, generic languages such as PartiQL and

OrientDB have also been created as extensions of SQL-92. In this section, query

examples will be shown in a SQL-like syntax, and the language defined for U-Schema

could also be a SQL extension similar to that defined in OrientDB, which includes

document, key-value, and graph data models.
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• Navigation through objects: Like most systems supporting embedded objects, an aggre-

gation hierarchy specified by U-Schema could be navigated by using the dot nota-

tion. To navigate through references, a different notation should be defined to allow

a more natural graph-based navigation. Also, a way to access attributes of references

should be provided.

• Graph queries: An ISO project* was recently launched with the aim of integrating a

graph query language (GQL) in the SQL standard. Also, OrientDB extended SQL-92

with functionality to query graphs. These extensions could be appropriate to design

the manipulation of graphs on U-Schema. Since U-Schema includes entity types and

relationship types, queries could be issued on both types (i.e., all the nodes that are

instances of a type).

• Issuing queries on variations: Since structural variations are part of U-Schema mod-

els, it should be possible to issue queries on one or more variations of an entity or

relationship type, instead of being issued on the union type as it occurs by default.

Variations could be either extensionally identified or assigned identifiers when the

schema is described.

• Describing, creating, and evolving schemas: A query language is accompanied of a schema

declaration language and a schema operation language. Schemas could be explicitly

specified or either inferred from the database.

The U-Schema query engine would be implemented with a strategy similar to that ap-

plied for PartiQL [2, 7], as illustrated in Figure 4.2.

Such an engine could work as follows. Queries could be issued from an interactive tool

or either been specified as part of programming code (e.g., Java or Kotlin) via a library. A

parser would create the abstract syntax tree of the query, and a compiler would traverse

the AST to express the query in an abstract intermediate format. In addition to the query,

the schema must be an input to the compiler. This schema could be explicitly defined or

either inferred by applying the extractors presented in previous sections. Once queries are

compiled, an evaluator would issue native queries on a concrete data store, which would

*GQL website: GQLStandardwebiste:https://www.gqlstandards.org/.
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Figure 4.2: Overview of a generic query architecture based on U-Schema.

work in two steps: first, the abstract query would be converted into a specific query for

a data model, and then the native query for a particular database is generated and issued.

Finally, a component is in charge of receiving the results returned by the database system

and transforming them in the expected output representation, i.e. a JSON-like format, as

indicated above.

The query language

Now, we will show some query examples to illustrate how the design issues considered

above could be addressed in a U-Schema-based query language. The query examples will be

written for the schemas inferred from the databases instantiated for the running example.

A SQL-like syntax will be used to express the queries. We will focus on how the particular

abstractions of our unified data model could be part of the queries.

Embedded objects and References: Navigation and Serialization In the running example,

Address and WatchedMovies objects are embedded into User objects in the case of aggregate-

based data models. The query below could be written to return the email and the list of

watched movies of those users whose address has “Aylesbury” as their city. The variable u

is used to more clearly show the navigation using the dot notation.

SELECT u.email, u.watchedMovies
FROM User u
WHERE u.address.city = "Aylesbury"

Q1. Email and watched movies of users who live in “Aylesbury”.

Regarding to the serialization of the result, it could be returned an array of JSON-like

documents with the two fields selected of User. The value of watchedMovies would be an
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array with embedded objects that have two fields according to the schema inferred for

the running example in Section 5.3: the number of starts and a reference to the watched

movie. The reference values could have a special format so that references can be correctly

manipulated in the code that receives the result. This format could be “$ref<entity type

referenced>(value)”, and the query result would be serialized as:

{
email: "alison@gmail.com",
watchedMovies: [

{stars:3, movie_id: $ref<Movie>(202)},
{stars:5, movie_id: $ref<Movie>(295)}

]
}

Note that User could denote a document collection, a keyspace, or a columnar table. But

this query should be statically incorrect for the graph and relational schemas defined for

the running example. This is also true for the queries Q2 and Q3 presented below.

The following query shows how collections could be filtered by applying conditions on

their elements. The query returns the name and email of those users that marked a movie

with 5 stars once at least.

SELECT DISTINCT email, name
FROM User
WHERE EXISTS(watchedMovies[stars = 5])

Q2. Name and email of users who marked a movie with 5 stars.

Navigation through references could be expressed as illustrated in the query Q3, which

returns name and email of those users that watched the movie titled “The Matrix”. The

“*” dereferencing operator is used to access the object that a reference points to. In the

query, (*movie_id).title denotes the title field of the Movie object referenced from

the movie_id field of a WatchedMovie object aggregated to an User object.

SELECT DISTINCT email, name
FROM User
WHERE EXISTS(watchedMovies[(*movie_id).title = "The Matrix"])

Q3. Name and email of users who watched a titled “The Matrix”.

Queries on graphs: Navigation and serialization To query U-Schema models that come

from graph stores, it should be considered that they include entity and relationship types,
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and references can have attributes as they are instances of relationship types. Therefore, the

language should distinguish three kinds of accesses: (i) Given a node, the access to its outgo-

ing and incoming relationships; (ii) Given a reference, the access to its attributes; (iii) Given

a reference, the access to the referenced object. The following query examples will illus-

trate each kind of access. Recall that User nodes are connected to Movie nodes through

WATCHED_MOVIES and FAVORITE_MOVIES relationships, and also User nodes are con-

nected to Address nodes through ADDRESS relationships, as indicated in Section 2.3.1.

The query Q4 would obtain those users that watched the movie titled “The Matrix” (title

is an attribute of the Movie entity type) and marked some movie with zero stars (stars is an

attribute of theWATCHED_MOVIES relationship type). The “->” symbol is used to navigate

to the destination of a reference (aMovie in this case), and we use the dot operator to access

the reference itself, and its stars attribute. Other operators could be defined to navigate the

graph, such as the “out()” operator defined in OrientDB.

SELECT *
FROM User u
WHERE EXISTS (u->WATCHED_MOVIES[title = "The Matrix"]) AND

EXISTS (u.WATCHED_MOVIES[stars = 0])

Q4. Users who have watched the movie “The Matrix” and marked a movie with zero stars.

With regards to the serialization of references in graphs, they may contain attributes, and

belong to a specific variation of a relationship type. This information is added to the “$ref”

type shown above for non-graph references. Additionally, they can include special keys for

specifying the source and target elements of the reference. The query below is similar to Q1,

but returns WATCHED_MOVIES references instead of WatchedMovies aggregated objects.

SELECT u.name, u.WATCHED_MOVIES
FROM User u
WHERE u->ADDRESS.city = "Aylesbury"

Q5. Name and watched movies of users who live in “Aylesbury”.

Note that we use the dot notation to return the reference itself instead of the referenced

Movie object. According the format commented above, the query could return a set of

JSON-like documents like the following:

{
name: "Allison",
WATCHED_MOVIES: [

$ref<Movie,WATCHED_MOVIES~1>({stars:3, $target: 202}),
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$ref<Movie,WATCHED_MOVIES~1>({stars:5, $target: 295})
]

}

In this case, “WATCHED_MOVIES~n” refers to the given variation that describes the set of

attributes of each variation. In this case, the one that has the stars attribute. The special

“$target” attribute holds the actual reference.

Queries on graph schemas could be issued on relationships and/or return relationships,

as the query below illustrates. This query traverses all the relationships of type WATCHED_

MOVIES and returns the name of those users who marked a movie with zero stars once at

least. The target() operator (equivalent to “*”) and the source() operator would allow

the target and source nodes of a given reference to be obtained.

SELECT DISTINCT source(w).name
FROM WATCHED_MOVIES w
WHERE w.stars = 0

Q6. User names who marked a movie with 0 stars.

Queries and variations When the schema is defined, each of the variations can have their

own identifiers. We used WATCHED_MOVIES~1 above. It would be convenient to define a

notation intended to specify intensionally variations instead of using numeric identifiers.

For example, the following query would only be applied on User variations not having the

favoriteMovies attribute.

SELECT *
FROM User - {favoriteMovies} u
WHERE u.address.city = "Aylesbury"

Q7. Users who have no favorite movies and live in “Aylesbury”.

The query uses an structure-based expression similar to that defined by the research

group in the Deimos language [75] to specify the elements of User that do not have the

given attribute. Finally, other operations related to the management of variations them-

selves, for example, homogenizing all the variations of a given entity type into just one,

are not shown, but are described in the operations defined in the Orion schema evolution

language by the ModelUM research group in [36].
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4.5.2 Database Migrations

Database migration is a typical task in which a unified or generic representation provides a

great advantage. Given a set of m database systems, the total number of migrators required

is m+m instead of m× (m− 1). Here we will describe how U-Schema models can be used

to help migrate databases when the source and target systems are different.

To perform a migration, the source and destination databases have to be specified, as well

the mapping rules that determine how source data are moved to the destination database.

A migration tool usually has to read all the data in the original database, perform some pro-

cessing, and write the resulting data in the destination database. These steps can be carried

out in different ways, that can be simplified by using U-Schema models, as they contain all

the information of entities, attributes, and relationships. Therefore, the U-Schema model

has to be obtained prior to the aforementioned steps.

There are several options when reading the original data. A set of queries could be con-

structed to extract the data guided by its structure (i.e., its schema). The inferred U-Schema

model from the source database can be used to automatically generate those queries. The

queries can produce a set of interchange format files (e.g. JSON or CSV) or can act as a

source feed for a streaming process. Likewise, U-Schema models could automate the data

ingestion procedure using bulk insertion utilities from files, generated insert queries, or

even help to build the ingestion as the last stage of a streaming process.

The next step is to specify and execute the mapping rules between source and destination

elements. The mapping rules introduced in sections 5.2 to 5.6 should be adapted to the

specificities of the migration. For example, an alternate mapping could be devised for

characteristics not present in the destination data model, as was the case we showed with

aggregates in a graph data model in Section 5.2.1. The migration rules could be hardcoded,

or either specified with a ad-hoc language. This language would be defined taking into

account the abstractions of U-Schema. The migration rules would include the U-Schema

source element, the target data model element, and the mappings between the parts that

constitute the source and target elements, similarly to how we expressed the canonical

mappings before.
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4.5.3 A universal schema definition language by using U-Schema

Sometimes it is interesting to create a database schema to be able to perform efficiency

tests before performing a data migration or even starting the development of an applica-

tion where execution time is important. For this reason, it could be interesting to create

a language capable of creating U-Schema models that, together with other data genera-

tion tools such as the one proposed above, can be used to perform performance tests on a

synthetic database. A first version of the U-Schema-based schema definition language is

defined in [35].

4.5.4 Generation of datasets for testing purposes

Automatic database generation is a point of interest in designing, validating, and testing of

research database tools and deployments of data intensive applications. Often, researchers

in the data-engineering field lack of real-world databases with the required characteristics,

or they cannot access them.

Some works have addressed the generation of synthetic data on relational systems, and

some restriction languages have been proposed to this purpose [26, 108]. With U-Schema,

a database paradigm-independent restriction language could be defined to tailor the gen-

eration of data. In this way, a given specification could be used to generate data for dif-

ferent databases. Note that the language constructs would be at the level of abstraction of

U-Schema, and not aligned to elements of any concrete paradigm.

This is of special importance in the case of distributed systems, as most NoSQL deploy-

ments are. In this context, a cost model to evaluate query efficiency is very difficult to build,

given all the variables involved [89]. Generating different sets of data with different char-

acteristics can help fine-tuning application intended queries. For example, just changing

the relationships between the entities of a schema (for example, changing references into

aggregations or vice versa), new data that follows this change could be generated to test the

queries, helping the developers to find opportunities for optimization.

Finally, another advantage of our approach around U-Schema is that in the case of ex-

isting databases, their schema can be inferred into a model, and then used to generate

data that can be for the same or different databases, matching the schema or even intro-

ducing changes, either for performance tuning or for testing purposes. An initial version
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of a U-Schema-based data generation language with the described characteristics is ad-

dressed [75].

4.5.5 Definition of a Generic Schema Query Language

Schema query languages help developers to inspect and understand large and complex

schemas. In the case of relational systems, SQL is used to query schemas represented in

form of tables in the data dictionary. In NoSQL stores, a similar query facility is pro-

vided by some systems that require to declare schemas, for example Cassandra [30] and

OrientDB [96]. In the case of schemaless NoSQL systems, the number of variations can be

very large in some domains, for example 21,302 variations for the Company entity type of

DBPedia are reported by Wang et al. [119]. Using U-Schema, a generic query language could

be defined which would allow querying relationships and structural variations for any kind

of NoSQL store, unlike existing solutions. As far we know, querying variations has been

only addressed in the mentioned work of Wang et al. [119], which focused on MongoDB,

and only suggested a couple of queries to illustrate the idea.

The U-Schema query language allows to query the schema of any type of database system

under a unique language, and even make it possible in scenarios where the data is stored

in different database systems (polyglot persistence). Some examples of the most common

queries that a developer might need are: (i) get an overview of the entities and the rela-

tionships between them, (ii) search variations with a set of properties, (iii) check all shared

properties of all variations of a specific entity. The results of the queries could be displayed

as text or a graphic representation in the form of tables, graphs or trees (hierarchical data).

This is addressed in Chapter 7.

4.5.6 U-Schema Schema Visualization

When schemas are extracted they must be expressed in a graphical, textual, or tabular for-

mat to be shown to stakeholders. Normally, they are shown as a diagram (e.g., ER or UML).

It is possible to take advantage of U-Schema to define common diagrams for logical schemas

taking into account the existence of variations if needed. Moreover, U-Schema could be

mapped to other formats with the purpose of visualizing schemas in existing tools. This is

also addressed in Chapter 7.
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5
Strategies for the Extraction of U-Schema

Models

Once the U-Schema metamodel and its mapping were presented in the previous chapter, we

will describe here the common strategies devised to implement and validate the mappings.

In this chapter, we will first explain how U-Schema models are obtained from NoSQL

databases or relational schemas. Then, a conceptual schema will be presented as a running

example to be used to illustrate the explanations of the following five sections. Finally,

the experiments used to validate the U-Schema model building process will be exposed.

The implementation and validation strategies are common for all the paradigms, but some

stages or experiments are not required in the case of the relational model.

5.1 A Common Strategy for the Extraction of U-Schema Models

As indicated in Section 4.4, in the case of NoSQL stores, applying a forward mapping first

requires inferring the schema that is implicit in the data and code. These schemas conform

to the logical data model abstracted for each NoSQL paradigm. Therefore, U-Schema models

are built in a 2-stage process, as illustrated in Figure 5.1. First, a MapReduce operation is

performed on the database to infer its logical schema. This stage is not needed for the
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relational model. In the second stage, the forward mapping rules are applied to create a

U-Schema model from the previously inferred schema. Next, we explain these two stages.

Figure 5.1: Generic Schema Extraction Strategy.

5.1.1 Inferring the Logical Schema

In the map operation, a raw schema is obtained for each object stored in the database. We

call raw schema to an intermediate representation (JSON-like format) that describes the

data structure of a structural variation: a set of pairs formed by the name of a property and
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its data type. Given an object O stored in the database of an entity type e, its raw schema

is obtained by applying the following 4 rules on the values of its properties pi:

R1 Each value vi of a pi property is replaced by a value representing its type according

to the rules R2 and R3.

R2 If vi is of scalar or primitive type, it is replaced by a value that denotes the primitive

type: "s" for String, 0 for numeric types, true for Boolean, and so on.

R3 If vi is an embedded object, the rules R1, R2, and R3 are recursively applied on it.

R4 If vi is an array of values or objects, rules R2 and R3 are applied to every element, and

the array is replaced with an array of values representing types.

In the case of document systems, where the key is explicitly included in the documents,

the representation of the structure will contain one scalar property with the name _id,

representing the key of the entity type. Additionally, the following rule is applied to infer

references between objects:

R5 Some commonly used conventions and heuristics are taken into account to iden-

tify references. For example, if a property name (with an optional prefix or suffix)

matches the name of an existing entity type and the property values match the values

of the _id property of such an entity. The value of the property is replaced concate-

nating the value indicated in rule R2 with the name of the entity type and the suffix

_ref.

The process is repeated to obtain the raw schemas of the relationship types in the case of

graph databases.

Figure 5.1 shows how the above rules are applied to User andMovie objects of a document

store. A raw schema is obtained for each User object with identical structure, and the same

for Movie objects.

Once the map function is performed, the reduce function collects all the identical raw

schemas and outputs a single representative raw schema for each structural variation of

an entity type, to which we will refer, hereafter, as variation schema. Figure 5.1 shows the
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variation schemas obtained for User and Movie objects. Note that a variation schema will be

generated for each structural variation of the objects.

In the case of graph and key-value systems, a preliminary stage is needed to achieve an

efficient MapReduce processing, as explained in Sections 5.2.2 and 5.4.2.

We decided to build U-Schema models directly from the intermediate representation of

the MapReduce output instead of building specific metamodels for each paradigm, because

U-Schema already contains the abstractions present in each of the individual data models,

and the transformation would have been redundant.

5.1.2 Generating a U-Schema Model

In the second stage, variation schemas are analyzed to build the U-Schema model. For this,

a parsing process is connected to a schema construction process by applying the Builder

pattern [58]. Variation schemas are parsed to identify its constituent parts: properties

and relationships, as well as the entity type (or relationship type) to which they belong.

Whenever the parser recognizes a part, it passes it to a builder that is in charge of creating

the schema. A builder has been implemented for each data model, which captures how

parts are mapped to U-Schema. The same parser is used for all the data models as its input

are variation schemas. In the case of relational databases, only this second stage is needed,

as schemas are already declared.

5.2 Graph Model Schema to U-Schema Models

Each element of the graph model defined above has a natural mapping to a U-Schema

element, with the exception of relationship types, that map to two U-Schema elements:

RelationshipType and Reference. The former represents a type or classifier whose in-

stances are relationships between a pair of nodes, and can have variations based in their

set of attributes, while the latter denotes a particular link between two nodes. Note that

Aggregation and KeyU-Schema elements do not have a direct correspondence to elements

of the graph model. Next, we express the set of rules that defines the Graph to U-Schema

canonical mapping.

R1. A graph schema G corresponds to an instance uS of the uSchemaModel metaclass of
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U-Schema (i.e., a schema or model) with the same name:

uS↔ G ∥ {uS.name = name(G)}

R2. Each different single-label entity type e that exists in G maps to a root EntityType et

in the uS schema, whose name is that of the label associated to e:

et↔ e∥{et.name = name(e), et.root← true}

EntityType instances are included in the uS.entities collection.

R3. Each different multiple-label entity type e that exists in G maps to a root EntityType

et in the uS schema whose name is formed by concatenating the names of the set of n > 1

labels L = {l1, . . . , ln}, and et inherits from each entity type e1, . . . , en that corresponds to

labels in L:
et↔ e ∥ {et.name = concat(L),

et.root← true,

et.parents = set{map(e1), . . . ,map(en)}}

R4. Each relationship type r that exists inGmaps to a RelationshipType rt and a Reference

rf in the uS schema, which are named the same as the label associated to r.

r↔ rt ∥ {rt.name = name(r)},

r↔ rf ∥ {rf.name = name(r)}

RelationshipType instances are included in the uS.relationships collection, and Rule R7

specifies how references are connected to other elements of the U-Schema schema.

R5. Each variation schema v of an entity or relationship type inGmaps to a Structural

Variation sv in the uS schema, which is identified by means of a unique identifier index (an

integer ranging from 1 to |EV| or |RV|). Structural variations are included in the collection

variations that both entity types and relationship types have in a U-Schema schema.

R6. Let Pv be the set of properties of a variation schema v which maps to a Structural

Variation sv. Each property pvi ∈ Pv will map to an Attribute atsvi with the same name,
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which is included in the collection sv.features. The type of the property will map to one

of the types defined in the Type hierarchy defined in U-Schema, and a mapping has to be

specified for each graph store. The property mapping can be expressed as:

pvi ↔ atsvi ∥ {atsvi .name = name(pvi ),

atsvi .type↔ type(pvi )}

R7. Each reference in a U-Schema schema uS has to be connected to other elements of uS.

Let rf be a Reference which maps to a relationship type r according to Rule R4,

i) rf must be linked to the EntityType that maps to the entity type that denotes the

destination nodes for the relationship r: rf.refs_to← map(destination(r)).

ii) Let oe the EntityType of uS that maps to the origin entity type of a relationship type

r in G (oe↔ map(origin(r))), rf will be present in the set of features of the variations

of oe whose nodes are origin of edges that are instances of r.

iii) rf must be linked to the structural variation which features: rf.isFeaturedBy ← sv,

where sv is the StructuralVariation that belongs to the relationship type that

returns map(r,RelationshipType).

iv) The lowerbound cardinality of rfwould be 1 (rf.lowerBound← 1) and the upperbound

cardinality could be 1 (ref.upperBound ← 1) or∞ (ref.upperBound ← ∞) depending

on whether the instances of r in the database (i.e. arcs of type r) have one or more

destination nodes for a given origin node.

5.2.1 Reverse Mapping Completeness

The graph model does not include the Key and Aggregate elements. Next, we provide a

possible mapping for these two concepts.

• Key. Remember that the Key concept in U-Schema refers to those attributes that act

as an object key or the set of attributes that form part of a reference to another object.

As references between objects (nodes) in graphs are explicit in arcs, there is no need

to include key information into the graph schema. However, that information could
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be included in the nodes, for example, using a special _keys property holding the set

of properties that act as key.

• Aggregate. An Aggregate ag that belongs to a particular StructuralVariation sv,

where ag.aggregates is the aggregated variation av, could be mapped to a relationship

type whose name is ag.name adding the prefix AGGR_, its origin entity type being

sv.container, and its destination entity type being av.container. Origin and destina-

tion entity types should be created if they do not exist in the graph schema. Also,

properties of av should be mapped using rules R2 to R7, as well as this rule (if an

aggregate is part of the properties of av). Figure 5.1 shows an example JSON docu-

ment of an U-Schema entity type Person that aggregates an object of the entity type

Address. Figure 5.2 illustrates the reverse mapping where a relationship type named

AGGR_address_address1 connects a Person and Address nodes (we suppose that

the aggregated variation identifier is 1.)

Person:
{
name: "Diego",
address: {
street: "Espinardo Campus",
number: 2

}
}

Listing 5.1: Person with Address Aggregate.
Figure 5.2: Person Aggregates Address in Neo4j.

5.2.2 Implementation and Validation of the Forward Mapping for Neo4j

A slightly revised strategy to that described in Section 5.1 has been applied to implement the

forward canonical mapping for Neo4j. We chose this store because it is the most popular

graph database.* It is schemaless and fits into the labeled property graph data model.

The strategy had to be revised because graph databases usually do not offer facilities

to efficiently process the whole graph, and sometimes they even fail because of lack of

resources. So we devised a preliminary stage that serialized the graph obtaining all the

*DB-Engines Ranking https://db-engines.com/en/ranking, (May, 2022).
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nodes along with their outgoing relationships. Of each arch, the data included the source

node with its properties, the properties of the arc, and the ID of the destination node. We

modified the map operation of the generic strategy to construct all the raw schemas for

nodes and edges with this serialization format. The serialization was organized in batches

by using Spark Neo4j connector [109]. This way, an efficient schema extraction process was

achieved. The reduce operation did not need any modification from that described in the

generic strategy, generating variation schemas for both entity and relationship types from

nodes and arcs, respectively.

The process finalizes with creating the U-Schema model by applying the mapping rules

to the previous output (i.e. the logical graphmodel). The resulting schema for the User Profiles

running example is shown in Figure 5.3. We also show the union schema in Figure 5.4.

The two experiments introduced in Section 5.7 were successfully carried out on the Neo4j

database created for the running example and a Movies dataset available at the Neo4j web-

site.†

Regarding scalability and efficiency of the model creation process, Table 5.2 show that

the relative times with the reference query decrease as the size of the database increases.

Neo4j, jointly with MongoDB show the worst ratio cases. This is because the query (average

of watched movies by user) is, by chance, easily optimized by the database. In any case, as

the database grows, the factor is never beyond 10x.

5.3 Document Model Schema to U-Schema Models

5.3.1 Canonical Mapping between Document Model and U-Schema

Each element of the document data model defined above has a natural mapping to a U-Schema

element. Next, we present the rules for the canonical mapping.

R1. A document schema D corresponds to an instance uS of the uSchemaModel metaclass

of U-Schema (i.e., a schema or model) with the same name:

uS↔ D ∥ {uS.name = name(D)}

†Movie database, Neo4j website: https://neo4j.com/developer/example-data/.
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Figure 5.3: User Profiles Complete Schema for Graph Stores.

R2. Each entity type e that exists in D maps to a root EntityType et with the same name:

et↔ e∥{et.name = name(e), et.root← true}
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Figure 5.4: User Profiles Union Schema for Graph Stores.

uS.entities holds the set of instances of EntityType.

R3. Each variation schema v of e corresponds to a StructuralVariation sv of et in the uS

schema, which is identified by means of a unique identifier index (an integer ranging from 1

to |EV|). Each property pvi of v will be mapped according to rules R4–R6.

sv↔ v ∥ {sv.variationId = idgen(), sv.features↔ properties(v)}

StructuralVariation instances are included in the collection et.variations.
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R4. If pvi is an attribute,

i) it will map to an Attribute atsvi with the same name, which is included in the collec-

tion sv.features. The mapping is the same as that defined in Rule R6 of the mapping

between the graph model and U-Schema.

ii) Additionally, if the attribute is the key of the entity type, a Key instance also exists

in sv.features and is connected to the corresponding attribute atsvi .

R5. If pvi is an aggregate that has a set of n properties Gv = {gvi }, i = 1..n, it will map to

three elements in the U-Schema model:

i) A non-root EntityType nr with the same name but capitalized and stemmed (func-

tion name∗()), which is included in the collection uS.entities:

nr↔ pvi ∥ {nr.name = name∗(pvi ), nr.root← false}

ii) A StructuralVariation instance av included in nr.variations, and each property gvi
is mapped recursively according to rules R4 to R6:

av↔ pvi ∥ {av.features↔ Gv}

iii) An Aggregate agwith the same name as the property, which is included in sv.features.

This aggregate ag is connected to the structural variation av that it aggregates. The

mapping would be:

ag↔ pvi ∥ {ag.name = name(pvi ), av ∈ ag.aggregates}

The cardinality of ag would be established as indicated in Rule R7-ii of the mapping

between graph models and U-Schema models.

R6. If pvi is a reference, it corresponds to two elements of the U-Schema model:

i) A Reference rf with the same name, which is included in sv.features. The mapping

is the same defined in Rule R7 of the mapping between graph models and U-Schema

models.
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ii) An Attribute at according to the mapping expressed in Rule R4-i, and at and rf ap-

pear connected in the uS schema: at exists in rf.attributes and rf is part of at.references.

5.3.2 Reverse Mapping Completeness

The only element of U-Schema that is not directly supported by the document model is the

RelationshipType. RelationshipTypes have structural variations, and some References

can specify (via its isFeaturedBy property) to which StructuralVariation of a Relation-

shipType they belong.

Given a RelationshipType rt in a U-Schema model, the reverse mapping for documents

would map to an entity type e whose name is rt.name + _REF. Each variation of rt will

correspond to a variation in e, applying mapping rule R3 (i.e., each Attribute in rt maps

to an attribute of the corresponding variation of e). A reference property p will exist in

all the variations of e that will map with rule R6. Then, each Reference rf that belongs

to a StructuralVariation v of the entity type et to which origin(rt) maps, where ro is

the relationship type such that ro = map(rt), and whose isFeaturedBy is a variation vt in

rt.variations, will map to a reference property r named name(e) + _ref by applying rule R6.

rf↔ r∥{rf ∈ v.features,

et↔ origin(rt),

v ∈ map(et).variations,

vt = rf.isFeaturedBy,

vt ∈ rt.variations,

r.name← name(e) + _ref}

Figure 5.5 illustrates the application of the reverse mapping explained above for a U-Schema

model containing a RelationshipType for the watchedMovies relationship type of the run-

ning example. It can be appreciated how the document schema would contain an entity

type named WatchedMovie_REF, which has a structural variation for the single Structural

Variation of the RelationshipType that exists in the U-Schema schema. That variation

is connected to the attributes named stars and movie_id. Also, there exists a reference to

the entity type Movie, and a reference and attribute named watchedMovie_REF are present
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// User Collection
{

name: "Brian",
...
watchedMovies: [ 978 ]

}

// WatchedMovie_REF Collection
{

_id: 978,
stars: 3,
movie_id: 202

}

// Movie Collection
{

_id: 202,
title: "The Matrix"
...

}

Figure 5.5: Example of Application of the Reverse Mapping from a RelationshipType of U-Schema to a
Document Schema.

in the structural variations of the origin entity type (User in our example). The reference

will connect the User objects with the WatchedMovie_REF objects.

Some document systems provide the dbref construct to record references between doc-

uments, which can include fields. In these systems, the document data model shown in

Figure 2.5 could be extended to consider that references can have attributes. Then, the

document model would include all the U-Schema elements, as it would also support rela-

tionship types.
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5.3.3 Implementation and Validation of the Forward Mapping for MongoDB

Once the output of the MapReduce described in Section 5.1 is produced, i.e., the set of varia-

tion schemas, the generation of the U-Schema model is achieved by following the mapping

rules described above. The only remarkable aspect is that while the root entity types are

discovered by the MapReduce process, aggregated entity types reside unfolded inside the

variation schemas. It is needed to recursively process all the aggregated objects to build the

non-root EntityTypes and match the properties to identify the StructuralVariations.

The schema that would be inferred for the running example is shown in Figure 5.6 and

the union schema in Figure 5.7.

The common validation strategy of Section 5.7 was successfully applied in MongoDB,

with a database created for the running example, and with the EveryPolitician dataset‡.

As with Neo4j, MongoDB shows worse ratio cases than with other two database imple-

mentations, as shown in Table 5.2. Again, this may be caused by the chance that the query

benefits by some optimizations built in the database. The ratio also goes down as the size of

the database doubles, with the exception of the Small and Medium times, that are similar

(17.58x and 17.71x). The ratio then goes down from around 18x to 10x for the biggest case.

5.4 Key-Value Model Schema to U-Schema Models

The mapping between U-Schema and Document model would be applicable for K/V, the

only exception being that Rule R4-ii should be removed, and a new rule has to be added

because the notion of key is different in this data model.

R7. Each StructuralVariation sv in the U-Schema model contains a Key instance k in

sv.features whose value of k.name is _id, and it is not connected to any Attribute.

5.4.1 Reverse Mapping Completeness

The same reverse completeness mapping rules exposed in Section 5.3.2 for the document

model are applicable in this case.

‡Available at http://docs.everypolitician.org/.
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Figure 5.6: User Profiles Complete Schema for Document Stores.

5.4.2 Implementation and Validation of the Forward Mapping for Redis

Redis has been used for the implementation and validation of the general strategy applied

for key-value stores. Redis is the most popular key-value database§.
§As shown in https://db-engines.com/en/ranking. Redis appears in the 6nd position (May, 2022).101
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Figure 5.7: User Profiles Union Schema for Document Stores.

A preliminary stage is performed to join all the properties of each entity variation. To

do this, a simple MapReduce operation is performed over the database assuming that prop-

erties are encoded using the flattened object-key pattern. Spark [109] was used to implement

this stage. First, every database pair is mapped to a new pair whose key is the name of the

entity type along with its identifier, and the value is formed by the property’s name and

its type. Then, the reduce operation joins all pairs of objects that belong to the same object.
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The result is a set of JSON objects that are similar to those stored in a document database.

Now, the two stages of the common strategy are performed: a MapReduce processing to

obtain the set of variation schemas, followed by the generation of the U-Schema model,

which is similar to the document model with the exception of the key generation using the

rule R7.

The schema extracted for the running example is the same as for documents, shown in

Figure 5.6. The union schema is shown in Figure 5.7.

The schema extraction process was validated using a database built for the running ex-

ample, as well as using a real-world dataset. The same EveryPolitician dataset used with

MongoDB (Section 5.3.3) was inserted into Redis.

The performance of the Redis schema inference process implementation versus the query

gets better than in MongoDB or Neo4j. This is because the query itself has to process the

whole database, as Redis does not include a query language. Note also that in absolute times,

the Redis implementation is the slowest, which confirms that the calculation of an aggre-

gate value is not an appropriate operation for a K/V store. As in previous implementations,

the ratio goes down from 11.46x to 5.76x as the database doubles.

5.5 Columnar Model Schema to U-Schema Models

In the case of columnar stores, the canonical mapping would be the same as the one de-

fined for document stores. Relationship type would be the only element of U-Schema not

included in the columnar model.

5.5.1 Reverse Mapping Completeness

The data model for columnar databases includes the same abstractions than those estab-

lished for the document data model. Thus, the reverse mapping rules are the same to those

introduced in Section 5.3.2. Only relationship types do not have a direct mapping to the

model, and the same approach used in documents can be implemented: the new entity type

with a name convention to hold the structure residing in the references, and the reference

itself on the origin entity type variations.
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5.5.2 Implementation and Validation of the Forward Mapping for HBase and Cassandra

We implemented the forward mapping for Hbase and Cassandra. In the case of HBase, we

applied the common strategy of Section 5.1, with the MapReduce operation identifying the

default and aggregated column families, and building the variation schemas. In the case of

Cassandra, the API was used to retrieve the database schema, and then build the U-Schema

model.

Validation was carried out as described in Section 5.7. A database was created for the

running example, and the same EveryPolitician real world dataset used in MongoDB and

Redis, introduced in Section 5.3.3, was injected into Hbase and Cassandra.

Figures 5.6 and 5.7 show the variation schemas obtained for the running example, which

are the same for all the aggregation-based stores.

As shown in Table 5.2 and Figure 5.8, Hbase shows the best performance of the infer-

ence regarding the ratio relative to the aggregated query. As with all systems, with a slight

difference in the two bigger databases (1.8x to 2.04x), the ratio decreases as the size of the

database increases. This confirm the scalability of the schema extraction approach. HBase,

like Redis, is specialized in fast random-access queries, but the aggregated query has to pro-

cess most of the database, making the times very close to the full process of the database

performed in the schema extraction. Thus, ratios go from just 6x slower to around 2x slower

in the case of the Larger databases.

The performance of building the Cassandra model was not recorded as no inference pro-

cess is required because the schema is already declared.

5.6 Relational Model Schema to U-Schema Models

The relational model is completely integrated in U-Schema, but the latter has the Aggregate

element which is not present in relational schemas. Moreover, all the tuples have the same

structure, so that the number of structural variations for an entity type is limited to one.

Next, we expose a set of rules that specify the canonical mapping between relational and

U-Schema models. We will use the terminology of table data models. R1. A relational

schema D corresponds to a uSchemaModel instance uS in U-Schema (i.e., a U-Schema
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model) with the same name:

uS↔ R ∥ {uS.name = name(R)}

R2. Each table t in R representing an entity type maps to two elements of uS: a root

EntityType et with the same name, and a StructuralVariation sv that represents the

only structure of the table that exists in the database. An identifier is generated for the

variation sv and its features are mapped to the columns of the table t by applying the rules

R4 to R6. This mapping can be expressed as follows:

et↔ t ∥ {et.name = name(t), et.root← true},

sv↔ t ∥ {sv.id← idgen(), sv.features↔ columns(t)}

EntityType instances are included in uS.entities and sv is included in et.variations.

R3. Each table r in R representing a relationship type maps to two elements of uS: a

RelationshipType rt with the same name, and a StructuralVariation sv that repre-

sents the only structure of the table that exists in the database. The mapping between r and

sv is solved as in rule R2.

rt↔ r ∥ {rt.name = name(r)},

sv↔ r ∥ {sv.id← idgen(), sv.features↔ columns(r)}

RelationshipType instances are included in uS.relationships and sv is included in et.variations.

R4. Each column c of a table t is mapped to an Attribute at with the same name, and the

data type of the column will map to one of types defined in the Type hierarchy of U-Schema

(a mapping between types has to be specified for each relational system.) The mapping can

be expressed as follows:

at↔ c ∥ {at.name = name(c), at.type↔ type(c)}

Attributes of an EntityType et are included in the collection sv.features, where sv is the

only structural variation that et has.

R5. The primary key pk of a table t is mapped to a Key k and the collection k.attributes
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includes the attributes that maps to the columns that form pk. The name of k is the name

of the attribute (if there is just one), or t.name+ _pk otherwise (pkname() function):

pk↔ k ∥ {k.name = pkname(pk), k.attributes↔ columns(pk)}

For each attribute at ∈ k.attributes, at.key = k. k is also included in sv.features.

R6. Each foreign key fk of a table t to a table s = target(fk) is mapped to a Reference rf,

and the collection rf.attributes includes the attributes that map to the columns that form fk.

The name of fk is the name of the attribute (if there is just one), or s.name + _fk otherwise

(fkName() function). The reference rf is included in sv. It also refers to the entity type that

maps to the target table s:

fk↔ rf ∥ {rf.name = fkName(fk), rf.attributes↔ columns(fk),rf.refsTo = map(s)}

5.6.1 Reverse Mapping Completeness

The U-Schema elements that are not present in the relational model are Aggregate, and

(multiple) StructuralVariation. Next, we describe some possible mappings for these

elements.

• The canonical mapping only takes into account a StructuralVariation per schema

type (resp. table). If an schema type has several StructuralVariations, then two

possible alternatives are: (i) mapping each variation to a table with a distinctive nam-

ing scheme, and (ii) mapping all variations to a single table where the columns result

of the union of the set of properties of each structural variation. In the latter case, the

tuples of the table will have NULL values in the columns not corresponding to their

structural variation. Obtaining the different entity variations from a table would

require the analysis of all the tuples to register all the different set of non-NULL

columns. This could be carried out with a similar operation to the MapReduce de-

scribed in the common strategy of Section 5.1.

• Each Aggregate ag in an StructuralVariation sv of a given EntityType et could

be mapped to elements of the relational model also in several ways: (i) an additional
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table t with the name of the aggregate ag.name and the columns mapped to proper-

ties in the StructuralVariation ag.aggregates using rules R4 to R6. A foreign key

column is added to t, and a primary key to the table mapped to et. (ii) If the aggre-

gate cardinality is one-to-one, the attributes of the ag.aggregates variation could be

incorporated into the table that maps to et. The aggregation relationship between

User and Address in the running example schema has been mapped using the second

alternative, as shown in Figure 2.9.

5.6.2 Implementing and Validating the Relational Schema Extraction Process

In the case of relational databases, it is not necessary to infer schemas: U-Schema models

can be obtained from relational schema declarations. We chose MySQL to implement the

set of rules exposed above for the relational to U-Schema mapping. Rule R3 cannot be

applied as the schema does not distinguish between relationship and entity tables. This

information could be provided, for example, through name conventions, which could also

be used to specify aggregation tables.

The model generation process is straightforward, and it works following the described

mapping rules. First, R1 is applied to create and name the model, then an EntityType

and a StructuralVariation are created for each table (R2). An Attribute is created

for each column of a table (R4). Next, Keys are created for primary keys in tables, which

will have references to Attributes that have been instantiated previously for the columns

that are part of the primary key (R5). Finally, References are created for foreign keys in

tables, and each Reference will be connected to elements previously created according to

the U-Schema metamodel (R6).

The validation has been performed on the Sakila database available at the MySQL official

website¶. Sakila contains 16 tables, and the average numbers of columns and references

between tables are, respectively, 5.6 and 1.4. The smallest table has 3 columns, and the

biggest one 13 columns. We have checked the correction of the U-Schema model generation

by comparing the model obtained with the information on the database available at the

MySQL website (SQL creation files and official diagrams). In the study of performance

¶Sakila can be downloaded from https://dev.mysql.com/doc/index-other.html, and documenta-
tion is available at https://dev.mysql.com/doc/sakila/en/sakila-structure.html.
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and scalability, as with Cassandra, relational databases have not been considered because

schemas are already available.

5.7 Validation of the Schema Building Process

To validate our schema building process, we have applied the same validation for the four

kinds of NoSQL paradigms. For each system, we used two databases, a synthetic one based

on the running example, an a real dataset. In each one of them, two experiments were car-

ried out: (i) a round-trip strategy to check that the obtained U-Schema model is equivalent

to the schema used to synthesize the database or the schema of the real existing database;

and (ii) two queries are issued on the real and synthesized databases to assure that at least

a data object exists for each inferred structural variation (all variations exist query)

and that the extraction process correctly calculates the number of data objects of each vari-

ation (correctness count query). In the case of the relational model, only the second

experiment is performed, as only the canonical forward mapping must be implemented,

because there is no need to infer the logical model of the database.

The round-trip experiment consisted in the following steps. First, we manually created

a U-Schema model (i.e. a schema) with the desired database structure (or the existing struc-

ture in the case of the real database). The running example model covers all the elements

that can be mapped into the logical data model of the corresponding paradigm, but this

may not be the case for the real dataset. To populate the initial running example database,

we randomly created elements according to the defined model. Afterwards, we inferred

the implicit schema, and finally verified that this schema was equivalent to the original

U-Schema model: the resulting model can differ in the ordering of the different variations

found for each entity or relationship type, this is why in this case we could not use standard

model comparison tools, so we built a custom U-Schema model compare utility.

To evaluate the scalability and performance of the U-Schema model building algorithms,

we have generated four datasets of different size for the running example. The larger

database contains 800,000 objects for the User and Address entities, 400,000 forMovie, and a

mean of 20 watched movies and 20 favorite movies. User and Address have the same number

of objects in each of their variations. The rest of datasets reduce the number of objects and

relationships in a factor of 2, 4, and 8, as shown in Table 5.1.
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Figure 5.8: Inference to Query time ratio.

Size/Item User Movie Watched/Favorite Movies Nodes Relationships

Larger 800k 400k 20/user 2,000k 24,800k
Large 400k 200k 10/user 1,000k 6,400k
Medium 200k 100k 5/user 500k 1,700k
Small 100k 50k 3/user 250k 550k

Table 5.1: Database Sizes.

All the performance tests were run on an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

with 48 GB of RAM and using SSD storage. To give a meaningful expression of the scal-

ability of the schema inference process, instead of comparing absolute times, we used as

a time baseline an aggregate query that calculates the average of watched movies by users.

This query could be representative of those obtaining periodic reports, so we suppose that

the database is not optimized for it. In this way, we can get results that are independent of

the different configurations in the deployment. Table 5.2 show the different times for the

queries, schema inference, and the normalized value (inference time divided by query time)

for the database sizes in Table 5.1. Figure 5.8 shows a diagram with the normalized value

for each kind of database. We expected the ratio to diminish as the size of the database

increases, as the initialization time of the MapReduce framework becomes smaller with

respect to the total inference time. Moreover, in all cases the ratio stays in the range of

17.58x (MongoDB, smaller case) to 2.04x (HBase, biggest case), and for the biggest case, the
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DB Small Medium Large Larger

Neo4j Query (ms) 686 1,213 3,165 12,016
Inference (ms) 11,821 20,177 41,814 109,724
Normalized 17.23 16.63 13.21 9.13

MongoDB Query (ms) 295 380 840 2,366
Inference (ms) 5,187 6,730 10,226 23,452
Normalized 17.58 17.71 12.17 9.91

HBase Query (ms) 931 1,942 6,419 24,023
Inference (ms) 5,615 6,840 11,526 49,042
Normalized 6.03 3.52 1.80 2.04

Redis Qyery (ms) 1,002 2,833 10,091 43,888
Inference (ms) 11,487 22,013 61,505 252,794
Normalized 11.46 7.77 6.10 5.76

Table 5.2: Times for inference and queries for all the database implementations.

inference reaches a maximum of about 10x slower (MongoDB). This is expected as the query

only has to process a part of the database while the inference treats the whole database.

With the extracted U-Schema model, we build a set of queries on the databases to per-

form the second experiment:

1. All variations exist The database must store, at least, a database object for each entity

type variation (and relationship type variation in the case of a graph store) present

in the extracted U-Schema model.

2. Count correctnessNo other variations are present in the database, i.e., the total num-

ber of objects in the database matches the sum of objects that belong to each struc-

tural variation of the entity types present in the extracted model (count attribute in-

cluded in the StructuralVariation metaclass of the U-Schema metamodel.) Also,

this check would be performed for relationship type variations in the case of graph

stores.
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6
Extracting U-Schema logical schemas from

code of database applications

Strategies to discover schemas from stored data were addressed in Chapter 5.But schemas

can also be extracted from code of applications accessing databases. In this chapter, a code

analysis strategy that extracts U-Schema models will be presented. Throughout the chap-

ter we will explain the model-driven reverse engineering process devised to implement that

strategy: the chain of transformations, the involved metamodels, and the testing of each

transformation. We have taken advantage of the extracted information in our reverse engi-

neering process to tackle the automation of a refactoring, in particular, the removal of join

queries to improve the performance. Finally, we will show the validation of the schema

extraction and refactoring processes.

6.1 Overview of the approach

This section is devoted to outline the approach. A example of operation on a document

store will be used to illustrate the information to be discovered in the code analysis to

obtain the logical schema and automate the join removal refactoring.

In document stores, semi-structured objects are stored in collections, and each object
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stored has a JSON-like structure: an object consists of a set of fields that are name and

value pairs, where the value can be a primitive type value, an array of objects, or another

embedded object. For example, Figure 6.1 shows user and movie objects of a document

store that registers information about a streaming service, such as subscribed user data

that includes personal data and a list of movies they have watched. User objects have the

watchedMovies field that hold an array of embedded objects that have three fields: _id

that records the identifier or key, movie_id that contains the identifier of the watched

movie (i.e. a reference), and starts that holds the score given by the user to the watched

movie.

// User Collection
{
name: "Brian",
surname: "Caldwell",
email: "brian_caldwell@gmail.com",
watchedMovies: [
{
stars: 7,
movie_id: 202

},
{
stars: 10,
movie_id: 303

}
]

}

// Movie Collection
{
_id: 202,
title: "The Matrix"
director: "The Wachowskis"

},
{
_id: 303,
title: "The Godfather",
director: "Francis Ford Coppola"

}

Figure 6.1: Users and Movies objects in the “streaming service” store.

1. user = db("Users").query(name == "Brian")
2. movie = db("Movies").query(

_id == user.watchedMovies[0].movie_id)
3. if (user.watchedMovies[0].stars >= 5)

println user.name+user.surname+user.email
println "Last watched movie:"
println movie.title+user.watchedMovies[0].stars

Listing 6.1: Pseudo-code of the FWM database operation.

Listing 6.1 shows an example of pseudo-code of an operation on the “User Profiles Run-

ning Example” store. We refer this script as “First-Watched-Movie” (FWM), and consists

of three statements. First, a query selects an user by name, after a join query retrieves the

first movie the selected user watched, and then if the user scored that movie with a number
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of stars greater or equal than 5 the following information is printed in the console: the full

name of the user, and the title and number of stars of the retrieved movie.

To ease the code analysis, a more abstract representation is obtained from the AST pro-

vided by a parser. We have defined a representation formed by a model that expresses the

control flow, and whose nodes and edges are linked to the elements of another model that

represents code at the level of an abstract syntax. First, the source code will be injected into

a Code model, and the Control Flow model is obtained by analyzing the Code model, as

described in Section 6.2. Extracting the logical schema and automating database refactor-

ings requires to discover the data physical structure and the CRUD operations applied on

the data. This information is captured in the DOS model, which is obtained by traversing

the control flow model, as explained in Section 6.3. More specifically, the traversal should

visit statements to find the following elements:

• Data containers (e.g., collections in document stores or tables in relational or colum-

nar databases). They could be identified in the analysis of CRUD operations, e.g. the

argument of calls db() in queries of the FWM example.

• Structure of objects stored in a particular container, i.e. a set of properties formed by

a name and type pair. Properties are discovered from the object’s fields. Fields can

be found in expressions that use dot notation to access to fields of an object that a

variable holds, e.g., user.name or movie.title.

• Variables holding database objects. They are discovered by analyzing expressions such

as method invocations, assignments, and arguments. For instance, user and movie

variables would be detected in the assignments of the statements 1 and 2 in the FWM

example.

• Types of the properties. They can be primitive, collection (e.g. array or list), aggre-

gate, or reference. Primitives types could be found from expressions such as assign-

ments or conditions, e.g., name == Brian. An array type from expressions accessing

to array elements by indexing, For instance, the analysis of user.watchedMovie

[0].movie_id would identify that the watchedMovies property of users is an array.

In that expression, it would also be detected that the elements of the array are ob-

jects that have the movie_id property. Therefore, the type of watchedMovies would
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be an array of an aggregate type named as the field but singularizing. We will use

the non-root entities to distinguish aggregate entities from those that correspond to

containers, user and movie in the example.

• CRUD operations. They will be detected by identifying calls to operations of a par-

ticular API to manage databases. In the FWM example, assuming that the query()

method is used to issue a read operation on the store indicated by the argument of

the db() method, two Read operations would be detected in the statements 1 and 2.

• Reference and Join queries. When the condition of a query includes a equality check

between the object identifier field and another field of a previously retrieved object,

that query is identified as a join query. Thus, the field of the another object would

a reference, and a reference type would detected for the corresponding property. In

our example, the query on movies (statement 2) would a join query, and the type of

the movie_id property would be a “Reference to Movie”.

Figure 6.2 shows the information that the DOS model would have in the case of the

pseudo-code of the FWM example. The data physical structure appears at the top of the

figure, and the queries at the bottom. Note that the type of the fields surname and email

of User, and title and director of Movie would not be identified from the pseudo-code,

and the type String would be assigned by default, as they appear in print statements. In

our approach, the data physical schema is transformed into a logical schema represented in

the U-Schema generic metamodel, as explained in Section .

The DOS model may also be used to detect candidate database refactoring. We will illus-

trate this usefulness by addressing the join query removal refactoring. A join query involves

four elements: a source container, a target container, a query on the source container, and

the condition on the join query that selects the object of target container. Removing a join

query is possible if the properties of the target entity are copied (duplicated) into the source

entity. In this way, the query on the source container is enough to retrieve all the necessary

information. Not all the properties of the target entity should be copied but those that are

accessed in the code that follows the join query. In our example, the title field should be

copied into WatchedMovie objects but not the director field, as the statement that follows

the query contains the movie.title expression but not movie.director.
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Figure 6.2: Entities and Queries extracted for the FWM example.

Therefore, a code analysis is here proposed to discover the data to be duplicated for each

join query, as described in Section 6.4. For achieving this, the list of join queries is iterated,

and for each of them the statements that follow it are inspected to discover the fields to be

copied. This analysis provide to database administrators additional information that can

help them to select what join queries should be eliminated such as: the source and target

container, the join query, the original and modified query on the source container, number

of lines where the retrieved data is used, and other queries on the two containers involved in

the join in order to the administrator can check how often the duplicated data are updated.

All the information obtained in this code analysis is called a “join query removal plan.”

Like any schema change operation, the data duplication associated to a join query re-

moval refactoring would entail to update the schema, database, and application code. We

have automated this refactoring as follows: (i) the logical schema is changed to add dupli-

cated attributes from the referenced entity to the referencing entity, (ii) the database is

updated by adding the duplicated fields to all the referencing objects, and (iii) the code is

rewritten to remove the join query, and change statements accessing to duplicated fields

to directly access to the object with data duplicated. In the case of the FWM script, (i) the

title attribute would be added to the WatchedMovie entity type in the schema, this is imple-
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mented as an operation on the U-Schema model. (ii) the watchedMovies array of each user

object is updated, so that each existing object is replaced by another one having the title

field of the referenced movie, and (iii) the FWM script would be rewritten as shown in

Listing 6.2.
1. user = db("Users").query(name == "Brian")
2. if (user.watchedMovies[0].stars >= 5)

println user.name + user.surname + user.email
println "Last watched movie":
println user.watchedMovies[0].movie_title

+ user.watchedMovies[0].stars

Listing 6.2: Pseudo-code updated when join query is removed.

Figure 6.3 shows the sequence of stages of the strategy outlined above. Code is injected

in a Code model from which a Control Flow model is obtained. This model is analyzed

to generate the DOS model, which is the input to two processes: the transformation that

generates the logical schema and the analyzer that generates join query removal plans. These

plans are provided to administrators who choose what plans should be applied. Finally,

schema, database and code are updated for each selected plan.
1 const MongoClient = require("mongodb").MongoClient;
2
3 const url = "mongodb://modelum.es/db:27017";
4 const dbName = "streamingservice";
5
6 const client = new MongoClient(url);
7 client.connect(err => {
8
9 client.db(dbName).collection("users").findOne(

10 { name: "Brian" }, (err, user) => {
11 client.db(dbName).collection("movies").findOne(
12 { _id: user.watchedMovies[0].movie_id },
13 (err, movie) => {
14 if (user.watchedMovies[0].stars >= 5) {
15 console.log(user.name + " " + user.surname);
16 console.log(user.email + " Last watched movie:");
17 console.log(movie.title + " " + user.watchedMovies[0].stars);
18 }
19 });
20 });
21 });

Listing 6.3: JavaScript code for the pseudo-code in Listing 6.1 (data stored in MongoDB).

Listing 6.3 shows the FWM pseudo-code is expressed in JavaScript in order to be used

as running example in the following sections. We will suppose that MongoDB is the ac-
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Figure 6.3: Overview of the U-Schema extraction and join query removal approach.

cessed document store. Code from lines 1 to 7 initializes the client variable that holds the

connection from the client side to a MongoDB database. In line 9, starts the code that corre-

sponds to the pseudo-code in Listing 6.1. It is expressed as a findOne() query issued on the

Users collection, which has two arguments: the condition and a code block (i.e, a lambda

expression) whose argument is the object returned by the query. That code block includes

another findOne() query issued on the Movies collection. In this nested findOne(), the

first argument establishes the join condition, and the second one is a code block contain-

ing an if-then statement whose code block is a sequence of three console.log statements.
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Therefore, we have a nesting of three code blocks.

6.2 Obtaining an abstract representation of the code

In this section, we will explain how the source code to be analyzed is represented by means

of the Code and Control Flow metamodels.

6.2.1 From source code to Code models

Instead of using the abstract syntax tree (AST) of the source code, we have defined the

Code metamodel to represent the code in a more abstract form that is independent of the

concrete syntax. An excerpt of this metamodel is shown in Figure 6.4, which includes the

main concepts and relationships of the object-oriented languages, and covers the Javascript

statements to be considered in our work. The decision of creating this metamodel is in

accordance with the idea of building an abstract syntax’s metamodel to create software

languages [57, 61, 117]. In the definition of the Code metamodel, we had in mind the Java

MODISCO [25] metamodel, and, to a lesser extent, by the Code package of KDM [68]. It

should be noted that the metamodel was not designed for a particular object-oriented lan-

guage but the specificities of the language are added as a separated metamodel.

Figure 6.4: Excerpt of the main elements of the Code Metamodel.

Next, we will describe the Code metamodel to understand how Control Flow models are

obtained. The code metamodel contains 55 metaclasses to represent JavaScript code, which

includes the main concepts and relationships of the language abstract syntax. A Code model

represents an executable piece of code as an Javascript script or program. It aggregates Con-
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tainers, global variable declarations (VariableDecl), a set of exceptions (Exception), and Types

that can be primitive types or classes, and a set of different types of code managing contain-

ers (Container): packages, nameSpaces, folders, and files. A container represents structures

containing scripts or classes such as packages, namespaces, folders, and files. Containers

can be nested and they aggregateCodeContainers that, in turn, aggregate code blocks, classes,

and variable declarations. A CodeBlock has a ordered list of Statements, as conditional selec-

tion or loops, and also records local variable declarations. Figure 6.4 shows the main kinds

of statements of code metamodel, the metaclasses related with variables in figure 6.5 and

those related with statements in figure 6.6. Figure 6.4 also shows shows the statements that

appear in the running example: conditional selection, method call, variable access and ex-

pressions to create objects. A special kind of code block is CallableBlock: code blocks that

are invoked to be executed such as methods, functions, constructors and lambda expres-

sions. There are four kinds of callable units (CallableBlock): functions, methods, lambda

expressions, and constructors. A CallableBlock is a subclass of CodeBlock. Javascript code

statements are represented as subclasses of Statement such as: Loops, function Call, Assign-

ment, conditional Selectionwith IF and Switch subclasses, and exception handling (Try, Catch,

Throw).

Figure 6.5: Excerpt of the variable related metaclasses of the Code Metamodel.

Figure 6.5 shows some of the metaclasses that manipulate variables, there is some variable
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specializations like. A Variablewill be local to a block if it belongs to a CodeBlock, Global

if it belongs to a Code, Parameter (Figure 6.6) if it is the parameter of a CallableBlock or

Attribute if it belongs to a CodeContainer class. There is also Constant for constants.

A CodeBlock has a set of Statements. In Figure 6.5 we can find VariableAccess to

represent the access to a variable, PropertyAccess for the access to a property (Property)

of an object (DataContainer), ArrayAccess (not shown in the diagram) for accessing an

array position and VariableDecl for new variable declarations. For the assignments we

can find Assign for the assignment of values  represented as DataProducer (not shown in

the diagram) to variables, PropertyAssign for the assignment of values to object proper-

ties. Another example of DataProducer is Operation from which different metaclasses

inherit for mathematical expressions or string manipulation. For conditional expressions,

one of the classes that inherit from ConditionalExpression is used, the diagram shows

Expression that can contain a set of ConditionalExpressions.

Figure 6.6: Excerpt of the Statements metaclasses of the Code Metamodel.

Figure 6.6 shows the main metaclasses of Statements. Among them we find Try, Catch,

Finally and Throw for handling exceptions (Exception). Loop for the different types of

loop (they are all represented with the same metaclass), Loop contains a set of LoopPart

to indicate the different parts of a loop such as the condition, the updater or initialization.

A similar case is Selection which is used to represent conditional statements as ifs or
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switchs, a Selection has a set of Cases for indicate each of the possibilities and each one

has an associated ConditionalExpression. To the right of the figure we find the represen-

tation of the elements that can be called (such as functions, arrow functions, anonymous

functions, procedures or methods). A CallableBlock has a set of Parameters to indicate

the parameters and when a call is made with Call it is possible to specify the value of those

parameters with Argument.

Code models are obtained (injected) from the AST provided by a parser. At the present,

we have built an injector for Javascript, and the chosen parser was Esprima*. This parser

provides the AST in form of a set of JSON documents. Therefore, we defined and imple-

mented a mapping between the JSON object types of Esprima and the elements of the Code

metamodel.

Figure 6.7 shows an excerpt of the Code model injected for the Javascript code of the run-

ning example. The figure does not show the part of the model starting from theCallableBlock

element, which represents the lambda expression passed as second argument of the findOne()

query. The injected model has a CodeModel root element that aggregates the container cre-

ated for the file of the script “runningExample.js”; this container records the absolute path

of the file. For this script, a CodeContainer is created whose type is “script”. The code con-

tainer only aggregates a code block that corresponds to the script itself, which represents

the dot notation expression that includes the outer findOne() call: the client variable is ac-

cessed to invoke the dbmethod call with dbname argument (another VariableAccess element),

and that call is connected to the collection call that has the ‘Users’ literal as argument, and

this call is finally connected to the ‘findOne’ call that has two arguments: an anonymous

function CallableBlock for the lambda expression and an object creation expression formed

by the “name” property and the “Brian” literal.

The complete Code model includes two Classes that represent the user and movie ob-

jects. Each class has a set of properties: _id, title, and director for movie; and name,

surname, email and watchedMovies for user.

*Esprima website: https://www.esprima.org.
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Figure 6.7: Excerpt of the Code model extracted for the running example (starting from line 9).

6.2.2 Testing

To validate this stage, we have applied the testing strategy defined in [28], where a soft-

ware reengineering process is described. Some simple tests are performed for very small

code snippets that only have the minimum instructions necessary to represent a single code

statement, e.g., a loop. In each of these tests, the code is automatically re-built from the

Code model generated, and the generated code is compared with the original code having

into account the code format. In this way, we have carry out an iterative process, where the

injection of a single statement was implemented and tested in each iteration. A Javascript

code comparison tool was used to compare original and generated code.

Note that the iterative creation of the Code metamodel has prevented of using a model-
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based language workbench to automatically generate the model injector from a EBNF-like

Javascript grammar specification. This choice was motivated by the complexity and large

size of the metamodel.

6.2.3 Representing the control flow

Commonly, a code analysis not only requires to work with a representation of the syntax

tree, but also the knowledge of the control flow graph. To represent the control flow in

our approach, we have defined the metamodel exposed in Figure 6.8. This metamodel has

been designed having into account the representation proposed in the algorithm described

in [11]. A Control Flow model is obtained from a Code model, and its nodes and edges will

hold references to statements of the Code Model. Both models are input to the code analysis

process described in the following section.

As seen in Figure 6.8, a Control Flow model contains a set of code subgraphs that can

represent either code blocks or callable units (e.g., methods or functions). A code subgraph

has nodes that corresponds to statements that are connected by edges: a node is source

of outgoings edges, and target of incoming edges. Edges can be unit calls or conditional

expressions. This means that nodes hold a reference to a Statement of the Code Model,

and edges hold a reference to a call or conditional expression of the Code Model. Being

connected a Control Flow model to the Code model from which was created, the code

analysis can proceed by following the control flow to access to statements in the code.

Figure 6.8: Control Flow Metamodel.

To obtaining Control Flow models, we have adapted the algorithm described in [11].

Here, the input is a Code model instead of an AST, and the output is a Control Flow
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model. With these considerations, we have defined the Algorithm 1 to traverse an input

Code model and create the nodes and edges of the output Control Flow model. The kinds

of nodes and edges created will depend on the element processed in the Code model.

Algorithm 1 works as follows. Firstly, the ControlFlowModel root element is created

(line 1), and all the code blocks (CodeBlocks and CallableBlocks) in the Code model are ob-

tained and collected in a list that is iterated (lines 2 and 4). For each code block a Sub-

Graph is created, which is initialized with its start and end nodes (lines 5–8). Statements

of each code block are iterated (line 9), and a node is created for each statement by call-

ing the createConnectedNode function (line 10) that, in turn, invokes the createNode()

function (line 17). Each node references to the code statement and the variables used. By

default, a newly instantiated node is connected to the last node created (line 11), but if the

code statement is a conditional, a loop or a exception trigger, the createConnectedNode

function creates new subgraphs to represent nested statements before creating new edges

(lines 16–38). For example, a conditional is resolved as follows (lines 22–27): first, the initial

node is created (line 23), then a new branch is created for each Case (line 25), and an condi-

tional expression edge holds the condition for each branch (line 26). The Branch function

instantiates the nodes that belongs to a branch, that is, nodes for the statements of the code

block associated to the branch (lines 40–45), and the final node of the branch is also created

(line 46). Finally, an edge is created to connect the last node created with the end node of

the graph (line 47).

Figure 6.9: Control Flow model for the the running example.

The Control Flow model obtained for the Code model of the running example is shown in
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Data: codeModel : Code model
Result: cfModel : Control Flow Model

1 cfModel← createControlFlowModel()
2 codeBlocks← getCodeBlocks(codeModel)
3

4 foreach cBlock ∈ codeBlocks do
5 sGraph← createSubGraph(controlFlow)
6 sNode← createStartNode(sGraph)
7 lastNode← sNode
8 eNode← createEndNode()
9 foreach st ∈ cBlock.statements do
10 node←

createConnectedNode(st, st.variables)
11 createEdge(lastNode, node)
12 lastNode← node
13 end
14 end
15

16 Function createConnectedNode(st, variables):
17 node← createNode(st, variables)
18 if hasArguments(st) then
19 foreach arg ∈ st.arguments do
20 createEdge(node,

createNode(arg, arg.variables))
21 end
22 else if isSelection(st) then
23 bNode← createStartNode(node)
24 foreach case ∈ st.cases do
25 nNode←

branch(case.statements, bNode)
26 createEdge(bNode, nNode)
27 end
28 else if isTry(st) then
29 bNode← createStartNode(node)
30 foreach catch ∈ st.catchs do
31 nNode←

branch(catch.statements, bNode)
32 createEdge(bNode, nNode)
33 end
34 else if isLoop(st) then
35 nNode← branch(loop.statements, node)
36 createEdge(nNode, node)
37 end
38 return node
39

40 Function branch(st, lastNode):
41 foreach newST ∈ st.statements do
42 node←

createNode(newST, newST.variables)
43 createEdge(lastNode, node)
44 lastNode← node
45 end
46 endNode← createEndNode()
47 createEdge(lastNode, endNode)
48 return endNode

Algorithm 1: Control Flow creation algorithm

Figure 6.9. The ControlFlowModel root element aggregates three subgraphs: A CodeBlockSub-

Graph corresponds to the findOne()method call chain “client.db(dbName).collection(’Users’)
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.findOne (name:name nested lambda expression)”; this subgraph therefore includes three “call”

nodes in addition to the “start” and “end” nodes. The third “call” node has an outgoing

edge whose target is the “start” node of a CallableBlockSubGraph that corresponds to an-

other findOne() method call chain: client.db(dbName). collection (’movies’). findOne (

_id: user . watchedMovies [0]. movie_id , nested lambda expression). Therefore this second

subgraph also contains three “call” nodes, and the third one has an edge directed to the start

node of the third CallableBlockSubGraph that includes a selection node with three call nodes

that corresponds to the block of three println statements.

6.2.4 Testing

We have validated this second step by visually checking that obtained models accurately

represent the control flow of the code. To achieve this, the models are stored as a Neo4j

graph database in order to take advantage of Neo4j Browser,† which displays graph query

results as graphs which can be navigated. Figure 6.10 shows an excerpt of the graph obtained

for the Control Flow model of the running example. Each node contains the code snippet

as a value. In particular, the graph represents the control flow for the if-then statement of

the running example, which contains a block of three console.log statements. The if node

has two outgoing edges whose types are: ’Selection’ to record the condition, and ’Jump’ that

is directed to the node where the execution must continue if the condition is not satisfied.

Each node labeled ’print..’ has an outgoing edge labeled “NEXT” that establishes the flow of

execution, and another edge labeled “argument” whose target is a node with the argument.

These Neo4j graphs are more legible and easy to understand than the Control Flow model,

and therefore they made the testing easier. The mapping to generate a Neo4j database from

a Flow Code model is very direct, and the code is automatically obtained by applying the

code generation used to validate the code model injection stage.

6.3 Discovering the database schema

Code and Control flow models are analyzed to discover the implicit database schema as well

as to apply a database refactoring. In a first step of the code analysis, information about

†Neo4j Browser website: https://neo4j.com/developer/neo4j-browser.
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Figure 6.10: Graph excerpt of the Control Flow model for the running example.

CRUD operations and the structure of the data they manage is captured in an intermedi-

ate model. To serve this purpose, the Database Operation& Structure (DOS) metamodel

has been defined, which is shown in Figure 6.11. In this section, we will first present the

algorithm devised to obtain a DOS model, and then we will describe how a DOS model is

transformed into a U-Schema model, i.e. a NoSQL logical schema. In the next section, we

will show how the DOS model can be applied to apply the join query removal refactoring

to improve the query efficiency.

6.3.1 Finding database operations and structure

DOSmodel is the root element of the DOS metamodel, as is observed in Figure 6.11. It aggre-

gates OperationDatabases and Containers. A Container holds data structures, as collections in

document stores or tables in relational databases. In turn, DataStructures aggregate the set

of fields that have the objects stored in its container. A container can have more than one

data structure because NoSQL systems can be schemaless, and therefore structural varia-

tion is possible. The approach here presented could be applied to different versions of the

same application, and then structural variation could be identified, as is considered in [86]

Each Field has a name and a type. The type can be Attribute, Collection, Aggregate or Refer-

ence. An Aggregate type aggregates a DataStructure that represent the structure of embedded

objects in a root object, and a Reference type holds a reference to the referenced attributes

that belongs to another data structure. Regarding database operations, there is a subclass
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Figure 6.11: Database Operation&Structure Metamodel.

of DatabaseOperation for each CRUD operation: Read, Insert, Update and Delete. Note that

DatabaseOperation holds a reference to a Statement of the Code model. DatabaseOperations

also reference to the managed data structures, and can have parameters. Through previous-

DatabaseOperation and nextDatabaseOperation relationships, DatabaseOperations form a chain

that follows the order in which they are executed.

A graph traversal algorithm is applied on the Control Flow model to find all references

between the data and what data are involved in database operations. As the Algorithm 2

shows, a backward traversal is performed to create operations and dependencies between

data, while a forward traversal discovers the data structures and connects operations and

data. In Control Flow models, the nodes have outgoing edges which have a target node,

and nodes also have incoming edges coming from source nodes, as shown in the Control

Flow metamodel (see Figure 6.8). Source and target references of edges make it possible

to perform the backward and forward traversals, respectively, as illustrated in Figure 6.12.

In this figure, an blue edge leaves node A to node B through an outgoing edge and a target

reference, and a red edge enters to node A from node B through an incoming edge and a

source reference.
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Figure 6.12: Nodes and edges in Control Flow models.

Before traversing the control flow graph, two operations are executed. First, a DOSmodel

root element is created (line 1) Second, each subgraph (function o script) is traversed to

obtain the Call nodes involved in each database operation. These nodes are collected in the

“dbCallNodes” ordered list (line 2), where they are ordered by the execution order. These

nodes are found by searching for the name of the function called, which should be part of

the database management API used in the code. Note that, in a Control Flow model, each

subgraph is connected to the following graph in the control flow through an CallEdge, as

shown in Figure 6.9. Source and target subgraphs could belong to different functions or

files.

After that initialization, the functions that implement the backward and forward traver-

sals are called (lines 3 and 4). The backwardTraverse() function (lines 7 to 24) iterates the

dboNodes list of Call nodes. For each visited node (dboNode), a Read, Insert, Update or Delete

is first created depending on the kind of the database operation (line 9). Note that the in-

stantiated DatabaseOperation (dbo) will contain a reference to the statement of the Code

model, this statement is obtained from the node. Next, Arguments of dboNode are recorded

in a sList search list (line 16) and the graph is traversed backwards from the source node

to the current node (lines 12–13). Each node sNode visited in that traversal is processed as

follows. If it corresponds to a database operation call and the variable storing the returned

value by that operation call matches to one of the variables in the search list slist (line 14),

then the previously instantiated operation (dbo) is connected to the operation created for

sNode (pDBO) through the previousDBO relationship (line 16), and this second operation will
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refer to dbo through the nextDBO relationship (line 17). When two operations are connected

in that way, this means that they are dependent due to that the data outputted by a opera-

tion are input to the other one. If both operations are issued on different collections, then

the operation receiving data is marked as a join query (line 18). Is convenient to note that

a function findDbOperation is in charge of obtaining the statement referenced by the visited

node (sNode). This function navigates to the Code model to return the database operation

call statement (Call); Next, the set of database operations of the DOS model is iterated to

check if the call operation is present. When the visited node sNode do not satisfy the con-

dition indicated above, if the Statement associated to the node is an assignment and if the

variable on the left side of the assignment is present in the list sList (line 19), the variable

on the right side of the assignment is added to the sList list (line 20).

Once the backward traversal is completed, all the database operationCall nodes are again

visited through a forward traversal (line 4). In this traversal are only processed nodes ofRead

operations by means of the function forwardTraverse(). For each Read node (line 28),

a DataStructure is instantiated and aggregated to a Container, both instances are created if

they do not exist (lines 29 and 30). Also, the DataStructure is linked to the Read operation

(line 31). A search list is created in this traversal, but it is intended to contain the data

retrieved from Read operations (line 32).

Each subgraph is traversed (lines 34 to 42) starting from the next node of the database

node (tNode) (lines 34 and 35). For each visited node (tNode), its list of variables is iterated

to check what variables are holding values read from the database. For this, each variable

is matched against items of sList (line 36). When a match occurs, the Read Statement is

analyzed to find the fields of the object retrieved. When a property access is found, a new

Field is created and associated with the current DataStructure (lines 37–39). The type of the

Field would established as follows (line 38):

• if another property is accessed from the current property, this denotes that the cur-

rent property holds an embedded object and its type is Aggregate.

• if a collection operation is found, the type of the current property is Collection.

• otherwise the type of the current property is Attribute (References are not detected

during the forward traversal of the graph).
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Note that the fields of a particular data structure can be found at any point of the traver-

sal, and even the type of a field could change or not be found

Once the forward traversal is completed, it is carried out the search for attributes that are

really references by calling the function createReferences (line 5). This function first col-

lects the Read operation marked as “join query” (line 46), i.e., those whose previousDatabase-

Operation relationship is not null. This collection is iterated (lines 47-51), and for each join

query, the join condition is inspected to extract the name of the field involved in the join

(lines 48 and 49). Thus, a Reference type in the DOS model is created (line 50). This Ref-

erence type references a target container, and it is also associated to the Attribute field

identified in the forward traversal. Note that references cannot be extracted at the point

that join queries are identified because its data structure has not been created yet. Finally,

it is checked if several data structures have the same set of fields, only one of them is kept

and the rest are discarded.

Figure 6.13 shows the DOS model obtained when applying the Algorithm 2 to the run-

ning example. A DOSmodel aggregates two Read operations, one for each findOne call node,

and the containers movies and users. In turn, each Read operation aggregates its data param-

eter, and each container its data structure which has the fields of the objects stored in the

corresponding container.

This DOS model would be created as follows. In the backward traversal, two Read op-

erations would be discovered and they reference each other through next and previous rela-

tionships. These two operations would comply the condition to detect a join query, which

would marked. After, in the forward traversal, two Containers are found and each has its

ownDataStructure. These containers would be identified by inspecting the arguments of the

READ operations. Regarding the detection of fields, (i) the name field of User and the _id

field of Movie would be found, respectively, in the first argument of the first and second

Read operation, and (ii) the rest of fields would be found when the result variable of each

query is used in the if-then Selection node: condition expression of and its only branch, and

statements console.log of three Call nodes that form the block associated to the branch

(see Figure 6.9) For the watchedMovies field would be detected an array collection that

contains elements of a third data structure. The type of the watchedMovies field would

be an array of Aggregates of objects of a third data structure with the fields stars and
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Data: cfModel : Control Flow Model
Result: dosModel : DOS Model

1 dosModel← createDOSmodel()
2 dboNodes← getDatabaseOpsCallNodes(cfModel)
3 backwardTraverse(dboNodes)
4 forwardTraverse(dboNodes)
5 createReferences(dboNodes)
6

7 Function backwardTraverse(dboNodes):
8 foreach dboNode ∈ dboNodes do
9 dbo←

createDatabaseOperation(dboNode)
10 sList← getArguments(dboNode)
11

12 sNode← getPreviousNode(dboNode)
13 while ∃ sNode do
14 if isDatabaseOperation(sNode) ∧

getReturnVariable(sNode) ∈ sList
then

15 pDBO←
findDbOperation(sNode)

16 dbo.previousDBO← pDBO
17 pDBO.nextDBO← dbo
18 markJoinQuery(pDBO)
19 else if isAssignment(sNode) ∧

getLeftVar(sNode) ∈ sList then
20 sList.add(getRightVar(sNode))
21 end
22 sNode← getPreviousNode(sNode)
23 end
24 end

25

26 Function forwardTraverse(dboNodes):
27 readNodes← getReadsOperations(dboNodes)
28 foreach dboNode ∈ readNodes do
29 container← getOrCreateContainer()
30 ds←

getOrCreateDataStructure(container)
31 dboNode.result← ds
32 sList← dboNode.statement.result
33

34 tNode← getNextNode(dboNode)
35 while ∃ tNode do
36 if tNode.variables ∈ sList then
37 field← createField(tNode)
38 field.type← createType(tNode)
39 ds.fields.add(field)
40 end
41 tNode← getNextNode(tNode)
42 end
43 end
44

45 Function createReferences(dboNodes):
46 joinQueries← getJoinQueries(dboNodes)
47 foreach dbo ∈ joinQueries do
48 sField← findSource(dbo.previousDBO)
49 tField← findTarget(dbo)
50 createReference(sField, tField)
51 end

Algorithm 2: Code analysis algorithm

movie_id. This second field would finally identified as a reference.

6.3.2 Testing

We tested the Algorithm 2 by using small pieces of code that were similar to the running

example. For each piece of code, we manually checked that the Containers, DataStructures,

Fields, and Type were correctly represented in the DOS model.
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Figure 6.13: Database Operations & Structure Model for the running example.

We started creating a small code with one read database operation that only uses one

property in the filter. We checked the model that contains a Read and a Container with a

DataStructure containing only one Field. Next, we added statements manipulating the result

object obtained from the query. This introduced new fields to be discovered, we review the

model again to check if the added fields were represented. The process continued several

steps by adding to the code new kinds of database operations and accessing new containers

(at maximum of 3). In each new step, new fields were introduced to vary the data structures.

6.3.3 Generating schemas as U-Schema models

As explained above, the DOS metamodel represents both the set of database operations

included in the piece of code analyzed and the structure of the data stored. Therefore, a
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DOS Model U-Schema

Container Entity Type
DataStructure Structural Variation of an entity type
Attribute field Attribute feature
Reference field Reference feature
Aggregate field (aggregated) Entity Type, Structural Variation, and a Aggregate feature

Table 6.1: DOS metamodel to U-Schema metamodel Mappings.

DOS model captures the database physical schema: containers of objects whose data struc-

ture is formed by a set of fields that can be attributes, collections, aggregates, or references.

With this structural information, a logical schema could be abstracted. We have used the

U-Schema unified metamodel explained in Chapter 4, shown in Figure 4.1, to represent

such schemas, and have implemented a model-to-model transformation to extract a logical

schema from a DOS model.

Table 6.1 shows the DOS-to-U-Schema mappings that we applied to obtain logical schemas.

The transformation first creates a U-Schema model as root element. Then, an EntityType

is created for each Container element. After that, every DataStructure is mapped to a Struc-

turalVariation of the U-Schema metamodel that will hold a set of features. The entity type

could have more than one variation if the code analysis is repeated for different versions of

the same script or application. Fields are mapped to U-Schema elements as follows: (i) an

Attribute feature for each Attribute field, with the same name and primitive type. (ii) a Ref-

erence feature for each Reference field, which be connected to the EntityType instanciated

for the Container referenced by the targetContainer reference. (iii) Each Composition field is

mapped to an embedded (non-root) entity type, and an Aggregate feature. This also instan-

ciate a StructuralVariation for the DataStructure referenced by the Composition field trough

dataStructure reference. The process is repeteated for the all the fields in this DataStruc-

ture. (iv) An Attribute feature for each Collection field, the kind of the collection is obtained

from the property collectionType of the Collection meta-class. Note that a collection could

contain values or embedded objects.

Figure 6.14 shows the U-Schema model obtained for the DOS model in Figure 6.13. The

schema is visualized with the NoSQL schema notation presented in Chapter 7. The schema

134



includes the User and Movie entity type (yellow boxes) that correspond to the user and

movie Containers. Each entity type aggregates (black dashed arrows) only one Structural-

Variation (white boxes) that comes from the DataStructure associated to each Container in

the DOS model. A third entity type WatchedMovie (grey box) corresponds to the data

structure embedded in the one with the user container. WatchedMovie also has only one

structural variation, which references (blue solid arrow) to Movie. An aggregate relation-

ship (red solid arrow with diamond) connects the User to WatchedMovie. Attribute fea-

tures are shown inside the boxes representing structural variations.

Figure 6.14: U-Schema model resulting of the code analysis.

6.4 Generating join removal plans

A DOS model provides information useful to help administrators to detect that some refac-

torings should be applied to improve data quality or query performance. For instance,

knowing the number of fields of each entity type can help to detect what entity types are

bloated and they should be divided, and join queries are useful to identify which separated

data should form an aggregate to avoid a costly join between two containers.
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To illustrate how our approach makes it possible the detection and application of refac-

torings, we have chosen the “join query removal” refactoring, which was described in detail

in Section 6.1. Applying this refactoring requires the following information is available:

join queries, the two involved entity types, and data to be duplicated. The latter is the only

one not present in the DOS model, and, and we will here explain how discover it. We refer

to the information provided to administrators for this refactoring as “join removal plan”.

Algorithm 2 discovers and marks those Read operations that are join queries (line 12),

as commented in Section 6.3.1. Therefore, the main task of the algorithm that creates join

removal plans is to detect which fields should be duplicated for each join query in the DOS

model. These fields will be found in the statements appearing after the join query in the

control flow. They will be variable access statements in which the result variable of the join

query is accessed (dot notation) to obtain the value of a particular field of the data structure

associated to the container on which the join query is being issued. Note that the result

variables of the two queries involved into a join are used in the same CodeBlock.

Algorithm 3 duplicates data that are necessary to remove a join query. It works as fol-

lows. First, the set of join queries (Reads) are obtained, i.e., those which refers at least

one prevDatabaseOp relationship (line 1). Next, two variable search lists are defined (lines 2

and 3). For each join query, the result variable of the join query is added to the joinSList

search variable list (line 7), and the variable result of the previous query is added to the

other search variable list prevSList (line 8).

At this point, a function findFollowingNode obtain the node from the the control flow

that correspond to the current join query, and return the following node (line 10). Then, a

forward traversal is performed to find which variables are used in the statements that follow

in the flow of control (lines 11 to 23). Each visited node is inspected to check whether

any of its variables is included in both joinSList list and prevSList list (line 12). This

condition is satisfied for a variable whenever that the join query’s result is used together

with the result of the other query, which means that the fields accessed from the result

variable of the join query should be duplicated if that query is removed. Whenever that the

condition is satisfied, the DOS model is updated as follows. The fields for the join query

database operation used in the current statement are obtained from the visited node in

the ControlFlow model (line 13), and the corresponding Field object is copied (line 14) and
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assigned to the result of the previousRead database operation (line 15), i.e., theDataStructure

of the object obtained in the Read database operation. The copied Field also has a reference

to the original Field. While traversing the control flow graph, if an assignment of the result

of the database operation to another variable is found (line 17), the new variable is included

in the joinSList (line 18). The same happens for the previous database operation in lines 20

and 21. This process is repeated for all database operations.

When the algorithm is applied on the DOS model of the running example, the iteration

of the join query list is limited to visit the single “join query” read operation in the model

as seen in Figure 6.13. That operation is processed as follows. The (movie) result variable

of the join query is added to the joinSList, and the previous query is accessed and its (user)

result variable is added to prevSList. Next, the control flow graph is traversed starting from

the node obtained by the function findFollowingNode. This function returns the node that

corresponds to the if-then statement, which is labeled Selection in the Figure 6.9. After that,

the following nodes are traversed to find the usage of each variable present in the variable

search lists. That is, it is checked if the user variable in prevSList and the movie variable in

joinSList) are both used together in a statement or CodeBlock. The algorithm will traverse the

three nodes that represent the three call functions in the control flow model of Figure 6.9,

and it will be found that both variables are used together in the last Call, and then the

title Field is identified as a candidate to be duplicated because a movie.title expression is

found. Thus, title is copied and added to the DataStructure to which belongs the movie_id

variable involved in the matching of the join condition. This newly create field is marked

as duplicated with a reference to the original Field in Movies.

Once data to be duplicated are discovered and the DOS model is modified, this model

captures the information that requires an administrator to decide whether or not a par-

ticular join query is removed. A small application could collect the information of each

join removal plan in order to be visualized on the screen, so that administrators can de-

cide which of them are applied. For each plan, the following information is provided: join

query and related queries, source and target entity of the join, data of the target entity

which should be duplicated in the source entity, and original code along with a possible

rewriting of the involved code. Whenever a plan is selected to be applied, a schema change

operation must be performed, and this implies that schema, database and code must be
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Data: cfModel : Control Flow Model
Data: dosModel : DOS Model
Result: dosSModel : DOS Model

1 joins← getJoinQueries(dosModel)
2 joinSList← ∅
3 prevSList← ∅
4

5 foreach join ∈ joins do
6 pDBO← dbo.prevDBO
7 joinSList.add(getResultVariable(join))
8 prevSList.add(getResultVariable(pDBO))
9

10 node← findFollowingNode(cfModel, join)
11 while ∃ node do
12 if node.variables ∈ joinSList ∧

node.variables ∈ prevSList then
13 fields← getFields(dbo, node.variables)
14 joinQueryFields← copyFields(fields)
15 pDBO.resultDS.add(joinQueryFields)
16 end
17 if isAssignment(node, joinSList) then
18 joinSList.add(node.variables)
19 end
20 if isAssignment(node, prevSList) then
21 prevSList.add(node.variables)
22 end
23 node← getFollowingNode(node)
24 end
25 end

Algorithm 3: Finder of fields to be duplicated

updated.

6.4.1 Updating the database

Collections that receive duplicated data must be updated. This is achieved by using a tem-

plate language to create a model-to-text transformation that specifies how the updating

code is generated from the DOS model. The template iterates over the set of join queries,

and for each one of them obtains the fields to be duplicated, and expresses the query to ob-

tain this data and the operation to update the collection. This query is built with the Fields
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duplicated in the DOS model. In these Fields, the reference duplicatedField points to the

original Field. In this way, it is possible know the collections involved and the names of the

properties to be duplicated. Listing 6.4 show the code generated for the data duplication

of the running example.

1 const client = new MongoClient(url);
2 client.connect(conErr => {
3 const db = client.db(dbName);
4 db.collection("Movie").find().forEach(movie => {
5 db.collection("User").updateMany(
6 {watchedMovies: {$elemMatch: {movie_id: movie._id}}},
7 {$set: {"watchedMovies.$[it].movie_title": movie.title}},
8 {arrayFilters: [ {"it.movie_id": movie._id} ] }
9 );

10 });
11 });

Listing 6.4: Database update code generated for the running example.

6.4.2 Updating code

Code is updated in a 2-steps process. First, a model-to-model transformation is defined to

update the Code model, whose input are the DOS and Code models and the output the

modified Code model. Again, the DOS model provides the data to be duplicated for each

join query, as well as the read operations that can be eliminated. These queries are removed,

and then a replacement of code is performed in the expressions in which the result variable

of the removed join query is used: the code of the CodeBlock contained in the second query

is added to the previous one. Then, the variable is replaced by the result variable of the

previous query followed by the field added in the duplication, but if this field is part of

an aggregate, then will be necessary to access the duplicated data’s field through the field

of type Aggregate, as explained above for our running example. Note that the deletion and

replacement can be done on the Code model as this model is referenced from database

operations in the DOS model.

In a second step, the Code model is traversed to generate the updated code. This traversal

had already been implemented as part of the testing of the Code model injection process

in Section 6.2.

In the running example, the second query is a join query as the DOS model in Figure 6.13

expresses, and this query uses the user result variable of the previous query, as the Code
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model in Figure 6.2 records. If this query is deleted then the movie.title expression would

be replaced by the “user.watchedMovies[0].movie_title”, according to the explanation above.

6.4.3 Testing

We tested the last algorithm by using the pieces of code created for testing the DOS model

generation algorithm (Algorithm 2), but applying small changes. We have included join

queries after some query already present in the code. Once the algorithm was executed, we

inspected the modified DOS model to check that the Read database operations involved

in the join queries have the references previousDBO and nextDBO are correctly set between

them. Also, we checked that the Fields to be duplicated were correctly copied and refer-

enced. As join queries were added, its complexity increased, and finally we added queries

using the aggregation mechanism of the MongoDB API.

6.5 Validation

A testing strategy has been applied for each step of the reverse engineering process de-

scribed in the three previous sections. In this section, we will show the validation carried

out of the complete code analysis process, whose input is code that manipulates a NoSQL

store, and the output is the database schema and a list of of join removal plans. We have

also considered the application of schema change operations for join removals selected by

database administrators. First, we will describe the experiment designed and the method-

ology followed for the evaluation, then we will present the results obtained, and we finally

expose the limitations of our validation.

6.5.1 Experiment: Description and Methodology

The validation consisted in a round-trip experiment. We manually developed database

access code of the backend of a small part of the functionality related to a music streaming

service, namely rating and retrieving information about artists, albums and tracks. Data

were stored in collections of a MongoDB database.

We defined the schema shown in Figure6.15 in form of a U-Schema model, and create the

collections artists, albums, tracks and genres to store database objects. The collections were

populated by using the automatic data generator presented in [75].
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Figure 6.15: Validation designed schema.

The designed schema contains 5 entity types: Album, Track, Artist, Rating andGenre. Artist

references to zero or moreAlbums and Tracks, Album references one or more Tracks, and both

Album and Track references to one or more Genres. Album and Track aggregates zero or one

Rating. Thus, Rating is an embedded entity, while the rest are root entities. The attributes

of each entity type can be seen in Figure 6.15.

We then executed our code analysis solution taking the code developed as input. Firstly,
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we compared the inferred U-Schema model with the schema previously designed by us and

the extracted schema from the data analysis approach, defined in Chapter 5 for MongoDB.

With these two model comparisons, we could check the correctness of the solution here

presented, and to what extent it is more or less accurate that our data analysis approach.

Regarding the join removal refactoring, we first checked that all the join queries that

we had written in the application were correctly detected. Next, we selected and applied

each join removal, and we checked that schema, database and code were correctly updated

for each removal, i.e. data were properly duplicated. Schema checking was performed in

the following way. We changed the original schema by manually adding some duplication

data, i.e. for each entity type t1 referencing another one t2, we added to t1 the fields of t2.

Then, we compared this modified original schema with the one that resulted of applying

the refactoring. In our case, the property name of the Artist entity type was copied into

the Album and Track entity types, and the property releaseYear of Album was copied

into Track.

The backend developed has 15 methods which support the functionality indicated above.

Each of them has at least one database operation. The total number of database operations

is 27: there is one insert, update and delete for each root entity type, and a total of 11 queries.

Three of the query methods have a nested query in which the result the outer query is used

in a join condition, and two of the queries use the Aggregate operation of the MongoDB

API to perform a join between two collections as shows the Listing 6.5. In the insert and

update operations, input data are checked to assure that they are properly formed according

its corresponding field (e.g., if a quantity field is greater than zero, if a name field is not

empty, or if a particular field is present.)

1 db.collection("album").aggregate([{
2 $lookup: {
3 from: "genre",
4 localField: "categories",
5 foreignField: "_id",
6 as: "categories"
7 }
8 }])

Listing 6.5: Join Query between Album and Genre expressed with an Aggregation operation.

The database access of the backend was implemented by using the official MongoDB
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API,‡ and the process was applied for each database access file. It was created a class for

each entity type in the schema, and a Repository for each root entity type.

6.5.2 Results

Our solution has been able to correctly detect all database operations, including the aggre-

gate operations. Also, the database schema has correctly been extracted. The schema is the

same as in the predefined schema, however it is not the same schema that the inferred from

the data analysis (Chapter 5).

If data with different structural variations had been generated, rather than data with the

same structure for each entity in the schema, the code analysis could not have discovered

this variability, which can only be detected if several code versions are analyzed. Instead,

references if are detected from the code. In contrast, NoSQL data analysis approaches

can discover structural variability, but the heuristics-based search for references can not

guarantee that all they will be found and avoid some inconsistencies. In our case, the songs

name does not match any of the applied heuristics. Instead, it was detected in the data

analysis.

Analyzing the code of different versions of an application, the evolution of the schema

can be traced as described in [86]. Achieving this with a data analysis is a challenging

problem although the timestamp of data insert and update is available.

The code contained in the anonymous code blocks of the 3 join queries were correctly

identified, and 3 join removal plans were created for them. These plans exactly corre-

sponded to the join queries the variables to be duplicated were correctly discovered. When

all the fields of an entity type whose objects are retrieved in a join query had to be dupli-

cated, we created an embedded object in the object where those fields had to be duplicated

in order to favor the data cohesion.

6.5.3 Limitations of the validation

Some potential limitations were previously determined. The schema is not complicated,

but it was designed having in mind including all the elements that are part of U-Schema,

and therefore of logical modeling, and more common modeling techniques or usages ap-

‡MongoDB API: https://docs.mongodb.com/drivers/node.
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plied in real schemas. However, some techniques have been left out of the study as self-

references, and other have been applied with some restrictions, as nesting query at two

levels.

Note that a greater number of entity types and database operations would not necessar-

ily imply a more reliable validation, as this would only suppose to repeat more times the

process described in this paper, and affect to the number of collections (i.e., entity types)

and fields.

The number of schema changes to duplicate data when removing join queries is low.

However, this change is enough to check if the algorithm is capable of detecting possible

properties to be duplicated.
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7
A Generic Schema Query Language: SkiQL

When developing database applications, developers have to access database schemas to ob-

tain information about the data structure. Therefore utilities for querying and visualizing

schemas are essential. In this chapter, we will describe the SkiQL query language and the

graphical notation we have designed and implemented with the purpose of providing such

an utility for schemas represented as U-Schema models. Before explaining the syntax and

semantics of SkiQL, we will define some kinds of schemas and show the graphical notation

devised to show the query results (i.e., sub-schemas). Once SkiQL is described in detail,

we will explain its implementation, and we will end the chapter showing the evaluation

carried out.

7.1 Kinds of NoSQL Schemas

Most NoSQL schema inference approaches [119, 84] do not extract variations or relation-

ships between entities. Thus, the schema notion considered is the set of union entity types,

where each type is formed by the union of all the features that are present in its variations.

Instead, a U-Schema schema contains a set of schema types, with their variations, and the

relationships (aggregation and references) between variations or types. Next, we define

some sub-schemas and schema views that are of interest in providing useful information
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on the stored data structure.

Type-Variations Sub-schema It contains a schema type and all its variations. All the prop-

erties of a variation are considered pairs formed by its name and type, and the cardinality

is also included for aggregations and references.

Union Type It is a reduced view of a type-variations sub-schema that results of gathering

all the variations of the type into a single variation. The set of features of such a variation is

the union of the set of features of the gathered variations. Obtaining the union of features

requires making a decision to resolve feature name collisions: the same feature name is

associated to different types in different variations of the same entity type. We decided to

use union data types, i.e., a feature can have multiple types.

Simple Schema of Union Types Joins all the union types of a schema. As mentioned

above, this kind of schema is the result commonly obtained in the extraction approaches

for document stores, such as [84] and [119]. Actually, it is not a schema, but a reduced view

of a NoSQL complete schema.

Complete Schema of Union Types It also joins all the union types, but relationships be-

tween entity types are also added. It is also a view of the complete U-Schema schema. This

kind of schema corresponds to the logical schema typically used for relational databases.

7.2 Visualization of Complete Schemas

A simple User Profile database will be used as a running example throughout this paper. The

database records data on users subscribed to a streaming service: personal data, watched

movies and favorite movies; addresses will be separated from the rest of personal data. We

will suppose that this database will be stored both in an aggregate-based system (e.g., Mon-

goDB or Cassandra) and a graph system (e.g., Neo4j), and both stores will be called “UP-

aggregate” and “UP-graph.” Figure 7.1 shows the running example for the two stores.

In Figure 7.1, two User objects and one Movie object of “UP-aggregate” are shown in form

of JSON documents stored in MongoDB. A User aggregates an Address object and an array

ofWatchedMovies objects, and also holds an array of references to Movie objects that records
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the user’s favorite movies. Each WatchedMovies holds a reference to the Movie watched by

the user and the number of stars of the user’s score. In the case of “UP-graph,” Addresses

and WatchedMovies are also connected to Users through reference relationships, as shown in

Figure 7.1.

User and Address have two variations, while Movie and WatchedMovies have only one,

i.e., there is not structural variability for these two entities. User and Address variations

will be commented below when explaining the schema diagrams.

// User Collection
{
_id: 178,
name: "Brian",
surname: "Caldwell",
email: "brian_caldwell@gmail.com",
address: {
city: "Aylesbury",
street: "Fairfax Cres",
number: 6,
postCode: 30760

},
watchedMovies: [
{
stars: 4,
movie_id: 202

}
],
favoriteMovies: [
202, 267, 378

]
}

// User Collection
{

_id: 156,
name: "Allison",
email: "allison@gmail.com",
address: {
city: "Aylesbury",
street: "Lott Meadow",
number: 8

},
watchedMovies: [
{
stars: 3,
movie_id: 202

}, {
stars: 5,
movie_id: 295

}
]

}

// Movie Collection
{
_id: 202,
name: "The Matrix",
year: 1999,
genre: "Science Fiction"

}

Figure 7.1: Running example for aggregate and graph stores.

Table 7.1 shows the mapping between U-Schema and graphical notation elements. Query

results are visualized as diagrams in which there are two kinds of nodes:
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• Schema types are represented as boxes with two compartments: «entity type» or

«relationship type» stereotypes appear on the upper one, and the type name on the

lower one; different colors are used to make it easier to identify the types of nodes:

light yellow for root entity types, light gray for aggregate entity types, and light blue

for relationship types.

• Variations are represented as white boxes with two compartments: the variation

name and identifier appear in the upper one, and the list of features in the lower

one.

These nodes are connected by means of four kinds of arrows as indicated in Table 7.1:

(i) schema type to variation, (ii) variation to aggregated variation, (iii) variation to refer-

enced entity, and (iv) reference to the relationship type that specifies it.

Features are prefixed with “+”, “?”, and “-” symbols to indicate if they are shared, non-

shared, or specific. In the case of aggregation and reference arrows, this prefix is followed

for the cardinality specification before the property name: “[0..1]” (zero to one), “[1..1]” (only

one), “[0..*]” (zero to many), and “[1..*]” (one to many). It is worth noting that references

and aggregations that belong to variations present in the query result but are not part of

the set of relationships returned, will be shown in the lower compartment of its variation.

They will appear in the same way as features, but indicating the kind of relationship (“--”

or “<>-”) and the cardinality.

Figures 7.2 and 7.3 show the U-Schema complete schemas extracted for “UP-aggregate”

and “UP-graph”, respectively. Both schemas can be obtained with the query “FROM * TO *”,

as discussed later in Section 7.3.2.

In Figure 7.2, the schema includes two root entity types: User and Movie, and two aggre-

gated entity types: Address and WatchedMovies which are embedded into User.

User has two variations: User[1] only includes the shared attributes (email, name, and

_id), while User[2] has the surname specific attribute and the favoriteMovies specific

reference. Both variations aggregate Address, but each of them a different Address’s vari-

ation. Address has three shared properties: city, number, and street. Depending on

whether the postCode optional property is present or not, two variations exist for Address.

In Figure 7.3, the schema includes three relationship types: address, watchedMovies,

and favoriteMovies, and two entity types: the User and Movie. Relationship types
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U-Schema Elements Graphical Notation Elements

Entity Type Box stereotyped with «Entity Type»

Relationship Type Box stereotyped with «Relationship Type»

Structural Variation Box with two compartments, one to specify the varia-
tion and another to include its list of feature specifica-
tions

Variation belongs to a schema type Dashed arrow from an Entity box to a variation box

Attribute Name and type separated by colon inside a variation
box

Key Prefix “Key” followed by the key’s name and type inside
a Variation box

Reference Blue arrow directed from referencing entity to refer-
enced entity, and labeled with the cardinality and ref-
erence name

Aggregation Red arrow directed from aggregate entity to aggre-
gated entity, and labeled with the cardinality and ag-
gregation name, and decorated with a filled diamond
at the aggregate class end

Variation featuring a reference Dashed arrow from the middle of a reference arrow to
a variation box of a relationship type

Table 7.1: Mapping between U-Schema and graphical notation.

Figure 7.2: U-Schema complete schema for “UP-aggregate.”

address and watchedMovies result from the aggregated entity types with the same name

in the previous schema. As observed, each reference arrow is connected to the relationship
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type that features it, e.g., the two existing watchedMovies references are connected to the

only variation of the watchedMovies relationship type. Note that this type includes the

attribute stars.

Figure 7.3: U-Schema complete schema for “UP-graph.”

Finally, Figure 7.4 shows the complete schema of union types for “UP-aggregate”, which

would be obtained with the query UNION FROM * TO *.

Figure 7.4: The complete schema of union types for “UP-aggregate” schema.

7.3 SkiQL Query Language: Syntax and Semantics

SkiQL was designed to be easy to learn, understand, and write. To achieve these character-

istics, our choice was to create a command language and visualize the result of the queries
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in form of a schema graph. Users should interactively write queries in a console with the

results returned immediately. Being a command language encompasses other advantages,

such as easily extending it with new query commands. SkiQL is intended for any stake-

holder involved into the development of NoSQL database applications, such as database

administrators, developers, and testers. We considered that these users could be interested

in two kinds of queries: (i) recovering information on properties and variations of a par-

ticular entity type (and relationship type in the case of graph schemas), and (ii) checking

the existing relationships (aggregations and references) among entity types. Both kinds of

queries should return a sub-graph of the database schema. Also, the language should allow

each previously defined schema and sub-schema type to be obtained. It is important to note

that SkiQL is a DSL aimed to help database stakeholders to explore large database logical

schemas, but it is not intended to express every possible query on a database schema.

To support the desired queries, SkiQL provides two kinds of declarative query state-

ments: “query on one schema type,” and “query on the path between schema types.” Next,

these query statements are described, and examples of queries on the User Profile schema

will be shown to illustrate the application and usefulness of SkiQL.

7.3.1 Querying schema types

A “query on one schema type” (QT) allows the user to express a predicate on a schema type in

order to extract information from its type variations sub-schema. More formally said: Given

a schema S, a schema type query qt expresses an entity or relationship type specification spec

that conveys a predicate P(t) to be satisfied by the schema type t of S. Such specification

consists of a partial intensional definition of t (a partial list of their features expressed

with its name and optionally its data type), e.g., User[name:string, favoriteMovies].

If such a schema type t exists, the query returns the subgraph of the type variations sub-

schema that satisfies the predicate. In this case, the relationships are enclosed in the lower

compartment of the variations, as indicated above, and can be observed in Figure 7.5 that

is commented below.

Regarding the syntax, a QT statement consists of three parts. First, a keyword indicating

the schema type on which the query is applied: ENTITY for an entity type, REL for a relation-

ship type, and ANY (both schema types). Next, the name of the schema type, which can be
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followed of an optional variation filter clause. The type name can be expressed in different

ways: the exact name to be matched, * to get all entities, use the symbol “*” to establish

a prefix, suffix or both, e.g., *Movie to express an entity type name ending in “Movie”, or

Java-like regex expressions.

An excerpt of the EBNF grammar of this kind of query is the following:

<type-query> ::= ['UNION'] ('ENTITY' | 'REL' | 'ANY') <TypeSpec>
[<variation-filter>] | [<operations>]

<TypeSpec> ::= ['*']<typeName>['*']|'*'|'r"' <regexp> '"'

<variation-filter> ::= '[' <feature> {',' <feature>} ']'

<feature> ::= <nameFeature> ':' [<featureType>]

<featureType> ::= <AttributeType> | <AggregatedType> | <ReferenceType> | '?'

<AttributeType> ::= <BasicType> | <CollectionType>

<BasicType> ::= 'number' | 'string' | 'boolean'

<CollectionType> ::= <BasicType> '[' ']'

<AggregatedType> ::= 'AGGR' '<' <typeName> '>'

<ReferenceType> ::= 'REF' '<' <typeName> '>'

<operations> ::= <operation> {',' <operation>}

<operation> ::= 'keys' | <date-interval>

<date-interval> ::= 'history' ('before' <date> | 'after' <date> | 'between'
'('<date> ',' <date>')')

An entity type variations subschema or a relationship type variation subschema is returned

when the ENTITY or REL keywords are followed by the name of an entity or relationship

type, respectively. Figure 7.5 shows the results obtained for the query “ENTITY User” and

Figure 7.6 for “REL watchedMovies” query. Note that two relationship type variation

subschemas would be obtained for the query “REL Movie”, those that corresponds to the

watchedMovies and favoriteMovies relationship types. ANY keyword is used to express

that the name can refer to either an entity type and a relationship type, e.g. this would

occur if “ANY Address” is issued on the User Profile graph database. These three forms of

query could be used to check if a schema type is present or not in the schema.
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Figure 7.5: The User entity type variation sub-
schema for “UP-aggregate.”

Figure 7.6: The Watchedmovies relationship type
variation subschema for “UP-graph.”

A variation filter enumerates the list of features that a variation must have in order to be

selected, i.e. a QT query predicate. Each feature is specified by indicating its name and

type separated by a colon, and features are separated by commas. The data types allowed

for attribute features are Number, String, Boolean, as well as collections of values of these

data types. The collections are those included in the U-Schema metamodel: Arrays, Sets,

Lists, Tuples, and Maps. An array contains values of the same type, and the array type is

specified by adding square bracket after the type name, for example String[]. The rest of

collections are specified with the collection type name followed by the base type between

angle brackets, for example, Set<String> and Map<String, Number>. A question mark

can be used to indicate that the property type is unknown or either can be omitted. The

types for relationship features are expressed with the prefix “AGGR” for aggregates or “REF”

for references.

Query Q1 shows a variation filter example: “find all Users variations with the name:

String attribute, and another feature named favoriteMovies whose type is unknown.”

The result returned would be the same as Figure 7.5 but not including the variation User[2]

that does not meet the filter.
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Q1

ENTITY User [name: string, favoriteMovies]

A QT statement can also include operations that are applicable on schema types or vari-

ations. These operations follow the type name or filter. At this moment, two operations

have been defined: “keys” returns the keys of the specified entity types, and “history”

returns a graph that shows the timeline of appearance of variations in a given date interval.

In a variation filter, the shared, non-shared, and specific keywords can be used when

specifying a feature. For example the query “ENTITY * [shared id]” would return all the

entity types having a shared property named “id” of unknown data type, and “ENTITY User

[shared surname: string]” would return all User variations having a shared property

named surname of data type String. In the previous section, we showed the use of QT

queries to obtain complete entity and relationship schemas: “ENTITY *” and “REL *”.

7.3.2 Querying aggregations and references

As explained in Section 4, two kinds of relationships can be found in NoSQL stores: aggre-

gations from a origin variation to another target variation (only in aggregate-based systems),

and references from a origin variation to a target entity type. A relationship query (QR) se-

lects the sub-schema that includes the specified relationships in the query. This kind of

query can be formally defined as follows. Given a schema S, a relationship query qr expresses

a specification oe of a entity type t belonging to S, and one or more relationship specifica-

tions ri, i = 1 . . . n, each of them indicating a relationship kind ki and a specification of a

target entity type tti. Thus, qr formulates a predicate P(t, r) that is formed by a conjunction

of logical operands, and each operand expresses that the relationship of kind ki exists from

t to tti. If this predicate is satisfied, the query returns the subgraph of S that contains the set

of relationships ri. While a QT query retrieves a subgraph of a type variations sub-schema,

a QR query may return any subgraph of a complete schema.

Regarding the syntax, a QR query consists of a FROM clause followed by a TO clause. The

former specifies the source type of the relationship, and the latter the target type and the

kind of relationship. Depending on whether the prefix UNION is present or not, variations

or union schema types are returned as source and target of the relationship returned.

The syntax is expressed below in form of an EBNF grammar.
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<schema-query> ::= ['UNION'] <from-clause> <to-clause>

<from-clause> ::= 'FROM' (<entitySpec> [<variation-filter>] | '_')

<to-clause> ::= 'TO' <rel-spec> {',' <rel-spec>}

<rel-spec> ::= ['>>'] <entitySpec> [<variation-filter>]
('REF' [<featureName>] [<variation-filter>] |
'AGGR' [<featureName>] | 'ANY' [<featureName>]) | '_'

<entitySpec> ::= ['*']<typeName>['*']|'*'|<regexp>)

A from clause is formed by the FROM keyword followed by an entity type name, and an op-

tional variation filter that is expressed with the syntax exposed for QT queries. An empty

FROM clause (underscore symbol) denotes that no entity type or variation could have a rela-

tionship to the target entity type.

A to clause is formed by a list of relationship specifications which are pairs formed by an

entity type and a keyword denoting the kind of relationship: ‘REF”, “AGGR”, or “ANY”. This

latter keyword is used to indicate that the relationship can be aggregation or reference. A

variation filter can only be used with AGGR. A star can be used to refer to “any entity type”

and an underscore to “no entity type.”

Q2 is a QR query specifying the condition “aggregation between User variations includ-

ing the attribute surname of type String and an Address variation.” As shown in Figure 7.7,

if the query is applied on the “UP-aggregate” database schema, the result is the User varia-

tion “User[1]”, which appears connected to the Address variation “User[1]” through an

aggregation relationship. Note that the watchedMovies aggregation or favoriteMovies

reference are not shown in form of edge as they are not part of the set of relationships

satisfying the query predicate, so they appear in the variation box as features.

Q2

FROM User[surname:string]
TO Address AGGR

Table 7.8 shows more QR query examples for the User Profile schema. Q3 checks if the

User entity type has incoming relationships, and would return a message indicating that

User is not target type of any relationship. Q4 checks if User has references to Movie and

aggregations to Address, and would return the User[1] variation connected to Movie and
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Figure 7.7: Subschema returned for queries Q2 and Q5 on “UP-aggregate” schema.

Address through the favoriteMovies reference and the address aggregation, respectively,

as shown in Figure 7.9. Note that watchedMovies aggregation is not shown in form of an

edge for the reason explained above.

Q3

FROM _
TO User

Q4

FROM User
TO Movie REF, Address AGGR

Q5

FROM User [favoriteMovies]
TO Address [postcode] AGGR

Q6

FROM User
TO >> Movie

Figure 7.8: QR query examples.

Figure 7.9: Subschema returned for query Q4 on “UP-aggregate” schema.

Q5 query retrieves relationships whose origin are User variations having favoriteMovies

feature of unknown type, and the target is an Address variation containing the attribute
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postcode through aggregation. The returned diagram is the same as for query Q2, which is

shown in Figure 7.7.

In the query execution, relationships specified are direct by default, but a path of any

length can be indicated by using the >> prefix, as illustrated in query Q6. This query checks

if the User entity is connected to Movie by means of a path that can include any number of

aggregations and references. Figure 7.10 shows the subschema returned where the User[1]

variation is directly connected to Movie (favoriteMovies reference), and User[2] vari-

ation is indirectly connected toMovie through the WatchedMovies aggregate entity type

that references Movie.

Figure 7.10: Subschema returned for query Q6 on “UP-aggregate” schema.

All the relationships directly or indirectly incoming/outgoing to/from a given entity type

can be obtained by using “*” to specify the schema type name, as shown below for the User

entity type.

• FROM User TO * returns all relationships outgoing from User,

• FROM * TO User returns all relationships incoming to User.

• FROM User TO >> * returns all relationships outgoing from User to any entity type

connected directly or indirectly.

• FROM * >> TO User returns all direct or indirect relationships incoming to User.
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These four queries return union types instead variations if the UNION prefix is present.

In the TO clause, the keyword indicating the kind of relationship can be optionally fol-

lowed by the name of a property, so that the query would only return relationships with

that name. As references can have attributes in graph systems, they are instances of rela-

tionship types, SkiQL allows variation filters to be used to specify relationship attributes.

QueryQ7would check if User is connected to Movie through a reference which has a stars

attribute of type Number. The result of this query issued on “UP-graph” schema is shown in

Figure 7.11.

Q7

FROM User
TO Movie REF [stars: Number]

Figure 7.11: Subschema returned for query Q7 on “UP-graph” schema.

Finally, Q8 shows a QR query issued on “UP-graph” to find if the schema contains User

entity type variations with the surname attribute, which are connected both to Address

variations with postcode and to Movie through only favoriteMovies references. Fig-

ure 7.12 shows the result obtained for Q8.

Q8

FROM User [surname: string]
TO Address [postcode], Movie REF favoriteMovies
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Figure 7.12: Subschema returned for query Q8 on “UP-graph” schema.

In addition to the graphical notation, the results can be also displayed as a set of tables,

one for each returned schema type. Each table has a row for each variation, and rows have

four columns: schema type name, variation identifier, number of instances, and a listing of

features expressed in the format used in the diagrams. This textual notation can be useful

if the number of variations returned is high.

7.4 Implementation of SkiQL

SkiQL was created with a metamodel-based language workbench, Xtext [22]. As it is well-

known [117], these tools automate the building of DSLs by automatically generating an

editor, a parser, and a model injector from the EBNF-like grammar or metamodel of the

language.

Once the syntax of SkiQL was determined, a metamodel-based approach [61] was applied

to implement the language. We first defined the metamodel (i.e., its abstract syntax) that

can be seen in Figure 7.13, and then wrote the grammar in form of Xtext syntax rules. A

translational approach [61] was applied to define the SkiQL semantics: SkiQL queries are

written with the generated editor, and the model injector automatically produces SkiQL

models in Ecore/EMF format [110]. Then, a query interpreter has as input these query mod-

els along with the U-Schema model that represents the NoSQL schema on which queries

are issued.

The SkiQL metamodel, Figure 7.13, is divided into two parts, which correspond to the

two types of query: QT on the right and QR on the left.
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On the right, RelationshipQuerys (QT) can be specialized in EntitySpec to query entities,

RelationshipTypeSpec to select RelationshipTypes. RelationshipQuery is used for both. In

addition, two kind of operation can be specified: to search keys with KeysSpec and also to

search for structural variaton in a space of time using one of the classes that inherit

from Operation and VersionHistoryOperation such as All, After, Before, and Between. Further-

more, every SchemaSpec can have a property filter, to search among the Features using

VariationFilter, with which you can specify a set of properties with PropertySpec and any of

the Types as PrimitiveType or RelationShipType.

On the left, a SchemaQuerys (QR) can be defined of three types: (i) RelationSpec to select

both aggregations and references; (ii) AggregationSpec, to select aggregations, and (iii) Refer-

enceSpec for references. With the relation from the origin entity is specified by means of an

EntitySpec. In addition, TargetExpression specifies the target of the relationships, which can

be another SchemaQuery (QR) or an EntityExpression to select an entity using an EntitySpec.

Figure 7.13: The SkiQL metamodel for the definition of the abstract syntax of the language.

Every time a QT or QR query is issued, the interpreter launches the injector execution to

convert the query script into a SkiQL model. Then, the interpreter performs the following
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two-step process. Firstly, the query model is analyzed to identify the conditions to be sat-

isfied, and then the U-Schema model (i.e. the schema) is traversed to obtain the elements

to be returned in the result graph. This second step is a model-to-model transformation

that extract the part of the U-Schema model that constitute the desired result. Note that

the U-Schema model is both the source and target metamodel in this transformation. The

interpreter has been implemented with the language Xtend [22].

As shown in Figure 7.14, the interpreter has been integrated with a SkiQL schema viewer

to graphically show the result of the SkiQL queries that are written in the console (i.e., the

generated editor). This viewer receives as input the U-Schema model produced by the

interpreter, and then creates the corresponding graph by applying the mapping exposed in

Table 7.1 between U-Schema elements and graphical notation elements.

The viewer has been implemented by using VisJS* as graphical visualization API. Our

tool (query interpreter and schema viewer) is a Web application that allows queries to be

entered through an editor and also visualized in the browser.

Figure 7.14: An overview of the visualization process and its implementation.

7.5 Evaluation

In this section, we will present the evaluation of SkiQL, which has been carried out in

two forms. First, we measured some language metrics for SkiQL and compared the results

with those of other query languages. Secondly, we surveyed some experienced NoSQL re-

searchers on SkiQL features.

*VisJS Webpage: http://visjs.org.
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Metric Definition SkiQL GraphQL Cypher SPARQL

TERM Terminals 29 44 115 158
VAR Non-Terminals 39 71 99 123
HAL Designer effort for grammar

understanding
12.81 43.03 141.16 116.55

LRS Complexity independent size 310 603 15756 15172
LAT/LRS Ease of understanding 0.085 0.155 0.138 0.160

Table 7.2: SkiQL, GraphQL, Cypher and SPARQL metrics.

7.5.1 Calculating Language Metrics

In order to assess to what extent SkiQL is a simple and easy to learn language, we calculated

the metrics defined in [41], and compared the results obtained to those of other three query

languages, in particular: Cypher, SPARQL, and GraphQL. Table 7.2 shows the results for

these four languages.†

The metrics used measure the following quantities. TERM and VAR the number of ter-

minals and non-terminals, respectively. HAL (Halstead metric) the designer effort to un-

derstand the grammar. LRS the complexity of the language independent of its size, and

LAT/LRS measures the ease of understanding the language.

Since queries were translated to Cypher in a first version of SkiQL, we have considered

this graph query language. SPARQL and GraphQL were chosen as they are widely used

query languages. The former is the standard RDF query language, and GraphQL is increas-

ingly used to query APIs in web and mobile applications. The structure of GraphQL types

is similar to U-Schema entity types but structural variations are not allowed. SQL was not

considered because it is a large language whose specification has a large number of state-

ments that are not used to query data.

Analyzing the results obtained for each language, we found that Cypher and SPARQL

are larger languages than GraphQL and SkiQL, as they are intended to query more complex

data structures. This is shown by the TERM and VAR values in Table 7.2. The TERM values

are very close for SkiQL (29) and GraphQL (44), while Cypher (115) and SPARQL (158) have

†The cfgMetrics program was executed to calculate language metrics: https://code.google.com/
archive/p/cfgmetrics/.
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Listing 7.1: Cypher query for Q1: ENTITY User [ name:string, favoriteMovies ].

WITH ["name:string", "favoriteMovies"] AS properties
MATCH (p:Property) WHERE p.nameType IN properties
WITH collect(p) AS ps, properties
MATCH (ev:EntityVariation {entity:"Users"})-->(:Property)
WHERE ALL (p IN ps WHERE (ev -->(p))
RETURN ev

higher values. With non-terminals, the VAR value for SkiQL is significantly lower than the

other three values. The metric HAL shows that Cypher is the more complex (141.2), followed

by SPARQL (116.5), while GraphQL (43.0) and SkiQL (12.8) are much simpler languages.

SkiQL is appreciably the least complex of the four. It is convenient to remark that Cypher is

about ten times more complex than SkiQL. LRS is other metric that measures the language

complexity, and its values are consistent with those obtained for HAL. Regarding LAT/LRS,

Table 7.2 shows that GraphQL (0.160) and SPARQL (0.155) are somewhat more difficult to

learn than Cypher (0.138), and the SkiQL value is half of the Cypher one. This difference

in the easiness to learn a language is similar to those calculated for other DSLs defined as

alternative to general purpose languages, such as [78]. SkiQL can be considered as a more

abstract language defined on top of Cypher to query database schemas.

With SkiQL, developers save time writing queries with a simpler and both easier to

understand and to learn language than Cypher to query schema graphs. The average number

of LoC for simple queries expressed in Cypher is 8. This size is mainly due to the need of

expressing the path to be traversed, and storing the visited nodes in variables. It should be

noted that the size estimation was performed for simple queries. We then decided to build a

domain-specific language (DSL) tailored to query schemas represented with the U-Schema

unified metamodel. Listings 7.1 and 7.2 show Cypher queries for Q1 and Q4 SkiQL queries.

QueriesQ2 andQ8 are challenging to write in Cypher due to the difficulty of implementing

variation filters. However these two queries are very easy to write in SkiQL. As shown in

Listings 7.1 and 7.2, Cypher queries are longer and more complex than SkiQL queries. In

addition, the user should learn Cypher and know how schemas are represented as graphs

in the database.
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Listing 7.2: Chyper query for Q4: FROM User TO Movie REF, Address AGGR.

MATCH c = allShortestPaths(
(:ENTITY {name:"Users"})-[:ENTITY_VARIATION|PROPERTY|REFS_TO*1..3]->
(:ENTITY {name:"Movies"}) )
MATCH c2 = allShortestPaths(
(:ENTITY {name:"Users"})-[:ENTITY_VARIATION|PROPERTY|AGGREGATES*1..3]->
(:ENTITY_VARIATION)<--(:ENTITY {name:"Address"}) )
RETURN c, c2

7.5.2 Survey on SkiQL Features

We surveyed a total number of 31 participants, which had no knowledge on SkiQL: 7 re-

searchers from other research groups, 8 Spanish developers experienced in MongoDB, 6

members of our research group, and 10 students of a Big Data master.

We provided to the participants a document with three parts: a SkiQL tutorial with

examples of queries and the result graph, several query exercises to be solved by respondents,

and a questionnaire of six items to evaluate SkiQL. The questionnaire is shown in Table 7.3.

Each question had to be assessed with a mark from 1 to 5 in the Likert scale.

The participants were provided with a virtual machine with all the necessary tools to

write and execute SKiQL queries. Therefore, they all used the same environment and with

the same assistants from the editor. They completed the questionnaire once they solved

the exercises. The six questions asked were about the following features: legibility of result

graphs, ease to learn, ease to understand queries, adequate expressiveness, usability of the

environment, and usefulness of the language.

Results and Discussion

Table 7.3 shows the average and the standard deviation of the participant’s scores for each

of the six questions.

Easy to learn None of the respondents considered the language difficult to learn, the av-

erage obtained for this question is 4.19 with a standard deviation of 0.38, supporting SkiQL

is easy to learn. In their comments, the participants indicated that the documentation

provided had been very useful.

Usability This feature includes the ease of reading and understanding queries (second

question of the survey) as well as the ease of writing queries (third question). The former
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Question AVG SD

Is SkiQL easy to learn? 4.19 0.38
Is SkiQL easy to read? 4.84 0.35
Is SkiQL easy to write? 4.23 0.68
Is SkiQL expressiveness appropriate? 4.26 0.79
Could SkiQL be useful to developers? 3.81 0.72
Is the visualization understandable? 4.36 0.81

Table 7.3: Questionnaire results.

is the best evaluated in the survey, with an average of 4.84, and the participants strongly

agreed that SkiQL is a simple and concise language. On the other hand, writing is well

evaluated (4.23) but not so well as reading (4.84), although none of the participants scored

negatively. Their scores divided equally between the two positive positions.

Expressiveness The expressiveness of the language refers to whether the language offers

all the needed features. This characteristic is usually considered with the preciseness feature

to measure the effectiveness: its ability to perform complex queries with the least number

of elements. In our case, we only considered expressiveness because SkiQL is a command

language, and a single query is executed each time. Most of the participants positively

positioned on expressiveness with an average of 4.26.

Usefulness of language In the usefulness of the language, their scores divided equally

between the neutral and positive answers (average is 3.81). More than half of respondents

claimed to agree or strongly agree, and the other remaining took a neutral position. Some of

them pointed out that the language had a great similarity in simplicity to the SQL language.

Legibility of the result graph The legibility of the graph returned refers to aspects such as

the proper understanding of the schema in form of a graph, the ability to know the kind of

each shown property as well as the variation which it belongs to, and understanding the re-

lationships between different entities, among others. None of the participants considered

that the visualization representation is illegible, and their scores divided equally between

the neutral and positive positions. Thus most respondents are positively positioned regard-

ing to the understanding of the graph that represent result schemas with an average of 4.36.

Limitations of the validationAmong the limitations of the validation is that large schemas
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were not used, in an attempt to reduce the effort to learn SkiQL. The survey included a lim-

ited number of exercises. We included very simple exercises to familiarize respondents with

SkiQL, and then we wanted to assess the expressiveness of the language, and also to cover

most of the features of the language, so we included more complex queries. This may have

lead some participants to consider using the language to be slightly difficult. In the docu-

mentation given to respondents, we included a brief explanation on the metamodel used

to represent schemas, and some of them had problems to solve exercises because they had

not clear notions of structural variation of an schema type.
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8
Conclusions and Future Work

The objectives of this thesis come from the three following ideas about the future of the

databases.

“One Size does not fit all” Although relational systems will continue to prevail, at least,

in this decade, NoSQL and new relational systems (New SQL) will be increasingly used.

Relational systems could be adequate for traditional applications, New SQL for modern ap-

plications requiring high scalability and availability, and NoSQL when data is complex and

its structure frequently changes. Today, the idea of “One Size does not fit all” [111] is widely

accepted in the database academic and industry community. In fact, the database engine

ranking shows several different paradigms or data models in the top 10: relational, docu-

ment, spatial, graph, and RDF, and the first 8 database systems are multi-model, i.e., they

support several data models. The popularity ranking therefore evidences the changes is hap-

pening in the database scope: the same company can use different database data models

depending on the kind of application, and data requirements of modern applications can

involve several data models to be satisfied.

Generic Database Tools are required Obviously, existing relational database tools are

evolving to support emerging data paradigms, in particular the four kinds of NoSQL databases.

167



Also, new tools are providing services for different data models. That is, the challenge of

database tools is to be generic instead of being tied to a particular data paradigm. This is

happening with, for example, data modeling tool (e.g., ERStudio, Erwin, or Hackolade) or

data query language (e.g., PartiQL or OrientDB-SQL). For this aim, a unified metamodel

may be very useful as indicated in [118].

Schema extraction is essential for NoSQL systems The more attractive feature of NoSQL

systems for developers is probably to be “schemaless”. However, schemas are as essential as

they are for relational systems: Developers must always design how data are logically and

physically organized, and information recorded in the schemas is required to implement

most of database tools. Therefore, developers should be assisted by schema management

tools, and tools should include schema discoverers, which either can extract schemas from

data or code.

In this thesis, we have addressed the main problems that arise in the development of

generic database tools that integrate the most relevant data models, namely, relational and

NoSQL models. Firstly, the definition of a unified metamodel that integrates relational

and NoSQL data models. Secondly, the construction of logical schema extractors for each

considered data model. Because the most schema extraction approaches have applied data

analysis on document stores, we have investigated the code static analysis as an alternative.

Thirdly, around the unified metamodel and the set of extractors, we have built a generic

schema management tool that includes a schema query language and a schema graphical

viewer. Tackling these issues, we faced to the challenges posed by a proposal of NoSQL log-

ical schema that includes structural variations and the most common relationships between

database entities.

Next, we will discuss to what extent the goals of the thesis, which were exposed in the

Chapter 1, have been achieved.

8.1 Discussion

In Section 1.2, we defined the following seven goals:

Goal 1: The creation of a unified metamodel able to represent logical schemas: U-Schema.
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Goal 2: The definition of the forward and reverse mappings between U-Schema and the

data models that it integrates.

Goal 3: The design and implementation of a common strategy to extract U-Schema models

from the data of different databases.

Goal 4: The implementation of an application code analysis approach to extract schemas

and perform database refactoring.

Goal 5: The design of a generic schema query language of U-Schema models (SkiQL).

Goal 6: The implementation of a visualization notation of U-Schema models.

Goal 7: Explore the usefulness of U-Schema to define a database query language.

Next, we shall discuss the level of achievement for each of these goals.

8.1.1 Goal 1. Create a unified metamodel able to represent logical schemas: U-Schema

As far as we know, the definition of a unified data model for NoSQL stores was first pointed

out by Allen Wang [118] with the purpose of designing a new generic architecture for the

ERwin modeling. Recently, Hackolade recently announced the interest to define a generic

data model [4]. However, no implementation of unified data model able to integrate re-

lational and NoSQL stores has been completed yet, to our knowledge. In this thesis, the

U-Schema unified metamodel has been created for the representation of logical schemas

of NoSQL and relational databases. The metamodel was explained in the Chapter 4. It is

worth noting that New SQL systems may also be considered since that their data models are

relational. U-Schema differs from other proposal of generic metamodels as follows:

• Provides support for representing the logical schema of the four most common kinds

of NoSQL stores (document, graph, key-value, and wide column) and relational sys-

tems.

• Includes the notion of structural variation to represent the different data structures

that can exist for the same entity.
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• Represent relationship types whose instances are references between entities in graph

databases. This entails that relationship types can also have structural variation.

• Represent four kinds of relationships between entity types: aggregates, references,

graph relationships, and generalization.

We have validated U-Schema by injecting schemas from database stores of systems cov-

ering all considered the data models.

8.1.2 Goal 2. Establishing the bidirectional mappings between U-Schema and the differ-

ent individual data models

Building a unified data model, it is necessary to establish the mapping from it to each

individual data model, and in the opposite direction. In the case of U-Schema, we have

introduced the notion of canonical mapping in order to define this bidirectional mapping.

In a canonical mapping, there is a natural and direct correspondence between elements of

a data model and U-Schema elements. We have formally defined canonical mappings from

the relational and four NoSQL data models to U-Schema (forward mappings), and from

U-Schema to the individual data models (reverse mappings). Those mappings was explained

in the Chapter 5. We have also established the reverse mappings between elements when a

canonical mapping does not exist. This occurs because U-Schema has elements for which

there are not a direct correspondence to elements of a individual data model. For example,

U-Schema can represent relationship types which can only appear in graph stores. Then, a

reverse mapping from U-Schema to the document data model should specify how relation-

ship types are mapped to elements of this target model, in such a way that the mapping

is bidirectional. This reverse mappings are those applied in database migrations, in which

U-Schema will play the role of pivot representation.

U-Schema and the canonical mappings have been validated by developing schema ex-

tractors for the most popular system of each kind of NoSQL systems, and MySQL for re-

lational systems. In each extractor, the mapping specified have been implemented. To do

this, we have created a common strategy to extract the schema from stores: a map-reduce

operation obtains the schema of the individual model, and then the canonical mapping is

applied to generate the U-Schema model. This common strategy was explained in detail
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in the Section 5.1. The map-reduce operation is common for aggregate-based data systems.

Real datasets have been used to validate each extractor, whose performance has been mea-

sured and evaluated. Unlike schema extractors published, the extractors developed in this

thesis are defined for a generic metamodel, and structural variation and relationships are

addressed.

8.1.3 Goals 3 and 4. Build a generic language to query schemas and graphically visualize

schemas

We have created the SkiQL generic schema query language. With SkiQL, developers can

express queries on schemas represented as U-Schema models. The language is very simple

and easy to understand, and it includes two main types of constructs: queries to recover

information on an entity or relationship type and queries to know how two entity types are

connected. A graphical notation has been devised to show the query result. Sub-schemas

returned are represented as graphs whose nodes are structural variation and the edges are

U-Schema relationships. This visualization has been implemented as a Web application.

The language and the graphical notation were described in detail in the Chapter 7.

Some language metrics [41] have been calculated to evaluate SkiQL, e.g. expressiveness,

understandability and legibility. Also, a first version of SkiQL and the graphical notation

were evaluated through a survey submitted to people having some kind of experience about

NoSQL and relational databases. The former evaluation evidenced we had achieved the

objectives desired for SkiQL. The latter served to improve the language and design a new

visualization developed from scratch instead of using Neo4j tooling.

8.1.4 Goal 5 and 6. Design and implement a code analysis strategy to discover NoSQL

schemas, and automate the “ join query removal” refactoring

Code static analysis of NoSQL applications had only been addressed in an approach aimed

to discover the evolution of MongoDB containers from different versions of the same Java

application [86]. A few months ago, a analysis static work for finding Database Accesses

in MongoDB Applications has been presented [33]. As explained in the Chapter 6, Our

work of code static analysis goes further than these two approaches because we have de-

veloped a model-driven re-engineering solution that extract logical schemas, and use these
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schemas to apply database refactorings. To achieve this, we have defined a metamodel able

to represent the basic constructs of procedural and object-oriented languages, which has

to be extended for each concrete programming language. Other original metamodel has

been defined to represent the CRUD operations and data structures discovered in the code

analysis (DOS metamodel). This latter model has been mapped to U-Schema to obtain the

logical schema. Then, the schema and the reverse engineered models can be analyzed to

apply automated database refactorings. In the thesis, we have automated the “join query

removal” refactoring in order to improve the performance of the code. Having different

versions of the application, our approach also allows the schema evolution to be obtained

as in [86]. Code analysis is useful to find references between entities. While join queries

allow references to be exactly identified in the code analysis, they can only be inferred from

data by using some heuristics, but these heuristics cannot guarantee that all references are

identified.

We have validated our code analysis approach through a round-trip process. We defined a

database schema for a MongoDB store, and we created an U-Schema model. Then, we made

a series of changes on this schema to perform a manual database refactoring that produced

a refactored U-Schema model. After that, we implemented a Javascript application that

uses the schema. Finally, we applied the code analysis process to the application and we

compared the original U-Schema model with the model obtained in the code analysis We

have also validated the refactoring by comparing the manually refactored U-Schema models

with the model obtained by processing the stored data.

8.1.5 Goal 7. Explore the usefulness of U-Schema to define a database query language

We have conducted a study to create a universal query language based on U-Schema. As we

explained in Section 4.5.1, we identified the type of queries that would be necessary and have

proposed an SQL-like syntax. For the different kinds of queries, we have also illustrated

some query examples. Finally, we specified a possible architecture needed to implement

the execution of the universal query language.

8.2 Contributions

In this section, we shall indicate the main research contributions of this thesis.
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To our knowledge, this thesis contributes with the first logical unified metamodel that

integrates the most widely used database paradigms: Relational and NoSQL. The creation

of this metamodel entailed other contributions:

• The definition of two logical data models for NoSQL systems: one for aggregate-

based systems (columnar, document, and key-value) and one for graph systems. These

data models are more complex than those previously published because they include

different kinds of relationship as well as structural variation.

• The formal specification of the bidirectional mappings between the unified meta-

model and the individual data models.

• The definition of an architecture with reusable components to create schema extrac-

tor from any NoSQL system. The results of the work related to the definition of the

unified metamodel, the specification of mappings, and the implementation of extrac-

tors, have been presented in a long paper of 26 pages published in the Information

Systems Journal [29].

Our unified metamodel represents logical database schemas, but sometimes it is neces-

sary to know information on physical aspects such as those related to indexes or data par-

titioning. For this reason, the results of this thesis allowed us to define the first approach

addressing the connection between logical and physical schemas. The results obtained were

published in the workshop CoMoNoS (Conceptual Modeling for NoSQL data stores) that is part

of the Conceptual Modeling Conference since 2020 [93]. In that paper, we present the map-

pings between the U-Schema metamodel and a physical metamodel created for MongoDB.

Regarding our code static analysis work, we contribute with the first proposal of logical

schema extraction from code. When this thesis started, only one work on code static analy-

sis for NoSQL applications had been published by Meurice and Cleve [86]. This was limited

to extract the union schema of each MongoDB collection, but relationships and structural

variation were not addressed. Our code analysis proposal was made by an collaboration

with Dr Cleve in a predoctoral stay in the PRECISE group (University of Namur, Belgium).

Beyond the extraction of the logical schema, our code analysis strategy also addressed the

automation of schema changes such as refactorings. An infrastructure has been created
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to facilitate the detection of the source code lines to be modified. We have applied this

infrastructure to implement the “join queries removal” for JavaScript applications access-

ing to MongoDB stores. The code and DOS models are useful to detect the code smell for

NoSQL applications identified in [19]. To our knowledge, our proposal is the first work

about automating NoSQL schema changes. However, the great effort devoted to this work

and elaborating the paper has made it difficult to write the papers presenting the results

related to our code analysis. At this moment, we are preparing two publications. A first pa-

per that describes how schemas are obtained from code and how data and code analysis are

needed to extract the correct schema. In a second paper, we present our code infrastructure

to automate schema evolution and its application to the “join queries removal refactoring.”

In this thesis, we have defined the first proposal of a generic NoSQL schema query lan-

guage. Moreover, the SkiQL language is generic because it has been designed for U-Schema.

SkiQL allows developers to express queries on logical schemas represented as U-Schema

models. A paper describing SkiQL and the graphical interactive visualization of query re-

sults has been submitted to Data & Knowledge Engineering, and it is available in arxiv [53].

Before creating SkiQL, we experimented with theCypher language to query U-Schema mod-

els injected into Neo4j stores, and the Neo4j Browser tool was used to visualize the query

results (i.e., graphs). We published this proof of concept in the Spanish Conference of Soft-

ware Engineering and Databases of 2019 [54].

Finally, other original contributions are:

• A study on the usefulness of U-Schema to create a generic language to query NoSQL

stores of any kind of system. We identified the types of queries that would be needed,

and a syntax was proposed, as discussed in [29].

• A comparison of the different generic metamodels proposed to represent database

schemas or data formats. This analysis was presented in Chapter 3.

• MDE has been applied to implement all the approaches devised in this thesis: uni-

fied metamodel and bidirectional mappings (i.e., schema extractors), the SkiQL DSL,

and the reverse engineering process for the code analysis. Therefore, a comparison of

model-to-model transformation languages was carried out to choose the more con-
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venient solution for the thesis. This study was presented in the Spanish Conference

of Software Engineering and Databases of 2018 [52].

• The use and validation of the MDE development methodology designed by the author

of this thesis [28]. This methodology has been applied to develop the code analysis

approach of the thesis.

8.3 Future Work

The research work carried out enables to continue with the construction of generic tool-

ing by taking advantage of the unified metamodel. Among these future works, we would

remark the following:

• To define physical schema metamodels and investigate the mappings from/to U-Schema.

• A U-Schema-based Generic Query Language to query data from different kind of

stores.

• To implement database migration by using U-Schema and the established mappings.

• To create a data mapping language to express specialized mappings between two

NoSQL data models.

• To build an agile database approach and tool aimed to favor an agile development

with databases.

Before commenting these works, it is convenient noting that U-Schema has been used

in another thesis of our research group that started when the metamodel had already been

defined [76]. In that thesis, Alberto Hernández Chillón has addressed the creation of a DSL

family: a universal schema definition language, a schema changes generic language, and a

language for the generation of datasets for testing purposes.

Physicalmetamodel andmappingswith logical U-Schema The metamodel presented con-

cerns to the logical view, and new metamodels could represent physical schemas as well as

a unified physical schema. Thus, we will have U-Schema-Physical and U-Schema-Logical,
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where physical schemas will be extracted from data stores, and logical schemas could be

directly obtained either from stores or from physical schemas, as described in [93]. Phys-

ical data models for each system will include data structures at physical abstraction level,

indexes, physical data distribution, among others. Regarding improvements of U-Schema,

we will extend the metamodel to represent constraints to support new logical validation

characteristics in some NoSQL databases, such as the MongoDB Schema Validation.

A U-Schema-based Generic Data Query Language Given the widespread usage of dif-

ferent data models, developers and companies face the problem of managing several data

query languages. Therefore, there exists a great interest in creating a universal query lan-

guage for the variety of data managed in modern applications, and some proposals have

recently appeared. We have made a study to identify the type of queries would be needed

and proposed a syntax but we have not implemented the language.

Database Migrations Database migration is a typical task in which a unified or generic

representation provides a great advantage. The migration process can be simplified by us-

ing U-Schema models. The U-Schema models from the source database can be used to

automatically generate queries to read all the data in the original database, to classify the

data into structural variations and perform some processing applying some migration rules.

The migration rules could be hardcoded, or either specified with a language. This language

would be defined taking into account the abstractions of U-Schema.

The results achieved in this thesis along with those of the Hernandez’s thesis are the basis

of a new research project of the ModelUM group, which has received funds of the Spanish

Ministry of Science, Innovation and Universities.* This project is tackling the definition

of an agile approach to evolve database schemas. Recently, this topic has received great

attention for relational databases, and several popular tools are available as Liquibase† or

Flyway.‡ In our project, we are using U-Schema to develop a generic tool, and the schema

change scripts are written with the Orion language defined in the Hernández’s thesis [76].

Once changes are applied on the schema, the code infrastructure defined in the thesis here

*Project Identifier: PID2020-117391GB-I00.
†Liquidbase website: https://www.liquibase.org/.
‡Flyway website: https://flywaydb.org/.
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presented will be used to update data and code. Also data migration will be addressed by

considering the mappings established in this thesis.
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thony Cleve. NoSQL Refactoring to improve performance. (On development).

International Conferences

• Pablo David Muñoz Sánchez, Carlos Javier Fernández Candel, Jesús García Molina,

and Diego Sevilla Ruiz. Extracting Physical and Logical Schemas for Document Stores.

CoMoNoS Workshop in Conceptual Modeling International Conference, 2020.

10.1007/978-3-030-65847-2_15
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National Conferences

• Carlos Javier Fernández Candel, Diego Sevilla Ruiz, and Jesús García Molina. Uti-

lización de Neo4j para consultar esquemas de Bases de Datos NoSQL. XXIV Jornadas de

Ingeniería del Software y Bases de Datos (JISBD), Cáceres, Spain, September 2019.

hdl.handle.net/11705/JISBD/2019/080

• Carlos Javier Fernández Candel, Jesús García Molina, Francisco Javier Bermúdez

Ruiz, and Diego Sevilla Ruiz. Una experiencia con transformaciones modelo-modelo en

un proyecto de modernización. XXIII Jornadas de Ingeniería del Software y Bases de

Datos (JISBD), Sevilla, Spain, September 2018.

hdl.handle.net/11705/JISBD/2018/039

Projects

• A Model-Based Environment to Support NoSQL Data Engineering. Ayudas a proyectos

de Investigación y Desarrollo. Issued by the Spanish Ministry of Science, Innovation

and Universities.

Project grant: TIN2017-86853-P, 2017.

• An Agile Development Approach for the NoSQL Database Schema Evolution: Data and

Code Migration. Ayudas a proyectos de Investigación y Desarrollo. Issued by the

Spanish Ministry of Science, Innovation and Universities.

Project grant: PID2020-117391GB-I00, 2021.

Stay

• Stay at the group Research Center in Information System Engineering (PRECISE) §, The

Faculty of Computer Science and the Department of Business Administration, Uni-

versité de Namur, Belgium, 2019.

Under the grant EST18/00760.

§PRECISE website: https://www.unamur.be/en/precise
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Grants

• Ayudas para la Formación de Profesorado Universitario (FPU).

Issued by the Spanish Ministry of Science, Innovation and Universities.

Grant Number: FPU16/02203, 2016.

• Ayudas a la Movilidad para Estancias Breves y Traslados Temporales.

Issued by the Spanish Ministry of Science, Innovation and Universities.

Grant Number: EST18/00760, 2018.
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