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ABSTRACT In many machine learning classification problems, datasets are usually of high dimensionality
and therefore require efficient and effective methods for identifying the relative importance of their
attributes, eliminating the redundant and irrelevant ones. Due to the huge size of the search space of the
possible solutions, the attribute subset evaluation feature selection methods are not very suitable, so in these
scenarios feature ranking methods are used. Most of the feature ranking methods described in the literature
are univariate methods, which do not detect interactions between factors. In this paper, we propose two new
multivariate feature ranking methods based on pairwise correlation and pairwise consistency, which have
been applied for cancer gene expression and genotype-tissue expression classification tasks using public
datasets. We statistically proved that the proposed methods outperform the state-of-the-art feature ranking
methods Clustering Variation, Chi Squared, Correlation, Information Gain, ReliefF and Significance, as
well as other feature selection methods for attribute subset evaluation based on correlation and consistency
with the multi-objective evolutionary search strategy, and with the embedded feature selection methods C4.5
and LASSO. The proposed methods have been implemented on the WEKA platform for public use, making
all the results reported in this paper repeatable and replicable.

INDEX TERMS High-dimensional data, classification, feature ranking, feature selection, machine learn-
ing, correlation, consistency.

I. INTRODUCTION

High-dimensional classification is one of the main machine
learning tasks that has been addressed in the literature during
the last decade [1]–[3]. The elimination of redundant and
irrelevant attributes through the application of feature selec-
tion (FS) methods, although demanding a huge search space,
allows reducing the complexity of the classification models
while improving their accuracy. One of the classification
problems with high-dimensional data that has had the great-
est impact on the scientific community is the gene expression
(GE) classification, particularly for cancer classification. GE
problems currently represent an excellent testbed for experi-
mentation and comparison of FS techniques in classification
tasks with high-dimensional data. That is why in this paper,

GE is used as a reference framework. Filter-based FS has
been widely used in the literature with GE data. The main
disadvantage is that filter techniques only take into account
characteristics inherent to the data, regardless of the task
to be solved (diagnosis, prognosis, or clustering). The use
of filter-based FS techniques has increased the range of
performance measures to be used for classification tasks,
allowing their integration with search strategies for subset
evaluation. Filter methods have also been used successfully
for feature ranking (FR). FR methods assign a ranking or
importance to each attribute, and they can also be treated
as FS techniques if a subset with the q best attributes in the
ranking, or those above a certain threshold t of importance,
is selected (see Fig. 1). Examples of filter methods applied to
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GE data for classification tasks include mutual information
[4], information gain [5], minimum redundancy - maximum
relevance [6] and symmetric uncertainty [7]. An exhaustive
analysis of filter techniques for FS in GE data can be found
in [8].

Another type of FS methods used for high-dimensional
classification problems are the wrapper methods. In contrast
to a filter-based method, wrapper FS methods build a pre-
dictive model to evaluate attributes, either individually or
attribute subsets. Obviously, wrapper FS methods require
more computational time than filter-based methods since a
predictive model has to be fitted for each candidate subset.
The main advantage of this approach relies on the fact
that attribute evaluation is task-oriented. In other words,
attributes are evaluated according to their predictive power
by improving the predictive model performance. For exam-
ple, in [9] support vector machines have been used with
recursive feature elimination as the search strategy whilst
in [10] was used a best-first search. Apart from their high
computation cost, another disadvantage of wrapper methods
is that predictive model overfitting can affect the solution
quality. To overcome this problem, there is a growing interest
in the use of hybrid techniques, which try to integrate two or
more different FS methods, finding informative attributes and
reducing the computational cost [11]. Moreover, different
subsets search strategies have been proposed to improve the
efficiency of FS methods applied to GE data, such as meta-
heuristic techniques [12]. These strategies do not guarantee
to find the optimal subsets but reach acceptable solutions in
terms of a trade-off between optimality and computing effort.
Their main advantage is that due to their global optimization
approach, they avoid being trapped in a local minimum
(or local maximum) as it can be the case for deterministic
techniques. Additionally, the metaheuristic techniques allow
defining more than one objective and several constraints to
the optimization problem.

A third group of FS methods used on high dimensional
datasets are the embedded methods. In these methods, the FS
algorithm is integrated as part of the learning algorithm. In
[13], an FS algorithm for high-dimensional microarray data is
proposed, which first uses a mutual information method to fil-
ter out irrelevant genes, and then uses an improved LASSO-
based method [14] to remove redundant genes. In [15], a
combination of filter (ReliefF [16]), wrapper (with greedy
stepwise search [17]) and embedded (LASSO) methods is
used for gene expression data. In [18], an embedded strategy
that penalizes the cardinality of the feature set via the scaling
factors technique is proposed, and is used with support vector
machines (SVM) on highly imbalanced microarray datasets.

Since high-dimensional classification problems contain
thousands of attributes, subset evaluation FS methods are
often inefficient in this scenario. The search space of these
FS problems is O(2n), where n is the number of attributes,
and heuristics and metaheuristics can only find satisfactory
solutions using very long computation times, even if the
FS method is of filter type. The computation time required

increases, even more, when we use wrapper feature selec-
tion methods, which can become impractical. FR methods,
which evaluate attributes individually instead of evaluating
attribute subsets, are probably the most viable alternative
for this type of scenario. However, existing FR methods are
univariate methods, except ReliefF which is a multivariate
FR method. Univariate FR methods evaluate the attributes
in a “myopic” way. That is, not considering interdependen-
cies or interactions between the attributes. If each attribute
is evaluated without considering the rest of the attributes,
we will probably obtain poor results, because the attribute
interdependencies are not being considered. In this paper,
we propose two novel multivariate FR methods based on
pairwise correlation and pairwise consistency respectively.
The proposed FR methods are compared with a wide range
of FR methods (including the multivariate ReliefF method),
with subset evaluation FS methods based on correlation and
consistency with a multi-objective evolutionary search strat-
egy, and with the embedded feature selection methods C4.5
and LASSO. We have used a GE cancer RNA-Seq dataset
to perform the experiments given the current importance of
this type of application, and two additional genotype-tissue
expression datasets (brain and age) to confirm the results.

The paper has been organized as follows: section II shows
the state-of-the-art of FS methods for high-dimensional data,
with special attention to GE classification; section III de-
scribes the novel multivariate FR methods proposed in this
paper; section IV describes the datasets and the performed
experiments; section V analyses the obtained results; finally,
section VI presents conclusions and outlines for future work.

II. RELATED WORKS
A FS wrapper method of subset evaluation where the search
strategy is a competitive swarm optimizer (CSO) is proposed
in [19]. CSO is a recent variant of PSO which has been
dedicated to large-scale optimization, hence the authors use
it to solve high-dimensional FS problems. Since CSO was
originally developed for continuous optimization, it must be
adapted to combinatorial optimization to solve FS problems.
The authors use the k-nearest-neighbour (kNN) classifier to
test the effectiveness of the FS. An archive technique is also
used to reduce the computational cost. In [20], the authors
propose a new approach based on iteratively adjusting a
bound on the l1-norm of a SVM in order to force the number
of selected features to converge towards the desired maxi-
mum limit. In [21], a real-coded genetic algorithm is used
to optimize attribute weights that minimize the average of
prediction errors of the entire training dataset of a weighted
kNN classifier. The proposed method is evaluated on six
high-dimensional microarray datasets. In [22], an ensemble-
based FS method that combines random bits forest and
recursive clustering elimination is proposed. The authors also
introduce an FS stability measurement method, which mea-
sures whether the FS is stable or not through the intersection
measurement. In [23], a comparison of the single-objective
and multi-objective approaches for FS and classification is
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FIGURE 1. Feature selection based on feature ranking.

performed. In the single-objective approach, analysis of vari-
ance (ANOVA) and Chi-Square have been used. The features
selected have been used for building twelve classifications to
find out which combination presents better performance. In
the multi-objective approach, a metaheuristic wrapper based
technique is used to simultaneously find the best combination
of feature subsets and classification techniques. In this case,
the metaheuristic techniques used are the NSGA-II multi-
objective evolutionary algorithm and the Multi-dimensional
Archive of Phenotypic Elites (MAP-Elites) algorithm. The
results reveal that the two approaches produce good out-
comes, and the computational cost of the models based on FR
techniques is substantially lower. However, metaheuristics
based approaches perform a better exploration of the search
spaces. Specifically, NSGA-II showed a tendency in selecting
fewer features whereas MAP-Elites presented a wider Pareto
front achieving competitive results.

An interesting benchmark of ranker methods in high-
dimensional GE applied to eleven survival datasets is pre-
sented in [24]. Specifically, fourteen ranker based filter meth-
ods have been applied. Among them, we can find those based
on variance, correlation, Cox score and mutual information
(MI). Ranker based filter methods are compared with regu-
larized Cox proportional hazards models using all features.
The drawn conclusions state that the models obtained after
applying one of the filters achieve better predictive power

than the baseline model. Furthermore, models with better
predictive power only select a small number of features.
One of the most interesting characteristics of ranker methods
is that they provided, as output, a ranking of the features
based on a concrete univariate measure. This facilitates the
aggregation of different FR methods as part of an ensemble-
based strategy. An example of this approach is presented in
[25]. In this work, different versions of the microarray data
set are generated by bootstrapping the original set. In each
bootstrapped bag a different ranker technique is applied. The
final ranking is the result of the average ranking of each
feature across all the partial rankings. This approach has
also been successfully applied in [26] for stomach cancer
biomarker identification. In this case, four different ranking
techniques have been applied: Conditional Mutual Informa-
tion Maximisation (CMIM) [27], Double Input Symmetrical
Relevance (DISR) [28], Interaction Capping (ICAP) [29] and
Conditional Informative Feature Extraction (CIFE) [30]. A
novel technique, Weighted Ensemble of Ranks (WERj) is
proposed to aggregate individual rankings. Then, among the
top 100 genes, only those common to all different models
are selected. The proposed method suggests that the selected
genes show better performance accuracy when multiple clin-
ical outcomes are considered.

Despite MI being one of the most used measures for FR,
obtaining a reliable estimation of MI on high-dimensional
low-sample datasets remains a challenge. In this regard,
in [31], a novel Joint Bias Mutual Information (JBMI) is
first presented, together with modified Discretization and
Selection of features based on MI (mDSM). The authors
also demonstrate that MI follows a χ2 distribution, making it
possible to design an FS technique that, simultaneously with
FR, selects the best discretization of selected features using
the χ2 criteria. These findings have been used in [32], where
a novel Mutual information-based Gene Selection (MGS) is
presented. In order not to lose relevant genes, mDSM is ap-
plied in a Leave-One-Out Cross-Validation scheme, resulting
in different rankings of relevant genes. Then two ranking
criteria have been applied to aggregate different rankings
namely MGS frequency-based ranking (MGSf ) and MGS
Random Forest based ranking (MGSrf ). An evaluation of
the proposed techniques has been performed over different
GE datasets. Results proved that both (MGSf ) and (MGSrf )
outperforms existing techniques in both balanced and imbal-
anced datasets.

An interesting approach using rankers based on Autoen-
coders (AEs) is presented in [33]. First, an AE is applied for
a non-linear fusion and summarization of the original char-
acteristics. Then, the FR technique ANOVA with FDR cor-
rection is used to retain the most relevant features that have
been used in different machine learning (ML) classification
techniques. The conclusions showed that the combination of
AE and FR provides better performance. It could be argued
that the use of AE does not allow the extraction of biomedical
related conclusions since some information about the original
features was lost in the AE fusion process. However, it
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is worth mentioning that a methodology to calculate gene
weights for genes of a set of AE features is also presented.

III. MATERIALS AND METHODS
Let D = {I1, . . . , Iw} be a dataset with w instances. Each
instance Ip = (ap1, . . . , a

p
n, cp), p = 1 . . . , w, has n input at-

tributes of any type, and one output attribute cp ∈ {1, . . . , s},
where s is the number of output classes. We assume that at
least one instance exists for each output class. In the follow-
ing lines, we describe two new multivariate FR methods for
high-dimensional data. The first method is based on pairwise
correlation and the second one on pairwise consistency.

A. MULTIVARIATE FEATURE RANKING BASED ON
PAIRWISE CORRELATION

We propose the FR method called Pairwise Correlation1,
which is inspired in the correlation-based feature selection
(CFS) method. The CFS algorithm was developed by Mark
A. Hall from the University of Waikato in Hamilton (New
Zealand) throughout his doctoral thesis [34]. This same
university is well-known in the world of data science for
developing the free software application WEKA (Waikato
Environment for Knowledge Analysis [35]), in which Mark
A. Hall has an important role as Honorary Research Asso-
ciate. The CFS algorithm has the advantage over other FS
methods that it generates more accurate models and reduces
the number of attributes selected by half in most cases. This
concept is explained years later in a summary paper [36]. The
CFS method evaluates sets of attributes instead of doing so
individually. To determine the goodness of each set, the CFS
algorithm evaluates how well each attribute can predict the
class as well as the similarity degree between the attributes.
In such a way, the feature sets correlated with the class
and with features poorly correlated with each other obtain
the higher scores. CFS method uses the function ΦD(S) to
measure the quality of a subset S of k attributes in a dataset
D, 1 ≤ k ≤ n, defined as follows:

ΦD(S) =
k · σc

D√
k + k · (k − 1) · σf

D

(1)

where σc
D is the mean of the correlations between each

feature in S and the class attribute, and σf
D is the average

correlation between each of the
(
k
2

)
possible feature pairs

in S. In other words, the numerator indicates the predictive
degree of a set of variables while the denominator indicates
the redundancy between the variables. CFS method requires
discretizing the values (usually with Fayyad and Irani method
[37]). CFS applies the symmetrical uncertainty method [38]
to measure the degree of similarity for discrete values.

1The Pairwise Correlation method has been incorporated into the WEKA
platform as an official package with the name PairwiseCorrelationAttribu-
teEval.

The proposed FR method Pairwise Correlation evaluates
an attribute i ∈ {1, . . . , n} by using the following function
ΦA

D:
ΦA

D(i) =
∑

j∈{1,...,n}
j 6=i

ΦD({i, j}) (2)

where ΦD({i, j}) is the merit (eq. (1)) of the subset formed
by attributes i and j, for all j = 1, . . . , n, with j 6= i.
That is, the merit ΦA

D(i) of an attribute i is the sum of the
merits ΦD of the attribute subsets formed by i and each of
the other attributes. Attributes with low correlation to other
attributes and highly correlated with the class are preferred.
Pairwise Correlation is a (filter) multivariate FR method
since the evaluation of each attribute takes into account all
the other attributes together with the class, thus considering
the interactions between the attributes.

B. MULTIVARIATE FEATURE RANKING BASED ON
PAIRWISE CONSISTENCY
Similarly, we propose the FR method called Pairwise Consis-
tency2, which uses the consistency metric for attribute subsets
introduced by Liu and Setiono [39]. The intuition behind
the consistency measure is to find attributes that divide the
dataset into parts with a highly predominant class. This
measure has been explained by Almuallim et al. [40] in 1991
and by Liu and Setiono [39] in 1996, but the research of Dash
and Liu [41] gives a more complete perspective. According
to [41], a group of features is inconsistent when two or
more instances have the same values but different labels. For
example, the instances (1, 2, 2, a) and (1, 2, 2, b), where a
and b represent the class, are inconsistent. The consistency
measure is then defined by the inconsistency rate. The incon-
sistency rate, ID(S), of an attribute subset S in a dataset D
is calculated as the sum of all the inconsistency counts for
all the patterns divided by the total number of instances in
D. The inconsistency count for a given pattern (the values
of the selected features without the class) is calculated as
the total number of the same patterns in the dataset minus
the number of instances of the majority class of the pattern.
For example, for the pattern (1, 2, 2), if there are 36 elements
of class a, 6 for class b, and 5 for class c, the inconsistency
count would be (36 + 6 + 5) − 36 = 11. Obviously, the
less inconsistent the subset is, the greater the consistency
of an attribute subset. In summary, the consistency measure
is monotonic, fast, multivariate, able to remove redundant
and/or irrelevant features, and capable of handling some
noise [41]. The consistency of any subset can never be lower
than that of the full set of attributes. The usual practice is to
use this subset evaluator in conjunction with a search strategy
that looks for the smallest subset with consistency equal to
that of the full set of attributes. The consistency measure can
work when data has discrete-valued features. Any continuous

2The Pairwise Consistency method has been incorporated into the WEKA
platform as an official package with the name PairwiseConsistencyAttribu-
teEval.
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feature should be first discretized using some discretization
method [37].

The proposed FR method Pairwise Consistency evaluates
an attribute i ∈ {1, . . . , n} by using the following function
ΨA

D:

ΨA
D(i) =

∑
j∈{1,...,n}

j 6=i

ΨD({i, j}) (3)

where ΨD({i, j}) = 1 − ID({i, j}) is the consistency rate
of the subset formed by the attributes i and j, for all j =
1, . . . , n, with j 6= i. That is, the merit ΨA

D(i) of an attribute
i is the sum of the consistency rates of the attribute i and each
of the other attributes. Pairwise Consistency is also a (filter)
multivariate FR method and therefore considers interactions
between factors.

IV. EXPERIMENTS AND RESULTS

In this section, we describe the gene expression datasets
used in this paper (sections IV-A and IV-B) as well as
the experiments performed and their results (summarized in
section IV-C). The Pairwise Correlation and Pairwise Con-
sistency methods have been compared with 6 FR methods.
For this, a set of 8 classification algorithms has been used,
and the obtained models have been compared using as a
metric the percentage of correct predictions. Statistical tests
are performed to detect statistically significant differences
between FR methods and to establish a win-loss ranking.
Furthermore, the proposed FR methods have been compared
with other filter FS methods for attribute subset evaluation
that use a metaheuristic search strategy, and with the em-
bedded feature selection methods C4.5 and LASSO. Sections
with runtimes, external validation, and t-SNE visualization
are also included.

A. GENE EXPRESSION CANCER RNA-SEQ DATASET

The gene expression cancer RNA-Seq dataset3 is part of the
RNA-Seq (HiSeq) PANCAN dataset. The original dataset4 is
maintained by the cancer genome atlas pan-cancer analysis
project [42]. This dataset is a random extraction of gene ex-
pressions of patients having different types of tumours, con-
taining 801 instances and 20,531 attributes. Attributes of each
instance are RNA-Seq gene expression levels measured by
the Illumina HiSeq platform. A dummy name (gene_xxxxx)
is given to each attribute. Attributes are ordered consistently
with the original submission. It is possible to obtain the
complete list of names by accessing the project platform. The
output attribute has 5 classes corresponding to the 5 tumour
types shown in Table 1 along with the number of instances of
each class.

TABLE 1. Classes and their number of instances of the gene expression
cancer RNA-Seq dataset.

Tumour Number of instances
BRCA 300
COAD 78
KIRC 146
LUAD 141
PRAD 136

1) Comparison with other feature ranking methods
Our two methods Pairwise Correlation and Pairwise Con-
sistency have been compared with 6 other well-known FR
methods that use different information measures. These FR
methods are Clustering Variation [43], Chi Squared [44],
Correlation [45], Information Gain [46], ReliefF [16] and
Significance [47]. To compare the FR methods, the reduced
datasets containing the q best attributes obtained with each
FR method have been used to construct classifiers of different
nature, for q = 3, log2(n), 50, 100. The used classification
algorithms were naive bayes [48], multilayer perceptron [49],
support vector machine [50], k-NN [51], RIPPER [52], C4.5
[53], random forest [54] and zeroR [55]. Each pair (reduced
dataset, classification algorithm) has been evaluated using
10-fold cross-validation, repeated 10 times. Therefore, for
each pair (reduced dataset, classification algorithm), 100
classifiers have been built, which have been evaluated with
the metric of per cent correct and the mean has been cal-
culated. Tables 2 to 5 show these results, for each value of
q. Table 6 shows, as a summary, the number of times that
each FR method has obtained the best evaluation result for
some value of q, and the total number. The FR methods
were ordered according to this score and the rank of each FR
method is shown. The FR methods in the first two positions
in the ranking are marked in bold.

We have performed statistical tests to detect statistically
significant differences between the compared FR methods.
A paired t-test has been performed establishing as baseline
the reduced dataset obtained with each of the FR methods,
for each value of q. In this way, each FR method has been
statistically compared with all the others with each of the
classifiers. Then, the times that each FR method has won
(wins) and the times that it has lost (losses) are obtained.
Table 7 shows the results of the statistical tests for each value
of q. In this table, the FR methods with the greatest difference
between wins and losses in each value of q have been marked
in bold. Finally, Tables 8 to 11 show the summary of the
evaluations and statistical tests for each value of q. An entry
of the form ’a (b)’ in these tables represents the number ’a’
of datasets in which the column has been better than the row,
and the number ’b’ of datasets in which the column has been
statistically better than row.

3https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+
RNA-Seq

4https://www.synapse.org/#!Synapse:syn4301332
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TABLE 2. Average performance evaluation with the gene expression cancer RNA-Seq dataset for q = 3, 10-fold cross-validation, 10 repetitions.

Method NaiveBayes MLP SVM kNN RIPPER C4.5 Random Forest ZeroR
Clustering Variation 22.27 37.15 36.84 36.63 37.10 37.45 36.97 37.45

Chi Squared 91.16 86.50 88.53 91.90 90.53 90.97 93.40 37.45
Correlation 87.34 75.57 88.99 87.08 89.23 88.91 88.99 37.45

Information Gain 91.16 86.43 88.53 91.90 90.82 90.94 93.28 37.45
ReliefF 91.30 81.38 87.93 89.44 90.19 90.29 91.88 37.45

Significance 91.16 86.54 88.50 91.90 90.52 90.82 93.31 37.45
Pairwise Correlation 92.57 89.64 91.24 92.64 91.11 91.97 93.36 37.45
Pairwise Consistency 92.66 88.99 90.85 89.93 89.28 91.85 92.47 37.45

TABLE 3. Average performance evaluation with the gene expression cancer RNA-Seq dataset for q = log2(n) = 14, 10-fold cross-validation, 10 repetitions.

Method NaiveBayes MLP SVM kNN RIPPER C4.5 Random Forest ZeroR
Clustering Variation 19.84 37.37 38.08 35.79 37.34 37.45 35.94 37.45

Chi Squared 98.99 93.17 99.16 99.10 95.78 96.47 99.21 37.45
Correlation 97.07 86.82 98.14 97.08 92.61 93.56 97.37 37.45

Information Gain 99.10 92.83 99.48 99.25 95.76 96.12 99.01 37.45
ReliefF 96.73 89.71 97.84 97.50 94.92 95.84 97.99 37.45

Significance 98.43 92.49 99.49 99.25 96.24 96.43 99.10 37.45
Pairwise Correlation 99.08 93.26 99.71 99.75 96.24 97.05 99.18 37.45
Pairwise Consistency 99.01 92.48 99.20 99.25 95.18 96.22 99.18 37.45

TABLE 4. Average performance evaluation with the gene expression cancer RNA-Seq dataset for q = 50, 10-fold cross-validation, 10 repetitions.

Method NaiveBayes MLP SVM kNN RIPPER C4.5 Random Forest ZeroR
Clustering Variation 26.90 42.27 41.66 39.15 43.43 43.13 41.65 37.45

Chi Squared 99.60 97.29 99.84 99.85 97.42 97.69 99.73 37.45
Correlation 98.84 96.41 99.63 99.64 95.96 95.77 99.25 37.45

Information Gain 99.74 97.21 99.88 99.88 97.03 97.64 99.69 37.45
ReliefF 98.86 98.01 99.73 99.48 97.28 97.99 99.55 37.45

Significance 98.56 96.90 99.61 99.64 96.77 97.72 99.50 37.45
Pairwise Correlation 98.63 97.33 99.86 99.85 97.53 97.40 99.51 37.45
Pairwise Consistency 99.56 97.57 99.75 99.88 97.12 97.38 99.64 37.45

TABLE 5. Average performance evaluation with the gene expression cancer RNA-Seq dataset for q = 100, 10-fold cross-validation, 10 repetitions.

Method NaiveBayes MLP SVM kNN RIPPER C4.5 Random Forest ZeroR
Clustering Variation 40.82 45.40 44.81 41.50 47.07 49.25 48.70 37.45

Chi Squared 99.61 97.29 99.76 99.75 97.67 97.75 99.61 37.45
Correlation 99.50 95.38 99.88 99.85 96.25 96.37 99.54 37.45

Information Gain 99.79 98.06 100.00 99.88 97.08 97.43 99.78 37.45
ReliefF 99.36 97.78 99.90 100.00 97.59 97.63 99.54 37.45

Significance 99.08 98.10 100.00 99.75 97.77 97.29 99.64 37.45
Pairwise Correlation 99.44 98.30 100.00 100.00 97.53 97.90 99.65 37.45
Pairwise Consistency 99.79 97.81 100.00 99.78 97.09 97.59 99.76 37.45

TABLE 6. Number of times each method was the best along with the rank for
each method.

Method Best evaluations Rank
Clustering Variation 0 4

Chi Squared 1 3
Correlation 0 4

Information Gain 3 1
ReliefF 1 3

Significance 1 3
Pairwise Correlation 3 1
Pairwise Consistency 2 2

2) Comparison with attribute subset evaluation feature
selection methods
This section compares the FR methods Pairwise Correlation
and Pairwise Consistency with FS methods that use the
correlation and consistency filters but for attribute subset

evaluation instead of attribute evaluation. These FS meth-
ods require a strategy to search for candidate subsets of
attributes in a search space O(2n) (see Fig. 2). We have used
a multi-objective evolutionary search strategy [56]–[60], in
particular, the NSGA-II algorithm [61], with which the merit
of the attribute subsets is maximized and its cardinality
is minimized. In this paper, these FS methods are called
MOEA-CFS and MOEA-Consistency. In the comparisons,
we have used q = 100 and q = 200 for the FR meth-
ods Pairwise Correlation and Pairwise Consistency. Again,
each pair (reduced dataset, classification algorithm) has been
evaluated using 10-fold cross-validation, repeated 10 times.
For the sake of a fair comparison, methods MOEA-CFS
and MOEA-Consistency have been run with a number of
evaluations of the objective function such that the runtimes
are not shorter than the runtimes required by the Pairwise
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TABLE 7. Wins − losses ranking tests for gene expression cancer RNA-Seq dataset, 10-fold cross-validation, 10 repetitions.

q = 3 q = log2(n) = 14 q = 50 q = 100
Method wins losses dif. wins losses dif. wins losses dif. wins losses dif.

Clustering Variation 0 49 -49 0 49 -49 0 49 -49 0 49 -49
Chi Squared 12 4 8 17 1 16 10 0 10 7 0 7
Correlation 7 24 -17 7 33 -26 7 7 0 7 1 6

Information Gain 12 4 8 17 0 17 12 0 12 8 0 8
ReliefF 10 8 2 8 18 -10 8 1 7 7 0 7

Significance 12 4 8 17 0 17 8 3 5 7 2 5
Pairwise Correlation 22 0 22 19 0 19 8 3 5 8 0 8
Pairwise Consistency 19 1 18 17 1 16 10 0 10 8 0 8

TABLE 8. Summary of the evaluations and statistical tests for gene expression cancer RNA-Seq dataset, q = 3, 10-fold cross-validation, 10 repetitions.

Clustering Variation Chi Squared Correlation Information Gain ReliefF Significance Pairwise Correlation Pairwise Consistency
Clustering Variation – 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)

Chi Squared 0 (0) – 1 (0) 1 (0) 1 (0) 1 (0) 6 (2) 4 (2)
Correlation 0 (0) 6 (4) – 6 (4) 6 (3) 6 (4) 7 (5) 7 (4)

Information Gain 0 (0) 3 (0) 1 (0) – 1 (0) 2 (0) 7 (2) 4 (2)
ReliefF 0 (0) 6 (1) 1 (0) 6 (1) – 6 (1) 7 (3) 6 (2)

Significance 0 (0) 4 (0) 1 (0) 3 (0) 1 (0) – 7 (2) 4 (2)
Pairwise Correlation 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) – 1 (0)
Pairwise Consistency 0 (0) 3 (0) 0 (0) 3 (0) 1 (0) 3 (0) 6 (1) -

TABLE 9. Summary of the evaluations and statistical tests for gene expression cancer RNA-Seq dataset, q = log2(n) = 14, 10-fold cross-validation, 10
repetitions.

Clustering Variation Chi Squared Correlation Information Gain ReliefF Significance Pairwise Correlation Pairwise Consistency
Clustering Variation – 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)

Chi Squared 0 (0) – 0 (0) 3 (0) 0 (0) 3 (0) 6 (1) 3 (0)
Correlation 0 (0) 7 (6) – 7 (7) 5 (1) 7 (6) 7 (7) 7 (6)

Information Gain 0 (0) 4 (0) 0 (0) – 0 (0) 4 (0) 6 (0) 3 (0)
ReliefF 0 (0) 7 (4) 2 (0) 7 (3) – 7 (4) 7 (3) 7 (4)

Significance 0 (0) 4 (0) 0 (0) 3 (0) 0 (0) – 7 (0) 3 (0)
Pairwise Correlation 0 (0) 1 (0) 0 (0) 1 (0) 0 (0) 0 (0) – 1 (0)
Pairwise Consistency 0 (0) 4 (0) 0 (0) 4 (0) 0 (0) 4 (0) 6 (1) –

TABLE 10. Summary of the evaluations and statistical tests for gene expression cancer RNA-Seq dataset, q = 50, 10-fold cross-validation, 10 repetitions.

Clustering Variation Chi Squared Correlation Information Gain ReliefF Significance Pairwise Correlation Pairwise Consistency
Clustering Variation – 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)

Chi Squared 0 (0) – 0 (0) 3 (0) 2 (0) 1 (0) 3 (0) 2 (0)
Correlation 0 (0) 7 (1) – 7 (2) 6 (1) 4 (1) 6 (1) 7 (1)

Information Gain 0 (0) 4 (0) 0 (0) – 3 (0) 1 (0) 2 (0) 2 (0)
ReliefF 0 (0) 5 (0) 1 (0) 4 (1) – 1 (0) 3 (0) 4 (0)

Significance 0 (0) 6 (1) 3 (0) 6 (1) 6 (0) – 6 (0) 6 (1)
Pairwise Correlation 0 (0) 3 (1) 1 (0) 5 (1) 4 (0) 1 (0) – 4 (1)
Pairwise Consistency 0 (0) 5 (0) 0 (0) 4 (0) 3 (0) 1 (0) 3 (0) –

TABLE 11. Summary of the evaluations and statistical tests for gene expression cancer RNA-Seq dataset, q = 100, 10-fold cross-validation, 10 repetitions.

Clustering Variation Chi Squared Correlation Information Gain ReliefF Significance Pairwise Correlation Pairwise Consistency
Clustering Variation – 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7) 7 (7)

Chi Squared 0 (0) – 2 (0) 5 (0) 3 (0) 4 (0) 5 (0) 5 (0)
Correlation 0 (0) 5 (0) – 7 (0) 6 (0) 5 (0) 6 (1) 6 (0)

Information Gain 0 (0) 2 (0) 0 (0) – 3 (0) 2 (0) 4 (0) 2 (0)
ReliefF 0 (0) 4 (0) 1 (0) 4 (0) – 4 (0) 5 (0) 4 (0)

Significance 0 (0) 2 (0) 2 (0) 4 (1) 3 (0) – 5 (0) 4 (1)
Pairwise Correlation 0 (0) 2 (0) 1 (0) 2 (0) 1 (0) 1 (0) – 2 (0)
Pairwise Consistency 0 (0) 2 (0) 1 (0) 3 (0) 3 (0) 2 (0) 4 (0) –
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FIGURE 2. Feature selection based on attribute subset evaluation.

Correlation and Pairwise Consistency methods respectively.
Thus, the number of evaluations of the objective function
given to method MOEA-CFS was 30,000,000 (population
size of 100 and 300,000 generations), and that of method
MOEA-Consistency were 130,000,000 (population size of
100 and 1,300,000 generations). Table 12 shows the average
evaluations with the metric of per cent correct. Table 13
shows the results of the statistical tests and the wins-losses
ranking, marking in bold the top 2 methods.

3) Comparison with embedded feature selection methods
Finally, in this section, we show the results of the third
group of experiments where the Pairwise Correlation and
Pairwise Consistency methods proposed in this paper are
compared with two well-known embedded feature selection
methods such as C4.5 and LASSO. We have also included
the results of the top three statistically best classifiers with
all 20,531 attributes. Table 14 shows the per cent correct
in 10-fold cross-validation of the classifiers, as well as the
number of used attributes. Internally selected attributes are
also shown for embedded methods. The number of attributes
and classifiers used for the Pairwise Correlation and Pairwise
Consistency methods correspond to those that have produced
the best per cent correct (100%) in the previous experiments
shown in sections IV-A1 and IV-A2.

4) Runtimes
This section shows the runtime spent by the methods com-
pared in this paper, including the attribute evaluation meth-
ods, the attribute subset evaluation methods, and the em-
bedded methods. We have used an Intel (R) Core (TM) i9-
10900K CPU 3.70GHz 128 GB RAM x64-based processor,
64-bit operating system. Table 15 shows the runtime, in
minutes, of a single execution of each method using the full
training set, as well as the ranking of the methods from lowest
to highest runtime.

5) External validation
We wanted to perform a partial external validation of the ap-
proach based on answering the following biological question
on the PANCAN cancer dataset:

“are the proposed feature selection methods ef-
fective on selecting the genes that help identify
samples of BRCA cancer?”

We propose a discovery-replication approach to provide the
answers. For each method Pairwise Correlation and Pairwise
Consistency we present a three-phase strategy, namely (1)
discovery, (2) replication and (3) statistical assessment. The
first phase is concerned with selecting the genes that best
identify BRCA subjects. Therefore, at discovery, we apply
feature selection on BRCA and KIRC samples. Then, the
features selected in the discovery phase are assessed for repli-
cation by testing how well they discriminate between BRCA
and each of the other cancer types. The feature selection
method should work properly when the classifier built at the
discovery phase shows high accuracy. Besides, we should
not be able to observe any statistically significant differences
between that classifier´s accuracy and the accuracy of any
of the classifiers built with the same genes and the samples
of BRCA and the other cancer types. More specifically, at
discovery, we perform feature selection (we select the 100
best attributes) with only BRCA & KIRC samples in the
dataset (classes with the highest number of instances). In
the replication phase, we developed binary classifiers with
BRCA samples and all samples from one of the other cancer
types out of BRCA and KIRC. Therefore, we developed a
classifier with the selected attributes in the discovery phase
with the BRCA and COAD samples, another classifier with
the BRCA and LUAD samples, and another one with the
BRCA and PRAD samples. Next, to assess the effectiveness
of the feature selection method in the replication phase,
we assumed that the method would effectively replicate the
genes selected in the discovery phase if, when these attributes
are used to distinguish between BRCA and other cancers
(instead of KYRC), we did not observe statistically signif-
icant differences in the performance of these classification
models for the classification model obtained in the discovery
phase. We use the statistical test phase for that purpose. For
each replication cancer type (i.e., COAD, LUAD and PRAD),
we use separately a paired t-test on the null hypothesis that
assumes that there is no difference between means of esti-
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TABLE 12. Average performance evaluation with gene expression cancer RNA-Seq dataset compared to attribute subset evaluation feature selection methods with
multi-objective evolutionary search strategy, 10-fold cross-validation, 10 repetitions.

Method Attributes NaiveBayes MLP SVM kNN RIPPER C4.5 Random Forest ZeroR
MOEA-CFS 288 99.23 92.86 100.00 100.00 95.28 96.58 99.85 37.45

MOEA-Consistency 4 96.93 89.25 96.92 96.75 93.97 95.88 97.20 37.45
Pairwise Correlation (q = 100) 100 99.44 98.30 100.00 100.00 97.53 97.90 99.65 37.45
Pairwise Consistency (q = 100) 100 99.79 97.81 100.00 99.78 97.09 97.59 99.76 37.45
Pairwise Correlation (q = 200) 200 99.99 98.01 99.96 99.78 97.94 98.12 99.65 37.45
Pairwise Consistency (q = 200) 200 99.55 97.58 100.00 99.75 97.23 97.23 99.76 37.45

TABLE 13. Wins − losses ranking tests including attribute subset evaluation
feature selection methods with multi-objective evolutionary search strategy,
10-fold cross-validation, 10 repetitions.

Method wins losses dif. Rank
MOEA-CFS 4 8 -4 5

MOEA-Consistency 0 30 -30 6
Pairwise Correlation (q = 100) 9 0 9 2
Pairwise Consistency (q = 100) 7 0 7 4
Pairwise Correlation (q = 200) 10 0 10 1
Pairwise Consistency (q = 200) 8 0 8 3

TABLE 14. Average performance evaluation with gene expression cancer
RNA-Seq dataset compared to embedded feature selection methods and the
top three statistically best classifiers with all attributes, 10-fold cross-validation.

Classifier Per cent correct Attributes
SVM – Pairwise Correlation 100.00 100
SVM – Pairwise Consistency 100.00 100
kNN – Pairwise Correlation 100.00 100
SVM – Pairwise Consistency 100.00 200

SVM 99.88 20,531
kNN 99.88 20,531

Random Forest 99.38 20,531
C4.5 (embedded) 98.00 20,531 → 5

LASSO (embedded) 99.50 20,531 → 365

TABLE 15. Mean runtimes (minutes).

Method Runtime Rank
Clustering Variation 0.83 5

Chi Squared 0.07 3
Correlation 0.01 1

Information Gain 0.06 2
Relief 1.34 6

Significance 0.07 4
MOEA-CFS 1216.41 12

MOEA-Consistency 791.10 11
Pairwise Correlation 414.25 10
Pairwise Consistency 384.54 9

C4.5 6.27 7
LASSO 45.45 8

mates of the percentage of correct samples classified between
classifiers built to distinguish between BRCA and KIRC
and between BRCA and the replication cancer type, when
using the genes obtained at the discovery phase. And for
each classifier experiment, we use 10-fold cross-validation
with 10 repetitions. We have used SVM, kNN and Random
Forest, the top 3 performing classifiers obtained earlier, and
the accuracy results are shown in Tables 16 and 17. No
statistical test performed on phase three yielded a significant
p-value, therefore we could not reject the null hypothesis.
Thus, we conclude that the method adequately replicates the

genes with discriminative power to identify BRCA genes.

TABLE 16. External validation results of Pairwise Correlation method.

Classifier BRCA-KIRC BRCA-COAD BRCA-LUAD BRCA-PRAD
SVM 99.98 99.98 99.80 100.00
kNN 99.96 99.98 99.64 100.00

Random Forest 99.87 99.43 99.71 100.00

TABLE 17. External validation results of Pairwise Consistency method.

Classifier BRCA-KIRC BRCA-COAD BRCA-LUAD BRCA-PRAD
SVM 99.78 100.00 99.71 100.00
kNN 99.78 99.95 99.07 100.00

Random Forest 99.93 99.66 99.36 100.00

6) Visualization of results
To verify that class separability is not affected by feature
selection, in this section, we show the t-SNE visualization
before and after making FS with the Pairwise Correlation and
Pairwise Consistency methods, including external validation.
Fig. 3 shows t-SNE visualization of gene expression cancer
RNA-Seq dataset (before and after FS) and Fig. 4 to 7 shows
t-SNE visualization of the datasets corresponding to the
discovery and replication phases of the external validation.

B. RESULTS WITH OTHER DATASETS
To strengthen the conclusions, in this section we show re-
sults with two other gene expression datasets, in this case
for genotype-tissue expression (GTEx) classification. GTEx
[62] is an international consortium devoted to sequencing
multiple parts of the human body, including 13 different brain
areas, the main organs, e.g., lung, liver, heart, skin. Humans
are all control subjects from a variety of ages and sex. To
this date, the GTEx transcriptomic resource is the biggest
repository of human tissue RNA and DNA sequencing. We
downloaded TPM (Transcript per million) values from the
global expression matrix of GTEx RNA expression V7 and
biological covariates of interest like sex, age, and sample
tissue. We filtered out all non-brain tissue samples and kept
only those genes expressed with a minimum of 0.1 TMP
values over 80% of the samples, within each tissue. Then
separately for each brain tissue, we regressed out of the
expression, RIN, age, and sex to avoid both technical and
biological biases for this specific experiment. The resultant
expression values are available in the form of an R package
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FIGURE 3. t-SNE visualization of gene expression cancer RNA-Seq dataset and reduced datasets (100 attributes) obtained with Pairwise Correlation and Pairwise
Consistency methods.
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FIGURE 4. t-SNE visualization of BRCA-KIRC dataset and reduced datasets (100 attributes) obtained with Pairwise Correlation and Pairwise Consistency methods.
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FIGURE 5. t-SNE visualization of BRCA-COAD dataset and reduced datasets (100 attributes) obtained with Pairwise Correlation and Pairwise Consistency
methods.
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FIGURE 6. t-SNE visualization of BRCA-LUAD dataset and reduced datasets (100 attributes) obtained with Pairwise Correlation and Pairwise Consistency
methods.
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FIGURE 7. t-SNE visualization of BRCA-PRAD dataset and reduced datasets (100 attributes) obtained with Pairwise Correlation and Pairwise Consistency
methods.

downloadable from GitHub5. The resulting dataset consists
of 17863 input attributes and 1529 instances. We created two
classification problems out of this dataset. The classes for
the brain tissue GTEx RNA expression classification problem,
shown in Table 18 along with the number of instances of each
class, were the tissue corresponding to the specific individual
sample. The classes for the brain age GTEx RNA expression
classification problem, shown in Table 19, corresponds to 6
ranges of age for the individual.

We have performed wins-losses paired t-tests with the
GTEx RNA expression datasets using the same FR and
subset evaluation methods, number of attributes, classifiers,
evaluation metric and validation mode that were used with
the gene expression RNA-Seq dataset. Tables 20, 21 and
22 show the results of the statistical tests with the FR and
subset evaluation methods, in which the best results have
been marked in bold.

C. SUMMARY OF RESULTS
Finally, Tables 23 and 24 summarize the number of times
each method has won minus the number of times each

5https://github.com/juanbot/CoExpGTExV7

TABLE 18. Classes and their number of instances of the brain tissue GTEx
RNA expression classification problem.

Brain tissue Number of instances
BrainAmygdala 97

BrainAnteriorCingulateCortex 121
BrainCaudateBG 157

BrainCerebellarHemisphere 134
BrainCerebellum 173

BrainCortex 158
BrainHippocampus 123
BrainHypothalamus 120

BrainNucleusAccumbensBG 146
BrainPutamenBG 123

BrainSpinalCordC1 90
BrainSubstantiaNigra 87

TABLE 19. Classes and their number of instances of the brain age GTEx
RNA expression classification problem.

Brain age Number of instances
20-29 59
30-39 35
40-49 165
50-59 478
60-69 705
70-79 87
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TABLE 20. Wins − losses ranking tests for brain tissue GTEx RNA expression classification problem, 10-fold cross-validation, 10 repetitions.

q = 3 q = log2(n) = 14 q = 50 q = 100
Method wins losses dif. wins losses dif. wins losses dif. wins losses dif.

Clustering Variation 2 26 -24 10 31 -21 9 30 -21 10 30 -20
Chi Squared 20 8 12 19 11 8 22 0 22 22 1 21
Correlation 3 26 -23 0 41 -41 1 35 -34 1 35 -34

Information Gain 28 0 28 29 4 25 23 0 23 21 1 20
ReliefF 0 28 -28 4 34 -30 3 33 -30 4 32 -28

Significance 15 20 -5 21 6 15 15 19 -4 14 16 2
Pairwise Correlation 28 0 28 36 0 36 21 2 19 20 4 16
Pairwise Consistency 20 8 12 19 11 8 25 0 25 27 0 27

TABLE 21. Wins − losses ranking tests for brain age GTEx RNA expression classification problem, 10-fold cross-validation, 10 repetitions.

q = 3 q = log2(n) = 14 q = 50 q = 100
Method wins losses dif. wins losses dif. wins losses dif. wins losses dif.

Clustering Variation 0 10 -10 0 20 -20 1 19 -18 0 9 -9
Chi Squared 3 3 0 12 0 12 11 0 11 7 0 7
Correlation 0 15 -15 0 20 -20 0 21 -21 0 13 -13

Information Gain 3 3 0 12 0 12 11 0 11 6 0 6
ReliefF 1 5 -4 0 20 -20 0 15 -14 0 11 -11

Significance 9 0 9 12 0 12 11 0 11 8 0 8
Pairwise Correlation 3 4 -1 12 0 12 11 0 11 7 0 7
Pairwise Consistency 21 0 21 12 0 12 9 0 9 5 0 5

TABLE 22. Wins − losses ranking tests for GTEx RNA expression
classification problems including attribute subset evaluation feature selection
methods, 10-fold cross-validation, 10 repetitions.

Brain tissue GTEx RNA Brain age GTEx RNA
Method wins losses dif. wins losses dif.

MOEA-CFS 8 3 5 0 4 -4
MOEA-Consistency 2 29 -27 1 0 1

Pairwise Correlation (q = 100) 7 6 1 3 0 3
Pairwise Consistency (q = 100) 16 0 16 3 0 3
Pairwise Correlation (q = 200) 6 9 -3 1 2 -1
Pairwise Consistency (q = 200) 10 2 8 0 2 -2

method has lost, taking into account the three data sets
analyzed. The two best methods and their ranking positions
are marked in bold in the tables. These summary tables will
serve as the basis for analysing the results in the next section.

V. ANALYSIS OF RESULTS AND DISCUSSION
The following statements can be derived from the results
obtained:
• The results indicate that the multivariate FR methods

proposed in this paper statistically outperform the rest
of the compared FR methods, both univariate and mul-
tivariate.

• If we compare the Correlation univariate FR method
with the Pairwise Correlation multivariate FR method
proposed in this paper, the results are clearly favourable
to Pairwise Correlation, although both FR methods are
based on the correlation metric. Basically, the difference
is that the Pairwise Correlation method takes into ac-
count the correlation with the rest of the attributes in
the evaluation of each attribute, and therefore detects
its redundancy, while the Correlation method cannot
evaluate the redundancy as it is a univariate method.

• The ReliefF method, even being a multivariate method,
has not shown good performance in the tested gene

expression classification problem, even lower than other
univariate methods such as Chi Squared, Information
Gain or Significance.

• The proposed FR methods statistically outperforms
multivariate FS methods of attribute subset evaluation
based on correlation and consistency, with powerful
search strategies, such as multi-objective evolutionary
algorithms, in shorter runtimes. This is due to the
huge search space that occurs with the gene expression
dataset considered in this paper. For the cancer RNA-
Seq dataset, there are 220531 = 2.8e+6180 candidate
subsets of attributes. This makes search strategies re-
quire a lot of runtime to obtain satisfactory solutions
in these types of problems, which can be prohibitive
in some cases. The Pairwise Correlation and Pairwise
Consistency methods have evaluated a total of n2 =
20, 5312 = 4.2e+8 subsets of 2 attributes, while the
MOEA-CFS method has evaluated 3.0e+7 subsets of at-
tributes (variable size between 1 and n) and the MOEA-
Consistency method has evaluated 1.3e+8 subsets of
attributes (also variable in size between 1 and n).

• The embedded feature selection methods C4.5 and
LASSO have shown poorer performance than the Pair-
wise Correlation and Pairwise Consistency methods
proposed in this paper. The C4.5 method selects only 5
attributes, but with a correct percentage far from 100%.
The LASSO method selects 365 attributes without reach-
ing 100% per cent correct. The Pairwise Correlation and
Pairwise Consistency methods achieve 100% per cent
correct by selecting 100 and 200 attributes respectively.

• The Pairwise Correlation and Pairwise Consistency
methods proposed in this work spend more runtime
than the rest of the FR methods compared, since the
runtimes of the former are quadratic for to the number
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TABLE 23. Ranking of the comparison with attribute evaluation feature selection methods.

Cancer RNA-Seq Brain tissue GTEx RNA Brain age GTEx RNA Total
Method Difference Rank Difference Rank Difference Rank Difference Rank

Clustering Variation -147 8 -86 6 -57 6 -250 8
Chi Squared 41 4 63 4 30 3 134 4
Correlation -37 7 -132 8 -69 7 -238 7

Information Gain 45 3 96 2 29 4 170 3
ReliefF 6 6 -116 7 -49 5 -159 6

Significance 35 5 8 5 40 2 83 5
Pairwise Correlation 54 1 99 1 29 4 182 1
Pairwise Consistency 52 2 72 3 47 1 171 2

TABLE 24. Ranking of the comparison with attribute subset evaluation feature selection methods.

Cancer RNA-Seq Brain tissue GTEx RNA Brain age GTEx RNA Total
Method Difference Rank Difference Rank Difference Rank Difference Rank

MOEA-CFS -4 5 5 3 -4 5 -3 5
MOEA-Consistency -30 6 -27 6 1 2 -56 6

Pairwise Correlation (q = 100) 9 2 1 4 3 1 13 3
Pairwise Consistency (q = 100) 7 4 16 1 3 1 26 1
Pairwise Correlation (q = 200) 10 1 -3 5 -1 3 6 4
Pairwise Consistency (q = 200) 8 3 8 2 -2 4 14 2

of attributes n, while the runtimes of the latter are linear
for n.

• Both feature selection methods prove to be useful to
select the best genes to identify BRCA specific cancer
samples when the classifiers are interrogated with sam-
ples from unseen diseases and different patient cohorts.

• Figures 3 to 7 show that the features selected by the
proposed FR methods allow classifiers to be built on a
set of instances maintaining the original separability of
the classes.

Below we point out the reasons why the proposed methods
outperform the rest of the methods considered in the study.

1) Univariate FR methods can only detect the relevance
of the attributes, but not their redundancy. The ReliefF
method, although it is multivariate, does not detect
attribute redundancy either [63]. One repeatedly noted
drawback of Relief-based algorithms [64] is that they
do not remove feature redundancies, i.e. they seek to
select all features relevant to the endpoint regardless
of whether some features are strongly correlated with
others. The proposed Pairwise Correlation and Pairwise
Consistency methods detect both relevance and redun-
dancy of the attributes.

2) The attribute subset evaluation FS methods based on
correlation and consistency are multivariate methods
that allow detecting relevance and redundancy of the
attributes, but require a strategy to search in a space
of 2n possible subsets of attributes, which makes them
inefficient for high-dimensional data since they require
prohibitive runtimes to cover an acceptable percentage
of search space. The proposed Pairwise Correlation and
Pairwise Consistency methods require an O(n2) run-
time to evaluate the n attributes and make the selection.

As a drawback of the proposed methods, we can highlight
that they are more expensive in terms of runtime than the

other analyzed FR methods, which is obvious since their
algorithmic complexity is quadratic instead of linear. How-
ever, this is not a big drawback because FS is usually an
off-line process and current advances in high-performance
computing can greatly alleviate this disadvantage. What is
really important is the accuracy of the classification obtained
with the selected attributes. In this sense, the proposed meth-
ods are more suitable as model-agnostic methods than the
rest of the compared methods, with favourable statistically
significant differences in a wide range of classifiers of a
diverse nature. The statistical tests carried out, with which
all the methods are compared with each of the others using
each of the classifiers, show that the proposed methods are in
the first positions of the win-loss ranking, which means that
are statistically better than the rest, for the analyzed datasets,
in a larger number of classifiers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented two new feature ranking
methods that are especially appropriate for high-dimensional
datasets, such as gene expression datasets. These methods,
which we have called Pairwise Correlation and Pairwise
Consistency, are filter methods based on correlation and
consistency respectively that evaluate each attribute by com-
puting the sum of the merits of all pairs of attributes formed
by the attribute and each of the others, therefore they are mul-
tivariate methods. Like any feature ranking method, Pairwise
Correlation and Pairwise Consistency can also be used for
feature selection. We consider that the novelty and interest
of this paper lies in the fact that we redefine approaches
that, while applied to single features when considering them
individually as potential candidates for the final outcome,
acquire a multivariate character, allowing us to identify both
the relevance and the redundancy of the attributes.

We have compared the Pairwise Correlation and Pairwise
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Consistency methods with six feature ranking methods well
known in the literature, and also with two feature selection
methods of attribute subset evaluation based on correlation
and consistency with the multi-objective evolutionary search
strategy. Gene expression cancer RNA-Seq and GTEx RNA
expression datasets have been used in the experiments. For
comparisons, we used eight classification algorithms of dif-
ferent nature and we evaluated them with 10 repetitions of
10-fold cross-validation with the metric of per cent correct.
Statistical tests have been performed to find statistically sig-
nificant differences between the methods, as well as ranking
wins-losses of the methods. The results of these tests place
Pairwise Correlation and Pairwise Consistency in the first
two positions in the ranking, outperforming univariate and
multivariate feature ranking methods, attribute subset eval-
uation feature selection methods, and embedded methods.
The Pairwise Correlation and Pairwise Consistency methods
have been officially published on the WEKA platform. Since
both the dataset and the software used in this work are
publicly accessible, all the results shown in this paper are
100% repeatable and replicable.

We are currently analysing the best genes selected with the
Pairwise Correlation and Pairwise Consistency methods for
biological interpretation. As replication is crucial in medical
applications, this paves the way for potentially useful uses of
the algorithms in the biomarker discovery field.

.

APPENDIX A NAMES OF THE METHODS AND
HYPERPARAMETERS ON THE WEKA PLATFORM
All the methods used in this work are implemented in the
WEKA platform. Table 25 shows the names of the classes
and hyperparameters on the WEKA platform for the methods
used in this article. Tables 26 and 27 show the Descrip-
tion.props files of the new Pairwise Correlation and Pairwise
Consistency methods proposed in this document respectively.

APPENDIX B ABBREVIATIONS

AE: Autoencoder
ANOVA: Analysis of Variance
BRCA: Breast Carcinoma
CFS: Correlation-based Feature Selection
CIFE: Conditional Informative Feature Extraction
CMIM: Conditional Mutual Information Maximisation
COAD: Colon Adenocarcinoma
CSO: Competitive Swarm Optimizer
DISR: Double Input Symmetrical Relevance
FDR: False Discovery Rate
FR: Feature Ranking
FS: Feature Selection
GE: Gene Expression
ICAP: Interaction Capping
JBMI: Joint Bias Mutual Information
KIRC: Kidney Renal Clear-cell Carcinoma
k-NN k-Nearest Neighbors

LUAD: Lung Adenocarcinoma
MAP-Elites: Multi-dimensional Archive of Phenotypic
Elites
mDSM: modified Discretization and Selection of features
based on Mutual information
ML: Machine Learning
MI: Mutual Information
MGS: Mutual information-based Gene Selection
MOEA: Multi-Objective Evolutionary Algorithm
NSGA-II: Non-dominated Sorting Genetic Algorithm II
PANCAN: Pan-Cancer project
PCA: Principal Component Analysis
PRAD: Prostate Adenocarcinoma
PSO: Particle Swarm Optimization
RIPPER: Repeated Incremental Pruning to Produce Error
Reduction
RNA-Seq: Ribonucleic Acid Sequencing
WER: Weighted Ensemble of Ranks
WEKA: Waikato Environment for Knowledge Analysis
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