
Summary. There are few studies comparing global
versus local changes in spatial patterns in prostate
cancer. In this study, stereological tools have been
applied to find out if the cytokeratin18 (ck18)
immunoexpression shows local changes in cancer
compared to normal prostate. To verify if these changes
are relevant to ascertain differences between normal
(CTR) and cancer (Ca) cases, several parameters were
estimated. Volume fraction of epithelium immunostained
for ck18 (VV ck18), dispersion index of VV ck18,
positional variance of VV ck18, and multiscale entropy
analysis (MSE) to measure the tissue heterogeneity. The
MSE values showing significant differences between
CTR and Ca were employed in a discriminant analysis to
determine if MSE was able to classify the cases in CTR
and Ca groups. The findings obtained indicate that
changes in the expression of ck18 by the cancer prostate
are heterogeneous. The increase in local variability of
ck18 immunoexpression can be related to the increase in
heterogeneity of shape and size of the tumor acini. The
asymmetry of distribution of the local values of VV ck18
along the axis of the space series may indicate the
existence of anisotropy in the distribution of tumor acini.
The increase in scale-dependent entropy for VV ck18 in
cancer at the morphological level could be interpreted as
the macroscopic expression of the same increase at the
molecular level already described. The discriminant

analysis shows that the dependence on the resolution for
MSE values need to be taken into account to
characterize the prostate cancer better. 
Key words: Cancer prostate, Cytokeratin 18, Local
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Introduction 

Prostate cancer is a complex system consisting of
different cell clones that interact with each other and also
with normal cells, these sort of interactions are the
frequent cause of intratumor heterogeneity that is
observed at different stages of tumor progression,
metastasis, and recurrence (Park et al., 2016). Although
prostate carcinoma remains one of the most common
carcinomas affecting the male population, little is known
about the variability of local changes in the expression
of different markers and their relationship with the
behavior of the tumor. 

The cytokeratin class of intermediate filaments has
been shown to exist in all epithelia (Franke et al., 1979).
There are now recognized 19 distinct cytokeratins
expressed in human epithelia, and each epithelial type
has a different phenotype concerning these proteins
(Moll et al., 1982; Quinlan et al., 1985). Early studies
using polyclonal anti-cytokeratins demonstrated that the
basal cells of the prostate have cytokeratins that were
showing different immunoreactivities from the luminal
or columnar cells (Schlegel et al., 1980; Barwick and
Mardi, 1983). Several studies using monoclonal anti-
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cytokeratin antibodies have differentiated the columnar
and basal cell populations by their specific cytokeratin
content (Brawer et al., 1985). The columnar cells react
with monoclonal antibodies to cytokeratin 18 (ck18)
(Nagle et al., 1987). Besides, chemical determination of
the cytokeratin phenotype of three established human
prostatic carcinoma cell lines also suggests that all three
cell lines synthesize ck18 (Nagle et al., 1987). When
comparing the immunoexpression of ck18 in benign
prostate hyperplasia (BPH) with normal prostate, no
remarkable differences are detected (Nagle et al., 1987;
Verhagen et al., 1992). Nevertheless, the percentage of
positivity for luminal ck18 was statistically lower for
BPH cultures with respect to the positivity observed for
both prostatic intraepithelial neoplasia (PIN) and
prostate cancer-derived cultures (Festuccia et al., 2005). 

The comparison between global versus local changes
in spatial patterns of pathological lesions has provoked a
growing interest in some fields such as neuropathology
(Armstrong et al., 2001). However, there is little data on
this subject in the field of prostatic pathology. Recently,
several studies have dealt with the estimation of
measurements of either acinar or stromal parameters at
the local level in normal and pathological prostate, using
second-order stereological methods (Howard and Reed,
2005). These studies make reference to the patterning of
prostate, distribution and isotropy of nuclei population
and prostate acini, etc.(Santamaria et al., 2011, 2015,
2016, 2017; Santamaría Solis et al., 2015). In some of
these studies, several discrepancies between global and
local results were detected. Thus, the first order (global)
parameter of the volume fraction of epithelial ck18 does
not show differential information between normal and
cancer prostate acini (Santamaría Solis et al., 2015).
Moreover, in the study of the structural pattern of the
acinar tree, the global measurements such as the average
volume of acini were unable to distinguish between
normal prostate and BPH, whereas local parameters, such
as connectivity density, showed remarkable differences
between normal and hyperplastic prostate (Santamaria et
al., 2016). On the other hand in the prostatic hyperplasia,
the local changes in ck18 were more evident regarding
volume fraction of ck18 immunoexpression and its local
variability, whereas other parameters that are useful in
other pathologies, such as lacunarity, are less relevant
(Santamaria et al., 2017).

One of the essential characteristics of cancer cells is
an increased phenotypic plasticity, driven by underlying
genetic and epigenetic perturbations. However, at a
systems-level, it is unclear how these perturbations give
rise to the observed increased plasticity. Recently, it has
been shown that signaling entropy, an overall
measurement of signaling pathway mesh, correlates with
phenotypic plasticity and is increased in cancer
compared to normal tissue (Teschendorff et al., 2015).
Then, it seems interesting to apply a multiscale entropy
analysis (MSE) (Costa et al., 2000, 2002, 2005; Gao et
al., 2015) in order to ascertain if there are local
variations of ck18 immunoexpression in prostate cancer

accounting for a change in the tissue complexity in
comparison with normal prostate. 

Traditional methods quantify the degree of regularity
of a space series by evaluating the appearance of
repetitive patterns. However, there is no straightforward
correspondence between regularity, which can be
measured by entropy-based algorithms, and complexity.
Intuitively, complexity is associated with “meaningful
structural richness” which, in contrast to the outputs of
random phenomena, exhibits relatively higher regularity.
Entropy-based measurements, such as the entropy rate
and the Kolmogorov complexity, grow monotonically
with the degree of randomness. Therefore, these
measures assign the highest values to uncorrelated
random signals such as white noise, which is highly
unpredictable but not structurally complex, and, at a
global level, admit a straightforward description. In the
present study, the MSE method developed by Costa et al.
(2002, 2003, 2005), was applied to the analysis of
volume fraction of immunoreactivity to ck18 in order to
ascertain whether there are changes in multiscale
entropy from these signals in cancer prostate compared
to normal prostate. 

Due to the relevance of local parameters to
distinguish between normal and pathological structures,
this work will apply first and second order quantitative
tools to find out if the ck18 immunoexpression shows
significant local changes in prostate cancer compared to
normal prostate, independently if global estimates were
similar in both groups. 

The following parameters were applied to check for
such local changes in the ck18 immunoreactivity in both
normal and cancer prostate:

1- Volume fraction of epithelium immunostained for
ck18 (VV ck18), both in global and local estimates (pixel
to pixel tissue). 

2- Dispersion indices of global VV ck18, such as
Morisita index (Morisita 1959; Rosenberg et al., 2011). 

3- Estimates of the local positional variance of VVck18 using wavelet analysis (Bradshaw and Spies, 1992;
Bradshaw and McIntosh, 1994; Dale and Mah, 1998;
Nakken 1999). 

4- Multiscale entropy analysis to visualize changes
in the signal complexity caused by the immuno-
expression of ck18 in prostate cancer compared to the
normal prostate (Costa et al., 2005). 
Material and methods 

Material 

Twenty-five prostate specimens were collected from
La Princesa Hospital (Madrid, Spain), ten were from
adults, (CTR group), age (mean ± SD): 45±7; range: 30-
47 years. All these specimens were of healthy subjects,
without endocrine or reproductive pathology, deceased
in traffic accidents, and eligible as donors for transplant.
The age of the patients of CTR group was in the range
indicated to avoid any histological changes of
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subclinical BPH, relatively frequent in men older than
50 years. The other 15 were surgical specimens (radical
prostatectomy) from patients diagnosed with prostate
carcinoma (Ca group): age (mean ± SD): 70±10, range:
56 to 85 years. In all these cases, the diagnosis of
carcinoma was previously confirmed by histopathology.
The cancer cases were graded according to Gleason
score (Epstein et al., 2005) and the average grading was
7 (3+4). All of these cases were without prior
neoadjuvant hormonal therapy. Ethical requirements
were adhered to when obtaining the prostatic tissue
either at the moment of the multiorgan extraction for
transplant (CTR group) or the surgery (Ca group). 
Processing of the tissues 

Immediately after extraction, the specimens were
fixed for one week in 10% paraformaldehyde in PBS,
pH 7.4. After fixation, the samples from the two groups
were thoroughly sectioned into 2-mm-thick slices,
performed by isotropic uniform random sampling (IUR
sections) to preserve the isotropy of the tissue (Baddeley
and Vedel Jensen, 2005). 

All the specimens were processed for paraffin
embedding. The paraffin blocks were exhaustively
sectioned. A total of 30 sections (5-µm-thick) were
performed on each block for immunohistochemistry. 
Immunohistochemistry 

At least ten randomly selected slides per specimen
were immunostained for ck18 in CTR and Ca groups.
Deparaffinized and rehydrated tissue sections were
treated at room temperature for 30 min with hydrogen
peroxide 0.3% in phosphate-buffered saline (PBS) pH
7.4, to block endogenous peroxidase. Sections were
incubated with a monoclonal anti-cytokeratin 18
antibody (Abcam, Cambridge, UK) diluted at 1:250 to
detect ck18 immunoreactivity. Pretreatment of sections
by heat in citrate buffer pH 6.0 (using a pressure cooker)
(Martin et al., 2001) was performed to enhance
immunostaining. 

The primary antiserum was diluted in PBS pH 7.4
containing 1% bovine serum albumin (BSA) (Sigma, St
Louis, USA) plus 0.1% sodium azide (Merck,
Darmstadt, Germany). The incubation with primary
antiserum was overnight at 4°C. The second antibody
employed was a biotin-caproyl-anti-rabbit immuno-
globulin (Biomeda, Foster City, CA, USA). The second
antibody was diluted at 1/400 in PBS containing 1%
BSA without sodium azide and incubated for 30 min at
room temperature. After that, sections were incubated
with a streptavidin-biotin-peroxidase complex
(Biomeda). The immunostaining reaction product was
developed using 0.1 g diaminobenzidine (DAB) (Sigma)
in 200 mL of PBS, plus 40 µL hydrogen peroxide. After
immunoreaction, nuclear counter-staining with Harris
hematoxylin was performed in some sections
immunostained for ck18. No nuclear counter-staining

was performed on the remaining sections that were then
employed for quantitative purposes. All slides were
dehydrated in ethanol and mounted in a synthetic resin
(Depex, Serva, Heidelberg, Germany). The specificity of
the immunohistochemical procedures was checked by
incubation of sections with no immune serum instead of
the primary antibody. 
Data acquisition 

Three strips of an average of 20 immediately
adjacent quadrats (range 10-40) were explored for each
immunostained section from CTR and Ca groups. The
origin and sense of the axis for each strip were chosen
by systematic random sampling (Gundersen and
Osterby, 1981) for all the strips. The result was a series
of images from the two groups, sized, on average,
512×7000 pixels. The final magnification (x100) was
such that 1000 pixels represented 1280 μm. At that
point, the strips were 9 mm long, on average. Therefore,
the total length explored per section (ten sections) and
per case ( at least 10 cases) was 9×10×10=900 mm (for
Ca cases, an appreciable percentage of the maximum
specimen diameter) (Santamaria et al., 2011). 

The images were captured using a color digital
camera DP 70 (Olympus Corporation of the Americas,
PA, USA) with a resolution of 12.5 megapixels, attached
to an Olympus microscope fitted with a motorized stage
controlled by the stereological software Cast-Grid
(Stereology Software Package, Silkeborg, Denmark).
This program monitors the XY displacement of the
microscope stage and allows the selection of fields to be
studied by systematic random sampling after the input of
an appropriate sampling fraction (Santamaría et al.,
2015). 

The strips were then mounted from the images
captured, using the public domain Java image processing
program, Image J (version 1.48), developed at the US
National Institutes of Health and available on the
Internet at https://imagej.nih.gov/ij/index.html (Rasband
and Bright, 1995). Subsequently, the resultant strips
were processed using the same software. A binary image
was produced where the immunostaining to ck18 was
shown as black and the pore space (lumina of acini,
stroma, etc.) as white (Figs. 1, 2). 
Quantitative measurements 

Volume fractions of immunostained epithelium 
The local measurements of the fraction of the

volume of tissue immunostained to ck18 (VV ck18) were
obtained. At each point of the long axis of each image
strip, the fraction of pixels belonging to the
immunostained epithelium expressed as a percentage
over the space of reference (pore space plus immuno-
reactive epithelial component) was automatically
recorded by the image analysis system for all the N
columns orthogonal to the long axis. The resulting series
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of N consecutive rational numbers per visual field served
as input signals for estimating the VV ck18
measurements (per pixel of tissue) (Santamaria et al.,
2011). The results were plotted as a space series, being
the position (number of pixels transformed on microns)
represented in the X-axis and the VV ck18 in the Y-axis
of the plot. 

The global measurement of VV ck18 was obtained
averaging the local VV ck18 over the total number of
strips for each case in both CTR and Ca groups. 
Dispersion index of the global VV ck18 measurements 

This procedure takes estimates of VV ck18 from
quadrats and calculates several indices that can be used

to identify the spatial patterning of the volume fraction.
In the present study, the Morisita index (MI) was
obtained (Morisita 1959). It is the scaled probability that
two measurements chosen at random from the whole
population are in the same quadrat. The higher the value,
the more clumped the distribution. Randomization tests
were performed to check whether the Morisita index of
the observed data was the result of random clumping or
followed a particular pattern (Santamaria et al., 2017).
The order of the quadrats within the space series was
randomized and the Morisita index obtained for the
randomized data. These measurements were performed
using the PASSaGE software (Rosenberg et al., 2011),
which is a program suitable for pattern analysis and
spatial statistics. 
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Fig. 1. In (a) the image shown is a strip from a specimen of CTR group immunostained to ck18. In (b) the binarized picture from (a) is depicted, the
ck18 immunoreactive cytoplasm is in black and the space of reference (acinar lumina and stroma) in white. The scale bars: 110 µm.

Fig. 2. In (a) the image shown
is a strip from a specimen of
Ca group immunostained to
ck18. In (b) the binarized
picture from (a) is depicted,
the ck18 immunoreactive
cytoplasm is in black and the
space of reference (acinar
lumina and stroma) in white.
The scale bars: 110 µm.



Estimation of local variability of VV ck18 

The local variance for VV ck18, related to the
position, was measured in both CTR and Ca groups
using wavelet analysis. The quadrat variance methods
calculate the variance of differences among blocks of
data of different sizes or scales and use the pattern of the
variance estimates to determine the scale of the pattern
(Leps, 1990). Wavelet analysis is similar to many of the
quadrat variance methods, although, in some ways, it is
much more flexible. Wavelets have been heavily studied
in mathematics and engineering for signal analysis and
data compression, but have had limited use in biology
(Bradshaw and Spies, 1992, 1994; Dale and Mah, 1998;
Nakken 1999). 

A wavelet function is a scalable windowing function
whose integral equals zero. One way to think of this is

that the wavelet function describes a template that can be
scaled to the desired size, and then slid onto the space
series of VV ck18 values along the long axis of the strip.
When the template fits the observed data well, the value
of the wavelet transform at that position is high; when it
does not, the value is low. Then, the adjusting of wavelet
function over the space series, obtain the overall
variance at a given position and scale (Rosenberg et al.,
2011). In the present study, wavelet analysis was
performed from one to a maximum scale specified as a
percentage of the input data size (50%). The wavelet
kernel employed was the Haar wavelet function (Haar
1910). Wavelet analysis of variance was performed
using the PASSaGE software. The results for both CTR
and Ca groups were shown plotting the variance values
in function of position expressed in microns. 
Multiscale entropy analysis (MSE) 

For each case from both CTR and Ca groups, the
resulting series of N consecutive rational numbers per
visual field resulting from the estimate of VV ck18
measurements (per pixel of tissue) were employed as
space series from which multiscale entropy was
calculated: 

Consecutive coarse-grained space series were
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Fig. 3. Sections immunostained to ck18. In (a) image from a CTR case,
in (b) an image from a cancer case where the immunostaining was
mainly expressed at the apical border of the cells. The cell nuclei were
counterstained with hematoxylin. The scale bars: 50 µm.

Fig. 4. Bar diagrams expressing mean ± SEM for (a) global VV ck18. 
b. Morisita Index for dispersion of VV ck18 global measures, in control
(CTR) and cancer (Ca) groups.



constructed, given one-dimensional discrete space series,
and using a scale factor, τ (ranged between 1 and 20).
First, the original space series was divided into non-
overlapping windows of length τ; second, the data points
were averaged inside each window. For scale 1, the
space series is merely the same as the original. The
length of each coarse-grained space series is equal to the
length of the original time series divided by the scale
factor, τ. Finally, an entropy measure (sample entropy:
SE) was calculated for each coarse-grained space series
plotted as a function of the scale factor τ. SE is a
“regularity statistic”; it looks for patterns in time or
spatial series and quantifies its degree of predictability or
regularity. 

This procedure was called by their authors (Costa et
al., 2000) multiscale entropy analysis (MSE). The MSE
curves are used to compare the relative complexity of
various space series. If for the majority of the scales the
entropy values are higher for one space series than for
another, the former is considered more complex than the
latter, a monotonic decrease of the entropy values
indicates the original signal contains information only at
the smallest scale. 

The values of the parameters used to calculate SEare, m=2, and r=0.40. The parameter m represents the
pattern length, this means that two data values of space
series match each other, that is, they are
indistinguishable if the absolute difference between them
is ≤r. The value of the parameter r is a percentage of the
space series SD, in the present study r represent the 15%
of the average SD from CTR and Ca space series. This
implementation corresponds to normalizing the space
series. As a consequence, SE results do not depend on
the variance of the original space series, i.e., the absolute
value of the data points, but only on their sequential
ordering (Costa et al., 2005). 

Randomization tests were performed to check
whether the behavior of the observed data was random
or followed a particular pattern (Santamaria et al., 2017).
Randomization tests for MSE analysis work by
randomizing the order of the quadrats within the space
series and recalculating the MSE profile for the
randomized data, this generates a null distribution of
expected SE values for data with the specific observed
values but with no particular relationships. Significant
SE values can be identified from the observed data when
the detected values fall outside the expectation generated
from the randomization test. 

All these calculations were implemented using the
MSE software (Goldberger et al., 2000). 
Statistical analysis 

The global VV ck18 and Morisita index were
expressed as mean ± SEM. Comparisons between these
means from CTR and Ca groups were performed by
Student t-test. For VV ck18 values along the space
series, the positional variance of VV ck18, and MSE
analysis, the local estimates of mean ± SEM were

performed and compared between CTR and Ca groups
by Student t-test. The level of significance was p<0.05.
For MSE analysis, the set of values showing significant
differences between CTR and Ca was pooled and
employed to perform stepwise linear discriminant
analyses (Huisman et al., 2007) to determine whether
locally estimated SE was able to classify the cases
accurately in CTR and Ca groups. 

Discriminant variables were selected according to
Wilk’s lambda: at each step, the variable that minimizes
the overall Wilk’s lambda or maximizes the associated F
statistic is selected (F to enter =3.84 and F to remove
=2.71). Wilk’s lambda statistic explains the rate of total
variability that is not due to differences among groups. A
lambda of 1 means that the mean of the discriminant
scores is the same in all groups and there is no
variability between groups, while a lambda near 0
implies that there is a significant difference among
groups. Therefore, Wilk’s lambda provides a test of the
null hypothesis that the population means are equal. The
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Fig. 5. Bar diagrams are expressing mean ± SEM for (a) Morisita Index
for dispersion of VV ck18 global measures, in control (CTR) group and a
randomized series of controls (Rnd CTR). The asterisks over the error
bar from CTR indicates that there are significant differences with Rnd
CTR group (p=0.0012). b. Morisita Index for dispersion of VV ck18
global measures, in cancer (Ca) group and a randomized series for
cancer (Rnd Ca).



larger lambda is, the less discriminating power is present
(Hair et al., 1998). 

For each local variable, the discriminant scores
obtained were used to construct relative frequency
histograms for the CTR and Ca groups, to graphically
show their ability to classify the cases. 
Results 

Immunohistochemistry 

When comparing CTR with Ca cases, some
differences were observed in ck18 immunoreactivity. In
both groups, the immunostaining to ck18 was abundant
and exclusively detected in columnar epithelial cells.
Nevertheless, while in the CTR cases immunoexpression
was detected diffusely throughout the cytoplasm, in Ca
cases it was distributed mainly in the apical border of the
cell (Fig. 3). 
Global quantitative findings 

No significant differences have been observed in
global VV ck18 and MI when CTR and Ca groups were
compared (Fig. 4). MI estimated in CTR cases after

randomization of the corresponding VV ck18 space
series was significantly higher than in the original cases
(Fig. 5a). While for Ca group and randomized Ca group
there were no significant differences (Fig. 5b). 
Local quantitative findings 

The estimate of local VV ck18 (pixel by pixel)
along the space series shows a similar profile in both
CTR and Ca cases. Nevertheless, in several spaced
segments of the strips from Ca group, VV ck18 showed
a significant increase in comparison with the same
segment of the strip from CTR group (Fig. 6a). The
segments of the Ca space series that show the above-
indicated differences were in the next ranges of
distance: 8916-8947; 9316-9515; 10061-10071; 10174-
10386 microns (Fig. 6b). 

The wavelet analysis indicated that positional
variance of VV ck18 was frequently higher in Ca than
CTR (Fig. 7a), but these differences were significant
only in several patches of the space series. The ranges
(comprised between 6200 and 10000 microns) in which
the positional variance was significantly different were:
6244-6812; 7822-8126; 8729-9121; 9203-9606; 9742-
9907 microns (Fig. 7b). 
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Fig. 6. a. Diagram for space series of local VV ck18 values along the X-axis (position in µm) of the correspondent strips of CTR (continuous line) and
Ca (dotted line) groups. The box with dotted borders contains the segment of space series were the differences between CTR and Ca are significant. 
b. More details of the inset (box) from (a), the positions where the differences between CTR and Ca cases were significant are shown (p<0.05).



Multiscale entropy analysis 

The estimate of MSE curves for VV ck18 in both
CTR and Ca groups shows in both groups an increase of
SE as a function of the scale factor, and differ
significantly for MSE curves from a random distribution
of the data (Fig. 8a,b). When comparing MSE between
CTR and Ca cases, the Ca group shows higher
significant values of SE than CTR from scales larger
than scale 2 (Fig. 8c). 

The discriminant analyses applied to the MSE
estimates for the groups of the study reveal that: From
all the local SE values showing significant differences
(from scales 3 to 20) between CTR and Ca groups, only
SE at scales 3 and 5 have discriminatory power. With
these two variables in the model, 91.3 % of the cases
were correctly classified into the CTR and Ca groups.
Table 1 shows the significant reduction of the Wilk’s
lambda statistic with these variables included in the
model. The histograms show the distribution of the cases
in CTR and Ca groups when the discriminant scores

were applied (Fig. 9). 
Discussion 

The immunohistochemical findings observed in the
present study are in part consistent with results by other
authors (Nagle et al., 1987; Verhagen et al., 1992; Wolff
et al., 1998), concerning the similarity of the
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Fig. 7. a. Diagram for the positional variance from the space series of local VV ck18 values along the X-axis (position in µm) of the correspondent strips
of CTR (continuous line) and Ca (dotted line) groups. The box with dotted borders contains the segment of space series were the differences between
CTR and Ca are significant. b. More details of the inset (box) from (a), the positions where the differences of variance between CTR and Ca cases
were significant are shown (p<0.05).

Table 1. Discriminant analysis to classify the CTR and Ca cases after
local SE.

Entered variable1 Wilks’ lambda2 F3 p4

SE (3) 0.433 27.453 <0.001
SE (5) 0.332 20.092 <0.001

1Selected variables (SE at scales 3 and 5 respectively). 2This column
shows the Wilks’ lambda for every variable entered. 3F distribution of
Snedecor, the F minimum value for entering the variables was 3.84.
4Level of significance p<0.05.



immunoexpression of ck18 in the luminal cells of the
normal prostatic epithelium and the tumor cells in
cancer. In this study, an apical predominance of
immunoreactivity for ck18 in prostate cancer is
frequently observed, which may be the consequence of a
decrease in immunostaining in the rest of the cytoplasm.
Other authors have described this decrease in the signal
for ck18, in comparison with the expression of ck18 in
non-tumor prostatic tissues (Festuccia et al., 2005). 

The global quantification of the fraction of epithelial
volume immunostained for ck18 (VV ck18) in the Ca
group does not show significant differences with the
CTR group. This circumstance has also been described
in benign prostatic hyperplasia (Santamaria et al., 2017).
However, other authors (Panagiotaki et al., 2015) have
observed that in the adenocarcinoma of the prostate an
increase in the volume occupied by the tumor epithelium
is detected in correlation with the decrease of the
surrounding stroma. In any case, we can affirm that this
increase of the epithelial compartment is not
accompanied by an increase in the immunoexpression of
ck18. 

The Morisita Index did not show significant
differences in the Ca group compared to the CTR group;
this indicates that, unlike that observed for BPH
(Santamaria et al., 2017), in prostate cancer, the acini
immunoreactive for ck18 do not show a higher clumping
than in the case of the normal prostate. An increase of
the MI in the random distribution of the VV ck18 is
observed in comparison with the data of the original
series. This increase is more evident for the CTR group
and can be attributed to the tendency for spatial samples
generated randomly to be clustered together, a statistical
phenomenon well understood mathematically (Diggle
1983). 

No global differences in VV ck18 between CTR and
Ca were observed. Nevertheless, at the local level, in
limited segments of the space series of cases of the Ca
group, a significant increase of VV ck18 is detected
compared to the normal prostate. The average length of
the segments of the space series with significant
differences for VV ck18 represents less than 0.02% of
the average of the total length. It is interesting to note
that the increase in VV ck18 in these regions was
accompanied by a significant increase in its variability as
detected by the wavelet analysis. This type of analysis
has been scarcely used in prostate pathology (Jafari-
Khouzani and Soltanian-Zadeh, 2003), but in our study,
it has proved to be of interest for detection of local
changes in the positional variance of VV ck18. For all
the space series, the positional variance was higher in Ca
than CTR, but only in five segments (less of the 0.05%
of the average of the total length) was this increase
significant. 

The increase in local variability of VV ck18 can be
related to the phenotypic variability of prostate cancer
detected as spatial, genetic, and molecular heterogeneity
(Humphrey 2004; Iczkowski et al., 2011; Tolkach and
Kristiansen, 2018). Besides, local heterogeneity of the

epithelial VV ck18 can be put in parallel to those
described for markers such as ki67, ck5, ck8, p65, and
CD antigens (Liu et al., 2004; McDonnell et al., 2008;
Mesko et al., 2013; Stoyanova et al., 2013). 

It is interesting to note that the significant increase
of both the local VV ck18 and its variability in the Ca
group always accumulated in an extreme position of the
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Fig. 8. MSE curves for VV ck18 in CTR (a) and Ca groups (b) showing
in both cases an increase of sample entropy (SE) expressed as mean ±
SEM, as a function of the scale factor. These MSE curves differ
significantly from a random distribution of the data. In (c) the significant
differences (p<0.05) for SE between CTR and Ca are shown, from a
scale factor =3.



space series, this could suggest that the distribution of
the local values of VV ck18 is asymmetric along the axis
of the space series. This asymmetry may indicate the
existence of anisotropy in the pattern of distribution of
tumor acini. 

In the MSE analysis, it is observed that in both CTR
and Ca groups, the growth of SE in function of the scale
behaves according to a scaling law with a general form
such as Y=̃A•XB. The entropy values are significantly
higher in cancer than in the controls in an extensive
range of spatial scales, and this suggests the presence of
morphological processes in tumor cells that manifest a
high degree of complexity. Of note, the weakest
separation between the two groups occurs for scale one,
the most robust separation is obtained for space scales
higher than 10, as observed for other biological signals
(Costa et al., 2002, 2005). The MSE algorithm was
tested on a set of surrogate data obtained from the VVck18 space series from both CTR and Ca specimens by
randomization of its data points. The MSE algorithm
discriminated the two space series and revealed that the
randomized surrogate data was less complex than the
original data. These data agree with those observed by
other authors (Teschendorff et al., 2015) that have
indicated that if protein interaction networks were
random graphs, described by Poisson degree
distributions, that cancer would not exhibit an increased
signaling entropy (Teschendorff et al., 2015).
Furthermore, it assigned to the surrogate data set a
behavior qualitatively similar to the one already
described for white noise time series (Costa et al., 2002). 

The increase in scale-dependent entropy detected for
the local expression of ck18 in prostate cancer at the
morphological level could be interpreted as the
macroscopic expression of a similar growth at the
molecular level (Teschendorff and Severini, 2010;
Menichetti et al., 2015; Teschendorff et al., 2015). These
studies have shown that signaling entropy, an overall
measure of signaling pathway intertwining, correlates

with phenotypic plasticity and is increased in cancer
compared to normal tissue (Teschendorff et al., 2015). 

It is well known that ck18 is not a biomarker for
prostate carcinoma since it is a cytokeratin present in a
multitude of epithelial cell lines, whether normal or
pathological. What does seem interesting is that the
phenotypic heterogeneity manifested by tumor cells also
affects the expression of this class of cytokeratins. 

The discriminant analysis has revealed that the
increase of MSE in cancer only shows discriminatory
power with the normal prostate at low scales (3 and 5) of
the space series. That is, when the resolution decreases
(coarse-grained series, i.e., higher scales), the SEclassificatory capacity also decreases. Therefore, not
only the specific values of the entropy measure but also
their dependence on resolution need to be taken into
account to better characterize a pathologic process
(Costa et al., 2002). 

It is true that the accuracy of prostate cancer grading
methods is very well established, particularly that of
Gleason, although it usually does not reach 90% for
biopsy samples when it correlates with the Gleason
grading of the prostatectomy specimens. It appears that
biopsy Gleason score, although often not corresponding
strongly with the prostatectomy Gleason score, is an
important prognostic factor in prostate cancer. There are
significant differences in disease-free survival between
biopsy and prostatectomy Gleason score categories
(Narain et al., 2001; Stav et al., 2007). In any case, it is
not the purpose of this study to present the MSE analysis
as an additional method of diagnosis to standard
procedures but rather highlight the regional
heterogeneity of the local values of the volume fraction
of tumor epithelium occupied by ck18. 

The findings of the present study can be
summarized, indicating that: 

a.- The global quantification of the fraction of
epithelial volume immunostained for ck18 in prostate
cancer does not show significant differences in the
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Fig. 9. Histogram showing the distribution of
cases of CTR (void bars) and Ca (gray bars)
groups when the discriminant scores obtained
for SE in the discriminant analysis were applied.
91% of cases were correctly classified in CTR
and Ca groups.



normal prostate. However, changes in the expression of
ck18 by the cancer prostate epithelium are not
homogeneous. 

b.- Unlike that observed for BPH, in prostate cancer,
the acini immunoreactive for ck18 do not show a higher
clumping than in the case of the normal prostate. 

c.- The increase in local variability of ck18
immunoexpression can be related to the increase in
heterogeneity of shape and size of the tumor acini
observed in the advanced Gleason grading cancers. 

d.- The distribution of the local values of VV ck18 is
asymmetric along the axis of the space series, this
asymmetry may indicate the existence of anisotropy in
the pattern of distribution of tumor acini. 

e.- The increase in scale-dependent entropy detected
for the local expression of ck18 in prostate tumor cells at
the morphological level, could be interpreted as the
macroscopic expression of the increase in entropy at the
molecular level described in the tumor processes. 

f.- The discriminant analysis shows that the
dependence on the resolution for SE values need to be
taken into account to characterize the prostate cancer
process better. 
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