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Summary. Knee osteoarthritis (KOA) is the most
common progressive joint disorder associated with
disability in the world. As a chronic disease, KOA has
multifactorial etiology. However, the poor self-healing
ability of the articular cartilage due to its intrinsic tissue
hypovascularity and hypocellularity seems to be directly
incriminated in the physio-pathological mechanism of
KOA. While conventional therapies result in
unfavorable clinical outcomes, regenerative cell
therapies have shown great promise in articular cartilage
regeneration. Adipose-derived stem cells (ASCs) appear
to be an ideal alternative to bone-marrow derived stem
cells (BMSCs) and autologous chondrocytes, due to their
lower immunogenicity, richer source and easier
acquisition. Since the first case report in 2011, ASCs
have demonstrated safety and efficacy for articular
cartilage regeneration in several phase I/II clinical trials.
However, different levels of abnormality were found in
the regenerated cartilage for most of the patients. A large
portion of recent publications investigated different
optimization strategies to improve the therapeutic
function of ASCs, including cell source selection,
preconditioning and co-delivery. Herein, we give an
update on the latest research progress on ASCs, with a
focus on the most promising optimization strategies for
ASC-based therapy.
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Introduction

Osteoarthritis (OA) is a degenerative disease
involving the whole joint, including the articular
cartilage, subchondral bone, and periarticular tissue. The
knee is one of the joints most commonly affected by
osteoarthritis. More than one-third of people over 65
years old suffer from pain and disability caused by knee
OA (Bhatia et al., 2013). Damaged articular cartilage in
OA knees has poor intrinsic healing potential due to its
hypovascularity and hypocellularity, which is a major
problem in clinical OA treatment. Various surgical
procedures have been performed to regenerate articular
cartilage but have achieved limited success, including
abrasion arthroplasty, subchondral drilling and
microfracture (Bert, 1993; Bae et al., 2006; Sakata et al.,
2013).

Recently, the cell-based regenerative therapy
emerged as a promising approach to facilitate cartilage
regeneration. Autologous chondrocyte transplantation
(ACT) has been investigated since 1987 showing
encouraging results in early studies, but its therapeutic
efficacy showed no significant difference compared to
microfracture in a recent randomized, controlled trial
(Knutsen et al., 2004; Cole, 2008). Besides, ACT usually
comes with other problems such as the dedifferentiation
of chondrocytes, donor site morbidity and the two-step
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surgery procedure (Dehne et al., 2010; Harris et al.,
2010; Minas et al., 2014). To address these problems,
mesenchymal stem cells (MSCs) have been extensively
studied as an alternative cell source to chondrocytes for
cartilage repair. MSCs isolated from bone marrow
possess several advantages, such as immunomodulatory
activity and multipotency, demonstrating outstanding
safety and efficacy for cartilage repair in multiple pre-
clinical and clinical studies (Johnstone and Yoo, 1999;
Pittenger et al., 1999; Centeno et al., 2008, 2011).
However, clinical application of bone marrow-derived
mesenchymal stem cells (BMSCs) is limited by the
painful and invasive surgical procedure, an extremely
low cell yield and the physiological conditions of donors
(Fennema et al., 2009; Alt et al., 2012; Hernigou et al.,
2014).

Zuk et al. first isolated adipose tissue-derived stem
cells (ASCs) from adipose tissue in 2001 (Zuk et al.,
2001). During the last decade, ASCs have attracted great
attention because of their abundant source and ease of
accessibility as well as the comparable regenerative
capability compared to BMSCs (Erickson et al., 2002;
Awad et al., 2004b; Estes et al., 2008). Since the
autologous SVF transplantation was approved for clinical
trials in 2009 by Korea, significant progress has been
made in its clinical application for cartilage regeneration.
Most of the completed clinical trials delivered ASCs in
the form of SVF, and reported safety and efficacy for
cartilage repair (Black et al., 2007; Pak, 2011; Toghraie et
al., 2012). However, current clinical data also indicated
that simple SVF injection is not sufficient to fully restore
the damaged cartilage back toward normal function (Koh
et al., 2014, 2016; Nguyen et al., 2017), thus an
optimized ASC therapy is needed to achieve better
therapeutic efficacy. The work presented here gives an
update on the latest information on ASCs, with a focus
on the most attractive optimization strategies (A
schematic representation is provided in Fig. 1).

Adipose-derived stem cells
Origin of ASCs

Since MSCs were first isolated from bone marrow
cultures, BMSCs have been the most well-characterized
MSC type. However, later it was found that MSCs can
be isolated from other sites of the body, including
umbilical cord blood, placenta, adipose tissue and
elsewhere (Erices et al., 2000; Zuk et al., 2001; In 't
Anker et al., 2004). In fact, current concept supports that
MSCs exist within the connective tissue of virtually all
organs (Meirelles et al., 2006). Since Zuk et al. first
isolated a new group of multipotent cells from adipose
tissue in 2001, now termed adipose-derived stem cells
(ASCs), extensive studies have been performed to
determine if ASCs can be an ideal substitute for BMSCs,
due to the much higher stem cell yield and ease of
accessibility from liposuction (Zuk et al., 2001). Adipose
tissue from liposuction is first digested by collagenase,

followed by centrifugation to remove the floating
adipocytes, leaving the remaining cell pellets on the
bottom, named stromal vascular fraction (SVF)
(Lindroos et al., 2011; Pires de Carvalho et al., 2014).
SVF is a heterogeneous cell population composed of
ASCs (about 3%), endothelial progenitor cells, vascular
mural cells, T regulatory cells, macrophages,
preadipocytes and other stromal components (Riordan et
al., 2009; Baer and Geiger, 2012; Rodriguez et al.,
2012). Finally, ASCs are enriched by plastic adherence
and subsequent expansion (Zuk et al., 2002; Mitchell et
al., 2006). SVF and ASCs have both been investigated
for cartilage regeneration in recent phase I/II clinical
trials (Jo et al., 2014; Koh et al., 2014; Freitag et al.,
2015).

Characterization of ASCs

ASCs are able to differentiate along multiple
lineages into adipocytes, osteoblasts, chondrocytes,
myocytes, tendon fibroblasts, neuronal-like and
endothelial cells (Gimble et al., 2007; Shen et al., 2013).
The surface markers of ASCs are similar to those of
BMSCs with an overlapping of more than 90% (Zuk et
al., 2002). There has been a consensus that ASCs are
positive for the typical markers of MSCs while being
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Fig. 1. Overview of the optimization strategies discussed in this work.
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negative for CD31 and CD45 (Zuk, 2013). Recently in
2013, the International Federation for Adipose
Therapeutics and Science (IFATS) and the International
Society for Cellular Therapy (ISCT) proposed a set of
minimal definitions for ASCs, including self-renewal
ability, tri-lineage differentiation, being positive for
CD90, CD73, CD105 and CD44 (>80%) while being
negative for CD45 and CD31 (<2%) (Bourin et al.,
2013). It was also suggested that ASCs can be
distinguished from BMSCs by their positivity for CD36
and negativity for CD106 (Bourin et al., 2013). To note,
multiple studies confirmed that CD34 appeared on the
freshly isolated ASCs, which is typically not expressed
on MSCs, but gradually disappeared during successive
passages (Traktuev et al., 2008; Maumus et al., 2013).
Resembling BMSCs, ASCs secrete a variety of
proteins into conditioned media, known as the trophic
effect. Lately, more and more evidence suggests that
paracrine effect of ASCs plays an important part during
the regeneration process, exhibiting anti-apoptotic, anti-
aging and anti-inflammatory abilities. For example,
Platas et al. found an anti-aging effect of the conditioned
medium of ASCs on OA chondrocytes, featured by
down-regulation of senescence markers induced by
inflammatory stress (Platas et al., 2016). A list of 68
commonly expressed proteins regardless of the specific
protocols used, were thoroughly reviewed by Kapur and
Katz (2013), which may serve as potential candidates of
conserved secretome proteins for further research.

ASCs compared to BMSCs

The most attractive point of ASCs might be the
much higher cell yield compared to BMSCs. As is
known, BMSCs only constitute a very small fraction of
the whole marrow nucleated cells. A recent study
showed that even though the bone marrow contained 6-
fold more nucleated cells than SVF, the adherent cells in
SVF were 4-fold greater than bone marrow (Jang et al.,
2015). Specifically, the MSC population (CD45-CD31-
CD90+CD105+) was 4.28% in SVF and 0.42% in bone
marrow concentration (Jang et al., 2015). It was
calculated that there was a 500-fold increase in MSC
yield from adipose tissue, with approximately 1x107©
ASCs in 1 ml of lipoaspirate while only 50-675 BMSCs
in 1 ml of bone marrow aspirate (Zuk et al., 2001; Hass
et al., 2011; Li et al., 2011). Hence, the therapeutic dose
of ASCs could be achieved without in vitro expansion,
making it possible to finalize the stem cell
transplantation during a one-step surgical procedure.

The proliferation potential of ASCs and BMSCs
varies among species. BMSCs were reported to show
higher proliferation potential than ASCs in some species,
such as monkey (Izadpanah et al., 2006) and pig
(Bayraktar et al., 2018). Conflicting results were
reported for ASCs from mice (Ikegame et al., 2011),
sheep (Ude et al., 2014), dog (Spencer et al., 2012) and
human (Chen et al., 2012). Despite the species variation,
the results for human cells were highly consistent

(Izadpanah et al., 2006; Kern et al., 2006; Chen et al.,
2012; Dmitrieva et al., 2012). Human ASCs (hASCs)
demonstrated higher proliferation capacity than human
MSCs (hMSCs) (Kern et al., 2006). In addition, hASCs
can undergo more passages before senescence while
maintaining the differentiation potential and a stable
phenotype after a longer time of culture (Izadpanah et
al., 2006; Dmitrieva et al., 2012). Furthermore, donor’s
age has less effect on the proliferation of hASCs, and
this still holds true in elderly patients with osteoporosis
(Chen et al., 2012), which makes it an attractive
alternative to hBMSCs in clinical use.

ASCs might be better for allogenic transplantation
than BMSCs. Multiple studies have demonstrated that
ASCs expressed less HLA-ABC than BMSCs, indicating
a lower immunogenicity (Rider et al., 2008).
Furthermore, ASCs appear to have a better
immunosuppressive capacity. Ivanova-Todorova et al.
showed that ASCs inhibited the maturation and
differentiation of human blood monocytes into DCs
while enhancing the IL-10 level secreted by DCs, to a
greater extent than BMSCs (Ivanova-Todorova et al.,
2009). The feasibility of allogenic transplantation is
particularly meaningful when the patients cannot provide
enough stem cells themselves. Besides, it allows the
future development of the off-the-shelf stem cell
product, which is time-efficient and cost-effective.

Although several groups reported that chondrogenic
potential in vitro of ASCs was lower than that of BMSCs
(Rider et al., 2008; Dickman et al., 2010), it was also
suggested that the combined use of growth factors such
as transforming growth factor-f2 (TGF-f32), insulin-like
growth factor-1 (IGF-1) and bone morphogenetic protein
6 (BMP-6) could promote the chondrogenic capacity of
ASCs to a comparable level to BMSCs (Hennig et al.,
2007; Kim and Im, 2009). Collectively, current data
indicates that ASCs could be an ideal alternative to
BMSC:s in cartilage regeneration.

Optimization strategies

Although ASCs have demonstrated encouraging
results for cartilage regeneration in multiple animal
studies and human trials, the regenerated cartilage is still
inferior to the native tissue in many aspects, such as the
compressive strength and the biochemical composition
(Vilar et al., 2014). To achieve better clinical outcomes,
ASC-based therapy needs further optimization.

SVF vs ASCs

SVF is the heterogeneous cell mix obtained after
enzyme digestion of the lipoaspirates. Apart from ASCs,
SVF mainly contains endothelia progenitor cells,
immune cells, smooth muscle cells, pericytes and other
stromal components. After isolation of the SVF, ASCs
can be enriched by plastic adherence and subsequent
expansion (Mitchell et al., 2006).

Currently, few studies have compared the cartilage
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regeneration capacity between SVF and expanded ASCs.
Jurgens et al. investigated the chondrogenic
differentiation potential between SVF and culture-
expanded ASCs seeded in PLA-CPL scaffold, where
both of them showed similar characteristics with a
slightly higher glycosaminoglycans (GAGs) deposition
for SVF (Jurgens et al., 2009). Similarly, in a co-culture
study with primary human chondrocytes in alginate gel,
co-culture pellets of SVF-chondrocytes showed more
GAGs and cartilage matrix deposition than that of
ASCs-chondrocytes (Wu et al., 2016). The authors
suggested that the synergic interaction between different
types of cells might enhance the trophic effects of SVF
(Wu et al., 2016). However, it cannot be concluded that
SVF is superior to ASCs based on the weak evidence
above without the evaluation of collagen type I and II
content. Although no clear evidence indicates a better
regenerative capacity of SVF, recent studies showed
greater interest in applying SVF for clinical knee OA
treatment. The main reason is that SVF transplantation is
regarded as a one-step medical procedure with minimal
manipulations in some countries such as Korea, whereas
the expanded ASCs are generally considered as
pharmaceutical products requiring rigorous clinical trials
and regulatory approval (Pak et al., 2016a). In addition
to the advantage in regulatory issues, SVF delivery can
be done as a single surgical setting right in the operating
theatre and on the same day, avoiding the time-
consuming cell culture process as well as the
contamination risk.

The most concern for SVF is the therapeutic
efficacy. As mentioned above, current clinical data
indicated that simple SVF injection is not sufficient to
fully repair the damaged cartilage, especially when
dealing with large cartilage lesions (Koh et al., 2014).
The endothelial cells contained in SVF might induce
angiogenesis, which could impede hyaline cartilage
formation (Marsano et al., 2016; Staubli et al., 2017).
Besides, most of the human trials using SVF required the
co-delivery of platelet rich plasma (PRP) to achieve the
reported therapeutic efficacy (Pak et al., 2016a), making
the therapy more expensive and complicated.

Compared to SVF, culture-expanded ASCs have
several advantages. First, a large dose of ASCs can be
obtained after expansion. In a randomized, double-
blinded and dose-escalation clinical trial conducted by
Jo et al., the high dose group (1x10% ASCs) showed the
best hyaline-like cartilage regeneration and functional
recovery outcomes, while the low dose group (1x107
ASCs) almost did not show any improvement, indicating
the importance of a larger stem cell dose (Jo et al.,
2014). When the volume of SVF is not sufficient to
reach the minimal therapeutic dose, an in vitro expansion
procedure might be necessary (Jo et al., 2014; Pers et al.,
2016). Apart from the dosage issue, another important
point is the potential to enhance therapeutic efficacy
through combination with various promising tissue
engineering techniques, such as preconditioning and co-
delivery, during or after the culture expansion process

(Clevenger et al., 2016). Last but not least, purified and
expanded ASCs may have a lower immunogenicity and
higher immunosuppression property compared to the
freshly isolated SVF, making it more suitable for
allogenic stem cell transplantation. It is even possible to
develop the off-the-shelf stem cell product, which is
highly cost-effective and convenient for patients
(MclIntosh et al., 2006).

The main concern about expanded ASCs is the
potential for malignant transformation. In vitro cultured
human BMSCs were reported to acquire chromosomal
aberrations eventually leading to genomic instability and
tumorigenicity, so it is possible that ASCs would also
undergo malignant transformation during culture
expansion (Buyanovskaya et al., 2009; Tarte et al., 2010;
Ben-David et al., 2011). However, so far there is no
direct evidence of malignant transformation related to
cultured hASCs. In a recent study investigating genomic
stability of ASCs, in vitro expanded ASCs did not show
genetic alterations and replicative senescence nor
anchorage-independent growth during early passages
(Neri et al., 2013). The safety of expanded ASCs has
also been demonstrated on humans, without tumor
development or any serious adverse events (Ra et al.,
2011; Pers et al., 2016). Taken together, it is extremely
important to push forward the evaluation of culture-
expanded ASCs for cartilage regeneration.

Cell source selection

Different cell sources can have a great impact on the
therapeutic efficacy of ASCs. Two main factors are
donor’s physiological condition and harvest site.

Donor

The influence of donor’s age is controversial. It was
shown in some studies that the proliferation of ASCs
from elders was lower than that of younger subjects (Van
Harmelen et al., 2004; Efimenko et al., 2011; Alt et al.,
2012). The chondrogenic differentiation of ASCs was
also decreased by aging in one study (Alt et al., 2012).
On the contrary, some other studies found no significant
correlation between these properties and aging (Chen et
al., 2012; Ding et al., 2013; Abbo et al., 2017). It was
suggested that the wide inconsistency could be due to
the differences in donor’s gender, the sources of the
adipose tissue and the culture conditions (Clavijo-
Alvarez et al., 2006; Ding et al., 2013). Interestingly, the
results were consistent in two studies both using the low-
calcium keratinocyte serum free medium (KFSM) during
the cell culture, supporting the irrelevance between
aging and proliferation rate of ASCs (Chen et al., 2012;
Ding et al., 2013). Another concern is that ASCs might
be influenced by donor’s chronic diseases, since ASCs
used for autologous transplantation come from these
patients themselves. While in some studies obesity and
diabetes showed a negative effect on the proliferation
potential and clonogenic capacity of ASCs (Gu et al.,
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2012), the OA condition of the knee did not show any
influence on ASCs or the cellular composition in adipose
tissue (Pires de Carvalho et al., 2014).

Harvest site

For ASCs from different body sites, the results
showed more consistency. Pires de Carvalho et al.
compared the infrapatellar fat pad (IPFP) to the
periarticular subcutaneous adipose tissue (SQ) of 7
subjects and found that ASCs derived from both sites
exhibited similar characteristics (Pires de Carvalho et al.,
2014). Grasys et al. investigated the lipoaspirates from
abdomen, thigh and knee, demonstrating no significant
differences in the content of soluble factors nor the yield,
proliferation and percentage of ASCs (Grasys et al.,
2016). Nonetheless, the evaluation of chondrogenic
differentiation and cartilage regeneration efficacy of
ASCs from different body sites is rare.

With the conflicting results, hardly any suggestions
can be made towards the donor selection. However,
multiple studies have confirmed that harvest site does
not affect the property of ASCs. Hence the ideal harvest
site of ASCs seems to be the subcutaneous abdominal
adipose tissue. In addition to the promising outcomes in
multiple clinical trials, patients can also rest in a
comfortable supine position during the surgery (Riis et
al., 2015). Furthermore, most of the surgeons prefer the
abdomen as the primary harvest site as well, according
to a survey conducted in 2007, probably because in this
case they will have no need to consider the asymmetry
issue (Kaufman et al., 2007; Riis et al., 2015).

Cell processing

Differentiation of stem cells along the chondrogenic
lineage is important for cartilage repair (Estes et al.,
2010). It was shown that ASCs expanded in
conventional growth medium without appropriate
pretreatment could have a negative effect on the
chondrocytes and inhibit cartilage regeneration (Lee et
al., 2012). Cell proliferation and in vivo therapeutic
function of ASCs can be greatly improved through in
vitro cell processing. There can be a variety of cell
processing techniques, herein we discuss some of the
most attractive ones described in recent publications.

Chondrogenic medium (CM)

The chondrogenic medium (CM) can induce ASCs
to a chondrocyte-like phenotype. The active ingredients
of CM mainly include dexamethasone (Dex), ascorbic
acid 2-phosphate (AA2P), transforming growth factor
beta family (TGFf) and bone morphogenetic protein
family (BMP) (Estes et al., 2010). ASCs cultured in CM
showed elevated levels of chondrogenic-specific genes
such as Sox-9 together with increased production of
collagen type II and GAG (Awad et al., 2004a; Im et al.,
2006; Kolambkar et al., 2007). The positive function of

growth factors, such as TGF-p1, TGF-33 and BMP-6,
was also demonstrated when incorporated in ASC-
seeded scaffolds to repair cartilage defects, resulting in a
significant increase of cell proliferation and
chondrogenic marker expression (Sukarto et al., 2012;
He and Pei, 2013; Yin et al., 2015).

However, recent studies found that different
components of CM might have distinct effects on ASCs,
and their functions could be largely influenced by the
concentration, the patient’s disease state, and the
interaction between different growth factors. For
example, TGF-f1 is considered to have a biphasic effect
under different concentrations. It was reported that TGF-
B1 inhibited endothelial cell invasion and induced ASC
chondrogenesis in relatively high concentrations (5 to 10
ng/ml) while exhibiting opposite effects in low
concentrations (0.1 to 1 ng/ml) (Iruela-Arispe and Sage,
1993; Pepper et al., 1993; Estes et al., 2006). Moreover,
TGF-B1 showed different effects on ASCs from different
donors, probably because of the differential expression
of TGEp receptors such as ALK5 in osteoarthritic
cartilage (Blaney Davidson et al., 2006, 2009). Lee et al.
compared different components of CM, and
demonstrated their distinct effects on growth factor
secretion of ASCs (Lee et al., 2013). In this study, AA2P
appeared to be the most beneficial CM component.
AA2P enhanced the secretion of chondrogenic factors
(IGF-1, TGF-B2) and reduced the secretion of
angiogenic factor (VEGF-A) and the mRNA level of
chondrocyte hypertrophy factor (FGF-18), while VEGF-
A was previously found to inhibit cartilage regeneration
in rats (Lee et al., 2012, 2013). Their study also provided
some evidence of the interaction between growth factors,
which remains to be further elucidated (Lee et al., 2013).
Future studies need to work out the optimal
concentration and combination of growth factors in the
chondrogenic medium, with the disease state of patients
taken into consideration.

Platelet rich plasma (PRP)

PRP is isolated from the autologous blood by
centrifugation, containing highly concentrated platelets
and a hematocrit typically below 5% (Centeno et al.,
2008). A rich source of growth factors is contained in the
concentrated platelets via an intricate vesicular storage
system, which can be immediately released by platelet
activation. The growth factors in PRP mainly include
basic fibroblast growth factor (FGF-2), insulin-like
growth factor-1 (IFG-1), transforming growth factors
(TGFs), platelet-derived growth factors (PDGFs),
epidermal growth factor (EGF), vascular endothelial
growth factor (VEGF) and various kinds of Interleukins
(IL) (Fréchette et al., 2005; Scioli et al., 2017). The
potential immunogenicity and the risk of disease
transmission make it unsuitable to culture ASCs with
fetal bovine serum (FBS) when intended for clinical use
(Bieback, 2013). While the cell functions are
compromised in various serum-free solutions and the
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human serum is short of source, PRP seems an ideal
substitute to FBS for stem cell culture (Bieback, 2013).
Hildner et al. reported that ASCs cultured in 5% platelet
lysate showed better proliferation and in vitro
chondrogenic (re)differentiation than in 10% FBS
(Hildner et al., 2015). The growth rate of ASCs in 10%
tPR was even much faster than in 10% FBS when using
a novel rapid thrombin activation method to prepare the
platelet lysate (tPR), with an at least 3-fold increase
while maintaining the multipotency of ASCs
(McLaughlin et al., 2016). It was suggested that the
increased cell proliferation was due to the avoidance of
heparin during tPR preparation, as heparin could inhibit
the proliferation of ASCs (Kocaoemer et al., 2007;
McLaughlin et al., 2016). Despite these encouraging
results, the appropriate concentration of PRP in culture
medium needs further investigation before it can
eventually replace FBS.

Hypoxia

The chondrocytes in cartilage tissue reside in a
hypoxia environment with only 1-6% O, in the deepest
zone (Treuhaft and Mccarty, 1971). In vitro tests showed
that the hypoxia with 1-5% oxygen tension significantly
improved the proliferation and chondrogenesis of ASCs,
while the morphology and surface markers did not
change (Merceron et al., 2010; Portron et al., 2013; Choi
et al., 2014). The analysis on growth factor expression of
co-cultured ASCs and chondrocytes under hypoxia
showed a significant increase of hypoxia-inducible
factor-1o. (HIF-1a) (Shi et al., 2016), supporting the
previous finding that HIF-1a played an important role in
mediating the effects of low oxygen tension (Schipani et
al., 2001; Malladi et al., 2007). HIF-1a upregulates the
transcriptional activity of SOX9 by binding on specific
hypoxia-responsive element sequences, stimulating the
extracellular matrix (ECM) synthesis of ASCs (Robins
et al., 2005; Amarilio et al., 2007). Consistently, the
most regulated proteins of ASC after hypoxia
preconditioning were involved in the ECM synthesis and
cell metabolism, confirming the ECM remodeling
through HIF-1o pathway as a main mechanism of
hypoxia (Riis et al., 2016). Despite the convincing in
vitro studies, the direct evidence supporting a similar
function of hypoxia in vivo is quite limited. It was even
shown in one study that hypoxia could not exert the
expected beneficial functions on in vivo cartilage
regeneration in rabbits and humans (Portron et al.,
2013). However, this could be due to various reasons,
for example, the Si-HPMC hydrogel as the cell scaffold
in this study might already create a hypoxia environment
(Portron et al., 2013). More data from in vivo studies is
required to confirm the function of hypoxia on cartilage
regeneration, and a standard protocol of hypoxia
pretreatment should be established.

Pro-inflammatory factors

Preconditioning with pro-inflammatory factors

seems to be highly promising. The anti-inflammation
effect of ASCs is crucial for its therapeutic function.
Recent studies showed that the anti-inflammatory
function of ASCs can be stimulated by various pro-
inflammatory cytokines such as IL-1p, IL-6, tumor
necrosis factor (TNF), and especially the interferon-
gamma (IFNy) (Crop et al., 2010). Maumus et al.
investigated IFNy-primed ASCs on murine OA model,
and found significantly enhanced anti-inflammatory and
chondroprotective effects both in vitro and in vivo
(Maumus et al., 2016). The authors suggested that the
positive effect of IFNy preconditioning was associated
with the modulation of ASC secretome, and the effect of
IFNvy-priming on the inflammatory gene profile of ASCs
is shown in Fig. 2 (Maumus et al., 2016).

Besides, the therapeutic function of ASCs was
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Fig. 2. Effect of IFNy-priming on the inflammatory gene profile of
eASCs. Gene array analysis of inflammatory cytokines and chemokines
mRNA compared naive and IFNy-primed eASCs. A. Hierarchical
clustering comparing naive or IFNy-primed eASCs. B. Induced gene
expression levels in IFNy-primed eASCs expressed as relative
expression (2-ACT). C. Significantly modulated gene expression levels
in IFNy-primed eASCs. Results are represented as mean + SEM for
three independent biological replicates. Data were analyzed using the
Mann-Whitney test. *p<0.05. (Adapted from Front. Immunol. 2016; 7:
392, “Utility of a Mouse Model of Osteoarthritis to Demonstrate Cartilage
Protection by IFNy-Primed Equine Mesenchymal Stem Cells” by
Maumus et al., used under CC BY).
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largely influenced by the inflammation status of the
diseased joints, exhibiting no significant effect without
severe inflammation or when they were delivered at the
late stage of OA (Ter Huurne et al., 2012; Schelbergen et
al., 2014). The pro-inflammatory cytokines released by
the synovial macrophages during the early phase of OA
might be responsible for activating the injected ASCs,
which was reflected by the level of alarmins SI00A8/A9
before and after the cell delivery (Schelbergen et al.,
2014). And in turn the delivered ASCs could decrease
these secreted pro-inflammatory factors by switching the
activated-M1-like inflammatory macrophages to a M2-
like phenotype (Manferdini et al., 2017). These studies
indicated that in some cases pro-inflammatory factor
pretreatment on ASCs might even be necessary.

Co-delivery

The delivery of ASCs alone is not sufficient to
regenerate the damaged cartilage. A high rate of
abnormality was found in mechanical property, chemical
composition and biological function of the neo-formed
cartilage, regardless of the cell dose (Jo et al., 2014; Koh
et al., 2014; Pers et al., 2016). Among various co-
delivery strategies, the cell-seeded scaffolds are being
most widely discussed in recent publications, showing
great potential in future clinical translation (summarized
in Table 1).

Scaffold

Directly injected cells usually have limited cell
retention and survival at the target site. The feasibility of
intra-articular (IA) injected ASCs for knee joint repair
was questioned, because only 15% of IA injected ASCs

was detectable in the joint of experimental mice after
one month, and this number further decreased to 1.5% in
six months (Maumus et al., 2013). In a recent clinical
trial, 76% of all patients (37 in total) showed
abnormality in cartilage repair following direct ASC
injection, especially those with large cartilage lesions
(5.4 cm?) (Koh et al., 2014). It was suggested that an
appropriate cell scaffold should be developed for treating
patients with large cartilage defects, since ASCs seeded
in scaffolds may have better viability, retention and
aggregation (Koh et al., 2014). The same group
evaluated fibrin glue as a scaffold for ASC implantation.
The results showed a significant difference in
International Cartilage Repair Society (ICRS) grades
between the scaffold group and non-scaffold group,
where 12 of the 17 lesions (58%) and 9 of the 39 lesions
(23%) achieved a grade I or II in each group,
respectively (Kim et al., 2015). Their preliminary
clinical data provides direct evidence that a well-
designed bioactive scaffold can really improve the
therapeutic function of ASCs for cartilage regeneration.
However, the in vivo evaluation of ASC-seeded scaffolds
for cartilage regeneration remains scarce. The beneficial
effects of scaffolds on in vitro proliferation, adhesion,
migration and chondrogenic differentiation of ASCs
were also reported in other studies with convincing data,
although in these studies the in vivo characterizations of
ASC-seeded scaffolds did not set the control group of
ASCs alone (Zhang et al., 2013; Li et al., 2015; Scioli et
al.,2017; Gwon et al., 2017). Thus, the beneficial role of
scaffolds on ASCs needs further investigation,
particularly in large-scale randomized and double-
blinded human trials.

There is a considerable amount of recent papers
discussing the influence of scaffolds on ASCs. However,

Table 1. ASC-seeded scaffolds for cartilage regeneration reviewed in this work.

Material Model Conclusion

Reference

CDM scaffold Rabbit ASC-ECM scaffold regenerates hyaline cartilage, comparable to native cartilage

Kang et al.,, 2014

Chitosan hydrogel +

Young’s modulus affects ASC viability and retention; RGD peptide improves

RGD/growth factors N/A ASC viability; growth factor-loaded MPs enhance ASC chondrogenesis Sukarto etal., 2012
Genipin-crosslinked Chemical crosslinking by genipin prevents scaffold contraction
CDM scaffold N/A while preserving the chondrogenic potential of CDM Cheng et al., 2013

Poly(L-glutamic acid)-
chitosan scaffold

Rabbit PLGA/CHI scaffold repairs full-thickness cartilage defects, comparable to native cartilage

Zhang et al., 2013

CDM-chitosan

Col Il enhances ASC condensation and chondrogenesis

hydrogel N/A through increased cell-matrix adhesion, mediated by integrin a10 Choi et al., 2014
CDM-PCL scaffold N/A Multi-layer electrospun constructs enhance cell infiltration; inclusion of CDM stimulates chondrogenesis ~ Garrigues et al., 2014
CDM scaffold N/A  Scaffolds with larger pore size have greater ASC migration, proliferation, and chondrogenic differentiation Almeida et al., 2015
TG_|F-B1 -conjugated Rat C_ov_a!ently conjugated TGF-B1 via SMCC linker Choi et al., 2015
chitosan hydrogel significantly reduces burst release

Poly(L-glutamic acid)- .. Non-fouling scaffold drives ASCs into multicellular spheroids,

chitosan scaffold Rabbit which facilitates hyaline-like cartilage Regeneration Zhang etal., 2015
Fibrin glue Human Scaffolds improve the cartilage regeneration capacity of ASCs for large cartilage lesions Kim et al., 2015
Type | collagen N/A 3D culture and PRP/insulin treatment Scioli et al., 2017

scaffold + PRP/insulin enhance ASC chondrogenesis

Heparin-HA hydrogel N/A  Hydrogel degradation is necessary for 3D cellular activities; Hep-HA superior to Hep-PEG and PEG-HA  Gwon et al., 2017
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most of them focused their attention on natural scaffolds
instead of synthetic scaffolds. One reason is that some
novel scaffolds fabricated by natural polymers exhibited
impressive bioactivity. For example, multiple studies
described the superiority of CDM and collagen scaffolds
for cartilage tissue engineering. The natural polymeric
molecules contained in these scaffolds, especially
collagen type II (Col II), were able to stimulate
chondrogenic differentiation of ASCs (Cheng et al.,
2013; Portron et al., 2013; Choi et al., 2014; Garrigues et
al., 2014; Kang et al., 2014; Almeida et al., 2015; Scioli
et al., 2017). ASCs underwent morphological and
ultrastructure changes when seeded in 3D collagen
scaffold (Scioli et al., 2017). It was suggested that
collagen type II promotes chondrogenic differentiation
of ASCs by evoking a round cell shape through betal
integrin-mediated Rho A/Rock signaling pathway (Lu et
al., 2010). Consistently, it was found that Col II
enhanced condensation and chondrogenesis of ASCs
through increased cell-matrix adhesion, and this was
mainly mediated by integrin a10f1-Col II interaction
(Choi et al., 2014). Notably, the implantation of
scaffolds containing allogenic or xenogeneic materials,
such as collagen, could induce the host immune response
(Hassanbhai et al., 2017). However, very little attention
is given to this issue (Badylak and Gilbert, 2008; Keane
and Badylak, 2015). The influence of the potential
immune response to patients and cartilage regeneration
process induced by biological scaffold materials needs
careful examination before clinical application.

Tailoring the physical parameters of scaffolds can
significantly influence the cellular behavior of ASCs.
The effect of Young’s modulus showed a non-linear
pattern. The viability and retention of ASCs were
enhanced in the chitosan gel when the Young’s modulus
was between 225 and 380 kpa (Sukarto et al., 2012). In
accordance, ASCs showed decreased cell attachment and
ECM formation on the genipin-crosslinked CDM
scaffold when the crosslinking degree increased from
50% to 89% (Cheng et al., 2013). Teong et al.
demonstrated that modulating the stiffness of
methacrylated hyaluronan (MeHA) hydrogel could
enhance the chondrogenesis of ASCs, and the hydrogel
with 140% degree of methacrylation (8 kPa) exhibited
the highest rates of GAG and collagen type II synthesis
(Teong et al., 2018). The pore size of porous scaffolds
also affects the cartilage repair ability of ASCs. It was
shown that the migration, proliferation, and
chondrogenic differentiation of ASCs were enhanced in
scaffolds with the larger pore size (Im et al., 2012;
Almeida et al., 2015). And the enhanced performance of
ASCs was confirmed when regenerating cartilage in
rabbits (Im et al., 2012). However, there is limited data
from in vivo studies that can help to understand its
inherent molecular mechanism.

The importance of cell-binding affinity and
biodegradability were also highlighted recently. It was
demonstrated that stem cell spreading, proliferation,

adhesion and migration was much better in heparin-HA
hydrogel compared to heparin-PEG and HA-PEG
hydrogel, due to the combination of the cell-binding
affinity from heparin and the biodegradability from HA
(Gwon et al., 2017). In addition, HA was also able to
initiate and enhance ASCs chondrogenesis through
increased cell-matrix adhesion via HA-CD44 interaction
(Wu et al., 2010, 2013). Consistently, grafting RGD-
contained peptides onto N-methacrylate glycol chitosan
(MGC) gel increased the in vitro viability and retention
of encapsulated ASCs (Sukarto et al., 2012). However,
of our particular interest, Zhang et al. claimed that the
excessive cell adhesion and spreading on scaffolds might
actually have negative influence on ASC
chondrogenesis, generating fibrous tissue in neo-
cartilage, therefore limiting the success of current
scaffold technology (Zhang et al., 2015). By designing
an anti-adhesive poly(L-glutamic acid)/chitosan
(PLGA/CS) scaffold and another cell-adhesive
PLGA/CS scaffold through a combination of air-drying
and freeze-drying procedures, they demonstrated that
ASCs in anti-adhesive scaffold exhibited high-level
GAG and collagen type II but low-level collagen type I
deposition both in vitro and in vivo, similar to normal
cartilage (shown in Fig. 3), as opposed to the cell-
adhesive group (Zhang et al., 2015). It was suggested
that ASCs formed multicellular spheroids through
spontaneous cellular aggregation on the anti-adhesive
scaffold, mimicking the “condensation” step during
embryonic limb development which promoted
chondrogenesis (Zhang et al., 2015). This study provided
a unique strategy to design new scaffolds which might
better mimic the in vivo biological environment.

In summary, with the safety of ASC-seeded
scaffolds already demonstrated in multiple pre-clinical
animal models and small-scale humans trials (Kim et al.,
2015), the next step is to confirm their safety and
efficacy in large-scale human trials. And the ASC-
seeded scaffolds should be compared with the delivery
of ASCs alone. In addition, the material, structure and
physicochemical parameters of scaffolds require further
optimization based on the latest findings to provide
better regenerative capacity for ASCs.

Bioactive factors

Co-delivery of growth factors or PRP is another
effective way to enhance the proliferation and
chondrogenesis of ASCs (Li et al., 2015; Yin et al.,
2015; Scioli et al., 2017). In fact, the co-delivery of PRP
as a source of growth factors has already been applied to
most of the recent clinical trials using SVF (Pak et al.,
2016a,b). Nevertheless, the delivery of growth factors in
these studies was still in an uncontrolled manner. Some
growth factors might not exert the expected function
when delivered in an inappropriate concentration, for
example, the TGF-f1. The homogenous and sustained
drug release could be achieved by covalent conjugation
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of growth factors onto the scaffolds. Choi et al.
significantly reduced the burst release by covalently
linking TGF-P1 to the chitosan hydrogel via SMCC
linker (Choi et al., 2015). Another choice is
encapsulating growth factors in drug carrier systems,
such as microspheres (Sukarto et al., 2012; Yin et al.,
2015; Deepthi and Jayakumar, 2016). Certain natural
materials could be used to fabricate the microspheres,
such as chondroitin sulphate and ECM, and these
natural-derived molecules might enhance the bioactivity
of the co-delivered scaffolds, especially the synthetic
scaffolds (Gibson et al., 2014; Deepthi and Jayakumar,
2016). However, before moving into human trials, the
safety of micro- or nano-phase drug carriers still needs
careful investigation for any potential side-effects.

Future perspective

Various pre-operative optimization strategies have
been investigated recently, including cell source
selection, preconditioning and co-delivery. Despite the
encouraging results already achieved, few of these
methods has really moved into the clinical stage. One

reason is that the underlying mechanisms behind these
methods are not fully understood. Besides, the healing
process of treated cartilage and the biological process
ASCs undergo following delivery needs further
elucidation. If these basic questions were clearly
answered, the optimized therapies could achieve a more
consistent result in pre-clinical studies, thereby
accelerating their pace into clinical stage.

Except for the pre-operative optimization, some
post-operative strategies can also be considered. Some
pilot studies demonstrated that special mechanical
stimuli can induce ASC chondrogenesis, for example,
low-intensity ultrasound (Shafaei et al., 2013). In the
future, effective physical therapies could be designed to
further improve the therapeutic function of ASCs post-
operatively, as a supplement to the surgical treatments.

To conduct large-scale clinical trials and eventually
enter the market, more efforts should be made on the
stem cell quality control. Recently, some pilot studies
have already been conducted. For liposuction, the
commercialized Bodyjet® water-jet-assisted liposuction
and ultrasound-assisted liposuction (UAL) have shown
no influence on the cell yield, viability and

1,6 w

< 2 . f /

Fig. 3. Morphological evaluation of neo-cartilage in critical-size rabbit cartilage defects. Defect repaired with the ASC spheroids/scaffold A construct

was set as group |. Defect repaired with adherent ASCs/scaffold B construct was set as group Il. a, Gross appearance of the neo-cartilage at 6 w and
12 w. b, H&E staining of normal cartilage. H&E staining of group | (¢), group Il (d) at 6 w, and group | (g), group Il (h) at 12 w. e, f, i and j were higher-
magnification images selected from the regenerated areas outlined by the rectangles in ¢, d, g and h, respectively. H&E staining showed that cells in
the regenerated tissue of group | possessed larger volume and more obvious cartilage lacuna structure than those in group Il. And the arrangement
features of cells in group | were more obvious. (Adapted from Biomaterials 2015, 71: 24-34, with permission from Elsevier). Scale bars: c, d, g, h, 1000
um; b, e, f, i, g, 250 pm.
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differentiation potential of ASCs, demonstrating good
compatibility for ASC production (Bony et al., 2015;
Duscher et al., 2016). For SVF isolation, fully-automatic
systems are attractive due to the minimal manipulation
which minimizes the contamination risk and variability
between batches. Incellator® (Tissue Genesis™ ) and
Celution® (Cytori) are two kinds of commercialized
systems that automatically isolate SVF from adipose
tissue, with comparable or even better efficiency
compared to the manual procedure (Riis et al., 2015).

Short-term hypothermic preservation, which is
necessary for quality control inspection and cell product
transportation, remains an unsolved problem because of
the cell injury and death upon rewarming. Hajmousa et
al. proposed a modified 6-chromanol SUL-109 as a
novel single molecule cell preservation additive agent in
the culture medium to protect ASCs from hypothermic
damage while maintaining the differentiation capacity,
showing great potential for future application (Hajmousa
etal.,2017).

Conventional static monolayer culture techniques in
the laboratory are not suitable in industry due to low
efficiency, risk of contamination and difficulties in
quality control. Thus, a well-designed novel culture
system needs to be developed. Yu et al. fabricated a
novel non-chemically crosslinked decellularized adipose
tissue (DAT) porous microcarrier for dynamic culture of
ASCs (Yu et al., 2017). After over one month of
continuous culture, ASCs that expanded on the DAT
microcarriers maintained their immunophenotype and
multilineage differentiation capacity while exhibiting
stronger chondrogenesis than baseline control, showing
great promise in ASC mass culture (Yu et al., 2017).

Conclusion

Adipose-derived stem cells are an ideal alternative to
BMSCs, due to the similar regenerative capacity but
more abundant source and easier accessibility. To date,
most of the completed clinical trials delivered ASCs in
the form of SVF and reported safety and efficacy for
cartilage regeneration, exhibiting great potential for
clinical knee osteoarthritis treatment. However, simple
SVF injection is not sufficient to fully restore the
damaged cartilage back toward normal function, thus an
optimized ASC therapy is needed for an enhanced
therapeutic function. Based on current technology,
culture-expanded ASCs are more promising than crude
SVF in future application. Among various optimization
strategies investigated recently, preconditioning and co-
delivery showed the most encouraging results in
preliminary studies, but more convincing data from well-
designed pre-clinical and clinical trials are needed before
practical use. Due to the bright future of expanded
ASCs, techniques involving isolation, expansion and
storage of ASC products also need to be explored to
ensure the good quality of stem cell products and the
smooth industrial translation.
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