
Summary. The RNA binding protein Lin28 is increased
in most human malignancies, and elevated Lin28 is a
biomarker for poor prognosis and contributes to cancer
progression. Lin28 functions as a master oncogene and
is involved in almost all hallmarks of cancer. In this
review, we summarize the aberrant molecular expression
mechanisms and pathological roles of Lin28 in cancer
progression. Moreover, we elaborate on the established
molecular mechanisms, from the transcriptional level to
the post-transcriptional and translational levels, by
which Lin28 regulates cancer progression.
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Introduction

Two paralogues of Lin28, Lin28A and Lin28B, are
conserved from C. elegans to humans. Lin28A was first
identified in the nematode C. elegans (Ambros and
Horvitz, 1984; Bussing et al., 2008), whereas Lin28B
was first identified in human hepatocellular carcinoma
(Guo et al., 2006). Lin28A and Lin28B have many
similar characteristics. Structurally, both are RNA
binding proteins containing a cold-shock domain (CSD)
at the N-terminus and two Cys-Cys-His-Cys (CCHC)-

type zinc finger domains at the C-terminus (Newman et
al., 2008). Functionally, both proteins are similar in that
they regulate developmental timing. They are highly
expressed in embryonic stem cells (ESC) and maintain
the self-renewal of stem cells. They also decrease with
the initiation of differentiation and are undetectable in
most mature tissues (Moss et al., 1997; Seggerson et al.,
2002). Due to its role in the prevention of cellular
differentiation, Lin28 has successfully been used to
generate inducible pluripotent cells with other stemness
factors (Yu et al., 2007). In addition to their similar
structure and function, Lin28A and Lin28B also have the
same subcellular distribution. Both are predominantly
distributed in the cytoplasm (Wu et al., 2016), however,
they can shuttle between the cytoplasm and the nucleus
under certain conditions (Balzer and Moss, 2007;
Piskounova et al., 2011).

Currently, both Lin28A and Lin28B are believed to
act as multifunctional oncogenes to promote
tumorigenesis and cancer progression. The aberrant
expression of both Lin28A and Lin28B in cancer and
their pathological roles in cancer progression have been
extensively reviewed (Zhou et al., 2013; Jiang and
Baltimore, 2016). However, the molecular mechanisms
by which Lin28 promotes cancer progression are
largely unexplored. Recently, numerous studies have
found that Lin28 is a master oncogene that regulates
cancer progression through different molecular
mechanisms. 

In this review, we briefly summarize the aberrant
expression and the pathological roles of Lin28 in human
malignant tumors, and intensively elaborate upon the
established molecular mechanisms by which Lin28
regulates cancer progression.
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The expression of Lin28 is universally increased in
cancer

Elevated expression of Lin28A or Lin28B is
observed in almost all malignant tumor types (Saiki et
al., 2009; Helland et al., 2011; Jiang et al., 2012; Shaw et
al., 2013; Wang et al., 2015; Lee and Chen, 2016).
Although the expression of Lin28 is universally
increased in cancer cells, the mechanisms by which the
aberrant expression of Lin28 occurs have not been well
addressed until now. Generally, transcriptional activation
and translational enhancement are the two major
mechanisms that elevate the expression of Lin28 in
cancer cells. 

Several transcription factors, including c-myc, NF-
κB, STAT3, β-catenin and SOX2, have been reported to
promote the transcription of Lin28A or Lin28B in
different cancer types (Chang et al., 2009; Iliopoulos et
al., 2009; Cimadamore et al., 2013; Guo et al., 2013). In
addition, there are several post-transcriptional regulatory
mechanisms that contribute to the up-regulation of
Lin28. First, the decreased expression of miRNAs
targeting Lin28, such as let-7 and miR-181, is one of the
mechanisms underlying the up-regulation of Lin28 in
cancer cells (Li et al., 2012b; Wu et al., 2016). Second,
the aberrant expression of RNA binding proteins may be
involved in the over-expression of Lin28 in some cancer
types. For example, tristetraprolin (TTP) binds to the AU
rich element within the 3’UTR of Lin28 mRNA and
causes the degradation of Lin28 mRNA (Kim et al.,
2012). However, TTP is usually decreased in cancer
(Fallahi et al., 2014). Insulin-like growth factor 2
mRNA-binding protein 3 (IMP3), an RNA binding
protein that regulates RNA stability and translation, has
been reported to bind and stabilize Lin28B mRNA in
cancer (Jonson et al., 2014). The ribonuclease DIS3 has
been found to bind and degrade Lin28B mRNA and thus
decrease Lin28B levels. However, DIS3 is one of the
most frequently mutated genes in cancer, including
multiple myeloma (Segalla et al., 2015). Third, RNA
editing may also influence the production of Lin28. It
has been found that mRNAs containing inverted Alu
repeats in their 3’UTR are inefficiently exported to the
cytoplasm due to nuclear retention mediated by RNA
editing (Kim et al., 2004). Lin28 mRNA contains
inverted repeat Alu elements in its 3’UTR which
contribute to its recognition by adenosine deaminases
acting on RNA (ADARs). ADARs can edit Lin28
mRNA by catalyzing the hydrolytic deamination of
adenosines (A) to inosines (I); the edited Lin28 RNA is
retained in the paraspeckle (Bass, 2002; Chen and
Carmichael, 2009). Although it is unclear how cancer
cells overcome the nuclear retention of Lin28 mRNA
caused by RNA editing, there must be some mechanisms
in cancer cells that bypass or attenuate this restriction.
Finally, it has been reported that the aberrant regulation
of post-translational modifications on the Lin28 protein
could increase its stability. For example, in pluripotent

stem cells, upon the activation of MAPK/ERK, the
stabilization of Lin28 is significantly enhanced due to
direct phosphorylation by ERK (Tsanov et al., 2017),
whereas in neurons, upon stimulation with growth
factors, the HIV TAR-RNA-binding protein (TRBP)
accumulates due to MAPK-dependent phosphorylation
allowing the phosphorylated TRBP to bind Lin28 and
enhance its stability (Amen et al., 2017). These results
suggest that MAPK signaling promotes the stability of
Lin28. The ubiquitin ligase TRIM71 (the human TRIM-
NHL domain-containing protein) has been reported to
induce the degradation of the Lin28B protein via the
ubiquitin-mediated proteosomal degradation mechanism
(Lee et al., 2014). However, further experiments are
needed to determine whether the MAPK signaling
pathway also enhances the stability of the Lin28 protein,
or if TRIM71 is aberrantly regulated in cancer cells.
Lin28 promotes cancer progression

It has been widely reported that Lin28 proteins are
frequently up-regulated in various malignancies. High
levels of the Lin28 protein are associated with cell
transformation and tumorigenesis. In addition, Lin28
plays an important role in cancer progression and is a
marker for poor prognosis.

In 2009, Viswanathan et al. was the first to provide
evidence that Lin28 promotes cellular transformation
(Viswanathan et al., 2009). They over-expressed LIN28
in NIH/3T3 cells and found that these cells can form
colonies in soft agar and promote tumor development in
nude mice by repressing let-7 family miRNAs and de-
repressing let-7 targets (Viswanathan et al., 2009). King
et al. found that Lin28B can transform immortalized
colonic epithelial cells resulting in the formation of
colonies in soft agar and improved metastatic ability
(King et al., 2011). Some studies have indicated that
Lin28 might be the key epigenetic switch linking
inflammation to cell transformation. Iliopoulos et al.
reported that a positive inflammatory feedback loop
between NF-κB, Lin28, Let-7 and IL6 forms an
epigenetic switch that permits cell transformation
(Iliopoulos et al., 2009). Madison et al. observed that
enhanced expression of Lin28B promoted the
transformation of crypts to form intestinal polyps and
adenocarcinoma in vivo (Madison et al., 2013). Thus,
Lin28 is associated with cell transformation and plays an
important role during the occurrence of cancer. 

The role of Lin28 in cancer proliferation has been
well documented (Wang et al., 2015; Wang et al.,
2016a). Lin28 can promote cell proliferation through
different means, such as activating proliferation-
associated transcription factors (Chen et al., 2014),
upregulating the expression of cell cycle-related factors
(Li et al., 2012a), stimulating cellular proliferation
signaling pathways (Feng et al., 2012), facilitating
ribosomal protein synthesis (Peng et al., 2011) and
enhancing glucose metabolism (Song et al., 2015). Most
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studies have confirmed the stimulatory effect of Lin28
on cell proliferation, however, Song et al proposed that
Lin28 can inhibit proliferation, disrupt cell cycle
progression and induce apoptosis in gastric cancer cells
(Song et al., 2015). Thus, it is conceivable that Lin28
can inhibit cancer cell proliferation under certain
conditions. 

Metastasis is one of the hallmarks of cancer
progression. Substantial evidence has revealed that
Lin28 accelerates metastasis in various cancer types
(Zhou et al., 2013; Balzeau et al., 2017). Lin28B was
found to be overexpressed in colon cancer, and a high
level of Lin28B can result in extensive cancer cell
metastasis in mice (Hamano et al., 2012). Lin28 can
promote the invasiveness of esophageal cancer cells and
is associated with tumor aggressiveness (Hamano et al.,
2012). The involvement of Lin28 in the regulation of
cancer cell invasion and metastasis is associated with the
epithelial-to-mesenchymal transition (EMT) (Liang et
al., 2016; Sato et al., 2017). Mechanistically, by
suppressing the biogenesis of let-7 family miRNAs
(discussed later), Lin28 indirectly enhances the
expression of some oncogenes that facilitate EMT; on
the other hand, Lin28 directly binds and alters the
expression of certain metastasis associated genes. For
example, Lin28A inhibits the translation of E-cadherin
while promoting the expression of HMGA1, which
facilitates EMT by inducing the expression of Slug and
Snail (Wang et al., 2015).
The molecular mechanisms of Lin28 mediated
regulation of cancer progression

Multiple studies have confirmed that Lin28 regulates
miRNAs or mRNA molecules by directly binding
special motifs on the target RNAs. The structural basis
for the RNA-binding specificity of Lin28 has been partly
revealed in the past few years. Human Lin28 has two
binding RNA domains (RBDs): a cold-shock domain
(CSD) at the N-terminus and a Zn-knuckle domain
(ZKD) composed of two Cys-Cys-His-Cys (CCHC)-type
zinc finger domains at the C-terminus (Moss et al.,
1997) which mediate the combination of Lin28 with its
target RNAs. Currently, several models have been
proposed to explore the interaction between Lin28 and
its target RNAs. Based on the interaction between Lin28
and pre-let-7, the CSD of Lin28 was proposed to insert
into the loop at one end of the central stem-loop
structure while the two CCHC-type zinc fingers
recognize the G-rich element (GGAG, GAAG or AGGG
motif) at the other end of RNAs (Loughlin et al., 2011;
Nam et al., 2011). Alternatively, Lin28 binding sites may
contain two GGAG motifs within a region that can be
folded to form a weak hairpin structure (Stefani et al.,
2015). Recently, a novel model of the secondary
structure of RNAs has been proposed in which Lin28
recognizes the stable planar structures of 4 guanines
termed a G-quartets (G4s) in its target RNAs (O'Day et
al., 2015). 

Lin28 regulates the biogenesis of microRNAs

Until now, the let-7 family has been the best studied
family of miRNAs regulated by Lin28. The blocking of
let-7 is regarded as one of the most important
mechanisms for Lin28 function across multiple
biological processes. Lin28 can recognize and bind
GGAG motifs within the loop structure of pri-let-7 and
pre-let-7 via CSD and CCHC zinc fingers, which blocks
let-7 precursor processing by Drosha and Dicer
(Piskounova et al., 2008). Then, Lin28 recruits
TUT4/TUT7to induce oligo-uridylation at the
3’terminus of pre-let-7 (Heo et al., 2008, 2009; Hagan et
al., 2009), whereas oligo-uridylated pre-let-7 not only
resists Dicer cleavage, but is also more susceptible to the
3’-5’ exonuclease Dis312 (Mullen and Marzluff, 2008;
Chang et al., 2013). In addition, methylation of Lin28a
by SET7/9 leads to greater stability and translocation to
the nucleus, resulting in the sequestration of pri-let-7 in
the nucleus and the inhibition of mature let-7 biogenesis
(Kim et al., 2014). Although most studies demonstrated
that Lin28 repressed the maturation of let-7, it has been
noted that not all members of the let-7 family can be
regulated by Lin28. Of the twelve let-7 isoforms, human
let-7a-3 escapes Lin28-mediated suppression. The
murine orthologous let-7c-2 also displayed lower affinity
for Lin28 binding (Triboulet et al., 2015). The
mechanism for this process involves a five-nucleotide
long sequence forming the short apical stem-loop in the
let-7c-2 preE bulge, which compromises the interaction
between the CSD of Lin28 and pre-let-7c-2loop
(Triboulet et al., 2015)

In addition to the let-7 family, Lin28 can also
regulate other miRNAs. It was reported that Lin28B
combines with miR-17~92 and miR-363 through GGAG
motifs to positively regulate the biogenesis of these
miRNAs (Peters et al., 2016; Warrander et al., 2016).
Lin28 also interacted with pre-miR-302d through its
CSD and then decreased the level of miR-302d (Balzer
et al., 2010). Lin28B maintains the stem cell properties
of hepatoblasts by suppressing the maturation of both
let-7b and miR-125a/b (Takashima et al., 2016).
Additionally, Lin28 can inhibit the expression of miR-
107 in gastric cancer cells (Teng et al., 2015). Thus,
Lin28 is a potent post-transcriptional regulator for
miRNAs by either promoting or inhibiting their
maturation.
Lin28 regulates the stability and translation of mRNAs

In 2007, investigators found that Lin28 can bind
IGF-2 mRNA and increase its translation efficiency by
driving the IGF-2 mRNA into polysomes in
differentiating muscle cells (Polesskaya et al., 2007).
This study provided the initial evidence that Lin28 can
directly bind and regulate mRNAs. Soon after, a series
of cell cycle regulators (including Oct4, cyclin A/D and
CDK6) and H2A mRNAs were found to be the targets of
Lin28 in ES cells, and it was also shown that Lin28 can
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enhance the translation of these mRNAs (Xu and Huang,
2009; Xu et al., 2009; Dai et al., 2012). In 2011, some
growth and survival associated mRNAs were identified
as the targets of Lin28 by genome-wide studies in ES
cells (Peng et al., 2011). Further studies indicated that
Lin28 enhances the translation of those genes by
recruiting RNA helicase A (RHA) to polysomes (Jin et
al., 2011; Peng et al., 2011). In addition to the effect on
translation, Lin28 might influence the stability of
specific mRNAs during differentiation (Balzer and
Moss, 2007). Lin28 binding to target mRNAs
compensates for the Drosha-dependent mRNA
destabilization because the LREs in the target mRNA
participates in Drosha-dependent regulation (Qiao et al.,
2012). In malignancy, Lin28 can also directly bind to
oncogene mRNAs and increase their translation, such as
HER2 and BMP4, subsequently inducing cell
proliferation (Feng et al., 2012; Ma et al., 2013; Wang et
al., 2014). However, Lin28 also inhibits the translation
of its target mRNAs. For example, Lin28 downregulates
the translation of Hmga2 by binding a highly conserved
element in the 3’UTR of Hmga2 during ESC
differentiation (Parisi et al., 2017). Consistently, Lin28A
has been demonstrated to act as a suppressor that inhibits
ER-associated translation in ES cells (Cho et al., 2012).

With an increase in the number of identified Lin28
target mRNAs, numerous studies have explored the
motifs within mRNAs recognized by Lin28. It was
shown that a GGAGA sequence enriched in the loop
structures of mRNAs is the Lin28-binding site, which is
found in a quarter of human transcripts (Wilbert et al.,
2012). In a few genome-wide studies, several potential
Lin28 binding sites in the targets mRNA, including
GGAGA, AYYHY (Y=U,C and H=A,C,U) and
AAGNNG, have been revealed (Cho et al., 2012;
Wilbert et al., 2012; Hafner et al., 2013). There is no
doubt that an increasing number of mRNA targets of
Lin28 will be found following the identification of the
Lin28 binding site. The currently known target mRNAs
regulated by Lin28 are summarized in Table 1.
Lin28 modulates RNA Splicing

Lin28 preferentially binds to the transcripts encoding
splicing factors, such as hnRNP F, TIA-1, FUS/TLS and
TDP-43, and enhances their translation, subsequently
resulting in widespread splicing changes in breast cancer
cells (Wilbert et al., 2012). In prostate cancer, Lin28 was
found to induce the generation of AR splice variants by
upregulating splicing factors such as hnRNP A1/2R, and
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Table 1. The known mRNAs regulated by Lin28 and their functions.

Genes Functions References

cyclins Regulation of cell cycle Xu et al., 2009
CDK1/2/4 Regulation of cell cycle Xu et al., 2009
CDC2/20 Regulation of cell cycle Xu et al., 2009
IGF1R Regulation of cell proliferation Brunetti et al., 2001
Igf2bp1 Regulation of cell proliferation Yang et al., 2015b
HK1 Potentiation cellular metabolism Peng et al., 2011
PDHA1 Potentiation cellular metabolism Peng et al., 2011
PDHB Potentiation cellular metabolism Peng et al., 2011
HER2 Increase cellular proliferation Feng et al., 2012
RPS13 Increase cellular proliferation Peng et al., 2011
EEF1G Increase cellular proliferation Peng et al., 2011
EIF4A Increase cellular proliferation Peng et al., 2011
HMGA2 Promotes EMT Dangi-Garimella et al., 2009; Parisi et al., 2017
GSK3B Regulation of cell proliferation Yao et al., 2016
BMP4 Regulation of cell proliferation Ma et al., 2013
PFKP Regulation of cell proliferation Xiong et al., 2017
IDH3B Regulation of cell proliferation Xiong et al., 2017
NDUFB3/8/10 Regulation of cell proliferation Xiong et al., 2017
E-cadherin Promotes metastasis Xiong et al., 2017
CTNNB1 Promotes metastasis Yao et al., 2016
ZEB-1/-2 Promotes metastasis Papathomas et al., 2016
MMP2 Promotes metastasis Papathomas et al., 2016
SF1 Promotes metastasis Papathomas et al., 2016
HMGA1 Activation of insulin signaling Papathomas et al., 2016
IGF2 Activation of insulin signaling Brunetti et al., 2001
VEGF Angiogenesis Wu et al., 2013
gamma-H2AX Potentiation genome instability Dickey et al., 2009
TP53 Potentiation genome instability Poon et al., 2016
PSEN1 Form of familial Alzheimer's disease Poon et al., 2016
PRAME Regulation of pluripotency and suppressing somatic/germ cell differentiation Nettersheim et al., 2016
RPL23 Apoptosis resistance Tsanov et al., 2017
SUMO1 Increase cellular proliferation Sahin et al., 2014



then promoting the resistance of cancer cells to targeted
therapeutics (Tummala et al., 2016). Recently, Yang et al
also found that the splicing factor hnRNP A1 was
associated with Lin28 by MS analysis. However, RIP-
Seq data indicated that Lin28 was not enriched at the
hnRNP A1 locus. This study suggests that Lin28 can
modulate the splicing process in breast cancer cells
independent of hnRNP A1 (Yang et al., 2015a). Thus,
Lin28 can alter the RNA splicing process in cancer cells
by affecting the translation of splicing factors.
Lin28 regulates gene transcription

As an increasing number of studies have focused on
the RNA targets directly regulated by the RNA binding
protein Lin28 at the post-transcriptional or translational
levels, some have suggested that Lin28 may regulate
gene expression at the transcriptional level. Hudson et al.
previously demonstrated that the CSD structure in some
protein molecules can bind single-stranded DNA
(Hudson and Ortlund, 2014). Additionally, some other
RNA binding proteins, such as the splicing regulator
SRSF2, have been revealed to function as transcription
factors (Mo et al., 2013). These findings raise the
possibility that Lin28 may also exhibit DNA binding
activity. As expected, Zeng et al. defined a DNA binding
characteristic of Lin28A, providing novel evidence that
Lin28A directly regulates transcription. Further, they
found that Lin28A recognizes DNA consensus sequences
within active transcriptional bubbles and recruits Tet1 to
co-regulate gene transcription by modulating the
cytosine modification status (Zeng et al., 2016).
Conclusions and perspectives

In summary, the RNA binding protein Lin28 is
universally increased in human malignancies, and high
levels of Lin28 are poor prognosis markers and
contribute to the progression of a variety of cancer types.
Mechanistically, Lin28 not only regulates the biogenesis
of miRNAs, either by inhibiting or promoting their
maturation and then indirectly regulating gene
expression, but also directly regulates the transcription,
splicing, stability and translation of mRNAs. As an
oncogene, Lin28 has been demonstrated to promote
cellular proliferation, angiogenesis, metastasis, cell death
resistance, metabolism reprogramming, tumor-associated
inflammation, genome instability, and immune
surveillance escape by cancer cells (Wang et al., 2015).
As an RNA binding protein, in addition to miRNAs,
Lin28 may bind to and regulate the stability of other
types of non-coding RNAs, such as lncRNAs and
pseudogene transcripts, and then indirectly regulate the
expression of protein-coding genes via a competing
endogenous RNA (ceRNA) mechanism. However, no
related results have been reported, but it would be an
interesting research direction in this field. Additionally,
our recent research implied that the functions of Lin28
mRNA and protein in colorectal cancer may not by

consistent (Wang et al., 2016b). Considering that the
mRNA molecules of both Lin28A and Lin28B contain a
long 3’-UTR, which is five-times longer than the coding
region, the mRNAs of Lin28 may have some novel but
protein-coding independent functions. However, this
hypothesis must be validated by further experiments.
Established studies suggest that Lin28 is a master
regulator of cancer progression and would be a valuable
target for future cancer therapy.
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