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Summary. Papillary Renal Cell carcinoma (pRCC) is
the second most common type of RCC, accounting for
about 15% of all RCCs. Surgical excision is the main
treatment option. Still, 10-15 % of clinically localized
tumours will recur and/or develop metastasis early after
surgery, and no reliable prognostic biomarkers are
available to identify them. It is known that pRCC cells
rely on high rates of aerobic glycolysis, characterized by
the up-regulation of many proteins and enzymes related
with the glycolytic pathway. However, a metabolic
signature enabling the identification of advanced pRCC
tumours remains to be discovered.

The aim of this study was to characterize the
metabolic phenotype of pRCCs (subtypes 1-pRCC1 and
2-pRCC2) by evaluating the expression pattern of the
glucose transporters (GLUTs) 1 and 4 and the
monocarboxylate transporters (MCTs) 1 and 4, as well
as their chaperon CD147. We analysed the clinico-
pathological data and the protein and mRNA expression
of GLUTI1, GLUT4 and MCT1, MCT4 and CD147 in
tumours from Porto and TCGA series (http://cancer
genome.nih.gov/), respectively.

With the exception of GLUT4, plasma membrane
expression of all proteins was frequently observed in
pRCCs. GLUT1 and MCT1 membrane overexpression
was significantly higher in pRCC2 and significantly

associated with higher pN-stage and higher Fuhrman
grade.

Overexpression of GLUTI1, MCT1/4 and CD147,
supports the metabolic reprograming in pRCCs. MCT1
expression was associated with pRCC aggressiveness,
regardless of the tumour histotype.
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Introduction

Renal cell carcinoma (RCC) comprises a
heterogeneous group of tumours arising from the
epithelium of the renal tubules and accounts for >90% of
all adult renal carcinomas (Chow et al., 2010; Fernandes
and Lopes, 2015). RCC originates from a diverse set of
genetic abnormalities, presenting diverse histologic
features, distinct biologic behaviour, variable responses
to therapy and variable clinical outcomes (Lam et al.,
2005; Wang et al., 2014; Fernandes and Lopes, 2015).

According to the WHO classification, the most
common adult RCC subtypes are: clear cell renal cell
carcinoma (ccRCC; 65-70%) followed by papillary renal
cell carcinoma (pRCC; up to 18.5%), and chromophobe
renal cell carcinoma (chRCC; 5-7%) (Moch et al., 2016).

pRCCs are a heterogeneous group of tumours,
composed of epithelial cells with papillary or
tubulopapillary architecture, traditionally subdivided in
two subtypes (pRCC1 and pRCC2), on the basis of
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distinct morphological and behavioural features that may
influence therapeutic options (Yang et al., 2013; Moch et
al., 2016). pRCCI1 is characterized by the presence of
cuboidal or columnar neoplastic small cells, with nuclei
aligned in a single layer and a scanty and pale cell
cytoplasm, covering fibrovascular cores or stalks.
pRCC2 displays large epithelial cells lining fibro-
vascular cores, showing pseudostratification or irregular
stratification of nuclei, often presenting abundant
cytoplasm and moderate to marked nuclear pleo-
morphism usually with prominent nucleoli. pRCC
subtyping is considered to be of prognostic significance,
having type 1 tumours a better prognosis than those with
type 2 morphology (Delahunt et al., 2001; Alomari et al.,
2015; Fernandes and Lopes, 2015; Moch et al., 2016).

Remarkably, available evidence shows that, like
other human cancer cells, pRCC cells display high
glycolytic rates and uncoupled oxidative phospho-
rylation, even in the presence of oxygen (Warburg
effect) (Shuch et al., 2013). One of the first
consequences of the cell commitment to a glycolytic
phenotype is the upregulation of glucose transporters
(GLUTs) and monocarboxylate transporters (MCTs).
The increased glycolytic flux starts with increased
glucose uptake (with consequent glucose transporters
upregulation), which is oxidised to pyruvate and further
converted into lactate in the cytosol. The excess of
produced lactate is then extruded to the surrounding
milieu by monocarboxylate transporters (Halestrap and
Price, 1999; Le Floch et al., 2011).

GLUTs are a family of facilitative sugar transporters
(GLUT1-14), encoded by the Solute Carrier 2 (SLC2)
gene family, which transport glucose across the plasma
membrane by diffusion gradient, exhibiting different
substrate specificities, kinetic properties and tissue
expression profiles (Zhao and Keating, 2007). GLUT1
and GLUT4 are the most studied glucose transporters in
human tumours, and their upregulation has been
associated with tumour growth, invasiveness and
metastasis (Wang et al., 2014). The monocarboxylate
transporter (MCT) family is composed of 14 members
with distinct transport properties and tissue distribution.
MCTs are encoded by the superfamily of Solute Carrier
Genes 16 (SLC16) which is conserved among species
(Halestrap and Price, 1999). Like GLUTs, MCTs,
namely MCT1 and MCT4 have been found upregulated
in several types of tumours (Pinheiro et al., 2011, 2012).
The importance of MCTs for tumour growth has been
reported by various authors either by using MCT
inhibitors and proliferation studies (Halestrap, 2013) or
by combining the silencing of MCT1 or MCT4 and
CD147 [also called Basigin (BSG) or EMMPRIN],
demonstrating that MCT impairment leads to a
significant reduction of the glycolytic flux and cell
proliferation (Le Floch et al., 2011). CD147 is a highly
glycosylated transmembrane protein member of the
immunoglobulin superfamily of receptors, being
encoded by the BSG gene (Biswas et al., 1995). CD147
is a chaperon required for MCT1 -3 and -4 cell

membrane expression and function, via the formation of
heterodimeric complexes. CD147 has been associated
with the regulation of the trafficking and anchoring of
MCT1 and MCT4 to different cell surfaces of polarized
cells (Le Floch et al., 2011; Pinheiro et al., 2012;
Halestrap, 2013) and has been reported to be over-
expressed in many cancers, including RCC (Jin et al.,
2006; Dang et al., 2008; Han et al., 2010; Pinheiro et al.,
2010; Rademakers et al., 2011; Huang et al., 2013,
2014a.b; Sato et al., 2013; Monteiro et al., 2014).

One of the most common diagnostic problems in
pRCC is the identification of the 10-15 % of clinically
localized tumours that will recur and/or develop
metastasis early after surgical excision. While these
tumours share morphological features with those that are
successfully treated, they should have distinct biological
properties, constituting a challenge for the prognosis and
management of RCC in general and pRCC in particular
due to the inexistence of reliable prognostic biomarkers
(Osunkoya et al., 2009; Wang et al., 2014).

The aim of this study was to assess the expression of
GLUTI, GLUT4, MCTI1, MCT4, and the chaperon
CD147, in a series of pRCCs, and to evaluate its clinico-
pathological significance. Furthermore, we questioned
whether such biomarkers may contribute to the
identification of a distinct metabolic phenotype of
pRCCs and help in distinguishing pRCC1 from pRCC2,
ultimately contributing to the development of therapeutic
strategies directed to particular onco-driven stages. In an
attempt to validate our results, we used a series of pRCC
derived from The Cancer Genome Atlas (http://cancer
genome.nih.gov/).

Materials and methods
Sample characterization: clinical and pathological data

A total of 51 consecutive (from January 1998 to July
2013) pRCC were identified in the files of the
Department of Pathology of Centro Hospitalar de Sao
Jodo and re-evaluated by two pathologists (JML and
RS). All patients were submitted to surgical resection by
either radical (n=37; 72.5%) or partial (n=14; 27.5%)
nephrectomy. Clinical parameters were annotated from
the patients’ records and the oncology registries from
Centro Hospitalar de Sdo Jodo and Oncology Registry of
North Region (RORENO).

Demographic, clinical and pathologic data include:
gender, age, tumour size, TNM stage and Fuhrman
grade. Tumours were classified according to the tumour-
node-metastasis (TNM) cancer staging system,
corresponding to the 7th edition of the AJCC Cancer
Staging Manual (Edge and Compton, 2010) and the
Fuhrman grading systems (Fuhrman et al., 1982). The
tumours were grouped into low (pT1-pT2) or high (pT3-
4) stage and low (G1-G2) or high (G3-G4) Fuhrman
grade.

This study was approved by the Local Ethical
Committee of Centro Hospitalar de Sdo Jodo, (Porto,
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Portugal)/Medical Faculty (Porto, Portugal) and is in
accordance with the National Ethical rules.

Evaluation of protein expression levels by immunohisto-
chemistry (IHC)

The expression of GLUT1, GLUT4, MCT1, MCT4,
and CD147 was assessed in all tumours and matched
adjacent kidney parenchyma. In fourteen (27.5%) cases
[12 (26.6%) pRCC1 and 2 (33.3%) pRCC2] adjacent
kidney parenchyma was excluded from IHC evaluation
due to the presence of distorted tubules, several cysts
and thyroid like structures (data not shown).

Serial tissue sections (3u thick) of representative
tumour samples and normal kidney were used for IHC.
The IHC for GLUT1, GLUT4, MCT1, MCT4 and
CD147 was performed according to the manufacturer’s
protocols with the following primary antibodies: GLUT1
(ab15309, Abcam, UK), GLUT4 (ab33780, Abcam,
UK), MCT1 (EMD Millipore Corporation, USA), MCT4
(sc-50329, Santa Cruz Biotechnolgy, INC., CA, USA)
and CD147 (1.BB.218; sc-71038, Santa Cruz Bio-
technolgy, INC., CA, USA). The tissue sections were
deparaffinised followed by a sequential hydration.
Antigen retrieval was performed at 98°C, with citrate
solution (pH=6) for GLUT1, GLUT4, MCT1, and
MCT4 and with EDTA (pH=8) for CD147 (Table 1).
After peroxidase and avidin-biotin blocking, all sections
were treated with Lab Vision™ UltraVision™ Large
Volume Detection System: anti-Polyvalent, HRP
(Thermo Scientific). All reactions were revealed with
diaminobenzidine (DAB) chromogen (Dako Carpinteria,
CA, USA) and counterstained with haematoxylin and
eosin. All protocols included positive and negative
controls. In negative controls the primary antibodies
omitted and replaced by the antibody dilution reagent.
The external positive controls included known positive
tissues for the specific antibody. Kidney/adjacent tissue
surrounding the tumour was used as internal control.

The expression of MCT1, MCT4, GLUT1, GLUT4
and CD147 in tumour tissue was evaluated according to
an immune reactive staining (IRS) score adapted from
Fonteyne et al. (2009) and Couto et al. (2012). Briefly,
the extension (E) of immunostaining for each antibody
was evaluated using a score from 0 to 4 (0: <10% cells;
1: 11% - 25%; 2: 26% - 50%; 3: 51% - 75%; and, 4:
>75% cells) and the immunostaining intensity (I) was

Table 1. Antigen retrieval and antibody incubation conditions.

evaluated using a score from O to 3 [(O=absent; 1=weak
(+); 2=moderate (++); 3=strong (+++)]. The IRS score
was calculated by multiplying E score by I score (IRS=E
x I). Membrane IRS (mIRS) score, indicating protein
expression in cell membrane, was calculated (Gould and
Holman, 1993, Halestrap and Price, 1999). Cases
showing an IRS score 1 or above were considered
positive.

In order to validate our results, we analysed the
TCGA database for mRNA expression of GLUT1,
GLUT4, MCT1, MCT4 and CD147 i.e., Solute Carrier
Family 2, Member 1 (SLC2A1) and Member 4
(SLC2A4), Solute Carrier Family 16, member 1
(SLC16A1) and Member 3 (SLC16A3), and Basigin
(BSG), since, in this series, we did not have access to
tissue protein expression.

Statistical analyses

Statistical analysis was performed using IBM SPSS
Statistics Version 22. Fisher’s exact test was used to
validate differences in frequencies of clinical and
pathological parameters, as well as protein expression
scores (IRS), comparing pRCC1 and pRCC2. Spear-
man’s rank correlation test was used to assess the
correlation between evaluated parameters (categorical
variables). Kruskal-Wallis test was used to assess and
validate differences in mIRS (Porto series) and in
mRNA expression (TCGA series) for comparing pRCC1
and pRCC2. Univariate survival analyses were
performed using the Kaplan-Meier method with log-rank
test. Results were considered statistically significant
when p=<0.05.

Results
Patient and tumour features

The tumours were classified as pRCC1 (n=45) and
pRCC2 (n=6) and the ratio female/male was 1:5.4 (43
men and 8 women). Table 2 summarises the main
features observed in pRCC from the Porto series.

The clinic-pathologic data from the 163 primary
pRCC retrieved from the TCGA database are
summarized in Table 3. The cases were classified as
pRCCI1 (n=77) and pRCC2 (n=86) and the ratio
female/male was 1:2.5.

Primary Ab dilution Primary Ab incubation

Primary Antibodies Antigen Retrieval
GLUT1 (0,2 mg/mL) Citrate, pH 6
GLUT4 (0,3 mg/mL) Citrate, pH 6
MCT1 (1.0 mg/mL) Citrate, pH 6
MCT4 (H-90) (200 pg/mL) Citrate, pH 6
CD147 (200 pg /mL) EDTA, pH 8

Water bath,
Water bath,
Water bath,
Water bath,
Water bath,

98°C, 10 min. 1/400 1H, RT
98°C, 20 min. 1/400 ON, RT
98°C, 20 min. 1/100 ON, RT
98°C, 20 min. 1/1000 2H, RT
98°C, 20 min. 1/300 ON, RT

Ab, antibody; ON, overnight; H, hour; RT, room temperature.
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Table 2. Patient data and clinical-pathological features - Porto series.

Porto - series pRCC pRCC1 pRCC2 p
Total: n (%) 51 (100.0) 45 (88.2) 6(11.8)
Gender: men n (%) | women n (%) 43 (84.3) | 8 (15.7) 37(82.2) | 8 (17.8) 6 (100.0) | 0 (0.0) p=0.572
Age: Median | Mean (years) 58.0 | 59.8+13.6 59.0 | 59.4+13. 63.5 | 62.8+£12.9
Tumour Size: Median | Mean (cm) 3.5|839+22 35| 3.7+1.6 4.6 |5.4+45
pT Total: n (%): 51 (100.0) 45 (88.2) 6(11.8) p=0.036*
pT1:n (%) 44 (86.3) 41 (91.1) 3 (50.0)
pT2: n (%) 2(3.9) 2 (4.4) 0 (0.0)
pT3: n (%) 4(7.8) 2 (4.4) 2(33.3)
pT4: n (%) 1(2.0) 0 (0.0) 1(16.7)
pN Total: n (%) 51 (100.0) 45 (88.2) 6(11.8) p=0.224
pN: n (%) 0 (0.0) 0 (0.0) 0 (0.0)
pM Total: n (%) 51 (100.0) 45 (88.2) 6(11.8) p=0.224
pM: n (%) 2(3.9) 1(2.2) 1(16.7)
Fuhrman Nuclear Grade Total: n (%) 51 (100.0) 45 (88.2) 6(11.8) p=0.041*
G1:n (%) 2(3.9) 2 (4.4) 0 (0.0)
G2:n (%) 18 (35.3) 18 (40.0) 0(0.0)
G3: n (%) 30 (58.8) 25 (55.6) 5 (83.3)
G4:n (%) 1(2.0) 0(0.0) 1(16.7)
p, based on Fisher's exact test; *p=<0.05.
Table 3. Patient data and clinical-pathological features - TCGA series.
TCGA - series pRCC pRCCH1 pRCC2
Total: n (%) 163 (100.0) 77 (47.2) 86 (52.8)
Gender: men n (%) | women n (%) 117 (71.8) | 46 (28.2) 56 (72.7) | 21 (27.3) 61 (70.9) | 25 (29.1) p =0.469
Age: Median | Mean | (years) 61.0 | 61.3+12.2 | 59.0 | 58.1x11.2 | 65.0 | 64.2+12.4
Tumour size: Median | Mean (cm) 4.2 ]5.0+£3.1 | 4.0|4.4£23 | 4.7 | 5.4+£3.5
pT Total: n (%) 163 (100.0) 77 (47.2) 86 (52.8) p =0.033*
pT1:n (%) 113 (69.4) 50 (64.9) 63 (73.2)
pT2: n (%) 17 (10.4) 13 (16.9) 4(4.7)
pT3: n (%) 31 (19.0) 14 (18.2) 17 (19.8)
pT4:n (%) 2(1.2) 0 (0.0) 2 (2.3)
pN Total: n (%) 162 (100.0) 77 (47.2) 85 (52.8) p =0.002*
pN: n (%) 18 (11.1) 2 (2.6) 16 (18.8)
pM Total: n (%) 162 (100.0) 74 (47.1) 83 (52.9) p =0.088
pM: n (%) 3(1.9) 0(0.0) 3(3.6)
Fuhrman Nuclear Grade Total: n (%) 117 (100.0) 56 (47.9) 61 (52.1) p <0.001**
G1:n (%) 17 (14.5) 14 (25.0) 3(4.9)
G2: n (%) 42 (35.9) 34 (60.7) 8 (13.1)
G3:n (%) 55 (47.0) 8(14.3) 47 (77.0)
G4:n (%) 3(2.6) 0 (0.0) 3(4.9)
p, based on Fisher's exact test; *p<0.05; **p=<0.001.
Table 4. GLUT1, GLUT4, MCT1, MCT4 and CD147 membrane expression (Porto series).
Protein pRCC pRCC2

Totaln Negn (%) Posn (%) Totaln Negn (%) Posn (%) Totaln Neg n (%) p
GLUT1 51 20(39.2) 31(60.8) 45 25 (55.6) 6 0(0.0) 0.044*
GLUT4 51 46 (90.2) 5 (9.8) 45 5(11.1) 6 6 (100.0) 1.000
MCTH1 51 42 (82.4) 9 (17.6) 45 4(8.9) 6 1(16.7) <0.001**
MCT4 51 3(5.9) 48 (94.1) 45 42 (93.3) 6 0 (0.0) 0.227
CD147 51 20 (39.2) 31(60.8) 45 27 (60.0) 6 2(33.3) 0.126

p, based on Fisher's exact test; n, sample size; *p<0.05; **p<0.001.
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Patients with pRCC2 tumours had worse overall
survival in both series (Fig. 1).

GLUT1, GLUT4, MCT1, MCT4 and CD147 expression

In the normal kidney, GLUT1 and MCT4 had a
similar expression, being localised in the cytoplasm and
basolateral membrane of distal tubules (although MCT4
was also observed in the cytoplasm of proximal tubules).
MCT1 and CD147 were only expressed in the
basolateral membrane, the former being limited to
proximal tubules, and the latter present in proximal and
distal tubules. GLUT4 was limited to the cytoplasm of
proximal and distal tubules, not being observed in the
membrane (Fig. 2).

Data concerning membrane (m) GLUTI1, GLUT4,
MCT1, MCT4 and CD147 expression in tumour tissues
are summarised in Figure 2 and in Tables 4-5.
Membrane expression in the pRCC series was high for
MCT4 (94.1%), GLUT1 (60.8%) and CD147 (60.8%),
and low for MCT1 (17.6%) and GLUT4 (9.8%). When
comparing the two subtypes, differential membrane
expression was observed for mGLUT1 [55.6% in
pRCC1 and 100% in pRCC2 (p=0.044)] and notably for
mMCT1 [8.9% in pRCC1 and 83.3% in pRCC2
(p<0.001)].

When using the membrane IRS (mIRS), which
represents not only the intensity of the staining, but also
the extent of the respective staining, the results described
above were confirmed (Table 5): GLUTI and MCT1
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mIRS means were significantly higher in pRCC2 than in
pRCC1 tumours (p=0.004 and p<0.001, respectively),
while GLUT4, MCT4 and CD147 mIRS means were
comparable in pRCC1 and pRCC2 tumours (Table 5).

Analysing mRNA expression data from the TCGA
series, the same tendency was observed: GLUT1 and
MCT1 mRNA mean expression levels were significantly
higher in pRCC2 than in pRCC1 (p=0.005 and p<0.001,
respectively) while GLUT4, MCT4 and CD147 mRNA
mean expression levels were identical (Table 6).

Correlation between membrane GLUT1, GLUT4 and
CD147 with membrane MCT1 and MCT4 expression in
tumour cells

Since one of the aims of our work was to verify if
pRCC:s display increased glycolytic rate, we assessed the

Table 5. GLUT1, GLUT4, MCT1, MCT4 and CD147 membrane (mIRS)
(Porto series).

Protein  pRCC Mean+SD pRCC1 Mean+tSD pRCC2Mean+SD p
GLUT1 2.76+3.03 2.27+2.63 6.50+3.50  0.004*
GLUT4 0.29+1.06 0.33+1.13 0.00+0.0 0.619
MCT1 0.67 +1.99 0.24+0.80 8.00+4.49 <0.001**
MCT4 6.00+3.52 6.16+3.50 8.40+3.92  0.348
CD147 3.18+3.32 2.87+2.97 9.40+4.97  0.198

Kruskal-Wallis test, p, based on Fisher's exact test; *p<0.05; **p<0.001.
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Fig. 1. Kaplan - Meier survival analyses in patients from Porto and TCGA series with pRCC1 and pRCC2 tumours. Patients with pRCC2 tumours had

shorter overall survival.
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Fig. 2. Immunohistochemical expression of GLUT1 (1, 6, 11), GLUT4 (2, 7, 12), MCT1 (3, 8, 13), MCT4 (4, 9, 14), and CD147 (5, 10, 15) in the normal
kidney (1-5), in the pRCC1 (6-10) and in the pRCC2 (11-15) tumours. Scale bars: 1-15, 800 um; insets, 200 pm.
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Table 6. GLUT1, GLUT4, MCT1, MCT4 and CD147 mRNA expression (TCGA series).

mRNA pRCC Mean+SD pRCC1 Mean+SD pRCC2 Mean+SD P
GLUT1/ SLC2A1 2248.64+4953.67 2122.79+5446.57 2361.31+4496.31 0.005*
GLUT4/ SLC2A4 80.84+134.68 75.47+72.06 85.65+172.86 0.510
MCT1/ SLC16A1 457.10+628.14 258.16+502.21 635.22+677.14 <0.001**
MCT4/ SLC16A3 3412.20+3900.77 3184.85+2626.39 3615.76+4769.02 0.455
CD147/BSG 29840.58+11165.48 9433.01+10605.80 30205.49+11693.76 0.735

Kruskal-Wallis test, p, based on Fisher's exact test; *p<0.05; **p=<0.001.

Table 7. Correlation between GLUT1, GLUT4, MCT1, MCT4 and
CD147 expression in pRCC: A - protein (mIRS), Porto series; B -
mRNA, TCGA series.

pRCC

A) Protein MCTip|r MCT4p |r

GLUTH <0.001** | 0.528 0.002* | 0.423
GLUT4 NS NS

CD147 0.001** | 0.469 0.001** | 0.449
B) mRNA MCTip|r MCT4 p2 | r

GLUT1 <0.001** | 0.250 <0.001** | 0.525
GLUT4 0.270 | -0.087 0.991 | -0.001
cD147 0.677 | -0.033 0.035* | -0.165

p based on Spearman’s rank correlation test; NS, no statistical
significance; r, correlation value; *p<0.05; **p<0.001.

correlation between glucose transporters (GLUT1 and
GLUT4) and lactate transporters (MCT1 and MCT4)
mIRSs. Additionally, and assuming that CD147
functions as a MCT1 and MCT4 chaperon, we analysed
the correlation between CD147 mIRS and MCT1 and
MCT4 mIRS, in the Porto series (Table 7A). We
observed significant correlations between GLUT1 and
MCT1 mIRS (p<0.001); GLUT1 and MCT4 mIRSs
(p=0.002); CD147 and MCT1 mIRS (p=0.001); and
CD147 and MCT4 mIRS (p=0.001). GLUT4 mIRS do
not correlate with any of the lactate transporters (MCT1
and MCT4) mIRS (Table 7A).

In the TCGA series, GLUT1 mRNA expression was
significantly correlated with MCT1 (p=0.001) and
MCT4 (p<0.001), although the association between
CD147 and MCT1 could not be established (p=0.677), a
negative correlation between CD147 and MCT4 was
observed (p=0.035) (Table 7B).

Association between MCT1, MCT4, GLUT1, GLUT4 and
CD147 expression with patient and tumour clinical and
pathological features

In the Porto series, GLUT1 mIRS was significantly
higher in tumours with higher pN stages (p=0.042) and
high nuclear grade (p<0.001), whereas MCT1 and CD147
mIRSs were significantly higher in tumours with higher

nuclear grade (p=0.033 and p=0.017, respectively).
GLUT4 and MCT4 mIRSs did not correlate with any
clinico-pathological features (Table 8A).

Concerning the TCGA series, GLUT1 mRNA
expression was significantly higher in tumours from
women (p=0.003), higher pT (p<0.001), higher pN
(p=0.001) and higher nuclear grade (p=0.014); GLUT4
mRNA expression was higher in tumours from women;
MCT1 mRNA expression was increased in tumours with
higher pT stages (p<0.001) and higher nuclear grade
(p=0.014); MCT4 mRNA expression was increased in
tumours with higher pT stages (p=0.048); and CD147
mRNA expression was higher in tumours from younger
(p=0.018) and men (p<0.001) patients (Table 8B).

Discussion

In the present study we analysed the expression of
glucose transporters (GLUT1 and GLUT4), lactate
transporters (MCT1 and MCT4) and the MCT1/MCT4
chaperon (CD147), in two different series (Porto and
TCGA) of pRCCs, each of them providing complemen-
tary information. The Porto series, although fewer in
cases than the TCGA series, allowed the analysis of
GLUTI1, GLUT4, MCT1, MCT4 and CD147 protein
expression in pRCC tumours. The TCGA series, which
resulted from a collection of various centres worldwide
with a centralized revision panel, allowed the analysis of
GLUT1 (SLC2A1), GLUT4 (SLC2A4), MCTI
(SLC16A1), MCT4 (SLC16A3) and CD147 (BSG)
mRNA expression in a larger series of pRCCs.

To the best of our knowledge, our study is the first to
assess the co-expression of GLUT1, GLUT4, MCTI,
MCT4 and CD147 in pRCC tumours. We observed that
the glycolytic markers GLUT1, MCT4 and the chaperon
CD147 were highly expressed in pRCCs and may play
an important role in the metabolic remodelling of
pRCCs, as observed in other types of tumours (Izumi et
al., 2011; Pertega-Gomes et al., 2011, 2015; Pinheiro et
al., 2011, 2012, 2014; Baek et al., 2014; Ohno et al.,
2014; Zhu et al., 2014). The high number of cases
showing membrane expression (the cellular
compartment where those proteins are thought to exert
their function) of such markers, indicates a significant
role of glycolysis in pRCC, thus supporting their
functional role in the metabolic remodelling of pRCC
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cells (Gould and Holman, 1993; Halestrap and Price,
1999).

Interestingly, we observed a positive correlation
between GLUT1 expression (membrane and mRNA),
and MCT1 and MCT4 expression (membrane and
mRNA), in Porto and TCGA series, respectively. These
data substantiate the likelihood of increased glycolytic
rate in pRCCs (assuming it as an indicator of increase of
glycolysis rate), which is probably due to concurrent
expression of GLUT1 and MCT4, since MCT1 was
expressed in a smaller subset of cases (see below).
Nonetheless, further studies are needed to validate this
assumption. The lack of correlation observed between
membrane GLUT4 and MCT1 and MCT4 expression,
suggests that GLUT4 may not have a major role in the
glycolytic phenotype in pRCCs.

We also observed a correlation between membrane
CD147 and membrane MCT1 and MCT4, in Porto
series, confirming that the role of CD147 as a chaperon
of MCT1 and MCT4, being important for their plasma
membrane localization in RCCs (Kim et al., 2015), as
described in other models (Pinheiro et al., 2008, 2009;
Le Floch et al., 2011; Pertega-Gomes et al., 2011; Choi
et al., 2014; Sim&es-Sousa et al., 2016).

In Porto series, we observed that membrane GLUT1
and MCT1 mIRS mean levels were significantly higher
in pRCC2 than in pRCC1. Remarkably, GLUTI1 and
MCT1 mean mRNA expression levels in the TCGA
series, were also significantly higher in pRCC2 than in
pRCCI1. Our results suggest that pRCC2 are more
glycolytic than pRCCI, and that GLUT1 and MCT1 are
probably the glucose and lactate transporters, which
most contribute to these differences. This needs to be
functionally confirmed, since it has been advanced that
MCT]1 are mainly involved in lactate influx and MCT4
in lactate efflux, meaning that the MCT4 isoform is a

better marker for increased glycolysis in tumour cells
(Witkiewicz et al., 2012). However, in our series this
seems not to be true, since MCT1 positive cells were
also MCT4 positive.

To confirm our assumptions, it would be interesting
to include the Fludeoxyglucose (FDG) uptake data, by
Positron emission tomography (PET) with 2-deoxy-2-
[fluorine-18] fluoro-D-glucose (18F-FDG) integrated
with computed tomography (18F-FDG PET/CT), but
this test is not commonly used in the routine in our
hospital at the time of collection of our series. However,
data from other studies indicate, without specifying the
subtype of tumour (i.e., pPRCC1 or pRCC2), that pRCCs
usually display higher standardized uptake value (SUVs)
of 18F-FDG PET/CT (Yamasaki et al., 2011; Takahashi
et al., 2015). Interestingly, overexpression of GLUT1
and MCT1 were also observed in other models and
associated to adverse prognosis. (Pinheiro et al., 2011,
2015,2016).

Despite the small number of cases, all pRCC2 cases
displayed GLUT1 membrane expression, and most of
them MCT1 expression. The fact that only about 9% of
pRCC1 and more than 83% of pRCC2 expressed MCT1
in the plasma membrane leads us to suggest that
membrane MCT1 expression may be a pRCC2 useful
biomarker. Moreover, MCT1 may be a putative predictor
of increased pRCC aggressiveness, since it was
significantly associated with increased tumour grades,
irrespectively of the subtype (Hong et al., 2016).

An interesting finding was that all pRCC2 tumours
displayed GLUT1 membrane expression, and 5 out of 6
expressed MCT1, MCT4 and CD147 (data not shown)
suggesting a marked metabolic shift in this pRCC
subtype. If confirmed in a larger series of pRCC2 cases,
this metabolic phenotype (GLUT1, MCT1, MCT4 and
CD147 co-expression) may substantiate the therapeutic

Table 8. Correlation between clinical-pathological features and mIRS and mRNA expression of GLUT1, GLUT4, MCT1, MCT4 and CD147 in pRCC by

subtype: A - Porto series; B - TCGA series.

pRCC
A) Protein/ Parameter GLUT1p|r GLUT4p |r MCT1p|r MCT4p |r CD147p | r
Age NS NS NS NS NS
Gender NS NS NS NS NS
pT NS NS NS 0.058 | 0.268 NS
pN 0.042* | 0.285 NS NS NS NS
pM NS NS NS NS NS
Fuhrman Nuclear Grade <0.001** | 0.507 NS 0.033* | 0.300 NS 0.017* | 0.333
B) mRNA/ Parameter GLUT1p|r GLUT4p |r MCT1p|r MCT4p |r CD147p |r
Age NS NS NS NS 0.018* | 0.187
Gender 0.003* | 0.233 0.002* | -0.239 NS NS <0.001** | -0.283
pT <0.001** | 0.365 NS <0.001** | 0.281 0,048* | 0,155 NS
pN 0.001** | 0.237 NS NS NS NS
pM NS NS NS NS NS
Fuhrman Nuclear Grade 0.014* | 0.226 NS 0.014* | 0.226 NS NS

p, based on Spearman’s rank correlation test; r, correlation; NS, no statistical significance; *p<0.05; p <0.001.
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targeting of lactate transporters. Interestingly, the
combined administration of biguanidines (an inhibitor of
the mitochondrial complex I) and MCT1, MCT4 or
CD147 inhibitors was shown to cause a synergistic anti-
cancer effect in tumours co-expressing MCT1, MCT4
and CD147 (Hong et al., 2016; Selwan et al., 2016).

It is important to point out that in the Porto series we
evaluated protein expression (IHC), while in the TCGA
series mMRNA expression was assessed. Although a
relationship between mRNA and protein expression has
been identified for MCT1, in MCT4 this correspondence
is less likely to occur due to post-translational
modification (PTM) mechanisms. In fact, Bonen and
collaborators (2000), found a significant correlation
between MCTI1 protein and mRNA levels, in rat
hindlimb muscles, but did not observe any relationship
between MCT4 protein and mRNA levels (Bonen et al.,
2000). Similar results were observed in breast tumours
and cell lines by Hong and collaborators (Hong et al.,
2016).

We assessed, for the first time, the correlation
between the expression levels of GLUT1, GLUT4,
MCT1, MCT4 and CD147 in pRCC1 and pRCC2, and
clinical and pathological features accepted with
prognostic significance in pRCC (Alomari et al., 2015;
Cornejo et al., 2015; Moch et al., 2016).

The association of GLUT1 expression with higher
grade tumours (G3-4) and the presence of nearby lymph
nodes involvement (pN) in both series, (also with higher
T stage, in TCGA series), together with the association
of MCTT1 expression with higher grade tumours (G3-4)
in both series (also with higher T stage in TCGA series),
suggests that GLUT1 and MCT1 may be markers of
tumour aggressiveness and thus potential prognostic
biomarkers in pRCCs, as suggested in other tumours
types (Pinheiro et al., 2008a,b, 2011, 2014; Izumi et al.,
2011; Pertega-Gomes et al., 2011, 2015, Baek et al.,
2014; Ohno et al., 2014; Zhu et al., 2014).

Interestingly, pRCC2 tumours showed characteris-
tics of poor prognosis (data not shown), as well as higher
expression of GLUT1 and MCT1, when compared with
pRCCI1 tumours, reinforcing the hypothesis that GLUT1
and MCT1 can serve as biomarkers for tumour
aggressiveness. Remarkably, MCT1 membrane expres-
sion was found only in 4 pRCC1 cases, 3 of them being
high grade tumours (G3). Our results confirm the data
previously published in other human tumour models,
where MCT1 expression associates with poor prognosis
(Pinheiro et al., 2008a,b, 2009, 2011, 2015, 2016;
Rademakers et al., 2011; de Oliveira et al., 2012; Mogi
et al., 2013; Granja et al., 2015,).

Similarly to GLUT1 and MCT1, CD147 expression
was also higher in higher grade tumours, in the Porto
series. The association of CD147 expression with an
aggressive phenotype, such as increased proliferation,
migration, invasion, metastization and poor survival, has
already been described in other models (Dang et al.,
2008, Rademakers et al., 2011, Huang et al., 2013,
2014a,b, Monteiro et al., 2014) and also with poor

prognosis and decreased overall survival in RCC (Jin et
al., 2006, Han et al., 2010, Sato et al., 2013). In ccRCC,
CD147 overexpression correlated with high Fuhrman
nuclear grade, presence of necrosis and larger tumour
size (Kim et al., 2015). In our series, we also found an
association between MCT4 expression and necrosis
(data not shown). Since pRCCs often display extensive
areas of necrosis, it would be interesting to relate the
presence of these necrotic areas with the metabolic shift
of the tumour cells. In fact, these necrotic hypoxic
regions are associated with altered cellular metabolism
(Bertout et al., 2008).

High MCT4 expression was also higher in tumours
with higher pT stages. High levels of MCT4 expression
in tumour cell membrane were reported to be associated
with increased cellular motility and invasive potential in
in vitro models of breast and lung cancer (Gallagher et
al., 2007, Izumi et al., 2011) and were associated with
poor prognosis in several human cancer models
(Pinheiro et al., 2008a,b; Pertega-Gomes et al., 2011,
2015; Martins et al., 2013; Bovenzi et al., 2015)
including RCC (Kim et al., 2015).

In the Porto series, we observed that, independently
of the tumour type, 2 tumours co-expressing GLUT1,
MCT4 and CD147 presented with synchronous
metastasis and 2 other tumours co-expressing GLUT1,
MCT1, MCT4 and CD147 developed metachronous
metastasis, in line with the recent meta-analysis led by
Bovenzi and collaborators (2015), who concluded that
the increased MCT4 expression in cancer cells was
associated with decreased overall survival in various
cancers such as breast, colorectal, hepatocellular,
pancreas and oral squamous cell carcinoma (Bovenzi et
al., 2015). Furthermore, Kim and collaborators (2015)
verified that the co-expression of elevated MCT4 and
CD147 was associated with poor prognostic parameters
and that the co-expression of MCT1, MCT4 and CD147
predicts tumour progression in ccRCC (Kim et al.,
2015).

Our data supports the idea that pRCCs tumours are
glycolic tumours, and that this glycolytic phenotype
plays a role in tumour aggressiveness. This hyper
glycolytic phenotype in pRCC, is mainly supported by
the increased expression of the glucose transporter
GLUT1 and the lactate transporters MCT1 and MCT4,
being exacerbated in pRCC2 tumours. Although further
studies are needed, we have the indication that pRCC2 in
general, and pRCC1 tumours with MCT1 expression
should be looked at with greater attention.

It would be interesting to relate the expression levels
of the markers used in this study, with the genetic
alterations of the tumours, namely those in MET
oncogene, succinate dehydrogenase (SDH) genes and
fumarate hydratase (FH). In fact, we assessed the
expression of c-MET in a subset of our tumour series,
and both pRCC1 and pRCC2 tumours displayed
similarly high levels of c-MET protein expression (data
not shown), as previously described (Yin et al., 2015).

Our study provides novel evidence for the



1038

MCT1 associates with high grade tumours

involvement of GLUT1 and MCT1/MCT4 in pRCCs,
which seem more evident in pPRCC2, and thus may help
in evaluating the metabolic status in pRCC subtypes.
Differences in MCT1 expression between pRCC
subtypes have not yet been reported, but a larger number
of tumours are warranted to validate our results. We also
believe that the study of complementary markers may
help to clarify the metabolic status of pRCC, providing a
more comprehensive picture of the metabolic pathways
involved in pRCC progression.
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