Sequential Insertion of Alkynes, Alkenes, and CO into the Pd-C Bond of ortho-Palladated Primary Phenethylamines: from η^{3}-Allyl Complexes and Enlarged Palladacycles to Functionalized Arylalkylamines. Organometallics 2021, 4O(4), 539-556.

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Organometallics, copyright © American Chemical Society, after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.organomet.0c00787

Sequential Insertion of Alkynes, Alkenes and CO into the $\mathrm{Pd}-\mathrm{C}$ Bond of ortho-Palladated Primary

Phenethylamines: from η^{3}-Allyl Complexes and

Enlarged Palladacycles to Functionalized

Arylalkylamines

José-Antonio García-López,*a María-José Oliva-Madrid, , Delia Bautista, ${ }^{\text {b }}$, José Vicente, ${ }^{\text {a }}$ and Isabel Saura-Llamas*a
${ }^{\text {an }}$ Grupo de Química Organometálica, Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, E-30100 Murcia, Spain. ${ }^{\text {b }}$ ACTI, Universidad de Murcia, E30100 Murcia, Spain

ABSTRACT

The eight-membered metallacycles arising from the insertion of one equiv of alkyne into the $\mathrm{Pd}-\mathrm{C}$ bond of ortho-metalated homoveratrylamine and phentermine can further react
with alkenes to give two different types of mononuclear complexes depending on the nature of the olefin. When terminal alkenes (styrene and ethyl acrylate) are used, a mixture of the anti/syn η^{3}-allyl $\mathrm{Pd}(\mathrm{II})$ complexes are isolated, which evolve slowly to the syn isomers by heating the mixtures appropriately. These η^{3}-allyl $\mathrm{Pd}(\mathrm{II})$ complexes do not react with CO or weak bases, but when treated with a strong base, such as $\mathrm{KO}^{\prime} \mathrm{Bu}$, they afford $\operatorname{Pd}(0)$ and the functionalized starting phenethylamines containing a 1,3-butadienyl substituent in ortho position. When 2-norbornene was used instead of terminal alkenes, the strained olefin inserts into the alkenyl-Pd(II) complex to afford a ten-membered norbornyl-palladium(II) complex, in which the new C, N-chelate ligand is coordinated to the metal through an additional double bond, occupying three coordination positions. The reactivity of these norbornyl-complexes depends on the substituents on the inserted alkenyl fragment, and thus they can further react with: (1) $\mathrm{KO}^{\prime} \mathrm{Bu}$, to give $\mathrm{Pd}(0)$ and a tetrahydroisoquinoline nucleus containing a tricyclo[3.2.1]octyl ring, or (2) CO and TlOTf, to afford $\mathrm{Pd}(0)$ and amino acid derivatives or the corresponding lactones arising from an intramolecular Michael addition of the $\mathrm{CO}_{2} \mathrm{H}$ group to the α, β-unsaturated ester moiety. Crystal structures of every type of compounds have been determined by X-ray diffraction studies.

INTRODUCTION

Palladium is one of the most versatile transition metals in organic synthesis given its well-known ability to catalyze the formation of $\mathrm{C}-\mathrm{C}$ and C -heteroatom bonds. ${ }^{1,2}$ Nevertheless, the extraordinarily high variability of applications of palladium relies just on a few elementary steps inherent to its reactivity, and among them, outstands the migratory insertion reaction of an unsaturated ligand into a Pd-C bond. ${ }^{3,4,5}$ Thus, a myriad of methods to functionalize alkenes, ${ }^{3,6}$ alkynes, ${ }^{7}$ or allenes ${ }^{8}$ through Pd-catalysis have been reported so far.

Multicomponent reactions, where several reagents assemble sequentially giving rise to complex structures, are valuable protocols since they represent an effective modular approach
to green organic synthesis. ${ }^{9}$ Nevertheless, transition-metal catalyzed processes involving the use of several unsaturated coupling partners in the reaction mixture are a challenging field due to the difficulty to control the order of reactivity, that is, the control of regioselectivity of the migratory insertion sequence for the different unsaturated reagents. ${ }^{10,11,12}$ Some successful examples of this type of reactions are the copolymerization of alkenes and CO (a; Scheme $1),{ }^{13}$ or the copolymerization of olefins with and without polar groups, ${ }^{14}$ among others. ${ }^{15,16,17}$ Moreover, impressive progress has been made on intramolecular cascade reactions where different unsaturated moieties are involved (b; Scheme 1). ${ }^{5,18}$ In this last case, however, the selectivity is usually determined by the own structure of the substrate.

Scheme 1. Examples of Reactions Involving Sequential Migratory Insertion into Pd-C Bonds. ${ }^{13,18 \mathrm{c}}$

a) Sequential intermolecular migratory insertion

b) Sequential intramolecular migratory insertion

While catalytic conditions make difficult the above-mentioned control of the selectivity, stoichiometric reactions can offer the advantage of stepwise insertion paths for the synthesis of valuable organic products. ${ }^{19-23}$

Our research group has previously reported the functionalization of primary phenethylamines through the isolation of ortho-palladated intermediates. ${ }^{24,25,26}$ This type of arylalkylamines constitute the core of many relevant biomolecules, such as neurotransmitters (i.e., dopamine), amino acids (i.e., phenylalanine), or marketed psychoactive drugs. The
catalytic functionalization of these scaffolds has proven challenging, due to the strong coordination ability of the primary amine group to $\mathrm{Pd}(\mathrm{II}) .{ }^{27}$ Hence, the study of stoichiometric functionalization of primary phenethylamines can provide alternative routes to modify these interesting molecules. For instance, the sequential insertion of alkynes and CO, or alkynes and isocyanides into ortho-palladated derivatives allowed us the synthesis of medium size rings such as eight-membered benzazocinones (Scheme 2). ${ }^{20,21}$

Scheme 2. Synthesis of Benzazocinones through the Sequential Insertion of Alkynes and CO into the Pd-C Bond of Six-membered Palladacycles

We have formerly published the synthesis and isolation of stable eight-membered C, N-palladacycles arising from the insertion of one molecule of alkyne into the $\mathrm{Pd}-\mathrm{C}$ bond of ortho-palladated phentermine and homoveratryl amine (Chart 1). ${ }^{20}$ We present here the results of the study on the insertion of alkenes and alkenes/CO into these eight-membered alkenylpalladacycles. We have studied the new organometallic species generated upon each insertion, as well as the final functionalized organic products, formed through depalladation of the final organopalladium compounds. The overall processes rendering the final organopalladium complexes involve the sequential insertion of (a) alkynes and alkenes or (b) alkynes, alkenes and CO into the $\mathrm{Pd}-\mathrm{C}$ bond of the ortho-metalated derivatives from primary phenethylamines.

Chart 1. Previously Reported Eight-membered Alkenyl-palladacycles Used as Starting Materials

RESULTS AND DISCUSSION

Insertion of Styrene or Ethyl Acrylate into the Pd-C Bond

Synthesis and Structure of $\boldsymbol{\eta}^{3}$-Allyl Palladium(II) Complexes. The reaction of the previously described alkenyl-palladacycle \mathbf{a} or \mathbf{b}, arising form the monoinsertion of diphenylacetylene into the ortho-palladated homoveratrylamine and phentermine derivative \mathbf{A} or B, with 2 equiv of $\mathrm{CH}_{2}=\mathrm{CHR}$ ' (molar ratio $\mathrm{Pd} /$ alkene $=1: 1 ; \mathrm{R}=\mathrm{Ph}(\mathbf{1}), \mathrm{CO}_{2} \mathrm{Et}(\mathbf{2})$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature (16 h) gave a mixture of two complexes, which were identified as the anti- and syn-isomers of the η^{3}-allyl $\mathrm{Pd}(\mathrm{II})$ complex $\mathbf{1}$ or $\mathbf{2}$ (Scheme 3).

After work up, a mixture of η^{3}-allyl $\operatorname{Pd}(\mathrm{II})$ complexes anti/syn-1a (2.5:1) or anti/syn2a (5:1) was isolated. Attempts to separate both isomers by fractional crystallization were unsuccessful. However, single crystals of anti-1a or anti-2a, suitable for X-ray diffraction studies, were obtained by slow diffusion of n-pentane into a solution of the mixture anti/syn1a or $\mathbf{2 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The ratio between isomers, for both $\mathbf{1 a}$ and $\mathbf{2 a}$, practically did not changed after 48 h in CDCl_{3} solution at room temperature (by ${ }^{1} \mathrm{H}$ NMR). However, the conversion to the syn isomers was complete after heating CDCl_{3} solutions of the mixtures at $60^{\circ} \mathrm{C}$ for 10 days (syn-1a) or $48 \mathrm{~h}\left(\operatorname{syn}-\mathbf{2 a}\right.$; by ${ }^{1} \mathrm{H}$ NMR; Figure 1 and Table 1).

Scheme 3. Reactions of Eight-Membered Alkenyl-palladacycles with Terminal Alkenes. ${ }^{a}$ The ratios correspond to the isolate solids, and were estimated by the integrals of the CH allylic signals of both isomers in the ${ }^{1} \mathrm{H}$ NMR spectra of the mixtures

	Y	R	X	R^{\prime}	antilsyn ratio $^{\mathrm{a}}$
$\mathbf{1 a}$	Br	H	OMe	Ph	$2.5: 1$
1b	Cl	Me	H	Ph	$1.25: 1$
2a	Br	H	OMe	$\mathrm{CO}_{2} \mathrm{Et}$	$2.75: 1$
2b	Cl	Me	H	$\mathrm{CO}_{2} \mathrm{Et}$	$1.25: 1$

Figure 1. ${ }^{1} \mathrm{H}$ NMR spectra $(4.6-5.0 \mathrm{ppm})$ of complex 2a $\left(\mathrm{CDCl}_{3}\right)$: (a) anti-enriched mixture of complex 2a at room temperature (300 MHz); after heating at $60^{\circ} \mathrm{C}$ for $8(\mathrm{~b}, 400 \mathrm{MHz}), 24$ (c, 300 MHz) and $48 \mathrm{~h}(\mathrm{~d}, 300 \mathrm{MHz})$.

Table 1. Isomerization Ratios for anti/syn-1 and anti/syn-2.

	Y	R	X	R^{\prime}
$\mathbf{1 a}$	Br	H	OMe	Ph
$\mathbf{1 b}$	Cl	Me	H	Ph
2a	Br	H	OMe	$\mathrm{CO}_{2} \mathrm{Et}$
$\mathbf{2 b}$	Cl	Me	H	$\mathrm{CO}_{2} \mathrm{Et}$

		anti/syn ratio			
temperature	time (h)	$\mathbf{1 a}$	$\mathbf{1 b}$	$\mathbf{2 a}$	$\mathbf{2 b}$
RT	0	$2.5: 1$	$2.5: 1$	$5: 1$	$1.25: 1$
	12	$2.5: 1$	---	$4.2: 1$	---
	16	---	---	---	$1.25: 1$
	24	$2.5: 1$	---	$4.2: 1$	---
	48	$2.5: 1$	$2: 1$	$3.3: 1$	$1.25: 1$
$60^{\circ}{ }^{\circ} \mathrm{C}$	0	$2.5: 1$	$2.5: 1$	$5: 1$	$1.25: 1$
	8	$1.7: 1$	---	$1: 1$	---
	12	---	---	---	$1: 5$
	24	$1.1: 1$	---	$1: 10$	
	48	$1: 1.25$	$1: 3.3$	$0: 1$	$1: 20$
	120	---	$1: 10$	---	---
	240	$0: 1$	---	---	---

Enriched mixtures of both anti and syn isomers of $\mathbf{1 b}$ and $\mathbf{2 b}$ could be obtained due to the higher solubility of one of the two isomers in $\mathrm{Et}_{2} \mathrm{O}$. When a solution of the mixture anti/syn-1b or anti/syn-2b (1b: ratio $1.25: 1,0.161 \mathrm{mmol}$; 2b: ratio $1.25: 1,0.260 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathbf{1 b}: 3 \mathrm{~mL} ; \mathbf{2 b}: 2 \mathrm{~mL})$ was treated with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, an enriched mixture in the anti (1b) or $\operatorname{syn}(\mathbf{2 b})$ isomer precipitated (ratio anti/syn: 1b, $3: 1 ; \mathbf{2 b}: 1: 3$). When the mother liquors were concentrated ($\mathbf{1 b}: 3 \mathrm{~mL}$; 2b: 5 mL) and treated with n-pentane ($\mathbf{1 b}, 20 \mathrm{~mL}$) or cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath (2b), an enriched mixture in the syn (1b) or anti (2b) isomer precipitated
(ratio anti/syn: 1b, 1:3; 2b: 3:1). Samples almost spectroscopically pure of anti- and syn-1b and anti- and syn-2b could be obtained by growing single crystals from the enriched mixtures.

Scheme 4. Formation of anti and syn Isomers of η^{3}-Allyl Pd(II) Complexes

Since anti-1 or $\mathbf{2}$ complexes practically did not isomerize to the syn-1 or $\mathbf{2}$ derivatives at room temperature (Table 1), both isomers should be formed during the reaction. We proposed that the formation of anti/syn-1 or $\mathbf{2}$ could be envisioned by the mechanism depicted in Scheme 4. Insertion of one molecule of the alkene into the $\mathrm{Pd}-\mathrm{C}$ bond of the starting palladacycle (\mathbf{a} or \mathbf{b}) would afford the ten-membered alkyl-palladacycle I. For this intermediate, we propose that the R^{\prime} group is at the carbon atom bonded to $\mathrm{Pd}(\mathrm{II})$, because (1) this is the regiochemistry that explains the formation of the allyl moiety coordinated to $\mathrm{Pd}(\mathrm{II})$ in complexes $\mathbf{1 a}, \mathbf{b}$ and $\mathbf{2 a}, \mathbf{b}$, and (2) this is the most frequent regioisomer found in the insertion of electron-poor alkenes into the $\mathrm{Pd}-\mathrm{C}$ bonds of neutral complexes. ${ }^{22,28}$ Intermediate I could undergo β-hydride elimination to give the cisoid-(diene)PdH species II. Syn addition of $\mathrm{Pd}-\mathrm{H}$ to the alkene moiety with contrary regioselectivity to its previous elimination results in the formation of the η^{3}-allyl complex anti-1 or $\mathbf{2}$ (Scheme 4), which seems to be formed preferentially as the kinetic product. On the other hand, the transoid-(diene)PdH intermediate III could be generated from II upon decoordination and rotation of the tertiary olefin moiety, prior to the $\mathrm{Pd}-\mathrm{H}$ addition step, hence giving rise to the formation of the syn isomer. The thermal isomerization of the complexes anti-1 and $\mathbf{2}$ to the syn isomers at $60^{\circ} \mathrm{C}$ (Table 1) proceeded by the usual $\eta^{3}-\eta^{1}-\eta^{3}$ rearrangement.

Complexes 1 and 2 were fully characterized by elemental analyses, NMR and IR spectroscopic techniques. The ${ }^{1} \mathrm{H}$ NMR spectra of all the allyl-complexes showed the diastereotopic nature of the hydrogen atoms of the NH_{2} and CH_{2} groups, as well as both Me of the CMe_{2} moiety for $\mathbf{1 b}$ and $\mathbf{2 b}$. The most characteristic signal was the one corresponding to the methine group of the inserted fragment, which appeared as a doublet of doublets in the range $4.85-5.16 \mathrm{ppm}$ for the anti isomers and $4.75-4.84 \mathrm{ppm}$ for the syn isomers. The coupling constants ${ }^{2} J_{\mathrm{HH}}$ (anti: $11.2 \leq{ }^{2} J_{\mathrm{HH}} \leq 12.3 \mathrm{~Hz}$, average value $=11.7 \mathrm{~Hz}$; syn: $9.6 \leq{ }^{2} J_{\mathrm{HH}}$ $\leq 11.0 \mathrm{~Hz}$, average value $=10.3 \mathrm{~Hz})$ and ${ }^{3} J_{\mathrm{HH}}\left(\right.$ anti: $4.5 \leq^{2} J_{\mathrm{HH}} \leq 5.2 \mathrm{~Hz}$, average value $=4.7$

Hz ; syn: $3.7 \leq^{2} J_{\mathrm{HH}} \leq 4.2 \mathrm{~Hz}$, average value $=4.0 \mathrm{~Hz}$) were slightly smaller for the syn isomers than for the anti.

The crystal structure of the η^{3}-allyl complexes anti-1a, anti-1b, syn- $\mathbf{1 b}$, anti2a $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, anti-2b $\cdot \mathrm{CHCl}_{3}$, and syn-2b were determined by X-ray diffraction (see the Supporting Information). The X-ray thermal ellipsoid plots of anti-1a and syn-2b are depicted in Figures 2 and 3. In both cases, the palladium atoms adopted a square-planar geometry (mean deviation from the plane: $\mathrm{Y}-\mathrm{Pd}(1)-\mathrm{X}(1)-\mathrm{N}(1) 0.0194 \AA$, where $\mathrm{Y}=$ centroid from $\mathrm{C}(7), \mathrm{C}(8)$ and $\mathrm{C}(9)$ atoms). The halogeno ligand and the amino group of the metalated fragment were coordinated in cis position. The other two coordination sites were occupied by the allyl moiety, which was η^{3} bonded via $C(7), C(8)$ and $C(9)$, with a $C(7)-C(8)-C(9)$ angle of 119.4° and 122.5° for anti-1a and syn- $\mathbf{2 b}$, respectively.

Figure 2. X-ray thermal ellipsoid plot (50 \% probability) of anti-1a along with the labeling scheme. The hydrogen atoms bonded to carbon have been omitted for clarity. Selected bond lengths (\AA) and angles $(\operatorname{deg}): \operatorname{Pd}(1)-\operatorname{Br}(1)=2.4959(3), \operatorname{Pd}(1)-N(1)=2.1124(15), \operatorname{Pd}(1)-C(7)$ $=2.1295(15), \operatorname{Pd}(1)-\mathrm{C}(8)=2.1047(15), \mathrm{Pd}(1)-\mathrm{C}(9)=2.1181(16), \mathrm{C}(7)-\mathrm{C}(8)=1.458(2)$, $\mathrm{C}(8)-\mathrm{C}(9)=1.427(2) ; \operatorname{Br}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)=92.82(4), \mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)=119.41(14), \mathrm{C}(8)-$ $C(9)-C(14)=131.14(14)$.

Figure 3. X-ray thermal ellipsoid plot (50% probability) of syn-2b along with the labeling scheme. The hydrogen atoms bonded to carbon have been omitted for clarity. Selected bond lengths (\AA) and angles $($ deg $): ~ P d(1)-\mathrm{Cl}(1)=2.3864(5), \operatorname{Pd}(1)-\mathrm{N}(1)=2.1257(18), \operatorname{Pd}(1)-\mathrm{C}(7)$ $=2.1198(19), \mathrm{Pd}(1)-\mathrm{C}(8)=2.1400(19), \mathrm{Pd}(1)-\mathrm{C}(9)=2.1167(19), \mathrm{C}(7)-\mathrm{C}(8)=1.441(3)$, $\mathrm{C}(8)-\mathrm{C}(9)=1.421(3) ; \mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{N}(1)=89.81(5), \mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)=117.38(18), \mathrm{C}(8)-$ $C(9)-C(14)=122.49(18)$.

Some catalytic transformations involving the sequential migratory insertion of alkynes and alkenes into a $\mathrm{Pd}-\mathrm{C}^{11,12,17,29}$ or a $\mathrm{Pd}-\mathrm{H}^{15}$ bond have been reported in the literature. In these processes, substituted 1,3-butadienes are formed. The mechanism proposed for those catalytic transformations does not consider the formation of η^{3}-allyl intermediates. In our case, however, the presence of a coordinating group, such as the NH_{2}, may favor the isomerization of the 1,3-butadiene to form a stabilized allyl-Pd(II) complex. As far as we are aware, this is the first stoichiometric study where the sequential migratory insertion of an alkyne and an alkene has been studied.

Reactivity of the $\boldsymbol{\eta}^{3}$-Allyl Complexes. The nucleophilic attack to η^{3}-allyl $\operatorname{Pd}(I I)$ intermediates to give functionalized alkenes is a well-known strategy in organic synthesis. ${ }^{30}$

However, most of the times the key η^{3}-allyl Pd(II) species are generated through the oxidative addition of allyl halides, pseudohalides or acetates to $\operatorname{Pd}(0)$. We wondered if the η^{3}-allyl complexes $\mathbf{1}$ and $\mathbf{2}$ could undergo the attack of a suitable nucleophile to render an organic derivative. Hence, we performed a range of reactions with several nucleophiles, such as $\mathrm{KCN},[\mathrm{Tl}(\mathrm{acac})], p$-toluidine, or the phosphorus ylide $\mathrm{Ph}_{3} \mathrm{PCHCOMe}$. There was no reaction at room temperature with any of these nucleophiles. When heating the reaction mixture in refluxing toluene, complicated mixtures were produced. The reaction of complex $\mathbf{1 b}$ and dimethyl malonate in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}\left(\mathrm{CHCl}_{3}\right.$, room temperature) afforded a mixture of anti/syn-isomers of a new complex containing the η^{3}-allyl moiety and a coordinated malonate, which structure was not further studied. When a solution of this complex in CHCl_{3} was heated at $60^{\circ} \mathrm{C}$, again a complicated mixture was obtained. In order to facilitate the nucleophilic attack, we performed the reaction of the η^{3}-allyl complex $\mathbf{1 b}$ with p-toluidine in the presence of TIOTf, which would generate a cationic complex by replacing the Cl^{-}ligand by OTf- in the coordination sphere of $\mathrm{Pd}(\mathrm{II})$. In this case, a stable cationic η^{3}-allyl complex 3b was isolated, which contained a coordinated p-toluidine ligand (Scheme 5). This complex was stable in refluxing toluene and did not decompose to the expected organic product.

Scheme 5. Reactions of η^{3}-Allyl Complex 1b with p-Toluidine

anti-1b

syn-1b
i) $\mathrm{TIOTf},-\mathrm{TICl}$
ii) $\mathrm{NH}_{2} \mathrm{R}$

syn-3b

The ${ }^{1} \mathrm{H}$ NMR of complex $\mathbf{3 b}$ at room temperature showed some broad signals and seemed to correspond to a mixture of two isomers with a fluxional behavior (Figure 4). Perhaps, the most significant resonances are those attributed to the Me groups: three sharp singlets at $1.45(3 \mathrm{H}), 1.42(3 \mathrm{H})$ and $1.26 \mathrm{ppm}(2.2 \mathrm{H})$, and two broad singlets at $2.28(5.4 \mathrm{H})$ and $0.94 \mathrm{ppm}(2.2 \mathrm{H})$. When the spectrum was registered at $-40^{\circ} \mathrm{C}$, the broad singlet below 1 ppm become sharper, and the signal at 2.28 split into two new singlets with relative intensities 3:2.2. According to these data, we assumed that both isomers, anti/syn-3b, are formed in a 1.33:1 ratio, one of which presented a fluxional behavior in solution. The less stable isomer should be anti-3b due to steric hindrance of the toluidine ligand and the substituent on the terminal allylic carbon, and for it, it was reasonable to suppose that the neutral ligand could be coming in and out the metal coordination sphere.

Figure 4. ${ }^{1} \mathrm{H}$ NMR spectra ($0.6-3.0 \mathrm{ppm}$) of complex $\mathbf{3 b}(400 \mathrm{MHz})$ in CDCl_{3} at 25 (down) and $-40^{\circ} \mathrm{C}$ (up). The asterisk indicates the signal corresponding to $\mathrm{H}_{2} \mathrm{O}$. The blue and red circles correspond to the syn and anti isomers, respectively. The red and blue circles correspond to the anti and syn isomers, respectively.

The crystal structure of the η^{3}-allyl complex $\operatorname{syn}-\mathbf{3 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was determined by X-ray diffraction (Figure 5), showing that the phenyl and benzyl substituents at the meso and terminal carbon atoms of the allylic unit occupied mutually syn positions, and indicating that this was, in fact, the most stable isomer. For this complex there were two independent molecules in the asymmetric unit (A and A^{\prime}). For molecule A, the palladium atom exhibited a square-planar geometry (mean deviation from the plane: $X-\operatorname{Pd}(1)-\mathrm{N}(1)-\mathrm{N}(2) 0.0067 \AA$, where $\mathrm{X}=$ centroid from $\mathrm{C}(7), \mathrm{C}(8)$ and $\mathrm{C}(9)$ atoms). Both amino groups were coordinated in cis position. The other two coordination sites were occupied by the allyl moiety, which was η^{3} bonded via $C(7), C(8)$ and $C(9)$, with a $C(7)-C(8)-C(9)$ angle of 116.9(2). The allyl plane, defined by atoms $\mathrm{C}(7), \mathrm{C}(8)$, and $\mathrm{C}(9)$, formed a dihedral angle of 118.1° with the $\operatorname{Pd}(\mathrm{II})$ coordination plane. The aromatics rings formed angles of 71.3 (metalated ring), 65.5 (phenyl ring at C 7), 71.9 (phenyl ring at C 8), 73.3 (phenyl ring at C 14) and 92.4° (toluidine ring) with respect to the Pd coordination plane, to avoid steric hindrance. Hydrogen bond interactions were observed between the cationic palladium moiety and the OTf- anion (see the Supporting Information).

Figure 5. Thermal ellipsoid plot (50 \% probability) of the cation of one (A) of the two independent molecules of complex syn-3b$\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showing the labeling scheme. The solvent molecule and the hydrogen atoms bonded to carbon have been omitted for clarity. Selected bond lengths (\AA) and angles (deg) are given for both independent molecules (A and A^{\prime}). (A): $\operatorname{Pd}(1)-\mathrm{N}(1)=2.131(2), \operatorname{Pd}(1)-\mathrm{N}(2)=2.161(2), \operatorname{Pd}(1)-\mathrm{C}(7)=2.100(2), \operatorname{Pd}(1)-\mathrm{C}(8)=$ $2.138(2), \operatorname{Pd}(1)-\mathrm{C}(9)=2.165(2), \mathrm{C}(7)-\mathrm{C}(8)=1.454(3), \mathrm{C}(8)-\mathrm{C}(9)=1.408(3) ; \mathrm{N}(1)-\mathrm{Pd}(1)-$ $\mathrm{N}(2)=90.26(9), \mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)=116.9(2), \mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)=124.9(2) .\left(\mathrm{A}^{\prime}\right): \operatorname{Pd}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$ $=2.130(2), \operatorname{Pd}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)=2.163(2), \operatorname{Pd}\left(1^{\prime}\right)-\mathrm{C}\left(7^{\prime}\right)=2.117(2), \operatorname{Pd}\left(1^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)=2.134(2), \operatorname{Pd}\left(1^{\prime}\right)-$ $\mathrm{C}\left(9^{\prime}\right)=2.165(2), \mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)=1.452(3), \mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)=1.413(3) ; \mathrm{N}\left(1^{\prime}\right)-\mathrm{Pd}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)=$ $88.94(8), \mathrm{C}\left(7^{\prime}\right)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}\left(9^{\prime}\right)=117.5(2), \mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)=124.0(2)$.

Additionally, we studied the behavior of the anti/syn-1a,b complexes toward a strong base. The reaction of these complexes with $\mathrm{KO}^{\prime} \mathrm{Bu}$ in toluene under a N_{2} atmosphere afforded $\operatorname{Pd}(0)$ and the functionalized phenethylamines containing a 1,3-butadienyl substituent in ortho position (4a,b; Scheme 6). We did not observe the intramolecular cyclization arising from the possible nucleophilic attack of the NH_{2} group to the η^{3}-allyl moiety. The compound $4 \mathbf{4}$ was a colorless solid and was easily isolated, but $\mathbf{4 b}$ was obtained as liquid. In order to get a more easily isolable derivative, triflic acid was added to a solution of compound $\mathbf{4 b}$ in diethyl ether (Scheme 6). The corresponding ammonium triflate $\mathbf{5 b}$ precipitated in the reaction mixture and was obtained as a white powder in moderate yield (50\%).

Miura et al. ${ }^{12}$ described the intermolecular three-component coupling of aryl iodides, diarylacetylenes, and alkenes in the presence of palladium acetylacetonate and silver acetate as catalyst, to give the corresponding 1:1:1 and 1:2:1 coupling products (1,3-butadiene and 1,3,5-hexatriene derivatives, respectively). The mechanism proposed for these catalytic transformations followed the analogous sequential steps than the synthesis of compounds 4 reported here, that is: 1) formation of an aryl-Pd(II) complex (either by oxidative addition or C-H activation), 2) alkyne insertion into the $\mathrm{Pd}-\mathrm{C}$ bond to form an alkenyl complex, 3) alkene insertion into the $\mathrm{Pd}-\mathrm{C}$ bond to form an alkyl intermediate, and 4) β - H elimination, assisted by a base, to afford the final diene. In our case, and due to the particular nature of the initial aryl group, we have been able to isolate all the organometallic intermediates involved in the process.

Scheme 6. Synthesis of Functionalized Phenethylamine Derivatives Containing 1,3Butadienyl Substituents

	Y	R	X	antilsyn ratio
$\mathbf{1 a}$	Br	H	OMe	$2.5: 1$
1b	Cl	Me	H	$1.25: 1$

The crystal structure of the ammonium triflate $\mathbf{5 b} \cdot \mathbf{H}_{2} \mathrm{O}$ was solved by X-ray diffraction studies (Figure 6) and showed a slightly distorted plane diene skeleton (mean deviation from the plane: $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(21)-\mathrm{C}(31)-\mathrm{C}(41)=0.041 \AA$) with an E, E geometry. Within the butadiene fragment, the average $\mathrm{C}-\mathrm{C}$ double bond distance ($\mathrm{C} 7-\mathrm{C} 8$, C9-C14) was $1.35(2) \AA$, being slightly longer than the one corresponding to the most substituted unsaturated unit, and the average single-bond value (C1-C7, C7-C41, C8-C9, C8-C31, C14-C21) was $1.48(2) \AA$. The aryl rings formed angles of $62.5,20.8,69.1$, and 48.0° with respect to the diene plane, adopting a helical conformation and releasing steric hindrance.

Figure 6. Thermal ellipsoid plot (50% probability) of the cation of compound $\mathbf{5 b} \cdot \mathrm{H}_{2} \mathrm{O}$ along with the labeling scheme. The solvent molecule and the hydrogen atoms bonded to carbon have been omitted for clarity. Selected bond lengths (\AA) and angles (deg): C(1)-C(7) = $1.503(2), \mathrm{C}(7)-\mathrm{C}(8)=1.359(2), \mathrm{C}(8)-\mathrm{C}(9)=1.461(2), \mathrm{C}(9)-\mathrm{C}(14)=1.341(2), \mathrm{C}(14)-\mathrm{C}(21)$ $=1.466(2), \mathrm{C}(8)-\mathrm{C}(31)=1.496(2), \mathrm{C}(7)-\mathrm{C}(41)=1.487(2) ; \mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(41)=115.93(15)$, $\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(8)=120.51(16), \mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)=120.85(16), \mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)=127.20(17)$, $C(9)-C(8)-C(31)=116.96(15)$.

We also attempted to insert a third unsaturated molecule into the $\mathrm{Pd}-\mathrm{C}$ bonds of the η^{3}-allyl complexes by bubbling CO through a solution of $\mathbf{1 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (room temperature, 4 h). Nevertheless, no reaction was observed probably because these complexes were too stable. A similar reaction, adding TIOTf and using THF as solvent, led to a cationic complex with no CO inserted.

Insertion of 2-Norbornene into the Pd-C Bond

Synthesis and Structure of Ten-membered Norbornyl-Palladium(II) Complexes.

In contrast to styrene or ethyl acrylate, when 1 equiv of 2-norbornene was added to a solution of the alkenyl-complex \mathbf{b} (arising from insertion of one molecule of diphenylacetylene into the $\mathrm{Pd}-\mathrm{C}$ bond of palladacycle B, see Scheme 7 for its structural formula) no insertion
reaction was observed, neither at room temperature nor heating the mixture to $65^{\circ} \mathrm{C}$ in CHCl_{3}. We also attempted the insertion reactions using as starting materials the eightmembered palladacycles \mathbf{c} and \mathbf{d}, arising form the insertion of methyl phenylpropiolate and 1-phenyl-1-propyne into the $\mathrm{Pd}-\mathrm{C}$ bond of complex \mathbf{B}. When palladacycle \mathbf{d} was used, the reaction at room temperature led to a new species that was tentatively assigned to the norbornene coordination monomer species 6d (Scheme 7), which could not be fully characterized, since it evolved easily to the starting dimeric complex \mathbf{d} when we tried to crystallize it. Nevertheless, when these reaction mixtures (palladacycles \mathbf{c} or \mathbf{d} and 2norbonene) were heated to $65^{\circ} \mathrm{C}$, we could successfully isolate the complexes $\mathbf{7 c}$ and $\mathbf{7 d}$, where the insertion of the 2-norbornene moiety into the alkenyl $\mathrm{Pd}(\mathrm{II})$ complex had taken place (Scheme 7). These complexes have a monomeric nature, since the Pd center completes its coordination sphere with the intramolecular olefin moiety.

Scheme 7. Sequential Insertion of Alkyne/2-Norbornene into the Pd-C Bond of Sixmembered Palladacycle B

The crystal structure of complexes $\mathbf{7} \cdot \cdot \mathrm{CHCl}_{3}$ and $\mathbf{7 d} \cdot 1 / 2 \mathrm{CHCl}_{3}$ were solved by X-ray diffraction studies (see Figure 7 and the Supporting Information) and both showed similar features. For complex $7 \mathbf{c} \cdot \mathrm{CHCl}_{3}$, the atoms $\mathrm{Cl}(1), \mathrm{N}(1)$, and $\mathrm{C}(1)$, together with the midpoint of the $\mathrm{C}(3)-\mathrm{C}(4)$ double bond form a square-plane around the palladium atom (mean deviation from the plane: $\operatorname{Pd}(1)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Cl}(1)-\mathrm{X} 0.0230 \AA$, where $\mathrm{X}=$ centroid from $\mathrm{C}(3)$, and $\mathrm{C}(4)$ atoms). The norbornene unit adopted an exo conformation, arising from the syn addition of the $\mathrm{Pd}-\mathrm{C}$ bond to the exo face of the olefin, as expected. The $\mathrm{C}(3)-\mathrm{C}(4)$ double bond forms an angle of 61.8° with the palladium coordination plane. The methyl and phenyl substituents are mutually trans, which requires the isomerization of the first inserted alkyne. This arrangement reduces the steric hindrance between the substituents and is the normal behavior for di-inserted derivatives containing cyclometalated amines. ${ }^{31}$

Figure 7. Thermal ellipsoid plot (50% probability) of complex $\mathbf{7 c} \cdot \mathrm{CHCl}_{3}$ along with the labeling scheme. The solvent molecule and the hydrogen atoms bonded to carbon have been omitted for clarity. Selected bond lengths (\AA) and angles (deg): $\operatorname{Pd}(1)-N(1)=2.2185(19)$, $\operatorname{Pd}(1)-\mathrm{Cl}(1)=2.3589(5), \operatorname{Pd}(1)-\mathrm{C}(1)=2.047(2), \operatorname{Pd}(1)-\mathrm{C}(3)=2.159(2), \operatorname{Pd}(1)-\mathrm{C}(4)=$ 2.203(2), $\mathrm{Pd}(1)-\mathrm{X}=2.065, \mathrm{C}(1)-\mathrm{C}(2)=1.553(3), \mathrm{C}(2)-\mathrm{C}(3)=1.542(3), \mathrm{C}(3)-\mathrm{C}(4)=$ $1.403(3), \mathrm{C}(4)-\mathrm{C}(5)=1.512(3) ; \mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(1)=88.03(5), \mathrm{Cl}(1)-\mathrm{Pd}(1)-\mathrm{C}(1)=93.88(6)$, $\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{X}=76.7, \mathrm{X}-\mathrm{Pd}(1)-\mathrm{N}(1)=101.3, \mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)=117.17(17), \mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ $=122.65(18) . \mathrm{X}$ represents the midpoint of the double bond $\mathrm{C}(3)-\mathrm{C}(4)$.

We performed an analogous experiment reversing the order of the addition of the unsaturated reagents. That is, we studied the reactivity of the previously reported norbornyl derivative \mathbf{e} (arising from the insertion of 2-norbornene into the six-membered palladacyle \mathbf{B}) toward alkynes (Scheme 8). A suspension of the norbornyl-Pd(II) complex e in CHCl_{3} was heated to $65^{\circ} \mathrm{C}$ in the presence of methyl phenylpropiolate. The complex $7 \mathbf{d}$, which arose from the reverse insertion order than the reagents addition, was isolated in 20% yield from the reaction mixture. In this reaction, palladacycle \mathbf{b} was also formed. The formation of $7 \mathbf{d}$ could be explained through the deinsertion of the 2-norbornene fragment in \mathbf{e} to give the
starting palladacycle \mathbf{B}, which, in turn, would undergo the sequential insertion of the alkyne and 2-norbornene. The ability of this cyclic olefin to insert reversibly into Pd-aryl bonds is well known. This behavior has promoted the use of norbornene as an essential ligand in the functionalization of haloarenes, for instance in the versatile Catellani type reaction. ${ }^{2}$ We tried to apply this strategy to obtain the diphenylacetylene/2-norbornene insertion derivative. Nevertheless, the reaction of the norbornyl complex \mathbf{e} with diphenylacetylene gave rise mainly to the stable 8 -membered palladacycle \mathbf{b}, arising from monoinsertion of the alkyne (Scheme 8). That is, the olefin did not insert into the $\mathrm{Pd}-\mathrm{C}$ bond of \mathbf{b}, as commented above.

Scheme 8. Sequential Insertion of Norbornene/Alkynes into the Pd-C Bond of Palladacycle B

The synthesis of alkenyl palladacycles arising from the insertion of one molecule of alkyne into the $\mathrm{Pd}-\mathrm{C}$ bond of a starting complex is not always a simple task due the possibility of di- and tri-insertion processes. This aspect is especially relevant when very electrophilic alkynes, such as dimethylacetylene dicarboxylate (DMAD), are used. We have previously tried to isolate the palladacycle \mathbf{f} arising from monoinsertion of DMAD into the

Pd-C bond of \mathbf{B}; nevertheless mixtures of mono, di and triinserted products were obtained (Scheme 9). We thought that performing the reaction of \mathbf{B} and DMAD in the presence of 2norbornene could drive the reaction to the formation of a sequential DMAD/norbornene insertion product, given the fact that norbornene seems to react readily with other monoinserted alkyne derivatives. Indeed, when a solution of the palladacycle \mathbf{B} in CHCl_{3} was heated to $65^{\circ} \mathrm{C}$ in the presence of 1 equiv of DMAD and 1 equiv of 2-norbornene, the alkyne/alkene sequential insertion product $7 \mathbf{f}$ was isolated in good yield (Scheme 9). The crystal structure of complex $7 \mathbf{f}$ was also solved by X-ray diffraction studies (see the Supporting Information) and showed similar features to those discussed for $\mathbf{7 c} \cdot \mathrm{CHCl}_{3}$.

Scheme 9. Sequential Insertion of Norbornene/DMAD into the Pd-C Bond of Palladacycle B

Reactivity of the Norbornyl-Complexes. We explored the reactivity of the complex 7f toward $\mathrm{KO}{ }^{\mathrm{B}} \mathrm{Bu}$ in MeCN at $78{ }^{\circ} \mathrm{C}$. From the reaction mixture, we could isolate the tetrahydroisoquinoline derivative $\mathbf{8 f}$ by treatment of the crude with HOTf, that is, from protonation of \mathbf{V} (Scheme 10). A possible path to explain the formation of $\mathbf{8 f}$ would involve
the intramolecular carbopalladation of the alkene moiety, giving rise to a cyclopropyl ring. The new organometallic intermediate IV would then undergo a $\mathrm{C}-\mathrm{N}$ coupling process with reductive elimination of $\operatorname{Pd}(0)$. Several Pd-catalyzed procedures to promote the cyclopropanation of 2-norbornene have been reported in the literature. ${ }^{32}$ Some of them rely on the migratory insertion of norbornene into a Pd -alkynyl ${ }^{33}$ or Pd -alkenyl ${ }^{34}$ complex, and propose some organometallic intermediates similar to complexes 7, where the alkenyl moiety is coordinated intramolecularly to Pd .

Scheme 10. Reaction of Complex 7 f with $\mathrm{KO}^{+} \mathrm{Bu}$

| KO Bu |
| :---: | :---: |
| $\mathrm{MeCN}\left(\mathrm{N}_{2}\right)$ |
| $78^{\circ} \mathrm{C}, 72 \mathrm{~h}$ |$| \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$

The crystal structure of $\mathbf{8 f}$ was solved by X-ray diffraction studies (Figure 8) and showed the isoquinoline nucleus derived from phentermine substituted at C 1 with a methoxycarbonyl group and a tricyclo[3.2.1]octyl ring. Noteworthy, highly strained hydrocarbons such as this cyclopropane-containing norbornyl moiety have been tested as new high energetic materials for liquid-fueled propulsion systems. ${ }^{35}$

Figure 8. Thermal ellipsoid plot (50% probability) of the cation of compound $\mathbf{8 f}$ along with the labeling scheme. The hydrogen atoms bonded to carbon have been omitted for clarity. Selected bond lengths (\AA) and angles (deg): $N(1)-C(8)=1.5233(17), N(1)-C(9)=$ $1.5134(16), \mathrm{C}(9)-\mathrm{C}(10)=1.5595(18), \mathrm{C}(10)-\mathrm{C}(13)=1.5071(17), \mathrm{C}(10)-\mathrm{C}(18)=1.5259(18)$, $\mathrm{C}(13)-\mathrm{C}(18)=1.5261(17) ; \mathrm{C}(1)-\mathrm{C}(9)-\mathrm{N}(1)=111.04(10), \mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(20)=105.93(10)$, $\mathrm{C}(20)-\mathrm{C}(9)-\mathrm{C}(10)=110.53(10), \mathrm{C}(10)-\mathrm{C}(18)-\mathrm{C}(13)=59.18(8), \mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(10)=$ $60.40(8), \mathrm{C}(13)-\mathrm{C}(10)-\mathrm{C}(18)=60.42(8)$.

We studied if a further insertion of an unsaturated molecule could be carried out in the complexes 7c, 7d and 7f, obtained after alkyne/norbornene insertion. The complex $\mathbf{7 f}$ did not react when it was stirred in CHCl_{3} in the presence of CO at room temperature for 5 h . When the reaction mixture was heated to $65^{\circ} \mathrm{C}$, a complicated mixture was formed. In order to facilitate the insertion of CO , we performed the reaction in the presence of TlOTf in acetone, hence generating a cationic $\operatorname{Pd}(\mathrm{II})$ intermediate in situ. In this case, the reaction afforded the lactone $\mathbf{9 f}$ and $\operatorname{Pd}(0)($ Scheme 11). The formation of $\mathbf{9 f}$ could be explained as the result of the hydrolysis of the acyl-Pd(II) intermediate generated upon CO insertion into the $\mathrm{Pd}-\mathrm{C}$ bond
present in 7f. In those conditions, the carboxylic acid derivative underwent an intramolecular Michael addition of the $\mathrm{CO}_{2} \mathrm{H}$ group to the α, β-unsaturated ester moiety.

Scheme 11. Reactions of Complexes 7 with CO

When the cationic derivatives of complexes 7c and 7d (generated in situ) reacted with CO at room temperature, the amino acid derivatives 10c and 10d were obtained (Scheme 11). In the case of $\mathbf{1 0 d}$, intramolecular cyclization to give $\mathbf{9 d}$ took place after heating at $65^{\circ} \mathrm{C}$ in CHCl_{3} for 7 days. As expected, the derivative $\mathbf{1 0} \mathbf{c}$ was stable upon heating, since it was not activated for the Michael addition step, as it happened in the cases of the alkenyl complexes bearing a $\mathrm{CO}_{2} \mathrm{Me}$ substituent.

The crystal structure of $\mathbf{9 f} \cdot \mathrm{Et}_{2} \mathrm{O}$ has been solved by X-ray diffraction studies (Figure 9), and showed an ammonium salt derived from the starting phentermine containing a bicyclo[2.2.1]heptane lactone substituent. The hexahydro-4,7-methanoisobenzofuran-1(3H)one core is a known compound that has arisen interest because of its potential use as
prostaglandin/thromboxane receptor antagonist. ${ }^{36}$ The most frequent routes for its synthesis involved (a) the cycloaddition reaction of furan-2(5H)-one and cyclopentadiene, ${ }^{37}$ or (b) the oxidation of cis-2,3-bis(hydroxymethyl)bicyclo[2.2.1]heptane, that could be performed in a stoichiometric way with standard organic oxidants ${ }^{38}$ or catalytically, by the use of enzymes ${ }^{39}$ or transition metals. ${ }^{40}$

Figure 9. Thermal ellipsoid plot (50% probability) of the cation of $\mathbf{9 f} \cdot \mathrm{Et}_{2} \mathrm{O}$ along with the labeling scheme. The solvent molecule and the hydrogen atoms bonded to carbon have been omitted for clarity. Selected bond lengths (\AA) and angles (deg): $\mathrm{N}(1)-\mathrm{C}(8)=1.5209$ (19), $\mathrm{C}(11)-\mathrm{C}(12)=1.522(2), \mathrm{C}(11)-\mathrm{C}(14)=1.557(2), \mathrm{C}(14)-\mathrm{O}(4)=1.4423(18), \mathrm{C}(17)-\mathrm{O}(3)=$ $1.2010(19), \mathrm{C}(17)-\mathrm{O}(4)=1.3514(19), \mathrm{C}(16)-\mathrm{C}(17)=1.499(2) ; \mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)=$ $107.19(12), \mathrm{C}(11)-\mathrm{C}(14)-\mathrm{O}(4)=109.88(12), \mathrm{C}(14)-\mathrm{O}(4)-\mathrm{C}(17)=111.86(11), \mathrm{O}(4)-\mathrm{C}(17)-$ $\mathrm{C}(16)=111.77(13), \mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)=104.53(12), \mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)=104.02(12)$, $\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{O}(4)=106.07(11)$.

The crystal structure of $\mathbf{1 0} \mathbf{c}$ has also been determined by X-ray diffraction studies (Figure 10), and it showed the ammonium salt derived from the sequential insertion of
alkene/norbornene/CO into the initial phentermine palladacycle. Both substituents (the carboxylate and the alkenyl groups) at the norbornadienyl moiety were in an exo disposition.

Figure 10. Thermal ellipsoid plot (50% probability) of the cation of $\mathbf{1 0} \mathbf{c} \cdot \mathrm{H}_{2} \mathrm{O}$ along with the labeling scheme. The solvent molecule and the hydrogen atoms bonded to carbon have been omitted for clarity. Selected bond lengths (\AA) and angles (deg): N(1)-C(8) $=1.518(2), \mathrm{C}(1)-$ $\mathrm{C}(11)=1.504(3), \mathrm{C}(11)-\mathrm{C}(14)=1.342(3), \mathrm{C}(14)-\mathrm{C}(15)=1.532(2), \mathrm{C}(15)-\mathrm{C}(16)=1.582(2)$, $\mathrm{C}(16)-\mathrm{C}(17)=1.506(3), \mathrm{C}(17)-\mathrm{O}(1)=1.218(2), \mathrm{C}(17)-\mathrm{O}(2)=1.328(2) ; \mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(7)=$ 104.46(14), $\mathrm{C}(1)-(11)-\mathrm{C}(14)=121.73(17), \mathrm{C}(11)-\mathrm{C}(14)-\mathrm{C}(15)=121.56(17), \mathrm{C}(14)-\mathrm{C}(15)-$ $\mathrm{C}(16)=118.26(15), \mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)=116.58(15), \mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(1)=126.22(17)$, $\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(2)=111.65(16)$.

CONCLUSION

In summary, the stoichiometric sequential insertion of alkynes and alkenes into the Pd-C bond of metalated phenethylamines has been studied. The result of these reactions depends on the nature of the olefin used. The insertion of styrene or ethyl acrylate into the eight-membered palladacycle arising from monoinsertion of diphenylacetylene afford the η^{3} -
allyl species $\mathbf{1}$ and 2, via sequential β-H elimination/hydropalladation steps. However, the insertion of 2-norbornene leads to norbornyl-Pd(II) complexes with an alkenyl moiety intramolecularly coordinated to the metal center.

The treatment with a strong base of the organometallic complexes obtained upon the sequential insertion of alkyne/alkene (1,2 and 7) led also to different results. While the η^{3} allyl complexes $\mathbf{1}$ and $\mathbf{2}$ afforded 1,3-butadienyl substituted phenethylamines ($\mathbf{4 b}$ and $\mathbf{5 b}$), the norbornyl-Pd derivative $7 \mathbf{f}$ gave a tetrahydroisoquinoline derivative upon cyclopropanation of the norbornene fragment and $\mathrm{C}-\mathrm{N}$ coupling ($\mathbf{8 f}$).

The η^{3}-allyl complexes $\mathbf{1}$ and $\mathbf{2}$ were unreactive toward CO insertion. On the contrary, the norbornyl derivatives $\mathbf{7 c}, 7 \mathbf{d}$ and $\mathbf{7 f}$ afforded interesting amino acid or lactone derivatives upon CO insertion into the $\mathrm{Pd}-\mathrm{C}$ bond and subsequent hydrolysis, under the adequate conditions.

Overall, we have shown that the isolation of the organometallic intermediates obtained upon stepwise insertion of alkynes and alkenes into palladated phenethylamines allows the synthesis of functionalized primary phenethylamines. These stoichiometric routes avoid the problems associated to substrates that make difficult the development of catalytic processes (such as primary alkylamines), and allow the control of the regioselective insertion of the different unsaturated coupling partners.

EXPERIMENTAL SECTION

Caution! Special precautions should be taken in handling thallium(I) compounds, which are toxic.

General procedures. Infrared spectra were recorded on a Perkin Elmer 16F-PC-FT spectrometer. $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and S analyses were carried out with a LECO CHNS-932 microanalyzer. Conductance measurements, and melting point determinations were carried
out as described elsewhere. ${ }^{41}$ Unless otherwise stated, NMR spectra were recorded in CDCl_{3} in Bruker Avance 300, 400 or 600 spectrometers. Chemical shifts are referenced to TMS (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$). Signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all compounds were assigned with the help of APT, HMQC and HMBC experiments. High-resolution electrospray ionization mass spectra (ESI-MS) were recorded on an Agilent 6220 Accurate-Mass time-of-fight (TOF) LC/MS. Reactions were carried out at room temperature without special precautions against moisture unless other specification. The groups $\mathrm{C}_{6} \mathrm{H}_{4}$ and $\mathrm{C}_{6} \mathrm{H}_{2}$ are denoted by Ar. Free and inserted 2-norbornene are denoted by $\mathrm{C}_{7} \mathrm{H}_{10}$ (free), $\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \mathrm{CH}$ (inserted), and nor (both, NMR signals).

Styrene, ethyl acrylate, 2-norbornene, dimethyl acetylenedicarboxylate (DMAD), methyl phenylpropiolate, p-toluidine (Tol), KO Bu , and $\mathrm{HOTf}\left(\mathrm{HSO}_{3} \mathrm{CF}_{3}\right)$, were used as received from comertial sources. The palladacycles $\left[\mathrm{Pd}\left\{\mathrm{C}, \mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)-2,(\mathrm{OMe})_{2^{-}}\right.\right.$
$4,5\}(\mu-\mathrm{Br})]_{2}$
(A), ${ }^{26}$
$\left[\operatorname{Pd}\left\{C, N-\mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-2\right\}(\mu-\mathrm{Cl})\right]_{2}$
(B),$^{24} \quad[\operatorname{Pd}\{C, N-$ $\left.\left.\mathrm{C}(\mathrm{Ph})=\mathrm{C}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)-2,(\mathrm{OMe})_{2}-4,5\right\}(\mu-\mathrm{Br})\right]_{2}$
(a), $[\operatorname{Pd}\{C, N-$ $\left.\left.\mathrm{C}(\mathrm{Ph})=\mathrm{C}(\mathrm{R}) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-2\right\}(\mu-\mathrm{Cl})\right]_{2}\left(\mathrm{R}=\mathrm{Ph}, \mathbf{b} ; \mathrm{Me}, \mathbf{c} ; \mathrm{CO}_{2} \mathrm{Me} \mathbf{d}\right){ }^{20}$ and $[\operatorname{Pd}\{C, N-$ $\left.\left.\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \mathrm{CHC}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}\right)-2\right\}(\mu-\mathrm{Cl})\right]_{2}(\text { e })^{19}$ were prepared as previously reported. TlOTf was prepared by reaction of $\mathrm{Tl}_{2} \mathrm{CO}_{3}$ and $\mathrm{HO}_{3} \mathrm{SCF}_{3}$ (1:2) in water, and recrystallized from acetone $/ \mathrm{Et}_{2} \mathrm{O}$. Chart 2 gives the numbering schemes for the new organometallic and organic derivatives.

Chart 2. Numbering Schemes for the New Palladium(II) Complexes and the Organic Derivatives

Synthesis of anti/syn-1a. Styrene ($23 \mu \mathrm{~L}, 0.202 \mathrm{mmol}$) was added to a solution of palladacycle a ($110 \mathrm{mg}, 0.100 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the mixture was stirred for 20 h. The resulting mixture was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL , and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, the resulting suspension was filtered, and the pale yellow solid was air-dried to give a mixture of anti/syn1a. Yield: $86 \mathrm{mg}, 0.132 \mathrm{mmol}, 66 \%$. Mp: $143{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{BrNO}_{2} \mathrm{Pd}$ (648.936): C, $59.23 ; \mathrm{H}, 4.97$; N, 2.16. Found: C, 59.32; H, 5.10; N, 2.19. IR (cm-1): $v(\mathrm{NH}) 3319 \mathrm{~m}, 3258$ $\mathrm{w}, 3206 \mathrm{~m}, 3135 \mathrm{w}$. The NMR spectra of this complex showed two sets of signals in approximately a $2.5: 1$ ratio (determined by ${ }^{1} \mathrm{H}$ integration), corresponding to the mixture anti/syn-1a. Data for anti-1a (extracted from the mixture): ${ }^{1} \mathrm{H}$ NMR (300.1 MHz): $\delta 1.63-$ $1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}_{2}\right), 1.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 2.56\left(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=15.3,{ }^{3} J_{\mathrm{HH}}=7.8\right.$ Hz), 2.76-2.85 (m, partially obscured by the resonance of $\left.\mathrm{MeO}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.86(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{MeO}), 2.97-3.02\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N},{ }^{2} J_{\mathrm{HH}}=12.6 \mathrm{~Hz}\right), 3.22-3.35(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}$ of CH $2 \mathrm{~N}+1 \mathrm{H}$ of $\left.\mathrm{NH}_{2}\right), 2.38\left(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph},{ }^{2} J_{\mathrm{HH}}=17.4,{ }^{3} J_{\mathrm{HH}}=4.5 \mathrm{~Hz}\right), 3.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 5.11(\mathrm{dd}, 1 \mathrm{H}$,
$\left.\mathrm{CH},{ }^{2} J_{\mathrm{HH}}=12.3,{ }^{3} J_{\mathrm{HH}}=4.5 \mathrm{~Hz}\right), 6.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6), 6.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3), 6.80-7.27(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.5 MHz): $\delta 35.2\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 39.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 42.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 54.7(\mathrm{MeO}), 55.9$ (MeO), $85.0(\mathrm{CH}), 93.8$ (C7), 111.9 (CH6), 116.1 (CH3), $123.6(\mathrm{C} 8), 125.8(\mathrm{CH}, \mathrm{Ph}), 126.8$ $(\mathrm{CH}, \mathrm{Ph}), 127.0(\mathrm{CH}, \mathrm{Ph}), 127.3(\mathrm{CH}, \mathrm{Ph}), 128.0(\mathrm{CH}, \mathrm{Ph}), 128.4(\mathrm{CH}, \mathrm{Ph}), 128.5(\mathrm{CH}, \mathrm{Ph})$, 128.6 (CH, Ph), 129.6 (CH, Ph), 132.2 (C1), 135.1 (i-C, Ph), 140.4 (i-C, Ph), 141.1 (i-C, Ph), 143.6 (C2), 146.4 (C5), 148.3 (C4).
anti/syn Isomerization of 1a. An NMR tube was charged with a 2.5:1 mixture of anti/syn-1a (20 mg) and $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL})$, and the solution was heated at $60^{\circ} \mathrm{C}$. The sample was checked by ${ }^{1} \mathrm{H}$ NMR periodically, until complete conversion. After 10 days at $60^{\circ} \mathrm{C}$, a spectroscopically pure sample of syn-1a was obtained. Data for syn-1a: ${ }^{1} \mathrm{H}$ NMR (400.9 MHz): $\delta 1.61-1.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}_{2}\right), 1.89\left(\mathrm{br}\right.$ dd, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=15.3,{ }^{3} J_{\mathrm{HH}}=10.8 \mathrm{~Hz}\right), 2.47$ (br dd, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=15.4,{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}$), $2.86-2.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.23$ (dd, partially obscured by the resonance of $\left.\mathrm{NH}_{2}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N},{ }^{2} J_{\mathrm{HH}}=12.0,{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right), 3.02(\mathrm{br} \mathrm{d}, 1 \mathrm{H}$, $\mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=12.0 \mathrm{~Hz}$), $3.42(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 3.46\left(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph},{ }^{2} J_{\mathrm{HH}}=14.2,{ }^{3} J_{\mathrm{HH}}=3.5\right.$ $\mathrm{Hz}), 3.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 4.80\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH},{ }^{2} J_{\mathrm{HH}}=11.0,{ }^{3} J_{\mathrm{HH}}=3.7 \mathrm{~Hz}\right), 6.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6)$, $6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3), 6.19\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{Ph},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right), 6.80\left(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, \mathrm{Ph},{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right), 6.90-$ $7.23(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.85\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{Ph},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=6.0 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(75.5$ $\mathrm{MHz}): \delta 34.8\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 35.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 43.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 55.6(\mathrm{MeO}), 60.0(\mathrm{MeO}), 84.5(\mathrm{CH})$, 90.8 (C7), 110.0 (CH6), 116.2 (CH3), 124.0 (C8), 126.0 (CH, Ph), 127.0 (CH, Ph), 127.3 (CH, Ph), 127.7 ($\mathrm{CH}, \mathrm{Ph}), 128.4(\mathrm{CH}, \mathrm{Ph}), 128.5(\mathrm{CH}, \mathrm{Ph}), 129.0(\mathrm{CH}, \mathrm{Ph}), 131.8(\mathrm{C} 1), 133.2$ (i-C, Ph), 133.7 (CH, Ph), 135.1 (i-C, Ph), 140.5 (i-C, Ph), 142.4 (C2), 147.5 (C5), 148.2 (C4).

Synthesis of anti/syn-1b. Method A. Styrene ($52 \mu \mathrm{~L}, 0.453 \mathrm{mmol}$) was added to a solution of palladacycle $\mathbf{b}(200 \mathrm{mg}, 0.213 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was stirred for 12 h , the solvent was concentrated to ca. $5 \mathrm{~mL}, \mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added, and the resulting
suspension was filtered through a plug of Celite. The filtrate was concentrated to ca. 1 mL , and n-pentane (20 mL) was added. The suspension was filtered, and the pale yellow solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give a mixture of anti/syn- $\mathbf{1 b}$ (ratio ca. 1.25:1 by ${ }^{1} \mathrm{H}$ NMR). Yield: $155 \mathrm{mg}, 0.270 \mathrm{mmol}, 63 \%$. Dec pt: $252{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{32}$ CINPd (572.485): C, 67.14; H, 5.63; N, 2.44. Found: C, 67.19; H, 5.60; N, 2.39. IR $\left(\mathrm{cm}^{-1}\right): \downarrow(\mathrm{NH}) 2295 \mathrm{w}, 3238 \mathrm{w}$. Method B. In a different preparation, it was possible to obtain two different crops by fractional crystallization, each of them enriched in one of the isomers. Styrene ($30 \mu \mathrm{~L}, 0.262 \mathrm{mmol}$) was added to a solution of palladacycle $\mathbf{b}(120 \mathrm{mg}, 0.128$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The mixture was stirred for 12 h and filtered through a plug of Celite. The filtrate was concentrated to ca. 3 mL , and $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added. The resulting suspension was filtered, and the solid was air-dried to afford 57 mg of an anti-enriched mixture of both isomers (anti/syn=3:1). The mother liquors were concentrated to ca. 3 mL and n-pentane (20 mL) was added. The resulting suspension was filtered and the solid was air-dried to afford 25 mg of an syn-enriched mixture of both isomers (anti/syn = 1:3). Samples almost spectroscopically pure of anti- and syn-1b could be obtained by growing single crystals from the enriched mixtures. Data for anti-1b: ${ }^{1} \mathrm{H}$ NMR (300.1 MHz): $\delta 1.34$ (s, 6 H , $\left.\mathrm{CMe}_{2}\right), 1.86\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.8 \mathrm{~Hz}\right), 2.11\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=15.0 \mathrm{~Hz}\right), 2.38(\mathrm{br} \mathrm{d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.7 \mathrm{~Hz}\right), 2.59\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph},{ }^{2} J_{\mathrm{HH}}=16.5,{ }^{3} J_{\mathrm{HH}}=11.7 \mathrm{~Hz}\right), 3.18(\mathrm{br} \mathrm{d}, 1$ $\left.\mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.8 \mathrm{~Hz}\right), 3.60\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph},{ }^{2} J_{\mathrm{HH}}=16.5,{ }^{3} J_{\mathrm{HH}}=4.5 \mathrm{~Hz}\right), 5.16(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}$, $\left.{ }^{3} J_{\mathrm{HH}}=11.7,{ }^{3} J_{\mathrm{HH}}=4.5 \mathrm{~Hz}\right), 6.86-6.91(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}+\mathrm{Ar}), 7.04-7.34(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ph}+\mathrm{Ar})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.5 MHz): $\delta 27.8\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 36.0\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 39.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 46.8$ $\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 52.3\left(\mathrm{CMe}_{2}\right), 88.3(\mathrm{CH}), 89.4(\mathrm{C} 7), 122.9(\mathrm{C} 8), 125.9(\mathrm{CH}), 126.3(\mathrm{CH}), 126.7$ (CH), $127.0(\mathrm{CH}), 127.5(\mathrm{CH}), 127.8(\mathrm{CH}, \mathrm{Ph}), 127.9(\mathrm{CH}, \mathrm{Ph}), 128.3$ (br s, CH, Ph), 129.2 (CH), $129.4(\mathrm{CH}), 128.5(\mathrm{CH}, \mathrm{Ph}), 132.3(\mathrm{CH}), 134.9$ (CH3), 137.6 (C2), 139.8 (i-C, Ph), 140.4 (C1), 141.0 (i-C, Ph), 143.2 (i-C, Ph). Data for $s y n-1 \mathbf{1 b}:{ }^{1} H$ NMR (400.9 MHz): $\delta 1.29$ (s, $3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), $1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.85\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.0 \mathrm{~Hz}\right), 2.09(\mathrm{~d}, 1$
$\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.8 \mathrm{~Hz}\right), 2.28\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.8,{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 3.17(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph},{ }^{2} J_{\mathrm{HH}}=14.8,{ }^{3} J_{\mathrm{HH}}=10.6 \mathrm{~Hz}\right), 3.29\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}\right), 3.40(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph},{ }^{2} J_{\mathrm{HH}}=15.2,{ }^{3} J_{\mathrm{HH}}=4.0 \mathrm{~Hz}\right), 4.84\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=10.4,{ }^{3} J_{\mathrm{HH}}=4.0 \mathrm{~Hz}\right), 6.50(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{Ph}), 6.87-6.91(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 6.99-7.04(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 6+3 \mathrm{H}$ of Ph), $7.08(\mathrm{td}, 1 \mathrm{H}, \mathrm{H} 5$, $\left.{ }^{3} J_{\mathrm{HH}}=7.6,{ }^{4} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}\right), 7.11-7.20(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}), 7.22\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=7.2,{ }^{4} J_{\mathrm{HH}}=1.6\right.$ Hz), 7.36 (br s, $1 \mathrm{H}, \mathrm{Ph}$), 7.84 (br s, $1 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.8 MHz): $\delta 27.2$ (Me, $\left.\mathrm{CMe}_{2}\right)$, $35.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 36.1\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 46.3\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 53.1\left(\mathrm{CMe}_{2}\right), 84.7(\mathrm{CH}), 88.0(\mathrm{C} 7)$, $124.5(\mathrm{C} 8), 125.8(\mathrm{CH}, \mathrm{Ph}), 126.2$ (CH6), 126.9 (CH5), 127.1 (CH, Ph), 127.28 (CH4 or Ph), 127.29 (CH4 or Ph), 127.5 (CH, Ph), 127.9 (br s, CH, Ph), 128.21 (CH, Ph), $128.25(\mathrm{CH}, \mathrm{Ph})$, 128.4 (CH, Ph), 128.7 (CH, Ph), 131.4 (CH, Ph), 133.6 (br s, CH, Ph), 134.9 (i-C, Ph), 135.1 (CH3), 138.4 (C2), 139.7 (i-C, Ph), 140.0 (C1), 142.2 (i-C, Ph).
anti/syn Isomerization of 1b. An NMR tube was charged with a 2.5:1 mixture of anti/syn-1b $(20 \mathrm{mg})$ and $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL})$, and the solution was heated at $60^{\circ} \mathrm{C}$. The sample was checked by ${ }^{1} \mathrm{H}$ NMR periodically, until no changed was observed. After 5 days at $60^{\circ} \mathrm{C}$, a 1:10 mixture of anti/syn-1b was obtained.

Synthesis of anti/syn-2a. Ethyl acrylate ($40 \mu \mathrm{~L}, 0.367 \mathrm{mmol}$) was added to a solution of palladacycle a ($200 \mathrm{mg}, 0.183 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and the mixture was stirred for 48 h . The resulting mixture was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL , and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, and the pale yellow solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give a mixture of anti/syn-2a (171 mg ; ratio ca. 5:1 by ${ }^{1} \mathrm{H}$ NMR). The filtrate was concentrated to ca. 1 mL , and n-pentane (20 mL) was added. The resulting suspension was filtered, and the solid was air-dried to afford a mixture of anti/syn-2a (30 mg ; ratio ca. 1:5 by ${ }^{1} \mathrm{H}$ NMR). Yield: $201 \mathrm{mg}, 0.312 \mathrm{mmol}, 85 \%$. Mp: $169{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{BrNO}_{4} \mathrm{Pd}$ (644.901): C, $54.01 ; \mathrm{H}, 5.00 ; \mathrm{N}, 2.17$. Found: C , $54.25 ; \mathrm{H}, 5.00 ; \mathrm{N}, 2.49$. IR $\left(\mathrm{cm}^{-1}\right): ~ v(\mathrm{NH}) 3293 \mathrm{w}, 3214 \mathrm{br} ; \mathrm{v}(\mathrm{CO}) 1727 \mathrm{~s}, 1711 \mathrm{~s}$. Data for
anti-2a: ${ }^{1} \mathrm{H}$ NMR (400.9 MHz): $\delta 1.19\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right.$), $1.61\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2}\right.$, $\left.{ }^{2} J_{\mathrm{HH}}=12.0 \mathrm{~Hz}\right), 1.90\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=10.8,{ }^{3} J_{\mathrm{HH}}=4.8 \mathrm{~Hz}\right), 2.35\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right.$, $\left.{ }^{2} J_{\mathrm{HH}}=17.3,{ }^{3} J_{\mathrm{HH}}=11.6 \mathrm{~Hz}\right), 2.58\left(\mathrm{br} \mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=15.6,{ }^{4} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right), 2.93(\mathrm{~m}, 1$ $\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.26-3.33\left(\mathrm{~m}, 3 \mathrm{H}, 1 \mathrm{H}\right.$ of $\mathrm{NH}_{2}+1 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{~N}+1 \mathrm{H}$ of $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}$, MeO), 3.91 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{MeO}$), 4.01 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 4.15 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 4.85 (dd, $1 \mathrm{H}, \mathrm{CH}$, $\left.{ }^{2} J_{\mathrm{HH}}=11.6,{ }^{3} J_{\mathrm{HH}}=4.8 \mathrm{~Hz}\right), 6.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3), 6.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6), 6.99-7.10(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph}), 7.11-$ $7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.8 MHz): $\delta 14.1\left(\mathrm{MeCH}_{2}\right), 35.1\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 39.4$ $\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 42.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 56.0(\mathrm{MeO}), 56.0(\mathrm{MeO}), 60.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 79.1(\mathrm{CH}), 93.8(\mathrm{C} 7)$, 112.5 (CH6), 116.4 (CH3), 123.9 (C8), $126.8(\mathrm{CH}), 127.2(\mathrm{CH}), 127.3(\mathrm{CH}), 127.9(\mathrm{CH})$, 128.0 (CH), 129.6 (CH), 132.1 (C1), 132.6 (C2), 140.7 (i-C, Ph), 143.1 (i-C, Ph), 147.0 (C5), 148.6 (C4), 170.0 (CO).
anti/syn Isomerization of 2a. An NMR tube was charged with a 5:1 mixture of anti/syn-2a (20 mg) and $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL})$, and the solution was heated at $60^{\circ} \mathrm{C}$. The sample was checked by ${ }^{1} \mathrm{H}$ NMR periodically, until complete conversion. After 48 h at $60{ }^{\circ} \mathrm{C}$, a spectroscopically pure sample of syn-2a was obtained. Data for syn-2a: ${ }^{1}$ H NMR (300.1 $\mathrm{MHz}): \delta 1.10\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 1.67\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.8 \mathrm{~Hz}\right), 1.88(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=15.6,{ }^{3} J_{\mathrm{HH}}=10.8 \mathrm{~Hz}\right), 2.49\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=15.3,{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}\right)$, $2.80\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et},{ }^{2} J_{\mathrm{HH}}=18.0,{ }^{3} J_{\mathrm{HH}}=10.2 \mathrm{~Hz}\right), 2.90(\mathrm{~m}$, partially obscured by the resonance of $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.25-3.32\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2} \mathrm{~N}+1 \mathrm{H}$ of $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)$, $3.37\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=9.9 \mathrm{~Hz}\right), 3.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 3.93-3.96(\mathrm{~m}$, partially obscured by the resonance of $\mathrm{MeO}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.96-4.05 (m, partially obscured by the resonance of $\left.\mathrm{MeO}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.99(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 4.75\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=10.2,{ }^{3} J_{\mathrm{HH}}=4.2 \mathrm{~Hz}\right), 6.63(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H} 3), 6.87-6.91$ (m, partially obscured by the resonance of $\mathrm{H} 6,2 \mathrm{H}, \mathrm{Ph}), 6.93(\mathrm{~s}, 1 \mathrm{H}$, H6), 7.01-7.17 (m, $6 \mathrm{H}, \mathrm{Ph}), 7.27-7.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.65\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{Ph},{ }^{3} J_{\text {H }}=6.0 \mathrm{~Hz}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(75.5 \mathrm{MHz}): \delta 14.1\left(\mathrm{MeCH}_{2}\right), 34.7\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 34.9\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 43.7\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $56.0(\mathrm{MeO}), 56.2(\mathrm{MeO}), 60.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 75.2(\mathrm{CH}), 92.2(\mathrm{C} 7), 110.1(\mathrm{CH} 6), 116.2(\mathrm{CH} 3)$,
$125.6(\mathrm{C} 8), 127.1(\mathrm{CH}), 127.3(\mathrm{CH}), 127.6(\mathrm{CH}), 127.8(\mathrm{CH}), 128.8(\mathrm{CH}), 131.5(\mathrm{C} 1), 133.0$ (CH), 133.1 (C2), 134.6 (i-C, Ph), 142.2 ($i-\mathrm{C}, \mathrm{Ph}), 147.8$ (C5), 148.4 (C4), 170.8 (CO).

Synthesis of anti/syn-2b. Method A. Ethyl acrylate ($50 \mu \mathrm{~L}, 0.460 \mathrm{mmol}$) was added to a solution of palladacycle $\mathbf{b}(200 \mathrm{mg}, 0.213 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was stirred for 12 h , and then concentrated to ca. $5 \mathrm{~mL} . \mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added, and the resulting suspension was filtered through a plug of Celite. The filtrate was concentrated to ca. 1 mL , and n-pentane (20 mL) was added. The suspension was filtered, and the pale yellow solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give a mixture of anti/syn-2b (ratio ca. 1.25:1 by ${ }^{1} \mathrm{H}$ NMR). Yield: $197 \mathrm{mg}, 0.346 \mathrm{mmol}, 81 \%$. Mp: $127{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{ClNO}_{2} \mathrm{Pd}$ (568.451): C, 61.27; H, 5.67; N, 2.46. Found: C, 61.38; H, 5.42; N, 2.46. IR $\left.\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3293 \mathrm{w}, 3214 \mathrm{br} ; \mathfrak{v (C O}\right) 1727 \mathrm{~s}, 1711 \mathrm{~s}$. Method B. In a different preparation, it was possible to obtain two different crops by fractional crystallization, each of them enriched in one of the isomers. Ethyl acrylate ($40 \mu \mathrm{~L}, 0.262 \mathrm{mmol}$) was added to a solution of palladacycle $\mathbf{b}(150 \mathrm{mg}, 0.160 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The mixture was stirred for 12 h , and then filtered through a plug of Celite. The filtrate was concentrated to ca. 2 mL , and $\mathrm{Et}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ was added. The resulting suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to afford 58 mg of a syn-enriched mixture of both isomers (anti/syn $=1: 3$). The mother liquors were concentrated to ca. 5 mL and cooled at $0^{\circ} \mathrm{C}$. A suspension formed, which was filtered and the solid was air-dried to afford 60 mg of an antienriched mixture of both isomers (anti/syn $=3: 1$). Samples almost spectroscopically pure of anti- and syn-2b could be obtained by growing single crystals from the enriched mixtures. Data for anti-2b: ${ }^{1} \mathrm{H}$ NMR (400.9 MHz): $\delta 1.22\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right.$), $1.27(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}, \mathrm{CMe}_{2}$), $1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right.$), 1.81 (br d, $1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.0 \mathrm{~Hz}$), $2.09(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.8 \mathrm{~Hz}\right), 2.21\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH},{ }^{2} J_{\mathrm{HH}}=17.2,{ }^{3} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 2.36(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.8,{ }^{4} J_{\mathrm{HH}}=1.6 \mathrm{~Hz}$), 3.13 (br d, partially obscured by the resonance of $\mathrm{CH}_{2} \mathrm{CH}$, $\left.1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=9.6 \mathrm{~Hz}\right), 3.16\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH},{ }^{2} J_{\mathrm{HH}}=17.2,{ }^{3} J_{\mathrm{HH}}=5.2 \mathrm{~Hz}\right), 4.11(\mathrm{~m}, 2 \mathrm{H}$,
$\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.94\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=11.2,{ }^{3} J_{\mathrm{HH}}=5.2 \mathrm{~Hz}\right), 6.86-6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.03-7.11(\mathrm{~m}$, $6 \mathrm{H}, 5 \mathrm{H}$ of $\mathrm{Ph}+\mathrm{H} 6), 7.13$ (td, partially obscured by the resonante of $\mathrm{H} 6,1 \mathrm{H}, \mathrm{H} 4,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6$, $\left.{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.21(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{H}, \mathrm{Ph}), 7.27\left(\mathrm{~m}\right.$, partially obscured by the resonance of CHCl_{3}, $1 \mathrm{H}, p-\mathrm{H}, \mathrm{Ph}), 7.30\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.6,{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.34\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=7.6,{ }^{4} J_{\mathrm{HH}}\right.$ $=1.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.8 MHz): $\delta 14.2\left(\mathrm{MeCH}_{2}\right), 27.7\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 36.0\left(\mathrm{Me}, \mathrm{CMe}_{2}\right)$, $39.0\left(\mathrm{CH}_{2} \mathrm{CH}\right), 46.6\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 52.3\left(\mathrm{CMe}_{2}\right), 60.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 81.0(\mathrm{CH}), 90.0(\mathrm{C} 7), 123.5(\mathrm{C} 8)$, 126.5 (CH5), 126.8 ($p-\mathrm{CH}, \mathrm{Ph}$), 127.1 ($o-\mathrm{CH}, \mathrm{Ph}), 127.6$ ($m-\mathrm{CH}, \mathrm{Ph}$), 127.9 ($m-\mathrm{CH}, \mathrm{Ph}$), 128.2 (CH4), 128.3 ($m-\mathrm{CH}, \mathrm{Ph}$), 128.9 (CH6), 129.1 ($o-\mathrm{CH}, \mathrm{Ph}), 129.5$ ($o-\mathrm{CH}, \mathrm{Ph}), 132.2$ ($p-$ $\mathrm{CH}, \mathrm{Ph}), 135.0$ (CH3), 137.8 (C2), 140.49 (C1), 140.55 (i-C, Ph), 142.8 (i-C, Ph), 169.4 (CO). Data for syn-2b: ${ }^{1} \mathrm{H}$ NMR (300.1 MHz): $\delta 1.16\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{MeCH}_{2},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right.$), $1.28(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.82\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=9.9 \mathrm{~Hz}\right), 2.09(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.7 \mathrm{~Hz}\right), 2.29\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4,{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.8 \mathrm{~Hz}\right), 2.76(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH},{ }^{2} J_{\mathrm{HH}}=18.3,{ }^{3} J_{\mathrm{HH}}=9.9 \mathrm{~Hz}\right), 3.17\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH},{ }^{2} J_{\mathrm{HH}}=18.3,{ }^{3} J_{\mathrm{HH}}=4.2 \mathrm{~Hz}\right), 3.22$ (br d, partially obscured by the resonance of $\left.\mathrm{CH}_{2} \mathrm{CH}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=9.3 \mathrm{~Hz}\right), 4.01(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.79\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=9.6,{ }^{3} J_{\mathrm{HH}}=4.2 \mathrm{~Hz}\right), 6.87-7.36(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ph}+\mathrm{Ar}), 7.65(\mathrm{br}$ s, $1 \mathrm{H}, \mathrm{CH}, \mathrm{Ph}$ or Ar$).{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.5 MHz): $\delta 14.1\left(\mathrm{MeCH}_{2}\right), 27.2\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 34.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}\right), 36.1\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 46.3\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 53.4\left(\mathrm{CMe}_{2}\right), 60.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 76.7(\mathrm{CH}), 88.9(\mathrm{C} 7)$, $125.5(\mathrm{C} 8), 126.6(\mathrm{CH}), 127.1(\mathrm{CH}), 127.3(\mathrm{CH}), 127.5(\mathrm{CH}), 127.6(\mathrm{CH}), 127.9(\mathrm{CH}), 128.3$ $(\mathrm{CH}), 128.5(\mathrm{br} \mathrm{s}, \mathrm{CH}), 128.8(\mathrm{CH}), 129.5(\mathrm{CH}), 131.2(\mathrm{CH}), 133.0(\mathrm{br} \mathrm{s}, \mathrm{CH}), 134.5$ (i-C, Ph), 135.1 (CH3), 138.3 (C2), 139.8 (C1), 142.0 (i-C, Ph), 170.4 (CO).
anti/syn Isomerization of $\mathbf{2 b}$. An NMR tube was charged with a $1.25: 1$ mixture of anti/syn-1b (20 mg) and $\mathrm{CDCl}_{3}(0.6 \mathrm{~mL})$, and the solution was heated at $60{ }^{\circ} \mathrm{C}$. The sample was checked by ${ }^{1} \mathrm{H}$ NMR periodically, until no changed was observed. After 48 days at $60^{\circ} \mathrm{C}$, a 1:20 mixture of anti/syn-2b was obtained.

Synthesis of anti/syn-3b. TlOTf ($56 \mathrm{mg}, 0.158 \mathrm{mmol}$) was added to a suspension of complex $\mathbf{1 b}(90 \mathrm{mg}, 0.157 \mathrm{mmol})$ in acetone $(10 \mathrm{~mL})$, and the resulting mixture was stirred for 2 h . The solvent was removed, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added. The suspension was filtered through a plug of Celite, p-toluidine ($17 \mathrm{mg}, 0.159 \mathrm{mmol}$) was added to the filtrate, and the mixture was stirred for another 30 min . The solvent was concentrated to ca. 1 mL , and n-pentane was added. The suspension was filtered, and the pale yellow solid was washed with cold n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give a mixture of anti/syn-3b (ratio ca. 1:1.33 by ${ }^{1} \mathrm{H}$ NMR $)$. Yield: $60.0 \mathrm{mg}, 0.076 \mathrm{mmol}, 48 \% . \mathrm{Mp:} 120^{\circ} \mathrm{C} \cdot \Lambda_{\mathrm{M}}\left(\Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}\right): 106(\mathrm{c}=2.7 \mathrm{x}$ $10^{-4} \mathrm{M}$). Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \operatorname{PdS}$ (793.237): C, 60.57 ; H, 5.21; N, 3.53; S, 4.04. Found: C, 60.38; H, 5.17; N, 3.30; S, 4.04. IR (cm ${ }^{-1}$): v(NH) $3295 \mathrm{w}, 3251 \mathrm{~m}, 3159 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR ($400.9 \mathrm{MHz},-40^{\circ} \mathrm{C}$): Data for anti-3b (minor isomer, extracted from the mixture): δ 0.86 (s, $3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 1.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 1.92 (br d, $1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12.6 \mathrm{~Hz}$), 1.98 $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} J_{\mathrm{HH}}=15.2 \mathrm{~Hz}\right), 2.20-2.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, overlapped with one H of CH_{2} of the major isomer), $2.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{Tol}), 2.44-2.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, overlapped with one H of CH_{2} of the major isomer), $2.73\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} J_{\mathrm{HH}}=14.8,{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}\right), 4.13\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2}\right.$, $\left.{ }^{2} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 4.74\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{HH}}=8.8,{ }^{3} J_{\mathrm{HH}}=6.0 \mathrm{~Hz}\right), 5.33\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=\right.$ $11.2 \mathrm{~Hz}), 5.54\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=10.4 \mathrm{~Hz}\right), 6.32-7.55(\mathrm{~m}, 23 \mathrm{H}, \mathrm{Ph}+\mathrm{Ar}$, overlapped with the aromatic protons of the major isomer). Data for syn- $\mathbf{3 b}$ (major isomer, extracted from the mixture): $\delta 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right)$, $1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.70\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=\right.$ $10.8 \mathrm{~Hz}), 2.06\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2},{ }^{2} J_{\mathrm{HH}}=15.2 \mathrm{~Hz}\right), 2.20-2.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, overlapped with one H of CH_{2} of the minor isomer), $2.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{Tol}), 2.44-2.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, overlapped with one H of CH_{2} of the minor isomer), $2.81\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=16.4,{ }^{3} J_{\mathrm{HH}}=4.0 \mathrm{~Hz}\right), 3.92(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=9.6 \mathrm{~Hz}\right), 4.24\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.0,{ }^{3} J_{\mathrm{HH}}=4.0 \mathrm{~Hz}\right), 5.02\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2}\right.$, $\left.{ }^{2} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}\right), 6.30\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.0 \mathrm{~Hz}\right), 6.32-7.55(\mathrm{~m}, 23 \mathrm{H}, \mathrm{Ph}+\mathrm{Ar}$, overlapped with the aromatic protons of the minor isomer). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.8 \mathrm{MHz},-40$ ${ }^{\circ} \mathrm{C}$): Data for both isomers: $\delta 20.7$ (Me, Tol, major), 20.8 (Me, Tol, minor), 25.9 ($\mathrm{Me}, \mathrm{CMe}_{2}$,
minor), 27.4 ($\mathrm{Me}, \mathrm{CMe}_{2}$, major), $33.8\left(\mathrm{CH}_{2}\right.$, minor), 34.4 ($\mathrm{Me}, \mathrm{CMe}_{2}$, major), 34.8 (Me , CMe_{2}, minor), $41.4\left(\mathrm{CH}_{2}\right.$, major $)$, $46.5\left(\mathrm{CH}_{2}\right.$, minor $)$, $47.2\left(\mathrm{CH}_{2}\right.$, major), $52.6\left(\mathrm{CMe}_{2}\right.$, major $)$, 53.0 (CMe_{2}, minor), 84.6 (CH , minor), 86.6 (C, major), 87.1 (C, minor), $93.7(\mathrm{CH}$, major), $188.8\left(\mathrm{CH}\right.$, major), $119.8\left(\mathrm{CH}\right.$, minor), $119.9\left(\mathrm{q}, \mathrm{CF}_{3},{ }^{1} J_{\mathrm{CF}}=318.8 \mathrm{~Hz}\right), 124.1$ (C, major), $126.3(\mathrm{CH}), 126.4(\mathrm{CH}), 126.5(\mathrm{CH}), 126.7,126.8(\mathrm{C}$, minor), $127.1(\mathrm{CH}), 127.2(\mathrm{CH}), 127.3$ (CH), $127.4(\mathrm{CH}), 127.6(\mathrm{CH}), 127.7(\mathrm{CH}), 127.8(\mathrm{CH}), 127.8(\mathrm{CH}), 127.9(\mathrm{CH}), 128.0(\mathrm{CH})$, $128.1(\mathrm{CH}), 128.1(\mathrm{CH}), 128.4(\mathrm{CH}), 128.6(\mathrm{CH}), 128.7(\mathrm{CH}), 129.0(\mathrm{CH}), 129.5(\mathrm{CH}), 129.7$ $(\mathrm{CH}), 129.8(\mathrm{CH}), 130.0(\mathrm{CH}), 131.5(\mathrm{CH}), 131.9(\mathrm{CH}), 132.7(\mathrm{CH}), 133.1(\mathrm{C}$, major), 133.6 (C, minor), 134.1 (C, minor), $134.9(\mathrm{CH}), 135.0(\mathrm{CH}), 137.7$ (C, major), 138.2 (C, minor), 138.5 (C, minor), 138.9 (C, minor), 139.0 (C, major), 139.4 (C, minor), 139.6 (C, major), 139.7 (C , major), 139.9 (C , major), 140.8 (C , minor), 141.2 (C , major).

Synthesis of $\mathbf{4 a \cdot 1 / 2} \mathbf{H}_{\mathbf{2}} \mathbf{O}$. In a Carius tube, $\mathrm{KO}^{\prime} \mathrm{Bu}(190 \mathrm{mg}, 1.55 \mathrm{mmol})$ was added to a solution of anti/syn-1a ($100 \mathrm{mg}, 0.154 \mathrm{mmol}$) in dry toluene (10 mL), under nitrogen atmosphere. The mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 12 h . Decomposition to metallic palladium was observed. The solvent was removed, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added to the residue. The resulting suspension was filtered through a plug of Celite, the filtrate was concentrated to ca. $1 \mathrm{~mL}, n$-pentane (20 mL) was added, and the mixture was cooled to $0^{\circ} \mathrm{C}$. The resulting suspension was filtered, and the solid was air-dried to give $\mathbf{4 a} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ as a colorless solid. Yield: $55 \mathrm{mg}, 0.117 \mathrm{mmol}, 76 \%$. Mp: $129{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{NO}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ (470.611): C, $81.67 ; \mathrm{H}, 6.85 ; \mathrm{N}, 2.97$. Found: C, $81.84 ; \mathrm{H}, 6.60$; N, 3.05. ESI-HRMS $(\mathrm{m} / \mathrm{z})$: exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{NO}_{2}, 462.2433\left[(\mathrm{M}+\mathrm{H})^{+}\right]$; found, 462.2433 . IR $\left(\mathrm{cm}^{-1}\right)$: $v(\mathrm{NH}) 3375 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (300.1 MHz): $\delta 1.22\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{NH}_{2}+1 \mathrm{H}\right.$ of $\mathrm{H}_{2} \mathrm{O}$), 2.50-2.61 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}$), 2.63$2.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.70-2.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 3.95(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO})$, $6.23\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=,{ }^{3} \mathrm{H}_{\mathrm{HH}}=15.9 \mathrm{~Hz}\right), 6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3), 6.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 6), 6.86-6.90(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ph}), 6.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.9 \mathrm{~Hz}\right), 6.97-7.00(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.12-7.24(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph})$, 7.27-7.35 (m, $3 \mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.8 MHz): $\delta 37.4\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 42.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 55.8$
(MeO), $56.1(\mathrm{MeO}), 111.9(\mathrm{CH} 3), 112.6(\mathrm{CH} 6), 126.3(\mathrm{CH}, \mathrm{Ph}), 126.4(\mathrm{CH}, \mathrm{Ph}), 126.9(\mathrm{CH}$, Ph), 127.3 (CH, Ph), 127.4 (CH, Ph), 128.1 (CH, Ph), 128.5 (CH, Ph), 130.5 (CH, Ph), 130.9 $(\mathrm{CH}=), 131.2(\mathrm{C} 2), 131.3(\mathrm{CH}, \mathrm{Ph}), 132.3(\mathrm{CH}=), 133.8(\mathrm{C} 1), 137.5(i-\mathrm{C}, \mathrm{Ph}), 139.7(i-\mathrm{C}, \mathrm{Ph})$, 139.7 (i-C, Ph), 141.3 (C7), 141.8 (C8), 147.0 (C4), 148.2 (C5).

Synthesis of $\mathbf{5 b} \cdot \mathbf{H}_{\mathbf{2}} \mathbf{O}$. In a Carius tube, $\mathrm{KO}^{\prime} \mathrm{Bu}(250 \mathrm{mg}, 2.04 \mathrm{mmol})$ was added to a solution of anti/syn-1b ($120 \mathrm{mg}, 0.209 \mathrm{mmol}$) in dry toluene (10 mL), under nitrogen atmosphere. The mixture was heated at $100^{\circ} \mathrm{C}$ for 12 h . Decomposition to metallic palladium was observed. The solvent was removed, and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to the residue. The suspension was filtered through a plug of Celite, and the solvent was removed from the filtrate to give crude $\mathbf{4 b}$ as an oily residue, which was was characterized by ${ }^{1} \mathrm{H}$ NMR. Data for 4b: ${ }^{1} \mathrm{H}$ NMR (400.9 MHz): $\delta 0.99$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 1.04 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 1.09 (s, $3 \mathrm{H}, \mathrm{Me}$, CMe_{2}), 2.34, $2.54\left(\mathrm{AB}\right.$ system, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{AB}}=13.6 \mathrm{~Hz}\right), 6.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=,{ }^{3} J_{\mathrm{HH}}=15.6\right.$ $\mathrm{Hz}), 6.81-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.96-7.00(\mathrm{~m}, 3 \mathrm{H}), 7.03\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=,{ }^{3} \mathrm{JH}_{\mathrm{HH}}=16.0 \mathrm{~Hz}\right), 7.10-7.47$ ($\mathrm{m}, 14 \mathrm{H}$). Crude 4b was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, $\operatorname{HOTf}(0.05 \mathrm{~mL}, 0.565 \mathrm{mmol})$ was added, and the resulting solution was stirred for 30 min . The solvent was concentrated to ca. 1 $\mathrm{mL}, \mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added, and the mixture was cooled to $0^{\circ} \mathrm{C}$. The resulting suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give the salt $\mathbf{5 b} \cdot \mathrm{H}_{2} \mathrm{O}$ as a colorless solid. Yield: $63 \mathrm{mg}, 0.105 \mathrm{mmol}, 50 \% . \mathrm{Mp}: 131{ }^{\circ} \mathrm{C} . \Lambda_{\mathrm{M}}\left(\Omega^{-1} \mathrm{~mol}^{-1}\right.$ $\left.\mathrm{cm}^{2}\right): 108.5\left(\mathrm{c}=5.09 \times 10^{-4} \mathrm{M}\right)$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$ (597.696): C, 66.31; H, 5.73; N, 2.34; S, 5.36. Found: C, 66.02; H, 5.59; N, 2.43; S, 5.59. ESI-HRMS (m/z): exact mass calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}, 430.2529\left[\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{SO}_{3}\right)^{+}\right]$; found, 430.2533 . IR $\left(\mathrm{cm}^{-1}\right)$: $\downarrow(\mathrm{NH}) 3479$ w. ${ }^{1} \mathrm{H}$ NMR (400.9 MHz): $\delta 1.23$ (s, $3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 1.25 (s, $3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 2.55, 2.62 $\left(\mathrm{AB}\right.$ system, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{AB}}=14.0 \mathrm{~Hz}\right), 3.00\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{2} \mathrm{O}\right), 6.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=,{ }^{3} J_{\mathrm{HH}}=\right.$ $16.0 \mathrm{~Hz}), 6.75-6.95(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 6.94-6.97(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 6.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}=,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16.0 \mathrm{~Hz}\right)$, 7.09-7.21(m, 6 H, Ph), 7.22-7.27 (m, $4 \mathrm{H}, 3 \mathrm{H}$ of $\mathrm{Ph}+\mathrm{H} 3), 7.33\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{H} 4,{ }^{3} J_{\mathrm{HH}}=7.6\right.$, $\left.{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.38\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} J_{\mathrm{HH}}=7.2,{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.50\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 6,{ }^{3} J_{\mathrm{HH}}=7.2,{ }^{4} J_{\mathrm{HH}}\right.$
$=1.2 \mathrm{~Hz}), 7.70\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{NH}_{3}\right) \cdot{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.8 MHz): $\delta 24.7\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 26.4(\mathrm{Me}$, $\left.\mathrm{CMe}_{2}\right), 42.4\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 57.0\left(\mathrm{CMe}_{2}\right), 119.7\left(\mathrm{q}, \mathrm{CF}_{3},{ }^{1} J_{\mathrm{CF}}=318.7 \mathrm{~Hz}\right), 126.5(\mathrm{CH}, \mathrm{Ph}), 127.0$ (CH, Ph), 127.3 (CH5), 127.6 (CH, Ph), 128.1 (CH, Ph), $128.5(\mathrm{CH}, \mathrm{Ph}), 128.6(\mathrm{CH} 4), 130.3$ (CH, Ph), 130.6 ($\mathrm{CH}=), 130.9(\mathrm{CH}, \mathrm{Ph}), 132.2$ (CH3), 133.4 (CH=), 133.9 (C2), 134.2 (CH6), 137.3 (i-C, Ph), 139.4 (i-C, Ph), 140.5 (C8), 141.26 (i-C, Ph), 141.34 (C7), 142.2 (C1).
 Norbornene $\left(\mathrm{C}_{7} \mathrm{H}_{10} ; 25 \mathrm{mg}, 0.265 \mathrm{mmol}\right)$ was added to a solution of palladacycle $\mathbf{d}(65 \mathrm{mg}$, $0.072 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the yellow solution was stirred for 2 h . The solvent was removed under vacuum at room temperature (to prevent the evolution of the complex), and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The resulting suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to afford complex $\mathbf{6 d}$ as a colorless solid. Yield: 58 mg , $0.106 \mathrm{mmol}, 73 \%$. Mp: $182^{\circ} \mathrm{C}$ (dec). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{ClNO}_{2} \mathrm{Pd}$ (544.429): C, 59.56; H , 5.92; N, 2.57. Found: C, 59.37; H, 6.01; N, 2.41. IR (cm ${ }^{-1}$): u(NH) 3323 w, 3267 w; u(CO) $1725 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (400.9 MHz): $\delta 0.66$ (br d, $1 \mathrm{H}, \mathrm{CH}$, nor, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}$), $0.97(\mathrm{br} \mathrm{d}, 1 \mathrm{H}$, CH_{2}, nor, ${ }^{2} J_{\mathrm{HH}}=9.6 \mathrm{~Hz}$), 1.04 (br m, $1 \mathrm{H}, \mathrm{CH}_{2}$, nor), 1.11 (br m, $1 \mathrm{H}, \mathrm{CH}_{2}$, nor), $1.35(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}, \mathrm{CMe}_{2}$), 1.38 (m , partially obscured by the resonance of Me group, $2 \mathrm{H}, \mathrm{CH}_{2}$, nor), 1.40 (s, $3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), $1.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$, nor $), 2.05\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor, $\left.{ }^{2} J_{\mathrm{HH}}=10.0 \mathrm{~Hz}\right), 2.49(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=15.6 \mathrm{~Hz}\right), 2.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=15.2 \mathrm{~Hz}\right), 3.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$, nor), $3.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 4.36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}\right.$, nor, $\left.{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.16\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.6,{ }^{4} J_{\mathrm{HH}}=\right.$ $1.2 \mathrm{~Hz}), 7.23-7.35(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}+\mathrm{Ph}), 7.83\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 6,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.95(\mathrm{~m}, 1 \mathrm{H}, o-\mathrm{H}$, $\mathrm{Ph})$. The ${ }^{1} \mathrm{H}$ resonance corresponding to the NH_{2} group was not observed. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.5 MHz): $\delta 18.0\left(\mathrm{CH}\right.$, nor), $27.6\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 27.8\left(\mathrm{CH}_{2}\right.$, nor $), 28.9\left(\mathrm{CH}_{2}\right.$, nor), $36.5(\mathrm{Me}$, $\left.\mathrm{CMe}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right.$, nor), $40.4\left(\mathrm{CH}\right.$, nor), $40.6(\mathrm{CH}$, nor $), 47.1\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 51.1(\mathrm{CH}$, nor $), 52.7$ $(\mathrm{MeO}), 54.9\left(\mathrm{CMe}_{2}\right), 99.8(\mathrm{C} 7), 123.9(\mathrm{CH} 6), 126.8(\mathrm{CH}, \mathrm{Ph}), 127.0(\mathrm{CH}, \mathrm{Ph}), 127.3(\mathrm{CH}$, $\mathrm{Ph}), 127.4(\mathrm{CH}, \mathrm{Ph}), 127.5(\mathrm{CH} 5), 127.9(\mathrm{CH} 4), 134.0(\mathrm{C} 1), 134.1$ ($o-\mathrm{CH}, \mathrm{Ph})$, 135.1 (CH3), 137.2 (i-C or C8), 138.4 (C2), 170.0 (CO).

Synthesis of $\left[\mathrm{Pd}\left\{\mathrm{C}, \mathrm{N}-\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \mathrm{CHC}(\mathrm{Ph})=\mathrm{C}(\mathrm{Me}) \mathrm{C}_{6} \mathbf{H}_{4} \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}-\mathbf{2}\right\} \mathrm{Cl}\right] \cdot \mathrm{CHCl}_{3}$

 ($\mathbf{7} \cdot \mathbf{C H C l} \mathbf{C H}_{3}$). In a Carius tube, 2 -norbornene $(100 \mathrm{mg}, 1.06 \mathrm{mmol})$ was added to a solution of palladacycle $\mathbf{c}(250 \mathrm{mg}, 0.308 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$, and the mixture was heated at $65^{\circ} \mathrm{C}$ for 12 h . The resulting solution was filtered through a plug of Celite, the solvent was removed from the filtrate, and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The resulting suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give complex $7 \mathbf{c} \cdot \mathrm{CHCl}_{3}$ as a yellow solid. Yield: $258 \mathrm{mg}, 0.416 \mathrm{mmol}, 67 \%$. Dec pt: $223{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{ClNPd} \cdot \mathrm{CHCl}_{3}$ (619.796): C, $52.32 ; \mathrm{H}, 5.37$; N, 2.26 . Found: C, $52.57 ;$ H, $5.48 ; \mathrm{N}, 2.29$. IR ($\left.\mathrm{cm}^{-1}\right): ~ v(\mathrm{NH})$ $3313 \mathrm{w}, 3250 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR (300.1 MHz): $\delta 0.82$ (br d, $1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=9.6 \mathrm{~Hz}$), 0.95 (br d, 1 $\mathrm{H}, \mathrm{CH}_{2}$, nor, $\left.{ }^{2} J_{\mathrm{HH}}=10.2 \mathrm{~Hz}\right), 1.07\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H} \alpha,{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 1.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right)$, 1.20-1.27 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$, nor), 1.37-1.50 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$, nor), 1.64 (s, $3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 2.05 (br d, $1 \mathrm{H}, \mathrm{CH}_{2}$, nor, ${ }^{2} J_{\mathrm{HH}}=9.9 \mathrm{~Hz}$), $2.14\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}\right.$, nor), $2.20\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=9.6\right.$ $\mathrm{Hz}), 2.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeC}=), 2.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=12.9 \mathrm{~Hz}\right), 3.09$ (br s, $1 \mathrm{H}, \mathrm{CH}$, nor), $3.65\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} \beta,{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 3.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=12.9 \mathrm{~Hz}\right), 6.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 6,{ }^{3} J_{\mathrm{HH}}\right.$ $=7.8 \mathrm{~Hz}), 6.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5), 7.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 4+\mathrm{H} 3), 7.18-7.25(\mathrm{br} \mathrm{m}$, partially obscured by the resonance of $\left.\mathrm{CHCl}_{3}, 3 \mathrm{H}, p-\mathrm{H}+m-\mathrm{H}, \mathrm{Ph}\right), 2.26\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{3}\right), 7.42(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, o-\mathrm{H}, \mathrm{Ph}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.5 MHz): $\delta 21.5(\mathrm{CH} \alpha), 27.9(\mathrm{MeC}=)$, $28.5\left(\mathrm{CH}_{2}\right.$, nor), 28.9 (CH_{2}, nor), $30.7\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 30.9\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right.$, nor), $40.0(\mathrm{CH}$, nor), $41.1(\mathrm{CH}$, nor), $48.1\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 52.3\left(\mathrm{CMe}_{2}\right), 54.6(\mathrm{CH} \beta), 77.8(\mathrm{C} 8), 107.7(\mathrm{C} 7), 126.3$ (CH5), 126.7 (CH4), 126.8 ($p-\mathrm{CH}, \mathrm{Ph}$), 131.0 (br s, CH 6 or $o-\mathrm{CH}$ of Ph), 131.1 (CH 6 or $o-\mathrm{CH}$ of Ph), 132.7 (CH3), 135.8 (C2), 138.6 ($i-\mathrm{C}, \mathrm{Ph}$), $142.6(\mathrm{C} 1)$. The ${ }^{13} \mathrm{C}$ resonance corresponding to m - CH of Ph was overlapped with the signal of CH 6 or $o-\mathrm{CH}$.
Synthesis of $\left[\mathrm{Pd}\left\{\mathrm{C}, \mathrm{N}-\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \mathrm{CHC}(\mathrm{Ph})=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}-\right.\right.$

 $\mathbf{2 \}} \mathbf{C l}] \cdot \mathbf{1} / \mathbf{2} \mathbf{C H C l}_{3}\left(\mathbf{7 d} \cdot \mathbf{1} / \mathbf{2 C H C l}_{3}\right)$. Method A. In a Carius tube, methyl phenylpropiolate (48 $\mu \mathrm{L}, 0.324 \mathrm{mmol})$ was added to a solution of palladacycle $\mathbf{e}(120 \mathrm{mg}, 0.156 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}$$(10 \mathrm{~mL})$, and the mixture was heated at $65^{\circ} \mathrm{C}$ for 2 h . The yellow solution was concentrated to ca. 1 mL , and $\mathrm{Et}_{2} \mathrm{O}$ was added (20 mL). The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give complex $7 \mathrm{~d} \cdot 1 / 2 \mathrm{CHCl}_{3}$ as a pale yellow solid. Yield: $37 \mathrm{mg}, 0.061 \mathrm{mmol}, 20 \%$. The filtrate was contentrated to ca. 2 mL and n pentane (20 mL) was added. The suspension was filtered, and the yellow solid was air dried to give a mixture ca. 1:0.7 of complex 7d and palladacycle d (80 mg). Method B. In a Carius tube, 2-norbornene ($50 \mathrm{mg}, 0.531 \mathrm{mmol}$) was added to a solution of palladacycle $\mathbf{d}(200 \mathrm{mg}$, $0.223 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$, and the mixture was heated at $65{ }^{\circ} \mathrm{C}$ for 4 h . The resulting solution was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL , and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2$ x 5 mL) and air-dried to give complex $\mathbf{7 d} \cdot 1 / 2 \mathrm{CHCl}_{3}$ as a pale yellow solid. Yield: 198 mg , $0.328 \mathrm{mmol}, 73 \%$. Dec pt: $204{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{ClNO}_{2} \mathrm{Pd}^{2} 1 / 2 \mathrm{CHCl}_{3}$ (604.117): C, 54.68; H, 5.42; N, 2.32. Found: C, 54.64; H, 5.42; N, 2.29. IR (cm ${ }^{-1}$): $\mathfrak{v}(\mathrm{NH}) 3320 \mathrm{w}, 3266 \mathrm{w}$; $v(\mathrm{CO}) 1716 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (400.9 MHz): $\delta 0.83\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=9.6 \mathrm{~Hz}\right), 0.95(\mathrm{br} \mathrm{d}, 1 \mathrm{H}$, CH_{2}, nor, $\left.{ }^{2} J_{\mathrm{HH}}=10.0 \mathrm{~Hz}\right), 1.05\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor, $\left.{ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}\right), 1.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right)$, 1.19-1.23 (m, $2 \mathrm{H}, \mathrm{H} \alpha+1 \mathrm{H}$ of CH_{2} of nor), 1.35-1.45 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$, nor), $1.64(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}$, $\left.\mathrm{CMe}_{2}\right), 1.93\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor, $\left.{ }^{2} J_{\mathrm{HH}}=9.6 \mathrm{~Hz}\right), 2.15\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}\right.$, nor), $2.37\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2}\right.$, $\left.{ }^{2} J_{\mathrm{HH}}=9.6 \mathrm{~Hz}\right), 2.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz}\right), 3.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$, nor), $3.61(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H} \beta,{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 4.35\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=12.8 \mathrm{~Hz}\right), 6.83(\mathrm{~m}, 1 \mathrm{H}$, H5), $6.88\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H} 6,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.01\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.08(\mathrm{td}, 1 \mathrm{H}, \mathrm{H} 4$, $\left.{ }^{3} J_{\mathrm{HH}}=7.6,{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 7.28\left(\mathrm{br} m\right.$, partially obscured by the resonance of $\mathrm{CHCl}_{3}, 3 \mathrm{H}, p-\mathrm{H}$ $+m-\mathrm{H}, \mathrm{Ph}), 7.48(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, o-\mathrm{H}, \mathrm{Ph}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100.8 \mathrm{MHz}): \delta 23.8(\mathrm{CH} \alpha), 28.3\left(\mathrm{CH}_{2}\right.$, nor), $28.4\left(\mathrm{CH}_{2}\right.$, nor), $30.7\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 30.75\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 37.0\left(\mathrm{CH}_{2}\right.$, nor), $39.8(\mathrm{CH}$, nor), $41.2(\mathrm{CH}$, nor $), 47.4\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 52.2\left(\mathrm{CMe}_{2}\right), 53.3(\mathrm{MeO}), 54.5(\mathrm{CH} \beta), 101.5(\mathrm{C} 7), 126.6$ (CH5), 127.5 ($p-\mathrm{CH}, \mathrm{Ph}$), 127.7 (br s, $m-\mathrm{CH}, \mathrm{Ph}$), 127.9 (CH4), 130.5 ($o-\mathrm{CH}, \mathrm{Ph}$), 132.5
(CH3), 133.2 (CH6), 135.1 (C1), 136.2 (i-C, Ph), 137.6 (C2), 169.1 (CO). The resonance corresponding to C 8 was not observed.

Synthesis of $\left[\mathrm{Pd}\left\{\mathrm{C}, \mathrm{N}-\mathrm{CH}\left(\mathrm{C}_{5} \mathrm{H}_{8}\right) \mathrm{CHC}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{NH}_{2}-\right.\right.$

 2\}Cl] (7f). Method A. In a Carius tube, dimethyl acetylenedicarboxylate ($82 \mu \mathrm{~L}, 0.667$ $\mathrm{mmol})$ was added to a suspension of palladacycle $\mathbf{e}(240 \mathrm{mg}, 0.312 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$, and the mixture was heated at $65^{\circ} \mathrm{C}$ for 8 h . The resulting solution was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL , and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give the complex 7 f as a bright yellow solid. Yield: $247 \mathrm{mg}, 0.469 \mathrm{mmol}, 75 \%$. Method B. In a Carius tube, a solution of dimethyl acetylenedicarboxylate ($65 \mu \mathrm{~L}, 0.529 \mathrm{mmol}$) and 2 norbornene ($50 \mathrm{mg}, 0.531 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was added to a solution of palladacycle \mathbf{B} ($150 \mathrm{mg}, 0.312 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(15 \mathrm{~mL}\right.$), and the mixture was heated at $65^{\circ} \mathrm{C}$ for 8 h . The resulting solution was filtered through a plug of Celite, the filtrate was concentrated to ca. 2 mL , and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and air-dried to give complex $7 \mathbf{f}$ as a bright yellow solid. Yield: 90 mg , 0.171 mmol, 33%. Dec pt: $188{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{ClNO}_{4} \mathrm{Pd}$ (526.368): C, $52.48 ; \mathrm{H}$, 5.74; N, 2.66. Found: C, 52.21 ; H, 6.11; N, 2.67. IR (cm^{-1}): $v(\mathrm{NH}) 3326 \mathrm{~m}, 3267 \mathrm{~m} ; ~ v(\mathrm{CO})$ $1731 \mathrm{~s}, 1716 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (400.9 MHz): $\delta 1.08$ (br d, partially obscured by the resonance of $\left.\mathrm{Me}, 1 \mathrm{H}, \mathrm{H} \alpha,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right), 1.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.11(\mathrm{~m}$, partially obscured by the resonance of $\mathrm{Me}, 1 \mathrm{H}, \mathrm{CH}_{2}$, nor), $1.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor), $1.33\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor, ${ }^{2} J_{\mathrm{HH}}=$ 10.4 Hz), $1.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor), 1.51 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 1.58 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}$, nor), 1.62 (br $\left.\mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}\right), 2.07\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}\right), 2.26\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor, $\left.{ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}\right), 2.48\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=13.2,{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}\right), 2.70(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{CH}$, nor, $\left.{ }^{3} J_{\mathrm{HH}}=3.6 \mathrm{~Hz}\right), 3.21\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{CH}\right.$, nor, $\left.{ }^{3} J_{\mathrm{HH}}=4.0 \mathrm{~Hz}\right), 3.60(\mathrm{~d}$, partially obscured by the resonance of $\left.\mathrm{MeO}, 1 \mathrm{H}, \mathrm{H} \beta,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.4 \mathrm{~Hz}\right), 3.61(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 3.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 4.12(\mathrm{~d}, 1$$\left.\mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz}\right), 7.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 3,{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 7.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6+\mathrm{H} 5), 7.28-$ $7.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.8 MHz): $\delta 25.6(\mathrm{CH} \alpha), 27.6\left(\mathrm{CH}_{2}\right.$, nor), $28.3\left(\mathrm{CH}_{2}\right.$, nor), $30.4\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 30.6\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 38.1\left(\mathrm{CH}_{2}\right.$, nor), $39.2(\mathrm{CH}$, nor), $42.4(\mathrm{CH}$, nor), $47.7\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 52.2\left(\mathrm{CMe}_{2}\right), 52.5(\mathrm{MeO}), 53.3(\mathrm{MeO}), 53.4(\mathrm{CH} \beta), 68.3(\mathrm{C} 8), 102.9(\mathrm{C} 7)$, 127.4 (CH5), 128.9 (CH4), 130.4 (CH6), 133.1 (CH3), 135.2 (C1), 137.2 (C2), 166.9 (CO), 167.7 (CO).

Synthesis of 8f. In a Carius tube, $\mathrm{KO}{ }^{\prime} \mathrm{Bu}(50 \mathrm{mg}, 0.445 \mathrm{mmol})$ was added to a solution of complex $7 \mathbf{f}(120 \mathrm{mg}, 0.228 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}$, under N_{2} atmosphere (10 mL), and the mixture was heated at $78^{\circ} \mathrm{C}$ for 3 days. Decomposition to metallic palladium was observed. The solvent was removed, n-pentane (20 mL) was added, and the mixture was filtered through a plug of Celite. The solvent was removed from the filtrate, the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ and HOTf ($0.01 \mathrm{~mL}, 0.113 \mathrm{mmol})$ was added. The resulting suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$ and air-dried to give compound $\mathbf{8 f}$ as a colorless solid. Yield: $23 \mathrm{mg}, 0.043 \mathrm{mmol}, 19 \% . \mathrm{Mp}: 197^{\circ} \mathrm{C} . \Lambda_{\mathrm{M}}\left(\Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}\right): 104.0(\mathrm{c}=$ $3.82 \times 10^{-4} \mathrm{M}$). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{NO}_{7} \mathrm{~S}$ (533.566): C, 54.02; H, 5.67; N, 2.62, S; 6.00. Found: C, $53.88 ; \mathrm{H}, 6.09$; N, 2.69; S: 5.97. The hydrogen content found in the elemental analysis was slightly outside the accepted range ($6.09 \mathrm{vs} .5 .67 \% ; \Delta=0.42$). This could be attributed to the presence of small traces of $\mathrm{Et}_{2} \mathrm{O}$ in the sample (see the Supporting Information), which remained in spite of being dried under vacuum. ESI-HRMS $(\mathrm{m} / \mathrm{z})$: exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{4}, 384.2169\left[\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{SO}_{3}\right)^{+}\right]$; found, 384.2174. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{CO}) 1740$ (s), 1683 (s). ${ }^{1} \mathrm{H}$ NMR (300.1 MHz): $\delta 0.57\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor, ${ }^{2} J_{\mathrm{HH}}=12.6 \mathrm{~Hz}$), $0.84(\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{CH}_{2}$, nor, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=12.3 \mathrm{~Hz}\right), 1.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.29-1.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor $), 1.56(\mathrm{~d}$, partially obscured by the resonance of CH_{2} of nor, $1 \mathrm{H}, \mathrm{H} \alpha$ or $\mathrm{H} \beta,{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}$), $1.83(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 2.01\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} \alpha\right.$ or $\left.\mathrm{H} \beta,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right), 2.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$, nor), $2.75(\mathrm{~d}$, partially obscured by the resonance of CH of nor, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=16.8 \mathrm{~Hz}$), 2.76 (br s, 1
H, CH, nor), 3.02 (d, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=17.1 \mathrm{~Hz}\right), 3.10(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 3.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO})$, 7.07 (m, $1 \mathrm{H}, \mathrm{H} 5), 7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 7+\mathrm{H} 6), 7.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 8), 7.99\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=\right.$ $11.4 \mathrm{~Hz}), 9.62\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{NH}_{2},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=11.4 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(75.5 \mathrm{MHz}): \delta 22.4(\mathrm{Me}$, $\left.\mathrm{CMe}_{2}\right), 27.3(\mathrm{CH} \alpha$ or $\mathrm{CH} \beta)$, $28.5\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 28.6\left(\mathrm{CH}_{2}\right.$, nor), $29.0\left(\mathrm{CH}_{2}\right.$, nor), $29.6(\mathrm{CH} \alpha$ or $\mathrm{CH} \beta)$, $30.1\left(\mathrm{CH}_{2}\right.$, nor), $35.5\left(\mathrm{CH}\right.$, nor), $35.7\left(\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CH}\right)$, $37.6(\mathrm{CH}$, nor $), 40.0\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$, $52.6(\mathrm{MeO}), 54.6(\mathrm{MeO}), 57.8\left(\mathrm{CMe}_{2}\right), 69.7(\mathrm{C} 1), 120.4\left(\mathrm{q}, \mathrm{CF}_{3} \mathrm{SO}_{3},{ }^{1} J_{\mathrm{CF}}=319.5 \mathrm{~Hz}\right), 126.2$ (C8a), 126.7 (CH7), 128.5 (CH5), 129.7 (CH6), 130.9 (C4a), 131.1 (CH8), 165.3 (CO), 174.1 (CO).

Synthesis of 9f. TlOTf ($84 \mathrm{mg}, 0.237 \mathrm{mmol}$) was added to a solution of complex $7 \mathbf{f}$ ($125 \mathrm{mg}, 0.237 \mathrm{mmol}$) in acetone (15 mL), and the mixture was stirred at room temperature for 12 h under CO atmosphere, using a toy balloon. Decomposition to metallic palladium was observed. The suspension was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL , and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$ and air-dried to give the compound $\mathbf{9 f}$ a colorless solid. Yield: $103 \mathrm{mg}, 0.177 \mathrm{mmol}, 75 \% . \mathrm{Mp}: 223{ }^{\circ} \mathrm{C} . \Lambda_{\mathrm{M}}\left(\Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}\right): 101.4\left(\mathrm{c}=5.04 \times 10^{-4} \mathrm{M}\right)$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{NO}_{9} \mathrm{~S}$ (579.592): C, 51.80 ; H, 5.56 ; N, 2.41, S; 5.53. Found: C, 51.56; H, 5.87; N, 2.50; S: 5.37. ESI-HRMS (m/z): exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{6}, 430.2230$ [(M$\left.\mathrm{CF}_{3} \mathrm{SO}_{3}\right)^{+}$]; found, 430.2225 . IR (cm^{-1}): $v(\mathrm{CO}) 1771 \mathrm{vs}, 1733$ vs, $1626 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (400.9 MHz , acetone- d_{6}): $\delta 1.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor), $1.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor), $1.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor), 1.48 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 1.54 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$, nor), 1.58 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 2.28 ($\mathrm{br} \mathrm{s}, 1$ H, CH, nor), 2.50 (br s, $1 \mathrm{H}, \mathrm{CH}$, nor), $2.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} \alpha,{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}\right), 2.88\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} \beta,{ }^{3} J_{\mathrm{HH}}\right.$ $=8.0 \mathrm{~Hz}), 3.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 3.51(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 3.66(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 3.69$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz}\right), 4.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 7), 7.26-7.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 4+\mathrm{H} 5), 7.37(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{H} 3), 7.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 6), 7.70\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{NH}_{3}\right)$. The resonance corresponding to the OH group was not observed. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.8 MHz , acetone- d_{6}): $\delta 25.3$ (Me, CMe_{2}), 26.9
(Me, $\left.\mathrm{CMe}_{2}\right)$, $27.6\left(\mathrm{CH}_{2}\right.$, nor), $28.5\left(\mathrm{CH}_{2}\right.$, nor), $35.1\left(\mathrm{CH}_{2}\right.$, nor $), 40.9(\mathrm{CH}$, nor), $41.1(\mathrm{CH}$, nor), $41.7\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 51.1(\mathrm{CH} \alpha), 51.3(\mathrm{CH} \beta), 52.2(\mathrm{MeO}), 53.7(\mathrm{MeO}), 53.0(\mathrm{CHAr}), 57.4$ (CMe_{2}), 90.2 (C8), 128.2 (CH5), 128.7 (CH4), 131.4 (CH6), 133.1 (CH3), 134.5 (C1), 135.0 $(\mathrm{C} 2), 166.3\left(\mathrm{CO}_{2} \mathrm{Me}\right), 171.2\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, $177.6\left(\mathrm{CO}_{2} \mathrm{H}\right)$.

Synthesis of 10c. In a Carius tube, TlOTf ($72 \mathrm{mg}, 0.204 \mathrm{mmol}$) was added to a suspension of complex $\mathbf{7 c} \cdot \mathrm{CHCl}_{3}(100 \mathrm{mg}, 0.161 \mathrm{mmol})$ in acetone $(15 \mathrm{~mL})$ and the mixture was stirred for 15 min . CO was bubbled through the suspension for 3 min , the pressure of CO was increased to 1 atm , the tube was sealed, and the mixture was stirred at room temperature for 20 h . Decomposition to metallic palladium was observed. The suspension was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL , and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The suspension was filtered, the solvent was removed from the filtrate, and the solid residue was stirred in n-pentane (20 mL). The resulting suspension was filtered, and the solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give the compound $\mathbf{1 0 c}$ as a colorless solid. Yield: $84 \mathrm{mg}, 0.152 \mathrm{mmol}, 94 \% . \mathrm{Mp}: 160{ }^{\circ} \mathrm{C} . \Lambda_{\mathrm{M}}\left(\Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}\right): 117.1(\mathrm{c}=5.00 \mathrm{x}$ $10^{-4} \mathrm{M}$). Compound $\mathbf{1 0 c}$ was hygroscopic, and no satisfactory elemental analysis could be obtained. ESI-HRMS $(\mathrm{m} / \mathrm{z})$: exact mass calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{2}, 404.2590\left[\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{SO}_{3}\right)^{+}\right]$; found, 404.2589. IR $\left(\mathrm{cm}^{-1}\right): ~ v(\mathrm{NH}) 3452 \mathrm{br} ; ~ v(\mathrm{CO}) 1704 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (400.9 MHz): $\delta 0.98(\mathrm{br}$ $\mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2}$, nor, $\left.{ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}\right), 1.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor), $1.42(\mathrm{~m}$, partially obscured by the resonance of Me group, $1 \mathrm{H}, \mathrm{CH}_{2}$, nor), 1.45 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 1.60 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$, nor), 1.81 (br s, $1 \mathrm{H}, \mathrm{CH}$, nor), 1.83 (br d, partially obscured by the resonance of CH of nor, $1 \mathrm{H}, \mathrm{CH}_{2}$, nor), $2.19(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeC}=), 2.22\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=13.6\right.$ $\mathrm{Hz}), 2.60\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{CH}\right.$, nor, $\left.{ }^{3} J_{\mathrm{HH}}=4.0 \mathrm{~Hz}\right), 3.08\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} \alpha,{ }^{3} J_{\mathrm{HH}}=10.0 \mathrm{~Hz}\right), 3.22(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H} \beta,{ }^{3} J_{\mathrm{HH}}=9.6 \mathrm{~Hz}\right), 3.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz}\right), 6.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 3$, $\left.{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right), 6.90-6.99(\mathrm{~m}, 4 \mathrm{H}), 7.06-7.12(\mathrm{~m}, 6 \mathrm{H}), 7.33\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (100.8 MHz): $\delta 22.9(\mathrm{MeC}=), 24.1\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 26.0\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right.$, nor $), 30.9\left(\mathrm{CH}_{2}\right.$,
nor), $36.8\left(\mathrm{CH}_{2}\right.$, nor), $39.7\left(\mathrm{CH}\right.$, nor), $40.3\left(\mathrm{CH}\right.$, nor), $41.5\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 50.8(\mathrm{CH} \beta), 54.1(\mathrm{CH} \alpha)$, $57.3\left(\mathrm{CMe}_{2}\right), 125.9(\mathrm{CH} 4$ or $p-\mathrm{CH}$ of Ph$), 126.0(\mathrm{CH} 4$ or $p-\mathrm{CH}$ of Ph$), 126.6(\mathrm{CH} 5), 126.9(\mathrm{br}$ $\mathrm{s}, o-\mathrm{CH}+m-\mathrm{CH}, \mathrm{Ph}), 129.1(\mathrm{CH} 6), 129.4(\mathrm{CH} 3), 131.3(\mathrm{C} 2), 134.4(\mathrm{C} 7), 140.1(i-\mathrm{C}, \mathrm{Ph})$, 140.3 (C8), 146.0 (C1), 177.6 (CO).

Synthesis of 10d and 9d. In a Carius tube, TlOTf ($50 \mathrm{mg}, 0.141 \mathrm{mmol}$) was added to a solution of complex $\mathbf{7 d} \cdot 1 / 2 \mathrm{CHCl}_{3}(75 \mathrm{mg}, 0.124 \mathrm{mmol})$ in acetone $(15 \mathrm{~mL})$, and the mixture was stirred for 2 h . CO was bubbled through the suspension for 2 min , the pressure of CO was increased to 1 atmosphere, the tube was sealed, and the mixture was stirred at room temperature for 15 h . Decomposition to metallic palladium was observed. The suspension was filtered through a plug of Celite, the solvent was removed from the filtrate, and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added. The mixture was filtered through a plug of Celite, the filtrate was concentrated to ca. 1 mL , and n-pentane (20 mL) was added. The resulting suspension was filtered, and the solid was washed with n-pentane ($2 \times 5 \mathrm{~mL}$) and air-dried to give the compound 10 d as a colorless solid. Yield: $60 \mathrm{mg}, 0.100 \mathrm{mmol}, 81 \% . \mathrm{Mp}: 122{ }^{\circ} \mathrm{C} . \Lambda_{\mathrm{M}}\left(\Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}\right): 78.3(\mathrm{c}=$ $7.4 \times 10^{-4} \mathrm{M}$). Compound $\mathbf{1 0 d}$ was hygroscopic, and no satisfactory elemental analysis could be obtained. ESI-HRMS $(\mathrm{m} / \mathrm{z})$: exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{4}, 448.2482\left[\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{SO}_{3}\right)^{+}\right]$; found: 448.2484. IR (cm^{-1}): $v(\mathrm{NH}) 3486 \mathrm{br} ; \mathrm{v}(\mathrm{CO}) 1715 \mathrm{vs}, 1626 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (300.1 MHz): δ 1.02 (br d, $1 \mathrm{H}, \mathrm{CH}_{2}$, nor, $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}}=9.9 \mathrm{~Hz}\right), 1.1\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.20-1.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor), 1.36-1.47 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$, nor), 1.51 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}$), 1.79 (br d, $1 \mathrm{H}, \mathrm{CH}$, nor, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=$ $2.7 \mathrm{~Hz}), 1.83\left(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor, $\left.{ }^{2} \boldsymbol{J}_{\mathrm{HH}}=9.9 \mathrm{~Hz}\right), 2.19\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.1 \mathrm{~Hz}\right), 2.44$ (br d, $1 \mathrm{H}, \mathrm{CH}$, nor, $\left.{ }^{3} J_{\mathrm{HH}}=3.6 \mathrm{~Hz}\right), 3.21\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} \alpha,{ }^{3} J_{\mathrm{HH}}=9.3 \mathrm{~Hz}\right), 3.45\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}\right.$ $=13.8 \mathrm{~Hz}), 3.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} \beta,{ }^{3} \mathrm{JH}_{\mathrm{HH}}=8.4 \mathrm{~Hz}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 6.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, 1$ $\left.\mathrm{H}, \mathrm{H} 3,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right), 6.90-7.09(\mathrm{~m}, 6 \mathrm{H}), 7.11-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.40\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75.5 MHz): $\delta 23.9\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 26.8\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right.$, nor), $30.3\left(\mathrm{CH}_{2}\right.$, nor), $36.6\left(\mathrm{CH}_{2}\right.$, nor $), 39.7\left(\mathrm{CH}\right.$, nor), $41.3(\mathrm{CH}$, nor $), 42.1\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 50.9(\mathrm{CH}), 52.6(\mathrm{OMe})$,
$55.2(\mathrm{CH} \alpha), 56.8\left(\mathrm{CMe}_{2}\right), 118.3(\mathrm{C}), 121.4(\mathrm{C}), 126.7(\mathrm{CH}), 126.9(\mathrm{CH} 5), 128.2(\mathrm{CH}), 130.2$ (C 7 or C 8), $131.1(\mathrm{CH}), 131.4(\mathrm{CH} 3), 132.1(\mathrm{C} 1$ or C 2$), 138.3(\mathrm{C} 1$ or C 2$), 138.6(\mathrm{C}), 156.3$ $(\mathrm{C} 7$ or C 8$), 169.5\left(\mathrm{CO}_{2} \mathrm{Me}\right), 177.7\left(\mathrm{CO}_{2} \mathrm{H}\right)$.

In a Carius tube, a solution of amino acid $\mathbf{1 0 d}(45 \mathrm{mg}, 0.075 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ was heated at $65^{\circ} \mathrm{C}$ for 7 days. Solvent was removed from the resulting white suspension to ca. 0.5 mL , and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added. The suspension was filtered, and the solid was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 3 \mathrm{~mL})$ and air-dried to afford the cyclic lactone 9 d as a colorless solid. Yield: $30 \mathrm{mg}, 0.048 \mathrm{mmol}, 64 \% . \mathrm{Mp}: 251^{\circ} \mathrm{C} . \Lambda_{\mathrm{M}}\left(\Omega^{-1} \mathrm{~mol}^{-1} \mathrm{~cm}^{2}\right): 88.8\left(\mathrm{c}=4.1 \times 10^{-4} \mathrm{M}\right)$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{NO}_{7} \mathrm{~S}$ (597.643): C, 58.28; H, 5.73; N, 2.34, S; 5.37. Found: C, 58.15; H, 5.56; N, 2.12; S: 5.42. ESI-HRMS (m / z): exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{4}, 448.2482$ [(M-CF $\left.\left.\mathrm{SO}_{3}\right)^{+}\right]$; found: 448.2493. IR $\left(\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3167 \mathrm{~m} ; \mathrm{v}(\mathrm{CO}) 1749 \mathrm{~s}, 1733 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR (400.9 MHz, DMSO- d_{6}): $\delta 0.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, nor), $0.91-0.94\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2}+1 \mathrm{H}$ of CH_{2}, nor), 1.19 (s, $4 \mathrm{H}, \mathrm{Me}$ of $\mathrm{CMe}_{2}+\mathrm{CH}$ of nor), $1.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, \mathrm{CMe}_{2}\right), 1.26-1.28(\mathrm{~m}, 2$ $\mathrm{H}, 1 \mathrm{H}$ of $\mathrm{CH}_{2}+1 \mathrm{H}$ of CH_{2}, nor), 1.69 (s, $1 \mathrm{H}, \mathrm{CH}$, nor), 2.17 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$, nor), 2.19 ($\mathrm{s}, 1 \mathrm{H}$, CH , nor), $2.88\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}=14.0 \mathrm{~Hz}\right), 3.21(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 3.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar},{ }^{2} J_{\mathrm{HH}}\right.$ $=13.6 \mathrm{~Hz}), 4.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 7), 7.28\left(\mathrm{br} \mathrm{t}, 1 \mathrm{H}, \mathrm{H} 5,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right), 7.32-7.50(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 3+\mathrm{H} 4$ +CH of Ph), $7.51-7.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{Ph}), 7.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 6,{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{H}\right), 7.87(\mathrm{br} \mathrm{s}, 3 \mathrm{H}$, NH_{3}). The resonance corresponding to the OH group was not observed. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.8 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 24.8\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 24.9\left(\mathrm{Me}, \mathrm{CMe}_{2}\right), 27.4\left(\mathrm{CH}_{2}\right.$, nor), $27.8\left(\mathrm{CH}_{2}\right.$, nor), $33.5\left(\mathrm{CH}_{2}\right.$, nor), $39.7\left(\mathrm{CH}\right.$, nor), $39.8\left(\mathrm{CH}\right.$, nor), $41.0\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 49.5(\mathrm{CH}$, nor), $50.4(\mathrm{CH}$, nor), $51.5(\mathrm{MeO}), 54.7$ (CMe_{2}), 55.6 (CH7), 89.7 (C8), 127.2 (CH5), 127.6 (CH, Ph), 127.8 (br s, CH, Ph), 128.4 (CH4), 131.1 (CH6), 131.5 (C1), 132.2 (CH3), 135.1 (C2), 138.4 (i-C, $\mathrm{Ph}), 169.4\left(\mathrm{CO}_{2} \mathrm{Me}\right), 177.4\left(\mathrm{CO}_{2} \mathrm{H}\right)$.

Single Crystal X-ray Structure Determinations. Single crystals were obtained as follows: Complex anti-1a: slow diffusion of n-pentane into a solution of a 2.5:1 mixture of
anti/syn-1a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Complex anti-1b: slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of a 3:1 mixture of anti/syn-1b in CHCl_{3}. Complex syn-1b: slow diffusion of n-pentane into a solution of a 1:3 mixture of anti/syn-1b in CHCl_{3}. Complex anti- $\mathbf{2 a} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: slow diffusion of n pentane into a solution of a $5: 1$ mixture of anti/syn-2a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Complex syn-2a: slow diffusion of n-pentane into a solution of the complex in CHCl_{3}. Complex anti-2b $\cdot \mathrm{CHCl}_{3}$: slow diffusion of n-pentane into a solution of a $3: 1$ mixture of anti/syn-2b in CHCl_{3}. Complex syn$\mathbf{2 b}$: slow diffusion of n-pentane into a solution of a $1: 3$ mixture of anti/syn-2b in CHCl_{3}. Complex syn-3b $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: slow diffusion of n-pentane into a solution of anti/syn- $\mathbf{3 b}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Compound $\mathbf{5 b} \cdot \mathrm{H}_{2} \mathrm{O}$: slow diffusion of n-pentane into a solution of the complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Compounds $\mathbf{7 c} \cdot \mathrm{CHCl}_{3}, \mathbf{7 d} \cdot 1 / 2 \mathrm{CHCl}_{3}, 7 \mathbf{f}$, and $\mathbf{8 f}$: slow diffusion of n-pentane into a solution of the corresponding compound in CHCl_{3}. Compound 9 d : slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of the compound in acetone. Compound $\mathbf{9 f} \cdot \mathrm{Et}_{2} \mathrm{O}$: slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of $\mathbf{9 f}$ in acetone. Compound $\mathbf{1 0 c} \cdot \mathrm{H}_{2} \mathrm{O}$: slow diffusion of n-pentane into a solution of $\mathbf{1 0 c}$ in CHCl_{3}.

Data Collection. Crystals suitable for X-ray diffraction were mounted in inert oil on a glass fiber and transferred to a Bruker diffractometer. Data were recorded at 100(2) K, using graphite-monochromated Mo-Ka radiation ($\lambda=0.71073 \AA$), and ω-scan mode. Multiscan absorption corrections were applied for all complexes. Structure Solution and Refinements. Crystal Structures were solved by Patterson (syn-1b, anti-2b $\cdot \mathrm{CHCl}_{3}$, and $\mathbf{7 c} \cdot \mathrm{CHCl}_{3}$) or direct methods (anti-1a, anti-1b, anti-2a $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, syn-2a, syn-2b, syn- $\mathbf{3} \mathbf{b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{6 b} \cdot \mathrm{H}_{2} \mathrm{O}$, $\mathbf{7 d} \cdot 1 / 2 \mathrm{CHCl}_{3}, \mathbf{7 f}, \mathbf{8 f}, \mathbf{9 d}, \mathbf{9 f} \cdot \mathrm{Et}_{2} \mathrm{O}$, and $\mathbf{1 0} \mathbf{c} \cdot \mathrm{H}_{2} \mathrm{O}$) and all non hydrogen atoms refined anisotropically on F^{2} using the program SHELXL-2018/3.42 Hydrogen atoms were refined as follows: Complex anti-1a: NH_{2}, free with SADI; ordered methyl, rigid group; all others, riding. Compounds anti-1b, syn-1b, anti-2a $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, syn-2a, syn-2b, $\mathbf{7 c} \cdot \mathrm{CHCl}_{3}, \mathbf{7 d} \cdot 1 / 2 \mathrm{CHCl}_{3}$, 7f, $\mathbf{8 f}$, and 9 d: NH_{2} or NH_{3}, free with SADI; methyl, rigid group; all others, riding. Complex anti-2b $\cdot \mathrm{CHCl}_{3}: \mathrm{NH}_{2}$, free with DFIX; methyl, rigid group; all others, riding. Compounds syn$\mathbf{3 b} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{9 f} \cdot \mathrm{Et}_{2} \mathrm{O}: \mathrm{NH}_{2}$ or NH_{3}, free; methyl, rigid group; all others, riding. Compound
$\mathbf{6 b} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$, free with SADI; methyl, rigid group; all others, riding. Compound 10c $\cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{NH}_{3}$, free with SADI; $\mathrm{H}_{2} \mathrm{O}$ (crystallization water), free with DFIX; methyl, rigid group; all others, riding. Special features. For anti-1a: One methyl group was disordered over two positions, with a ca. $95: 5$ occupancy distribution. For syn-1b: One phenyl ring was disordered over two positions, with a ca. 57:43 occupancy distribution. For syn-2a: The $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ fragment was disordered over two positions, with a ca. $75: 25$ occupancy distribution. The structure was refined as an inversion twin. Absolute structure (Flack) parameter ${ }^{43} 0.027(8)$. For anti-2b $\cdot \mathrm{CHCl}_{3}$: the chloroform molecule was disordered over two positions, with a ca. $81: 19$ occupancy distribution. For $\mathbf{7 d} \cdot 1 / 2 \mathrm{CHCl}_{3}$: the crystallization solvent (half a molecule of chloroform), located on a crystallographic inversion center, was disorder over two positions, with a ca. 62:38 occupancy distribution.

Relevant crystallographic data, details of the refinements, and details (including symmetry operators) of hydrogen bonds for compounds anti-1a, anti-1b, syn-1b, anti$\mathbf{2 a} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, syn-2a, anti-2b $\cdot \mathrm{CHCl}_{3}$, syn-2b, syn-3b $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{6} \mathbf{b} \cdot \mathrm{H}_{2} \mathrm{O}, \mathbf{7} \mathbf{c} \cdot \mathrm{CHCl}_{3}, \mathbf{7 d} \cdot 1 / 2 \mathrm{CHCl}_{3}$, 7f, $\mathbf{8 f}, \mathbf{9 d}, \mathbf{9 f} \cdot \mathrm{Et}_{2} \mathrm{O}$, and $\mathbf{1 0 c} \cdot \mathrm{H}_{2} \mathrm{O}$ are given in the Supporting Information.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: https://pubs.acs.org/doi/10.1021/acs.organomet.0c00787.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT NMR spectra of all compounds, crystallographic data for compounds anti-1a, anti-1b, syn-1b, anti-2a $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, syn-2a, anti-2b $\cdot \mathrm{CHCl}_{3}$, syn-2b, syn-3b $\cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{6 b} \cdot \mathrm{H}_{2} \mathrm{O}, \mathbf{7 c} \cdot \mathrm{CHCl}_{3}, \mathbf{7 d} \cdot 1 / 2 \mathrm{CHCl}_{3}, \mathbf{7 f}, \mathbf{8 f}, \mathbf{9 d}, \mathbf{9 f} \cdot \mathrm{Et}_{2} \mathrm{O}$, and $\mathbf{1 0 c} \cdot \mathrm{H}_{2} \mathrm{O}$, and details of hydrogen bonds (including symmetry operators) (PDF)

Accession Codes

CCDC 2047166-2047181 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

AUTHOR INFORMATION

Corresponding Authors

*E-mail for J.-A. G.-L.: joangalo@um.es
*E-mail for I.S.-L.: ims@um.es

ORCID

José-Antonio García-López: 0000-0002-8143-7081

Isabel Saura-Llamas: 0000-0001-8335-6747

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We thank the Ministerio de Ciencia, Innovación y Universidades (Spain), FEDER (Project PGC2018-100719-B-I00), and Fundación Séneca (19890/GERM/15) for financial support.

REFERENCES

1. a) Zeni, G.; Larock, R. C. Synthesis of Heterocycles via Palladium-Catalyzed Oxidative Addition. Chem. Rev. 2006, 106, 4644-4680. b) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Palladium-Catalyzed Transformations of Alkyl C-H Bonds. Chem. Rev. 2017, 117, 8754-8786. c) Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd Metal

Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review. Chem. Rev. 2018, 118, 2249-2295. d) Devendar, P.; Qu, R.-Y.; Kang, W.-M.; He, B.; Yang, G.-F. Palladium-Catalyzed Cross-Coupling Reactions: A Powerful Tool for the Synthesis of Agrochemicals. J. Agric. Food Chem. 2018, 66, 8914-8934. e) Wang, D.; Weinstein, A. B.; White, P. B.; Stahl, S. S. Ligand-Promoted PalladiumCatalyzed Aerobic Oxidation Reactions. Chem. Rev. 2018, 118, 2636-2679. f) Döndaç, H. A.; Retamosa, M. d. G.; Sansano, J. M. Recent Development in Palladium-Catalyzed Domino Reactions: Access to Materials and Biologically Important Carbo- and Heterocycles. Organometallics 2019, 38, 1828-1867.
2. Della Ca', N.; Fontana, M.; Motti, E.; Catellani, M. Pd/Norbornene: A Winning Combination for Selective Aromatic Functionalization via C-H Bond Activation. Acc. Chem. Res. 2016, 49, 1389-1400.
3. Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Catalytic Markovnikov and antiMarkovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angew. Chem. Int.Ed. 2004, 43, 3368-3398.
4. a) Vlaar, T.; Ruijter, E.; Maes, B. U. W.; Orru, R. V. A. Palladium-Catalyzed Migratory Insertion of Isocyanides: An Emergin Platform in Cross-Coupling Chemistry. Angew. Chem. Int. Ed. 2013, 52, 7084-7097. b) Mehta, V. P.; García-López, J.-A. σ-Alkyl-PdII Species for Remote C-H Functionalization. ChemCatChem 2017, 9, 1149-1156. c) Xia, Y.; Qiu, D.; Wang, J. Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chem. Rev. 2017, 117, 13810-13889. d) Zeidan, N.; Lautens, M. Migratory Insertion Strategies for Dearomatization. Synthesis 2019, 51, 4137-4146.
5. Blouin, S.; Blond, G.; Donnard, M.; Gulea, M.; Suffert, J. Cyclocarbopalladation as a Key Step in Cascade Reactions: Recent Developments. Synthesis 2017, 49, 1767-1784.
6. a) McDonald, R. I.; Liu, G.; Stahl, S. S. Palladium(II)-Catalyzed Alkene Functionalization via Nucleopalladation: Stereochemical Pathways and Enantioselective

Catalytic Applications. Chem. Rev. 2011, 111, 2981-3019. b) Dhungana, R. K.; Sapkota, R. R.; Niroula, D.; Giri, R. Walking metals: catalytic difunctionalization of alkenes at nonclassical sites. Chem. Sci. 2020, 11, 9757-9774.
7. a) Zeni, G.; Larock, R. C. Synthesis of Heterocycles via Palladium π-Olefin and π Alkyne Chemistry. Chem. Rev. 2004, 104, 2285-2310. b) Cacchi, S.; Fabrizi, G. Synthesis and Functionalization of Indoles Through Palladium-catalyzed Reactions. Chem. Rev. 2005, 105, 2873-2920. c) Zhang, F.; Xin, L.; Yu, Y.; Liao, S.; Huang, X. Recent Advances in Palladium-Catalyzed Bridging C-H Activation by Using Alkenes, Alkynes or Diazo Compounds as Bridging Reagents. Synthesis 2021, 53, 238-254.
8. a) Rodríguez, A.; Albert, J.; Ariza, X.; Garcia, J.; Granell, J.; Farràs, J.; La Mela, A.; Nicolás, E. Catalytic C-H Activation of Phenylethylamines or Benzylamines and Their Annulation with Allenes. J. Org. Chem. 2014, 79, 9578-9585. b) Ye, J.; Ma, S. Palladium-Catalyzed Cyclization Reactions of Allenes in the Presence of Unsaturated Carbon-Carbon Bonds. Acc. Chem. Res. 2014, 47, 989-1000. c) Yang, B.; Qiu, Y.; Bäckvall, J.-E. Control of Selectivity in Palladium(II)-Catalyzed Oxidative Transformations of Allenes. Acc. Chem. Res. 2018, 51, 1520-1531.
9. a) Balme, G.; Bossharth, E.; Monteiro, N. Pd-Assisted Multicomponent Synthesis of Heterocycles. Eur. J. Org. Chem. 2003, 2003, 4101-4111. b) Shen, C.; Wu, X.-F. Palladium-Catalyzed Carbonylative Multicomponent Reactions. Chem. Eur. J. 2017, 23, 2973-2987. c) Saranya, S.; Rohit, K. R.; Radhika, S.; Anilkumar, G. Palladiumcatalyzed multicomponent reactions: an overview. Org. Biomol. Chem. 2019, 17, 80488061.
10. Zhao, L.; Lu, X. Palladium(II)-Catalyzed Three-Component Coupling Reaction Initiated by Acetoxypalladation of Alkynes: An Efficient Route to γ, δ-Unsaturated Carbonyls. Org. Lett. 2002, 4, 3903-3906.
11. a) Shibata, K.; Satoh, T.; Miura, M. Palladium-Catalyzed Intermolecular ThreeComponent Coupling of Aryl Iodides, Alkynes, and Alkenes to Produce 1,3-Butadiene Derivatives. Org. Lett. 2005, 7, 1781-1783. b) Horiguchi, H.; Hirano, K.; Satoh, T.; Miura, M. Palladium-Catalyzed Three-Component 1:2:1 Coupling of Aryl Iodides, Alkynes, and Alkenes to Produce 1,3,5-Hexatriene Derivatives. Adv. Synth. Catal. 2009, 351, 1431-1436.
12. Shibata, K.; Satoh, T.; Miura, M. Palladium-Catalyzed Intermolecular ThreeComponent Coupling of Organic Halides with Alkynes and Alkenes: Efficient Synthesis of Oligoene Compounds. Adv. Synth. Catal. 2007, 349, 2317-2325.
13. a) Drent, E.; Budzelaar, P. H. M. Palladium-Catalyzed Alternating Copolymerization of Alkenes and Carbon Monoxide. Chem. Rev. 1996, 96, 663-682. b) Barlow, G. K.; Boyle, J. D.; Cooley, N. A.; Ghaffar, T.; Wass, D. F. Mechanistic Studies of Alkene/CO Polymerization with Palladium Complexes Promoted by $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. Organometallics 2000, 19, 1470-1476. c) Bianchini, C.; Meli, A. Alternating copolymerization of carbon monoxide and olefins by single-site metal catalysis. Coord. Chem. Rev. 2002, 225, 3566. d) Bianchini, C.; Meli, A.; Oberhauser, W. Catalyst design and mechanistic aspects of the alternating copolymerisation of ethene and carbon monoxide by diphosphinemodified palladium catalysis. Dalton Trans. 2003, 2627-2635.
14. a) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Late-Metal Catalysts for Ethylene Homoand Copolymerization. Chem. Rev. 2000, 100, 1169-1204. b) Nakamura, A.; Ito, S.; Nozaki, K. Coordination-Insertion Copolymerization of Fundamental Polar Monomers. Chem. Rev. 2009, 109, 5215-5244. c) Ito, S.; Nozaki, K. Coordination-Insertion Copolymerization of Polar Vinyl Monomers by Palladium Catalysts. Chem. Rec. 2010, 10, 315-325. d) Guo, L.; Dai, S.; Sui, X.; Chen, C. Palladium and Nickel Catalyzed Chain Walking Olefin Polymerization and Copolymerization. ACS Catal. 2016, 6, 428441. d) Tan, C.; Chen, C. Emerging Palladium and Nickel Catalysts for

Copolymerization of Olefins with Polar Monomers. Angew. Chem. Int. Ed. 2019, 58, 7192-7200.
15. Lindhardt, A. T.; Mantel, M. L. H.; Skrydstrup, T. Palladium-Catalyzed Intermolecular Ene-Yne Coupling: Development of an Atom-Efficient Mizoroki-Heck-Type Reaction. Angew. Chem. Int. Ed. 2008, 47, 2668-2672.
16. a) Zhou, P.; Jiang, H.; Huang, L.; Li, X. Acetoxypalladation of unactivated alkynes and capture with alkenes to give 1 -acetoxy-1,3-dienes taking dioxygen as terminal oxidant. Chem. Commun. 2011, 47, 1003-1005. b) Kawashima, T.; Ohashi, M.; Ogoshi, S. Nickel-Catalyzed Formation of 1,3-Dienes via a Highly Selective CrossTetramerization of Tetrafluoroethylene, Styrenes, Alkynes, and Ethylene. J. Am. Chem. Soc. 2017, 139, 17795-17798. c) Kanbayashi, N.; Okamura, T.-A.; Onitsuka, K. Living Cyclocopolymerization through Alternating Insertion of Isocyanide and Allene via Controlling the Reactivity of the Propagation Species: Detailed Mechanistic Investigation. J.Am. Chem. Soc. 2019, 141, 15307-15317.
17. Wen, Y.; Huang, L.; Jiang, H. Access to $C\left(s p^{3}\right)-C\left(s p^{2}\right)$ and $C\left(s p^{2}\right)-C\left(s p^{2}\right)$ Bond Formation via Sequential Intermolecular Carbopalladation of Multiple Carbon-Carbon Bonds. J. Org. Chem. 2012, 77, 5418-5422.
18. a) Milde, B.; Leibeling, M.; Hecht, A.; Jones, P. G.; Visscher, A.; Stalke, D.; Grunenberg, J.; Werz, D. B. Oligoene-Based π-Helicenes or Dispiranes? Winding up Oligoyne Chains by a Multiple Carbopalladation/Stille/(Electrocyclization) Cascade. Chem. Eur. J. 2015, 21, 16136-16146. b) Zhu, C.; Yang, B.; Bäckvall, J.-E. Highly Selective Cascade $\mathrm{C}-\mathrm{C}$ Bond Formation via Palladium-Catalyzed Oxidative Carbonylation-Carbocyclization-Carbonylation-Alkynylation of Enallenes. J. Am. Chem. Soc. 2015, 137, 11868-11871. c) Blouin, S.; Gandon, V.; Blond, G.; Suffert, J. Synthesis of Cyclooctatetraenes through a Palladium-Catalyzed Cascade Reaction. Angew. Chem. Int. Ed. 2016, 55, 7208-7211. d) Qiu, Y.; Yang, B.; Zhu, C.; Bäckvall,
J.-E. Highly Efficient Cascade Reaction for Selective Formation of Spirocyclobutenes from Dienallenes via Palladium-Catalyzed Oxidative Double Carbocyclization-Carbonylation-Alkynylation. J. Am.Chem. Soc. 2016, 138, 13846-13849.
19. García-López, J.-A.; Oliva-Madrid, M.-J.; Saura-Llamas, I.; Bautista, D.; Vicente, J. Reactivity toward CO of Eight-Membered Palladacycles Derived from the Insertion of Alkenes into the Pd-C Bond of Cyclopalladated Primary Arylalkylamines of Pharmaceutical Interest. Synthesis of Tetrahydrobenzazocinones, Ortho-Functionalized Phenethylamines, Ureas, and an Isocyanate. Organometallics 2012, 31, 6351-6364.
20. García-López, J.-A.; Oliva-Madrid, M.-J.; Saura-Llamas, I.; Bautista, D.; Vicente, J. Room-Temperature Isolation of Palladium(II) Organocarbonyl Intermediates in the Synthesis of Eight-Membered Lactams after Alkyne/CO Sequential Insertions. Organometallics 2013, 32, 1094-1105.
21. Oliva-Madrid, M.-J.; García-López, J.-A.; Saura-Llamas, I.; Bautista, D.; Vicente, J. Reactivity of Eight-Membered Palladacycles Arising from Monoinsertion of Alkynes into the $\mathrm{Pd}-\mathrm{C}$ bond of Ortho-Palladated Phenethylamines toward Unsaturated Molecules. Synthesis of Dihydro-3-Benzazocinones, N^{7}-amino Acids, N^{7}-amino Esters, and 3-Benzazepines. Organometallics 2014, 33, 19-32.
22. Oliva-Madrid, M. J.; García-López, J. A.; Saura-Llamas, I.; Bautista, D.; Vicente, J. Insertion Reactions on Carbopalladated Benzyne: From Eight- to Nine- and TenMembered Palladacycles. Applications to the Synthesis of N-Heterocycles. Organometallics 2014, 33, 6420-6430.
23. a) Vicente, J.; Abad, J.-A.; Förtsch, W.; López-Sáez, M.-J.; Jones, P. G. Reactivity of Ortho-Palladated Phenol Derivatives with Unsaturated Molecules. 1. Insertion of CO, Isocyanides, Alkenes, and Alkynes. CO/Alkene, Alkyne/Isocyanide, and Isocyanide/Alkene Sequential Insertion Reactions. Organometallics 2004, 23, 44144429. b) Vicente, J.; Chicote, M. T.; Martínez-Martínez, A. J.; Abellán-López, A.;

Bautista, D. Reactivity of ortho- β-Enaminone-phenyl Palladium Complexes. Insertion of CO into the Pd-C Bond to Give the First Acyl C,N,O-Pincer Complexes. Sequential Insertion of Dimethylacetylenedicarboxylate into the Enaminone $\mathrm{C}-\mathrm{H}$ Bond and of Isocyanide into the Pd-C Bond. A New Photooxigenation/Cyclization Process. Organometallics 2010, 29, 5693-5707. c) Frutos-Pedreño, R.; González-Herrero, P.; Vicente, J.; Jones, P. G. Sequential Insertion of Alkynes and CO or Isocyanides into the Pd-C Bond of Cyclopalladated Phenylacetamides. Synthesis of Eight-Membered Palladacycles, Benzo[d]azocine-2,4(1H,3H)-diones, and Highly Functionalized Acrylonitrile and Acrylamide Derivatives. Organometallics 2012, 31, 3361-3372. d) García-López, J.-A.; Frutos-Pedreño, R.; Bautista, D.; Saura-Llamas, I.; Vicente, J. Norbornadiene as a Building Block for the Synthesis of Linked Benzazocinones and Benzazocinium Salts through Tetranuclear Carbopalladated Intermediates. Organometallics 2017, 36, 372-383.
24. Vicente, J.; Saura-Llamas, I.; Bautista, D. Regiospecific Functionalization of Pharmaceuticals and Other Biologically Active Molecules Through Cyclopalladated Compounds. 2-Iodination of Phentermine and L-Tryptophan Methyl Ester. Organometallics 2005, 24, 6001-6004.
25. a) Vicente, J.; Saura-Llamas, I.; García-López, J. A.; Calmuschi-Cula, B.; Bautista, D. Ortho Palladation and Functionalization of L-Phenylalanine Methyl Ester. Organometallics 2007, 26, 2768-2776. b) Vicente, J.; Saura-Llamas, I.; García-López, J.-A.; Bautista, D. Insertion of Isocyanides, Isothiocyanates, and Carbon Monoxide into the Pd-C Bond of Cyclopalladated Complexes Containing Primary Arylalkylamines of Biological and Pharmaceutical Significance. Synthesis of Lactams and Cyclic Amidinium Salts Related to the Isoquinoline, Benzo[g]isoquinoline, and β-Carboline Nuclei. Organometallics 2009, 28, 448-464.
26. Oliva-Madrid, M.-J.; García-López, J.-A.; Saura-Llamas, I.; Bautista, D.; Vicente, J. Ortho Palladation of the Phenethylamines of Biological Relevance L-Tyrosine Methyl Ester and Homoveratrylamine. Reactivity of the Palladacycles toward CO and Isocyanides. Synthesis of the Natural Alkaloid Corydaldine. Organometallics 2012, 31, 3647-3660.
27. Frutos-Pedreño, R.; García-Sánchez, E.; Oliva-Madrid, M. J.; Bautista, D.; MartínezViviente, E.; Saura-Llamas, I.; Vicente, J. C-H Activation in Primary 3Phenylpropylamines: Synthesis of Seven-Membered Palladacycles through Orthometalation. Stoichiometric Preparation of Benzazepinones and Catalytic Synthesis of Ureas. Inorg. Chem. 2016, 55, 5520-5533.
28. a) Heck, R. F. Palladium-catalyzed reactions of organic halides with olefins. Acc.Chem. Res. 1979, 12, 146-151. b) Brisdon, B. J.; Nair, P.; Dyke, S. F. Palladium Assisted Organic Reactions-II: Ortho-Aminomethylstilbene Derivatives. Tetrahedron 1981, 37, 173-177. c) Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K. Kinetics and Mechanism of Vinylation of ortho-Palladated N, N-Dialkylbenzylamines by paraSubstituted Styrenes. J. Chem. Soc., Perkin Trans. 2 1983, 1511-1518. d) Cabri, W.; Candiani, I. Recent Developments and New Perspectives in the Heck Reaction. Acc. Chem. Res. 1995, 28, 2-7. e) Crisp, G. T. Variations on a theme-recent developments on the mechanism of the Heck reaction and their implications for synthesis. Chem. Soc. Rev. 1998, 27, 427-436. f) Ludwig, M.; Strömberg, S.; Svensson, M.; Åkermark, B. An Exploratory Study of Regiocontrol in the Heck Type Reaction. Influence of Solvent Polarity and Bisphosphine Ligands. Organometallics 1999, 18, 970-975. g) Albéniz, A. C.; Espinet, P.; López-Fernández, R. Polymerization of Acrylates by Neutral Palladium Complexes. Isolation of Complexes at the Initial Steps. Organometallics 2003, 22, 4206-4212. h) Cai, G.; Fu, Y.; Li, Y.; Wan, X.; Shi, Z. Indirect ortho Functionalization of Substituted Toluenes through ortho Olefination of N, N-Dimethylbenzylamines

Tuned by the Acidity of Reaction Conditions. J. Am. Chem. Soc. 2007, 129, 7666-7673.
i) McConville, M.; Saidi, O.; Blacker, J.; Xiao, J. Regioselective Heck Vinylation of Electron-Rich Olefins with Vinyl Halides: Is the Neutral Pathway in Operation? J. Org. Chem. 2009, 74, 2692-2698.
29. a) Zhang, Y.; Negishi, E. Metal-promoted cyclization. 25. Palladium-catalyzed cascade carbometalation of alkynes and alkenes as an efficient route to cyclic and polycyclic structures. J. Am. Chem. Soc. 1989, 111, 3454-3456. b) Yanada, R.; Obika, S.; Inokuma, T.; Yanada, K.; Yamashita, M.; Ohta, S.; Takemoto, Y. Stereoselective Synthesis of 3-Alkylideneoxindoles via Palladium-Catalyzed Domino Reactions. J. Org. Chem. 2005, 70, 6972-6975.
30. a) Engelin, C.; Fristrup, P. Palladium Catalyzed Allylic C-H Alkylation: A Mechanistic Perspective. Molecules 2011, 16, 951-969. b) Le Bras, J.; Muzart, J. Production of $\mathrm{Csp}^{3}-\mathrm{Csp}^{3}$ Bonds through Palladium-Catalyzed Tsuji-Trost-Type Reactions of (Hetero)Benzylic Substrates. Eur. J. Org.Chem. 2016, 2565-2593. c) Orcel, U.; Waser, J. In situ tether formation from amines and alcohols enabling highly selective TsujiTrost allylation and olefin functionalization. Chem. Sci. 2017, 8, 32-39.
31. a) Maassarani, F.; Pfeffer, M.; Le Borgne, G. Controlled Synthesis of Heterocyclic Compounds through Ring Enlargements by Alkyne Insertion into the Pd-C Bonds of Cyclopalladated Amines Followed by Subsequent Ring Closure. Organometallics 1987, 6, 2029-2043. b) Dupont, J.; Pfeffer, M.; Daran, J.-C.; Gouteron, J. Reactivity of Cyclopalladated Compounds. Part 18. Compared Reactivity of the Pd-C Bonds of Two Closely Related Six-membered Palladocyclic Rings with Substituted Alkynes. X-Ray and Molecular Structures of $\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{Ph})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{Ph})=\mathrm{C}(\mathrm{R})\left(o-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CMeNHPh}\right)\right\} \mathrm{Cl}\right]$ $\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}\right)$ and $\quad\left[\mathrm{Pd}\left\{\mathrm{C}(\mathrm{R})\left[\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R}) \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R})\right][o-\right.\right.$ $\left.\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CMe}(\mathrm{OH})\right]\right\} \mathrm{Cl}\right]\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right)$. J. Chem. Soc., Dalton Trans. 1988, 2421-2429. c) Tao, W.; Silverberg, L. J.; Rheingold, A. L.; Heck, R. F. Alkyne Reactions with

Arylpalladium Compounds. Organometallics 1989, 8, 2550-2559. d) Vicente, J.; SauraLlamas, I.; Turpín, J.; Bautista, D.; de Arellano, C. R.; Jones, P. G. Insertion of One, Two, and Three Molecules of Alkyne into the Pd-C Bond of Ortho-palladated Primary and Secondary Arylalkylamines. Organometallics 2009, 28, 4175-4195.
32. a) Hartog, T. D.; Toro, J. M. S.; Chen, P. A Palladium-Catalyzed Methylenation of Olefins Using Halomethylboronate Reagents. Org. Lett. 2014, 16, 1100-1103. b) Mao, J.; Zhang, S.-Q.; Shi, B.-F.; Bao, W. Palladium(0)-catalyzed cyclopropanation of benzyl bromides via $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bond activation. Chem. Commun. 2014, 50, 3692-3694. c) Tanioka, Y.; Tsukada, N. Palladium-Catalyzed α-Ketocyclopropanation of Norbornenes with Propargyl Acetates. J. Org. Chem. 2014, 79, 5301-5304.
33. a) Liu, C.-H.; Cheng, C.-H.; Cheng, M.-C.; Peng, S.-M. Palladium-Catalyzed Addition of Alkyne to Norbornene Derivatives. Unusual Ring Formation and Expansion Reactions. Organometallics 1994, 13, 1832-1839. b) Bigeault, J.; Giordano, L.; Buono, G. [2+1] Cycloadditions of Terminal Alkynes to Norbornene Derivatives Catalyzed by Palladium Complexes with Phosphinous Acid Ligands. Angew. Chem. Int. Ed. 2005, 44, 4753-4757. c) Mo, D.-L.; Yuan, T.; Ding, C.-H.; Dai, L.-X.; Hou, X.-L. PalladacycleCatalyzed Methylenecyclopropanation of Bicyclic Alkenes with Propiolates. J. Org. Chem. 2013, 78, 11470-11476.
34. a) Mao, J.; Bao, W. Palladium(0)-Catalyzed Methylenecyclopropanation of Norbornenes with Vinyl Bromides. Org. Lett. 2014, 16, 2646-2649. b) Mao, J.; Xie, H.; Bao, W. Palladium(0)-Catalyzed Methylcyclopropanation of Norbornenes with Vinyl Bromides and Mechanism Study. Org. Lett. 2015, 17, 3678-3681.
35. Oh, C. H.; Park, D. I.; Ryu, J. H.; Cho, J. H.; Han, J.-S. Syntheses and Characterization of Cyclopropane-fused Hydrocarbons as New High Energetic Materials. Bull. Korean Chem. Soc. 2007, 28, 322-324.
36. Arai, Y.; Matsui, M.; Koizumi, T. An enantiodivergent synthesis of fused bicyclo[2.2.1]heptane lactones via an asymmetric Diels-Alder reaction. J. Chem. Soc., Perkin Trans. 1 1990, 1233-1234.
37. Teixeira, M. G.; Alvarenga, E. S.; Pimentel, M. F.; Picanço, M. C. Synthesis and Insecticidal Activity of Lactones Derived from Furan-2(5H)-one. J. Braz. Chem. Soc. 2015, 26, 2279-2289.
38. a) Tomioka, H.; Oshima, K.; Hitosi Nozaki, H. Cerium catalyzed selective oxidation of secondary alcohols in the presence of primary ones. Tetrahedron Lett. 1982, 23, 539542. b) Jhulki, S.; Seth, S.; Mondal, M.; Moorthy, J. N. Facile organocatalytic domino oxidation of diols to lactones by in situ-generated TetMe-IBX. Tetrahedron 2014, 70, 2286-2293.
39. a) Lok, K. P.; Jakovac, I. J.; Jones, J. B. Enzymes in Organic Synthesis. 34. Preparations of Enantiomerically Pure Exo- and Endo-Bridged Bicyclic [2.2.1] and [2.2.2] Chiral Lactones via Stereospecific Horse Liver Alcohol Dehydrogenase Catalyzed Oxidations of Meso Diols. J. Am. Chem. Soc. 1985, 107, 2521-2526. b) Mihovilovic, M. D.; Kapitán, P. Regiodivergent Baeyer-Villiger oxidation of fused ketone substrates by recombinant whole-cells expressing two monooxygenases from Brevibacterium. Tetrahedron Lett. 2004, 45, 2751-2754.
40. a) Aït-Mohand, S.; Hénin, F.; Muzart, J. Palladium-Catalyzed Oxidations: Inhibition of a Pd-H Elimination by Coordination of a Remote Carbon-Carbon Double Bond. Organometallics 2001, 20, 1683-1686. b) Suzuki, T.; Morita, K.; Matsuo, Y.; Hiroi, K. Catalytic asymmetric oxidative lactonizations of meso-diols using a chiral iridium complex. Tetrahedron Lett. 2003, 44, 2003-2006.
41. Pérez-Gómez, M.; Hernández-Ponte, S.; García-López, J.-A.; Frutos-Pedreño, R.; Bautista, D.; Saura-Llamas, I.; Vicente, J. Palladium-Mediated Functionalization of Benzofuran and Benzothiophene Cores. Organometallics 2018, 37, 4648-4663.
42. a) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8. b) Sheldrick, G. M. SHELXL-2018/3, Program for the Refinement of Crystal Structure. Göttingen University, Göttingen, 2018.
43. Flack, H. D. On enantiomorph-polarity estimation. Acta Crystallogr., Sect. A: Found. Adv. 1983, 39, 876-881.

