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Summary. The gasotransmitter nitric oxide was
classified as the first endothelium-derived relaxant
factor, and opened a new era in cardiovascular research.
Another small gas, sulfur dioxide (SO,), can also be
generated endogenously in mammals. Recent studies
have shown that SO, may play important roles in the
cardiovascular system. At low concentrations, the
vasodilatory effect of SO, is endothelium-dependent.
The vasodilation induced by an endothelium-derived
relaxant factor is achieved by the opening of potassium
channels, and hyperpolarization of the membranes of
vascular smooth muscle cells. This feature is in
accordance with that of SO,. The vasodilatory effect of
SO, is related to the opening of adenosine triphosphate-
sensitive potassium channels and high-conductance
calcium-activated potassium channels. The 3'-5'-cyclic
guanosine monophosphate pathway and activation of
nitric oxide synthase are also involved in the
endothelium-derived relaxant factor effect of SO,. The
vasodilatory effect of gaseous SO, is much stronger than
that of its derivatives (bisulfite and sulfite). It is
suggested that SO, may be a candidate endothelium-
derived relaxant factor, which could lead to a new era of
research into cardiovascular disease in mammals.
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Introduction

Endothelial dysfunction plays important roles in the
pathology of vascular diseases such as diabetes mellitus,
atherosclerosis, and hypertension. Endothelial cells
regulate basic vascular tone and reactivity by releasing a
series of relaxing and contracting factors.

Nitric oxide (NO) and prostacyclin are believed to
be endothelium-derived relaxing factors (EDRFs)
(Radomski et al., 1987). However, abolition of the
production of NO and PGI, does not prevent the
endothelium-dependent relaxing effect (Scotland et al.,
2005). Therefore, an unknown substance termed
“endothelium-derived hyperpolarizing factor” (EDHF)
might be present in blood vessels. Several candidates
have been proposed to be EDHF: potassium (K*)
channels, epoxyeicosatrienoic acids, carbon monoxide
(CO), hydrogen sulfide (H,S), hydrogen peroxide,
anandamide, citrulline, ancf ammonia (Feletou and
Vanhoutte, 2007, 2009). However, the nature of EDHF is
incompletely understood.

NO, CO and H,S have been considered to be EDRF
or EDHF, and alzl are “gasotransmitters”. Gaso-
transmitters are small molecules that: can pass freely
across cell membranes; are generated endogenously; can
be regulated; have special biologic functions at
physiologic concentrations; have specific biologic
targets (Wang, 2002).

Besides NO, CO and H,S, another small gas
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molecule, sulfur dioxide (SO,) can also be generated
endogenously in mammalian cells, and pass freely across
cell membranes (Stipanuk, 1986, 2004). SO, can be
generated endogenously from the metabolism of sulfur-
containing amino acids in mammals (Stipanuk, 1986;
2004). Balazy et al. (2003) found that levels of carbonyl
sulfide and SO, could be enhanced by acetylcholine and
calcium ionophore (A23187). The vasodilatory effect of
opening adenosine triphosphate-sensitive potassium
(K yrp) channels might be another candidate for EDHF
(Balazy et al., 2003).

For a long time, SO, was considered to be a toxic
gas and air pollutant. SO, is detrimental to many organs
(Meng, 2003; Meng and Bai, 2004). Recently, the
cardiovascular effects of SO, have attracted considerable
interest. SO, is generated in different tissues (stomach,
intestine, myocardium, brain, pancreas, lung, kidney,
spleen, and liver) (Luo et al., 2011). SO, has physical
effects on the cardiovascular system: vasorelaxation,
regulation of cardiac function and inhibition of activity
of L-type calcium channels (Zhang et al., 2011). In
addition, the pathophysiologic effects of SO, have been
documented: amelioration of pulmonary hypertension
(Jin et al., 2008; Sun et al., 2010; Luo et al., 2013);
reduction of the myocardial injury induced by
isoproterenol (Liang et al., 2011); inhibition of the
development of atherosclerotic lesions (Li et al., 2011);
reduction of myocardial ischemia-reperfusion injury
(Wang et al., 2011b; Huang et al., 2013; Luo et al., 2013;
Zhao et al., 2013); reduction of lung injury (Chen et al.,
2015; Zhao et al., 2015); inhibition of vascular smooth
muscle cells (VSMCs) proliferation (Liu et al., 2014);
protection of neurons from the toxicity caused by febrile
seizures (Han et al., 2014). Therefore, SO, is considered
to be another novel gasotransmitter in mammals (Wang
etal.,2010,2011a, 2014, 2015; Chen et al., 2011; Huang
et al., 2016a,b). This review indicates that SO, may be
an EDRF, which could lead to a new era of research into
cardiovascular disease in mammals.

Endothelial production of SO,

Endogenous SO, is generated from sulfur-containing
amino acids such as L-cysteine and then oxidized to L-

Table 1. Mechanisms of endothelium-dependent vasodilation induced by SO,.

cysteinesulfinate by cysteine dioxygenase. L-
cysteinesulfinate is converted to 3-sulfinylpyruvate due
to transamination by aspartate aminotransferase, and
decomposes spontaneously to pyruvate and SO,
(Shapiro, 1977, Stipanuk et al., 1990). SO, dissociates to
its derivatives (bisulfite and sulfite [NaHSO,/Na,SO,] at
1:3 m/m in plasma), and is oxidized to a sulfate, then is
excreted in urine (Stipanuk, 1986) (Fig. 1).

As a key SO,-generating enzyme, the location of
aspartate aminotransferase has been detected using in
situ hybridization in samples of rat aorta. Expression of
aspartate aminotransferase-1 mRNA and aspartate
aminotransferase-2 mRNA in endothelial cells is much
greater than those of VSMCs. The SO, concentration is
different among different tissues and arteries (Du et al.,
2008; Luo et al., 2011). The highest concentration of
SO, is in the aorta (5.55+0.35 umol/g protein), followed
by the pulmonary, mesenteric, tail and renal arteries
(3.27£0.21, 2.67+0.17, 2.50+0.20 and 2.23+0.19 pmol’g
protein, respectively) (Du et al., 2008). The SO,
concentration in the plasma and aortic tissues of rats is
16.77+8.24 uM and 127.76+31.34 uM, respectively
(Meng et al., 2009).

In cultured vascular endothelial cells and smooth
muscle cells (SMCs), SO, generation in endothelial cells
is much higher than that in SMCs (Meng et al., 2009).
SO, production can be stimulated by acetylcholine
fourfold compared with that treated with ethanol
(solvent for acetylcholine) in incubated porcine coronary
artery rings. In addition, calcium ionophore can enhance
SO, production by 1.5-fold (Balazy et al., 2003). In male
Wistar rats, acetylcholine can increase the generation of
endogenous SO,, whereas noradrenaline inhibits these
effects in thoracic aortic rings (Meng et al., 2009).

Endothelium-dependent vasodilation induced by SO,

SO, can dose-dependently relax endothelium-intact
or endothelium-denuded aortic rings in rats. SO, and its
derivatives have vasodilatory effects, but the relaxation
effects and their mechanism of action are different
(Meng et al., 2009). Median effective concentrations
(EC,) that induce a half-maximal vasodilation response
for §O2 are (1247.38498.32) uM in endothelium-intact

Concentration

Mechanisms Models

Gaseous SO, <450 uM (Li and Meng, 2009, Zhang and Meng, 2009)

S0, derivative <2 mM (Wang et al. , 2009)

cGMP (Li and Meng, 2009)

BK¢, (Zhang and Meng, 2009)

Karp (Zhang et al., 2016)

L-Ca2* (Zhang et al., 2016)
sGC/cGMP/PKG pathway (Yao et al., 2016)
NOS (Wang et al., 2009)

cGMP (Meng et al. , 2012)

BK¢, (Meng et al., 2012)

Rat aortic rings
Rat aortic rings
Rat aorta
Rat aorta
Rat aortic rings

Rat aortic rings
Rat aortic rings
Rat aortic rings

BK, channel, big calcium activated potassium channel; cGMP, 3'=5'-cyclic guanosine monophosphate; K,p, ATP-sensitive potassium channel; NOS,
nitric oxide synthase; PKA, protein kinase A; and L-Ca2*, L type of calcium channel; sGC, guanylate cyclase; PKG, protein kinase G
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and (1321.89+89.67) uM in endothelium-denuded rat
aortic rings (Zhang and Meng, 2009). EC, of SO,
derivatives is 7.28+0.12 mM (Zhang and Meng, 2009).
Therefore, the vasodilatory effect of gaseous SO, is
much stronger than that of its derivatives.

Gaseous SO, exerts a vasodilatory effect in an
endothelium-dependent manner at low concentrations
(<450 uM, Table 1), and in an endothelium-independent
manner at high concentrations (>500 uM) (Meng et al.,
2009; Zhang and Meng, 2009) The vasodilatory effect
of SO, gas or gas solution is similar. SO, dissolved in
water 1s present mainly as SO, molecules (Akhmetov et
al., 1983; Feletou and Vanhoutte, 2006; Zhang and
Meng, 2009).

In male Wistar rats treated with SO, (3.5, 7, 14
mg/m?3) 4 h every day for 30 consecutive (fays the SO,
concentrations described above could increase the
expression of high-conductance Ca2?*-activated K+
channels (BK,) subunits alpha and beta-1 in rat aortas
in vivo. Exposure of rats to a concentration of 14 mg/m?>
of SO, can up-regulate expression of K, channel
subunits Kir6.1, Kir6.2, and the sulfonylurea 2B receptor
in rat aortas, with no effects on levels of the sulfonylurea
2A receptor (Zhang et al., 2016). Simultaneously, SO
downregulates expression of L-type calcium chann %

Homocysteine

CBS l
Cystathionine
CSE¢ /

3-Mercaptopyruvate

CSE or CBS

L-Cysteine

CDO‘

L-Cysteine sulfinate
AAT

B-Sulfinylpyruvate

#

SO2

¢

SO; —» SO

Sulfite oxidase

Thiosulfate sulfurtransferase or

glutathione-dependent thiosulfate reductase

Excreted in urine

subunits Cavl.2 and Cavl.3 (Zhang et al., 2016).
However, vasodilation induced by SO, (30 or 300 uM)
can be inhibited by iberiotoxin (selectively inhibits
current through BK-,) in endothelium-intact aortic rings,
but this phenomenon is not affected by apamin
(selectively inhibits current through low-conductance
Ca%*-activated K* channels) (Zhang and Meng, 2009).
These data suggest that the vasodilation caused by SO
at low concentrations mlght be mediated by BK, but
not by low-conductance Ca®*-activated K* channefs

recent study also showed that soluble guanylate cyclase
(sGC), cyclic guanosine monophosphate (cGMP), and
protein kinase G (PKG) pathways were also involved in
the vasorelaxation of SO, (1-300 uM). Thiol reductants
dithiothreitol could reverse the dimerization of sGC and
PKG and vasodilation induced by SO,. These data
indicate that dimerization of sGC and PKG was related
to the vasorelaxtion effect of SO, (Yao et al., 2016). The
vasorelaxation induced by SO (1500 uM) could be
partially inhibited by nifedipine (2L -type calcium channel
blocker). Additionally, the vasorelation could also be
inhibited by tetraethylammonium or glibenclamide.
These data indicate the vasodilation of SO, was related
to the K channel, L-type calcium channel and
calcium- m;rlux and release pathway (Zhang and Meng,

9%
2,
5

» H:S + Cystathionine

Sulfide oxidase

y

Thiosulfate ( S:05 )

Fig. 1. The production and metabolism of endogenous
SO, in mammals. SO,: sulfur dioxide; H,S: hydrogen
sulfide; CBS: cystathionine B-synthase; CSE:
cystathionine g-lyase; CDO: cysteine dioxygenase;
AAT: aspartate aminotransferase; 3MST: 3-
mercaptopyruvate sulfurtransferase.
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2009).

The relaxation wrought by SO, derivatives (0.5 and
1 mM) in endothelium-intact rings is stronger than that
in endothelium-denuded rings. The NO synthase (NOS)
inhibitor NG-nitro-L-arginine methyl ester (100 pM) can
abolish the effects of SO, derivatives described above,
but has no effect at higher doses (2-8 mM) (Wang et al.,
2009). These data suggest that the NOS pathway is
involved in the endothelium-dependent vasodilation
caused by SO, derivatives. In addition, the vasodilatory
effect of SO, derivatives is mediated by the 3'-5'-cyclic
guanosine monophosphate (cGMP) pathway (Li and
Meng, 2009). Interestingly, there are some differences in
the SO, derivatives Na,SO; and NaHSO, in terms of
dilation of aortic rings (Meng et al., 2012). NaHSO; can
cause dilation of rat aortic rings in a concentration-
dependent manner (100-4000 uM), whereas Na,SO,
exerts a contractive effect at 500—1000 uM and relaxant
effect at high concentrations (20004000 uM). The EC
of NaHSO; and Na,SO; on aortic rings is 2326178.558
uM and 4100187.&8 uM, respectively. Vasodilation
caused by NaHSO; is endothelium-dependent at low
concentrations (<500 uM) but endothelium-independent
at high concentrations (=1000 uM). At low
concentrations, the vasodilatory effect of NaHSOj is
mediated (at least in part) by the cGMP pathway and is
related to BK, channels, but not to the actions of
prostaglandins, protein kinase C or the 3'-5'-cyclic
adenosine monophosphate pathway (Meng et al., 2012).
These data suggest that the vasorelaxant effect of sodium
bisulfite was much stronger than that of sodium sulfite.
The endothelium-dependent vasorelaxant effect of
sodium bisulfite was related to the cGMP pathway and
BK, channels at low concentrations.

Resemblance of SO, to EDHF

The vasodilation caused by EDHF is through open
potassium channels, and involves hyperpolarization of
the membranes VSMCs by close voltage-dependent
calcium channels (Shimokawa and Morikawa, 2005).
The effect of EDHF is mainly caused by small-
conductance Ca’*-activated K* channel and partially by
intermediate-conductance Ca**-activated K+ channel.
SO, and EDHF have some common characteristics.

(1) Studies have shown that SO, induces
vasodilation by opening K ., channels anc21 might be
EDHF (Balazy et al., 2003). In rat aortas, 802 can
increase the expression of K, channel subunits Kir6.1,
Kir6.2, and the sulfonylurea 2B receptor (Zhang et al.,
2016). These data indicate the relaxation effect of SO,
was related to the opening K ., channel.

(2) In health, Ca-* inf}iux contributes to the
contraction of VSMCs. At high concentration, SO, can
inhibit expression of the subunits of the L-type calcium
channels Cavl1.2 and Cavl1.3, which inhibit the
contraction mediated by Ca®* during depolarization of
sarcolemmal membranes (Zhang et al., 2016). SO, can
also elicit vasodilation by opening BK, channels.

Expression of BK, channel subunits alpha and beta-1
can be up-regulated by SO, in rat aortas in vivo (Zhang
etal.,2016).

Interaction of SO, and other EDRFs

The gasotransmitters NO and H,S were considered
as EDRFs in mammals (Fleming and Busse, 1999;
Wang, 2009). Both of them play important roles in
vascular tone regulation. Recent studies showed that
there is some crosstalk between SO,, NO and H,S.

The vasodilatory effect of 562 can be enhanced
under the presence of the NO donor sodium
nitroprusside (3 or 5 nM), the EC50 of which are 598
uM and 217 puM SO, respectively (Li and Meng, 2009).
In healthy rat, the E(zl o of the relaxing effect induced by
SO, is 1247.38198.35 UM, so the vasodilatory effect of
SO, is enhanced by NO by nearly six-fold. Interestingly,
the vasodilatory effect of NO can also be enhanced by
low concentrations of SO, . In the presence of 3 uM SO,,
the relaxant effect of NO is enhanced at various
concentrations. The ECy, of the vasodilatory effect
induced by NO is 210 nM in the absence of SO,,
whereas it is 34 nM in the presence of 3 uM SO,. The
NOS inhibitor NG-nitro-L-arginine methyl ester (100
uM) can reverse the relaxant effect induced by SO,
derivatives (0.5 and 1 mM) in endothelium-intact rings
(Wang et al., 2009). In spontaneously hypertensive rats,
SO, affects the NO level in aortic tissues. The
vasodilatory effect of SO, can be enhanced by the
presence of NO in isolated aortic rings (Lu et al., 2012).
These data suggest that the actions of NO mediate the
vasodilatory effect of SO, to some extent.

In the pulmonary hypertension induced by high
pulmonary blood flow, H,S production as well as the
mRNA and protein expression of cystathionine-y-lyase
(CSE) is increased in pulmonary tissues in SO,-exposed
rats. These data suggest that SO, can up-regulate an
endogenous H,S pathway (Luo et al., 2013). In a model
of atherosclerosis in rats, SO, treatment can significantly
increase H,S levels in plasma and aortic tissues and is
associated with a reduction in the number of
atherosclerotic lesions. Therefore, SO, can enhance H,S
production in rats with atherosclerosis (Li et al., 20112).
These data suggest that SO, has some crosstalk with
other EDRFs.

Perspectives and challenges

Accumulating data of the vascular effect of SO,
suggest that SO, may be a new EDRF or EDHF. This
hypothesis is based on five major pieces of evidence.
Firstly, SO, can be generated in cultured normal
endothelial cells and SMCs, and the level of SO, in
endothelial cells is much higher than that in SMCs (Du
et al., 2008). Secondly, at physiologic concentrations,
SO, has a endothelium-dependent vasodilatory effect.
The vasodilatory effect of SO,, like that of NO, is
mediated by a cGMP pathway and related to high-
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conductance Ca%*-activated channels (Li and Meng,
2009; Zhang and Meng, 2009). Thirdly, SO2 production
can be evoked by acetylcholine in endothelial cells and
vascular tissues, which conforms to an EDHF being
released by acetylcholine and other compounds from
arteries (Feletou et al., 2003; Meng et al., 2009). Finally,
SO, derivatives increase the intracellular concentration
of fzree Ca”* in rat ventricular myocytes (Nie and Meng,
2006), which might activate big conductance Ca®*-
activated channels, induce hyperpolarization of cells,
and cause relaxation.

In conclusion, SO, could be endogenously generated
in vascular tissues. It could be enhanced by
acetylcholine and calcium ionophore. At physiological,
or low, concentrations of SO,, the vasodilation effect
was endothelium dependent. The mechanism was related
to BK,, L-type calcium channel, K., channel and
cGMP pathway. At the same time, K ,p channel
subunits Kir6.1, Kir6.2, and the sulfonylurea 2B
receptor, and L-type calcium channel subunits Cavl.2
and Cavl.3 may contribute to the vasorelaxation effect
of SO, (Zhang et al., 2016). Additionally, the
sGC/c(z_‘vMP/PKG pathway, in association with
sulthydryl-dependent dimerization, was also involved in
the vasodilatory effect of SO, (Yao et al., 2016). Further
study showed that endogenous SO, was involved in
vascular remodeling (Sun et al., 2010%. Endogenous SO,
could alleviate collagen remodeling and vascular
calcification by inhibiting the TGF-beta/Smad pathway
(Huang et al., 2016a,b; Li et al., 2016). These data
indicate that SO2 plays important roles in the regulation
of vascular activities.

As an EDRF, SO, plays an important part in the
regulation of endotielium—dependent vasoactive
activities. Qualification of SO, as an EDHF will hinge
on electrophysiologic changes in membrane potential in
vascular endothelial cells and SMCs by patch-clamp
studies. A deficiency in SO, will also probably affect the
pathologies of vascular-related diseases, such as
atherosclerosis, coronary vascular diseases and diabetes
mellitus. More extensive studies are expected to further
clarify SO, as a new EDRF/EDHF. In this way, the
importance of SO, in the regulation of cardiovascular
function will be better appreciated. Full understanding of
the vasodilator effect of SO, carries considerable
importance for further study on its pharmacologic
effects.
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