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Abstract

This paper develops an extension of the Core-Periphery (CP) model (Krugman,

1991) by considering a competitive primary sector that extracts a renewable natural

resource. The dynamics of the resource gives rise to a new dispersion force: the resource

effect. If primary goods are not tradable, lower trade costs boost dispersion, and the

agglomeration-dispersion transition is sudden or smooth depending on the productivity

of the primary sector. Cyclic behaviors arise for high levels of productivity in resource

extraction. If primary goods are tradable, in most cases, the symmetric equilibrium

goes from stable to unstable as the openness of trade increases.

JEL classification: F12, F18, R12, Q01

KeyWords: natural resources, new economic geography, non-linear dynamics, agglomeration-
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1 Introduction

The NEG literature has mainly focused on industrialized economies, overlooking rural or

resource based economies. However, of the 80 million migrants worldwide in 1990, 25

million migrated for environmental reasons or because of resource degradation (Carr, 2009).

Many of these migratory movements originated in rural or developing countries. Since the

middle of the 20th century, about 1.2 billion hectares of land in the world have suffered soil

degradation, with the consequent declines in yields and harvests, so causing massive numbers

of environment-induced migrants (Swain, 1996). These migratory processes have important

consequences on the spatial distribution of the economic activity, and an analysis of their

provoking forces is merited. This is the aim of this paper, which extends the benchmark
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Core-Periphery model (CP model) (Krugman, 1991) by incorporating a (renewable) natural

resource.

There are a number of well documented examples of migration and redistribution of

economic activity motivated by the depletion of renewable natural resources. Kirby (2004)

describes the geographic movements of fleets and main harbours in the exploitation of oys-

ter fisheries along the coasts in eastern and western North America, and eastern Australia.

Andrew et al. (2003) reports how, in Chile, the reduction in the biomass and overexploita-

tion of the sea urchin led to the appearance of new fleets, ports and processing facilities

in the south, while the harvesting of the resource tended to diminish in the middle regions

of the country. After several years of rapid expansion of the fisheries into the southern-

most region, due to the renewing ability of the resource, the proportional contribution to

the national harvest of the middle regions began to recover, which boosted the economic

activity in the region again. In Madagascar, farmers clear their land with ‘slash and burn’

strategies, which lead to deforestation and soil degradation. They proceed to cultivate the

land for a couple of years until the soil is exhausted, after which they move on to new

unexploited lands (Jouanjean et al., 2014). Other examples can be found for Brazil, the

Dominican Republic, Nicaragua and Costa Rica (Carr, 2009; Chambron, 1999) and for

Guatemala and Sudan (Bilsborrow and DeLargy, 1990). Anderson et al. (2011) provide

an overview of the exploitation of the sea cucumber fisheries where the same behavioral

pattern is observed: resource degradation in highly agglomerated regions triggers a process

that forces population and economic activity away to new unexploited regions.

The resulting dispersion process depends heavily on the resource: its regenerative ability,

the harvesting effort and the techniques used. These elements are not taken into account

in NEG models (designed mainly for industrialized economies), where the only dispersion

effects arise from the competition among industrial firms and the existence of transport

costs. A comprehensive analysis should also take into account the effects of environment

and resource degradation.

Transport cost is an important element in the NEG literature and it also plays an

important role in the development of rural economies. Reduction in transportation costs,

construction of new roads and infrastructures all facilitate access to distant regions. The

profitability of the exploitation of natural resources in far away areas increases, which allows
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the expansion of the economic activity. For example, a curious land-use dynamics took place

in Laos, the Philippines and Amazonia, where landowners intensified agriculture activities

close to new or improved roads. At the same time, forests began to regenerate in regions

farther away from the roads (Laurance et al., 2009). Reymondin et al. (2013) studies five

infrastructure projects for Brazil, Paraguay, Peru, Panama and Bolivia, where these new

roads led to forest exploitation, deforestation and expansion of the agricultural frontier to

new, unexploited regions. Furthermore, in Brazil, Pfaff (1999) and in Bolivia, Kaimowitz,

et al. (2002), highlight that unexploited soil of better quality together with new roads

increased the probability of deforestation in order to expand agricultural exploitations for

Brazil and Bolivia, respectively.

Therefore, the resulting spatial structure of the economic activity depends on the inter-

action between transport costs and the resource dynamics. Lower transport costs facilitate

trade, which increases the profitability of exploiting distant areas, so encouraging migration

and spatial expansion of the economic activity. Additionally, areas whose exploitation has

declined, due to the shift in the economic activity, tend to experience a regeneration of

their natural resources. Thus, a reduction in transport costs reinforces the dispersion effect

driven by the resource dynamics.

Helpman (1998) studies how a fixed endowment (land) boosts the dispersion of the

economic activity. Some extensions of this model are found in Suedekum (2006), Pflüger

and Südekum (2008), Pflüger and Tabuchi (2010), Leite et al. (2013) and Cerina and

Mureddu (2014). These models adjust well for industrialized economies, where congestion

and competition for land (a fixed resource) is the driving force of dispersion. Population

is the only dynamic factor. However, it does not seem sufficient for regions that base their

economic activity on dynamic/renewable natural resources. In resource based economies

the dispersion depends on two fundamental aspects: how the exploitation of the natural

resource takes place and how well this resource regenerates itself. Thus, population and

resource dynamics interact. An agglomerated equilibrium may be stable if the resource

endowment is fixed, while it becomes unstable once the dynamics of the resource is taken

into account. The resulting spatial distribution of the economic activity is completely

different.

There have been some attempts to incorporate notions from environmental economics
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into NEG models. Pflüger (2001) studies the option of imposing taxes on emissions; Zeng

and Zhao (2009) and Rauscher (2009) extend some NEG models to study the impact of

pollution on the spatial configuration of the economy; Rieber and Tran (2009) investigate

the consequences of unilateral environmental regulations; and Rauscher an Barbier (2010)

highlight the conflict arising from competition for space between economic and ecological

systems. Other attempts to shift the focus from the industrial sector to other sectors

of an economy are Lanaspa and Sanz (1999), Berliant and Kung (2009), and Sidorov and

Zhelobodko (2013). However, the regenerative ability of natural resources and the extractive

efficiency of harvesting efforts is not considered.

To the best of our knowledge the literature has not incorporated these elements in NEG

models. We modify the original CP model by introducing the dynamics of a renewable nat-

ural resource, which is extracted as a primary good (Clark, 1990; Vardas and Xepapadeas,

2015), and the double function of primary goods, both as an input for industrial production

and as a final consumption good (Pflüger and Tabuchi, 2010). We assume that agents are

myopic, that is, they extract the resource without taking into account its dynamics. This

set-up is the most consistent with the examples found in the literature.

In our model, industrial goods are produced using the primary good as raw material and

there is free labor mobility between sectors and regions. We study both non-tradable pri-

mary goods (fertile land, drinking water or perishable natural goods) and tradable primary

goods (agricultural goods). Under the assumptions of non-tradability of the primary good

and free labor mobility across sectors, the market size effect dominates the competition ef-

fect, as in Helpman (1998). Then, the renewable natural resource and its dynamics are the

main mechanisms that drive dispersion, giving rise to the resource effect.The effect of trans-

port cost on the stability of dispersion and agglomeration is reverted. This is compatible

with the pattern described by the empirical literature: lower transport costs and resource

degradation encourage migrations process and the distribution of the economic activity.

The extraction productivity of the primary sector determines the strength of the resource

effect, determining how the transition from agglomeration to dispersion takes place. When

dispersion forces are weak (low extraction productivity) there is an abrupt transition from

agglomeration to dispersion, as the cases of the fishery industry pointed out before. When

dispersion forces are strong, a smooth transition can take place, like the reported cases of
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slow depopulation driven by de decline in soil fertility. Moreover, if dispersion forces are

strong enough (relative to transport costs), cyclical behavior may arise: an agglomeration

process raises the primary demand, so encouraging larger extractions that compromise the

long-term level of the resource and its future extractions. Later, this primary price increases

sufficiently to revert the migration process. This is compatible with the chase-and-flee cycle

of Rauscher (2009) in the environmental literature, and also with the definitions of circular

migration in the migration and economic labor literature (Newland, 2009).

If the primary good is tradable, the openness of trade affects the traditional dispersion-

agglomeration forces and also the strength of the new one linked to the resource and its

dynamics. Numerical analysis highlights some regularities. First, as the primary good

becomes more tradable, the advantage of being in the region with the higher sustainable

level of resource is reduced, which weakens the associated dispersion forces. Second, the

predominant pattern observed for the symmetric equilibrium is the one that goes from stable

to unstable as transport costs decreases.

The paper is organized as follows: Section 2 introduces the model, Section 3 studies

the case of non-tradable primary goods and in Section 4 trade of primary goods is allowed.

Section 5 concludes.

2 The Model

A world with two regions (j = 1, 2) is considered. Two kinds of goods are assumed: man-

ufactures, produced by an increasing-returns sector that can be located in either region,

and a primary good that is extracted or harvested from a resource endowment by compet-

itive firms in each region. The industrial sector uses two inputs to produce manufactures:

labor and primary good. The primary sector uses only labor for the extraction of the re-

source. Hereinafter, the extracted goods from the primary sector will be called primary

goods when their destination is to be consumed, and raw materials when their destination

is to be used as inputs. Finally, to incorporate the dynamics of the natural resource and

its relation with economic activity in a simple way, we assume that there is free labor mo-

bility between industrial and primary sector. This assumption makes the model extremely

tractable. Moreover, if there were no mobility at all between sectors, the dynamics of the
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resource and its long-run stock, as will be shown later, would be independent of changes in

economic activity. Then, the model would be similar to Helpman (1998) and Pflüger and

Tabuchi (2010).1

2.1 Households

Households seek to maximize their utility, which takes the form of a nested Cobb-Douglas

(across sectors) and CES (over the varieties) used in the original Krugman model (1991).

Thus, a representative household in region 1 solves the following consumption problem:

max
c1i,c2i,cH1 ,cH2

U1 = ln
�
Cµ
M1
C1−µH1

�
(1)

s.t. w1 =

� n1

0
c1ip1idi+

� n2

0
c2ip2iτdi+ pH1cH1 + pH2cH2ν (2)

with parameter µ ∈ (0, 1) and

CM1 =

�� n1

0
c
σ−1
σ
1i di+

� n2

0
c
σ−1
σ
2i di

� σ
σ−1

(3)

CH1 =

�
c
σ−1
σ

H1
+ c

σ−1
σ

H2

� σ
σ−1

(4)

where CM1 and CH1 are consumption indexes of industrial and primary goods respectively

with σ > 1 (for simplicity we assume the same elasticity of substitution for both sectors);

cji is the consumption of variety i produced in region j (j = 1, 2); nj is the number of

varieties existing in region j; because of free labor mobility, the salary is the same in both

sectors and wj is the income per household in region j; cH1 and cH2 are the consumptions

of the primary or harvested good extracted in regions 1 and 2 respectively (Fujita et al.,

2001, ch. 7); pji is the (fob) price of the variety i of the industrial good produced in region

j; τ > 1 and ν > 1 are iceberg transport costs of industrial and primary goods, respectively;

and finally, pHj is the price of the primary good of region j. The mirror-image problem is

solved for households in region 2.

1The mobility of labor between sectors has been addressed by Puga (1998). The author assumes free

mobility across sectors and regions. Labor dynamics in a specific sector of a region is driven by the relation

between the real wage in that sector and a weighted average of the real wages in the other sector (within the

same region) and real wages in the other region. In our paper, for the sake of simplicity, we have assumed

that nominal wages within a region adjust immediately to become equal in the two sectors. Although the

dynamics would be more complex, the steady states equilibria would remain the same.
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From the first order conditions of the maximization problem (1)-(2), the following de-

mand functions are obtained:

c1i = CM1

�
p1i
P1

�
−σ

, c2i = CM1

�
p2iτ

P1

�
−σ

with CM1 =
µw1
P1

(5)

cH1 = CH1

�
pH1

PH1

�
−σ

, cH2 = CH1

�
pH2ν

PH1

�
−σ

with CH1 =
(1− µ)w1

PH1

(6)

where P1 and PH1 are the industrial and primary price indexes for region 1, that is,

P1 =

�� n1

0
p1−σ1i di+

� n2

0
(p2iτ)

1−σ di

� 1
1−σ

(7)

PH1 =
�
p1−σH1

+ (pH2ν)
1−σ
� 1
1−σ

(8)

Mirror-image formulas for P2 and PH2 hold for consumers in region 2.

2.2 Primary Sector

In the natural extractive sector, a primary firm seeks to maximize its benefits, in a per-

fect competitive market, choosing the amount of labor to employ in the extraction of the

resource, subject to the extraction function for region j, given by

Hj = ǫSjLHj , ǫ > 0 (9)

where Sj is the available stock of the natural resource, LHj is the labor employed in the

primary sector and ǫ is a productivity parameter in the extraction, assumed to be equal

for both regions for the sake of simplicity. As is usual in environmental economic models,

the productivity of labor depends positively on the available stock of the natural resource

Sj. Firms are myopic, that is, they extract the resource without taking into account its

dynamics. The extracted or harvested resource, Hj, can be consumed or used as a raw

material for industrial production. The maximization of profits, in a competitive market

with free entry, needs the following condition,2

pHj = wj
LHj

Hj
=

wj

ǫSj
(10)

2As reported by Adhikari et al. (2004) there still exist some examples of free access to forest resources

in Nepal. Moreover, fisheries have proven difficult to regulate and an open-access externality of reasonable

size still exists in Nordic Fisheries (Waldo et al., 2016). Poor regulation has resulted in both stock depletion

and low economic returns, leading to the well known "Tragedy of the commons". Fishery, forestry, irriga-

tion, water management, animal husbandry, biodiversity and climate change are the usual areas where the

"Tragedy" has arisen (Laerhoven, 2007).
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where pHj is the price of the primary good and wj is the salary in region j.

2.3 Industrial Sector

A firm in the industrial sector employs labor and raw materials to produce industrial goods,

according to the production function

xji =

�
1

β

��
lxji − f

�α
h1−αji , 0 < α < 1 (11)

hji =

�
h
σ−1
σ
1ji + h

σ−1
σ
2ji

� σ
σ−1

(12)

where lxji is labor used in producing variety i in region j, and xji is the output; hji is

an index of raw materials employed in the production of variety i in region j; hkji is the

primary good extracted in region k employed in region j production of variety i. For

the sake of simplicity we have assumed same elasticity substitution σ for primary goods.

Parameter β > 0 is the marginal input requirement and f is a fixed cost. Note that if α = 1,

the production function (11) is the same as the one proposed by Krugman (1980, 1991),

which involves a constant marginal cost and a fixed cost, giving rise to economies of scale.

When α ∈ (0, 1) the use of the raw material is necessary for production and increases labor

productivity.

It is assumed that there are a large number of manufacturing firms, each producing a

single product in monopolistic competition (Dixit and Stiglitz, 1977). Given the definition

of the manufacturing aggregate (3), the elasticity of demand facing any individual firm is

−σ. Then, the profit-maximizing price behavior of a representative firm in region j is

pji =
σ

σ − 1
β
�wj

α

	α� PHj

1− α

�1−α
(13)

Since firms are identical and face the same wage and the same price of raw materials

within a region, manufactured good prices are equal for all varieties in each region, so

the subscript i can be dropped. Consequently, pj (j = 1, 2) will refer to region j specific

industrial good price. Equally, resource demand is equal for all firms in the same region

j, so we shall name the region j specific resource and labor demands per firm hj and lxj

(j = 1, 2). Primary goods demand functions for the industrial sector in region 1 are

h11 = h1−σ1

�
1− α

α

w1 (lx1 − f)

pH1

�σ
and h21 = h1−σ1

�
1− α

α

w1 (lx1 − f)

νpH2

�σ
(14)
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and for region 2, h12 and h22 are mirror images of (14). Therefore,

hj =
1− α

α

wj

PHj

�
lxj − f

�
for j = 1, 2. (15)

Comparing the prices of representative products in (13), we have

p ≡
p1
p2
=

�
w1
w2

�α�PH1

PH2

�1−α
(16)

Because there is free entry in the industrial sector, a firm’s profits must equal zero.

Using this condition and (13) and (15), it is obtained that

xj = f
σ − 1

β
αα (1− α)1−α

�
wj

PHj

�1−α
(17)

lxj = f [1 + α (σ − 1)] . (18)

The aggregate labor employed in the industrial sector of region j is LEj = njf [1 + α (σ − 1)].

Here again, if α = 1, we obtain the same expression as in Krugman’s model.

2.4 Dynamics

Natural Resources: The regions are assumed to be endowed with a renewable natural re-

source (Sj) whose dynamics follows a logistic growth function (Clark, 1990)

Ṡj = gSj

�
1−

Sj
CC

�
−Hj (19)

where g > 0 is the intrinsic growth rate of the resource, that is, the rate at which the

natural resource regenerates itself. The carrying capacity, CC > 0, is the maximum size

of the resource that can be sustained. Because we are studying symmetric regions, both

g and CC are assumed to be equal in both regions, which simplifies the model. Taking

into account Hj , given by (9), into (19), the sustainable level of the resource (the positive

steady-state level) is given by

S∗j =

�
1−

ǫ

g
LHj

�
CC > 0 if and only if LHj < g/ǫ (20)

which is globally stable for a given value of LHj . Otherwise, the only globally stable steady

state is the null one.
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Population Mobility: Workers are mobile between regions and choose to migrate if they

gain in terms of individual welfare from doing so. We assume that L1 + L2 = 1 and, as is

usual in NEG models, population reallocation follows the following dynamics:

L̇1 = L1 (1− L1)

�
V1
V2
− 1

�
(21)

where Vj is the indirect utility, defined as the ratio of nominal wage wj to the Cobb-Douglas

average price index across sectors (Sidorov and Zhelobodko, 2013; Forslid and Ottaviano,

2003),3

Vj =
wj

(Pj)
µ �PHj

�1−µ (22)

Therefore, the dynamic of the model will be driven by the differential system (19) for

j = 1, 2 and (21).

3 A non-tradable primary good

In this section we present the case of a non-tradable primary good. This is the case of fertile

land, drinking water or highly perishable products, for example. To do this we assume that

ν →∞. When primary trade costs are unaffordable, households and firms can only purchase

primary goods extracted in the local region. Thus, index prices PH1 and PH2 , defined in

(8) and in its mirror image formula for region 2, and (16), become

PHj = pHj for j = 1, 2 (23)

p =

�
w1
w2

��
S1
S2

�
−(1−α)

(24)

where (10) has been taken into account. From (6) we have that, in region 1, household´s

demand of primary good is

cH2 = 0 and cH1 = CH1 =
(1− µ)w1

pH1

(25)

Mirror-image formulas hold for consumers in region 2.

Demand equations (14)-(15) can be simplified:

h12 = h21 = 0 and hj =
1− α

α

wj

pHj

�
lxj − f

�
for j = 1, 2. (26)

3 In Fujita et al. (2001) L̇1 = L1(V1− V̄ ) where V̄ = L1V1+(1−L1)V2 is the weighted average of indirect

utilities. A simple manipulation derives that L̇1 = L1(1 − L1)(V1 − V2), which is equivalent to (21) if we

divide by V2.
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3.1 Short-Run Equilibrium

In the short-run equilibrium, households maximize their utility, industrial and primary firms

maximize their profits, there is free entry in both sectors, and market clearing conditions

hold for the three markets: labor, primary and industrial goods.

As a result of the free labor mobility assumption, the labor market clearing condition

states that

Lj =

� nj

0
lxijdi+ LHj = LEj + LHj (27)

where Lj is the total population of region j.

In the primary sector, total harvesting, Hj, must satisfy the demand for final consump-

tion of the primary good (25) and the demands of the industrial firms for raw materials

(26), that is,

Hj = Lj
(1− µ)wj

pHj

+ nj
1− α

α

wj

pHj

�
lxj − f

�
(28)

Using equations (10), (18), and (27) we have that the primary sector clearing condition

(28) implies

LHj =
σ − µ [1 + α (σ − 1)]

σ
Lj (29)

LEj =
µ [1 + α (σ − 1)]

σ
Lj (30)

nj =
µ

σf
Lj (31)

Trade is balanced if and only if the following equation is satisfied4:

TB = p

�
S1
S2

�1−α�
1 +

L1
1− L1

p1−σφ

�
− p1−σ

�
φ+

L1
1− L1

p1−σ
�
= 0 (32)

where φ ≡ τ1−σ, with φ ∈ (0, 1) is an index of the openness of trade. This equation has a

unique positive solution. Using this solution and equation (24), the ratio of nominal wages

can be obtained as a function of φ, L1, S1 and S2.

As we move from the short-run to long-run equilibrium, however, some other features

need to be taken into account. Workers are not interested in nominal wages but in real wages

and they will migrate to the region with the highest welfare. Additionally, an increase in

4This equation is obtained in the online Appendix A, available for readers interested in these details at the

website of the journal. From now on, all the long derivations and proofs are presented in online appendixes.
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population will boost the use of natural resources for consumption and production, which

provokes a dynamic adjustment of the natural environment. These two dynamic processes

are explained in the following section.

3.2 Long-Run Equilibria

The usual agglomeration and dispersion forces of NEG literature (market size effect, Com-

petition and Price index effects) arise in the model. As in Helpman (1998), a consequence

of the nontradability of the primary good and the free labor mobility is that the market

size effect always dominates the competition effect. In addition, as a result of the dynamics

of the natural resources, a new dispersion force arises, as is proved in Proposition 1.

Note that, for a given level of Lj , the globally stable steady state value of the natural

resource, given in (20), becomes

S∗j = (1− ǫθLj)CC if ǫθLj < 1 otherwise S
∗

j = 0 (33)

where

θ ≡
σ − µ [1 + α (σ − 1)]

gσ
(34)

and (29) have been used.

Thus, due to the role played by the workforce in the resource extraction, a higher

population, Lj, tends to reduce the level of the sustainable natural resource (S∗j > 0). The

same can be said for the extractive productivity parameter in the primary sector, ǫ. The

following proposition establishes the consequences for wages and primary good price.

Proposition 1 When population increases in one region, natural resource dynamics leads

to

( i) lower nominal wages and

( ii) increase the price of primary goods and the industrial price index in that region.

Proof. See the online Appendix A.

This is the Resource Effect, and it has two channels that encourage dispersion through

the consumers utility. Property (i) stands for the linkage between the primary and the
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industrial sector, and depends on α. Property (ii) affects the cost of living and its strength

depends on µ.

Despite the similarities, the resource effect is different to the effects derived by Helpman

(1998) and Ottaviano and Puga (1998). In these other models the dispersion forces are

driven by region-specific supplies of the nontradable good (or factors), which are fixed

stocks. Thus, an increase in the population diminishes the stock per capita (per firm), so

raising the price. In the model developed in this paper, the primary good is extracted or

produced; it is not fixed. An increase in the population does not change the ratio Hj/Lj, in

the short-run, due to the simultaneous increase in the extractive labor force (see equations

(9) and (29)). However, in the long-run, the steady states stock decreases, and so, therefore,

does the ratio Hj/Lj. The resource dynamic is essential for the existence of the resource

effect.

Equation (21) can be simplified by replacing (22), and making use of P1 definition in

(7), its mirror image for P2, (10), (23), (24), (31) and (32). Thus, the dynamic evolutions

of the stocks of the natural resource and population between the two regions are driven by

equations (19) with j = 1, 2 and (21) and can be rewritten as

L̇1 = L1 (1− L1)


�
S1
S2

�1−µα−µ(1−α)/(1−σ)
pµ(1−2σ)/(1−σ) − 1

�

(35)

Ṡ1 = gS1

�
1−

S1
CC

�
− ǫgθS1L1 (36)

Ṡ2 = gS2

�
1−

S2
CC

�
− ǫgθS2(1− L1) (37)

where θ is defined by (34), and p is a function of the population size, according to equation

(32).5A long-run equilibrium is a stationary point of the dynamic equation system (35)-

(37), where workers do not have incentives to move from one region to the other and

natural resource stocks remain constant. Furthermore, because we are studying a renewable

natural resource, we are interested in the set of parameters that allows at least one long-run

sustainable solution (S∗j > 0). To ensure this, we assume hereinafter that

ǫθ < 2. (38)

5Note that after some manipulations we have that

P1
P2

=

�
L1
L2
p1−σ + φ

L1
L2
φp1−σ + 1

�1/(1−σ)

= pσ/(1−σ)
�
S1
S2

�(1−α)/(1−σ)
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If parameters satisfy the sustainability condition (38), then there exists a symmetric

interior equilibrium, characterized by the following values, where population is equally dis-

tributed:

L∗1 = 1/2, S
∗

1 = S∗2 =

�
1− ǫ

θ

2

�
CC, p∗ = 1 (39)

Note that if ǫθ < 1, the symmetric (interior) equilibrium coexists with the following two

agglomeration (boundary) equilibria:

L∗1 = 1, S∗1 = (1− ǫθ)CC, S∗2 = CC, p∗ = φ
−1
σ (1− ǫθ)−(1−α)/σ (40)

and

L∗1 = 0, S∗1 = CC, S∗2 = (1− ǫθ)CC, p∗ = φ
1
σ (1− ǫθ)(1−α)/σ (41)

When ǫθ ≥ 1, the agglomeration equilibria become.6

L∗1 = 0, S∗1 = CC, S∗2 = 0, p∗ = 0 (42)

Mirror-image values are obtained for L∗2 = 0.

3.3 Stability Properties

According to (39)-(42), economic activity can be equally distributed between the regions

or concentrated in one of them. Which equilibrium will prevail depends on the stability

properties, expressed in terms of the parameters of the model, in the following proposition.

Proposition 2 The symmetric interior equilibrium is locally stable if the following condi-

tion is satisfied:

φ > max{φB, φH} (43)

with φB ≡ 1− (σ−1)(σ(1−µα)−µ(1−α)) ǫθ

(2σ−1)µ(1−ǫ θ
2
)+(σ−1)(1−µ−µ(1−α))ǫ θ

2

and φH ≡ 1−
2σ(σ−1)g(1−ǫ θ2)

(2σ−1)µ+(σ−1)g(1−ǫ θ
2
)
.

Meanwhile, the agglomeration equilibria (40)-(41) are locally stable (stable nodes) if the

following condition holds:

φ < φS ≡ (1− ǫθ)
(σ−1)
µ(2σ−1)

[σ(1−µα)−µ(1−α)]
(44)

and agglomeration equilibrium (42) is always unstable.

6On replacing the symmetric equilibrium (L∗1 = 1/2, S
∗

1 = S
∗

2 = (1 − ǫθ/2)CC), and the agglomeration

equilibria (L∗1 = 1, S
∗

1 = (1 − ǫθ)CC, S
∗

2 = CC and L∗1 = 0, S
∗

1 = CC and S∗2 = (1 − ǫθ)CC), in equation

(32), the equilibrium price p∗ is obtained. Thus, it is easy to confirm that the three differential equation

system (35)-(37) vanishes for (39) and for (40)-(42).
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Proof. See the online Appendix A.

In the previous proposition the superscript B is for "break" and the superscript S is

for "sustain" (maintaining the name used by Fujita et al., 2001). The superscript H is for

Hopf, since at this point a Hopf bifurcation arises, as will be shown later.

Condition (43) defines a region of stability for the symmetric equilibrium (shaded region

in Figure 1) in the space of parameters ǫ and φ. This stability region is not empty, although

it can be greater or smaller depending on the parameters of the model. The downward

sloping curve φB in the (ǫ, φ) space, is the boundary for the pitchfork bifurcation, and φH ,

upward sloping, is the boundary for the Hopf bifurcation. Both curves intersect at point ǫ.7

Figure 1 represents the stability condition (43) for parameters σ = 2, α = 0.6, µ = 0.8,

and g = CC = 1.

[Figure 1 - Stability region of the symmetric equilibrium]

The symmetric equilibrium (39) is not necessarily the only interior equilibrium for the

system (35)-(37). According to the value of the parameters, there could be two more interior

equilibria around the symmetric one. The following proposition proves this result.

Proposition 3 If φB, φS ∈ (0, 1) and ǫ < ǭ, an increase in the openness of trade leads to:

i) a sudden change from agglomeration to dispersion for low levels of the extractive

productivity, ǫ < min{ǫ̃, ǭ}.

ii) a smooth change from agglomeration to dispersion for high levels of the extractive

productivity, ǫ̃ < ǫ < ǭ.

where ǫ̃ > 0 is the intersection point of φB and φS.

7

ǫ ≡
(σ − 1)(1− α) + σ(2 + θ)− 2

�
(σ − 1)2(1− α)2 + θ [2(1− α)(σ − 1) + σ(2 + θ)]

θ(σ + (σ − 1)(1− α))
> 0 (45)
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Proof. See the online Appendix A.

Proposition 3 proves that as transport cost decreases (φ increases) the stability of the

symmetric equilibrium changes. This prominence of transport costs is not new in NEG

models. What is new in our model is the emergence of a second actor: the extraction

productivity in the primary sector, measured by ǫ. This parameter will determine if the

transition is sudden (a subcritical pitchfork bifurcation) or smooth (a supercritical pitchfork

bifurcation). Both phenomena are observed in the real world. As reported by Andrew et al.

(2003), the rapid movement of fishing efforts (fleet, fishermen, processing facilities, etc.) to

unexploited regions has occurred in many world fisheries. In contrast, a slow depopulation

has been observed as the consequence of deforestation or soil fertility decline (Dazzi and

Lo papa, 2013). Parameter ǫ plays an important role in environmental economic models

that use the catch-per-unit-effort resource production function. Its value depends on both

the natural resource in question and the technology employed. Therefore, these two facts

matter for a sudden or a smooth structural change in the geographical distribution of the

economic activity.

Additionally, the incorporation of the dynamics of natural resources into the original

core periphery model leads to the appearance of periodic solutions, as is proved in the

following proposition.

Proposition 4 When φi < φ < φH migration flows adopt a cyclic behavior,

where

φi ≡ 1− 2σ
δi

1 + δi
(46)

and δi is defined in the online Appendix A.

Proof. See Appendix A.

Note that φH and φi intersect at point ǭ. Thus, for ǫ > ǭ passing from the left to

the right of curve φH , there are two complex conjugate eigenvalues that move from having

negative real part to having positive real part, and the symmetric equilibrium loses its local

stability. The proposition shows the emergence of cyclic behavior (a Hopf bifurcation) for

relatively high values of the extractive productivity (ǫ > ǭ).
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The existence of cyclic behavior is new to the literature of CP models in continuous-

time. However, the Policy Institute and the 2011 report of the European Migration Network

recognize the existence of circular migration. In some cases it is due to environmental issues

(Rauscher, 2009). Proposition 4 points again to the extraction productivity, ǫ, as a key

parameter (ǫ > ǭ), together with transport costs.

The following subsection describes the process of agglomeration-dispersion of the eco-

nomic activity between two regions, focusing on the role of transport cost and primary

sector productivity in the stability properties of the equilibria.

3.4 The role of transport cost and extraction productivity

The first result that stands out is that as the transport cost decreases (φ increases) the

symmetric equilibrium changes from unstable to stable (Proposition 2). This is in contrast

to the results found in the original CP model but in line with Krugman and Elizondo (1996),

Helpman (1998) and Murata and Thisse (2005).

In the transition between instability and stability, the extraction productivity of the

primary sector becomes important. As pointed out before, different values of ǫ can change

the bifurcation pattern. Figure 1 gives a clear view of the role of ǫ. For a given transport

cost, the larger the value of ǫ, the closer we are to the stability region of the symmetric

equilibrium. So the dispersion force is a direct function of ǫ.

Note that this result is the opposite to what Tabuchi et al. (2016) find when they analyze

an increase in the industrial productivity through a fall in the marginal labor requirement.

Two differences are driving these opposite results. First, the model proposed by Tabuchi

et al. (2016) has migration costs. This implies that the size of the gap between real wages

matters in their model and not in ours. Thus, when industrial productivity increases in

Tabuchi’s model, the real wage gap widens, overcoming the effect of migration costs and

giving place to further agglomeration. In our model the equilibrium implies real wage

equalization, so an increase in the extraction productivity does not have a direct impact

on prices through this channel.8 Second, in our model, the extraction productivity has a

8Note that if in our model there were a real wage gap differential, and holding constant the stock of

natural resources, an increase in ǫ would also widen this gap as in Tabuchi et al. (2016), and through the

same direct channel. Nevertheless, the only possible equilibria where real wages are not equalized (in our
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second channel through which it can affect the equilibria: it has an indirect impact through

the long-run stock of natural resources. This channel is not present in Tabuchi et al. (2016).

Thus, in the case of L1 	= 1/2 an increase in the extraction productivity can change the

ratio of indirect utilities, shifting dynamics and the possible equilibria. Hence, while an

increase in the industrial productivity tends to magnify regional disparities, an increase in

the extraction productivity tends to mitigate or even revert these disparities when there are

no migration costs.

The process depicted by Figure 2, the subcritical case, is characterized by a sudden

change in spatial configuration (Fujita et al., 2001). This is because the non-symmetric

interior equilibria connecting the agglomeration and symmetric solutions are unstable. In

this case, the bifurcation diagram has a Krugman tomahawk shape, but the stability pattern

is inverted.

[Figure 2 - Subcritical Pitchfork Bifurcation - parameter values: σ = 2, α = 0.6, µ = 0.8,

g = CC = 1, and ǫ = 2.2]

If the extraction productivity of the primary sector is low enough, a value of ǫ < min{ǫ̃, ǭ}

(subcritical bifurcation), then dispersion forces are weak, and for low values of φ (such

that φH < φ < φB) agglomeration equilibria are stable. As transport costs decrease the

equilibrium moves to the right in Figure 2, and a subcritical bifurcation takes place at φB.

The peculiarity of this pattern is that for φ ∈
�
φB, φS

�
both agglomeration and dispersion

equilibria are locally stable. This occurs precisely because dispersion forces are weak, so

when the distribution of the economic activity is near to being fully agglomerated, the size

of the market can still overcome the dispersion forces, even at relatively low transport costs.

However, when the distribution of the economic activity is near the symmetric equilibrium,

the market size effect is not very strong because the difference between the sizes of the

markets is small. So, dispersion forces can overcome agglomeration forces.

The process depicted by Figure 3, the supercritical case, is characterized by a smooth

change in the spatial configuration. This is because the interior non-symmetric equilibria

model) are the agglomeration ones, where concentration has already reached its maximum.
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are stable and connect the agglomeration and dispersion solutions. The bifurcation diagram

closely resembles the one derived by Helpman (1998).

[Figure 3 - Supercritical Pitchfork Bifurcation - parameter values: σ = 2, α = 0.6, µ = 0.8,

g = CC = 1 and ǫ = 2.75]

If the extraction productivity is high enough, such that ǫ̃ < ǫ < ǫ (supercritical bifurca-

tion), and the transport cost is φH < φ < φB, agglomeration equilibria are stable. In this

case, dispersion forces are stronger, so φS and φB are lower than in the subcritical case. As

transport costs decrease the equilibrium moves to the right in Figure 3, and a supercritical

bifurcation takes place at φB. The main difference is that for a φ ∈
�
φS , φB

�
both agglomer-

ation and dispersion equilibria are now locally unstable while the other two non-symmetric

interior equilibria are locally stable. Why does this pattern occur? Dispersion forces are

strong, so agglomeration equilibria become unstable at a low value of φ. At this point,

however, the market size effect is still strong due to high transport costs, so the symmetric

solution is also unstable. Meanwhile, the non-symmetric equilibria are stable because, if a

new firm decides to move to the most populated region, the high extractive productivity

in the resource sector causes a sharp increase in the primary prices and dispersion forces

activate. In contrast, if a firm decides to move to the less populated region, this firm will

have to pay high transport costs to have access to the larger market, and agglomeration

forces are set in motion.

When φ < φH and ǫ > ǭ, the openness of trade is not high enough to guarantee the

stability of the symmetric equilibrium, so this high transport cost triggers an agglomeration

process. However, the population growth, together with a high extraction productivity (high

value of ǫ), accelerate the depletion of the natural resource. The resource dynamics boosts

the dispersion forces, first by slowing down the migration flow, and finally reversing it; all

of which give rise to a circular behavior. This is consistent with Robinson et al. (2008) who,

in a different framework, find that the spatial characteristic of the extraction of a renewable

resource ultimately results in cyclical dynamic extraction.

What we find with a renewable and extractable resource is that households move to

the region with the higher real wages, and as the market gets bigger, the agglomeration
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of persons and firms accelerates, so raising the demand for primary goods. The primary

sector extracts more natural resources to cope with the increase in demand, compromising

its long-term stock, and the level of future extractions. Ultimately, the scarcity of the

resource raises the primary prices enough to reverse the migration process. This scheme

resembles the chase-and-flee cycle of location of Rauscher (2009), but through a different

channel.9

The migration flow caused by this circular behavior is compatible with some of the ideas

outlined on circular migration in the migration and economic labor literature. Newland

(2009) refers to this phenomenon as a seasonal or periodic migration for work, for survival,

or as a life-cycle process. Additionally, there have been some attempts to quantify the

importance of circular migration and its impact in the origin and the destination countries,

see, for example, Constant and Zimmermann (2012); and Agunias and Newland (2007) for

other references.

4 A tradable primary good

In this section we present the case of a tradable primary good. To simplify the analysis we

assume that the primary good is tradable at the same transport cost of industrial goods,

that is, ν = τ .

4.1 Short-Run Equilibrium

The three markets (labor, industrial and primary goods) clear. Replicating the analysis

followed in section 3, it is obtained that (see the online Appendix B for a comprehensive

explanation)

LE1w + LE2 =
µ [1 + α(σ − 1)]

σ
(L1w+ L2) (47)

LH1w + LH2 =
σ − µ [1 + α(σ − 1)]

σ
(L1w + L2) (48)

nj =
LEj

f [1 + α (σ − 1)]
for j = 1, 2. (49)

9 In Rauscher’s (2009) chase-and-flee cycle, people prefers a clean and healthy environment, so they

decided to stay away from industrial (polluting) activities; but, they are chased by the industries, which

want to locate close to the market.
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where w ≡ w1/w2. Moreover, trade between the two regions is balanced if and only if

TB = µ

�
z12

1 + z12
L2 −

1

1 + z11
L1w

�
+ (1− µ)

�
q12

1 + q12
L2 −

1

1 + q11
L1w

�
(50)

+
(1− α) (σ − 1)

1 + α (σ − 1)

�
q12

1 + q12
LE2 −

1

1 + q11
LE1w

�
= 0

where q11 is the ratio of region 1 expenditure on local primary good to that on primary good

from region 2, and q12 is the expenditure of region 2 on region 1 primary good with respect

to the primary good from region 2. The first term of equation (50) is the difference between

industrial exports and imports of region 1, the second term is the difference between primary

exports and imports of region 1 for final consumption, and the third term is the difference

between primary (raw material) exports and imports of region 1 to be used as inputs by

the industrial firms. Note that if the last two terms of equation (50) vanishes, which is the

case if the primary good were not tradable, equation (50) would reduce to (32).

The symmetric equilibrium (39) satisfies equation (50) and the derivative at this point

is

∂TB
∂w (L

∗

1, S
∗

1 , S
∗

2 , w
∗) = φ(2σ−1+φ)

(1+φ)2
+ φΨ∗(φ)

(1−φ)2(1+φ)

�
(1 + φ)2 + 2(σ − 1) (2αφ+ 1− φ)

�
> 0

with L∗1 = 1/2, S∗1 = S∗2 = S∗ =
�
1− ǫ θ2

�
CC, w∗ = 1 and Ψ∗(φ) > 0 is (94) evaluated

at the symmetric equilibrium. Therefore, for a given value of φ, equation (50) implicitly

defines w as a function of L1, S1 and S2 in a neighborhood of the symmetric equilibrium.

Using the implicit differentiation in (50), we obtain, at the symmetric equilibrium, that

∂w
∂L1

=
−4
�
1− 1+φ

1−φ
Ψ∗(φ)

�

2σ−1+φ
1+φ

+ Ψ∗(φ)

(1−φ)2
[(1+φ)2+2(σ−1)(2αφ+1−φ)]

(51)

which can be negative or positive, depending on the value of φ. That is,

∂w
∂L1

≶ 0 if and only if φ ≶ φ̂ = σ(1−µ)−µ[1+α(σ−1)]
σ(1−µ)+µ[1+α(σ−1)] < 1 (52)

In contrast to what happened in Section 3, now if the stock of the natural resources remains

constant, the competition effect could be strong enough to dominate the market size effect

for high values of transport costs (φ low enough).10

10Note that ∂φ̂
∂α < 0, which implies that an increase in α reinforces the market size effect. If α increases,

the linkages between the two sectors weaken. So, there is a shift of firm expenditures from primary goods

(coming form both regions) to labor (a completely local factor). This reinforces the effect of the market size.
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Additionally, implicit differentiation in (50) with respect to S1 and S2 gives, at the

symmetric equilibrium, that

∂w
∂S1

= − ∂w
∂S2

= 1
S∗

2(σ−1)
�
1+Ψ∗(φ)(1−α) 1+φ

1−φ

�

2σ−1+φ+
Ψ∗(φ)(1+φ)

(1−φ)2
[(1+φ)2+2(σ−1)(2αφ+1−φ)]

> 0 (53)

The resource effect is reinforced. The original mechanisms described in Proposition 1

remain, but a new one appears. Note that now a reduction in the primary price due to an

increase in S1 encourages exports of region 1 that must be compensated with an increase

in nominal wages of this region. All these mechanisms go in the same direction.

4.2 Long-Run Equilibrium

In the long-run the stock of natural resources does not remain constant; its temporary

evolution obeys the differential equation (19) and population migrates from one region to

the other according to (21). For the case of a tradable primary good, the ratio of indirect

utilities is
V1
V2
=
w1
w2

�
P1
P2

�
−µ�PH1

PH2

�
−(1−µ)

(54)

where PHj is the resource price index for region j = 1, 2. From equations (8), its mirror

image for region 2, and (54) it is clear that when the ratio S1/S2 decreases, the ratio of

indirect utilities will diminish; and this result is equivalent to property (ii) in Proposition

1.

Hence, the differential equations system (19) for j = 1, 2 and (21) now takes the form:

L̇1 = L1 (1− L1) [∆(w,S1, S2)− 1] (55)

Ṡ1 = S1

�
g

�
1−

S1
CC

�
− ǫLH1



(56)

Ṡ2 = S2

�
g

�
1−

S2
CC

�
− ǫLH2



= S2

�
g

�
1-

S2
CC

�
-ǫ[(gθL1-LH1)w+gθ(1-L1)]



(57)

with ∆(w, S1, S2) defined in the online Appendix B (see equation (95)), LH1 = L1-LE1 ,

LH2 = (gθL1-LH1)w+gθ(1-L1) according to equation (48) and w defined by the balanced

trade equation (50) as a function of L1, S1 and S2.

The three steady states defined in (39)-(41) are also steady states of the new system

(55)-(57). However, the stability pattern of the symmetric equilibrium may differ from the

case of a non-tradable primary good.

22



4.3 Stability properties

The shaded region in the examples of Figure 4 represent the stability regions of the sym-

metric equilibrium in the space (ǫ,φ) for the different sets of parameters:

[Figure 4 - Stability region of the symmetric equilibrium (tradable primary good)

(a) σ = 7, α = 0.5, µ = 0.5, g = 0.5, CC = 1; (b) σ = 7, α = 0.2, µ = 0.5, g = 0.5, CC = 1;

(c) σ = 7, α = 0.5, µ = 0.5, g = 1, CC = 1; and (d) σ = 7, α = 0.5, µ = 0.2, g = 0.5, CC = 1]

Note that, depending on the value of the parameters, several bifurcation patterns may

appear. From Figures 4a - 4d, the predominant pattern for the symmetric equilibrium is

the one that goes from stable to unstable as transport costs decrease. Additionally, some

regularities are observed and are worthy of mention.

First, when transport cost are very low, the symmetric equilibrium is unstable for all

values of ǫ ∈ (0, 2/θ). Because the primary good now can be exported to the other region

(at a low transport cost), the advantage of having a lower primary price is limited. Second,

when ǫ is low, the symmetric equilibrium is also unstable. This is due to the interaction

between the tradability of the primary good and a low resource effect, caused by a low

extractive productivity. Third, in the lower-right quadrant in the (ǫ, φ) space, transport

costs are high and the tradability of the primary good is limited, then, as happened in

Section 3, the symmetric equilibrium is unstable.

Finally, if the transport costs of the primary goods were different from those of the

industrial goods, similar results could be obtained, but the interaction between the agglom-

eration and dispersion forces would depend on how these two transport costs relate and

vary.

5 Conclusions

This paper presents an extension of Krugman’s CP model (1991) and attempts to provide

a more comprehensive modelization of the traditional sector, usually treated as residual.

Our results allow a better understanding of the migratory processes observed in resource
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based economies. The model incorporates two key features of the agricultural sector: the

dynamics of the renewable natural resources, and the possibility of using raw materials as

inputs in the industrial production. In Section 3, it is assumed that the primary good is not

directly tradable between regions, in order to isolate the resource effect that arises in the

model. In Section 4 we extend the analysis to the case of a tradable primary good. Another

major difference between our model and the original CP model is the free labor mobility

between sectors.

The core-periphery model presented in this paper has all the effects of the traditional

NEG models: market size effect, price index effect and competition effect. Once we in-

corporate the dynamics of the natural resources into the analysis, a new dispersion force

arises: the resource effect. Under certain conditions, this dispersion force overcomes the

agglomeration ones driven by the industrial price index and the market size effect, making

the symmetric equilibrium stable. In real examples worldwide, it is observed that this force

provokes environmental-induced migration (Andrew, 2003; Kirby, 2004; Jouanjean et al.,

2014, among others).

If the primary good is not tradable, the effect of transport costs on the stability pattern of

the traditional core-periphery models is reversed. For high transport costs one might expect

agglomeration to take place (if the new dispersion force is not too strong). However, as

transport cost decreases, imports become cheaper and the advantage of being in the largest

region diminishes. For example, the construction of new roads increases the profitability

of the exploitation of forest and soil in distant areas in Laos, the Philippines, Paraguay,

Brazil, Peru, Panama and Bolivia, encouraging the expansion and dispersion of the economic

activity (Laurence et al., 2009; and Reymondin et al., 2013).

Our model also gives insights into the transition between agglomeration and dispersion

of the economic activity and highlights the role of the extraction productivity in the primary

sector. The conditions for a pitchfork bifurcation and a Hopf bifurcation are determined.

Depending on the productivity of the primary sector, the pitchfork bifurcation can be sub-

critical or supercritical, and these two patterns illustrate different processes. On the one

hand, strong agglomeration forces (subcritical), imply a sudden change in the spatial distri-

bution of the economic activity, as in the rapid shift that took place in the exploitation of

the sea urchin fisheries in Chile (Andrew et al., 2003). On the other hand, strong dispersion
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forces (supercritical), imply a smooth change, as observed in the slow depopulation driven

by the decline in soil fertility in Italy (Dazzi and Lo papa, 2013)

Another important result in our paper is the existence of a Hopf bifurcation, which makes

the appearance of a branch of periodic solutions feasible, so introducing cyclic behavior in

the dynamics. When the extraction productivity of the primary sector is too high , economic

activity will tend to agglomerate in one region until the primary good becomes too expensive,

and then a dispersion process takes place. However, due to the high extraction productivity,

the stock of the resource takes longer to renew and, while this happens, more firms continue

to arrive in the other region, so agglomeration is taking place now in this region. This is a

completely new result in CP models in continuous-time.

If the primary good is tradable, several bifurcation patterns may appear, depending on

the value of the parameters. Also, some regularities are observed. First, reductions in the

transport costs of the primary goods weaken the dispersion forces associated to the resource,

then, for low values of transport cost the dispersion equilibrium is unstable. Second, for

low values of the extraction productivity, the symmetric equilibrium is also unstable. In

most cases, the symmetric equilibrium goes from stable to unstable as the openness of trade

increases.
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Appendix A

Proof of equation (32): Following Krugman (1991), z11 ≡
n1c11p1
n2c21p2τ

can be defined as the

ratio of region 1 expenditure on local manufactures to that on manufactures from region 2.

In a similar way, z12 ≡
n1c12p1τ
n2c22p2

is the expenditure of region 2 on region 1 industrial goods

with respect to goods produced in region 2. Thus, the equilibria for the industrial sectors

in both regions are

n1pH1h1 +w1LE1 = µ

�
z11

1 + z11
L1w1 +

z12
1 + z12

L2w2

�
(58)

n2pH2h2 +w2LE2 = µ

�
1

1 + z11
L1w1 +

1

1 + z12
L2w2

�
(59)

Using equations (26), (30) and (31), the previous two equations can be reduced to the single

TB =

Imports of region 1
� �� �
1

1 + z11
L1w1 −

Exports of region 1
� �� �
z12

1 + z12
L2w2 = 0 (60)

which guarantees that trade is balanced. Rearranging terms in equation (60) we have that

z12 (1 + z11)
L2
L1
− (1 + z12)w = 0 (61)

where w ≡ w1/w2. Note that, from (31) and (5),

z11 ≡
n1c11p1
n2c21p2τ

=
L1
L2

�p
τ

	1−σ
and z12 ≡

n1c11p1
n2c21p2τ

=
L1
L2
(pτ)1−σ (62)

where p = p1/p2 is defined in (24). Replacing (62) into (61), and taking into account (24),

equation (32) is obtained.

Moreover, given L1, S1, S2 and φ, function p(S1/S2)
1−α is an increasing straight line

as a function of p (which takes the value 0 at p = 0) and p1−σ(φ+ L1/(1− L1)p1−σ)/(1 +

L1/(1−L1)p
1−σφ) is a strictly increasing and convex function of p. Then, given the values

of L1, S1, S2 and φ, there exists a unique positive value p such that (32) is satisfied.

Proof of proposition 1: From equations (24) and (32) we have that

p̂ =

�
np1−σ

�
n̂− (1− α)ψ1

�
Ŝ1 − Ŝ2

	

ψ1 + ψ2
(63)

ψ1 ≡
�
w/p1−σ

� �
1 + np1−σ

�2
> 0 (64)

ψ2 ≡ (σ − 1)
�
1 + np1−σ

���
φ
�
1 +

�
np1−σ

�2	
+ 2np1−σ

��
> 0 (65)
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where n ≡ n1/n2, w ≡ w1/w2, and x̂ ≡ dx/x for each variable x. Additionally, from (24)

we have that

ŵ = p̂+ (1− α)
�
Ŝ1 − Ŝ2

	

Then, by using expression (63) we obtain

ŵ =

�
np1−σ

�
n̂+ (1− α)ψ2

�
Ŝ1 − Ŝ2

	

ψ1 + ψ2
(66)

Moreover, from (7), (10) and (24), we have that

P̂ =
np1−σ

�
1− φ2

�

(np1−σ + φ) (np1−σφ+ 1)

�
p̂−

n̂

σ − 1

�

p̂H = p̂− α
�
Ŝ1 − Ŝ2

	

where P ≡ P1/P2 and pH ≡ pH1/pH2 . Replacing expression (63) we arrive to

P̂ = −
1− φ2

(np1−σ)−1

�
ψ1 − (σ − 1)np

1−σ + ψ2
�
n̂+ (1− α) (σ − 1)ψ1

�
Ŝ1 − Ŝ2

	

(σ − 1) (np1−σ + φ) (np1−σφ+ 1) (ψ1 + ψ2)
(67)

p̂H =

�
np1−σ

�
n̂− (ψ1 + αψ2)

�
Ŝ1 − Ŝ2

	

ψ1 + ψ2
(68)

where ψ1− (σ − 1)np
1−σ > 0. In the three expressions (66)-(68), the resource effect are the

terms associated to
�
Ŝ1 − Ŝ2

	
. Note that, if population increases in region 1, the steady

state values S∗j , given by (33), vary

dS∗1
dL1

≤ 0,
dS∗2
dL1

≥ 0

Since S∗j , j = 1, 2, are globally stable, the natural resources Sj , j = 1, 2, will adjust

immediately to their long-run values. Thus, Ŝ1 − Ŝ2 < 0, which implies that, due to the

resource dynamics, the ratio of nominal wages decreases (property (i)), according to (66).

Additionally, the ratio of industrial price indexes and the ratio of primary prices increases

(property (ii)), according to (67) and (68) respectively.

Obviously, while the stock of natural resources moves to its long-run level S∗j , the re-

maining variables of the model move simultaneously. The final effect on the indirect utilities

will be the addition of the previous effect, linked to the resource, and the usual ones: com-

petition, market size and price index effects.
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Proof of proposition 2: The Jacobian matrix of the dynamic system (35)-(37) at the

symmetric solution (39) is

J∗1/2 =






a b −b

−c d 0

c 0 d






(69)

with

a=
µ(2σ − 1)

σ − 1

(1− φ)

2σ − (1− φ)
, b=

1

4S∗

�
1− µ+ µ(1− α)

2σ − (1 + φ)

2σ − (1− φ)

�
, c=ǫθgS∗, d=−

gS∗

CC
.

(70)

where S∗ = (1-ǫθ/2)CC.The characteristic polynomial is equal to P (λ)=(d-λ)[λ2-(a+d)λ+

ad+2bc], so the eigenvalues can be explicitly calculated and the three of them are negative

if and only if (43) is satisfied.

In the case of the agglomeration equilibrium (40), the Jacobian matrix is

J∗1 =






1− (1− ǫθ)1−µα−µ(1−α)/σ φ
−
µ(2σ−1)
σ(σ−1) 0 0

−ǫθgS∗1 −g (1− ǫθ) 0

ǫθgS∗2 0 −g





.

Hence, the three eigenvalues are negative if and only if condition (44) is satisfied. The

same condition ensures the stability of the equilibrium (41).

The case of agglomeration equilibrium (42) though, can not be analyzed through the

Jacobian matrix. Nevertheless, it is always unstable. Note that if S1− > CC and S2 → 0,

a solution with L1 diminishing while p− > 0 is not reachable and (42) is unstable.

Proposition 311 If φB, φS ∈ (0, 1) and ǫ < ǭ, there exist two interior non-symmetric

equilibria that bifurcate from the symmetric equilibrium at the value φ = φB. At this point,

the stability properties of the symmetric equilibrium change and a pitchfork bifurcation

appears. If ǫθ < 1, the two branches of the bifurcation (new equilibria) converge to the

agglomeration equilibria at φ = φS . Furthermore,

(i) if ǫ < min{ǫ̃, ǭ}, the pitchfork bifurcation is subcritical; that is, the equilibria on the

branches are locally unstable.

11This proposition has been stated in section 3.3 in economic terms. Here, in order to follow the proof,

we have restated it using more technical language.

33



(ii) if ǫ̃ < ǫ < ǭ the pitchfork bifurcation is supercritical; that is, the equilibria on the

branches are locally stable.

where ǫ̃ > 0 is the intersection point of φB and φS.

Proof of proposition 3: It is necessary to prove the existence of the non-symmetric

interior equilibria and only two branches of non-symmetric interior equilibria exist. To

prove their existence, we look for a pitchfork bifurcation of the symmetric equilibrium,

following Guckenheimer and Holmes (1983) and Forslid and Ottaviano (2003). Note that

a pitchfork bifurcation only takes place when ǫ < ǭ. Otherwise, if ǫ > ǭ, the curve φB

separates two regions for which the symmetric equilibrium is unstable (a saddle point vs.

an unstable node).

The following steps are taken: 1. The variables are changed so that the system has a

fixed point at the origin (0, 0, 0); 2. A new parameter (γ) is defined such that for γ = 0 the

Jacobian matrix has an eigenvalue equal to zero; 3. A change of coordinates is made using

the eigenvectors; 4. A Taylor second order approximation of the center manifold is made;

5. The derivatives that prove the existence of a pitchfork bifurcation are calculated; and 6.

The sign of the derivatives is analyzed, which determines if the bifurcation is subcritical or

supercritical

Step 1: Note that
���J∗1/2

��� = 0 if and only if φ = φB, then the symmetric equilibrium

(39) becomes non-hyperbolic at φ = φB and it is characterized by a one-dimensional center

manifold. For mathematical tractability, variables L1, S1 and S2 are changed to l = L1−1/2,

s1 = S1−CC [1− ǫθ/2] and s2 = S2−CC [1− ǫθ/2] , so the new system would have a fixed

point at the origin (0, 0, 0).

Step 2: We define a new parameter γ ≡ µ(2σ−1)
�

1−φ
2σ−(1−φ) −

1−φB

2σ−(1−φB)

	
, so γ = 0 if and

only if φ = φB. If this is the case, we shall call the Jacobian matrix J∗(1/2,0) and, for the

cases where γ 	= 0, this matrix will be called J∗(1/2,γ). The dynamics of l, s1 and s2 are given

by 




l̇

ṡ1

ṡ2





= J∗( 12 ,γ)






l

s1

s2





+






gl(l, s1, s2)

gs1(l, s1, s2)

gs2(l, s1, s2)





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where gl(l, s1, s2), g
s1(l, s1, s2) and gs2(l, s1, s2) form the non-linear part of the system.

Note that the following property is satisfied:

J∗( 12 ,γ)
= J∗

( 1
2
,0)
+ γ






1
σ−1

1−α
4σS∗ − 1−α

4σS∗

0 0 0

0 0 0





.

where S∗ = (1−ǫθ/2)CC. The matrix J∗(1/2,0) has the following eigenvalues: 0,-g(1-ǫ
θ
2), and

µ(2σ − 1)(1− φB)/
�
(σ − 1)(2σ − (1− φB))

�
− g(1− ǫθ2).

Step 3: Using the eigenvectors as a basis for a new coordinate system (u, v, and w), we

set





l

s1

s2





= Q






u

v

w






with Q =






1
ǫθCC 0 2σ(1−αµ)−µ(1−α)

gCC(2−ǫθ)[ǫθ(1+α(σ−1))+2σ(1−ǫθ)]

−1 1 −1

1 1 1





,

where Q is the matrix of eigenvectors of J∗(1/2,0). Then,






u̇

v̇

ẇ





= Q−1J∗(1/2,0)Q






u

v

w





+γQ−1






1 0 0

0 0 0

0 0 0





Q






u

v

w





+Q−1






gl((u, v, w)tQt)

gs1((u, v,w)tQt)

gs2((u, v,w)tQt)






(71)

Step 4: Let v = h1(u, γ) = a1u
2 + b1uγ + c1γ

2 and w = h2(u, γ) = a2u
2 + b2uγ + c2γ

2 be

the second order Taylor approximation of the invariant center manifold . Taking this into

account in (71) we obtain that u̇ = f(u, γ) + O(3), where O(3) means terms of order u3,

u2γ, uγ2 and γ3.

Moreover,

v̇ =

�
∂h1
∂u

,
∂h1
∂γ

�

 u̇

γ̇



 = (2a1u+ b1γ) u̇+ (b1u+ 2c1γ) γ̇ (72a)

ẇ =

�
∂h2
∂u

,
∂h2
∂γ

�

 u̇

γ̇



 = (2a2u+ b2γ) u̇+ (b2u+ 2c2γ) γ̇ (72b)

γ̇ = 0 (72c)

Step 5: We can directly calculate ∂u̇
∂u ,

∂3u̇
∂u3 , and

∂2u̇
∂u∂γ in the center manifold for (u = 0 and

γ = 0) by using expressions (72a), (72b), and u̇ from the system (71). For calculating these
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derivatives we have used the Taylor polynomial of order three of p, implicitly defined by

(32) as a function of S1/S2 and L1, at the symmetric equilibrium.

∂u̇

∂u
(0, γ) =

∂f

∂u
(0, γ) = 0 (73)

∂2u̇

∂u∂γ
(0, 0) < 0 (74)

These results together indicate a pitchfork bifurcation. The first derivative (73) implies

that u = 0 is always an equilibrium, and that u̇ rotates above this equilibrium. The cross

derivative (74) shows in which direction the equilibrium loses its stability. From the analysis

of J∗1
2

in proposition 2 and the definition of γ, it is known that the equilibrium u = 0 is

stable when γ < 0, and unstable when γ > 0. Then, the cross derivative (74) is negative.

Note that φB and φS take the value 1 at ǫ = 0 and both curves decreace as ǫ increases.

At ǫ = θ−1 function φB > φS = 0. Moreover, ∂2φS/∂ǫ2 > ∂2φB/∂ǫ2 at ǫ = 0, therefore,

there exists a value 0 < ǫ̃ < θ−1 such that φB < φS if ǫ < ǫ̃ and φB > φS if ǫ > ǫ̃. At ǫ̃ the

sign of the following derivative changes.

∂3u̇

∂u3
(0, 0) =

16[σ-µ(1+α(σ-1))]

µ3CC3
�
1- ǫθ2

�3
A (ǫθ)2+B ǫθ+C

detQ (2σ-1)2ǫθ[ǫθ(1+α(σ-1))+2σ(1-ǫθ)]
(75)

where C = 12µ2(σ-1)(2σ-1)(1-µ-σ(1-µα)) < 0, A and B are constants that depend on σ, µ

and α.

The sign of the third derivative (75) indicates if the bifurcation is subcritical or super-

critical. This issue will be studied in step 6.

Once the existence of two non-symmetric equilibria is granted, it is necessary to prove

that there are only two branches of interior non-symmetric equilibria. According to equation

(35), the non-symmetric interior equilibria should satisfy the following equation for L1 	=
1
2 ,

p =

�
1− ǫθL1

1− ǫθ (1− L1)



−ρ

with ρ ≡
(1− αµ) (σ − 1) + µ (1− α)

µ (2σ − 1)
(76)

where p is a function of L1 and φ defined by equation (32), that can be restate as,

φ (L1, S1, S2, p) = p−(1−σ)
(1− L1) p (S1/S2)

1−α − L1p2(1−σ)

(1− L1)− L1p (S1/S2)
1−α (77)

Substituting (77) into (76) we obtain a map that assigns a unique value of φ for each

value of L1, as depicted in Figure 2. Indeed, equation (76) defines φ as a continuous and
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differentiable function of L1, if L1 	=
1
2 ,

φ(L1) =

�
1− ǫθL1

1− ǫθ (1− L1)



−ρ(σ−1) (1− L1)

�
1−ǫθL1

1−ǫθ(1−L1)

�1−α−ρ
− L1

�
1−ǫθL1

1−ǫθ(1−L1)

�2ρ(σ−1)

(1− L1)− L1
�

1−ǫθL1
1−ǫθ(1−L1)

�1−α−ρ

(78)

Note that φ(0) = φ(1) = (1− ǫθ)
σ−1

µ(2σ−1)
[σ(1−µα)−µ(1−α)]

= φS . This implies that the non-

symmetric equilibria emerging from the bifurcation and the ones characterized by equation

(76) form two branches that are born at φB and converge to φS if the economy agglomerates

(L1 = 0 or L1 = 1).

Step 6. The sign of the third derivative ∂3u̇
∂u3

(0, 0) indicates whether the bifurcation is

subcritical or supercritical. The denominator in (75) is positive. Therefore, the third

derivative is negative (positive) if ǫ < ǫ̃ (ǫ̃ < ǫ < ǭ), predicting a subcritical pitchfork

bifurcation (supercritical).

Proposition 412 If φ > φi, the critical value φH is a Hopf bifurcation point of system

(35)-(37).

Proof of proposition 4: The eigenvalues of (69) are

λ1,2 =
(a+ d)±

�
(a+ d)2 − 4(ad+ 2bc)

2a
and λ3 = d < 0

with a, b, c and d defined in (70).

Let us define a new parameter η ≡ φ− φH = − 2σ−1+φ
µ(2σ−1)
σ−1

+g(1−ǫ θ
2
)
(a+ d). Note that η = 0

if and only if φ = φH and, if this is the case, λ1,2 are two conjugate eigenvalues with zero

real part.

According to Gandolfo (1997, page 477), the system has a family of periodic solutions if

(i) it possesses a pair of simple complex conjugate eigenvalues θ(η)±ω(η)i, that become

pure imaginary at the critical value η0, and no other eigenvalues with zero real part

exist
12This proposition has been stated in section 3.3 in economic terms. Here, in order to follow the proof,

we have restated it using more technical language.
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(ii) and
∂θ(η)

∂η

����
η0

	= 0

Eigenvalues λ1,2 are simple complex conjugate if (a+ d)2 < 4 (ad+ 2bc), that is

�
µ(2σ − 1)

σ − 1
(δ − δH)

�2
< 4µ(2σ − 1)g

�
1− α

σ

ǫθ

2
−
1− ǫθ/2

σ − 1

�
(δ − δB) (79)

where δ = (1−φ)/(2σ− (1−φ)), δH = (1−φH)/(2σ− (1−φH)) and δB = (1−φB)/(2σ−

(1− φB)) which is equivalent to condition

δ < δi (80)

where δi is the solution of the quadratic equation (a+ d)2 − 4 (ad+ 2bc) = 0 that satisfies

δi ≤ δB. Note that if δH = δB then δi = δH = δB. The previous condition is equivalent to

φ > φi.

Moreover, if η0 = 0 condition (i) is satisfied. Additionally, given that a + d =-

η( µ
σ−1 (2σ-1)+

gS∗

CC )/(2σ-1+φ), condition (ii) is also satisfied. Then, η0 = 0 is a Hopf

bifurcation point.

Appendix B

Short-Run Equilibrium

Equilibrium in the industrial sectors. We define

z11 ≡
n1c11p1
n2c21p2τ

=
�p
τ

	1−σ LE1
LE2

and z12 ≡
n1c12p1τ

n2c22p2
= (pτ)1−σ

LE1
LE2

(81)

where p = p1/p2. Thus, the equilibrium for the industrial sectors in both regions requires

n1

1−α
α

w1(lx1−f)� �� �
(pH1h11 + τpH2h12) +w1LE1 = µ

�
z11

1 + z11
L1w1 +

z12
1 + z12

L2w2

�
(82)

n2(τpH1h21 + pH2h22)� �� �
1−α
α

w2(lx2−f)

+w2LE2 = µ

�
1

1 + z11
L1w1 +

1

1 + z12
L2w2

�
(83)
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Taking into account (18) and industrial demands for primary goods hjk in (14)-(15) the

previous system of equations transforms into

σ

1 + α(σ − 1)
LE1w1 = µ

�
z11

1 + z11
L1w1 +

z12
1 + z12

L2w2

�
(84)

σ

1 + α(σ − 1)
LE2w2 = µ

�
1

1 + z11
L1w1 +

1

1 + z12
L2w2

�
(85)

Dividing by salaries wj , adding both equations and taking into account that L1 + L2 = 1

we obtain (47) and (48). Moreover,

LE1 =
µ [1 + α(σ − 1)]

σ
(L1w + L2)

λ

1 + λw
and LE2 =

LE1
λ

(86)

with

λ ≡
LE1
LE2

= p−(1−σ)
φ

p1−σ/w−φ
− 1

1−φp1−σ/w
L1w
L2

φ
1−φp1−σ/w

L1w
L2

− 1
p1−σ/w−φ

Equilibrium in the primary good sectors. The equilibrium in the primary sector

requires that harvesting equals the demand of primary good from consumers and from the

industrial sector. That is,

H1 = L1
(1− µ)w1

PH1

�
pH1

PH1

�
−σ

+ n1
1− α

α

w1
PH1

(lx1 − f)

�
pH1

PH1

�
−σ

(87)

+L2τ
(1− µ)w2

PH2

�
τpH1

PH2

�
−σ

+ n2τ
1− α

α

w2
PH2

(lx2 − f)

�
τpH1

PH2

�
−σ

H2 = L2
(1− µ)w2

PH2

�
pH2

PH2

�
−σ

+ n2
1− α

α

w2
PH2

(lx2 − f)

�
pH2

PH2

�
−σ

(88)

+L1τ
(1− µ)w1

PH1

�
τpH2

PH1

�
−σ

+ n1τ
1− α

α

w1
PH1

(lx1 − f)

�
τpH2

PH1

�
−σ

Moreover, from (87)-(88), taking into account (9), (10) and (18) it is obtained that

LH1w1 =
q11
1+q11

�
(1-µ)L1+

(1-α)(σ-1)
1+α(σ-1) LE1

�
w1+

q12
1+q12

�
(1-µ)L2+

(1-α)(σ-1)
1+α(σ-1) LE2

�
w2(89)

LH2w2 =
1

1+q11

�
(1-µ)L1+

(1-α)(σ-1)
1+α(σ-1) LE1

�
w1+

1

1+q12

�
(1-µ)L2+

(1-α)(σ-1)
1+α(σ-1) LE2

�
w2(90)

where the following definitions should be taken into account:

q11 ≡
(n1h11 + L1cH11) pH1

(n1h21 + L1cH21) pH2τ
=
�w
τ

	1−σ �S1
S2

�
−(1−σ)

(91)

q12 ≡
(n2h12 + L2cH12) pH1τ

(n2h22 + L2cH22) pH2

= (wτ)1−σ
�
S1
S2

�
−(1−σ)

(92)

whose interpretations, for the primary goods, are similar to z11 and z12.
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Balanced trade equation. Replacing LE1 and LE2 from (84) and (85) into (89) and

(90), and taking into account that q11/(1 + q11) = 1− 1/(1 + q11) we get

µLH1w −

�
σ

1+α(σ-1)
− µ



LE1w= (1-µ)

�
q12
1+q12

L2 −
1

1+q11
L1w

�

+
µ(1-α)(σ-1)

σ

�
q12
1+q12

�
1

1+z11
L1w+

1

1+z12
L2

�
−

1

1+q11

�
z11
1+z11

L1w+
z12
1+z12

L2

�


Applying that 1/(1+ z12) = 1− z12/(1+ z12) and z11/(1+ z11) = 1− 1/(1 + z11), together

with (47)-(48),

µLH1w − µ
LH1w+LH2

LE1w+LE2
LE1w= (1-µ)

�
q12
1+q12

L2 −
1

1+q11
L1w

�

+
µ(1-α)(σ-1)

σ

��
1

1+z11
L1w −

z12
1+z12

L2

��
q12
1+q12

+
1

1+q11

�
+

q12
1+q12

L2 −
1

1+q11
L1w




Rearranging the terms:

µ

�
L1w −

LE1w

LE1w+LE2

�
−

µ(1-α)(σ-1)

σ

�
1

1+z11
L1w −

z12
1+z12

L2

��
q12
1+q12

+
1

1+q11

�
=

�
1− µ+

µ(1-α)(σ-1)

σ


�
q12
1+q12

L2 −
1

1+q11
L1w

�

Therefore, the following equation is obtained, which guarantees that trade is balanced

(imports of region j equals exports of region j),

�
1

1 + z11

L1w

L2
−

z12
1 + z12

�
Ψ =

�
q12

1 + q12
−

1

1 + q11

L1w

L2

�
(93)

which is equivalent to equation (50). Function Ψ, is given by

Ψ =
µ− µ(1−α)(σ−1)

σ

�
q12
1+q12

+ 1
1+q11

	

1− µ+ µ(1−α)(σ−1)
σ

(94)

Dynamics Population dynamics depends on the ratio of indirect utilities Vj given by

P1
P2

=
�
n1p

1−σ
1 +n2(p2τ)

1−σ

n1(p1τ)
1−σ+n2p

1−σ
2

	 1
1−σ

=
�
λp1−σ+φ
φλp1−σ+1

	 1
1−σ

PH1
PH2

=

�
p1−σH1

+(pH2τ)
1−σ

(pH1τ)
1−σ

+p1−σH2

� 1
1−σ

=

 
w1−σ

�
S1
S2

�
−(1−σ)

+φ

φw1−σ
�
S1
S2

�
−(1−σ)

+1

! 1
1−σ

and the dynamic evolutions of the stocks the natural resources and population in the two

regions are driven by equations (55)-(57), with

∆(w, S1, S2) = w
�
λp1−σ+φ
φλp1−σ+1

	 −µ
1−σ
�
w1−σ(S1/S2)

−(1−σ)+φ

φw1−σ(S1/S2)
−(1−σ)+1

	− 1−µ
1−σ

(95)
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where, as in (16)

p = wα
�
w1−σ(S1/S2)

−(1−σ)+φ

φw1−σ(S1/S2)
−(1−σ)+1

	1−α
1−σ

The Jacobian matrix of system (55)-(57) evaluated at dispersion equilibrium (symmetric

equilibrium) has the form

J∗1/2 =






a b −b

−c d e

c e d






(96)

with a=1
4

∂∆
∂L1

���
1/2

, b= 1
4S∗

∂∆
∂(S1/S2)

���
1/2

, c=ǫS∗
∂LH1
∂L1

���
1/2

, e=ǫ
∂LH1

∂(S1/S2)

���
1/2

and d=−gS∗

CC − e.

That is,

a = 1
2

�
(1-µ)φ
1+φ -µ(1+α(σ-1))φ(σ-1)(1-φ)

	
∂w
∂L1

+ µ
σ-1

b = 1
2

�
(1-µ)φ
1+φ -µ(1+α(σ-1))φ(σ-1)(1-φ)

	
∂w
∂S1

+ 1
4S∗

�
µ(1-α)+(1-µ) 1-φ1+φ

	

c = ǫS∗
�
µ(1+α(σ-1))φ

σ(1-φ)2

�
σ-1-φ2 -2(1-α)(σ-1) φ

1+φ

	
∂w
∂L1

+1-µ(1+α(σ−1))(1+φ)σ(1-φ)

�

e = ǫS∗ µ(1+α(σ-1))φ
σ(1-φ)2

�
σ-1-φ2 -2(1-α)(σ-1) φ

1+φ

	
∂w
∂S1

-ǫ(1-α)(σ-1)µ(1+α(σ-1))φ
σ(1-φ2)

d = −gS∗

CC − e < 0

where ∂w/∂L1 and ∂w/∂S1 are given by (51) and (53).

The value d + e = −gS∗/CC < 0 is an eigenvalue of matrix (96). Its characteristic

polynomial is P (L) = (d+e−L)
�
L2 − (a+ d− e)L+ 2bc+ a (d− e)

�
. Then, the symmetric

equilibrium is stable if and only if

2bc+ a(d− e) > 0 (97)

a+ d− e < 0 (98)
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