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A B S T R A C T

Cost estimation may become increasingly difficult, slow, and resource-consuming when it cannot be per-
formed analytically. If traditional cost estimation techniques are usable at all under those circumstances,
they have important limitations. This article analyses the potential applications of data science to manage-
ment accounting, through the case of a cost estimation task posted on Kaggle, a Google data science and
machine learning website. When extensive data exist, machine learning techniques can overcome some of
those limitations. Applying machine learning to the data reveals non-obvious patterns and relationships
that can be used to predict costs of new assemblies with acceptable accuracy. This article discusses the
advantages and limitations of this approach and its potential to transform cost estimation, and more widely
management accounting. The multinational company Caterpillar posted a contest on Kaggle to estimate
the price that a supplier would quote for manufacturing a number of industrial assemblies, given historical
quotes for similar assemblies. Hitherto, this problem would have required reverse-engineering the supplier’s
accounting structure to establish the cost structure of each assembly, identifying non-obvious relationships
among variables. This complex and tedious task is usually performed by human experts, adding subjectivity
to the process.

©2022 ASEPUC. Published by EDITUM - Universidad de Murcia. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Un enfoque de ciencia de datos para la toma de decisiones en la estimación de
costes - Big Data y aprendizaje automático

R E S U M E N

La estimación de costes puede resultar cada vez más difícil, lenta y consumidora de recursos cuando
no puede realizarse de forma analítica. Cuando las técnicas tradicionales de estimación de costes son
utilizadas en esas circunstancias se presentan importantes limitaciones. Este artículo analiza las posibles
aplicaciones de la ciencia de datos a la contabilidad de gestión, a través del caso de una tarea de estimación
de costes publicada en Kaggle, un sitio web de ciencia de datos y aprendizaje automático de Google.
Cuando existen muchos datos, las técnicas de aprendizaje automático pueden superar algunas de esas
limitaciones. La aplicación del aprendizaje automático a los datos revela patrones y relaciones no evidentes
que pueden utilizarse para predecir los costes de nuevos montajes con una precisión aceptable. En nuestra
investigación se analizan las ventajas y limitaciones de este enfoque y su potencial para transformar la
estimación de costes y, más ampliamente, la contabilidad de gestión. La multinacional Caterpillar publicó
un concurso en Kaggle para estimar el precio que un proveedor ofrecería por la fabricación de una serie
de conjuntos industriales, dados los presupuestos históricos de conjuntos similares. Hasta ahora, este
problema habría requerido una ingeniería inversa de la estructura contable del proveedor para establecer
la estructura de costes de cada ensamblaje, identificando relaciones no obvias entre las variables. Esta
compleja y tediosa tarea suele ser realizada por expertos humanos, lo que añade subjetividad al proceso.
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1. Introduction: Decision-making and Management Ac-
counting Information

Artificial intelligence, data science, machine learning, and
big data are on organizations’ agendas. Although these con-
cepts are not new in disciplines such as finance (Fang &
Zhang, 2016), in management accounting, they are still to
be developed. Information has transformed so much that few
if any management control processes remain divorced from
digital technology applications, and data science should be
on the agenda of management accounting researchers (Bhi-
mani, 2020). For management accountants, the partnership
with business-focused data scientists can accelerate the data-
to-information conversion process, and they must fully em-
brace the integration of data, data science, and technology
(Smith & Driscoll, 2017) while familiarizing themselves with
the most modern methods of data governance, query, analyt-
ics, and visualization (Lawson, 2019). The foundational pur-
pose of data analytics is to gather, process, and analyse data
to improve the managert’s decision making (Rikhardsson &
Yigitbasioglu, 2018). To be good at data analysis, the man-
agement accountant needs excellent data (Appelbaum et al.,
2017) and prescriptive use of analytics to reinforce decisions
made about uncertainties (Geddes, 2020). It is crucial to
start knowing practical applications of data science in man-
agement accounting practices by real organizations.

In the case of cost management, inaccurate estimations
risk offering goods at too high or too low a price, resulting
respectively in the loss of orders or in financial loss for the
provider (Hueber, Horejsi, & Schledjewski, 2016). Therefore,
even if costs are traditionally estimated after the product is
designed, it is advantageous to be able to estimate them in
early phases, which present the most opportunities for cost
reduction (Mandolini et al., 2020).

As the markets evolve towards shorter product lifespans,
the design and development phases become more salient,
and it becomes more important to analyse the cost of those
phases accurately (Hadid, 2019). Analyses of the influence
of cost are then reviewed in concepts like cost definitions
as they apply to the engineering process stages: from bid-
ding through design to manufacture, procurement, and, ul-
timately, operations (Curran, Raghunathan, & Price, 2004).
Furthermore, the increasing demand for customized parts
makes cost estimation increasingly difficult, slow, and re-
source consuming. That is the case, for instance, of out-
sourced goods, as cost estimation mainly depends on suppli-
ers’ bids. Improvements in available information and pro-
cessing would require knowledge about the supplier’s cost
structure, something extremely difficult because (1) the ne-
cessary information is not generally disclosed, and (2) most
suppliers rely on human know-how of their specialized staff
(professionals, sellers, advisors), so that the quoting system
is human dependent and hence very difficult to estimate ana-
lytically.

In this paper, we analyse the potential role of data sci-
ence in cost estimation needs in the request-for-quote (RFQ)
process for specific direct inputs into a finished good. With
shorter life cycles and with a large number of changes in
designs, the accuracy and on-time delivery of this informa-
tion from suppliers is crucial to costing. Empirical support
for this paper is provided by the case of a contest launched
by Caterpillar on a web page (kaggle.com), where a company
provides massive data and asks different groups of users to
build an algorithm able to predict the prices of different parts.
The 81% accuracy reached by the winning team is a great
start for the development of these techniques. Furthermore,

the combination of human judgment and the algorithm may
exert a definite impact on cost estimation for decision mak-
ing.

This paper is organized thus: we review the main charac-
teristics of traditional human-based cost estimation with lim-
ited information, and the available studies and examples of
the use of data science approaches in management account-
ing. We then review the case study. We conclude with an
analysis of our main findings and the future implications of
big data for cost estimation, decision making and manage-
ment accounting research.

2. Cost Estimation –The Received Wisdom

Traditional cost estimation uses one or a combination of
three methods (Hueber et al., 2016). First, Analogous cost es-
timation adjusts the cost of a similar product in light of the dif-
ferences between it and the target product (Shen et al., 2017;
Curran et al., 2004; Roy, 2003). This case-based approach is
useful during the early design stage. If historical data are
available, a precise estimate can be efficiently produced in
a minimum of time (Esawi, 2003; Niazi, 2006). Expert is
critical to identify the similarities and differences between
products. The method can be further enhanced with the use
of extra parameters or cost drivers, which account for how a
part differs from the established baseline.

Second, Parametric cost estimation draws on ‘cost estim-
ation relationships’ (CERs)—basic mathematical relations
between production costs and cost drivers. For instance, with
an established CER, it is possible to predict part costs given
the part size (Esawi, 2003). These models use one or more
parameters or variables, such as weight, size, and number of
drawings, to establish the mathematical correlation between
these parameters and the production costs. This technique
requires detailed analytical information in order to establish
the CERs.

Lastly, Bottom-up cost estimation tracks manufacturing ele-
ments such as material, labour, or infrastructure, to get fi-
nal production cost. Under bottom-up the estimator must
have deep understanding of the process, the process interac-
tions, and the part design details (Karbhari & Jones, 2014;
Roy, 2003). This method provides the advantage of a high
level of detail and the causation it is able to provide (Cur-
ran et al., 2004). This approach requires detailed analytical
information and important resources to manage it.

Especially in the case of technologies ‘new to the industry’,
bottom-up estimation and expert judgment are the only avail-
able options, due to the lack of previous specific knowledge.
However, in the case of technologies ‘new to the user,’ the
other method would be possible, provided the new user can
get data and/or an estimation model from the existing users
(Hueber et al., 2016). In advanced industries, most of the
necessary accounting information to perform an analytical es-
timation is not available, and human decision-making factors
are present. In this case, the most basic estimation method
is based on the expert judgment (knowledge and experience)
of specialized agents. This technique is relevant when insuf-
ficient information is available (Duverlie & Castelain, 1999).
For example, when one needs to estimate costs of outsourced
goods and it is not possible to launch a bidding request to
get precise answers from suppliers. However, this approach
is dependent on the agent performing the judgment, and
therefore hard to replicate. In sum, for cost estimation given
very limited available information and considerable human
decision-making factors, none of these traditional methods
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provides a robust analytical approach independent of human
interpretations.

3. Data Science and Decision Making

Firms usually draw on formal systems, designed to capture
transactions, for decision making purposes. Big data arise
from wider configurations of information pools, past and
present, structured and unstructured, formal and informal,
social and economic (Bhimani, 2015). Data science can be
defined as an interdisciplinary field using scientific schemes
and algorithms to obtain judgment and insights from avail-
able data (Van der Alst, 2016).

Data science is being solidly accepted as a new paradigm in
many fields of empirical science like economics, finance or op-
erations. Hey et al (2009) claim that data science constitutes
the new fourth paradigm of scientific progress, through ma-
chine learning algorithms. More applications are being con-
tinuously unfolded, as new algorithms are developed, and
as computing capabilities handle larger amounts of data and
complex relationships.

Concerning cost estimation, some early attempts already
used machine learning (Bode, 1998; Hornik, Stinchcombe,
& White, 1989; Roy, 2003), for example ‘neural networks’
(Schmidhuber, 2015). In cost estimation, neural networks
are used to make a computer program learn the attributes
that influence the production cost (Roy, 2003), by training
the system with data from past cases. During the training,
the neural network approximates the functional relationship
between the attribute values and the product cost. The pro-
gram can then compute the production cost under develop-
ment given its attribute values. Neural networks produce
better-cost predictions than conventional regression costing
methods if a number of conditions are adhered to (Bode,
1998). For example, the neural network does not decrease
any of the difficulties of the preliminary activities for using
parametric methods, nor does it create any new ones, but it
can detect hidden relationships among data. Therefore, the
estimator does not need to provide or discern the assump-
tions of a product-to-cost relationship, which simplifies the
process of developing the final equation (Hornik et al., 1989).
Neural networking needs a large amount of information in-
put, something that is rarely available in companies with a
small range of products. Furthermore, the case base should
be made up of products that are similar to each other and to
the ones to be forecasted. This means that neural networking
is not yet ready to manage uncertainty or disruption.

The equation resulting from a neural network does not ap-
pear logical even if one were to extract it by examining the
weights, architecture, and nodal transfer functions that were
associated with the final trained model. The artificial neural
network truly becomes a ‘black box’ CER. This is problematic
if customers require a detailed list of the fundamentals be-
hind the cost estimate. The black box CER also limits the use
of risk analysis tools (Roy, 2003). Recent developments in
software have increased computational power and created a
surge in demand for more advanced predictive solutions, and
the market is responding with machine learning algorithms,
like for example in speech recognition or for weather fore-
casting. However, these methods entail complex and opaque
techniques, and their potential pitfalls (over-fitting, reduced
transparency, biased results on bad sample data) arouse
consequent scepticism, even though, these techniques are
built on robust validation models (outcome analysis, cross-
validation, and feature importance analysis) providing more
confidence in the results and less worries about potential
risks (Glowacki & Reichoff, 2017). Overall, big data has yet

to cause changes in accounting practices and standards, it has
the potential to cause a paradigm shift allowing economic
activities to be traced and measured earlier and more deeply
(Vasarhelyi, Kogan, & Tuttle, 2015). Examination of the relat-
ive advantages of LIFO, FIFO, or average cost, or the different
definitions of fair value, will be relics of the past (Krahel & Tit-
era, 2015). On the other hand, budgeting has branched out
from traditional data sources and embraced new methods of
control like ‘Beyond budgeting’ practices (Warren, Moffitt, &
Byrnes, 2015) such as those available in enterprise resource
planning (ERP) systems (Hansen & Van der Stede, 2004).
Big data, including additional streams of data outside ERP
systems (e.g., climate, satellite, census, labour, and macroe-
conomic data) could be used to enhance ‘beyond budgeting’
practices.

Warren et al. (2015) confirm that big data will affect
the design and operation of management control systems,
by identifying behaviours correlated with specific goal out-
comes, which would prompt formulation of new perform-
ance measures. Data that are not related to economic transac-
tions offer potential for developing financial intelligence and
shaping cost management as well as pricing and operational
control decisions (Bhimani & Willcocks, 2014). Auditors, for
example, should include a broader base of data when mon-
itoring and auditing accounting transaction information, in
the spirit of big data. As noted by O’Leary (2013) this should
include the integration of blogs, message boards, and other
types of information into the analysis of accounting data as a
part of continuously monitoring financial information. This
would call for continuous financial assurance using big data
from a larger context. Vasarhelyi, Kogan, & Tuttle (2015) ar-
gue that big data matters fundamentally because it changes
radically what we mean by information.

The practical implications of the expansion of accounting
data sets may include: (1) the ability to process and ana-
lyse detailed rather than summary transaction data; (2) the
ability to integrate a variety of both internal and external
data with financial data; (3) the ability to do ‘soft integra-
tion’ of environmental big data (e.g., social networks and
news pieces) with accounting measurement and audit assur-
ance processes; and (4) the ability to transform accounting,
business, and audit processes based on (1), (2), and (3)
(Kogan et al., 2014). These breakthroughs imply changes
in the role of accountants: data scientists with an under-
standing of quantitative and statistical techniques can assist
in shaping information provision. However, there is a need
for ‘bimodal athletes’ (Court, 2012), requiring accountants
to acquire a ‘sceptical’ perspective (McKinney, Yoos, & Snead,
2017). Moreover, the ability to assess big data will redefine
lines of authority, influence, and organizational power in
companies (Bhimani, 2015).

Although there are countless applications of data science
techniques to financial accounting, the practical application
of data science to management accounting is not yet ma-
ture. Some applications address overhead allocation and
cost drivers. (Tang & Karim, 2017), and the estimation of
real-estate market range values using combined neural net-
work models (Yakubovskyi et al., 2017). The surge of ap-
plications of data science to management accounting will
generate more data that will feed back into processes and
increase the surge of new applications. In fact, and as Bhi-
mani (2015) points out, firms manifesting network effects
through big data–based decision making are likely to experi-
ence faster growth from effective strategic action, which can
spur a greater rate of data production that in turn accelerates
managerial action.



48 L. Fernández-Revuelta Pérez, A. Romero Blasco / Revista de Contabilidad Spanish Accounting Review 25 (1)(2022) 45-57

4. A Practical Application of Data Science to Cost
Estimation: Caterpillar’s Contest at Kaggle

We analyse a real case of applying data science tech-
niques to estimate the costs of manufacturing assem-
blies. This approach was tested by Caterpillar at Kaggle
(www.kaggle.com), a popular Google data science and ma-
chine learning website where teams of data scientists com-
pete to solve real cases posted by organizations and compan-
ies like the U.S. Department of Homeland Security, Google,
Banco de Santander, Airbnb, Mercedes Benz, Airbus, and
Caterpillar.

Caterpillar is the world’s leading manufacturer of construc-
tion and mining equipment, diesel and natural gas engines,
industrial gas turbines, and diesel-electric locomotives. It has
nearly 100,000 employees, and its sales turnover exceeded
$53 billion in 2019. Caterpillar sells a variety of larger-than-
life construction and mining equipment to companies across
the globe, and that equipment relies on a complex set of tube
assemblies. Caterpillar posted on Kaggle a challenge to cre-
ate a model that could estimate the cost of outsourced tube
assemblies, based on historical data for previous supplier
quotes for similar assemblies. The three teams providing the
most accurate models were rewarded with prizes adding up
to $30,000, conditional on delivery of the software code for
the final model used to generate the winning predictions.

4.1. The Data

The data provided by Caterpillar were publicly disclosed
at https://www.kaggle.com/c/caterpillar-tube-pricing/data,
in a compressed folder (data.zip) containing several files, lis-

ted in Figure 1.

Figure 1. Files provided by Caterpillar in Kaggle for information
Figure 1. Files provided by Caterpillar in Kaggle for information 

 

 

 

 

               Source: https://www.kaggle.com/c/caterpillar-tube-pricin. 

 

 

Source: https://www.kaggle.com/c/machinery-tube-pricing/data.

The data contained in each file are as follows:

• The file train_set.csv consisted of 30,213 price quotes for
tube assemblies, including the description and price of
each assembly, to be used to train the machine learning
algorithms.

• The file test_set.csv consisted of 30,235 additional ref-
erences without prices, intended to test the predicted
prices and score the model using an error formula.

• The rest of the files provided information about the fea-
tures of each reference, in the form of relational tables
(see the tables mapping in Figure 2).

Figure 2. Structure and dependencies of the data provided for each assembly

Figure 2. Structure and dependencies of the data provided for each assembly 
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• Information about the quote: supplier ID, date of the
quote, annual usage amount, and minimum order quant-
ity for ‘non-bracket pricing’ or level of quantities for
‘bracket pricing’.

• Information about tubes: type of base material (among
20 different types), dimensions (diameter, wall thick-
ness, length), other specifications (materials, processes,
rust protection among 86 different types), number of
bends and radius, number of ends (up to 4) and forms
(among 27), number of bosses, and number of brackets.

• Information about components: each assembly unit
could include up to 8 different additional components
of 11 different kinds. For each kind of component, ad-
ditional information was provided: 14 parameters for
elbows, 13 for bosses, 18 for adaptors, 12 for tees, 9
for nuts, 7 for stems and shells, 8 for sleeves, 30 for
threaded components, 10 for straight components, 5 for
free-floating components, and 2 for other kinds. Weight
was specified for all components.

Each single reference of the 60,000 quotes (observation)
could be defined in the system with no more than 125–150
features (predictors). However, as most of the assemblies
were different and might not have in common the same
nature of features, the aggregate of training data would res-
ult in a matrix with 30,213 rows and 1,153 columns that is
with nearly 35 million elements. Such dimension would dif-
ficult the implementation of classical parametrical statistics
techniques.

In addition, most standard machine learning algorithms
(like Gradient Boosted or Neural Network) cannot operate
with categorical variables, which are derived from observa-
tions made of qualitative data. This introduces additional
complexity, as the categorical variables need to be converted
to integer values if an ordinal relationship exists (for example,
sizes expressed with labels of the kind ‘large,’ ‘medium,’ and
‘short’), or to new ‘dummy’ binary variables when such an or-
dinal relationship does not exist; for example, different pat-
terns of a bolt. This last conversion process is called ‘hot-
encoding.’ On the other hand, several rows might refer to
the same assembly, and, hence, just changing the minimum
amount needed to get the price (as in the first eight rows
of the training data), reducing the complexity and providing
valuable hints about volume discount policies.

As a consequence of the high dimensionality of the data,
this is a big data case. This type of information is in most
cases private and sensitive and is not often disclosed by com-
panies, as it may confer a competitive advantage.

4.2. Cost Estimation at Caterpillar

As with snowflakes, it is difficult to find two identical tubes
in Caterpillar’s catalogue of machinery. Currently, Caterpil-

lar outsources the manufacture of these tube assemblies to a
variety of suppliers, each having its own pricing model. Ac-
cording to statistics provided in section 3.1, to fully define
an assembly, 1,153 parameters must be specified and, among
the 30,213 rows provided, there are no two single assemblies
with roughly similar parameters (apart from those that differ
only in quantity). Caterpillar, can determine the assembly
cost by requesting quote from a supplier (RFQ). To request a
quote, Caterpillar must provide detailed information about
the features of the tube assemblies, and other purchasing
volumes and conditions. Manufacturing costs largely depend
on the features of tubes, which can vary across a large num-
ber of dimensions regarding the shape (diameter, wall thick-
ness, length, number of bends, bend radius, or types of end-
connections), materials, processes, or rust protection, along
with those features of the components that are permanently
attached to the tubes, such as bosses, brackets, adaptors, or
other custom elements (Figure 3). Purchasing volumes affect
manufacturing costs, through economies of scale and the in-
dustrial setup needed for the manufacturing process (batch
sizes and shifts).

Figure 3. A typical tube assembly

Figure 3. A typical tube assembly 

 

 

 

Source: https://www.kaggle.com/ademyttenaere/0-2748-with-rf-and-log-transformation/data 

 

 

Source: https://www.kaggle.com/c/machinery-tube-pricing/overview.

Along with the supplier’s margin for all the added-value
operations, and other elements affected by human factors
during the quoting process, prices are affected by the applic-
ation or non-application of ‘bracket pricing’ (multiple levels
of quantity purchased). For example, see the head of the
train_set table 1.

Non-bracket pricing has, instead, a minimum order
amount for which the price would apply. In addition, each
quote is issued with an annual usage, an estimate of how
many tube assemblies will be purchased in a given year—for
example, this set of assemblies in the train_set table 2.

In this customized industrial assembly, getting costs estim-
ated brings about that the RFQ process is slow (days or even
weeks for calls, explanations, documentation, technical and
commercial interactions), it consumes resources (the time
of engineers, sellers, buyers, logisticians), and it makes very
difficult any modifications needed ‘on the fly’ after the quot-

Table 1. Head of the train_set Table 1. Head of the train_set 

tube_assembly_id supplier quote_date annual_usage min_order_quantity bracket_pricing quantity cost 
TA-00002 S-0066 07-07-13 0 0 Yes 1 21.91 
TA-00002 S-0066 07-07-13 0 0 Yes 2 12.34 
TA-00002 S-0066 07-07-13 0 0 Yes 5 6.60 
TA-00002 S-0066 07-07-13 0 0 Yes 10 4.69 
TA-00002 S-0066 07-07-13 0 0 Yes 25 3.54 
TA-00002 S-0066 07-07-13 0 0 Yes 50 3.22 
TA-00002 S-0066 07-07-13 0 0 Yes 100 3.08 
TA-00002 S-0066 07-07-13 0 0 Yes 250 3.00 
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Table 2. Set of assemblies in the train_set
Table 2. Set of assemblies in the train_set 

tube_assembly_id supplier quote_date annual_usage min_order_quantity bracket_pricing quantity cost 

TA-00013 S-0026 21-07-92 50 1 No 1 10.00 
TA-00021 S-0030 10-02-14 1 1 No 1 3.43 
TA-00022 S-0013 27-07-11 1 1 No 1 8.56 
TA-00048 S-0026 01-09-09 180 20 No 1 2.94 

 

 

 

ing process has been launched. For manufacturers, this con-
strained process makes it hard to keep a competitive edge in
a fast-changing business.

4.3. Data Science

Caterpillar has an excellent database, consisting of more
than 60,000 quotes issued by numerous suppliers for thou-
sands of different tube assemblies. However, this database
is difficult to handle with classical management accounting
tools. In this particular case, these data are ‘structured,’ as
the information has a high degree of organization that can
be classified by means of relational tables (e.g. dimensions,
components, materials).

To measure the accuracy of the predicted costs (technic-
ally the ‘cost function’), Caterpillar applied the root mean
squared logarithmic error (RMSLE) formula, instead of the
traditional root mean squared error (RMSE). In this man-
ner, they avoid penalizing big differences when the predicted
prices and the actual prices are both big numbers—in other
words, to give more importance to relative errors (percent-
age differences in prices) than to absolute ones (differences
in prices):1 √√√1

n

n∑
i=1

(log(pi + 1)− log(ai + 1))2

where

• n is the number of prices to predict
• pi is the predicted price
• ai is the actual price
• log(x) is the natural logarithm

The winning team would score the lowest error through
the RMSLE formula. More than 1300 teams of data scientists
participated in the contest, applying different algorithms and
approaches.

4.4. Selection, Training, Validation, and Stacking of Al-
gorithms Performed by the Winning Team

Selecting the most appropriate machine learning al-
gorithm depends on many factors: the size, quality, and
nature of the data, the computational resources available, the
urgency and the usage of the outputs. An expert data scient-
ist does not know a priori which algorithm is optimal, and
therefore must follow an iterative ‘trial and error’ approach to
find the algorithm, or the combination of several algorithms
(using ensemble or stacking techniques), that optimizes the
expected result (in this case, the one that minimizes price er-
rors according to the RMSLE function). Nevertheless, there
are some clear factors in the problem that narrow the num-
ber of choices. First, as the data included output variables
(price), the target algorithms must obviously belong to the

1Drakos (2018) elaborates on the different evaluation metrics in ma-
chine learning, and the implications of selecting each of them for a given
model.

family of supervised learning (a model prepared through a
training process in which it is required to make predictions
and is corrected when those predictions are wrong). The
training process continues until the model achieves a desired
level of accuracy on the training data. Second, as the out-
puts were numerical, the circle narrowed to regression al-
gorithms. Finally, accuracy outperformed speed of compu-
tation, further reducing the number of choices.

Among the family of supervised learning algorithms for
regression, those most popular used by participants in the
contest, and those selected by the winning team, were the
following:

• Gradient Boosted Trees (XGBoost), which basically
‘boosts’ many weakly predictive regression trees (which
are actually subsets of the problem) that output real val-
ues for splits, and whose outputs are added together into
a strong one. When the subsequent models’ outputs are
added, residuals in the predictions are corrected and the
error formula (loss function) is optimized.

• Regularized Greedy Forests, which optimizes a loss func-
tion as does Gradient Boosted Trees, but with a regular-
ization term. In addition, it periodically readjusts the
weights of each terminal node of the ensemble trees.

• Neural Networks and Factorization Machines, which did
not perform well alone, but were used to compose the
final ‘ensemble.’

Once the most appropriate family of candidates was tar-
geted, the analysts used data to train the algorithms (the
30,000 quotes in the ‘train’ set), checked their performance
using the RMSLE formula, and kept those giving the best res-
ults, to try to improve the score by tuning up their parameters.
Figure 4 shows the model validation process. The models
cannot be validated using the ‘test’ data set, as those 30,000
additional references do not include prices because they are
actually used to check the final performance of the predict-
ive models and score the teams’ submissions. The validation
was performed with the training data themselves. A common
practice of cross-validation is to take a subset of the training
data (e.g., 80% of the quotes), and use the rest (20%) to
check performance. Even if the distribution performed ran-
domly, it is possible to introduce some intelligence into the
process. Whenever several references in the set referred to
the same assembly, it became more convenient to base those
folds on the assemblies’ IDs in order to ensure that references
to the same assembly fell in the same fold. In contrast, even
though the data formed a time series (as each quote was iden-
tified with a date), taking the date into account to perform
the validation process did not improve the scores.

Finally, when it came to selecting the most appropriate
algorithm, several algorithms yielding similarly good scores
performed still better when combined (using ‘ensemble’ or
‘stacking’ techniques; see Figure 5). Moreover, while some
algorithms provided weak results when applied individually,
used in combination resulted satisfactory. In some cases,
such combined algorithms outperformed individual ones.
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Figure 4. Model validation process
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The winning team performed the evaluation on three levels.
First level, the models were evaluated individually. Second,
four models were evaluated, using the results of the first level
to avoid overfitting. And finally, predictions of the second-
level models were averaged to reach the final prediction.

Figure 5. Models stacking
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4.5. Bringing Accounting Expertise to the Predictive Model
with ‘Feature Engineering’

All the listed features of a quote are not useful, but keep-
ing them could add randomness to the results and can be a
potential drawback. For example, suppliers can assign differ-
ent name to the same component due to different internal
nomenclature (threaded elbow):

Table 3. Example of same component with different name

Table 3. Example of same component with different name 

 

component_id name component_type_id 

C-0912 ELBOW-90 DEG CP-015 

C-0974 ELBOW-90 CP-015 

C-1221 ELBOW-90 DEGREE CP-015 

C-1800 ELBOW-90 DEG OTHER 

 

 

 

Table 3. Example of same component with different name 

 

 

Keeping this variable adds complexity to the models, in-
creases the training time, contributes to the ‘curse of dimen-
sionality,’ and contributes to overfitting. To avoid these is-
sues, the analyst performs ‘feature selection’: the process
of picking a subset of significant features to improve model
construction. Feature selection is a delicate process, as ap-
parently irrelevant variables may hide counter-intuitive rela-
tionships or patterns. And vice-versa: some variables, not
necessarily present in this data set, could show spurious re-
lationships in the training data but not in the test data, com-

promising the final performance. In addition to feature selec-
tion, analysts perform ‘Feature Engineering,’ which identifies
data characteristics that could be transformed into variables
to feed the model. In the case of cost estimation, this ex-
pertise is related to management accounting principles. For
example, the weight of a component with low added value
is usually correlated to its cost, as the cost of raw materials
is a major cost driver in such components. Given the quant-
ity and type of components used in each tube, it is possible
to compute the sum of their weights, and importantly, such
variable significantly correlated with the price. Furthermore,
for most of the assemblies, the unitary price was strongly cor-
related with quantity, and this correlation can be expressed:
price = a + b

quanti t y , pointing to economies of scale for sup-
pliers and related discounts.

Finally, for around 90% of the tube assemblies, the sup-
plier proposed prices that varied with the purchased quant-
ity: expensive tubes had lower minimum purchase quantit-
ies than cheaper tubes, due to, for example, manufacturing
batch sizes and logistical issues. In this specific problem it is
used feature engineering, the process that attempts to create
additional relevant features from the existing raw features in
the data, and to increase the predictive power of the learning
algorithm. Feature engineering played a key role in develop-
ing the best performing models.

The contest rules made provisions for the role of account-
ing expertise and performing transformations (https://www.
kaggle.com/c/caterpillar-tube-pricing/rules); the use of ex-
ternal data was not permitted. Introducing external data
about prices and inflation rates for raw materials, energy,
salaries, and exchange rates could certainly have helped al-
gorithms to improve their estimation capabilities.

4.6. The Results

The contest lasted two months and 1,323 participating
teams submitted as many as five predictions per day, which
were automatically scored on the platform through the
RMSLE formula to 30% of the test data. The scores were pub-
lished on a ‘Public Leaderboard’ (https://www.kaggle.com/
c/caterpillar-tube-pricing/leaderboard; see Figure 6). That
iterative approach enabled the participants to better calibrate
their algorithms.

Figure 6. First twelve teams in the Public Leaderboard at the end of
the contestFigure  6. First twelve teams in the Public Leaderboard at the end of the contest 

 

Source: https://www.kaggle.com/c/caterpillar-tube-pricing/leaderboard 

 

Source: https://www.kaggle.com/c/machinery-tube-pricing/leaderboard.
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The final standing was reported on the ‘Private Leader-
board’ (see Figure 7).

Figure 7. First twelve teams in the Private Leaderboard at the end of
the contestFigure 7. First twelve teams in the Private Leaderboard at the end of the contest 

 

Source: https://www.kaggle.com/c/caterpillar-tube-pricing/leaderboard 

 

Source: https://www.kaggle.com/c/machinery-tube-pricing/leaderboard.

The winning team2 surpassed with a score of 0.196556,
which means that the average of the 30,000 predicted prices
in the test set was within 21,7% of the average of the actual
prices. As per the contest rules, the algorithms applied
by the winning team were not disclosed (the source code
being licensed to Caterpillar), but other participants pub-
lished their codes (kernels) on the contest website (https:
//www.kaggle.com/c/caterpillar-tube-pricing/kernels).
Appendix 1 shows a code in R language, posted by a
participant (https://www.kaggle.com/ademyttenaere/
0-2748-with-rf-and-log-transformation), who scored
0.2748 by using a simple Random Forest machine learning
algorithm3, without applying further feature engineering
or ensemble techniques. In comparison, the winning team
(Gradient Boosted Trees and Regularized Greedy Forests)
used ‘decision trees’ algorithms, but with the additional
capability of reducing bias, or ‘boosting.’ This approach
provides a significantly less accurate result than the winning
one, but constitutes a good illustration of how a simple
machine learning algorithm is coded. Its output (assembly
ID and price) can be found on the same website, and a
sample of 40 results is shown in Appendix 2.

5. The Data Science Approach

5.1. Value of the Results in the Caterpillar Case

Along with the high dimensionality of the data, our fo-
cal case suggests the application of management account-
ing models and estimate cost rates, raw material costs,
and overheads. First, the features are largely categorical—
treatment of surfaces, the presence of components or custom-
ized features—and therefore require building many subsets
of the problem. Those subsets would have a higher number
of predictors than observations (p >> n, the ‘curse of dimen-
sionality’). An attempt to apply classical statistical models

2The winning team was composed of four data scientists who identified
themselves as Mario Filho (self-taught data scientist), Josef Feigl (Ph.D. can-
didate in machine learning at the University of Leipzig), Lucas (senior data
scientist), and Gilberto (electronics engineer with an M.S. in telecommunic-
ations).

3Random Forest is a bagging ‘decision tree’ algorithm that reduces vari-
ance.

(e.g., linear regression) would result in undetermined sys-
tems. Furthermore, the features present nonlinear dependen-
cies: for example, manufacturing cost usually increases more
than linearly the complexity of shapes and industrial oper-
ations. Modeling this behavior constitutes a complex task;
if some variables affecting prices are influenced by human
factors and hence difficult to model analytically (e.g., mar-
gins/discounts on volumes, features of the suppliers’ pricing
models). Machine learning models precisely manage these
difficulties. Now, the practical value of this approach can
be questioned, given the accuracy reached by the winning
team. But actually, the value provided is relative and de-
pends on how the predictions are going to be used. In the
case of a mass production phase of an industrial project, an
error of 21.7% could be considered high, as that phase usu-
ally offers little room for manoeuvre to correct costs. How-
ever, the same error can be considered good enough for the
design or early development phases of a large project, when
real-time estimations of costs allow quick iterations during
the design process, or sudden modifications at customer re-
quests, requires agile responses to fast-changing contexts.

5.2. Data Science and Cost Estimation

This innovative approach to estimate costs has both ad-
vantages and limitations vis-à-vis traditional management ac-
counting techniques. The prerequisite for applying this ap-
proach is the availability of large amounts of data to let ma-
chine learning algorithms capture relationships. Once the
algorithms are trained, the generation of cost estimates for
similar objects is extremely fast. Obviously, this represents
an advantage over inquiries to suppliers, or even in-house
management accounting estimations requiring databases of
components, materials, processes, rates. Machine learning
algorithms can capture hidden or non-obvious and nonlinear
cost patterns embedded in quotes that may come from eco-
nomies of scale, pricing and discount policies, and supply-
chain schemes that can be hardly modelled through tradi-
tional accounting techniques. Those costs usually reflect the
expertise of the agents involved in the quoting process, and
are in consequence conditioned by human behaviour.

As noted above, an average deviation in cost estimates of
around 20% may be acceptable or not depending on the use
of the estimate. Should accurate estimations be needed, this
approach would not be suitable. Nevertheless, it is very un-
likely that any traditional analytical model could outperform
these machine learning models using the same inputs. Only
a direct request for quotation to the supplier could provide a
better estimate.

As machine learning algorithms have been trained within
the boundaries of the data provided, they may not perform
well if an object is not similar to those in the data set. Even
if the algorithms perform cost regressions, the prediction
may be inaccurate or even wrong if extrapolated outside the
known boundaries (larger or shorter parts, more compon-
ents, significantly higher or lower weights), or if the laws
governing relationships change (costs for operations increase
more than linearly, because of exponential complexity). But,
of course, these limitations also apply to traditional analytical
models.

Also, as algorithms draw on historical data, if a new
cost element is introduced into the estimation, say, a differ-
ent manufacturing operation, components, the whole model
should be trained again from scratch. In a traditional ana-
lytical model, a new cost element may be just added to the
model if the accountant considers that its impact on the final

https://www.kaggle.com/c/machinery-tube-pricing/leaderboard
https://www.kaggle.com/c/caterpillar-tube-pricing/kernels
https://www.kaggle.com/c/caterpillar-tube-pricing/kernels
https://www.kaggle.com/ademyttenaere/0-2748-with-rf-and-log-transformation
https://www.kaggle.com/ademyttenaere/0-2748-with-rf-and-log-transformation
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cost is just additive. The algorithms hereby described apply
what is technically called a ‘batch learning’ process that does
not allow such manipulations, so the whole model must be
re-trained. Another learning process, called ‘online learning,’
allows one to incrementally train the system by sequentially
feeding the data instances, but it has the drawback of experi-
encing a continuous decline in performance and therefore is
not very suitable for this kind of problem, though it works for
situations where there are limitations of memory.

The limitations imposed by the boundaries of the data also
entail a need for continuous updating with quotes such as
updated prices of raw materials, labour costs, energy, logist-
ics costs, and exchange rates if wishing to keep the accuracy
for recent predictions. This is an intuitive as ten years old
quote is not relevant for a new assembly taking into account
that costs rates could have changed. Furthermore, changes
also affected new manufacturing technologies or industrial
schemes appearance, so the algorithms must be continuously
fed to maintain their usefulness.

In addition to these practical limitations, the algorithms
may arouse some scepticism. Traditionally, cost model estim-
ation has relied on transparent techniques such as regression,
averages, or other more modern statistical methods. Ma-
chine learning produces CER (cost estimation relationships)
that are embedded inside ‘black boxes’. This opaqueness
could arouse a backlash if decision makers request detailed
lists of the assumptions in the estimation of costs.

In the end, the adoption of black-box models will ulti-
mately be conditioned by mindset and cultural adaptations:
for the same reason that accountants currently rely blindly on
the reports and balance sheets generated by ERP and busi-
ness intelligence platforms (SAP, Oracle, IBM), the modern
accountant will also rely on the black-box models generated
by machine learning platforms (e.g., IBM Watson, SAS, Dom-
ino, Microsoft Azure, Amazon AWS, Rapidminer, KNIME,
H2O.ai, Dataiku).

6. Concluding Remarks and Further Research

Management accounting will change the way it is built in
the next years. Data science will be modulating the way man-
agement accountants provide the information for decision-
making processes. There will be a replacement and integ-
ration of simple modeling policies into models of advance
statistical data allowing managers to make changes and test
even small theories (Steen, 2018).

In this study we wanted to highlight the potential applic-
ations of data science to management accounting, and more
particularly to cost estimation, through the analysis of a focal
case in a traditional industry in order to prove that these tech-
niques are applicable in our discipline. Data science evolves
as a strategic approach in business management areas, as a
lever of competitive advantage. Indeed, big data analytics
represents one of the main levers of transformation in the
roadmaps of chief financial officers (PwC, 2018; see Figure
8).

This strategic approach makes it difficult to find publica-
tions about specific applications of data science to business
processes at companies, and still more difficult in the field of
management accounting.

Our analysis of the Caterpillar case indicates that data sci-
ence is useful when accounting relationships are not obvious,
and where the accounting process is highly dependent on the
human behavior of expert analysts. While the opaqueness
of machine learning models could bring about some resist-
ance, it has not impeded their acceptance in some fields of

Figure 8. PwC Survey: Chief financial officers—Priorities in 2018

Figure 8. PwC Survey: Chief financial officers—Priorities in 2018 

 

 

Source: PwC 2018 
Source: PwC, 2018.

empirical science and in some social sciences like economics
or finance. In those fields many applications are arising ana-
lysing the impact of financial distress or developing financial
fraud modelling, quantitative modelling, and auditing (Gepp
et al., 2018). Therefore, the lack of access to the way the al-
gorithms work, the opaqueness, is not a reason to think that
this system could not be assimilated by analytical accounting
doctrine.

Despite all the formal, robust, and widely proven tech-
niques of validation, which allow accountants to rely blindly
on opaque machine learning models, some authors argue
that accountants need to be trained in data science (McKin-
ney et al., 2017). For example, as shown in the Caterpillar
case, the accountant’s expertise can greatly improve estim-
ation accuracy by helping the machine learning process to
discern the underlying physical relationships. Therefore, the
role of management accountants is evolving, and for them to
use big data (Warren et al., 2015). Our focal case featured
cost estimation for outsourced parts. However, data science
could also be used to estimate costs for in-house processes.
Nevertheless, most companies with complex industrial pro-
cesses, even those with good ERP resources, must frequently
perform manual or semi-automatic calculations to estimate
costs because of the complexity of the processes, relying in
consequence on human expertise. As shown in our focal case,
machine learning algorithms may capture such expertise. Us-
ing those algorithms could help companies save important
resources and gain reactivity and speed.

Using a huge amount of data to create strong benchmarks
for calculation of cost and prices can benefit global compan-
ies operating with a variety of costing methods. An account-
ing system that can store unit cost data in different currencies
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on a real-time basis will allow the company to more effect-
ively control costs and make budgets (Tang & Karim, 2017).

Further, big data could be useful for allocating indirect
costs. Activity Based Costing is considered a well-regarded
practice for allocation. However, identifying the ‘real’ activ-
ity cost drivers still is a problem because of errors and the
omission of relevant factors. Big data can provide assist-
ance in this task by collecting relevant information through
interviews with employees and surveillance videos to better
identify the activities driving the overhead. Managers can
also base trend analyses on past relationships between activ-
ities and in-house costs or industry averages to predict future
cost drivers (Tang & Karim, 2017).

Beyond the manufacturing context, the machine learn-
ing approach could be also applied to the services sector in
the same way. If the services provided by a company are
complex and difficult to allocate to individuals, the related
management accounting is also complex, and the mechan-
isms to compute the cost of the services may likely include
manual inputs provided, again, by expert agents involved in
the quoting. In sum, the data science approach can be ap-
plied to management accounting contexts where (1) hidden
or non-obvious relationships are present in the management
accounting structure, (2) those relationships are accounted
for by human expertise, and (3) there are enough data to
train the algorithms. The implementation of data science by
the organizations will double in the years coming. For com-
pleting this transformation in the best way, they need to have
the experience of the profession and the support of the higher
educational institutions.

The profession needs to adapt to the new times and work
together with the data analysts in exploring the possibilities
of the massive usage of information for strategic and oper-
ating decisions. We will have access in the future to an un-
predictable set of qualitative information that will enhance
the way managers make decisions, and still, this constitutes
part of management accounting. Recently, the Institute of
Management Accountants (IMA) in the United States has an-
nounced the intention to update the Certified Management
Accountant (CMA) exams with more “tech focus” starting
in January 2020. They are introducing more data analytics
questions as a result of a job analysis performed with profes-
sionals of management accounting. The analysis showed the
importance of covering these technological challenges that
professionals are starting to face nowadays (Cohn, 2019).

There is an urgent need to adapt the curricula of manage-
ment accounting subjects, both in bachelors and at the master
level, to introduce topics related to the production and use of
data science. Students need to be aware of what is nowadays
starting to be a reality in the organizations of our environ-
ment. And once more, management accounting cannot lose
this time its relevance. Top educational institutions, like the
Massachusetts Institute of Technology (MIT), introduce top-
ics related to data science and management accounting in
their curricula. As an example, MIT in its “Applied Business
Analytics” executive program, include a module devoted to
helping decision making over inventory management with
machine learning.
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Appendix 1. A participants code in R that scores 0.2748 applying a Random Forest algorithmAppendix 1: A participant’s code in R that scores 0.2748 applying a Random Forest algorithm 

 
Source: https://www.kaggle.com/ademyttenaere/0-2748-with-rf-and-log-transformation.

https://www.kaggle.com/ademyttenaere/0-2748-with-rf-and-log-transformation
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Appendix 2. Sample of the submission file generated by the Random
Forest algorithm of Appendix 1

Appendix 2: Sample of the submission file generated by the Random Forest algorithm of 
Appendix 1 

ID PRICE 
1 22.1 
2 13.0 
3 7.1 
4 5.4 
5 4.2 
6 4.0 
7 3.9 
8 3.8 
9 21.7 
10 11.9 
11 6.5 
12 4.6 
13 3.4 
14 3.1 
15 3.0 
16 2.9 
17 27.7 
18 16.0 
19 9.3 
20 6.8 
… … 

30216 48.6 
30217 27.2 
30218 18.5 
30219 12.2 
30220 9.2 
30221 6.2 
30222 5.6 
30223 5.6 
30224 5.5 
30225 10.4 
30226 10.6 
30227 6.5 
30228 5.5 
30229 30.0 
30230 5.4 
30231 9.7 
30232 7.0 
30233 10.3 
30234 32.3 
30235 29.3 
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