
Summary. As the key regulator of hard tissue
metabolism in both men and women, estrogen regulates
the processes necessary for cell growth, proliferation,
and differentiation through estrogen receptor (ER).
Estrogen deficiency usually causes systemic
osteoporosis not only in long bones but also in jaw
bones, and exogenous estrogen can enhance the
osteogenic potential of mesenchymal stem cells. Dental
mesenchymal stem cells (DMSCs) represent a group of
stem cells isolated from different parts of the tooth,
including dental pulps, apical papillae and periodontal
ligaments. A number of studies have proved that
estrogen plays an important role in the proliferation,
differentiation and tissue regeneration of human
DMSCs. Thus, this review will focus on the effects of
estrogen on proliferation, apoptosis, and differentiation
of dental stem cells, discuss evidence from studies in
rodents that estrogen plays an important role in dental
morphogenesis as well as periodontal remodeling, and
suggest directions for future studies in estrogen-related
tooth regeneration.
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Introduction 

Estrogen, a kind of fat-soluble hormone, is mostly
produced by ovaries in female and by testicles in male.
Endogenous estrogen includes estradiol, estrone and
estriol, among which estradiol has the highest activity.
Estrogen level is usually in a state of fluctuation
throughout life. Adipose cells are the main storage unit
of estrogen both in male and female. When the control
center in the thalamus sends the related instructions,
estrogen will be secreted into the blood, most of which is
combined with albumin and sex hormone binding
globulin (SHBG), and the rest will remain free, reaching
the target cells to exert its unique biological actions via
the diffusion effect (Kato, 2001). Various studies have
demonstrated that estrogen is associated with the
development, regeneration and remodeling of hard
tissues, including teeth (Bernick and Ershoff, 1963;
Moriya et al., 1998; Hong et al., 2006; Reginster and
Burlet, 2006; Xu et al., 2014).

Teeth consist of multiple tissues, including enamel,
dentin, cementum, pulp and periodontal tissues, while
tooth loss is a common disease especially in old patients.
Periodontitis is the leading cause of tooth loss in adults
by destroying the alveolar bone and soft tissues around
teeth. Osteoporosis may also lead to tooth loss (Taguchi
et al., 1995). A relationship between osteoporosis and
periodontitis might be predictable (Weyant et al., 1999).
Moreover, dental trauma and caries are putative factors
that can bring about pulp injuries and tooth loss. The
mechanism and technology of tissue engineering have
been introduced into the study on repairing or
regenerating the injured pulps and tooth structures, in
which stem cells, signal molecules and scaffold
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materials are thought to be three indispensable factors
for this process (Langer and Vacanti, 1993).

For the regeneration of the whole tooth or tooth
components, stem cells play a paramount role during the
morphogenesis of dental tissues (Ringe et al., 2002). To
date, several dental mesenchymal stem cells (DMSCs)
have been isolated from different parts of tooth
structures, including dental pulp stem cells (DPSCs),
stem cells from human exfoliated deciduous teeth
(SHED), stem cells from apical papilla (SCAP), and
periodontal ligament stem cells (PDLSCs) (Gronthos et
al., 2000; Miura et al., 2003; Seo et al., 2004; Sonoyama
et al., 2008). These stem cells present the ability of self-
renewal, high proliferation and multi-lineage
differentiation potential, which may be potentially useful
to regenerate tissues not only for the bone and tooth
(Fig. 1), but also for other tissue types (Laino et al.,
2006; Graziano et al., 2008; Saito et al., 2015; Zhu and
Liang, 2015). Moreover, DMSCs represent an easily
accessible alternative to bone marrow MSCs for future
usage in the regeneration therapy. Many MSC-related
surface markers, such as STRO-1, CD146 and CD105,
are expressed in DMSCs. However, specific surface
markers associated with the hierarchical commitment to
differentiation pathways of DMSCs are not yet identified
(Huang et al., 2009; Sedgley and Botero, 2012; Saito et
al., 2015). Many research results have indicated that
DPSCs play an important role in dentin-pulp tissue
regeneration (Yu et al., 2006a, 2007; Yan et al., 2011;

Potdar and Jethmalani, 2015). In addition, SCAPs can
generate a typical dentin-pulp-like complex and bone-
like tissue (Abe et al., 2008). Transplantation of SCAPs
and PDLSCs in vivo promotes the formation of dentin,
cementum and periodontal ligament, which represents a
practical approach to biological root engineering
(Sonoyama et al., 2006; Otsu et al., 2014).

Various growth factors, hormones and biological
signals can improve the regenerative capacity of
DMSCs. Estrogen is the key regulator of bone
metabolism in both men and women. Both osteoporosis
and periodontal diseases are related to estrogen
deficiency which causes impaired osteogenic
differentiation of PDLSCs (Zhang et al., 2011). It has
been revealed that there is a close relationship between
estrogen therapy and osteoporosis that occurs in
postmenopausal women (Tella and Gallagher, 2014).
Estrogen provides several functions to regulate cell
growth, cell survival, osteo/odontogenic differentiation
and inhibits apoptosis and osteoclast activity via
estrogen receptor (ER) in mesenchymal stem cells
(MSCs) (Zhou et al., 2001). In addition to promoting the
committed differentiation of stem cells, estrogen can
also regulate the functions of stem cells by promoting
the secretion of growth factors and inhibiting the release
of inflammatory factors (Jilka et al., 1992; Kodama et
al., 2004; Ryan et al., 2005).

To date, the relationship between estrogen and tooth
regeneration has not been fully elucidated. The current
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Fig. 1. DMSCs have the
capability to form dental
structures. After digestion and
resuspension, dental
mesenchymal stem cells
(DMSCs) are seeded and
recombined with scaffolds.
Then, DMSCs/scaffold
recombinants are transplanted
in vivo to form tooth structures.



review will discuss the influence of estrogen on the
proliferation, committed differentiation and morpho-
genesis of dental mesenchymal stem cells, in order to
provide useful cues for their future applications in dental
tissue regeneration.
Classification of estrogen 

There are two main kinds of estrogen according to
its origin, i.e., endogenous estrogen and phytoestrogen.
Endogenous estrogen, a kind of steroid hormone from
animals with extensive biological activities, is mainly
secreted by the ovaries and a little by testicles and
adrenal glands. Serum estrogen is mainly derived from
the adrenal cortex at a very low level before puberty.
Endogenous estrogen is mainly composed of estradiol,
estrone and estriol, among which estradiol has the
strongest activity and estriol the weakest. Estrogen level
is gradually decreased with age and a series of
symptoms may appear both in male and female, i.e.,
menopause symptoms, arteriosclerosis, cerebral vascular
obstruction and osteoporosis. This natural estrogen,
usually extracted from the urine of pregnant mares, is
mainly used for clinical HRT (Hormone Replacement
therapy, HRT) to relieve the clinical symptoms.
Unfortunately, it also results in some side-effects (such
as endometrium hemorrhage and increased risk of breast
cancer) (Laforest and Taurelle, 1994; Al-Azzawi and
Wahab, 2012).

Phytoestrogens are plant-derived xenoestrogens
(also called "dietary estrogens") that consist of
heterocyclic phenols of estrogenic activity formed by
enzymatic metabolic conversions in the gut after
consumption of phytoestrogenic plants. They are a group
of nonsteroidal plant compounds (e.g., isoflavones,
lignans and coumestans), and are particularly abundant
in soybeans and flaxseed (Dalais et al., 1998; Murkies et
al., 1998). These compounds are structurally similar to
estradiol and have the capacity to bring about estrogenic
or antiestrogenic effects by sitting in or blocking
relevant receptor sites. Many studies have demonstrated
that high intake of phytoestrogens can reduce the risk of
menopausal symptoms, cardiovascular disease, breast
cancer and osteoporosis with few undesirable side-
effects (Dittfeld et al., 2015; Kyro et al., 2015; Luo et al.,
2015; Sobenin et al., 2015).

Phytoestrogens might be considered as another
alternative to HRT. However, the clinical value of
phytoestrogens should be extensively investigated by
long-term clinical trials.
General functions of estrogen

Estrogens play important roles in almost all female
systems, i.e., the reproductive system, the nervous
system, cardiovascular system, skeletal, and so on
(Maggi et al., 2004; Mikosha et al., 2015; Menazza and
Murphy, 2016). In the physiological state, ovarian
functions begin to gradually decline at age of 35 along

with some fluctuations of hormone levels. However, the
estrogen level is dramatically decreased in the
menopause and then menstruation and reproductive
functions will vanish.

Recently, the effects of estrogens on male have
attracted more and more attention. Two thirds of
estrogens in the male are from the conversion of
androgens by aromatases and others from the testis
(Hess et al., 2001). Several studies have proved that
estrogen is a main regulator of the gonadal-pituitary
feedback for the gonadotropin axis, and the deficiency of
aromatase or estrogen can result in a significant
reduction in round and elongated spermatids and
abnormalities of the reproductive tracts in male rodents
(Robertson et al., 1999; Mauras et al., 2000; McKinnell
et al., 2001; Carreau et al., 2007). 

In addition to their effects on male reproduction,
estrogens are also necessary for the maintenance of bone
mass in males (Pentikainen et al., 2000). Because
estrogen receptors and aromatase exist in male
osteoblasts, male bone is considered to be an important
target tissue of estrogens. It has been demonstrated that
the deficiency of aromatase or mutation of estrogen
receptor genes can lead to osteoporosis in males
(Vanderschueren et al., 1997; Vidal et al., 2000). A
recent study further reveals that estrogens can enhance
mnemonic retention without improving organization
abilities in male mice (Al Abed et al., 2016).
Effects of estrogen on the proliferation and
apoptosis of dental mesenchymal stem cells

Cell proliferation is often used as an important
indicator during cell development and reproduction.
During cell development, proliferation means the
enrichment or increase in cytoplasm, organelles, and
hereditary substances. However, during cell
reproduction, it means the growth of cell populations, in
which one mother cell gives birth to two daughter cells.
In general, cell proliferation is affected by many factors,
i.e., growth factors, extracellular matrix and other
stimuli (e.g., estrogen) (Nurse, 2000; Strom et al., 2004). 

It seems contradictory to the influence of estrogen
on the growth features of mesenchymal stem cells. 10-8
M 17β-estradiol (E2) can significantly reduce growth
rates in cultured UMR106 cells (a clonal osteoblastic
cell line), whereas E2 had no effect on the growth
kinetics of S90E (a human fibroblastic cell line) (Gray et
al., 1987). Likewise, E2 can decrease the cell
proliferation of hFOB/ER9 in a dose-dependent manner
and cause a significant decrease at a concentration as
low as 10−11 M (Robinson et al., 1997). In contrast, 10-7
M E2-treated MSCs display a significant increase in
proliferation rate and a decrease in apoptosis (Zhou et
al., 2001). Yu et al. have proved that the higher
concentration of E2 (10-5 M) can significantly inhibit the
proliferation of SCAPs and DPSCs, while 10-7-10-9 M
E2 had no influence on cell growth, indicating that there
may exist a dose-dependent manner of E2 in regulating
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the growth of SCAPs (Wang et al., 2013a; Li et al.,
2014). In vivo research has demonstrated that DPSCs
respectively from OVX and Sham-operated rat incisors
show no significant difference in cell proliferation
(Wang et al., 2013b).

However, the effects of E2 on cell proliferation in
these cells may be affected not only by the concentration
of E2 but also by the levels of ER. The latter can activate
some ER-mediated signaling pathways (e.g., Wnt/β-
catenin, mTOR and PI3K/Akt/STAT3) required for the
expression of proliferation-related genes (Yin et al.,
2015; Zhang et al., 2015; Zhu et al., 2016). Zhang et al.
have revealed that PDLSCs from ovariectomized (OVX)
rats (estrogen deficiency animal model) present a
significant increase in cell growth in comparison with
Sham group (Zhang et al., 2011). When periodontal
ligament (PDL) cells are transfected by the short
interfering RNA (siRNA) technique to inhibit ERβ
expression, an enhanced proliferation is detected in non-
transfected hPDL cells after estradiol stimulation, as
compared with transfected cells, implying that
estrogens/ERs axis may exert an effective action on PDL
cell proliferation (Mamalis et al., 2011).

On the other hand, E2–ERα and E2–ERβ complexes
can also regulate the expression of key genes in the G1
phase of the cell cycle to alter cell proliferation, such as
c-Myc, cyclin D1, cyclin E, Cdc25A, p45Skip2, and
p27Kip1, which are involved in activation of Cdk2, a
crucial step in moving the cell into S phase (Doisneau-
Sixou et al., 2003; Strom et al., 2004).
Effects of estrogen on the differentiation of dental
mesenchymal stem cells

Cell differentiation is a common process of a cell
changing from one type to another with some
modifications in cell size, shape, and response to signals,
by which adult stem cells can generate fully
differentiated daughter cells during tissue repair and
regeneration. This process is usually relatively stable and
results in a selective gene expression in time and space,
in which different genes are switched on or off,
eventually producing a specific protein (Luo et al.,
2002). Many investigations have confirmed that diverse
factors (e.g., hormones, regulating factors, transcription
factors and biomechanical factors) can induce DMSCs to
differentiate into osteo/odontogenic lineages
(Birmingham et al., 2012; Uddin and Qin, 2013). 

Estrogen deficiency can reduce the dentinogenic
capacity and calcium deposition in rat incisors, and
inhibit the odonto/osteogenic differentiation of DPSCs,
while 17β-estradiol (E2) can upregulate the
osteo/odontogenic capacity of DPSCs via activating the
NF-κB pathway. In general, osteo/odontogenic
differentiation of MSCs is a complicated process
characterized by the expression of the main transcription
factor Runx2 and other osteo/odontogenic marker genes,
such as alkaline phosphatase (ALP), type I collagen
(COL I), osteocalcin (OC) and dentin sialoprotein (DSP),

followed by extracellular matrix mineralization
(Karsenty, 2001). It has been widely accepted that
exogenous estrogens can prevent postmenopausal bone
loss by enhancing osteoblastic activity and formation of
bone tissues (Lindsay et al., 1976; Talmage et al., 1986).
Other studies have revealed the molecular mechanisms
by which E2 increases the alkaline phosphatase activity
of UMR106 cells and stimulates the sequential
osteoblastic differentiation by regulating extracellular
matrix expression (Gray et al., 1987; Robinson et al.,
1997; Qu et al., 1998).

In physiological conditions, the E2-dependent
increase in bone formation requires the proliferation and
differentiation of osteoblast precursors. E2 can regulate
the osteogenic activity of MSCs in bone marrow (Zhou
et al., 2001). Meanwhile, estrogen is thought to be a
functional molecule in the osteo/odontogenic
differentiation of dental MSCs. Indeed, estrogen has
been shown to stimulate the bone formation capacity of
cultured periodontal ligament cells (PDLCs) by
increasing ALP activity, osteocalcin distribution and the
formation of mineralized nodules (Morishita et al., 1998,
1999), in which ERα and ERβ may play a crucial role in
the biological changes in estrogen-treated PDLCs
(Jonsson et al., 2004; Cao et al., 2007). 

Recently, increasing evidence supports the notion
that estrogen is closely associated with the committed
differentiation of human dental mesenchymal cells.
PDLSCs isolated from the OVX rats generate fewer
calcium deposits and present lower levels of estrogen
receptors (ERα and ERβ) than those from Sham group.
Moreover, E2 treatment significantly enhances the
osteogenic differentiation of PDLSCs in vitro (Pan et al.,
2011; Zhang et al., 2011), and promotes the odonto/
osteogenic differentiation of stem cells from apical
papilla via the mitogen-activated protein kinase pathway
(Li et al., 2014). The expression of osteogenic proteins
and genes (e.g., alkaline phosphatase, runt-related
transcription factor 2, osterix, dentin matrix protein 1,
dentin sialoprotein, dentin sialophosphoprotein and
osteocalcin) are significantly upregulated in E2-treated
SCAPs (Li et al., 2014). Recent studies have
demonstrated that E2 can also trigger the
odonto/osteogenic potency of human dental pulp stem
cells (DPSCs) through NF-κB and c-Src/MAPK
signaling pathways (Wang et al., 2013a,b; Woo et al.,
2015).

It is commonly believed that estrogens can bind
directly to ERs to modulate bone metabolism and the
activity of target cells (Robinson et al., 1997). As the
classic steroid receptors, ERs including ERα and ERβ
generally mediate a variety of physiological signals.
During E2-mediated odontoblastic differentiation,
fulvestrant, as a selective ER antagonist, can
significantly downregulate the gene expression of dentin
sialophosphoprotein (DSPP), dentin sialoprotein (DSP)
and dentin matrix protein 1 (DMP1) by reducing the
phosphorylation of c-Src and MAPK signaling pathways
(Woo et al., 2015). Human dental pulp cells expressing
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ER mRNAs can be stimulated by E2 to express the
genes related to odontogenesis and odontoblast
differentiation (e.g., BMP2 and LEF1) (Inaba et al.,
2013). In addition, both ERα and ERβ were involved in
the process of osteogenic differentiation of PDLSCs, in
which ERβ is more effective during the osteogenic
process (Tang et al., 2008; Pan et al., 2011). Previous
studies have demonstrated that ERα functions as an
activator and ERβ acts as a repressor in the osteogenic
differentiation of MSCs (Maruyama et al., 2001;
Lindberg et al., 2003). Estrogen regulation of cell
functions is determined by the stages of differentiation
and the isoforms or concentrations of ERs (Waters et al.,
2001; Heldring et al., 2007). However, there are still
many discrepancies in the study of the mechanism of
ERs in the formation of tooth/bone tissues. 

Together, estrogens/ERs axis can stimulate
osteo/odontogenic differentiation in dental stem cells
and contribute to their capacity in dental tissue
regeneration.
Effects of estrogen on the morphogenesis of dental
tissues

Morphogenesis of dental tissues is a continuous
process that causes a tooth germ to develop its shape. It
is one of three basic aspects of odontogenesis along with
the regulation of cell proliferation and differentiation.
The process determines the spatial distribution of dental
cells (e.g., ameloblasts and odontoblasts) in the tooth
germ. Tooth morphogenesis can take place also in a

mature tooth, in cell culture or inside cell pellets
(Dassule and McMahon, 1998; Yu et al., 2006a,b, 2008).
Morphogenetic responses may be triggered in teeth by
hormones (e.g., estrogen), growth factors, transcription
factors, receptor proteins, environmental elements or
mechanical stresses, which form a signal network to
precisely regulate the morphology of dental structures
(Zhang et al., 2005).

As we all know, estrogen deficiency has received
universal attention because of bone fracture in older
women due to the loss of calcium contents in the
vertebrae and long bones. In the field of dentistry, a large
number of missing teeth and low mineral density in the
mandible have been reported to have a positive
correlation with systemic osteoporosis by a series of
epidemiological studies (Do Lee and White, 2005;
Inagaki et al., 2005; Takaishi et al., 2005; Yoshihara et
al., 2005). Meanwhile, severe bone loss and structural
damage were detected after ovariectomy in the jaw
bones and alveolar bones (Ejiri et al., 2008). In addition,
clinical research has proved that there is more
prevalence of periodontitis and periodontal attachment
loss in postmenopausal women (DeBaz et al., 2015; Al
Habashneh et al., 2016). Our work has demonstrated that
the clinical crown length, compressive strength,
radiodensity, and calcium content in ovariectomized rat
incisors are significantly decreased in comparison with
Sham incisors (Xu et al., 2014). Additionally, the
predentin structures in Sham incisors are thicker than
those in OVX incisors (Fig. 2), and the odonto/osteoblast
specific proteins (e.g., dentin sialoprotein, runt-related
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Fig. 2. Estrogen deficiency diminishes the predentin thickness of rat incisors. The predentin structures in Sham incisors are thicker than those in OVX
incisors after ovariectomization. Scale bars: 50 µm.



transcription factor 2, osterix, and osteocalcin) in the
dentin–pulp complex of OVX incisors are also
significantly down-regulated, suggesting that estrogen
can affect the dentinogenesis, protein expression and
calcium deposition of tooth structures in vivo (Xu et al.,
2014; Kim et al., 2015; Yamamoto et al., 2015). Thus,
estrogen deficiency can bring about the injuries not only
to periodontal tissues (including alveolar and jaw bones)
but also to tooth development (including dentinogenesis
and mineralization), and ultimately affect the
regenerative ability of dental mesenchymal stem cells, as
well as dentin–pulp complex. Together, DMSCs-
mediated tissue engineering seems to be promising in the
not too distant future, during which estrogen may act as
an important regulator for the regular and typical
morphogenesis of tooth structures (Wang et al., 2013b).
Conclusion/Prospects

In summary, estrogens can regulate the proliferation
in a dose-dependent manner and promote the committed
differentiation of human dental mesenchymal cells via
the ER-mediated signaling pathway. The estrogens/ERs
axis can enhance osteogenesis or dentinogenesis of
DMSCs both in vitro and in vivo, indicating that
estrogens/ERs may have clinical implications for dental
tissue regeneration as well as alveolar bone
reconstruction. More extensive studies are required to
investigate the potential mechanisms associated with
estrogen-mediated osteo/odontogenic differentiation of
DMSCs and regeneration of dental tissues.
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