
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 1

DeTraS: Delaying Stores for Friendly-Fire
Mitigation in Hardware Transactional Memory

Rubén Titos-Gil1, Ricardo Fernández-Pascual1, Alberto Ros1 and Manuel E. Acacio1

Abstract—Commercial Hardware Transactional Memory (HTM) systems are best-effort designs that leverage the coherence substrate
to detect conflicts eagerly. Resolving conflicts in favor of the requesting core is the simplest option for ensuring deadlock freedom, yet it
is prone to livelocks. In this work, we propose and evaluate DeTraS (Delayed Transactional Stores), an HTM-aware store buffer design
aimed at mitigating such livelocks. DeTraS takes advantage of the fact that modern commercial processors implement a large store
buffer, and uses it to prevent transactional stores predicted to conflict from performing early in the transaction. By leveraging existing
processor structures, we propose a simple design that improves the ability of requester-wins HTM systems to achieve forward progress
in spite of high contention while side-stepping the performance penalty of falling back to mutual exclusion. With just over 50 extra bytes,
DeTraS captures the advantages of lazy conflict management without the complexity brought into the coherence fabric by commit
arbitration schemes nor the relaxation of the single-writer invariant of prior works. Through detailed simulations of a 16-core tiled CMP
using gem5, we demonstrate that DeTraS brings reductions in average execution time of 25% when compared to an Intel RTM-like
design.

Index Terms—

F

1 INTRODUCTION AND MOTIVATION

H ARDWARE Transactional Memory (HTM) systems imple-
ment optimistic concurrency control by allowing multiple

transactions to run speculatively in parallel. If the atomicity of
any of these speculative transactions cannot be guaranteed, the
transaction is aborted and its changes discarded. Atomicity is in
danger when two or more concurrent transactions access the same
data and at least one of the accesses is a write. These conflicts are
commonly detected by monitoring the coherence traffic generated
by loads and stores to the memory subsystem.

Moreover, HTM support in current commercial processors is
best-effort, which means that the hardware gives no guarantees
that a speculative transaction will ever succeed [1]. Therefore,
a non-speculative alternative software path, often called fallback
path, must be combined with the HTM support to ensure forward
progress in circumstances that otherwise would cause livelock
because of insufficient speculative buffering capacity, page faults,
high contention, etc. The recommended implementation of the
fallback path [1] uses a single global lock, commonly referred to
as the fallback lock, which is read by all speculative transactions
as soon as speculation begins. This approach, known as eager
subscription, ensures that a non-speculative transaction never ex-
ecutes concurrently with other speculative transactions. When the
lock is acquired, all subscribed speculative transactions are aborted
as a result of the conflict on the fallback lock, and subsequently
forced to wait for the lock to be released before they can retry
speculatively. Such serialization of threads on the fallback path
hurts application performance.

Transactions being aborted as a consequence of a conflict
do not resort immediately to the fallback path. Instead, since
conflicts may be a transient condition resulting from specific

• 1Dept. Ingenierı́a y Tecnologı́a de Computadores, Universidad de Murcia,
30100 Murcia (SPAIN)
E-mail: {rtitos, rfernandez, aros, meacacio}@ditec.um.es

thread interleavings, they are retried several times before the
fallback path must be definitely taken after a certain threshold
of unsuccessful speculative attempts.

In addition, current implementations of HTM, as the Restricted
Transactional Memory (RTM) extensions provided by Intel pro-
cessors, employ an eager approach to resolve conflicts using a
requester-wins policy: conflicts are always resolved in favor of
the requesting transaction. The low integration complexity into
existing coherence protocols of a requester-wins conflict resolu-
tion policy makes it appealing to chip manufacturers wanting to
provide HTM support, but it has a fundamental drawback: in situ-
ations of high contention, transactions may repeatedly abort each
other over and over in a pathological scenario known as friendly
fire [2], which spoils forward progress and hurts performance as
transactions are forced to proceed in mutual exclusion.

Fig. 1a shows the fraction of futile aborts suffered in STAMP
benchmarks with a requester-wins policy, i.e., aborts caused by
a transaction that in turn ends up aborting later on because of
a conflict (see Section 4 for configuration details). As can be
observed, nearly half of all conflict-induced aborts are futile.
The consequences of such a high percentage of futile aborts on
performance are drawn in Fig. 1b, which plots the fraction of total
cycles spent waiting for a non-speculative transaction that acquired
the lock: on average, over one fifth of all execution cycles are
spent by threads waiting on the fallback lock because of repetitive
aborts, even though some of them may not have conflicts with the
non-speculative transaction.

The typical alternative conflict management strategy to
requester-wins is requester-stalls [3], [4], [5], [6], which resolves
conflicts by stalling the conflicting memory access until the of-
fended transaction ends. Requester-stalls avoids livelocks and may
reduce the number of aborts when compared to requester-wins,
provided that cyclic dependencies among conflicting transactions
are infrequent. On the downside, it requires hardware changes in
the coherence protocol (e.g., negative acknowledgments or nacks)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 2

genome
intru

der

kmeans-h

kmeans-l
ssca2

vacation-h

vacation-l
yada

Arith
metic

Mean

 0.0

 0.1

 0.2

 0.4

 0.5

 0.6

 0.8

 0.9

 1.0
R

at
io

 o
f f

ut
ile

 a
bo

rt
s

(a) Futile conflict-induced aborts

genome
intru

der

kmeans-h

kmeans-l
ssca2

vacation-h

vacation-l
yada

Arith
metic

Mean

 0.0

 0.1

 0.2

 0.4

 0.5

 0.6

 0.8

 0.9

 1.0

no
rm

al
iz

ed
 c

yc
le

s

Useful Aborted Waiting

(b) Execution time breakdown

Fig. 1: Characterization of requester-wins HTM.

as well as a deadlock avoidance scheme in order to detect and
break cycles. As a consequence, no current commercial HTM
implementation builds on requester-stalls.

All things considered, an ideal HTM design would try to com-
bine the simplicity of a requester-wins policy with the low abort
ratio of a requester-stalls policy while skipping their respective
disadvantages. A well-known observation towards this goal in the
requester-wins conflict management strategy is that a transaction’s
exposure to aborts by remote concurrent accesses is minimized
if writes within the transaction are delayed as much as possible,
ideally being unveiled to the other caches at the very end. Prior
works have exploited this observation and showed that significant
performance gains can be achieved [7], [8]. In particular, they
extend the underlying coherence substrate with an incoherent
state that relaxes the single-writer invariant for write-set blocks,
allowing transactional stores to complete in cache and retire from
the processor without requiring exclusive ownership. Apart from
the changes required to the highly-optimized L1 data caches and
cache controller, current approaches require some sort of directory
to track such incoherent blocks, as well as associated logic to
manage it. Thus, the complexity added to the memory system by
such proposed solutions may jeopardize the simplicity appeal of
requester-wins, which is ultimately what has driven chip makers
to choose this policy over others. To this end, the influence of
the store buffer micro-architecture on HTM performance has been
largely overlooked in the literature, with only a few exceptions
[9], [10]. Most academic papers on HTM neglect the presence of
the store buffers found in any modern out-of-order pipeline, and
too often abstract away the CPU model as a black box that feeds
a memory sub-system augmented to support HTM.

In this work, we adopt a different strategy, previously unex-
plored, for ameliorating friendly fire through simple yet effec-
tive micro-architectural modifications in the processor cores, and
leaving the memory system unaltered. Particularly, our proposal
is based on the following observations: (i) store operations that
are committed can be exposed some time after commit without
affecting correctness, that is, they can delay the write to memory,
thus postponing potential conflicts and reducing the probability
of aborting unnecessarily; (ii) stores within a transaction can be
transparently reordered, given that the target address is different,
thus increasing store-level parallelism and reducing commit time;
(iii) stores that are suspected not to cause conflicts with other
transactions can be written to the memory system as soon as
possible, thus freeing their entries in the store buffer; and (iv)
conflict-free stores can be identified in a feasible way based on
their past executions.

Based on these four observations, we propose DeTraS (which
stands for Delayed Transactional Stores), an HTM-aware design
of the store buffer that selectively delays stores, that is, postpones
the write of transactional stores predicted as conflicting, until the
transaction has fully executed or the store buffer is full. DeTraS
is the first hybrid-policy best-effort HTM design that adapts
store management policy to observed contention so as to enable
reader-writer concurrency during contention without incurring a
performance penalty on low contention workloads due to the extra
commit latency. This way, our proposed design addresses the
shortcomings of prior memory-side techniques to mitigate friendly
fire and leaves the memory subsystem unmodified (except for an
extra bit in coherence responses).

Although delaying a small amount of conflicting stores may
not have performance implications for systems whose consistency
model allows relaxing the order of the stores, in systems that
require a total store order (e.g., Intel or AMD –x86–) the exe-
cution of large transactions could increase processor stalls as non-
conflicting stores cannot be performed until the older conflicting
ones have been retired from the store buffer. To avoid inducing
extra processor stalls in this scenario we propose two inexpensive
techniques: (i) re-ordering transactional stores, motivated by the
fact that transactions are atomic and the stores within a trans-
action are not visible by definition by other processors, and (ii)
compacting the store buffer to fill the gaps left by stores that
perform out-of-order. Without loss of generality, we implemented
and evaluated DeTraS on an x86-TSO system to demonstrate its
feasibility even in a stricter memory model, and that transparent
relaxation of the TSO consistency model inside transactions can
bring performance gains at little cost. DeTraS is fully applicable
to weakly ordered designs, where it would be simplified since
reordering and compaction would happen naturally.

Our results show that with adequate management of transac-
tional stores in the store buffer and with about 50 additional bytes,
the choice of conflict resolution policy becomes less relevant
for the performance of HTM systems, allowing requester-wins
designs to perform nearly at par with more complex conflict
management strategies. In spite of lacking progress guarantees, the
proposed HTM system largely prevents most temporary livelock
scenarios that arise because of the requester-wins policy, and as a
result alleviates the frequency at which the fallback path is taken to
achieve progress in such contended circumstances, and consequent
performance degradation. Through detailed simulations using
gem5, we show that DeTraS reduces execution time of STAMP
by 25% on average (up to 68% for contended benchmarks) when
compared to a typical requester-wins best-effort HTM design.

To summarize, our main contributions are:

• To propose delaying stores in the store buffer to avoid
conflicts in Hardware Transactional Memory, and show its
effectiveness in reducing the number of aborts.
• To propose the reordering of transactional stores without

affecting the consistency model of the system (as stores in a
transaction are all visible at once), while leaving the memory
subsystem virtually unmodified.
• To show that a large amount of the stores do not cause

conflicts and propose a predictor to detect them and get them
out of the store buffer as soon as possible.
• To propose an efficient compaction technique for FIFO store

buffers.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 3

2 BACKGROUND

2.1 Store instructions and the store buffer
Modern processors with support for out-of-order execution need
to maintain the order of store instructions for three main reasons.
First, to preserve sequential semantics, stores to the same or
overlapping addresses need to write to memory in order. Second,
sequential semantics maintenance also requires that loads must
obtain the latest value written by a store to the same address. Thus,
when loads perform, all previous in-flight stores are searched, and
in case of an address match, the value of the younger store is taken.
This is known as store-to-load forwarding. Third, if a memory
consistency model like Total Store Order (TSO) is supported, as
is the case of x86-64 processors among others, stores (to same
or different addresses) need to write to memory in-order. This is
known as store→store order. To this end, when dispatched stores
are inserted in program order into a circular FIFO queue [1],
where they reside until each of them becomes the oldest non-
completed store and therefore can already write to memory. To
avoid stalls caused by long latency misses, TSO allows stores to
commit before writing into cache. The part of the queue that holds
non-committed stores is known as the store queue and the part that
holds committed stores is known as the store buffer (SB). DeTraS
requires changes in the behavior of committed stores, and along
the paper we will refer only to the SB part of the queue. Note that
the proposed extensions to the SB impact the whole queue.

Each store can initiate the write to memory as soon as the
preceding stores in the SB have already started it. This implies
that stores will also enter in order in the cache access pipeline. In
case of cache hits, stores perform the write in order; in the event
of a miss, the cache pipeline is squashed and the subsequent stores
will initiate the write again once the previous (missing in cache)
store completes the write.

2.2 Store buffer and cache extensions for HTM
When a transaction aborts, speculative stores in the SB and the
speculative writes performed in cache have to be canceled. In order
to squash only the transactional stores and not the non-speculative
pre-transactional stores, the store buffer needs to distinguish them.
One alternative is adding a transactional bit to each entry in
the SB. Another option is to add a pointer that delimits the
transactional and non-transactional parts of the SB, as stores reside
in order. Both are equivalent, and without loss of generality we
assume the former one for the description of DeTraS.

We assume an HTM implementation that follows the Intel
RTM specification [1], in which the xbegin and xend instruc-
tions are used to delimit transaction boundaries. According to
the Transactional Synchronization Extensions (TSX) specification,
a committed transaction has the same ordering semantics as a
locked instruction (i.e., reads or writes cannot be reordered with
it), which means that xend acts as a full memory barrier, similar
to mfence, ensuring that no loads nor stores can be reordered
with the transaction. Thus, the xend instruction can only commit
once the SB has been fully drained and no abort has been signaled.

Transactional stores that are written to cache remain specu-
latively modified and invisible to the other cores until the xend
instruction commits. Private caches are therefore extended with
an speculatively modified (SM) bit, so that in case of an abort,
SM cache blocks are discarded. The cache coherence protocol is
appropriately augmented to accommodate speculative versioning.
In particular, the first transactional write to a dirty cache block

a) Base (RTM) b) DeTraS

Ti
m

e

P1 P2

B
rx

wx

ry

A
B
rx Conf
wx

ry

rz

A
B
rx Conf
wx

ry

T2: B
rxConf
wx

ry

rz

A
B
rxConf
wx

ry

rz

A
B

P1 P2

B
rx

ry

rz

wt

wx

de
la

ye
d

Conf
C

B
rx

ry

rz

A
B
rx

ry

rz

wt

wx

de
la

ye
d

C

B Begin Transaction

C Commit Transaction
A Abort Transaction

Transactional

Conf Conflict signal
rx Read memory location x
wx Write to memory location x

Non-transactional

Fig. 2: Motivation for delaying transactional stores. Left: typical
friendly-fire scenario in requester-wins HTM designs. The trans-
action comprises the following accesses: rx, wx, ry, rz, wt . Right:
friendly-fire mitigation by delaying wx.

must write it back to the next cache level to preserve the non-
speculative version in case the transaction aborts.

3 DETRAS
A key contribution of this work is to show for the first time that
the management of transactional stores within the SB plays a
prominent role in the performance of an HTM implementation.
Fig. 2 shows the following observation: livelocks stemming from
the friendly-fire pathology become less and less likely as the
contended cache blocks get written later in the transaction. Hence,
if selected store instructions delay their write to memory, the
friendly-fire scenario represented in Fig. 2.a can be completely
eliminated as depicted in Fig. 2.b. This section presents our novel
SB design that delays selected transactional stores. Our description
builds on top of a standard SB design, as described in the previous
section, and it is presented as a set of subsequent refinements.
Note that DeTraS does not strictly require a unified queue nor a
FIFO structure, and the ideas described here are also applicable to
processors with weak memory models.

3.1 Delaying Transactional Stores
The less time a cache block remains speculatively modified in a
private cache, the less susceptible a transaction is to conflicts due
to remote memory accesses. This well-known observation is what
motivates DeTraS. The novelty here is that we achieve it with
minimal changes, mainly focused on the SB. Our first proposal
to shrink the window of exposure of transactional stores is to
simply delay the write to cache of all transactional stores for as
long as possible, that is, until the xend instruction is ready to
commit, or until the fill-up of the SB prevents subsequent stores to
be dispatched, a condition henceforth called SB overflow. Either
of these two situations triggers a SB drain event: all delayed
transactional stores kept in the SB are resumed, so that they write
to memory in strict program order as usual.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 4

Implementation. This scheme requires the addition of a delay
bit to each entry in the SB. This bit is set to the value of the
transactional bit when a store commits. Stores with the delay bit
set do not initiate the write to cache even if they are at the head of
the SB. The delay bit of all SB entries gets flash-cleared upon SB
drain (xend ready to retire, or SB fill-up) as well as upon abort
signal. Therefore, no store can be delayed forever and deadlock
freedom is easily guaranteed.

3.2 Reordering Transactional Stores

The window of cycles that a transaction is vulnerable to aborts
due to conflicts can be further narrowed by reducing SB drain
time, provided that all transactional stores can be accommodated
in the SB. We therefore propose to perform transactional stores
out of order, thus increasing the parallelism on SB drains, not only
reducing the exposure of stores to conflicts, but also transaction
commit time and pipeline stalls when the SB is prematurely
drained upon fill-up.

The key observation to allow reordering stores is that val-
ues speculatively modified in cache remain invisible to remote
requests until the xend instruction retires (i.e., the transaction
commits). This observation guarantees that the store→store order
is not broken. Each store can start the write to cache as soon as
the previous store initiates it and succeeds even if some previous
stores miss in cache and get effectively reordered. Note that since
stores enter the cache access pipeline in order and stores to the
same or overlapped addresses will either both hit or both miss
in cache, the sequential semantics are effortlessly respected. In
case of a miss, the second store will coalesce with the first store
waiting at the miss status holding register (MSHR) until the block
is placed in cache. For simplicity, we do not allow reordering
between non-transactional and transactional stores (transactional
stores cannot enter the cache access pipeline until all preceding
non-transactional stores have completed). This is important to
make sure that the first transactional store to a dirty block writes
back the correct consistent value to the next cache level (it may
be incorrect if a transactional store overtakes a pending non-
transactional to the same block).

Implementation. Supporting out-of-order writes of transac-
tional stores in TSO architectures requires simple behavioral
changes in the SB and cache access pipeline. Transactional stores
that miss in cache do not need to squash subsequent stores in
the cache pipeline. As no pipeline squashes are possible for a
transactional store, it can leave the SB and free their entry, i.e., the
SB head is incremented as soon as the cache access is initiated.

3.3 Selective Delay of Transactional Stores

A fundamental drawback of delaying all stores is that it does not
fare well for transactions which cannot contain all their stores in
the SB. For low-contention workloads, SB overflows are not as
harmful since performing some stores too early may not signif-
icantly increase friendly fire. Nonetheless, a penalty is incurred
upon SB overflow, since pipeline stalls may occur preventing
subsequent stores to be dispatched until stores at the SB head
complete. On the other hand, highly contended transactions may
jeopardize the ability to side-step friendly fire, as each SB overflow
exposes the transaction to conflict-induced aborts from the SB-
drain point on. In turn, delaying all stores penalizes low-contended
transactions that do not fill the SB by pointlessly increasing SB

drain time on xend, threatening its ability to hide write miss
latency.

We observed that very few store instructions are generally
responsible for the majority of conflicts and thus the likelihood of
SB overflow can be minimized by selectively delaying only certain
stores. Following this observation, typical PC-based prediction
can determine whether a transactional store is probable to cause
conflicts or not based on its past history. Hence, for transactions
that are likely to exceed the SB resources, we propose to delay
only transactional stores predicted to cause conflicts. To do so,
information about whether a completed store caused a remote
conflict or not must be exposed so that the predictor can be
updated accordingly. This straightforward addition constitutes the
only modification in the memory subsystem that DeTraS implies.
We must also bear in mind that the penalty of a mispredicted-as-
non-conflicting store is generally much higher than the penalty of a
mispredicted-as-conflicting store: the former may result in a futile
abort, while the latter only increases SB drain latency. In sight of
this, our prediction scheme is conservative for stores that appear
early in a transaction, since a misprediction in those dramatically
widens the window of vulnerability to aborts. Thus, the default
prediction under low SB occupancy is selected by monitoring
global contention: if the processor has not recently caused nor
suffered conflict-induced aborts, stores are not delayed; otherwise,
stores are delayed (up to a certain SB occupancy threshold). Once
the threshold of SB occupation is surpassed, the local (PC-based)
predictor is used.

Since different stores to overlapped memory locations could
have contradicting predictions, a mechanism to prevent reordering
of overlapped stores is required in order to guarantee sequential
semantics. To this end, each transactional store that commits
snoops the SB looking for a delayed overlapped store and in case
of a hit, the current store will be also delayed independent on the
predictor decision.

Selective delay of transactional stores is important for three
reasons: i) to avoid penalizing transaction commit latency under
low contention (in which all stores would initiate the write as soon
as they commit); ii) to reduce the latency of SB drains for large
transactions (by reducing the amount of delayed writes), which
would decrease the overall duration of the transaction and thus the
aforementioned window of exposure to aborts; and iii) to pave the
way for better utilization of released SB resources (Section 3.4).
This refinement reduces the likelihood of SB overflow in certain
scenarios, since entries for non-delayed stores can be released up
to the first delayed store. Non-delayed stores following delayed
stores can complete but their SB entries remain unavailable (as
entries can only be released from the SB head).

Implementation. DeTraS’ prediction scheme employs a
global conflict history (GCH) counter, a PC-based store conflict
history (SCH) table, and an offending transaction (OT) bit. The
SCH is updated after each transactional store completes in cache,
with the information given by a conflict bit piggybacked in
coherence responses, whose value is copied into the corresponding
1-bit SCH entry using the hashed PC as index. When a coherence
response with the conflict set arrives, the OT bit is asserted (and
remains set until the transaction ends) and the GCH is set to its
maximum value. The GCH is also saturated upon local conflict-
induced aborts, and it is only decremented by transactions that
commit while the OT bit remains unset. When the SB is below half
capacity, the predictor only checks the GCH: stores are delayed
if the GCH is not 0 (an indication of recent contention). Once

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 5

delayed stores fill the SB above half its capacity, the prediction
for each committing store is taken from its local history by
looking up the SCH: the store is delayed if its SCH bit is
set. Fig. 3 illustrates how the GCH, the SCH and the current
store buffer occupation determine store handling in DeTraS (blue-
shaded SB entries represent a delayed stores). Fig. 3-a shows that
stores are never delayed if no recent contention was caused or
suffered (GCH = 0). This avoids penalizing transaction duration
by keeping the SB drain latency observed by xend unaffected.
Fig. 3-b shows that in the presence of contention (GCH > 0),
all transactional stores below the 50% SB occupation threshold
are invariably delayed, emulating a committer-wins design for
small-footprint transactions whose speculative writes can be fully
contained within the processor structures until commit, in order to
hide such writes from the coherence substrate and thus overcome
their exposure to aborts that causes the friendly-fire pathology.
Once SB occupation threshold grows above the threshold, the PC-
based SCH table determines whether a committing store must be
delayed, as shown in Fig. 3-c.

The extra SB snoop required by transactional stores reuses
exactly the same logic as store-to-load forwarding. Contention
between loads snooping the SB and committing stores is always
resolved in favor of the former, delaying the retirement of the
store until a SB port is available (often the next cycle). When
a port is available, SB snoop and GCH/SCH access are done in
parallel to determine the value of the delay bit. If unset, the store
is immediately sent to cache. For efficiency purposes, two global
bits are maintained by the SB: delayedStores and needSnoop. The
former is set as the first delayed store enters the SB, while the latter
acts as the enable signal to the SB snoop logic for transactional
stores, and is set when a store that is not delayed enters the SB
and finds delayedStores asserted. Both are cleared upon SB drain.

3.4 Store Buffer Compaction

In the previous sections it is assumed that when the SB is full and
a delayed store sits at its head, a SB drain resumes the write of
all delayed stores in order to prevent the processor from stalling.
The selective delay of transactional stores opens up the possibility
of a better utilization of SB resources through compaction, again
driven by the observation that transactional stores can perform out
of order. The only requirement for correctness is that stores to the
same address or overlapped addresses cannot be reordered.

Thus, a delayed store sitting at the head of the SB can be
moved to any previous completed entry in the SB as long as
no overlapped stores exist in between both positions. In order
to maximize the number of SB entries that can be released after
each compaction, the entry selected as destination when moving
a delayed SB entry should be the completed SB entry that lays
closest to its tail (i.e., towards the last committed store).

Partially overlapping stores cannot be reordered. Because par-
tially overlapped stores are rather infrequent, we opt for a conser-
vative but simple approach to SB compaction that guarantees their
correct handling: partially overlapping delayed stores at the head
of the SB will prevent compaction. While other implementations
exist, such as extending the SB entry with a sentinel pointer to
restrict the portion of the SB suitable for movement, we found
that our simple policy overcomes most SB overflows. On the other
hand, stores that overlap completely can be silently coalesced. That
is, when a committing transactional store fully overwrites another
older committed store, the older store can be directly marked as

Commit

xend st st st st st

headSB

threshold

GCH

0

(a) No recent contention

Commit

st st st st

headSB

threshold

GCH

1

(b) Recent contention, delay below SB occupation threshold (short
transaction)

Commit

st st st st st st

headSB

threshold

GCH

1

PC SCH

01

(c) Recent contention, selective delay above SB occupation threshold

Commit

st st st st st st st

headSB

threshold

GCH

1Before:

Commit

st st st st st st st

headSB

threshold

GCH

1

move st

After:

(d) Overflow avoided by compaction

Fig. 3: Overflow avoided with compaction.

completed, as it does not need to perform the write since the data
will be completely overwritten by the newer store.

Implementation. Fig. 3-d shows how DeTraS avoids SB
overflows by performing compaction when the SB is full, its head
points to an entry whose delay bit is set, and there are completed
stores in the SB that do not partially overlap with any older
store. Compaction consists simply in copying the head entry to
the completed SB entry closest to the tail of the SB and then
freeing it (moving the head pointer). Fig. 3-d shows the state of
the SB before and after compaction is done.

To do this efficiently, the SB keeps a completedStores counter
that indicates the number of completed stores that are still occu-
pying an SB entry. It is increased when a store is completed and
decreased when its entry is freed (i.e., the SB head moves). Also,
each SB entry is extended with two additional bits, pinned and
coalesced, which are mutually exclusive, and get updated for the
entries in the SB on each SB snoop. The pinned bit is set if the
committing store partially overlaps the store in the SB entry and
the coalesced bit is set if the committing store fully contains it.

Compaction cannot be performed if the completedStores
counter is 0 or if the head SB entry has the pinned bit set. When
a coalesced entry sits at the head of the SB, then silent coalescing
is performed and the entry is considered completed, so the head
pointer is just moved without further actions. In case of overflow,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 6

TABLE 1: System parameters.

Core Settings
Cores 16 out-of-order (execute/commit width: 4)
Load queue 72
Store queue + store buffer 56

Memory Settings
L1 I&D caches Private, 32KiB, 8-way, 1-cycle hit latency
L2 cache Shared, 8 MiB, unified, 16-way

24(tag)+12(data)-cycle latency
Memory 3GB, 200-cycle latency
Protocol MESI, directory-based

Network Settings
Topology and Routing 2-D mesh (4×4), X-Y
Flit size / Message size 16 bytes / 5 flits (data), 1 flit (control)
Link latency / bandwidth 1 cycle / 1 flit per cycle

TABLE 2: HTM systems evaluated.

Base Baseline, perfect read signature, SM-bits in L1 cache
DeTraS-D Delayed Transactional Stores, always delay
DeTraS-R Delayed Transactional Stores, always delay + reorder
DeTraS-C Delayed Transactional Stores, selective delay + reorder + compact
MELSI MESI + incoherent Lazy (L) state [7], [8], unlimited L-directory
ReqStalls Baseline + LogTM-like [5] (timestamp-based) conflict resolution

the SB is not completely drained, but only the store at the head
clears its delayed bit and gets resumed.

Note that our proposal does not need to block snoops on the
SB when moving from one entry to another: if the snoop of a
load races with the compaction (same cycle), it will either get the
data from the source entry (if performed in the cycle immediately
before the destination gets written), or from the destination entry
itself (if in the same cycle).

4 EVALUATION METHODOLOGY

Simulation environment. We have extended the widely used
gem5 simulator [11] with transactional memory support, in order
to model a variety of HTM implementations. We use the detailed
timing model for the memory subsystem provided by Ruby,
combined with the out-of-order processor model. Gem5 provides
full-system functional simulation of the x86-64 ISA and boots
an unmodified Ubuntu Linux 16.04 with kernel version 4.8.13.
We perform our experiments on a 16-core tiled CMP system, as
described in Table 1. Each tile contains a processing core with
private L1 instruction and data caches, and a slice of the shared
L2 cache with associated directory entries. A 2-D mesh NoC
is employed to interconnect the tiles. The L1 caches maintain
inclusion with the L2. The private L1 caches are kept coherent
through an on-chip distributed directory (associated with L2 cache
banks), which maintains bit vectors of sharers and implements the
MESI protocol.

HTM systems evaluated. Table 2 summarizes the HTM
systems evaluated in Section 5. Our baseline (Base) is an RTM-
compliant best-effort design that uses SM bits in L1 data cache
to track write sets, and a perfect signature to track read sets, so
that it can maintain much larger read-sets than write-sets as seen
in commercial chips [12], [13]. We implement DeTraS on top
of our baseline without introducing any changes to the memory
subsystem, except for a conflict bit on coherence responses. We
evaluate three different flavors of DeTraS following the incremen-
tal refinements of Section 3. The version that delays all stores is
denoted as DeTraS-D. DeTraS-R extends the delay approach to
allow reordering of stores. DeTraS-C is our full-fledged design
that selectively delays stores (using a 256-entry SCH table of 1-bit

bayes
genome

intruder

kmeans-h

kmeans-l

labyrinth
ssca2

vacation-h

vacation-l
yada

 0.0

 0.2

 0.5

 0.8

 1.0

 1.2

 1.5

 1.8

T
im

e
(n

or
m

al
iz

ed
)

1 2 4 8 16

 0 4 8 12 16 20 24
 0.50
 0.55
 0.60
 0.65
 0.70
 0.75
 0.80
 0.85
 0.90
 0.95
 1.00

Base DeTraS-C

Fig. 4: Left: Execution time in Base up to 16 threads, normalized
to sequential. Right: Sensitivity analysis for maximum number of
retries before acquiring fallback lock.

predictors), reorders them and performs compaction. The remain-
ing systems in Table 2 model related works and are described in
Section 6.1.

Benchmarks and methodology. The STAMP benchmarks
[14] with recommended medium inputs are used as workloads.
The results presented are for 16-thread runs in all benchmarks.
Fig. 4 (left part) shows the scalability up to 16 threads for our
baseline, where we can see the poor parallel performance of bayes
and labyrinth in all HTM systems as reported by other authors
[12], [15], largely due to the large write sets of their transactions.
Moreover, bayes implements a search algorithm that leads to
highly random work levels executed for the same input [16]. In
labyrinth, the inability to release its main data structure from
the read set prevents concurrent transactions from committing
useful work. Consequently, we exclude both benchmarks from our
performance evaluation.

To isolate our evaluation from the effects of page-fault-induced
aborts when accessing dynamically allocated data inside transac-
tions, we implement a software scheme of heap pre-faulting [13]
as part of our TM library function to begin a transaction, which
follows [1] in regards to eager lock subscription. Our sensitivity
analysis shown in Fig. 4 (right part) indicates that the opti-
mal value for the maximum number of attempts to execute a
transaction speculatively before taking the fallback lock differs
between Base (6) and DeTraS (12); DeTraS benefits from a higher
threshold because threads can make forward progress despite high
contention, and resorting to the fallback lock after a small number
of retries results in unnecessary loss of concurrency. Note how in
DeTraS, performance is not hurt as the threshold value increases
over 12 retries, an early indication that DeTraS infrequently
resorts to the non-speculative path. In sight of this analysis, in
Section 5 DeTraS-D and DeTraS-R employ the same maximum
retry threshold as Base (6), while in DeTraS-C we set it to its
optimal value (12). We also consider DeTraS-R*, which uses the
same threshold as DeTraS-C (12).

All the results correspond to the parallel part of the applica-
tions and we have accounted for the variability of parallel appli-
cations. For each workload-configuration pair we gather average
statistics over 10 randomized runs, by adding a random jitter of
up to 1 extra cycle to the DRAM response time. Threads were
pinned to cores in order to avoid migration. The results shown in
Section 5 are always normalized to Base and we use the arithmetic
mean when summarizing results across benchmarks [17].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 7

genome
intruder

kmeans-h
kmeans-l ssca2

vacation-h
vacation-l yada

Arithmetic

Mean

 0.0
 0.1
 0.2
 0.4
 0.5
 0.6
 0.8
 0.9
 1.0

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

Base DeTraS-D DeTraS-R DeTraS-R* DeTraS-C

Fig. 5: Normalized execution time.

5 PERFORMANCE EVALUATION

Fig. 5 compares the relative execution time of the three
incrementally-refined configurations of DeTraS, relative to Base.
Behind the improvement achieved by DeTraS lays its ability to
cope with high contention and achieve forward progress without
having to resort to non-speculative execution, i.e., without having
to revert to mutual exclusion when accessing shared data. Fig. 6
shows the number of acquisitions of the fallback lock in all DeTraS
configurations normalized to Base, broken down per transaction in
the source code of the benchmark (we assigned them a unique
identifier –xid–, in program order). Fig. 7 shows the average
number of store micro-ops for each xid in each benchmark. Note
that x86-64 instructions are decoded into RISC-like instructions
internally used by gem5’s CPU models. Fig. 8 shows the total
number of aborts, broken down by cause. Figs. 6, 7 and 8 jointly
provide a radiography of each benchmark, by depicting which
transactions resort to the fallback lock because of contention (e.g.,
genome’s xid0 and xid2, intruder’s xid0 and xid1, kmeans’ xid0,
yada’s xid0 and xid2) or capacity-induced aborts (vacation’s xid0).
Additionally, Fig. 9 shows a breakdown of conflict-induced aborts,
with categories named as killed-killer (e.g., W −R means writer
killed by reader) and writers are further split according to the
source of the write to cache: xend (Wxend), overflow (Wover f low)
or not delayed (W). Results in Fig. 9 correspond to the Conflict
category of Fig. 8. Note that the high variability exhibited by
vacation-l and vacation-h in Fig. 6 and Fig. 9 comes from the
fact that conflict-induced aborts are uncommon, accounting only
for 3 to 7% of all aborted transactions, respectively. The low
level of contention in vacation allows it to achieve close to ideal
scalability even in Base, as seen in Fig. 4, leaving little room for
improvement. Similarly, techniques aimed at mitigating conflicts
have little effect on the overall performance of ssca2, which is
also a low-contention benchmark where aborts are very infrequent
and transactional execution only account for less than 10% of all
executed cycles (see Fig. 11 in Section 6). In the following analysis
we will focus in the remaining benchmarks (genome, intruder,
kmeans and yada), which have moderate to high contention. We
begin with an overview of the results, and then we analyze the
effectiveness of the mechanisms that comprise DeTraS.

In Fig. 5 we see that the naive approach of DeTraS-D already
improves execution time for contended transactions that contain
only a few stores such as intruder’s xid2, kmeans’ xid0 and
yada’s xid0, which can be buffered in the SB without running
into overflows. Simply delaying SB drain mitigates the friendly-
fire pathology that affects Base in kmeans and yada, improving
executing time by 10, 12 and 20% in kmeans-l, yada and kmeans-
h, respectively, due to roughly 90, 20 and 30% less fallback lock
acquisitions. However, this technique by itself hurts performance

genome
intruder

kmeans-h
kmeans-l ssca2

vacation-h
vacation-l yada

 0.0
 0.1
 0.2
 0.4
 0.5
 0.6
 0.8
 0.9
 1.0
 1.1
 1.2
 1.4
 1.5
 1.6

Lo
ck

 a
cq

ui
si

tio
ns

0 1 2 3 4 5 6 7 8 9

Base DeTraS-D DeTraS-R DeTraS-R* DeTraS-C

Fig. 6: Acquisitions of the fallback lock, per xid.

genome
intruder

kmeans-h
kmeans-l ssca2

vacation-h
vacation-l yada

 0
 12
 25
 38
 50
 62
 75
 88

 100
 112
 125
 138
 150

uo
ps

0 1 2 3 4 5

 234 329 237 4186

Fig. 7: Store micro-ops in STAMP, per transaction xid.

genome
intruder

kmeans-h
kmeans-l ssca2

vacation-h
vacation-l yada

Arithmetic

Mean

 0.0
 0.1
 0.2
 0.4
 0.5
 0.6
 0.8
 0.9
 1.0
 1.1
 1.2

tr
an

sa
ct

io
ns

Conflict
Interrupt

L1Capacity
ExplicitFallbackLock

L2Capacity
FallbackLock

PageFault

Base DeTraS-D DeTraS-R DeTraS-R* DeTraS-C

Fig. 8: Aborted transactions by cause.

in genome and barely helps intruder. By introducing reordering,
DeTraS-R virtually eliminates lock acquisitions in both kmeans
configurations (95-99% of those seen Base) and by completely
resolving the friendly fire pathology, DeTraS-R achieves an im-
pressive reduction in execution time of 63% for kmeans-h over
Base. DeTraS-R also resorts to the non-speculative path less
often than DeTraS-D in intruder’s xid1 and yada’s xid0 with the
consequent reduction in execution time. Once the maximum retry
threshold is raised, we see DeTraS-R* ability to commit specula-
tive transactions despite high contention, effectively capturing the
benefits of the committer-wins policy found in systems with lazy
conflict resolution. The reduction in lock acquisitions achieved
by DeTraS-R* in yada and intruder (75-80%) explains the notable
performance gains seen in Fig. 5 for these two benchmarks (24 and
56% improvement over Base, respectively). These results make
DeTraS-R, given its simplicity, an appealing design choice that
largely mitigates livelocks in a requester-wins HTM system for
contended transactions whose stores can be accommodated in the
SB. By contrast, DeTraS-C addresses this limitation and further
lessens SB overflows in transactions that exceed SB capacity
(e.g., genome’s xid0 and intruder’s xid1, as seen in Fig. 7), thus
minimizing friendly fire also in coarse grain transactions that
experience high contention (see Fig. 6). By narrowing the window
of exposure to aborts through efficient utilization of the SB,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 8

genome
intruder

kmeans-h
kmeans-l ssca2

vacation-h
vacation-l yada

Arithmetic

Mean

 0.0
 0.1
 0.2
 0.4
 0.5
 0.6
 0.8
 0.9
 1.0
 1.1
 1.2
 1.4

tr
an

sa
ct

io
ns

R-W
Other
W_overflow-R

W-R
R-W_overflow
W_xend-R

W-W
R-W_xend
W_xend-W_xend

Base DeTraS-D DeTraS-R DeTraS-R* DeTraS-C

Fig. 9: Distribution of types for conflict-induced aborts.

DeTraS-C reduces execution time by 25% over Base on average.

5.1 Delaying all stores
When SB capacity is enough to accommodate all transactional
stores, friendly fire experienced by highly contended transac-
tions that subsequently read, modify and write (RMW) a set of
memory locations (e.g., kmeans) can be mitigated by delaying
all stores. Fig. 9 shows that DeTraS-D reduces the number of
conflict-induced aborts suffered in kmeans-l by 60% through the
elimination of nearly all futile W −W aborts suffered in Base,
where transactional RMW operations eagerly request exclusive
ownership (migratory pattern). We see that by delaying stores,
most aborted transactions are now readers killed by “committing”
stores (R−Wend), with a smaller fraction caused by the inverse
scenario (Wend −R). On the downside, DeTraS-D penalizes low-
contended transactions due to the extra SB drain latency on
xend, which increases transaction duration thus its probability
of conflict. The additional duration of each transaction hurts
performance in several low-contention phases of genome, in spite
of leaving the number of aborts nearly unaffected (see Figs. 8 and
9). The extra commit latency also results in more Wxend −Wxend
aborts seen for ssca2 in Fig. 9 when compared to Base).

5.2 Reordering stores
By allowing store misses during SB drain to be served con-
currently and out of order, DeTraS-R shrinks the window of
contention and consequently reduces Wxend − ∗ and ∗ −Wxend
aborts seen for DeTraS-D, as can be observed in Fig. 9 for nearly
all benchmarks, most notably in those that contain transactions
with few stores, e.g., intruder (xid0), kmeans, ssca2 and yada
(xid0 and xid4). The higher maximum retry threshold before taking
the fallback path used in DeTraS-R* increments conflict-induced
aborts compared to DeTraS-R in high contention benchmarks
where SB overflows still occur (e.g., genome and intruder and
yada), but in turn reduces the number of fallback-lock-induced
aborts as depicted in Fig. 8. This produces a somehow counter-
intuitive result: allowing more retries after conflict-induced aborts
may reduce the overall number of aborts (by reducing fallback-
lock-related aborts) and ultimately improves performance. This is
because all concurrent transactions are aborted upon acquisition
of the fallback lock and force to wait until the non-speculative
transaction completes. This serialization is particularly harmful
for transactions working on unrelated data structures which had
no potential conflicts with the lock owner. However, since such
false lock-induced conflicts are indistinguishable from true data
conflicts, they contribute to reaching the maximum retry threshold

faster. Consequently, resorting to non-speculative execution to deal
with contention in one data structure may exacerbate contention
in other transactions that access unrelated data structures, as it
happens for instance in intruder (xid0 and xid1). Note that such
false fallback-lock-induced aborts are unavoidable, as employing
a single fallback lock is the only way to achieve progress while
guaranteeing atomicity in all cases without affecting the program-
ming model nor requiring complex dependence analysis on the
compiler side. When the maximum retry threshold is increased
from DeTraS-R to DeTraS-R*, Fig. 9 also shows that Wover f low−R
and R−Wover f low become a more pronounced fraction of all
conflict-induced aborts in benchmarks whose contended transac-
tions exceed SB size like genome, intruder and yada.

5.3 Selectively delaying stores. SB compaction

In Figs. 8 and 9 we can observe that DeTraS-C reduces both
fallback-lock- and conflict-induced aborts seen in DeTraS-R* for
genome, intruder and yada, precisely those benchmarks whose
high-contention transactions comprise too many stores to be
fully contained in the SB (Fig. 7). Fig. 9 shows that DeTraS-C
eliminates virtually all SB overflow-induced aborts in genome
and intruder but not in yada, because of the huge number of
stores of its xid2. The reduction in the total number of conflict-
induced aborts achieved by DeTraS-C in absolute numbers does
not reflect its actual impact on performance: On the one hand, part
of the Wover f low−R and R−Wover f low aborts in DeTraS-R* simply
do not occur in DeTras-C as the latter enables higher reader-
writer concurrency, giving readers a better chance of committing
before the writer. On the other hand, the remaining R−Wxend
aborts in DeTraS-C have a high probability of being useful aborts
caused by a transaction that commits successfully. This explains
the important reduction in fallback lock acquisitions observed for
genome’s xid0. In intruder, we see that the removal of R−Wover f low
and Wover f low − R aborts in its main transaction (xid1) cuts the
number of non-speculative executions of this transaction to one-
quarter of those done by DeTraS-R*. Note that a fraction of such
SB overflow-induced aborts in DeTraS-R* transits to the cate-
gories R−W and W −R (mispredicted-as-non-conflicting stores)
in DeTraS-C, which can be attributed to SCH predictor warm up,
and also to the reactive design of the GCH (recall that DeTraS-C
does not delay stores if the GCH indicates no recent contention).
In summary, the prevalence of R−Wxend aborts in DeTraS-C is
the quantitative proof of DeTraS’ ability to consistently achieve
forward progress under contention while avoiding serialization of
threads on the fallback lock.

5.4 Area and energy considerations

The area overhead of DeTraS-C is very modest: Given the 56-entry
SB considered, the total number of additional bytes is around 50:
168 extra bits in the SB (three bits per SB entry, delayed, pinned
and coalesced), 256 bits for the PC-based predictor (SCH), plus a
handful of small counters (4-bit GHC, 6-bit completedStores) and
several flags. The SCH is a tagless direct-mapped small structure
whose energy consumption is negligible. Compared to the energy
incurred by a SB snoop (reading up to 56 tagged entries with
a priority decoder), accessing a 1-bit predictor for each retired
transactional store is an inexpensive operation. Therefore, we
focus on the extra SB snoops that DeTraS-C performs in order
to prevent reordering of overlapped stores.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 9

genome

intru
der

km
eans-h

km
eans-l

ssc
a2

va
ca

tio
n-h

va
ca

tio
n-l

 0.00
 0.12
 0.25
 0.38
 0.50
 0.62
 0.75
 0.88
 1.00
 1.12

sn
oo

ps

TxLoad TxStore TxStoreElided

Base DeTraS-C

ya
da

 0.00

 1.00

 2.00

 3.00

 4.00

 5.00

 6.00

 7.00

 8.00

Arith
metic

Mean

 0.00

 0.25

 0.50

 0.75

 1.00

 1.25

 1.50

 1.75

 2.00

Fig. 10: Left: SB snoops done by transactional loads and stores.

Fig. 10 (left part) shows that the number of extra store-induced
SB snoops incurred by DeTraS-C is small. The TxStoreElided
component indicates stores whose snoop was elided thanks to
the needSnoop bit. We can see that in kmeans and ssca2, all
transactional stores elide the snoop, while the presence of both
delayed and not delayed stores in the remaining benchmarks
requires a fraction of all transactional stores to snoop the SB.
Nonetheless, the total number of snoops grows only slightly (2-
3%) in genome and vacation, while in intruder and kmeans is less
than in Base as a result of having less aborts.

In the case of yada’s large foot-print, long-running xid2,
DeTraS-C speculatively executes much larger fractions of it than
Base while avoiding conflicts. The additional reader-writer con-
currency achieved by DeTraS-C leads to much more work being
speculatively executed compared to Base, explaining the huge
difference in the number of transactional loads seen in Fig. 10.
By exploiting available parallelism more aggresively, DeTraS-C
reduces execution time by 60% but this comes at the cost of more
speculative work getting discarded than Base (see Fig. 11). Thus, a
fraction of the SB snoops seen for DeTraS-C in yada correspond to
loads from transactions that abort much later than in Base, while
another fraction is for loads from committed transactions which
would anyways snoop the SB in Base when the same loads are
executed non-speculatively (not shown in Fig. 10). Lastly, apart
from lowering energy consumption by shortening execution time
in high contention workloads, DeTraS also reduces the number of
aborts by almost 50% on average (see Fig. 8).

6 RELATED WORK: DISCUSSION & EVALUATION

The works by Armejach et al. [7] and Park et al. [8] are most
related to this work, as they leverage the observation that de-
laying transactional writes can mitigate friendly fire in requester-
wins HTM designs. ForgiveTM [8] shares many similarities with
WriteBurst [7], as both propose to delay acquisition of exclusive
ownership for transactional store misses while using the L1 cache
to keep incoherent copies of speculatively modified blocks with
deferred coherence actions. Their fundamental difference with De-
TraS is the level at which delaying and reordering of transactional
writes happens in the architecture: while DeTraS leverages the
SB itself to alter the order in which stores are presented to the
memory system, WriteBurst and ForgiveTM write to cache in
program order (baseline is TSX), and then change the order in
which exclusive coherence permissions for speculatively written
blocks are requested. Though conceptually this may seem a subtle
difference, the overhead brought by prior approaches is far greater
than that of DeTraS: as a result of neglecting the presence of the
SB, prior works must introduce new structures in the memory

system, often duplicating functionalities already available in the
processor (e.g., wait for completion of all transactional stores
in the SB before xend can commit). In particular, delaying
transactional writes in the memory system involves: i) adding a
new coherence state that relaxes the single-writer invariant for
write-set blocks; ii) a directory-like structure for tracking cached
blocks with pending coherence actions (henceforth referred to as
L-directory); and iii) a scheme to select the appropriate victim
upon overflow of the aforementioned L-directory. Considering
the additional structures required by ForgiveTM and their size,
and its extra lazy bit in cache, its storage overhead adds up to
more than 4 kilobits: 640 bits for the 16-entry L-directory, over
3 kilobits bits for the 64-entry scoring table of {address,score}
pairs, plus 512 bits in the 32 KiB L1 data cache. This is roughly 10
times the area overhead of DeTraS-C, not including ForgiveTM’s
logic to traverse the L-directory at commit, nor the extensions in
the L1 cache controller for the special handling of transactional
write misses. Given that the integration cost into existing memory
systems is the key motivation behind the choice of requester-
wins in existing processors, we believe this extra complexity to
tackle the limitations of such policy ultimately jeopardizes its
simplicity appeal. In contrast, DeTraS leaves private caches and
the existing coherence protocol almost completely unmodified; its
only requirement is that a conflict signal gets delivered by the
coherence protocol upon completion of each write miss in cache,
so that it is used to update both local and global conflict history.
The implementation complexity of a single bit piggybacked in
invalidation acknowledgments and data responses, which merely
gets routed from the L1 cache controller to the SB, is trivial.

Apart from their higher area overhead and complexity, existing
approaches have two notable limitations. On the one hand, prior
works invariably delay all stores as long as L-directory capacity
allows, which increments commit latency unnecessarily for trans-
actions in low contention, widening the window of vulnerability.
On the other hand, previous proposals never delay transactional
writes that hit on dirty blocks (i.e., blocks in MESI M-state),
regardless of the history of conflicts for the block; using the
coherence state as a proxy of the block’s probability of conflict
can help minimize pressure on the L-directory (by filtering writes
to thread-local or non-actively shared data), but may expose to
aborts when consuming data in L1 cache that has been produced
by an earlier transaction running in the same processing core.

Improving concurrency in requester-wins best-effort HTMs
has also been the subject of other prior works [18], [19], [20],
[21], [22], [23]. The goal of Dice et al.’s Power Transactions [23]
is to reduce the frequency at which contended transactions resort
to the fallback path, by prioritizing a speculative transaction over
the rest. To do so, the coherence protocol must support nacks,
so that power transactions invert the conflict resolution policy
from requester-wins to requester-loses. Like DeTraS, others have
proposed hybrid (eager/lazy) policies to improve concurrency of
eager HTM designs [7], [8], [24], [25], [26]. In this regard, the
work by Lupon et al. [27] and Titos et al. [28] share some
similarities with our work, as they apply the same strategy
of handling transactional stores eagerly or lazily depending on
their contention characteristics. Unlike DeTraS, both DynTM and
ZEBRA are virtualized HTM systems built atop LogTM (hence
requester-stalls) that extend it to handle lazily managed writes, and
basically differ from each other in the granularity at which policy
is selected (transactions vs cache blocks). Other authors have also
proposed extending LogTM with side buffers to maintain nacked

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 10

transactional stores, so as to allow the in-order processor model to
execute past conflicting stores [29], [30]. The Rock processor [9]
leveraged the SB to implement minimalistic best-effort HTM
support, since L1 caches did not support speculative versioning.
In contrast, ASF [10] allowed speculative stores to remain in the
SB until commit under certain conditions to maximize speculative
buffering capacity beyond the L1 cache limits.

Memory ordering. This is the first work to realize transac-
tional store reordering within the SB of a TSO processor in a
completely transparent manner to the memory consistency model.
Most prior works on HTM either do not model an out-of-order
core [7], [29], [30] or if they do, the SB is disregarded so that
reordering of coherence actions for written blocks is entirely done
by private caches [8]. The implementation of DeTraS would be
simplified in processors with weak models (e.g., store coalescing
makes compaction unnecessary).

6.1 Performance comparison to related works
We quantify the relative performance of DeTraS against the closest
prior works [7], [8] by means of our MELSI model. MELSI
extends the underlying MESI protocol of our baseline with a new
state, Lazy (L), which allows transactional store instructions to
complete in cache and retire from the processor without requiring
an exclusive copy of the block (exclusive ownership is still brought
by M and E states). In this way, transactional stores to shared
blocks perform immediately, the block transits from S to L state,
and its address is added to an unlimited-sized L-directory. Since
there are no replacements in this idealized L-directory, MELSI
does not implement any prediction scheme to select replacement
victims (i.e., no conflict set signature [7] nor scoring mechanism
[8]). When the processor attemps to retire xend, the L1 cache

controller sends coherence upgrade requests for each address in
the L-directory (all requests sent in parallel). Transactional stores
to blocks in M- and E- states perform as usual as they do not
need any further coherence actions. Finally, transactional stores
that do not find a copy of the line in L1 cache attempt to fetch
a shared copy from the L2 cache, though this request may be
serviced with an exclusive copy of the block if the L2 finds
that there are no privately-cached copies in other caches. Note
that this feature found in our underlying MESI protocol allows
write misses to thread-local data (e.g., misses resulting from gang-
invalidation of write-set blocks in a previous abort, also known
as contamination misses [31]) to bypass the L-state, and thus do
not penalize the commit latency unnecessarily. Our sensitivity
analysis of the maximum number of retries before taking the
fallback path indicates that MELSI achieves its best performance
with higher values than Base, for the same reasons as DeTraS
(improved ability to achieve forward progress without resorting to
serialization of threads to the fallback lock). Consequently, we use
the same threshold in MELSI as in DeTraS (12).

Additionally, we compare DeTraS against prior works which
avoid friendly fire by implementing a requester-stalls [2] policy.
This requires adding nacks into the coherence protocol, as well
as a mechanism to prevent deadlocks. Note that implementing
nacks in certain scenarios (e.g., snoop-based protocols) might
be challenging, limiting the applicability of such policies. To
maintain a fair comparison across all HTM designs consid-
ered, we deliberately choose not to compare against LogTM-
SE [6] (virtualized HTM system); instead, ReqStalls implements
LogTM’s policy atop our best-effort baseline by appending 32-
bit timestamps to all coherence messages, following its same

genome
intruder

kmeans-h
kmeans-l ssca2

vacation-h
vacation-l yada

Arithmetic

Mean

 0.0
 0.1
 0.2
 0.4
 0.5
 0.6
 0.8
 0.9
 1.0

no
rm

al
iz

ed
 c

yc
le

s

NonTransactional
Aborted
WaitForRetryOther

HasLock
WaitForRetryConf
Kernel

Committed

Base DeTraS-C MELSI ReqStalls

Fig. 11: Normalized execution time breakdown.

genome
intruder

kmeans-h
kmeans-l ssca2

vacation-h
vacation-l yada

Arithmetic

Mean

 0.0

 0.2

 0.5

 0.8

 1.0

 1.2

 1.5

 1.8

 2.0

ab
or

ts

useful useless

Base DeTraS-C MELSI ReqStalls

Fig. 12: Distribution of conflict-induced aborts.

deadlock avoidance scheme [5], and preventing the starving writer
pathology by allowing an older writer to simultaneously abort
concurrent younger readers [2].

Fig. 11 compares the execution time breakdown of Base and
DeTraS-C against the aforementioned related works; each execu-
tion cycle is attributed to one of the following categories: non-
transactional (NonTransactional); handling of interrupts/page-
faults (Kernel); holding the fallback lock (HasLock); executing
speculative transactions (Committed and Aborted); waiting on
the fallback lock before retrying (where WaitForRetryConf cor-
responds to acquisitions after repetitive conflicts, and WaitFor-
RetryOther for the rest). Fig. 12 shows the ratio of futile aborts
for the HTM systems shown in Fig. 11, normalized to Base.

MELSI. Fig. 11 shows that with roughly 400 extra bits
added to the SB, DeTraS-C outperforms (by 2% on average) an
idealized implementation of MELSI in which the number of L-
state blocks is only limited by the size/associativity of the L1 data
cache itself. Note that for a 32 KiB L1 data cache, this would
require a 512-entry L-directory, whose storage overhead would
be close to 20 kilobits, two orders of magnitude larger than our
proposal. It is interesting to note that how MELSI introduces a 2%
performance penalty over Base in ssca2 due to the extra commit
latency that MELSI invariably imposes because of its fixed delay-
always policy in transactions with small write-sets. In this way,
low contention workloads see the transaction duration increased
by MELSI, which is also reflected in higher probability of conflict
and thus many more futile aborts than DeTraS-C, as seen in
Fig. 12. The performance advantage of MELSI over DeTraS-C
in genome and intruder (2-3%) comes from the unlimited L-
directory of our idealized model of MELSI, which results in its
lower number of conflict-induced aborts contended transactions
that exceed SB size: the unlimited L-directory makes these trans-
actions completely invulnerable to conflicts until commit time,
whereas limited SB resources and mispredictions in DeTraS-C
occasionally lead to conflicting writes being unveiled to other

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 11

caches prematurely. On the other hand, DeTraS-C exhibits higher
performance in kmeans-h, with around 60% less aborts that lead
to a 25% reduction in execution time over MELSI. MELSI still
suffers many futile aborts in a high-contention workloads such
as kmeans-h because of its aggressive fully parallel drain of the
L-directory, which at times causes two concurrently committing
transactions with mutual conflicts to provoke each other’s abort, as
each transaction wins the race at the directory for a different cache
line. In DeTraS, writes to cache are still done on a store-by-store
basis, and the presence of multiple stores to the same cache block
in kmeans (array of cluster centers) makes exclusive coherence
requests slightly more spaced in time, minimizing mutual aborts
upon SB drain. Furthermore, DeTraS-C also outperforms MELSI
in yada, in this case because MELSI suffers more capacity-induced
aborts (i.e., aborts due to the eviction of speculatively modified
blocks from L1 cache). This kind of aborts seen in yada are less
frequent in DeTraS-C because it takes advantage of the space
in the SB to maintain some of its many transactional writes
away from cache, effectively alleviating the pressure on L1 cache
speculative buffering capacity.

ReqStalls. The results presented for ReqStalls must be an-
alyzed keeping in mind that it models unrealistic sizes for the
timestamps that get appended to coherence messages. More re-
alistic timestamp sizes may harm performance in various ways,
as timestamp wraparound can lead to priority inversion or even
livelock. Note that extending the coherence messages with times-
tamps also incurs a fixed overhead that hinders energy efficiency
in non-transactional workloads.

As anticipated, Fig. 11 shows that introducing priorities among
transactions results in an HTM design that tolerates contention
better than requester-wins sytems, for two reasons: First, priorities
allow resolving some conflicts by stalling the requester transac-
tion, which can resume execution once the other transaction(s)
commits. In benchmarks like kmeans and ssca2, where cyclic de-
pendencies among transactions are infrequent, ReqStalls resolves
nearly all conflicts without resorting to aborts, as we can see in
Fig. 12; in vacation and yada, cycles do arise, yet aborts are still
considerably reduced by ReqStalls in comparison to requester-
wins designs. The second key advantage of supporting transaction
priority in hardware is that, even when a cyclic dependence is
detected and conflict-induced abort occurs, the software abort
handler can retry without ever resorting to mutual exclusion, since
the transaction will eventually become the eldest (highest priority)
transaction and will be guaranteed to survive conflicts with any
other younger transactions. As a result, we can see in Fig. 11
that ReqStalls does not have a HasLock component in any of
the benchmarks, which explains the superior performance demon-
strated by this conflict resolution policy over MELSI and DeTraS-
C in yada. In this benchmark, all requester-wins designs fall back
to non-speculative execution to achieve progress, consequently
bringing a performance penalty depicted by the WaitForRetryConf
component, which ReqStalls simply skips. Note that cycles spent
in the software handler after a conflict-induced abort are attributed
to this category, and in ReqStalls only become visible in intruder
because of many repeated aborts.

Remarkably, DeTraS-C outperforms ReqStalls in a highly con-
tended benchmark such as intruder. This unexpected result has its
roots in ReqStalls’ ability to resolve conflicts through stalls rather
than aborts, which proves advantageous to performance in most
benchmarks, but also suffers from its own pathological behaviour
in certain contended workloads where cyclic dependencies arise

very frequently. Hence, the futile stall pathology [2] can become a
significant overhead for this policy by increasing aborted cycles
as a consequence of more useless aborts, as seen in Fig. 12
for intruder. From a bird’s-eye view, we can see that the eager
approach to resource acquisition used by ReqStalls limits reader-
writer concurrency, whereas DeTraS-C tends to acquire exclusive
owernship over contended resources when the transaction is ready
to commit. This prevents the blocking effect that causes serializa-
tion of stalled threads in requester-stalls.

7 CONCLUSIONS

This work underlines the impact that appropriate management
of transactional stores in the store buffer (SB) of an out-of-
order processor has on HTM performance, and proposes simple
behavioural changes to the SB found in TSO processors that allow
requester-wins HTM systems to cope with friendly fire. DeTraS
leverages large store buffers present in modern commercial proces-
sors, often underutilized by transactional workloads which exploit
irregular parallelism and work on sparse data structures. With
minimal extensions to the SB (about 50 extra bytes), DeTraS is
a low-complexity, practical extension over currently commercially
available best-effort HTM systems. Our work proposes an HTM-
aware SB design whose visible change outside the processing
core is the fact that speculative writes to the L1 data cache will
be seen in a different order. By maximizing concurrency under
contention while keeping the memory subsystem unmodified,
our proposal may result more compelling to chip manufacturers.
DeTraS combines the appeal of simplicity brought by requester-
wins, with the ability to provide progress despite contention of an
HTM implementation with lazy conflict management. We show
that our design improves performance with respect to the baseline
architecture up to 68% in contended benchmarks and 25% on
average across the STAMP benchmark suite.

ACKNOWLEDGMENTS

Work supported by the Spanish MCIU and AEI, as well as Eu-
ropean Commission FEDER funds, under grant RTI2018-098156-
B-C53; the Spanish MCIU under grant ERC2018-092826; and
the European Research Council (ERC) under the Horizon 2020
research and innovation programme (grant agreement No 819134).

REFERENCES

[1] Intel Corporation, “Intel 64 and IA-32 architectures optimization refer-
ence manual, chapter 16: Intel TSX recommendations,” pp. 16:1–16:30,
2020.

[2] J. Bobba, K. E. Moore, L. Yen, H. Volos, M. D. Hill, M. M. Swift,
and D. A. Wood, “Performance pathologies in hardware transactional
memory,” in 34th Int’l Symp. on Computer Architecture (ISCA), 2007,
pp. 81–91.

[3] R. Rajwar and J. Goodman, “Transactional execution: Toward reliable,
high-performance multithreading,” IEEE Micro, vol. 23, no. 6, pp. 117–
125, 2003.

[4] R. Rajwar and J. R. Goodman, “Transactional lock-free execution of
lock-based programs,” in 10th Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS), 2002, pp.
5–17.

[5] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“LogTM: Log-based transactional memory,” in 12th Int’l Symp. on High-
Performance Computer Architecture (HPCA), 2006, pp. 254–265.

[6] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood, “LogTM-SE: Decoupling hardware trans-
actional memory from caches,” in 13th Int’l Symp. on High-Performance
Computer Architecture (HPCA), 2007, pp. 261–272.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 12

[7] A. Armejach, R. Titos-Gil, A. Negi, O. S. Unsal, and A. Cristal, “Tech-
niques to improve performance in requester-wins hardware transactional
memory,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 10, no. 4, pp. 42:1–42:25, 2013.

[8] S. Park, C. J. Hughes, and M. Prvulovic, “Forgive-tm: Supporting lazy
conflict detection in eager hardware transactional memory,” in 28th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
Sep. 2019, pp. 192–204.

[9] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay, “Rock: A high-performance Sparc CMT
processor,” IEEE Micro, vol. 29, no. 2, pp. 6–16, 2009.

[10] J. Chung, L. Yen, S. Diestelhorst, M. Pohlack, M. Hohmuth, D. Christie,
and D. Grossman, “ASF: AMD64 extension for lock-free data structures
and transactional memory,” in 43rd IEEE/ACM Int’l Symp. on Microar-
chitecture (MICRO), 2010, pp. 39–50.

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[12] R. Yoo, C. Hughes, K. Lai, and R. Rajwar, “Performance evaluation
of intel transactional synchronization extensions for high performance
computing,” in ACM/IEEE Conf. on Supercomputing (SC), 2013.

[13] B. Goel, R. Titos-Gil, A. Negi, S. A. McKee, and P. Stenstrom, “Per-
formance and energy analysis of the restricted transactional memory
implementation on haswell,” in 28th Int’l Parallel and Distributed
Processing Symp. (IPDPS), 2014, pp. 615–624.

[14] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in IEEE Intl.
Symposium on Workload Characterization, 2008, pp. 35–46.

[15] T. Nakaike, R. Odaira, M. Gaudet, M. M. Michael, and H. Tomari,
“Quantitative comparison of hardware transactional memory for Blue
Gene/Q, zEnterprise EC12, Intel Core, and POWER8,” in 42nd Int’l
Symp. on Computer Architecture (ISCA), 2015, pp. 144–157.

[16] A. Dragojevic and R. Guerraoui, “Predicting the scalability of an STM,”
in 5th ACM SIGPLAN Workshop on Transactional Computing, 2010.

[17] J. E. Smith, “Characterizing computer performance with a single num-
ber,” Communications of the ACM, vol. 31, no. 10, pp. 1202–1206, 1988.

[18] H. Litz, D. Cheriton, A. Firoozshahian, O. Azizi, and J. P. Stevenson,
“SI-TM: Reducing transactional memory abort rates through snapshot
isolation,” in 19thInt’l Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), 2014, pp. 383–398.

[19] L. Xiang and M. L. Scott, “Software partitioning of hardware trans-
actions,” in 20th Int’l Symp. on Principles & Practice of Parallel
Programming (PPoPP), 2015, pp. 76–86.

[20] S. Park, M. Prvulovic, and C. J. Hughes, “PleaseTM: Enabling trans-
action conflict management in requester-wins hardware transactional
memory,” 22ndInt’l Symp. on High-Performance Computer Architecture
(HPCA), pp. 285–296, 2016.

[21] R. Quislant, E. Gutierrez, E. L. Zapata, and O. Plata, “Enhancing scal-
ability in best-effort hardware transactional memory systems,” Journal
of Parallel Distributed Computing (JPDC), vol. 104, no. C, pp. 73–87,
2017.

[22] R. Quislant, E. Gutiérrez, E. L. Zapata, and O. G. Plata, “Lazy irrevoca-
bility for best-effort transactional memory systems,” IEEE Transactions
on Parallel and Distributed Systems (TPDS), vol. 28, no. 7, pp. 1919–
1932, 2017.

[23] D. Dice, M. Herlihy, and A. Kogan, “Improving parallelism in hardware
transactional memory,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 15, no. 1, pp. 9:1–9:24, 2018.

[24] S. Tomic, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal,
T. Harris, and M. Valero, “EazyHTM: Eager-lazy hardware transactional
memory,” in 42nd IEEE/ACM Int’l Symp. on Microarchitecture (MI-
CRO), 2009, pp. 145–155.

[25] L. Zhao, W. Choi, and J. Draper, “SEL-TM: Selective eager-lazy man-
agement for improved concurrency in transactional memory,” in 26thInt’l
Parallel and Distributed Processing Symp. (IPDPS), 2012, pp. 95–106.

[26] A. Shriraman, S. Dwarkadas, and M. L. Scott, “Flexible decoupled trans-
actional memory support,” in 35th Int’l Symp. on Computer Architecture
(ISCA), 2008, pp. 139–150.

[27] M. Lupon, G. Magklis, and A. González, “A dynamically adaptable
hardware transactional memory,” in 43rd IEEE/ACM Int’l Symp. on
Microarchitecture (MICRO), 2010, pp. 27–38.

[28] R. Titos-Gil, A. Negi, M. E. Acacio, J. M. Garcia, and P. Stenstrom,
“Zebra : A data-centric, hybrid-policy hardware transactional memory
design,” in 25th Int’l Conf. on Supercomputing (ICS), 2011, pp. 53–62.

[29] A. Negi, R. Titos-Gil, M. E. Acacio, J. M. Garcia, and P. Stenstrom, “Ea-
ger meets lazy: The impact of write-buffering on hardware transactional
memory,” in 40th Int’l Conf. on Parallel Processing (ICPP), 2011.

[30] R. Titos-Gil, A. Negi, M. E. Acacio, J. M. Garcia, and P. Stenstrom,
“Eager beats lazy: Improving store management in eager hardware
transactional memory,” IEEE Transactions on Parallel and Distributed
Systems (TPDS), vol. 24, no. 11, pp. 2192–2201, 2013.

[31] M. Waliullah and P. Stenstrom, “Classification and elimination of con-
flicts in transactional memory systems,” Chalmers University of Technol-
ogy, TR 2010:09, Dept. of Computer Science, Tech. Rep., 2010.

Rubén Titos-Gil received MS and PhD degrees
in Computer Science from the University of Mur-
cia, Spain, in 2006 and 2011, respectively. As
a PhD student, he was awarded a FPU scholar-
ship from the Spanish Government. After holding
post-doctoral positions at Chalmers University of
Technology, Sweden, and at the Barcelona Su-
percomputing Center, Spain, in 2015 he rejoined
the University of Murcia where he has since
served as an adjunct professor. His research
focuses on hardware support for synchronization

in parallel processors, with an emphasis on transactional memory.

Ricardo Fernández-Pascual received the MS
and PhD degrees in computer science from the
Universidad de Murcia, Spain, in 2004 and 2009,
respectively. In 2004, he joined the Computer
Engineering Department as a PhD student with
a fellowship from the regional government. In
2006, he joined the Computer Engineering De-
partment of the Universidad de Murcia where he
is currently an associate professor. His research
interests include general computer architecture,
memory hierarchies for parallel processors, and

performance simulation.

Alberto Ros Alberto Ros is Associate Professor
at the University of Murcia, Spain. He received
the Ph.D. degree in computer science from the
same university, in 2009, after being granted
with a fellowship from the Spanish government
to conduct the Ph.D. studies. He hold post-
doctoral positions at the Universitat Politècnica
de València and at Uppsala University. He has
co-authored more than 60 research papers in
international journals and conferences. His re-
search interests include cache coherence proto-

cols, memory hierarchy designs, and memory consistency for multicore
architectures.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. Y, MONTH YEAR 13

Manuel E. Acacio is a Full Professor of com-
puter architecture and technology at the Uni-
versity of Murcia, Spain. Dr. Acacio obtained
his PhD degree in Computer Science in March
2003. Before, in the summer of 2002, he worked
as a summer intern at IBM TJ Watson, York-
town Heights (NY). Currently, Dr. Acacio leads
the Computer Architecture & Parallel Systems
(CAPS) research group at the University of Mur-
cia. He is author of about 100 papers in refer-
eed international conferences and journals. As

well, he has served as a committee member of numerous international
conferences. His research interests are focused on the architecture
of multiprocessor systems. From April 2011 to April 2015, Dr. Acacio
served as an associate editor of IEEE TPDS Journal, since August 2016
he is member of the editorial board of MPDI Computers Int’l Journal, and
more recently, since September 2018, he serves as academic editor in
the editorial board of Hindawi Scientific Programming journal. He is also
member of the board of distinguished reviewers of ACM TACO Journal
since May 2014.

	Introduction and Motivation
	Background
	Store instructions and the store buffer
	Store buffer and cache extensions for HTM

	DeTraS
	Delaying Transactional Stores
	Reordering Transactional Stores
	Selective Delay of Transactional Stores
	Store Buffer Compaction

	Evaluation Methodology
	Performance Evaluation
	Delaying all stores
	Reordering stores
	Selectively delaying stores. SB compaction
	Area and energy considerations

	Related Work: Discussion & Evaluation
	Performance comparison to related works

	Conclusions
	References
	Biographies
	Rubén Titos-Gil
	Ricardo Fernández-Pascual
	Alberto Ros
	Manuel E. Acacio

