
BL∪E: A Timely, IP-based Data Prefetcher
Alberto Ros

Computer Engineering Department
University of Murcia

Murcia, Spain
aros@ditec.um.es

Abstract—High-performance prefetchers require not only pre-
dicting the future cache lines that will be requested but also when
they will be requested. Timeliness is therefore an essential prop-
erty for getting the maximum performance from a prefetcher.
Bringing the cache line too early to cache can decrease the
coverage of the prefetcher when such cache line is evicted before
is requested. On the other hand, prefetching the data too late
can lead to late prefetchers, and thus, sub-optimal performance.

This paper presents BL∪E, a data prefetcher that predicts
the prefetched cache lines based on timeliness. The prefetcher
accounts for the time required to fetch a cache line and issues
the prefetch request early enough, such that when it is accessed
it will already be stored in cache. For each instruction pointer
(or group of them) BL∪E i) correlates in a timely way the cache
lines that have been requested and ii) infers their timely delta
when the cache lines have not been accessed yet.

I. INTRODUCTION AND MOTIVATION

Timely is an essential property for high-performance
prefetchers. Traditionally, timely has been achieved by adapt-
ing the degree of prefetch, i.e., how many prefetches are
issued. For example, when considering accesses to contiguous
cache lines, a next-line prefetcher [1] will predict correctly
all cache lines that will be accessed, but probably they will
be accessed before arriving to cache. Timely prefetchers are
achieved in this case by increasing the degree of prefetch to d
and requesting the next d cache lines on an access. The degree
can be adapted at run-time to achieve a good balance between
timeliness and accuracy [2].

Recently, Michaud proposed the best-offset prefetcher
(BOP) [3], which was the best performing prefetching tech-
nique in the 2nd Data Prefetching Championship. The key
difference of BOP with respect to the previous proposal is
achieving timely prefetches with a prefetch degree of one, that
is, issuing a single prefetch per cache access. BOP finds the
best delta for the accesses performed by an application, and
applies it to the next accesses.

Our prefetching mechanism, BL∪E, is based on the ob-
servation that timeliness, and therefore the best delta, varies
from instruction to instruction and even from access to access,
and a global delta results in sub-optimal performance. As
a consequence, our prefetching mechanism finds the most
suitable delta per address and instruction.

BL∪E is a prefetcher comprised of three independent but
complementary prefetchers. The main prefetcher is an exten-
sion of Berti [4] optimized to have a contiguous view of
the non-contiguous physical address space. This prefetcher

is able to predict a delta based on the instruction pointer or
the page accessed, even if a cache line or page has not been
accessed before. The second prefetcher, based on the concept
of Entangling [5], is the most precise and the less likely to be
triggered, as it requires the cache line to be previously accessed
in order to trigger a prefetch for that cache line. Finally, the last
prefetcher is a next-line prefetcher with a degree of two, used
when the previous prefetchers have not been able to trigger
two prefetchers. The next sections describe these prefetchers.

II. BERTI PREFETCHER

The main goal of Berti is to collect two pieces of informa-
tion about the pages that have been accessed, both of them
independent of the order in which the accesses took place: the
cache lines (actually page offsets) accessed within each mem-
ory page and the delta that provides more timely prefetches
for each memory page, namely best-request-time delta, or for
short, Berti delta. This information is then leveraged to predict
which cache lines are prefetched in a timely manner.

Let us consider the accesses to a memory page in 429.mcf-
217B (SPEC CPU 2006). The information collected by the
Berti prefetcher is shown in TABLE I. The accessed cache
lines are represented in a bit vector, where 1 indicates that the
cache line with a page offset equal to its position in the vector
has been accessed. The Berti delta for this page is −6 which
means that the timely cache line corresponds to six offsets
before the current access.

TABLE I: Example found in 429.mcf-217B

Cache lines accessed [0..63] Berti
...110110110110 -6

In bold are represented the accesses that are prefetched
in a timely manner according to the indicated Berti value.
The remaining of the accesses for that page (...) will be also
prefetched in a timely manner. However, in red are represented
the first accesses to this page, that cannot be prefetched with
a previous access to that page. The order to achieve timely
prefetches for all the accesses to a page, we propose the link
next address (Linnea) optimization, which correlates physical
pages and offers to Berti a contiguous view of the non-
contiguous physical address space. This way, when accessing
the last cache lines of a page, the first cache lines of the next
page can be timely prefetched.

1



Next subsections describe both the training phase and the
generation of prefetches in Berti. Then, we comment on the
optimizations proposed on top of the Berti prefetcher.

A. Training

The goal of Berti is to calculate the best timely delta for
the accesses in pages that are currently being accessed (hot
pages). Hot pages are kept in a table named the current pages
table (Figure 1), and that table is used to compute the best
Berti delta for each of the currently accessed pages.

Berti only considers for the computation of the best delta
accesses to cache lines that have not been recently demanded
or prefetched, that is, that would probably cause a miss if the
prefetcher would not have been active. To know if an access is
a potential miss, Berti relies on a bit vector of accessed cache
lines stored in each current pages table entry. The bit vector
has a size of 64 bits (since in ChampSim simulator the cache
line size is 64 bytes and the page size is 4KB) and each bit
represents the offset of the cache line within the page. This
way Berti knows if the cache line is accessed for the first time
since the page became hot or not.

For every potential miss, Berti looks for the set of demand
accesses that could have brought the line to cache on time if
they were prefetching it when accessing the cache. Berti uses
two structures for this: the previous demand requests table
and the previous prefetch requests table (Figure 1). These
structures store the page address (actually just a pointer to
a hot page entry in the current page table), the cache line
offset, and the issue time of the request. The previous prefetch
requests table also stores a completed bit which indicates that
the prefetch has been completed, and in this case the issue time
field stores the time that the prefetch required to be resolved
(its latency).

When a potential miss is resolved, its potential latency is
calculated in the following way. In case of an actual miss,
the latency is computed when the miss resolves, by looking
up in the previous demand requests table the time when the
request issued. In case of a hit in case due to a prefetched
cache line, the latency is computed by looking at the latency
of the completed prefetches in the previous prefetch requests
table.

Once the latency is calculated, the previous demand requests
table is searched in order to find the offsets that could have
brought the cache line to cache in a timely manner, according
to the obtained latency. The deltas with respect to these
offsets are recorded in the current pages table, and a counter
associated with each delta counts how many cache lines in the
page found that delta. In the current implementation we store
six deltas with their respective counters.

When a hot page is evicted from the current pages table
the timely deltas are checked and the delta with higher count
is selected as the Berti delta. The Berti delta is recorded in a
new table called the IP table (Figure 1). This is a modification
with respect to the original Berti prefetcher. In this work the
Berti delta information is just stored per instruction pointer,
and not also per page, as we observed similar best deltas across

different pages accessed by the same set of instructions. Berti
predicts best deltas for unseen pages based on the instruction
pointer.

Since for some pages different memory instructions con-
tribute to its accesses, Berti clusters instruction pointers that
access the same page in order to predict the pattern accurately
when any of those instructions access a new page. This is done
in our particular Berti implementation by using a pointer in
the IP table to the current pages table. Several entries in the
IP table can point to the same entry in the current pages table,
and all of them are updated with the new calculated best delta
when the page is evicted from the current pages table, that is,
the page becomes cold.

B. Inferring prefetches

The Berti prefetcher leverages the information in the IP
table and the current pages table in order to asses if issuing
prefetches or not. The IP table can store either the current
Berti delta for that IP, or a pointer to the current pages table
if the page is hot. In that case, the Berti delta is copied from
the IP table to the current pages table.

The cache lines to be prefetched are calculated by adding the
offset of the current request and the Berti delta. The prefetch
is issued only if a demand access has not been previously
issued for it (this information is available in the bit vector of
accessed cache lines of the current pages table).

C. Using an stride prefetcher for poorly accesses pages

Our first optimization over the Berti prefetcher is the use
of an stride prefetcher in case the pages are poorly accessed,
namely, the page suffers just one or two accesses while they
are hot. The stride is kept in the same field of the IP table as
the Berti delta. A bit in the IP table indicates if the instruction
accessed more than two cache lines in the last page or not.

D. Linnea: Smooth page transitions

Prefetchers that are trained with physical addresses are
commonly not able to predict strides accross page boundaries,
since contiguous virtual pages may be mapped randomly in
physical space. The second and most important optimization
over the Berti prefetcher addresses with problem by providing
the illusion of being working with a contiguous address space.
This way, page transitions do not imply missing prefetch
opportunities for their first accesses.

We employ a record pages table aimed at correlating
physical pages, i.e., it stores for any physical page accessed
by an instruction (or cluster of instructions) the next accessed
page. When a Berti delta applied on an access falls outside
the current page boundaries, the next page is obtained from
the record pages table and a prefetch on that new page is
triggered. Depending on the direction of Berti, increasing or
decreasing delta, the new page can be inferred as increasing
or decreasing addresses, respectively.

2



Record

IP

...

Recorded
pages

...

Current

Previous
prefetches

...

Previous
demand
requests

...

Current pages

...

Fig. 1: Berti prefetcher overview

E. Overview of Berti

Figure 1 shows an overview of all the tables required
for the Berti prefetcher. The tables in the Current dashed
square collect information about pages being currently used.
The tables in the Recorded dashed square collect information
about cold pages. Fields stored in some tables that point to
other tables are indicated with arrows. As we will discuss
in Section V-A, the previous prefetches table has not been
implemented due to the methodology limitations.

III. IP-BASED ENTANGLING DATA PREFETCHER

The Entangling data prefetcher records correlations between
to cache lines with a focus on timeliness. It keeps the history
of accesses in a structure similar to the previous demand
requests table. And on an access it entangles (i.e, correlates)
that cache line with a previous cache line accessed by the
same instruction a number of cycles before than the latency
required to fetch the cache line.

The entangling data prefetcher uses a degree of two. The
first cache line selected for prefetching is the one entangled to
the current access, that is, that it is predicted to be accessed
no earlier than the latency that it will take. The second cache
line selected for prefetching is the next one accesses after the
entangled one by the same instruction.

IV. BL∪E PREFETCHER

Our proposed prefetcher, BL∪E, combines i) a Berti
prefetcher with the Linnea optimization, ii) an IP-based
Entangling data prefetcher, and iii) a next-line prefetcher. We
order the prefetchers from more accurate and less likely to
provide any prefetch to less accurate and more likely to issue
prefetchers.

The first prefetcher mechanism triggered is the IP-based
Entangling data prefetcher, which will only issue a prefetcher
if the cache line has been previously accessed by the same
instruction. Then the Berti prefetcher is called. The Berti
prefetcher is able to predict deltas for non-accessed pages,
based on the previous accesses of the same instruction. Finally,
a next-line prefetcher with a degree of two is triggered
if the previous prefetchers did not manage to issue up to
two prefetches. Although perhaps inaccurate, the next-line

prefetcher is a good option when working at the last level
cache, since wrong prefetchers do not entail a very high cost.

V. METHODOLOGY

We evaluate our prefetchers and compare them to state-of-
the-art prefetchers using the version of the ChampSim simula-
tor provided for the ML-Based Data Prefetching Competition.
We normalize the IPC (instructions per cycle) obtained by
each prefetcher to a baseline system without any prefetcher.
All the prefetchers analyzed for the competition are placed in
the last-level cache (LLC) without having any other prefetcher
for the lower levels. Additionally, we provide results for the
prefetcher that won the third data prefetching competition,
IPCP [6], which settles at L1 and L2, and does not perform
prefetches at LLC.

We evaluate our prefetchers using traces for the SPEC
CPU 2017 applications. We collect statistics for 100 million
instructions, after a 100-million-instruction warm-up period.

We have analyzed online versions of all the prefetcher
considered in this work: a next-line prefetcher (NextLine) [1],
both with degree one and two, a best-offset prefetcher (BOP)
prefetcher [3], a correlation prefetcher of degree two (Corr2),
named as sisb in the provided infrastructure, a BOP prefetcher
combined with Corr2 (BOP+Corr2), provided as a state-of-the-
art baseline in the ML-Based Data Prefetching Competition in-
frastructure, and four different flavors of our BL∪E prefetcher
(Berti, Berti+Linnea, Berti+Linnea+Ent, and BL∪E). In ad-
dition, we analyze results for the offline versions of our
prefetchers and some state-of-the-art prefetchers that could be
easily ported to offline mode.

A. Methodology limitations

On one hand, the offline methodology provided in the
competition does not allow to compute cache miss latencies.
Miss latencies is a fundamental information to perform timely
prefetches. Since the prefetchers for the competition work
at the LLC miss latency variability is low. We note that
the reported latencies were either 71 cycles (in most cases)
or 171 cycles. As a consequence, we decided to hard-code
the LLC miss latency as 171 cycles, such that we minimize
late prefetches. Note that slightly early prefetchers are not a
problem when considering LLC prefetching, the capacity of
the LLC is quite large.

On the other hand, the offline methodology performs the
training for a trace of accesses generated without issuing
prefetches, and then predict blindly for the remaining of ac-
cesses. First, the training without considering the effect of your
own prefetches may be inaccurate since prefetches alter the
timing of subsequent memory accesses. Second, training stops
after warm-up period in the off-line methodology, while in an
online methodology training never stops. For these reasons
the differences in performance of both methodologies are
sometimes around 2%, on average. The more advanced is the
prefetcher, the larger is the relative performance degradation
of offline prefetching.

3



 6
02

.g
cc

-s
0

 6
02

.g
cc

-s
1

 6
02

.g
cc

-s
2

 6
02

.g
cc

-s
3

 6
05

.m
cf

-s
0

 6
05

.m
cf

-s
1

 6
05

.m
cf

-s
2

 6
05

.m
cf

-s
3

 6
05

.m
cf

-s
4

 6
05

.m
cf

-s
5

 6
05

.m
cf

-s
6

 6
05

.m
cf

-s
7

 6
05

.m
cf

-s
8

 6
07

.c
ac

tu
BS

SN
-s

0

 6
07

.c
ac

tu
BS

SN
-s

1

 6
07

.c
ac

tu
BS

SN
-s

2

 6
07

.c
ac

tu
BS

SN
-s

3
 6

19
.lb

m
-s

0
 6

19
.lb

m
-s

1
 6

19
.lb

m
-s

2
 6

19
.lb

m
-s

3

 6
20

.o
m

ne
tp

p-
s0

 6
20

.o
m

ne
tp

p-
s1

 6
21

.w
rf-

s0
 6

21
.w

rf-
s1

 6
21

.w
rf-

s2
 6

21
.w

rf-
s3

 6
23

.x
al

an
cb

m
k-

s0

 6
23

.x
al

an
cb

m
k-

s1

 6
23

.x
al

an
cb

m
k-

s2

 6
23

.x
al

an
cb

m
k-

s3

 6
23

.x
al

an
cb

m
k-

s4

 6
23

.x
al

an
cb

m
k-

s5

 6
49

.fo
to

ni
k3

d-
s0

 6
49

.fo
to

ni
k3

d-
s1

 6
49

.fo
to

ni
k3

d-
s2

 6
49

.fo
to

ni
k3

d-
s3

 6
49

.fo
to

ni
k3

d-
s4

 6
54

.ro
m

s-
s0

 6
54

.ro
m

s-
s1

 6
54

.ro
m

s-
s2

 6
54

.ro
m

s-
s3

 6
54

.ro
m

s-
s4

 6
54

.ro
m

s-
s5

 6
54

.ro
m

s-
s6

 6
54

.ro
m

s-
s7

 6
54

.ro
m

s-
s8

 G
eo

m
ea

n

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

N
or

m
al

iz
ed

 IP
C

NextLine
NextLine2

Corr2
BOP

BOP+Corr2
Berti

Berti+Linnea
Berti+Linnea+Ent

BLUE
IPCP

5.5

Fig. 2: Normalized IPC for SPEC CPU 2017 applications

TABLE II: Evaluation results (geometric mean)

Prefetcher Cache Level Online Offline Diff. (%)
NextLine LLC 1.225835 1.218154 0.63
NextLine2 LLC 1.280341 1.274004 0.50
BOP LLC 1.274494
Corr2 LLC 1.167725 1.158600 0.79
BOP+Corr2 LLC 1.338013
Berti LLC 1.317987 1.311176 0.52
Berti+Linnea LLC 1.334678 1.325316 0.70
Berti+Linnea+Ent LLC 1.376534 1.358659 1.32
BL∪E LLC 1.413864 1.391404 1.61
IPCP (64KB) L1 & L2 1.520055

VI. EVALUATION RESULTS

Fig. 2 shows the normalized IPC for the prefetches evaluated
via an online methodology and the set of SPEC CPU 2017
applications provided by the competition, and the geometric
mean (also reported in TABLE II). A first observation derived
from the results is that NextLine2 prefetcher can outperform
BOP when prefetching for an LLC. The combination of BOP
and Corr2 offers 34% improvements on IPC over a baseline
without any prefetcher. Berti+Linnea improves BOP by a
6%. Together with Ent, a timely version of Corr2, improves
BOP+Corr2 by 4%. Finally, BL∪E, which adds a NextLine2
prefetcher to Berti+Linnea+Ent improves the baseline pro-
vided in the competition by 8%.

Still we can see the importance of prefetching at lower
cache levels with the IPCP prefetcher located at L1 and L2.
It improves BL∪E performance by 11%.

TABLE II also shows offline results for most of the prefetch-
ers evaluated. We can observe that there are some discrep-
ancies in between the results given by both methodologies,
reaching up to 2%, on average (see last column in TABLE II).

VII. DISCUSSION

In this paper we present a prefetcher that it is not based on
machine learning. However, the presented concepts, such as
deltas or timeliness, are fundamental in order to have perfor-
mant machine-learning models. With the current methodology
provided in the competition, however, it is not possible to
know if a prefetch will be late or timely. We believe that
without that information prefetchers will lead to sub-optimal
solutions.

On the other hand, the methodology does not considers
lower level prefetchers. In the 3rd Data Prefetching Cham-
pionship, where contestants could allocate their prefetcher
budget at any cache level, it was demonstrated that was more
important to allocate storage in lower cache levels [4], [6]. Not
considering low-level prefetchers can also lead to sub-optimal
solutions. The goal of this work was not to evaluate BL∪E in
the presence of low-level prefetchers. We leave this interesting
research line as future work.

Finally, it would be interesting to investigate the perfor-
mance differences between the online and the offline method-
ologies.

VIII. ACKNOWLEDGMENTS

This work was supported by the European Research Coun-
cil under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 819134).

REFERENCES

[1] J.-L. Baer, Microprocessor Architecture: From Simple Pipelines to Chip
Multiprocessors. Cambridge University Press, 1st ed., 2009.

[2] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in 13th Int’l Symp. on High-Performance Com-
puter Architecture (HPCA), pp. 63–74, Feb. 2007.

[3] P. Michaud, “Best-offset hardware prefetching,” in 22nd Int’l Symp. on
High-Performance Computer Architecture (HPCA), pp. 469–480, Mar.
2016.

[4] A. Ros, “Berti: A per-page best-request-time delta prefetcher,” in The 3rd
Data Prefetching Championship, June 2019.

[5] A. Ros and A. Jimborean, “The entangling instruction prefetcher,” in The
1st Instruction Prefetching Championship (IPC1), May 2020.

[6] S. Pakalapati and B. Panda, “Bouquet of instruction pointers: Instruction
pointer classifier-based hardware prefetching,” in The 3rd Data Prefetch-
ing Championship, June 2019.

4


