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ABSTRACT
Critical sections that read, modify, and write (RMW) a small set
of addresses are common in parallel applications and concurrent
data structures. However, to escape from the intricacies of fine-
grained locks, which require reasoning about all possible thread
interleavings, programmers often resort to coarse-grained locks to
ensure atomicity. This results in atomic protection of a much larger
set of potentially conflicting addresses, and, consequently, increased
lock contention and unneeded serialization. As many before us
have observed, these problems would be solved if only general
RMW multi-address atomic operations were available, but current
proposals are impractical because of deadlock scenarios that appear
due to resource limitations. Alternatively, transactional memory can
detect conflicts at run-time aiming to maximize concurrency, but it
has significant overheads in highly-contended critical sections.

In this work, we propose multi-address atomic operations (MAD
atomics). MAD atomics achieve complexity-effective, non-speculative,
non-deadlocking, fine-grained locking for multiple addresses, rely-
ing solely on the coherence protocol and a predetermined locking
order. Unlike prior works, MAD atomics address the challenge
of enabling atomic modification over a set of cachelines with ar-
bitrary addresses, simultaneously locking all of them while side-
stepping deadlock. MAD atomics only require a small storage per
core (around 68 bytes), while significantly outperforming typical
lock implementations. Indeed, our evaluation using gem5-20 shows
that MAD atomics can improve performance by up to 18× (3.4×, on
average, for the applications and concurrent data structures evalu-
ated in this work) over a baseline implemented with locks running
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on 16 cores. More importantly, the improvement still reaches 2.7×,
on average, compared to an Intel hardware transactional memory
implementation running on 16 cores.
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1 INTRODUCTION
The current trend of increasing the number of cores in the same
package potentially increases the performance of parallel appli-
cations and concurrent data structures. Unfortunately, executing
a larger number of threads causes more synchronization over-
head, which results in less efficient algorithms when relying on
locks [9, 14].

Mutexes,1 while fast when there is little contention, exhibit a
large overhead for contended locks. In some implementations they
even require the aid of the operating system. A common use of
mutexes is to conservatively protect a critical section with a single
lock as coarse-grained mutexes. Many times, this strategy scales
poorly. The underlying reason is that execution is serialized, even
when the sets of addresses accessed by two critical sections guarded by
the same lock are disjoint. On the other hand, fine-grained mutexes
aim to protect only the specific set of critical data of a critical

1MUTually EXclusive: An object in a program that serves as a lock, used to negotiate
mutual exclusion among threads.
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section. Unfortunately, fine-grained locking is not an easy task
for anything other than small critical sections. Moreover, a fine-
grained locking scheme may result in the need to acquire more than
one mutex to perform some task. This introduces the overhead of
multiple mutexes in contrast to coarse-grained locking, and more
importantly, there is a risk of deadlock if locks are not acquired in
a global order.

An alternative that has long been considered as more scalable
than mutex locks is the concept of non-blocking algorithms. Non-
blocking algorithms rely on directly using atomic read-modify-
write (RMW) primitives natively provided by the hardware. Com-
monly, a compare-and-swap (CAS) instruction checks whether
the condition for the atomic execution of an operation holds and
performs some action, storing the result. Although non-blocking
algorithms have been proposed for several data structures [47], writ-
ing correct non-blocking algorithms that guarantee system-wide
progress (lock-free algorithms) is a notoriously difficult task [46].

A third synchronization alternative appeared more recently in
commodity processors, as they adopted hardware transactional
memory (HTM) [19, 25]. With HTM, critical regions (transactions)
are executed concurrently in a speculative manner, while the hard-
ware monitors their memory accesses and rollbacks execution if
conflicts arise. In existing best-effort HTM implementations, a trans-
action is typically re-executed up to a number of times before taking
the non-speculative path, in which mutual exclusion is enforced
through a global lock [51]. The downside of HTM is that it scales
poorly for contended critical sections due to high abort ratios and
frequent serialization of threads on the fallback lock.

The three previous alternatives rely on atomic RMW operations
implemented in hardware. High-performance implementations of
atomic RMW operations lock the target cacheline from the time
the data is read from the memory subsystem until it is written
to the memory subsystem [27, 42]. Atomic RMW instructions are
decomposed in several micro-ops, including a load, an arithmetic
instruction, and a store [3]. The load asks for the target cacheline
with read-write permissions. On arrival to the private cache, the
cacheline is locked and the required value is read. A new value
can then be computed. The ensuing store writes the value into the
cacheline and unlocks it. While the cachelines are locked, invalida-
tion messages from remote cores and write requests from the local
core cannot proceed.

Atomic RMW instructions are the most efficient way to perform
an atomic update of a variable, since they are genuinely hardware
operations. Compared to mutex schemes, they minimize serializa-
tion and require no OS intervention. Compared to HTM, they have
less overheads and are faster when facing contention, as stalling
is more efficient than squashing. However, the implementation
of multi-address atomic operations is a challenge we have yet to
overcome.

Our goal is to exploit the same cacheline locking mechanism
used for atomic RMW operations to lock every address accessed
in a critical section. This way we can replace a number of critical
sections protected by mutex locks or transactions with a much
fastermulti-address (MAD) atomic operation. These new MAD
atomic operations run at cacheline fine-grain level, removing false
contention and allowing concurrent access to disjoint data. Similar
to other complex instructions, MAD instructions are translated

into multiple micro-ops at the decode stage, including locking and
unlocking the addresses accessed within the critical section.

While prior work proposed multi-address atomicity in several
forms [35, 38, 39, 44], they did not consider several deadlock sce-
narios when distributively locking several cachelines, nor provide
a safe, non-speculative, solution. Deadlocks do not appear in cur-
rent implementations of atomic primitives because they only lock
one cacheline at a time. In addition, we do not rely on any kind of
centralized hub for managing atomicity, neither on a distributed
but transactional method, i.e., try, but roll back on a conflict. There
are two reasons why we want to follow a non-centralized, non-
transactional approach. First, centralizing the management of atom-
icity creates a bottleneck that restricts scalability with respect to
how many cores can execute independent, non-conflicting opera-
tions concurrently. Second, trying and rolling-back becomes very
expensive in scenarios of contention: conflicting operations, hap-
hazardly fighting it out, can expend considerably more effort (time
and traffic) than what they would need if they followed an orderly
execution.

We evaluate MAD atomics on the cycle-accurate, full-system
gem5-20 [34] multicore simulator and show how MAD atomics
affect the performance and instruction count of commonly used
data structures accessed in parallel. Performance is improved up
to 18× (averaging 3.4× running on 16 cores) over a baseline imple-
mented with locks running on 16 cores. Compared to an Intel-like
hardware transactional memory implementation (TSX), the perfor-
mance benefit reaches 2.7× on average. MAD atomics also introduce
a reduction in the number of instructions executed. Indeed, MAD
atomics only execute 10% of the original instruction count, on av-
erage, for 16 cores, compared to our baseline, reaching less than 5%
on 64 cores. This means that MAD atomics are not only faster than
TSX but also more energy efficient.

2 BACKGROUND
Dijkstra first presented the problem of taking several locks, giving
an analogy of five philosophers and a table set with five forks [12].
His solution was based on a predetermined order for acquiring
the locks. The predetermined-order approach eliminates deadlocks
for acquiring any number of mutex locks since software resources
are basically unlimited: if locks are taken in order, no deadlock is
possible. However, when locking cachelines in the local caches of
the cores, resource limitations in the system, such as, for example,
cache associativity, jeopardize deadlock freedom. The problem is
exacerbated when considering that multi-address atomics cannot
create custom atomic groups at their convenience, since all of the
requested addresses must be locked as a single atomic group. A
detailed analysis of each resource deadlock is provided in Section 4.

Ros and Kaxiras [41], inspired by the theoretical foundation set
by Coffman et al. [10], address the resource limitation problem
by assigning a global sub-address order (called lex order) to each
cacheline. The lex order is dictated by a set of bits from the cacheline
address that are used to map it on a resource, e.g., the bits used to
index the cache set where the line is placed. Two lines with the
same lex order compete for the same resource in private or shared
cache structures and directories. This is termed a lex conflict. On a
lex conflict, the contended resource will serve as an ordering point
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Figure 1: Address order to lexicographical order

for the conflicting requests, allowing the core which first grabs the
resource to continue while all other cores will have to wait.

Figure 1 depicts how the lex order compares to the address order.
Solutions like Dijkstra, follow the address order to establish the
locking address (Figure 1-a). Meanwhile lex order (Figure 1-b) takes
into account the size of the smallest shared cache and the cacheline
address (removing the offset bits inside the cacheline). Using the lex
order, Figure 1-c shows an example of three cores locking different
sets of addresses and how are they reordered.

Because of lex order, waiting cores cannot form a cycle with the
cachelines that they have already locked and the lines that they
want to grab next. Lex order guarantees that conflicts will occur in
the minimum common lex order between any atomic group. Thus,
resource deadlocks are avoided.

Our solution is also based on lex ordering. However, for private
caches, Ros and Kaxiras resolve lex conflicts by not allowing two
cachelines with the same lex order in the same atomic group. This
is not a possibility when implementing multi-address atomic op-
erations, as if the program dictates that two accesses need to be
performed atomically, the hardware cannot impose an atomicity
restriction, and should be able to hold those locks at the same time.
Therefore, what we need is a non-speculative, non-deadlocking,
fine-grained locking for multiple addresses.

3 MAD ATOMICS
MAD atomics are a set of individual instructions able to atomically
update a small number of memory locations. Ideally, we want to
encapsulate a code section, such as the one shown in Figure 2-a,
into a single hardware primitive (Figure 2-b). The instruction will be
decomposed in several micro-ops (Figure 2-c), which may acquire
the locks in a different order with the purpose of avoiding deadlocks
(Figure 2-d).

Encapsulation and lock acquisition reorder also apply to trans-
actions, or any other ad hoc synchronization construction. MAD
atomics can coexist in a program with other larger critical sections
using locks/transactions, thus offering flexibility to the program-
mer.

Similarly, Figure 3 is an example of how a two-address fetch_and
_add MAD atomic translates into micro-ops (syntax adapted from
the gem5-20 simulator micro-code). The micro-ops are divided in
three blocks: locking (lines 3-4), computing (lines 6-7), and stor-
ing (lines 9-10). The entire atomic instruction is guarded by two

mutex_lock(Q);
b++;
a++;
mutex_unlock(Q);

dmad.inc_inc (&b, &a);

t1 = lock b
t2 = lock a
t1++
t2++
unlock t1 b
unlock t2 a

a)

b)

c) t2 = lock a
t1 = lock b
t1++
t2++
unlock t1 b
unlock t2 a

d)

Figure 2: a) Critical sectionwithmutex locks; b)MADatomic
instruction; c) micro-ops generated by the MAD atomic; d)
run-time order of instructions.

mfence micro-ops as it is the case for single-address atomics.2 In
the locking block, we find the load_lock micro-op, and a variation:
load_lock.exec. The load_lock micro-op informs the core about an
address to lock, however, the address is not locked immediately.
Data will be loaded when it is eventually locked. The load_lock.exec
variation provides an address to lock and load the data, but it also
notifies the core that it is the last address of themulti-address atomic
operation to lock. This means all locks can now become effective,
and data loaded to each of the corresponding registers. Add will
add the value stored in the registers. Subsequently, the store_unlock
writes the updated values to the locked cacheline, unlocking it after
the write.

MAD atomics use a single macro-instruction, decoded at run-
time into several micro-ops. The new lock micro-ops proposed in
this work are implemented similarly to a load that requests exclu-
sive permissions (i.e., the load micro-op in a x86 atomic operation).
If the target memory page is not writable, a page fault is triggered
in order to obtain write permissions. Then the macro-ops simply
re-starts when the fault is resolved. As MAD atomics are imple-
mented with a single instruction, they cannot be interrupted during
execution, and context switches need to wait until the MAD atomic
operation completes and retires. Interrupts may therefore be de-
layed. However, since there is a progress guarantee and the critical
sections that MAD atomics target are short, waiting times are not
extremely long.

3.1 The Lexical reOrder Unit
Cachelines involved in a multi-address atomic operation need to
take the lock in a predetermined order to avoid deadlocks. The unit
responsible for tracking the cachelines and acquiring the locks is
the Lexical reOrder Unit (LexOU).

When a lock micro-op is executed, the target cacheline is not di-
rectly issued to the memory subsystem. Instead, cacheline addresses
are stored in a small buffer implemented as a content-addressable
memory (CAM) named the Lock Queue. Cachelines are not locked
until all locks are inserted in the Lock Queue. Different locks can
target the same cacheline. In this case, a single cacheline address is
stored in the Lock Queue and a counter stored along with the cache-
line address indicates the number of lock operations performed on
that cacheline. The counter size is 𝑙𝑜𝑔2 (𝑚𝑎𝑥𝐿𝑜𝑐𝑘𝑠𝑃𝑒𝑟𝐶𝑃𝑈 ) bits.

The counter is used to unlock the cacheline after all the stores
writing to the cacheline have completed their writes. We unlock
cachelines using the same micro-op used in x86 atomics (stul
in gem5-20 terminology). In case of single-address atomics the
stul micro-op will find the Lock Queue with a single address (the
2As specified in by Intel [29] “The processor waits until all previous instructions have
been completed and all buffered writes have been drained to memory before executing
the serializing instruction”.
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1 mfence
2 // Load -Locking block
3 load_lock t1 , rax
4 load_lock.exec t2, rcx
5 // Computing block
6 add t1 , t1 , reg
7 add t2 , t2 , regm
8 // Storing -Unlocking block
9 store_unlock t1, rax
10 store_unlock t2, rcx
11 mfence� �

Figure 3: A two-address fetch_and_add atomic operation in
gem5-like micro-code (irrelevant parts have been omitted)

value of the lock counter is always one), it will decrement the lock
counter, and unlock the cacheline after performing the write. In
MAD atomics, the only difference is that the lock counter can have
a value greater than one. In that case, the cache line is unlocked
after writing only if the value of the counter was one before the
write.

In addition to the cacheline address and the lock counter, each
entry in the Lock Queue includes three more bits: a collision bit to
indicate if the entry has the same lex order as another entry, a hit
bit indicating the presence (with write permission) of the cacheline
in the private cache, and a lock bit that indicates if the cacheline is
already locked.

3.2 Use Case: MCAS Instructions
Once implementedMADatomics, we can easily derivemulti-address
compare_and_swap (MCAS) instructions.

Our implementation of the MCAS instruction receives the fol-
lowing registers as input: rax, rdx, rcx, rsi, rdi, r8, r9, r10, r11, r12,
r13, and r14, in that specific order. Each set of three registers repre-
sent a CAS operation. The final number of registers used depends
on how many CAS operations need to be done atomically (six for
MCAS of arity two, nine for MCAS of arity three, and so on). For
example, MCAS of arity two follows this format: dmad_cas(*addr0,
old0, new0, *addr1, old1, new1), where add0 is stored in rax, old0
in rdx, etc. Once decoded, it will be translated into a sequence of
micro-ops similar to Figure 2-c.

Similarly to the more general multi-address atomic instructions,
memory fences are implicit at the beginning and end of the MCAS
instruction to avoid load→store reordering. Subsequently, it ex-
ecutes lock micro-ops for the set of addresses and waits until all
corresponding cachelines are locked. Then, values are safely read,
the conditions are evaluated, and the new values are written if all
conditions are fulfilled. Finally, the instruction sets the rax register
to 0 if any of the conditions fail, or 1 if all of them were successful.

3.3 Other Considerations
Arity of MAD atomics. The maximum number of addresses to be
conditionally updated in the same instruction is limited by the num-
ber of logical registers. MAD operations can require up to three reg-
isters (target address, old value, and new value) per address. Since
X86_64 has up to 16 registers available for the programmer [29], the
maximum arity to implement MADs without requiring additional
instructions and hardware to bypass the register restriction is five.
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Microarchitectural changes. Figure 4 highlights the changes
performed to implement MAD atomics. The decode stage include
the addition of MAD instructions and their corresponding micro
instructions. The L1D cache needs to keep track of all locked cache-
lines. Depending on the actual single-address lock hardware imple-
mentation, the L1D may require modifications or not. If a bit per
cache entry is used no modifications are required. Otherwise, if a
single register is used to track the locked cache line, this register is
extended to an array of registers. The replacement policy is also
modified to never select for eviction locked cachelines. Finally, as
discussed in the next section, each set of the directory will require
an extra bit in order to prevent deadlocks.

Memory requirements. Each Lock Queue entry stores three
bits for its current state (conflict, private cache hit, and lock), the
lock counter (𝑙𝑜𝑔2 (𝑚𝑎𝑥𝐿𝑜𝑐𝑘𝑠𝑃𝑒𝑟𝐶𝑃𝑈 ) bits), and 16 bytes for the
memory packet of the address to load and lock. This gives a total
of 3 + (16 ∗ 8) + 𝑙𝑜𝑔2 (𝑚𝑎𝑥𝐿𝑜𝑐𝑘𝑠𝑃𝑒𝑟𝐶𝑃𝑈 ) bits per Lock Queue entry.
Since our current implementation supports up to four addresses
(see Section 7 regarding this limitation), the memory requirements
of the LexOU is 532 bits, i.e., less than 68 bytes.

Simultaneous Multithreading (SMT). In SMT implementa-
tions, the LexOU is not replicated nor partitioned. SMT threads
require mutual exclusion to prevent deadlocks: only one thread can
use the LexOU at a time. A new register storing the SMT core using
the LexOU is added. A lock instruction from a different thread that
the one using the LexOU stalls until the Lock Queue is empty.

Note that an SMT core must not have access to a value locked
by another SMT core. When reading the value, if the cacheline
is locked, it will check which SMT core is allowed to lock in the
LexOU, and only the one that matches, can read or write into the
cacheline. This is not a restriction of MAD atomics but of atomic
operations in general.

4 RESOURCE LIMITATIONS
This section discusses all possible resource-related deadlocks and
how MAD atomics handles them.
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4.1 Private caches
The key idea of our approach is that we can lock exclusive cachelines
locally in the private caches, usually without communicating with
the directories.3 If the addresses we wish to atomically modify are
all present in the private cache (local), there is no communication
required. Only when we are missing one or more of the addresses
we need to consider the interaction with shared caches and the
directories (which is discussed in the following sections). The reason
is that we avoid the centralization of the decision making for the
locking, which is one of our main goals.

Therefore, a necessary property for the private cache is that it
must be able to simultaneously hold all the cachelines that will
be locked during a multi-address atomic operation. Otherwise, a
deadlock is possible. As we mentioned, locking is strictly local: no
other core, nor the directory, is usually informed when a cacheline
is locked. Because of this, other cores may see their invalidation or
forwarding message delayed, as they cannot receive a reply until
the lock is released.

However, (unless the cache is fully-associative) cachelines are not
freely distributed in the private cache, but mapped to a particular
set in the cache. For example, if three cachelines are mapped on the
same set, but the cache only has two ways, after locking two out of
three, there is no more space in the set to hold the third. This leads
to a resource-limitation deadlock because we cannot release any of
the previously held locks, and the multi-address atomic instruction
cannot progress.

The resource limitations of the private cache is a straightforward
problem to solve since we target multi-address atomic operation
with low arity. The rule for private caches is that the arity of
the atomic operation must be lower or equal than the pri-
vate cache associativity. Since our current implementation of
MAD atomics supports up to four addresses (see Section 7), this
is compatible with most commodity processors. For example, the
ARM Cortex-A78 [6] has four ways, Intel’s Skylake [18] has eight
ways and Intel’s Icelake [1] has twelve ways for the L1 data cache.

In contrast to the previous state-of-the-art solution for the pri-
vate caches [41], we do not limit the sub-address lex order to
the number of entries in the private cache (associativity×sets).
Furthermore, the practice of defining a sub-address lex order as
associativity×sets of the private cache has the undesired effect of
restricting what can go into any one set without causing a lex con-
flict. In particular, to avoid a lex conflict, the block addresses that
are mapped on the same set must differ in the bits that correspond
to the associativity in the lex order, typically the log2(associativity)
bits that follow the cache index bits of the address. Our approach
does not impose this limitation and, thus, is more flexible.

Lastly, in energy efficient systems that use direct-mapped private
caches, no multi-address atomic operations could be implemented
following the associativity rule. Fortunately, this limitation can be
resolved with the use of fully associative victim caches [31]. In this
case, the maximum arity of our MAD atomics is the associativity of
the victim cache, usually larger than our maximum arity. Note that
locked cachelines cannot be evicted (unless they are released), and
they are excluded from the replacement policy (e.g., LRU). Similarly,

3We assume distributed directories in the general case, so different addresses may be
handled by different directories.

when relying on victim caches, locked cachelines cannot be evicted
from the victim cache until their lock is released.

4.2 Directories and shared data caches
Without limiting the sub-address order to the number of entries
of the private cache (and at the same time without imposing any
restriction on what block addresses can go into the same set in the
private cache) we are free to select a lex order that best suits the
shared cache and the directory. We will first discuss the directory
which is critical in allowing the locks to be held in the private caches
(even though the directory is unaware of this locking) and then
expand on the shared caches. If the shared cache (commonly the
last level cache on chip) enforces inclusion with the private caches,
the shared cache becomes another limited resource. Since shared
caches usually have a larger number of entries than a directory
(or at least an equal number when the cache includes directory
information), in the following paragraphs we focus our reasoning
on the directory. However, our solution also applies to inclusive
shared caches.

Cachelines in the private caches are tracked by the directory. This
brings an inclusive property between private caches and directories:
if a cacheline is stored in a private cache, there must exist an entry in
the directory for such a cacheline. In other words, to be able to hold
and lock a number of cachelines, the directory should dedicate the
corresponding entries. Therefore, limited resources at the directory
can cause deadlocks too.

Assume now, for the sake of example, that all block addresses
that we wish to lock in a private cache are mapped on the same
directory set. Furthermore, as we are not bound by the private
caches on which lex order to use, we pick the lex order to be equal
to the number of sets in the directory (i.e., the lex order is defined by
the directory index bits of the address). If the private cache already
has all the cachelines, this means that the corresponding directory
entries are already present in the directory and all is well. Any
attempt to evict one of the corresponding directory entries will get
stalled trying to invalidate the locked cacheline in the private cache
until the lock is released.

However, if the private cache does not already have all the cache-
lines that we wish to lock, we must ask for the missing ones from
the directory. Assuming that the directory has at least the same as-
sociativity as the private cache (a valid assumption for the majority
of systems), the directory can easily accommodate any combina-
tion of addresses that we wish to lock. However, this ignores the
case where another private cache has silently locked a number of
cachelines in a directory set. Recall that one of the basic premises
of our work is that we do not ask for permission to lock when we
have a private cacheline as exclusive.

The problem now is that the apparent associativity of the direc-
tory with respect to a private cache wanting to lock a number of
entries in a set, has been reduced through the actions of another
private cache. Furthermore, since we chose the lex order to be equal
to the number of sets in the directory, the addresses that map in
the same directory set have the same lex order rank, and conflict
with each other (in lex order).

An example is shown in Figure 5. Cores 0 and 1 are trying to
lock a set of cachelines, represented with a letter and a number of



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Eduardo José Gómez-Hernández, Juan M. Cebrian, Rubén Titos-Gil, Stefanos Kaxiras, and Alberto Ros

Core

0

Directory

Private Cache

Lock Queue

Private Cache

Lock Queue

Core

1
a
a'

a''
a'''

a a''

a'' a A
B
C
D

✘

✘

1 1

2

2
3

3

Figure 5: Deadlock due to limited directory resources

apostrophes and placed in lex order in a Lock Queue. The letter in-
dicates the set in the directory where the cacheline is indexed. The
apostrophes differentiate cachelines placed in the same set. Both
cores start locking the first cacheline in lex order (directory set
order): 𝑎 for core 0 and 𝑎′′ for core 1. Because both cachelines map
in the same directory set, the𝐴 enties are exhausted, as the example
concerns a 2-way directory. The second cacheline to be locked by
each core will need to evict the cachelines already tracked by the
directory, which will trigger an invalidation. Recall that directories
are not aware of the locked status of the cachelines in the private
caches. Invalidation messages, however, will be retained at the pri-
vate cache controller, as the cacheline is locked. Therefore, neither
of the cores can lock all the cachelines needed by its corresponding
multi-address atomic operation, and the first locked cacheline of
each core will never be freed. This is a deadlock.

The Ros and Kaxiras solution to avoid deadlocks due to lim-
ited directory resources is similar to their solution for a private
cache [41]. The sub-address order (associativity × sets) has to be
chosen considering the smallest structure in the system, which,
in the depicted figure, is the directory. This means that addresses
in a set are ranked in lex order (so two entries of the same rank
will conflict). Effectively, ordering the directory entries within the
sets increases the number of conflicts, and will cause two cores
to serialize in the same directory entry (even though they could
both fit in the same set). However, as in the private cache case, this
restricts the addresses that can be used in the same multi-address
atomic operation, a limitation that we cannot accept.

To illustrate the risk of deadlock stemming from directory re-
sources, consider the following two scenarios:

First, let us assume for now that every multi-address atomic
operation is composed of non-conflicting addresses in the chosen
lex order (number of sets in the directory). This means that the
operation will need at most one entry in each involved directory set
(note that such entries may already exist in the directory, or may
be requested). No matter how many cores perform multi-address
atomics concurrently, deadlocks are not possible because the lex
order guarantees that any two conflicting multi-address atomic
operations will conflict in their minimum common lex order. This
means that a cyclic dependency among concurrent multi-address
atomic operations can never be formed as long as each individual
operation is conflict-free in the lex order.

Second, let us consider multi-address atomic operations whose
addresses conflict with the chosen lex order—in other words, each
atomic operation needs more than one entry from a directory set.

When several such multi-address atomic operations run concur-
rently, if at least one wishes to lock multiple entries in the same
directory set, deadlock is possible as there might not be enough
directory associativity to accommodate all lex conflicts. Note that
there is no risk of deadlock if a single atomic operation of such kind
were to be in progress across the entire system, since the associativ-
ity of the directory (being equal to or larger than the associativity of
the private cache) would guarantee by itself that all the lex conflicts
in a directory set are accommodated (the number of lex conflicts is
limited by the associativity of the private cache).

Our approach to prevent the aforementioned kind of deadlocks
consists in conservatively locking directory resources in those par-
ticular circumstances: when a multi-address atomic operation
wishes to lock more than one entry of a directory set, the
whole set must be locked. We assume that each directory set has
a lock bit that can be set upon a request reaching the directory set.

If a multi-address atomic communicates with the directory to
ask for a missing cacheline (or request exclusivity for a cacheline) it
declares whether it wants to lock (or has already locked) one or more
cachelines of the same set. If the multi-address atomic operates on
just a single entry out of a directory set, it does not have to lock
the set but has to wait in case someone else has locked the set. If,
on the other hand, the multi-address atomic operates on multiple
entries out of a directory set, it has to lock the whole set and, of
course, has to wait in case the set is already locked.

A multi-address atomic releases the lock it has on a set only
after it manages to install all of its entries in the set (hence, multi-
address atomics that want to install only one entry in a set do not
lock it, as we assume that requests to that set are handled by the
directory controller in a FIFO manner.) Note that some of these
entries may correspond to cachelines already in its private cache
and some entries may need to be installed in the directory set. While
a multi-address atomic holds the lock of the set, it will experience
no interference from other cores for this set. Note also that, despite
having a lock on a set, a multi-address atomic may have to wait for
other multi-address atomics that have silently locked cachelines
in the set. However, based on the principle of acquiring all the
required entries before releasing the lock, it is impossible to have a
deadlock with another atomic.

4.3 Eviction buffers
An eviction buffer is a temporary storage for a cacheline being
evicted from cache. This allows the immediate use of the cache entry
without having to wait for eviction-induced acknowledgments.
Hence, cache evictions are performed out of the critical path of a
cache miss. When a cacheline is not silently evicted (i.e., requires
performing coherence actions), the cacheline remains in the eviction
buffer until the coherence actions finish. When the eviction buffers
are full, cachelines cannot be evicted until a new entry is freed.
That is, the eviction latency is not hidden.

Eviction buffers of private caches do not impose risk of deadlock
due to resource limitations as locked cachelines cannot be evicted. If
the eviction buffer is filled with non-locked cachelines, subsequent
cache misses will wait until an entry in the eviction buffer is free.

However, eviction buffers for shared caches can hold cachelines
locked in private caches. This gives rise to the problem depicted in
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Figure 6: Deadlock due to limited eviction buffer resources

Figure 6. The figure shows a deadlock caused by limited resources in
the directory eviction buffer. For the sake of clarity shared cache and
directory are combined in the example. The eviction buffer consists
of just two entries. Core 2 causes two evictions in the directory,
filling the eviction buffer entries. For the evicted entries to leave the
eviction buffer, the tracked cachelines need to be invalidated at the
private caches. However, the cachelines are locked by Core 0 and
Core 1, which are in the middle of a multi-address atomic operation.
These cores cannot finish locking the required cachelines because
the directory is not able to evict any cacheline, and therefore cannot
leave space for new cachelines to be tracked (no matter the set
where they are indexed). A cycle is formed in this case, causing a
deadlock. It is important to note that although with a small number
of cores the total number of locked cache lines in the system may
be smaller than the capacity of an eviction buffer, as the number of
cores in the system increases, this deadlock becomes increasingly
probable.

This problem was previously described in the WritersBlock pro-
tocol [40]. In such a protocol the deadlock-free condition is to
ensure that loads can always progress. The solution proposed to

this problem is to make the read requests un-cacheable, and there-
fore not requiring directory tracking. However, when applying this
concept to multi-address atomic operations, the locked cachelines
need to reside in the private cache, requiring directory tracking.
As far as we know, there is no published solution to this problem
suitable for multi-address atomics.

4.3.1 Addressing eviction buffer exhaustion. Eviction buffers hold-
ing locked cachelines could prevent other cachelines from being
evicted from a cache or directory. Locked cachelines delay any in-
validation message until they are unlocked in private caches. They
can be only unlocked when the atomic operation from the lock
owner completes.

Increasing the number of eviction buffer entries up to𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑠∗
(𝑚𝑎𝑥𝐿𝑜𝑐𝑘𝑠𝑃𝑒𝑟𝐶𝑜𝑟𝑒−1)+1would solve the deadlock, as at least one
core would finish. Yet, increasing eviction buffer size or denying a
core to perform locks through an arbiter are non-scalable and very
restrictive solutions.

To prevent this, we perform in-situ directory replacements for
evictions of private entries (i.e., without using the eviction buffer).
We start from the observation that the directory contains informa-
tion about the current private/shared status of the cached entries.
Shared cache lines cannot be locked at a L1 cache, since locking
requires exclusive permission. Therefore, evictions of shared en-
tries can be performed as usual: they are immediately moved to
the eviction buffer and issue invalidation messages to L1; when
the eviction buffer collects all the acknowledgments the eviction
completes and the entry can be released.

On the other hand, private entries may be silently locked at
L1 caches, potentially causing a deadlock. The in-situ replace-
ment strategy allows directory evictions of private entries
to proceed without using the eviction buffer. Therefore, pri-
vate entries that need to be evicted remain in the directory while
sending the single invalidation message to the private cache. On
the arrival of the acknowledgment, the eviction is completed and
the entry can be freed, leaving space for the incoming cacheline.
Note that although in-situ replacements increase the latency of
the requests that do not find an entry in the directory, this is an
infrequent scenario.

5 METHODOLOGY
5.1 Simulation Environment
We simulate a multicore processor using the gem5-20 [34] full-
system simulator. The simulated system runs Ubuntu 16.04 with
Linux kernel 4.9.4. The processor parameters, mimicking a Intel
Skylake processor, are shown in Table 1. We use Ruby to model the
memory hierarchy and the coherence protocol. Execution and issue
latencies are modeled as measured on real hardware by Fog [17].

Apart from our baseline system, we also model an Intel TSX-like
best-effort HTM system, based on the transactional memory sup-
port made available in gem5-20.1 for ARM TME. Because best-effort
HTM systems typically employ the L1 data cache for speculative
buffering, capacity-induced aborts are not an issue given the small
size of the critical sections considered in this work; thus, virtual-
ized HTM systems are expected to provide little or no additional
performance gains. The conflict resolution policy of our TSX model
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Table 1: System Configuration

Processor
Core count 1,2,4,8,16,32,64
Issue width 4 instructions
Commit width 8 instructions
Instruction queue 128 entries
Reorder buffer 224 entries
Load queue 72 entries
Store queue + store buffer 56 entries

Memory
Private L1 I&D caches 32K/core, 8 ways

Access latency 1 cycle
Private L2 cache 256K/core, 8 ways

Access latency 4 cycles tags, 10 cycles data
Shared L3 cache 32M, 16 ways

Access latency 5 cycles tags, 45 cycles data
Directory 32768 sets, 16 ways
Memory access time 80ns
Network topology Crossbar

follows the requester-wins policy as seen in current commercial
implementations by Intel, which can result in temporary livelocks
that are resolved by falling back to mutual exclusion.

5.2 Benchmarks
We evaluate our proposal using a set of benchmarks whose critical
sections can be translated to two categories of MAD atomics: multi-
address atomic operations and multi-address compare-and-swap
(MCAS) operations. We gather statistics for the region of interest
of the benchmarks, namely after the initialization phase of the
application and before any final output. The simulated benchmarks
are run to completion.

5.2.1 Multi-address atomic operations. Some applications in-
clude critical sections that modify a small number of memory loca-
tions atomically. Replacing lock/HTM protection of such critical
sections with a single multi-address atomic avoids lock acquisition
times, removes retry loops or aborts, and allows all cores to proceed
in parallel (if no conflicts are found).

Bitcoin is an application that performs bitcoin payment transac-
tions [32]. It emulates operations often made in the bitcoin network
over a set of bitcoin wallets. The application has a critical section
where a given amount is withdrawn from one wallet and deposited
into another. We replaced it with two multi-address atomics, simi-
lar to fetch_and_add, which add opposite amounts to each wallet.
The baseline version has a single lock for the entire transaction
process. The lock-free version of Bitcoin uses a different locking
scheme that locks only the used entries of each transaction.Water-
NS4and Water-SP4 are two applications from the Splash-2 bench-
mark suite [50] that model the forces among water molecules. One
of the replaced critical sections is a loop of additions over different
shared memory addresses with no aliasing. As commutative prop-
erty of the addition guarantees they can be executed in any order
without affecting the global result, we substitute it using a MAD
atomic within the loop.

4Water-NS and Water-SP are the only applications from the Splash-2 benchmark suite
that meet the requirements to be transformed using MAD atomics.

5.2.2 MCAS operations. We also evaluate our MAD atomics for
several data structures widely used in real applications. For each
application, we implemented a transactional memory version.

BSTree uses a binary search tree suited for storing hierarchi-
cal data. The lock-free and MCAS versions are based on the work
of Patel et al. [38], which, in turn, is based on Herlihy et al. [26].
Deque implements a double-ended queue (elements can be added
and removed from either the front or the back). The MCAS imple-
mentation is based on the work by Doherty et al. [13]. The lock-free
implementation is based on the work by Lagwankar [2], which, in
turn, is based on Chase et al.. [8] and Herlihy et al. [26].HashMap
implements an associative array that maps keys to values using
a hash function to index the elements. Because of its efficiency
when looking up for data, it is commonly used in database index-
ing. Our version is implemented using separate chaining method
with a lock-free doubly linked list [22] for collision resolution [11].
MWObject is a simple application that increments a set of four
variables [15, 16]. In the original version, increments are made in
steps of 16, forcing the least significant two bits of the variables
to be 0. This limitation is imposed by the mechanism used in the
original research but in our case we do not face this limitation and
increments are made in steps of 1.Queue is an application that uses
a queue to store collections of objects in FIFO order. The lock-free
andMCAS versions are based on the work by Patel et al. [38], which,
in turn, is based on Herlihy et al. [26]. Stack implements a LIFO-
order queue (the last element inserted is the first to be removed).
The lock-free implementation is based on the work of Williams [49]
and Herlihy et al. [26]. Intruder is an application from the STAMP
benchmark suite [36] that models a network intrusion detection
system. We transformed the transaction used in its capture phase
to extracts packets from a simple FIFO queue, into a MAD atomic
operation.

6 RESULTS
Execution time results are normalized to a baseline implementation
that uses mutex locks with the same system configuration, except
for the scalability results, that are normalized to the lock version
with one thread.

The performance improvements of MAD atomics heavily depend
on the applications characteristics. Figure 7 shows the normalized
execution time for the selected applications and concurrent data
structures. MAD atomics outperform the mutex lock implemen-
tation in all cases but Water-SP. Water-SP is the only application
affected by this extra synchronization point, mainly because it has
almost no collisions or retries. This hypothesis is reinforced by
the fact that TSX outperforms MAD even for one thread. Bitcoin
benefits the most from MAD atomics, with up to 98% execution
reduction time over mutex locks (when running on 32 threads).
The baseline version of Bitcoin uses a naive implementation that
has a single lock to block the transaction table. This shows the
huge potential benefits of MAD atomics on codes written by inex-
perienced programmers that use coarse-grained locks. On average,
MAD atomics perform 40% to 50% better than mutex locks for
the same thread count. As thread count increases, the overhead of
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Figure 7: Execution time (1 to 64 cores). Data is normalized to the lock versionwith the same core count. Deque, MWObject, Bit-
coin,Water-NS andWater-SP do not have lock-free version. Intruder does not have a lock or lock-free version, it is normalized
against TSX.
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Figure 8: Scalability of the benchmarks (1 to 64 cores) . Each version is normalized to the lock version running a single thread.
Deque, MWObject, Bitcoin, Water-NS and Water-SP do not have lock-free version. Intruder does not have a lock or lock-free
version, it is normalized against TSX.
rollbacks due to additional collisions in TSX out-weight the perfor-
mance improvements, making it less scalable than MAD atomics in
our evaluation.

Scalability improves for all applications with respect to mutex
locks, especially for BSTree, HashMap, Bitcoin and Water-NS, that
can now can easily scale up to 16 threads (Figure 8). TSX scalability
is limited to 4 threads (8 for HashMap), and only outperforms MAD
atomics marginally for Water-SP due to the additional mfence as
explained previously. For most benchmarks, the critical sections are
too small and highly contended to get any advantage from current
implementations of transactional memory: because of its requester-
wins policy, recurrent conflict-induced aborts in TSX eventually
make threads resort to the fallback path and execute the critical
sections non-speculatively, in mutual exclusion, while the rest is
forced to wait on the fallback lock. In summary, MAD atomics
is a much simpler and elegant approach to ensure deadlock-free
consistency.

Limited scalability of MWObject is due to constant updates to
several memory addresses. MWObject is implemented using an

MCAS operation inside a loop that will perform a retry when the
data it compares has changed.

Finally, Figure 9 shows the normalized executed instructions for
the different benchmarks. A reduction in executed instructions (not
necessarily committed) translates into a reduction on the energy
consumed by the processor. All benchmarks show a significant
reduction in executed instructions. For 16 threads, MAD atomics
execute, on average, only 21% of the original instruction count.
This trend continues all the way up to 64 threads. TSX follows
closely, with 41% instructions executed compared to the mutex
lock implementation. This means that MAD atomics not only is
faster than TSX, but also more energy efficient. And this is not even
including the extra energy required by the TSX hardware.

7 DISCUSSION
When an application tries to acquire a contended mutex lock, it
commonly ends up using a system call to interrupt the thread
until the lock is freed. Alternatively, if the application notifies the
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Figure 9: Normalized committed instructions (1 to 64 cores). Data is normalized against the lock version with the same core
count. Deque, MWObject, Bitcoin, Water-NS and Water-SP do not have lock-free version. Intruder does not have a lock or
lock-free version, it is normalized against TSX.
operating system during the mutex lock initialization, it can stay
spinning waiting for the lock.

Either way, if a lock cannot be acquired, the execution has to
continue with a system call. This means squashing and removing
potentially useful instructions fetched, decoded, or even executed
from the application. This may also introduce some cache pollution,
as useful data can be evicted by the system calls and would need to
be retrieved again from other levels of the memory hierarchy.

Furthermore, system calls can also produce other side effects
besides squashing instructions. Indeed, system calls also pollute the
translation lookaside buffer (TLB), with new accesses to the page
walker for OS addresses.

On lock-free implementations, the application is heavily mod-
ified so that data can be updated with a single atomic operation.
This approach increases instruction count due to spin-waiting and,
in many cases, poisons the branch predictor with iterations of a
loop that depends on other cores.

At this point we have already established why atomic read-
modify-write (RMW) primitives outperform other approaches. Com-
pared to mutex schemes, RMW primitives minimize serialization
and require no OS intervention. Compared to HTM, RMW prim-
itives have less overheads and are faster when facing contention,
as stalling is more efficient than squashing. We have shown how
MAD atomics can significantly reduce the overheads produced by a
mutex-lock implementation. As our locks are non-speculative, the
core can continue fetching new instructions and executing the non-
memory related ones speculatively while waiting for the lock. Lock
order is no longer relevant for the programmer, as the hardware
will reorder them in a deadlock-free manner.

Support for multi-address atomics not only benefits scalar ar-
chitectures, but also enables RMW instructions in vector systems
(e.g., SIMD). A vector instruction computes several data elements
exploiting data-level parallelism. Therefore, without multi-address
atomics, it is not possible to provide vector atomic operations in

a SIMD processor. SIMD architectures are ubiquitous in all mar-
ket segments, and atomic vector instructions are critical in their
development [33].

In this work we focus on a simple implementation of MAD
atomics that can lock up to four addresses. We could not find appli-
cations with more than four immutable in-conflict addresses. This
immutable restriction means that iterating over trees or linked lists
within a critical section, as it is done in several STAMP benchmarks,
is in most cases not transformable to MADs. Technically speaking,
our simulated architecture can handle up to five addresses, due
to general purpose x86 register limitations. This limitation can be
relaxed by using newer ISAs that increase the logical register count
from 16 to 32 (AVX-512 [28] and SVE [43]). Indeed, considering
these ISAs would instantly increase MADs limit to eight addresses.
Given the lack of applications with high arity requirements, we
leave as future work increasing the arity of MAD atomics beyond
eigth memory addresses.

In this paper we model an x86-like architecture as a commodity
processor. However, MAD atomics can be used in any ISA that
supports synchronization primitives like mfence. Implementation
in CISC architectures is easier, since MAD atomics can be imple-
ment with a single instruction. RISC architectures, however, would
require to suspend interrupts to ensure that no other instruction is
inserted within the MAD atomic code.

8 RELATEDWORK
Making non-blocking algorithm design easier has been one of the
main goals of researchers for decades. Much of this work has fo-
cused on the double compare-and-swap (DCAS, or CAS2) primitive,
a natural generalization of the CAS primitive. DCAS allows a thread
to atomically perform a compare-and-swap with two memory lo-
cations and store two respective new values if both comparisons
succeed. DCAS was implemented in the Motorola 68040 proces-
sor. However, Doherty et al. demonstrate that DCAS is not good
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enough to be used in non-blocking algorithm design, and higher
arity operators are required [13].

Herlihy proposed a methodology for implementing highly con-
current data objects, that will become the basis for all n-ari primi-
tives, but it was not disjoint [23, 24]. Disjoint-access parallel imple-
mentations allow two or more transactions to proceed in parallel,
without interference, if they access disjoint sets of addresses.

Israeli and Rappaport introduced a non-blocking implementation
of CASn (n-way atomic Compare-and-Swap) and n-way LL/SC
for 𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 out of single LL/SC [30]. Their two-phase locking
approach is the basis for almost most CASn implementations, and
was the first disjoint-access parallel implementation. Their CASn
was not wait-free, however, and had worst-case time complexity
𝑂 (𝑛𝑃3).

Anderson and Moir [5] improved upon the helping mechanism
of [30] to implement a wait-free CASn, rather than merely non-
blocking. They require only realistic sized words, and impose no
worst-case performance penalty for the wait-free property, but the
𝑂 (𝑛𝑃3) worst-case time is still the same. Unfortunately, they also
still require a prohibitively large amount of space. Finally Moir
proposed a more efficient non-blocking version of CASn (MW-
CAS) [37]. The most significant gains were made by relaxing the
wait-free property. However, it still requires extra space per word
in the shared memory.

All of the previous implementations of CASn are complex and
have high space overheads. Harris et al. introduced a practical
multi-word compare-and-swap operation. It only requires either 0
or 2 bits per word and it is disjoint [21]. Wang et al. extend Harris
work with persistence guarantees and support for recovery [48].
Feldman et al. propose a practical MCAS design that is wait-free
in all scenarios [16], even with interrupts consistently causing a
thread to retry. It is built from only portable atomic operations (e.g.
atomic reads, atomic writes, compare-and-swap). It only requires
a single bit to be reserved from each word, not requiring use of
explicit memory barriers, and requiring only four words per address
in the operation.

Regarding hardware implementations, Stone et al. introduced
the Oklahoma update [44]. They offer a distributed transactional
proposal to atomically write a group cachelines without resorting to
broadcast or to a centralized arbiter. Because it is an all-or-nothing
solution, it suffers from livelocks. Rajwar and Goodman address
this issue using timestamps in [39]. Still, both proposals suffer from
deadlocks that may arise from resource conflicts. Carter et al. com-
pare several hardware lock implementations with their software
counterparts [7]. They showed that hardware implementations can
significantly reduce the lock acquisition and release times (25-94%).
However, in highly optimized applications such as SPLASH-2, hard-
ware locks only provided 3-6% better performance.

To the best of our knowledge, the only hardware implementa-
tion of MCAS (CASn) was performed by Patel et al. [38]. Their
implementation is also based on a structure that re-orders locks
(the MCAS Unit), which contains a table (the MCAS table) in which
each entry keeps a memory location that will be locked (in ascend-
ing order). Multiple MTS instructions are used to setup the MCAS
table and later an MCAS instruction starts locking the addresses
from the MCAS table. Using separate instructions for each step
incurs the risk of having a context switch or other interrupt in the

middle of the procedure, leaving it incomplete. On the other hand,
two versions of the MCAS implementation are proposed: a basic
proposal (MCAS-BASE) and an optimized version (MCAS-OPT).
MCAS-BASE is similar to our approach, but it does not consider
the risk of deadlock due to resource limitations, a key contribution
of this work, and therefore it is not deadlock-free. MCAS-OPT em-
ploys a back-off mechanism that causes to abort upon receiving an
invalidation, which makes it to behave as an HTM implementation
using lazy conflict detection.

Afshar et al. [4] and Strøm et al. [45] introduced dedicated hard-
ware support for locking on-chip. Their approaches are similar to
a centralized scoreboard for all cores. A field for each core is used
to register synchronization participation. These implementations
can be used for CAS implementations, but would require further
modifications to support MCAS. Besides using a CAS operation
on a shared, external main memory, an on-chip shared scratchpad
memory can be used to support synchronization [20].

Finally, although Motorola also patented in 1986 a DCAS hard-
ware implementation for linked lists, this line was abandoned and
the patent is now expired [35].

9 CONCLUSIONS
Efficient, non-speculative, deadlock-free multi-address atomic op-
erations are a desirable feature missing in current processors. In
this work, we proposed a truly deadlock-free solution for multi-
address atomics that takes into account real hardware limitations,
such as private/shared structures associativity and eviction buffers.
MAD atomics allow for an efficient implementation of the MCAS
primitive and opens the door to many other multi-address atomic
primitives. MAD atomics are also proposed as a alternative for short
transactions. As MAD atomics are non-speculative, they offer bet-
ter performance than HTM and do not suffer aborts/re-executions.
Ideally, both techniques can be used together as needed.

Our results show that for the evaluated applications and con-
current data structures, MAD atomics outperform software locks
by up to 18× (3.4× on average) and 2.7× on average compared to
TSX, improving scalability from one core (software locks) up to 16
cores. Performance and executed instruction count improvements
directly translate into energy savings, that reach 23× in average for
32 and 64 cores.

Indeed, lock-free data structures introduce an interesting per-
formance and energy improvement over the mutex lock-based ap-
proach. But this is further improved with MAD atomics, which
also makes its development easier and more flexible than lock-
free versions, achieving complexity-effective, non-speculative, non-
deadlocking, fine-grained locking for multiple addresses, relying
only on the coherence protocol and a predetermined locking order,
and requiring less that 68 bytes of extra storage per core.
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