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Resumen

Esta tesis está dedicada a un estudio en profundidad del Problema de Tarificación basado
en Preferencias (del inglés, Rank Pricing Problem (RPP)) y dos generalizaciones. El RPP
es un problema de optimización combinatoria que tiene como objetivo fijar el precio de los
productos de una compañ́ıa para maximizar su beneficio. En él, intervienen clientes unit-
demand, es decir, clientes que están interesados en varios de los productos de la empresa,
pero pretenden comprar como mucho uno de ellos. Los clientes tienen un presupuesto
fijo y clasifican los productos que les interesan formando un ranking del mejor al peor.
Cuando la compañ́ıa fije los precios, cada cliente comprará su producto preferido de entre
los que se puede permitir. En el RPP, asumimos que los productos se ofertan en cantidad
ilimitada, lo cual encaja si consideramos que la compañ́ıa tiene suficientes productos para
satisfacer la demanda, o cuando los productos se pueden producir rápidamente con un
coste despreciable (por ejemplo, los bienes digitales). El RPP está clasificado como un
problema de tarificación de multi-productos con clientes unit-demand y un modelo de
consumo del cliente basado en sus preferencias.

El RPP se introdujo en Rusmevichientong et al. (2006). Los autores utilizaron datos
obtenidos a través de una página web que ofrećıa recomendaciones de veh́ıculos a los
consumidores. En esta página, los clientes potenciales escrib́ıan un presupuesto para su
veh́ıculo, y ordenaban las caracteŕısticas de los veh́ıculos de acuerdo a la importancia que
les daban y a sus preferencias. Tras esto, la página web creaba una lista con varios de
los veh́ıculos de la compañ́ıa ordenados según las preferencias de los clientes y ajustados
a su presupuesto. Estas listas fueron las usadas por Rusmevichientong et al. (2006) para
optimizar los precios de los veh́ıculos de la compañ́ıa. El trabajo que han realizado Rus-
mevichientong et al. (2006) e investigadores posteriores ha girado en torno al estudio de
la complejidad del problema y al desarrollo de métodos de resolución no exactos, es decir,
métodos que buscan buenas soluciones del problema, pero no necesariamente la óptima.
Aśı, se ha probado que el RPP es uno de los conocidos como problemas duros, se han
propuesto algoritmos basados en heuŕısticas, y también algoritmos de resolución que dan
una cota del error cometido. En algunos casos, se han estudiado también casos parti-
culares con propiedades interesantes, como añadir escalas de precios (o sea, restricciones
que ordenan los precios de algunos productos antes de fijarlos, lo que tiene sentido si
consideramos por ejemplo dos versiones de un producto, una básica y una premium). Sin
embargo, no se ha llevado a cabo ningún estudio del RPP de métodos exactos para este
problema de optimización combinatoria previo a este trabajo. Dentro de la Programación
Matemática, nosotros hemos centrado nuestro trabajo en el desarrollo de métodos exac-
tos para el problema. En concreto, nos centramos en dar formulaciones enteras-mixtas,
linealizarlas y/o reforzarlas si corresponde, y desarrollar algoritmos de resolución basados
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en dichas formulaciones que proporcionan una solución óptima.

Esta tesis doctoral consta de cuatro caṕıtulos. El primero de ellos es un caṕıtulo de
introducción al problema y a los conceptos matemáticos presentes en la tesis, mientras
que los tres siguientes se centran en cada uno de los problemas estudiados: el RPP y dos
generalizaciones, una en la que se considera que los clientes pueden tener empates entre
varios productos en su ranking, y otra en la que existe un número limitado de copias de
cada producto en venta.

El Caṕıtulo 1 tiene dos secciones diferenciadas. La primera sección contiene los conceptos
fundamentales que se emplean a lo largo de la tesis. Aqúı explicamos, pues, conceptos
clave que aparecen en el trabajo como la importancia de las desigualdades válidas o en
qué consiste la descomposición de Benders. También damos resultados teóricos tales como
el Lema de Farkas o el Teorema de Dualidad Fuerte, en los que nos apoyamos a lo largo
de la tesis. La segunda sección constituye una presentación de los resultados existentes
sobre el RPP anteriores a este trabajo. Comienza con la definición del problema, seguida
de una revisión de la literatura del RPP. Después se incluyen dos apartados que revisan
trabajos relacionados con el RPP. El primero incluye problemas de tarificación en los que
la decisión del consumidor está basada en la utilidad de los productos, mientras que el
segundo contiene problemas de otras ramas de la optimización que tienen en común que
la decisión de compra del consumidor también se basa en un ranking de los productos.
Estos problemas han sido relevantes, por ejemplo, porque han motivado la introducción
de la descomposición de Benders como una técnica de resolución adecuada para el RPP, o
porque nos han servido para dar resultados de complejidad de un subproblema que surge
en el Caṕıtulo 4.

El segundo caṕıtulo se centra en el estudio del RPP. En primer lugar, explicamos que el
problema puede ser visto como un problema binivel: la compañ́ıa actúa como primer nivel
(o ĺıder) maximizando su beneficio; y el segundo nivel lo componen los clientes o seguidores
que, forma independiente, buscan maximizar sus preferencias. Por esto, la primera for-
mulación que presentamos es una formulación binivel no lineal con múltiples seguidores
independientes, que procedemos a transformar en una formulación de un nivel utilizando
resultados de programación lineal. A continuación, proponemos otra formulación, esta
vez directamente en un nivel. Como la función objetivo de ambas formulaciones (que
es la misma) es no lineal, dedicamos la siguiente sección a linealizarla de dos maneras,
utilizando dos conjuntos distintos de variables continuas. Aśı, obtenemos cuatro modelos
lineales enteros-mixtos. Después nos centramos en reforzar las cotas superiores dadas por
la relajación lineal de los modelos. Para ello presentamos dos conjuntos de desigualdades
válidas diseñados para acotar los valores de las variables continuas que intervienen en
las funciones objetivo, reforzando aśı directamente las cotas dadas por las relajaciones
lineales. Estos conjuntos tienen un número exponencial de desigualdades. En vez de
incorporarlas todas a las formulaciones, optamos por diseñar un algoritmo de separación
que determina cuáles son las más violadas por la solución óptima de la relajación. Nuestro
método resulta ser muy eficiente en la separación de las desigualdades, lo que deriva en
grandes mejoras de las cotas superiores. Tras la separación, añadimos las desigualdades
válidas a la formulación dinámicamente, mediante un procedimiento de ramificación y
cortes. Para finalizar, incluimos un apartado con técnicas de preprocesamiento que re-
ducen el tamaño de las instancias del problema, y comparamos las formulaciones y los
algoritmos teórica y computacionalmente.
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Además, nos dimos cuenta de que las restricciones asociadas a las variables binarias de uno
de nuestros modelos constituyen un caso particular de un Problema de Empaquetamiento
de Conjuntos, por lo que decidimos realizar un análisis poliédrico de este subproblema
de empaquetamiento. Unas de las mejores desigualdades que definen facetas de un pro-
blema de empaquetamiento de conjuntos, que además tienen relevancia práctica, son
las obtenidas a partir de cliques (subgrafos maximales completos) del grafo intersección
asociado. Por tanto, comenzamos identificando el grafo intersección asociado a nuestro
problema, y llevamos a cabo un estudio en profundidad centrado en la caracterización
de todos sus cliques, agrupándolos en dos familias y definiéndolos además mediante una
expresión parametrizada común.

El Caṕıtulo 3 está dedicado al estudio del Problema de Tarificación basado en Preferencias
con Empates (RPPT por sus siglas en inglés, Rank Pricing Problem with Ties). En esta
extensión del problema, asumimos que los clientes pueden expresar su indiferencia entre
productos de su interés mediante empates en su lista de preferencia. Desde el punto de
vista de la programación binivel, esto implica que el segundo nivel –dado por la decisión
de compra de los consumidores– ya no tiene solución óptima única. En el caso de que un
cliente esté interesado en dos productos por igual, parece natural asumir que, si se puede
permitir ambos, comprará el más barato de los dos. Esto equivale a elegir una posición
pesimista del problema del segundo nivel en el marco binivel. Aunque no abordaremos
el problema desde la perspectiva binivel, esta caracterización tiene interés por cuanto
muestra el incremento de la dificultad que constituye esta suposición.

En este caṕıtulo presentamos una nueva formulación con variables de tres ı́ndices e in-
troducimos dos métodos de resolución. En el primero, comenzamos proponiendo una
formulación con variables de dos ı́ndices, para luego proyectar la anterior en esta, obte-
niendo un conjunto exponencial de desigualdades válidas que la refuerzan. La matriz
asociada a las restricciones de los problemas de separación de dichas desigualdades posee
la propiedad de los unos consecutivos, lo que nos permite reducir nuestros problemas
de separación a problemas de flujo a coste mı́nimo y resolverlos mediante un algoritmo
existente.

Alternativamente, resolvemos la formulación de tres ı́ndices siguiendo un esquema basado
en la descomposición de Benders que aprovecha la separabilidad del problema en un pro-
blema master y varios subproblemas. Aśı, obtenemos un problema master con un con-
junto de restricciones cuya separación se puede realizar resolviendo subproblemas lineales
asociados a los clientes, y conseguimos identificar un subconjunto pequeño (polinómico)
de restricciones del mismo que nos permite obtener una formulación master reducida
válida para el RPPT, el Modelo de Benders. En la implementación de la descomposición
de Benders, resolvemos el Modelo de Benders en vez del master, añadiendo desigual-
dades del llamado método lazy , es decir, resolviendo el problema mediante el algoritmo
de ramificación y cortes pero añadiendo las desigualdades solo cuando se encuentran solu-
ciones enteras en el árbol. Al contrario que en el método clásico, en el que el master se
resuelve desde el principio cada vez que se añade un conjunto de desigualdades nuevo,
aqúı el problema solo se resuelve una vez, y las restricciones necesarias se añaden itera-
tivamente. Finalmente, llevamos a cabo experimentos computacionales exhaustivos para
evaluar la efectividad de los métodos de resolución.

El último caṕıtulo de la tesis comprende el estudio del Problema de Tarificación Capa-
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citado basado en Preferencias o Capacitated Rank Pricing Problem (CRPP) con envidia.
En esta extensión, hemos asumido precios de reserva en los clientes que reflejan lo que
están dispuestos a pagar por cada producto, en vez de un solo presupuesto por consumi-
dor. No obstante, la principal diferencia es que en el CRPP la compañ́ıa tiene un número
limitado de productos y puede no ser capaz de satisfacer la demanda de todos los clientes.
Esta es una hipótesis realista que se da, por ejemplo, en compañ́ıas que venden productos
hechos a mano, en la industria del lujo o en compañ́ıas que venden bienes no materiales
(experiencias, servicios, entradas para eventos, etc.).

Cuando el suministro es limitado, se pueden dar dos soluciones dependiendo de la postura
de la empresa. Si su objetivo principal es la maximización del beneficio, consideraremos
factibles soluciones con clientes envidiosos. En estas soluciones con envidia, hay clientes
que se pueden permitir un producto y les interesa, pero la compañ́ıa no se lo puede
proporcionar porque está agotado, por lo que optan por comprar otro producto que les
interesa menos (o por no comprar ninguno). Aunque generalmente una solución con
envidia da mayor beneficio que una sin envidia, la compañ́ıa puede evitar las soluciones
con envidia por distintos motivos, como prevenir el malestar de los clientes a largo plazo,
fidelizándolos. Estas dos variantes del CRPP tienen caracteŕısticas muy distintas. La
primera de ellas es que, mientras que en la versión sin envidia se respetan totalmente
las preferencias de los clientes, en caso de envidia las preferencias solo se respetan si el
producto no se agota en la solución final (y esto requiere nuevas restricciones que modelicen
las preferencias). Otra diferencia quizás menos intuitiva es que en el caso sin envidia un
vector de precios determina uńıvocamente la asignación de productos a los clientes, por
lo que una tarificación deriva directamente en una solución factible única del problema.
Sin embargo, en la versión con envidia la asignación de clientes no está uńıvocamente
determinada por la tarificación, luego se tienen que dar ambas para caracterizar una
solución factible. De hecho, para comprender mejor el problema, comenzamos nuestro
estudio analizando la complejidad del subproblema dado por la asignación de los productos
a los clientes (asumiendo una tarificación fija) en el caso con envidia. En esta sección,
reducimos un problema de emparejamiento NP-duro llamado problema del matrimonio
estable con empates y listas incompletas a nuestro problema, demostrando aśı que es NP-
completo. El caso general con envidia es, por tanto, más dif́ıcil de resolver que el otro, y
además técnicas utilizadas anteriormente como la descomposición de Benders o las técnicas
de preprocesamiento no se pueden aplicar a esta versión. Las cualidades que tienen las
soluciones con envidia, y el hecho de que fueran inherentes del caso con capacidades (ya
que las versiones con suministro ilimitado siempre dan soluciones sin envidia), fueron las
que nos hicieron decidirnos por el estudio de la versión con envidia del CRPP.

La primera formulación propuesta para el CRPP es una formulación lineal entera mixta
con un conjunto de variables de decisión de tres ı́ndices. En ella utilizamos dos conjun-
tos de variables ya empleados en el caso sin capacidades, más un tercer conjunto que
sirve para modelizar la capacidad, pues indica cuándo un producto se ha agotado a cierto
precio. Junto a esta formulación se introducen varias familias de desigualdades válidas
basadas en las restricciones de capacidad. También presentamos una segunda formulación
reducida que solo emplea variables con dos ı́ndices, y varios conjuntos de desigualdades
para reforzarla. Proyectando la formulación de tres ı́ndices en la reducida mediante el
Lema de Farkas, obtenemos el primer conjunto parametrizado de desigualdades válidas.
De este conjunto, separamos un subconjunto de tamaño polinómico que domina a un con-
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junto de desigualdades propuesto para el RPP en el Caṕıtulo 2. Además, hacemos uso de
las restricciones de capacidad para desarrollar un segundo conjunto de desigualdades (de
tamaño exponencial en este caso), cada una de las cuales involucra a un subconjunto de
clientes interesado en un mismo producto. A continuación, se describen siete algoritmos
basados en las dos formulaciones que emplean el método de ramificación y cortes para
la separación de las desigualdades. Finalmente, comparamos los algoritmos en el estudio
computacional, donde se muestra que las desigualdades válidas propuestas tienen un im-
pacto directo tanto en el tiempo de resolución de ambos modelos como en la reducción
de la cota de la relajación lineal.

Publicaciones y colaboraciones

El contenido original de los Caṕıtulos 2, 3 y 4 ha sido enviado a revistas internacionales
para su publicación. Concretamente, el contenido del Caṕıtulo 2 es fruto de la colabo-
ración con las profesoras Carmen Galé y Herminia Calvete de la Universidad de Zaragoza,
y fue publicado en la revista Computers & Operations Research bajo el t́ıtulo The rank
pricing problem: Models and branch-and-cut algorithms (Calvete et al. (2019)). El se-
gundo caṕıtulo está basado en los resultados del art́ıculo The rank pricing problem with
ties, publicado en la revista European Journal of Operational Research (Domı́nguez et al.
(2021b)). Y el Caṕıtulo 4 se basa en el contenido del manuscrito titulado The Capaci-
tated Rank Pricing with envy, que ha sido enviado recientemente a la revista Computers
& Operations Research y ya ha recibido cŕıticas positivas (Domı́nguez et al. (2021a)).





Abstract

This doctorate is entirely devoted to an in-depth study of the Rank Pricing Problem
(RPP) and two generalizations. The RPP is a combinatorial optimization problem which
aims at setting the prices of a series of products of a company to maximize its revenue.
This problem is specified by a set of unit-demand customers, that is, customers interested
in a subset of the products offered by the company which intend to buy at most one of
them. To do so, they count on a fixed budget and they rank the products of their interest
from the best to the worst. Once the prices are established by the company, they will
purchase their highest-ranked product among the ones they can afford. In the RPP, it
is assumed an unlimited supply of products, which is consistent with a company having
enough copies of a product to satisfy the demand, or with a setting where the products
can be produced quickly at negligible cost (e.g. digital goods). It is hence classified
as a multi-product pricing problem with unit-demand customers and a ranking-based
consumer choice model.

The RPP was introduced in Rusmevichientong et al. (2006). They leveraged data collected
through a website offering car recommendations to customers, with the aim of optimizing
the price of the vehicles of the company. In this website, potential customers could define
a budget for their vehicle, and order the different features of the vehicles according to their
preferences and the importance they attached to them. Afterwards, the website offered a
list of vehicles ordered with respect to the preferences of the customers and adjusted to
their budget. The work carried out in Rusmevichientong et al. (2006) and in subsequent
papers centered on the study of the complexity of the problem, and in the development of
inexact resolution methods, i.e. methods that seek for a “good solution” of the problem,
but not necessarily the optimal one. Thus, it has been proved that the RPP belongs
to the family of NP-hard problems, and heuristics and approximation algorithms (with
performance bounds) have been proposed. The properties of particular cases like the RPP
with price-ladder (an ordering in the prices of the products made before the prices are
established that is consistent with having e.g. two versions of a product, a basic one and
a premium one) have also been studied. Yet no article before our work has derived exact
methods for this combinatorial problem. Within the field of Mathematical Programming,
our work focuses on the introduction of mixed-integer formulations, their linearization
and/or strengthening when necessary, and the development of algorithms based on such
formulations that provide an optimal solution.

This dissertation consists of four chapters. Chapter 1 introduces the RPP problem and
the mathematical concepts present in the work, whereas each of the next three chapters
tackles the resolution of each of the problems of study: the RPP and two generalizations,
one that considers ties in the preference lists of the customers, and a second one that
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assumes a limited number of copies of the products for sale.

Chapter 1 has two distinguishable sections. The first section contains the main concepts
used throughout the thesis. Here we detail the key concepts that appear in the work,
such as the importance of developing valid inequalities or what a Benders decomposition
entails. We also provide theoretical results used throughout the work, like the Farkas’
Lemma of the Strong Duality Theorem. The second section constitutes a presentation of
the existing results on the RPP prior to this work. It begins with the problem’s definition,
followed by a literature review of the RPP. Then, we include two subsections to look over
problems related to the RPP. The first subsection comprises pricing problems in which
the customers’ decision purchase is based on the utility of the products. Conversely, the
second one contains problems from other optimization areas with the common denomina-
tor of customers whose purchasing decision is based on a ranking of the products. These
problems have proven relevant, for instance, in the motivation for introducing Benders
decomposition as a plausible resolution technique for the RPP, and have been useful to
derive complexity results of a subproblem that arises in Chapter 4.

Chapter 2 is devoted to the study of the RPP. The RPP can be modeled as a bilevel
program, in which the first level (or leader) is the company intending to maximize its
profit, and the second level (or follower) is given by the customers, who independently
aim at purchasing their highest-ranked item. Therefore, the first formulation we develop
is a bilevel nonlinear one with multiple independent followers. We then transform this
model into a single-level formulation using results from linear programming. Next, we
also formulate the problem straightforwardly as a single-level one. Since the two single-
level models had a nonlinear objective function (which was the same for both), we devote
the next section to two linearizations of the models by means of two different sets of
continuous variables. These linearizations result in four mixed-integer linear models. We
then focus on tightening the upper bounds given by the linear relaxations of the models.
To do so, we develop two sets of valid inequalities that include an exponential number
of inequalities. Instead of incorporating all of them into the formulations, we design a
polynomial procedure to determine which ones are most violated by the optimal solutions
of the relaxations. Our method is proved to be very efficient in the separation of the
inequalities, which in turn leads to great improvements in the upper bounds. After sep-
arating them, we add them dynamically into our models in a branch-and-cut framework.
Finally, we include a section with preprocessing techniques designed to reduce the size of
the RPP instances, and we compare our formulations and algorithms theoretically and
computationally.

Furthermore, we exploit the fact that the constraints associated to the binary variables
of one of our single-level linear models constitute a special case of a Set Packing Problem
(SPP). We therefore carry out a polyhedral analysis of this set packing subproblem. One of
the best known facet-defining inequalities of an SPP, and also those of practical relevance
when solving the problem, are the ones determined by the maximal complete subgraphs
(cliques) of the associated intersection graph. Thus, we start by identifying the graph
associated to our specific subproblem and carry out an in-depth study to characterize all
its cliques, grouping them in several families but also finding a way to represent all of them
in a common parametrized expression. As well as deriving strong valid inequalities for
the models, this characterization enables us to prove that the original models are already
tight, since they contain mainly inequalities which are facet-defining in the corresponding
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subproblems.

Chapter 3 is dedicated to the Rank Pricing Problem with Ties (RPPT), an extension of
the RPP where we consider that customers can express indifference among products in
their preference list. From the bilevel point of view, this implies that the second level
problem (the one given by the customers’ purchasing decision) no longer has a unique
optimal solution. If we suppose that a customer is equally interested in two products, it
seems natural that he would purchase the cheapest one when he can afford both. This
is equivalent to choosing a pessimistic solution of the lower level problem in the bilevel
framework. Although we will not approach the resolution of the RPPT from the bilevel
perspective, this characterization is of interest in terms of showing the increase in the
difficulty that this assumption constitutes.

We present a new three-index integer formulation for the RPPT and introduce two reso-
lution approaches. In the first one, we begin by introducing a formulation with two-index
variables. We then project out the three-index formulation onto the latter one, deriving
an exponential set of valid inequalities that strengthen it. The matrix associated to the
constraints of the separation problems of these inequalities possesses the consecutive ones
property, and this allows us to reduce our separation problems to min-cost flow problems
and solve them using an existing algorithm.

Alternatively, we solve the three-index formulation following a Benders decomposition ap-
proach that leverages the separability of the problem into a master problem and several
subproblems. We obtain a master problem with a set of constraints whose separation
can be done by solving linear subproblems associated to each customer, and we are able
to identify a small (polynomial) subset of constraints from the previous set to obtain
a reduced master formulation, the Benders Model, that is valid for the RPPT. For the
implementation of the Benders decomposition, we solve the Benders Model instead of the
master problem, adding valid inequalities in the so-called lazy fashion, that is, solving the
master problem using a branch-and-bound solver and checking for violated inequalities
only at each integer solution generated in the branching tree. As opposed to the classical
approach, where the master problem is solved from scratch each time a new set of con-
straints is added, in this approach the problem is only solved once, and constraints are
added iteratively when needed. We finally carry out extensive computational experiments
to assess the performance of the resolution approaches.

The last chapter of the thesis is devoted to a generalization of the problem that we have
named the Capacitated Rank Pricing Problem (CRPP) with envy. For this generalization,
we have considered reservation prices of customers for the different products that reflect
their willingness to pay, instead of a single budget per customer. However, the main
difference is that, in the CRPP, the company has a limited supply of products and might
not be able to satisfy all the customers’ requests. This is a realistic assumption that we
can find in many companies. For instance, companies selling hand-made or customized
products, in the luxury industry, or in companies offering all sorts of events tickets or
other kinds of non-material goods (experiences, services), to name but a few.

When the supply is limited, two possible solutions can arise depending on the stance
of the company. If the main objective is the maximization of the profit, then we will
consider as feasible solutions those with envious customers. In these solutions with envy,
some customers can afford a product and are interested in it, but the company cannot
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provide it because it has sold all the copies to other customers, so they end up purchasing
a different (and less preferred) product (or none). Although an solution with envy usu-
ally provides higher benefit than an envy-free one, a company might decide to consider
envy-free solutions for different reasons, such as preventing discomfort among long-term
customers, thus ensuring fidelity. These two variants of the CRPP have very different
characteristics. One of them is that, while in the envy-free setting the preferences are
fully respected, when there is envy the preferences of the customers are respected if and
only if the product is not sold out in the final solution (and this calls for a different set
of constraints to model the preferences). Another perhaps less intuitive feature is that in
the envy-free case a vector of prices univocally determines the allocation of the products
to the customers, so a unique feasible solution for the problem can be straightforwardly
derived from a pricing. However, in the envy setting, an allocation of the products needs
to be provided, along with a vector of prices, to characterize a feasible solution. In fact,
in order to get a deeper understanding of the problem, we begin by analyzing the com-
plexity of the allocation subproblem in the envy setting. We reduce a particular NP-hard
matching problem called the Stable Marriage problem with Ties and Incomplete Lists to
our problem, proving in this way that it is NP-complete. The general envy case is hence
more difficult to solve than the envy-free one, and previously developed procedures like
Benders decomposition or our preprocessing techniques do not apply to this extension.
These particular features that appear when we allow for envy (and the fact that they do
not occur in the RPP with unlimited supply, which always has envy-free solutions) were
the main reason we decided to focus on the CRPP with envy.

The first formulation we derive for the CRPP is a mixed-integer linear formulation with
a set of three-index variables. We use two sets of binary variables previously used for the
unlimited case, and a third set to model the capacity, representing when a product is sold
out at a certain price. Along with the formulation, we introduce several families of valid
inequalities based on the capacity constraints that reinforce the model. We then present
a second formulation with only sets of two-index variables, and several sets of inequalities
to strengthen it as well. We begin by projecting out the three-index formulation onto
the reduced one by means of Farkas’ Lemma, obtaining a parametrized set of valid in-
equalities and separating a strong polynomial-size family that dominates an exponential
set introduced for the uncapacitated version of the problem in Chapter 2. We also take
advantage of the constraints concerning the capacity to derive an entirely new set of valid
inequalities (of an exponential size in this case), each of them involving a subset of the
customers interested in a given product. Afterwards, we develop seven resolution algo-
rithms based on the formulations, the separation of the inequalities and their inclusion
in branch-and-cut fashions. We then compare them in the computational study, where
we show that the valid inequalities proposed for both models have a direct impact in the
reduction of the linear relaxation bound and the total resolution times.
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Chapter 1

Introduction

This dissertation is devoted to the study of decision problems from a mathematical pro-
gramming perspective within the frame of Operations Research, a discipline concerned
with improving decision-making. The first part of the chapter summarizes the concepts
from the field that will prove useful for the non expert reader, since they are the founda-
tions upon which we build the results in the remaining chapters. This background material
comprises definitions and concepts within the fields of Linear, Integer and Bilevel Opti-
mization, as well as a brief section on Complexity Theory. The second part constitutes
an overview of the Rank Pricing Problem, our main problem of study. It includes the
introduction of the problem, a state of the art with the main results available prior to
this work and a section concerning related problems.

1.1 Concepts

1.1.1 Linear Optimization

In this section, we touch on the subject of linear optimization as a first step towards
the introduction of integer optimization. For further details, the reader is referred to
Bertsimas and Tsitsiklis (1997); Wolsey (1998).

Linear Programming is a branch of Operations Research that describes and solves math-
ematical problems whose requirements can be modeled by means of linear relationships.
A linear program (LP) (in the canonical form) can be stated by means of formulation

max
x

cx

s.t. Ax ≤ b,

x ∈ Rn
+,

(1.1)

with 0 ∈ Rn
+, c ∈ Rn, Am×n = (aij), aij ∈ R ∀i, j, b ∈ Rm. x is the vector of deci-

sion variables, cx is the (linear) objective function and the linear inequalities Ax ≤ b
are called constraints, aij being the coefficients of the constraints, and b the vector of
independent terms. A vector x∗ satisfying all the constraints is called a feasible solution.
If x∗ maximizes the objective function (it satisfies cx∗ ≥ cx ∀x), then it is an optimal
solution, and the value cx∗ is called the optimal value. The set of all feasible solutions

1
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{x ∈ Rn
+ : Ax ≤ b} is called the feasible region. This region is a polyhedron, and a

polytope when it is bounded. Problem (1.1) is unfeasible if the feasible region is empty
(because there is no vector x satisfying all the constraints), and unbounded when ∀h ∈ R
there exists x in the feasible region such that cx > h. Throughout the thesis, we will use
the terms formulation and model indistinctly.

Our main goal is to understand how to solve linear optimization problems, since they are
the basis for solving more complicated problems like integer or bilevel ones. In an LP,
either there is an optimal solution, or the problem is unbounded, or it is unfeasible. Thus,
in order to solve an LP, the first question to address is whether it is feasible or unfeasible,
and bounded or unbounded. Furthermore, for feasible bounded LPs, it is essential to
know how to characterize optimality. The third step is to obtain an efficient mechanism
to derive optimal solutions.

Farkas’ Lemma can be viewed as a characterization of the feasibility of a problem, and it
can also help us determine if it is bounded. It has several (equivalent) variants, here we
discuss one of them:

Lemma 1.1 (Farkas, Farkas (1902)). Let A be a m×n matrix, and b ∈ Rn. Then exactly
one of the following statements holds:

(1) ∃x ∈ Rn : Ax ≤ b, x ≥ 0 or

(2) ∃y ∈ Rm : ytA ≥ 0, ytb < 0, y ≥ 0.

If (1) holds, then there exists a feasible solution of (1.1), so the problem is feasible. On
the other hand, deriving a vector y that satisfies (2) serves as a certificate of unfeasibility.
There is also a variant of Farkas’ Lemma which refers to feasibility:

Lemma 1.2. Let A be a m × n matrix, and b ∈ Rn. Then the following two statements
are equivalent:

(1) ∃x ∈ Rn : Ax ≤ b, x ≥ 0 or

(2) ∀y ∈ Rm : y ≥ 0, ytA ≥ 0, it follows ytb ≥ 0.

We use this variant as a method to project out variables and obtain valid inequalities in
several chapters of the thesis.

Farkas’ Lemma is also useful for the next step, since it is used in the proof of duality
results. Duality theory constitutes a characterization of optimality for LPs. It deals with
the relationship between a primal problem (any linear problem like (1.1)) and another
LP, called the dual. For a given primal problem of the form (1.1), the corresponding dual
problem is

min
u

btu

s.t. Atu ≥ c,

u ∈ Rm
+ .

(1.2)

Theorem 1.3 (Weak duality). Let x be a feasible solution to (1.1) and u a feasible
solution to (1.2). Then ctx ≤ utb.

As a consequence, if the primal problem is unbounded, then the dual is infeasible, and
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vice versa. Another corollary is that when ctx = utb, then x and u are optimal solutions
to the primal and dual problems, respectively. The converse is the strong duality theorem,
a central result on duality theory:

Theorem 1.4 (Strong duality). If an LP has an optimal solution, so does its dual, and
the optimal values of both problems are equal.

Duality theory leads to algorithms to derive optimal solutions for LPs such as the simplex
method. First, let us characterize a polyhedron P in terms of its extreme points and
extreme rays:

Definition 1.5 (Extreme point). Let P ∈ Rn be a non-empty polyhedron. Then x is an
extreme point (vertex) of P if there are no two points x1, x2 ∈ P and λ ∈ (0, 1) such that
x = λx1 + (1− λ)x2. The vertices of a polyhedron P are its zero-dimensional faces.

Definition 1.6 (Extreme ray). Let P = {x ∈ Rn : Ax ≤ b} 6= ∅ be a nonempty
polyhedron. Then r ∈ P 0 is a ray of P , where P 0 = {r ∈ Rn : Ar ≤ 0}. A ray r of P is
an extreme ray if there are no two rays r1, r2 ∈ P 0 with r1 6= µr2 for any µ ≥ 0, such that
r = λr1 + (1− λ)r2 for λ ∈ (0, 1).

Theorem 1.7 (Minkowski-Weyl Theorem, Minkowski (1896); Weyl (1950)). The polyhe-
dron P 6= ∅ can be represented as

P = {x ∈ Rn : x =
∑
k∈K

λkx
k +

∑
j∈J

µjr
j with

∑
k∈K

λk = 1, λk ≥ 0 ∀k ∈ K,µj ≥ 0 ∀j ∈ J},

(1.3)
where {xk}{k∈K} is the set of extreme points of P and {rj}{j∈J} is the set of extreme rays
of P .

In essence, resolution algorithms are based on the fact that, if the feasible region has an
extreme point and the LP has a bounded optimal solution, then there exists an optimal
solution of the LP that is an extreme point. However, the number of extreme points can
be exponential, so a complete enumeration of the extreme points of the feasible set is
generally not an option. The simplex method, given by Dantzig, searches through the
set of extreme points, which are basic feasible solutions, to find an optimal one in an
organized way. The algorithm begins in a random vertex, and at each step it moves to
an adjacent vertex in the polytope, always seeking to increase the objective value. The
algorithm is finite once we define a way to break the ties in the pivoting rules used to
select the extreme points, avoiding cycles.

Still to this day, there is no proof that the simplex method runs in polynomial time
(see Schrijver (1998)). The complexity of the method is intimately related to the Hirsch
Conjecture, formulated by Warren M. Hirsch in a letter addressed to George Dantzig in
1957. The Hirsch Conjecture establishes that the diameter of the graph of a polytope
of dimension d with m faces is bounded by m − d (the diameter of a polytope is the
maximum distance between its vertices, and such distance is measured as the number
of edges from a shortest path between them). Thus, if the diameter of any polytope
were polynomial in d and m, it is possible that, with a certain pivot rule, the simplex
method runs in polynomial time for a problem with d variables and m constraints. On the
contrary, if this diameter is exponential on n and d, then the complexity of the simplex
method will necessarily be exponential as well. Recently, Francisco Santos has obtained
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a counterexample of the Hirsch Conjecture (Santos (2012)).

1.1.2 A note on Complexity Theory

Here we present a brief introduction of some of the definitions used in this thesis related
to the field of Complexity Theory. For more details on the subject, we refer the reader to
Garey and Johnson (1978, 1979); Sipser (2012); Conforti et al. (2014).

When developing an algorithm, an important aspect is the time it takes to produce a
solution to our problem. This time is a function that measures the number of compu-
tational necessary arithmetic operations, and is normally associated with the size of the
instance input, which is the space required to encode the given data (also a function, for
instance the number of bits required for binary encoding). An algorithm solves a problem
in polynomial time if this time is polynomially bounded by the size of the input. In such
case, usually the algorithm is called polynomial-time algorithm (or simply polynomial
algorithm), and the problem belongs to complexity class P.

Another important complexity class encompasses nondeterministic polynomial-time (NP)
decision problems. A decision problem is a problem that can be posed as a “yes-or-no”
question on the set of inputs. Intuitively, NP problems are those whose positive answer
can be certified in polynomial time. Moreover, a problem Q (not necessarily a decision
problem) is NP-hard if there exists a reduction for any problem Q′ in NP to Q by means
of a polynomial-time algorithm. For this, there must exist two polynomial algorithms,
one to produce an instance I of Q from a given instance I ′ of Q′, and another to produce
a solution of I from a given solution of I ′. Finally, a decision problem belongs to class
NP-complete if it is both in NP and NP-hard.

Because the problem of whether class NP is equal to P is still unsolved, NP-completeness
serves as a way to indicate that a problem can be reduced to the “hardest” problems of
NP, the ones that most likely do not belong to P. Naturally, it also implies that, unless
P=NP, there is no polynomial-time algorithm to solve the problem. For instance, Integer
Programming (that we introduce in the following) is NP-hard (Papadimitriou (1981)).
For some of the NP-complete or NP-hard problems, there exist resolution algorithms
known as pseudo-polynomial time algorithms, in the sense that they are bounded by a
polynomial in the input length and the magnitude of the largest number in the given
instance. These problems are NP-complete in the weak sense or weakly NP-complete,
and can be considered tractable as long as the instances do not contain “exponentially
large” numbers. On the contrary, if no such algorithms can be developed unless P=NP,
then the problems belong to the special case named strongly NP-complete. In the following
section, we see that the pricing problems we tackle in this thesis are NP-complete in the
strong sense. Furthermore, in Chapter 4, we derive an NP-completeness result for an
assignment problem that appears as a subproblem of the problem at hand.
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1.1.3 Integer Optimization

In the LP (1.1), all the variables are continuous. When all the variables are integer, we
obtain an integer program (IP):

max
x

cx

s.t. Ax ≤ b,

x ∈ Zn+.
(1.4)

If only a subset of the variables is integer, we obtain a mixed-integer (linear) program
(MILP). The most common integer variables found in many applications (and throughout
this thesis) are binary variables. The importance of Integer Programming lies in its
adequacy to model a wide range of practical problems in fields such as telecommunications,
facility location, production planning, scheduling, pricing, etc., and even in areas such as
set theory, graph theory or number theory. We present here two methods that have been
most successful in solving IPs and that will be used throughout this entire work, namely
the branch-and-bound and branch-and-cut algorithms, along with some of the essential
properties of integer programs. Benders decomposition for mixed-integer programs is
addressed in an independent subsection. More extensive explanations on these topics can
be found in Wolsey (1998); Nemhauser and Wolsey (1999); Conforti et al. (2014).

In an IP, the feasible region S = {x ∈ Zn+ : Ax ≤ b} becomes a discrete set of points in
Rn, hence integer optimization is often called combinatorial or discrete. This may induce
us to think that solving an integer problem is a simple task, when in reality it is not in
general. Indeed, complete enumeration, although possible in theory, is not practical for
medium and big-sized problems. Algorithms developed to solve integer problems usually
take advantage on the tools available for linear problems and study the linear relaxation
max{cx : Ax ≤ b, x ∈ Rn

+}, which results from removing the integrality constraints on the
variables of the IP. One widely-used algorithm that has been proved efficient for solving
IPs and MILPs is the branch-and-bound algorithm. In broad terms, the branch-and-bound
procedure searches for an optimal solution by iteratively branching, i.e. imposing linear
constraints that partition the feasible region into subsets (and organizing the resulting
problems as nodes in a tree). If the partition is made restricting the range of a variable
(e.g. fixing a binary variable to either 0 or 1), then the strategy is known as variable
branching. The enumeration tree is afterwards pruned using several methods. Apart
from pruning by integrality or by infeasibility (when the resulting problem is integral
or infeasible, resp.), it is essential the pruning by bound, when the optimal value of the
subproblem is smaller than or equal to the best known lower bound on the value of the
IP.

The ability to prune the tree is essential in the good performance of the branch-and-bound
procedure, and the pruning process is based on the tightness of the bounds obtained. Good
lower bounds can be obtained using heuristics. However, the formulation of the IP or the
MILP plays an crucial role in obtaining tight upper bounds. Clearly, different integer
formulations lead to linear relaxations with different feasible regions (all of which contain
the same integer feasible points). In an ideal situation, the feasible region of the linear
relaxation corresponds with the convex hull of S, conv(S). In this case, all the extreme
points have integer components, and thus solving the linear relaxation of the relaxed
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Figure 1.1: A linear relaxation polytope in R3 and a valid inequality

problem (which is found in an extreme point) leads to an integer solution which is also a
solution to the IP. This is called a perfect formulation, and the feasible region obtained
conv(S) is an integral polyhedron. For instance, the integrality constraints of an IP can
be relaxed when the matrix A is totally unimodular and the vector b is integer:

Definition 1.8 (Totally Unimodular matrix). A matrix A is totally unimodular (TU) if
every square submatrix of A has determinant +1,-1 or 0.

Proposition 1.9. The linear program {maxx cx : Ax ≤ b, x ∈ Rn
+} has an integral optimal

solution for all integer vectors b for which it has a finite optimal value if and only if A is
TU.

However, finding a description of the convex hull of the set of integer feasible points by
means of inequalities is only ideal in theory, because the description often has such a
large number of inequalities that is computationally intractable (for instance, in Balas
and Pulleyblank (1983)). Besides, instead of computing the complete convex hull, it
suffices to tighten the polyhedron in the neighborhood of an optimal solution in order
to obtain stronger bounds that speed up the algorithm. A common way to tighten the
polyhedron that results from the linear relaxation consists in adding valid inequalities to
the formulation.

Definition 1.10 (Valid inequality). An inequality πx ≤ π0 is valid for an IP in the form
(1.4) if it is satisfied by every point of its feasible region S. We say that the inequality
is proper when there exists x̄ ∈ Rn

+ such that Ax̄ ≤ b and πx̄ > π0. A valid inequality
that is violated by an optimal fractional solution x∗ of the linear relaxation of the IP is a
cutting plane separating x∗ from S.

Proper valid inequalities are often called just valid inequalities, and when they originate
a cutting plane they are also known as cuts. Figure 1.1 shows a set of feasible points of an
IP (in black) and a green polytope from a linear relaxation of the IP. A valid inequality
is shown in yellow. Explanations and examples on how to obtain valid inequalities for
several problems can be found in Wolsey (1998).

Some valid inequalities are known as general-purpose inequalities because they can be
derived for general configurations of IP programs. Such is the case of Gomory’s fractional
cuts (Gomory (1963)), other special types of split inequalities (equivalent to Gomory’s cuts
and to mixed-integer rounding inequalities Nemhauser and Wolsey (1990)) like Chvátal
inequalities (Chvàtal (1973)) or lift-and-project cuts (Balas et al. (1993)), and intersec-
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Figure 1.2: Convex hull of the feasible set of points of Figure 1.1 and three faces: vertex,
edge and facet

tion cuts (Balas (1971, 1972)), among others. There also exist valid inequalities useful for
problems with an underlying combinatorial structure, e.g. cover and flow cover inequali-
ties that appear e.g. for the 0,1 knapsack problem or in IP formulations that model fixed
charges (Conforti et al. (2014)). Other times, like in this dissertation, when we speak of
valid cuts we refer to valid inequalities tailored to the specific problem. Many of these
cuts are strong or tight, in the sense that they define nonempty faces or even facets of the
convex hull of the feasible points, like the ones featured in Figure 1.2.

Definition 1.11 (Dominated inequality). Let B be the polytope given by the convex hull
of the set of feasible (integer) solutions S of (1.4). An inequality πx ≤ π0 is dominated by
another inequality γx ≤ γ0 when B ∩ {x : γx ≤ γ0} ⊂ B ∩ {x : πx ≤ π0}. If an inequality
is not dominated by any other, we say that it is undominated or maximal.

All undominated inequalities for S define a nonempty face of B. The strongest maximal
inequalities are those that induce facets of B, i.e. faces of maximal dimension n− 1 (of a
full dimensional polyhedron, which we assume in what follows).

Definition 1.12 (Facet). An inequality πx ≤ π0 is a facet of a polytope B of dimension
n if:

1. (validity) every x ∈ B satisfies πx ≤ π0; and

2. (maximality) there exist n affinely independent points xi ∈ B satisfying πxi = π0,
i = 1, . . . , n.

One way to obtain tighter upper bounds in a branch-and-bound scheme consists in incor-
porating cutting planes in the tree nodes after the branching step, obtaining a branch-and-
cut algorithm. When there are a small number of them, valid inequalities can be added
as constraints to the original formulation or in the root node of the branching tree. How-
ever, as the number of them increases, a more sophisticated method is usually required
to prevent running time to get out of control. A separation procedure is then a useful
tool to determine which cuts to include at each step in order to obtain the best possible
performance. The branch-and-cut algorithm is one of the most successful methods for
solving integer programs to date (Conforti et al. (2014)).
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Other techniques to derive formulations with a small integrality gap are reformulation-
linearization techniques (RLT) (Sherali and Adams (1998)) and are based on a reformu-
lation of the problem in a higher dimensional space (the integrality gap is the difference
between the objective value of the linear relaxation of the problem and the optimal value).
RLT are equally useful to derive strong valid inequalities. And reformulation and relax-
ation techniques are resolution techniques broadly used that take advantage of special
structures arising when either the set of variables or the set of constraints can be parti-
tioned into two subsets, one of them called a complicating subset. Some of the classical
approaches include Lagrangian relaxation (Geoffrion (1974)), Dantzig-Wolfe reformula-
tion (Dantzig and Wolfe (1960)) and Benders decomposition for mixed-integer programs
(Benders (1962)). Other ways to fasten the resolution include preprocessing techniques
to reduce the size of an instance (e.g. Escudero et al. (2009)) and heuristic algorithms to
find good solutions of the primal and dual problems quickly (e.g. van Roy and Erlenkotter
(1982)).

Benders decomposition

The Benders decomposition (Benders (1962)) is a decomposition approach widely used
for solving mixed-integer problems. Consider the MILP

max
x,y

cx+ hy

s.t. Ax+Gy ≤ b,

x ∈ Zn1
+ ,

y ∈ Rn2
+ ,

(1.5)

with c ∈ Rn1 , h ∈ Rn2 , Am×n1 = (aij), Gm×n2 = (gij), b ∈ Rm. The first step in the
Benders decomposition is to reformulate problem (1.5) into:

max
x

cx+ z

s.t. z ≤ φ(x),

x ∈ Zn1
+ ,

z ∈ R+,

(1.6)

where φ(x) is defined as the optimal value of

max
y

hy

s.t. Gy ≤ b− Ax,
y ∈ Rn2

+ .

(1.7)

Problem 1.7 can be infeasible, unbounded or have a bounded optimal value. To determine
it, we make use of the Minkowski-Weyl theorem to obtain a representation of the dual
polyhedron in terms of its extreme points and extreme rays. The dual of (1.7) is:

min
u

u(b− Ax)

s.t. uG ≥ h,

u ∈ Rm
+ .

(1.8)
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Let {uk}{k∈K} be the set of extreme points of the feasible set of the dual subproblem (1.8),
D := {u ∈ Rm

+ : uG ≥ h}, and let {rj}{j∈J} be the set of extreme rays of D0 := {u ∈ Rm
+ :

uG ≥ 0}.

Theorem 1.13 (Benders). Problem 1.6 can be reformulated as

max
x

cx+ z (1.9a)

s.t. z ≤ uk(b− Ax) for all k ∈ K, (1.9b)

s.t. rj(b− Ax) ≥ 0 for all j ∈ J, (1.9c)

x ∈ Zn1
+ , (1.9d)

z ∈ R. (1.9e)

Model (1.9) is known as a Benders reformulation of problem (1.5) and is a mixed-integer
reformulation with a very large (usually exponential) number of constraints. Therefore,
the common approach, called Benders decomposition, consists in solving a relaxation of
(1.9) where constraints from (1.9b) and (1.9c) –Benders’ cuts– are added dynamically.
The relaxed main problem is then known as the master problem, whereas the linear
problem (1.7) solved to provide inequalities that strengthen the master problem is the
Benders subproblem.

At each iteration, we solve the master problem with a subset Ki ⊆ K of inequalities from
(1.9b) and a subset Ji ⊆ J of inequalities from (1.9c). The solution (x∗, z∗) obtained is
used to solve the Benders subproblem (or, equivalently, its dual). If D = ∅, then the
Benders subproblem is either infeasible or unbounded, and thus the master problem is
either infeasible or unbounded as well. Otherwise, D 6= ∅ and the Benders subproblem
is infeasible or has a bounded optimal value cx∗ + z∗. If it is infeasible, then by duality
theory (1.8) is unbounded. In this case, there exists an extreme ray rj, j ∈ J \ Ji such
that rj(b − Ax∗) < 0, so we can add the feasibility cut rj(b − Ax) ≥ 0 to the master
problem. Alternatively, by strong duality of linear problems the optimal value φ(x∗) of
the Benders problem is equal to the optimal value of its dual. Thus, we solve (1.8) to
obtain an optimal value φ(x∗) = uk(b−Ax∗), with k ∈ K. If φ(x∗) < z∗, then k ∈ K \Ki

and we add the optimality cut z ≤ uk(b− Ax) to the master. Finally, if φ(x∗) = z∗ then
(x∗, y∗) is an optimal solution of (1.5), where y∗ is optimal for the Benders subproblem.

Although not always (see e.g. Fischetti et al. (2016)), the advantage of Benders decom-
position in many cases relies on the fact that the Benders subproblem is separable, i.e.
can be decomposed into many Benders subproblems of smaller size. Decisive issues are
the separation procedure developed to select Benders’ cuts (researched in Magnanti and
Wong (1981); Fischetti et al. (2010), among others) and the overall resolution algorithm
used to incorporate them and solve the master problem. The interested reader can con-
sult Nemhauser and Wolsey (1999); Conforti et al. (2014) for a more extensive review on
the topic. The details of our implementation of Benders decomposition are described in
Chapter 3.

1.1.4 Bilevel Optimization

Bilevel Programming problems are defined as mathematical optimization problems with
a hierarchical structure, where a first level player or leader wishes to optimize his problem



10 Introduction

knowing that the follower or second level player will react optimally to it. The leader
is assumed to have complete knowledge of the follower problem, whereas the follower
observes the decisions of the leader and selfishly optimizes his own strategy. Formally,
bilevel problems are optimization problems where the constraints of a first optimization
problem translate the fact that some of the variables are optimal solutions to a nested
optimization problem. The first level is given by the first objective function and its
constraints; and the nested optimization problem, characterized by its own objective
function and constraints, captures the problem of the second level. Let c, c′ ∈ Rn1 ,
h, h′ ∈ Rn2 , Am×n1 = (aij), aij ∈ R ∀i, j, Gm×n2 = (gij), gij ∈ R ∀i, j, b, b′ ∈ Rm, x ∈ Rn1

+ ,
y ∈ Rn2

+ . The general formulation of a linear bilevel problem is:

max
x∈X

cx+ hy (1.10a)

s.t. Ax+Gy ≤ b, (1.10b)

y ∈ arg max
y∈Y

c′x+ h′y, (1.10c)

s.t. A′x+G′y ≤ b′. (1.10d)

(1.10a) and (1.10b) constitute the objective function and constraints of the leader problem,
whereas (1.10c) and (1.10d) are the objective function and constraints of the follower
problem. X ∈ Rn1 (resp. Y ∈ Rn2) represents the set of constraints related only to the
x-variables (resp. y-variables), such as upper or lower bounds, or integrality constraints
for the linear integer and mixed-integer bilevel programs.

If we remove constraint (1.10c), we obtain the relaxed problem associated with (1.10).
Thus, the constraint region is Ω = {(x, y) ∈ Rn1 × Rn2 : x ∈ X, y ∈ Y,Ax + Gy ≤
b, A′x + G′y ≤ b′}. For a given vector x̄ ∈ X, the lower-level feasible set is defined
by Ω(x̄) = {y ∈ Y : A′x̄ + G′y ≤ b′}, and the lower-level (rational) reaction set is
R(x̄) = {y ∈ Y : y ∈ arg max {c′x̄+ h′ŷ : ŷ ∈ Ω(x̄)}}.

Every y ∈ R(x̄) is known as a rational response, and the second level problem must be
solvable for global minima. Much research has been devoted to the case where it is convex.
Furthermore, R is a so-called point-to-set mapping from Rn1 into the power set of Rn2

denoted by R : Rn1 → 2Rn2 . We denote some element of R(x̄) by y(x̄).

Lastly, the induced region IR = {(x, y) ∈ Rn1 × Rn2 : x ∈ X,Ax + Gy ≤ b, y ∈ R(x)}
corresponds to the feasible set of the leader. This set is usually nonconvex and it can even
be disconnected or empty.

Bilevel Programming problems are difficult to solve, mainly because they are in general
non convex and non differentiable. Even the linear setting (with linear objective func-
tions and constraints) is difficult (see Jeroslow (1985) for the NP-hardness result). Due
to these intrinsic difficulties, current resolution methods focus on particular cases easier
to solve. The majority of the resolution algorithms are based on the reformulation of the
bilevel problem into a single-level problem by various methods as a starting point, fol-
lowed by the determination of necessary and sufficient optimality conditions and solution
algorithms. One of the most used methods, applicable in the optimistic position, is called
the Kuhn-Tucker approach. It consists in replacing the lower level problem by its Karush-
Kunh-Tucker conditions, resulting in a single-level reformulation. The resulting problem
is a mathematical program with equilibrium constraints. Then a branch-and-bound strat-
egy is applied to deal with the complementarity constraints. Some references that have
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proposed necessary and sufficient optimality conditions are those by Bard (1984); Ishizuka
(1988); Dempe (1992a, 1992b); Outrata (1993); Savard and Gauvin (1994); Vicente and
Calamai (1995); Dempe et al. (2010); Dempe et al. (2014); Aboussoror and Adly (2018).
The approach we follow in Chapter 2 begins by characterizing optimality of the lower-level
by means of duality theory. Then we use integer programming techniques to manipulate
the complementarity constraints that arise, obtaining a single-level mixed-integer lin-
ear formulation. This approach has been used in the previous literature for instance in
Paruchuri et al. (2008), Garćıa-Herreros et al. (2016).

Optimistic versus pessimistic position of bilevel programming

If the optimal solution of the lower-level problem is not uniquely determined, i.e. R(x̄)
consists of at least two points for some x̄ ∈ Rn1 , there exist at least two different mod-
eling approaches to attack a bilevel problem: the optimistic and the pessimistic. In the
optimistic setting, the follower selects, among all optimal solutions, the one that is best
suited by the leader. Formally, in optimistic bilevel programming it is assumed that, if the
reaction set R(x) is not a singleton, the leader is allowed to select the element y ∈ Ω(x)
that is most beneficial for him.

Definition 1.14 (Optimistic solution). A point (x∗, y∗) ∈ Rn1 × Rn2 is an optimistic
solution for problem (1.10) if

x∗ ∈ X,
Ax∗ +Gy∗ ≤ b,

y∗ ∈ R(x∗),

cx∗ + hy∗ ≥ cx∗ + hy ∀y ∈ R(x∗),

and φo(x
∗) ≥ φo(x) ∀x ∈ X, where φo(x) = maxy{cx+ hy : y ∈ R(x)}.

In the pessimistic case, however, the follower can select any optimal solution, so the
approach of the leader is forced to trying to limit the damage the follower can make in
the worst-case scenario (with respect to the leader). In this way, the optimistic strategy
corresponds with a cooperative behavior between the leader and the follower, whereas the
pessimistic approach reflects an aggressive follower behavior.

Definition 1.15 (Pessimistic solution). A point (x∗, y∗) ∈ Rn1 × Rn2 is a pessimistic
solution for (1.10) if

x∗ ∈ X,
Ax∗ +Gy∗ ≤ b,

y∗ ∈ R(x∗),

cx∗ + hy∗ ≤ cx∗ + hy ∀y ∈ R(x∗),

and φp(x
∗) ≤ φp(x) ∀x ∈ X, where φp(x) = miny{cx+ hy : y ∈ R(x)}.

As already pointed out in Bialas and Karwan (1984), the optimistic position can occur
under suitable assumptions like, for instance, when the follower participates in the profit of
the leader. In the literature, most of the results we find so far are devoted to the optimistic
approach. Besides, in the optimistic case the existence of solutions is guaranteed when
the constraint region Ω is non empty. This is in general not true for the pessimistic case:
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an example of a pessimistic bilevel problem without optimal solution can be found in
Dempe (2002), which is a useful resource to expand on the topic of pessimistic bilevel
programming. In Chapters 2 and 4 of this dissertation, the bilevel problems studied are
viewed from an optimistic position; and in Chapter 3, the second level players choose a
pessimistic solution in case of multiple optimal solutions.

1.2 The Rank Pricing Problem

The fundamental problem that will be studied in this thesis is the Rank Pricing Problem
(RPP). In the RPP, a company is interested in setting the price of a series of products
so as to maximize its revenue. Customers are endowed with a positive budget and are
unit-demand, i.e. they are interested in a subset of the products offered by the company,
but intend to buy at most one of them. To do so, they rank the subset of products they
find relevant (this ranking is strict). Once the company has established the prices of
the products, each customer purchases his most desired product (the highest-ranked one)
below his budget. The supply of products is assumed to be unlimited, or high enough
so that customers can always purchase what they prefer. This setting is consistent with
companies selling a product line or different different versions of the same products that
differ in their features, so typically customers only intend to buy one of them. Electrical
appliances (like dishwashers or irons), electronic devices (like laptops or mobile phones)
or digital goods (e-books, digital subscriptions, templates) are a few examples of this type
of products. In the RPP, no cost is associated to the production, so a negligible cost of
production is assumed.

Throughout the thesis, two new variants of the RPP that have not been considered in
previous literature are proposed. The Rank Pricing Problem with Ties (RPPT) is a
generalization that features customers whose ranked list of products can include ties.
Such ties represent the indifference of a customer regarding the characteristics of two (or
more) products. If a customer can afford several products and is indifferent between them,
naturally his purchase decision is based on the price: he purchases the least expensive
product. The second generalization is called the Capacitated Rank Pricing Problem
because it includes a capacity on the number of copies of each product for sale, i.e. a
limited supply of products. In this extension, reservation prices for each customer and
product in his ranked list are considered instead of the positive budgets.

1.2.1 State of the art

The RPP as stated here was introduced in Rusmevichientong et al. (2006). The moti-
vation behind it was the availability of online customer data collected through a choice
advisory website developed by General Motors (GM). This website recommended vehicles
to customers based on their preferences regarding the features of the vehicles, and their
budgets. The system then recorded several data from the customers: a budget (explic-
itly specified by the customer) and the resulting list of recommended vehicles for each
customer, sorted according to the degree to which each vehicle fulfills the client’s require-
ments. As a result, in the Rank Pricing consumer choice model proposed each customer is
characterized by a budget, a ranked list of products and a choice rule that leverages this
ranking-list structure of the data in the previously described manner. The objective is
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the optimization of GM’s vehicle prices. They show that the RPP is NP-complete in the
strong sense and introduce a heuristic approximation algorithm with performance bounds
when the prices are constrained by a price ladder (an ordering of prices defined before-
hand). They then apply their algorithms to the real data set. Their analysis provides
insights into the current pricing strategy and suggests improvements that may increase
the profit of the firm. Rusmevichientong et al. (2006) introduce an additional problem
to the RPP with the same profit-maximization objective but a different customer choice
mechanism. According to the Min Pricing choice model, the customer chooses the least
expensive product from his list that meets the budget constraints (without taking into
account any order). In Rusmevichientong (2003) there is a third consumer choice model,
the Max Pricing, where customers are assumed to purchase the most expensive product
under their budget. The resulting problems are called the Min Pricing problem and the
Max Pricing problem.

Aggarwal et al. (2004) study a modification of the RPP that includes a price-ladder
constraint (an ordering on prices defined beforehand) and reservation prices for each
customer-product pair (instead of a uniform budget per customer). These reservation
prices reflect how much they are willing and able to spend on each product, commonly
known as their willingness to pay (WTP). They present a polynomial time approximation
scheme (PTAS) and a 4-approximation algorithm for this problem when the reservation
prices are consistent, i.e. higher-ranked products are assigned non-decreasing reservation
prices (a uniform budget is a particular case of consistent reservation prices). They first
show that the RPP with price-ladder can be reduced to the Max Pricing problem, and
then introduce a PTAS for the latter problem. The 4-approximation algorithm is de-
veloped for the Max Pricing problem with a price-ladder constraint assuming a limited
number of copies of each product. Briest and Krysta (2006) take up the work in Aggarwal
et al. (2004) and prove that both algorithms are close to best possible. They also analyze
the hardness of approximation of a variety of unit-demand pricing models under different
assumptions on the selection rules, the capacity of the supply and the prices of the prod-
ucts. They consider the three problems described, namely the RPP, the Min Pricing and
the Max Pricing. Briest (2008) considers the Min Pricing problem with unlimited supply
on the uniform-budget case, and derive hardness-approximability results.

1.2.2 Related pricing problems

The rise of e-commerce in the 2000s decade resulted in practical applications for algorith-
mic pricing, a branch of pricing problems where the customers’ choice rule is assumed to
be known by the company. This led to the proliferation of pricing optimization problems
that featured different customer choice behavior models. Within the reservation price
framework, where the customers choices are entirely based on their reservation prices, a
widely-used choice rule is the maximization of the customers utility. Utility-based models
assume that customers have a reservation price for each product of their interest. Thus,
once the pricing strategy is established, customers purchase the product that maximizes
their utility, which is the difference between the price of the product and their reservation
price (customers only purchase if the utility is non negative). In this sense, utility-based
models assume that customers follow compensatory (or rational) decision processes, where
high levels on some attributes of a product (such as the price) can compensate for low
levels on other aspects. In contrast, ranking-based models in the pricing context can
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accommodate to customers following both compensatory and non-compensatory decision
processes (like a lexicographic rule), as long as the price of the products is not considered
as an attribute when taking decisions.

From the extensive literature, we cite a few research works on pricing problems with
utility-based customers that include exact models. Dobson and Kalish (1988) tackle the
problem of positioning and pricing a product line with two different objectives, maximiz-
ing the total profit (for firms oriented to pricing) and maximizing the total (also called
maximum, buyer) welfare (for a non-profit organization). They give mathematical for-
mulations and describe new heuristics algorithms. Dobson and Kalish (1993) show that
the maximum welfare is equivalent to the uncapacitated plant location problem (PLP)
and develop a heuristic for the total profit that outperforms (in time) the one in Dob-
son and Kalish (1988). Shioda et al. (2011) formulate the product pricing problem with
utility-maximizing customers as a mixed-integer programming problem, also designing
heuristics and yielding valid cuts. Heilporn et al. (2010) and Fernandes et al. (2016)
study the connection between the utility-maximization problem and different Network
Pricing Problems (NPP) with connected toll arcs (where the set of tolls constitutes a
path). Myklebust et al. (2016) take on the work presented in Dobson and Kalish (1988,
1993) and propose improvements to their heuristics based on a study of the structure of
the underlying mixed-integer programming problem.

In the case of a limited supply of products, Guruswami et al. (2005) study the problem
of pricing in the utility-maximization context while being envy-free regarding the cus-
tomers’ valuation/reservation price for each product. In the limited-supply setting, the
envy-freeness is a fairness criterion which guarantees that customers always purchase the
product that maximizes their preferences among the ones below their reservation prices.
When there is unlimited supply, the company can always serve customers and therefore
they purchase according to their selection rule, so any pricing is envy-free. Guruswami
et al. (2005) introduced this problem and derived logarithmic approximations (in the
number of customers) for two important customer profiles: unit-demand customers and
single-minded customers. Single-minded customers are only interested in one bundle of-
fered by the company, and they will purchase it if their reservation price is below the
price of the sum of products of the bundle. Single-minded customers have been thor-
oughly studied in auction mechanism design. In contrast with algorithmic pricing, the
mechanism design framework aims at determining the best strategy when the agents im-
plicated hold their information privately. In this context, Goldberg and Hartline (2001)
and Goldberg et al. (2006) relate auction mechanism design with algorithmic pricing.
They do so by introducing the notion of competitive auctions, that achieve a profit that
is a constant fraction of optimal on every input. These auctions are truthful, so the best
strategy for the bidders amounts to truthfully revealing their private valuations and can
be found using algorithmic pricing. Goldberg and Hartline (2001) extend their results to
the case of multiple items, stating the optimal pricing problem as an integer programming
problem. Balcan et al. (2008) and Balcan et al. (2005) apply these results to the problem
of auctioning a digital good and to the problem of item-pricing in unlimited-supply com-
binatorial auctions. In algorithmic pricing problems, following the research of Guruswami
et al. (2005), Hartline and Koltun (2005) develop efficient approximation algorithms for
the unit-demand and single-minded customer settings in the unlimited-supply context,
and the single-minded envy-free setting with limited supply of products. Khandekar et
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al. (2009) give stronger hardness of approximation bounds for this problem when the
buyers are interested in subsets of size at most two. A recent paper that includes mixed-
integer linear formulations for the product pricing problem with single-minded customers
is Bucarey et al. (2021). Figure 1.3 shows a diagram that summarizes the contributions
made in the different pricing problems with utility-based customers presented.

1.2.3 Other optimization problems with ranking-based customer
preferences

Pricing optimization problems in combination with ranking-based customer preferences
are scarce in the literature. However, the modelization of the customers selection rule by
means of a ranked list of preferences appears in many related fields. One close problem
is the Product Line Design (PLD). This problem aims at selecting a subset of products
to be produced (generally from a bigger given set) in order to maximize the company’s
revenue. The PLD problem has been traditionally studied under two different customer
choice rules. In the probabilistic choice behavior, each customer (or type of customer)
probabilistically chooses from the available options. Some references are those by Chen
and Hausman (2000), Schön (2010a, 2010b) and Kraus and Yano (2003), among others.
In the first-choice rule, customers deterministically select the product from the offered
line that maximizes their utility. Some references are those by Green and Krieger (1985,
1993), McBride and Zufryden (1988), Dobson and Kalish (1988) and Belloni et al. (2008).
A very recent work by Bertsimas and Mǐsić (2019) studies the PLD problem under a
ranking-based customer choice model. It introduces a new mixed-integer formulation,
theoretically analyzes it, and presents a solution approach based on Benders decomposi-
tion that significantly outperforms the previous results.

Another related field is Discrete Location, a branch focused on finding the location of
establishments that best satisfies the demand of customers. In particular, Hanjoul and
Peeters (1987) introduce the Simple (or Uncapacitated) Plant Location Problem with
Order, in which a firm wants to select the number and places of a series of facilities to
open so as to maximize the revenue, and the clients to be allocated have a ranking on
the list of potential sites. Hansen et al. (2004) and Cánovas et al. (2007) build up on the
problem presented in Hanjoul and Peeters (1987), the first ones deriving formulations from
the bilevel perspective and the second ones introducing some valid inequalities as well as
a very effective preprocessing, along with a computational study to show the efficiency of
their approach. Hemmati and Smith (2016) relate multi-product pricing, facility location
and bilevel optimization. These authors propose a mixed-integer bilevel programming
approach for a competitive prioritized set covering problem. This model can be applied
to the introduction of new products in a competitive market and to the competitive facility
location problem. In both cases each customer has an ordered product (facility) preference
list which represents the relative utility of each product (facility). Other works deal with
a particular ordering of the facilities through the concept of closest assignment. Espejo
et al. (2012) give a thorough review and comparison of the different closest assignment
constraints encountered in the location literature, and study their generalization in the
case of ties between distances.

Although the optimality criteria differ from the pricing literature, bipartite matching
problems with preferences also model the customers’ choice by means of a ranked list
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of preferences. In particular, very well-known problems like the Stable Marriage (SM)
problem include preference lists as the agents’ choice. The first integer formulations were
introduced by Vande Vate (1989) and by Gusfield and Irving (1989). An extension of
Vande Vate’s model to include incomplete lists of preferences was given by Rothblum
(1992). More recently, extensions of these models have been introduced by Kwanashie
and Manlove (2014) and Delorme et al. (2019) to tackle a one-to-many generalization
of the SM problem, namely the Hospital-Residents (HR) problem, as well as the Stable
Marriage with Ties (SMT) and the Hospital-Residents with Ties (HRT) generalizations.
An in-depth review on structural and algorithmic results on matching problems with
preferences can be found in Manlove (2013).





Chapter 2

The Rank Pricing Problem

In this chapter, we focus on the Rank Pricing Problem as stated in Rusmevichientong
et al. (2006), that is, a ranking-based pricing model with unit-demand customers with
a positive budget and unlimited supply of products. For a detailed literature review
on the RPP, see Chapter 1. The previous literature focuses on complexity results and
approximation algorithms. To the best of our knowledge, no exact optimization models
have been proposed in the literature to deal with it so far. To address the RPP, we present
a nonlinear bilevel formulation in which the company acts as a leader and determines the
prices of the products. Once the prices are fixed, each customer, which acts as a follower,
solves his own optimization problem. Besides, a non-linear single level formulation is
proposed, based on the fact that a customer purchases the highest-ranked product among
all the products he can afford. We linearize the formulations by means of two types of
auxiliary variables and derive new valid inequalities. These inequalities are separated and
included into the models through the development of a branch-and-cut algorithm. We
also take advantage of the fact that some of its constraints constitute a special case of
the Set Packing Problem and other properties of the problem in order to strengthen the
formulations. We develop some preprocessing techniques to be applied to the instances
before solving them. Finally, we present the results of our computational analysis, in which
we compare the formulations and show that the results obtained reduce the computational
effort when obtaining optimal solutions.

The remainder of the chapter is organized as follows. Section 2.1 is devoted to a bilevel
formulation for the RPP; in Section 2.2, the RPP is formulated directly as a single level
nonlinear model; Section 2.3 includes two linearizations that apply to both models and
the development of other valid inequalities to strengthen their linear relaxations through
the implementation of branch-and-cut algorithms; in Section 2.4 some families of clique
inequalities associated to a subset of constraints are studied attending to the formulations;
Section 2.5 includes some preprocessing results; and Section 2.6 is devoted to testing the
performance of the models by means of a computational study.

19
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2.1 Notation and bilevel formulation

Let K = {1, . . . , |K|} be the set of customers and I = {1, . . . , |I|} the set of products.
Each customer k ∈ K has a subset of acceptable products Ik ⊆ I so that k would rather
not make any purchase than buy a product i /∈ Ik. Similarly, we say that a customer
k is acceptable for a product i if customer k is a potential buyer of product i. The set
of acceptable customers for i is Ki := {k ∈ K : i ∈ Ik}. Without loss of generality,
we assume that customers are interested in at least one product from the company, i.e.
Ik 6= ∅ ∀k ∈ K, and that each product is acceptable for at least one customer, that is,
Ki 6= ∅ ∀i ∈ I. Otherwise, the customer and/or the product can be removed from the
optimization process.

Every customer k makes a ranked list of the products in Ik according to his preferences,
usually named his list of preferences. To describe this ranking in the bilevel formulation,
we set a preference value ski > 0 for each customer k ∈ K and each of his acceptable
products i ∈ Ik, where ski > skj if customer k prefers product i over product j. We
also assume that for each customer all preferences are strict, so that he never likes two
products the same.

Finally, each customer k is endowed with a fixed budget. In order to keep notation
consistent in the formulation, and given that different customers may have the same
budget, we define set M = {1, . . . , |M |} as the set of indices that refer to the different
budgets of the customers, and B = (bm)m∈M as the (ordered) set of different budgets,
so that bm1 < bm2 if m1 < m2. To describe a customer’s budget, we define a function
σ : K → M such that σ(k) = m if the budget of customer k is the m-th smallest
budget bm. We say that a customer k1 is richer than k2 if σ(k1) > σ(k2), and the richest
customers are those whose budget is b|M |. Since it will be useful in following sections, we
set b0 = 0.

The RPP aims at establishing the prices of a set of products sold by a company so as to
maximize its revenue, the sum of the prices of all items sold. Each customer purchases
his most preferred product among the ones he can afford. Note that if a customer cannot
afford any product, he will not purchase anything. Therefore, the company, acting as the
upper level decision maker, decides on the prices of the products, pi ≥ 0, i ∈ I. At the
lower level of the hierarchy, the customers decide which product to purchase. For this
purpose, we introduce binary variables xki , k ∈ K, i ∈ Ik, for every customer’s purchase
decision, that is, xki = 1 if and only if customer k buys product i. The bilevel formulation
for the RPP is:

(BNLMp) max
p

∑
k∈K

∑
i∈Ik

pix
k
i (2.1a)

s.t. pi ≥ 0 ∀i ∈ I, (2.1b)

where ∀k ∈ K, xk is an optimal solution of

max
xk

∑
i∈Ik

ski x
k
i (2.1c)

s.t.
∑
i∈Ik

xki ≤ 1, (2.1d)
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∑
i∈Ik

pix
k
i ≤ bσ(k), (2.1e)

xki ∈ {0, 1} ∀i ∈ Ik, (2.1f)

where constraint (2.1d) forces customer k to buy one product or none and (2.1e) estab-
lishes that customer k only buys a product if he can afford it. (BNLMp) is a nonlinear
bilevel problem with multiple independent followers. Notice that the unlimited supply as-
sumption guarantees that each customer solves a problem involving only the upper level
variables and his own variables, thus they are independent followers.

The following result proves that (BNLMp) is well-posed, in the sense that the lower level
problem has a unique optimal solution for a given vector of prices.

Proposition 2.1. The lower level optimization problems of formulation (BNLMp) have
a unique optimal solution.

Proof. The objective function of the lower level problem of (BNLMp) for a given customer
k is

∑
i∈Ik s

k
i x

k
i , with coefficients ski > 0, ski 6= skj ∀i, j ∈ Ik, i 6= j. Constraints (2.1d)

ensure that at most one x-variable can take value one. If pi > bσ(k) ∀i ∈ Ik, then the
optimal solution is given by xki = 0 ∀i ∈ Ik. Otherwise, the optimal solution is xki = 1
for the unique product i such that ski = max

{
skj : j ∈ Ik, pj ≤ bσ(k)

}
, xkj = 0 for all

j ∈ Ik : j 6= i.

It is worth noticing that, although we have focused on the unit-demand case, this for-
mulation and the following ones also apply if a customer k is interested in purchasing dk

copies of the same product and his budget represents the maximum amount he is willing
to pay per copy. Indeed, without loss of generality, it suffices to replace the customer
with dk customers with such budget and the same list of preferences. Alternatively, we
can replace the objective function by

∑
k∈K d

k
∑

i∈Ik pix
k
i .

The following illustrative example facilitates the understanding of the RPP.

Example 2.2. Table 2.1 shows the preference matrix and the vector of budgets of an
instance of the RPP with 10 customers and 5 products. Each entry of the matrix shows
the pair (tki , s

k
i ), where tki is the ranking that the customer has over the product, and

ski equals the associated preference value. If product i is the most preferred product for
customer k, then tki = 1 and ski = |I| = 5; if j is the second most preferred product
for k, then the entry in the matrix is (2, 4), et cetera. In this example, |M | = 7 and
b1 = 16, b2 = 25, b3 = 31, . . . , b7 = 53. Furthermore, for instance, for customer k = 7,
I7 = {1, 2, 3, 5}, and σ(7) = 2 because he has the second lowest budget. After solving this
RPP, we obtain that an optimal solution is provided setting the prices indicated in the
last row of Table 2.1. Taking into account these prices and the preferences, the customers
purchase the product whose preference is marked with an asterisk in the preference matrix.
For instance, customer 4 can only afford products 2, 4 and 5, and he purchases product
5 (for less than his budget) because it is his preferred one among them; whereas customer
7 purchases product 2, his least preferred one, because it is the only one in his list of
preferences that he can afford.

The fact, already observed in Rusmevichientong et al. (2006), that an optimal solution
of (BNLMp) exists such that pi ∈ B ∀i ∈ I, suggests us to define new binary variables
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Product 1 Product 2 Product 3 Product 4 Product 5 Budgets

Customer 1 -* (3,3)* (1,5)* -* (2,4)* 53

Customer 2 (2,4)* -* (1,5)* -* -* 40

Customer 3 (1,5)* -* (2,4)* (4,2)* (3,3)* 40

Customer 4 (4,2)* (3,3)* (5,1)* (2,4)* (1,5)* 38

Customer 5 (1,5)* -* (3,3)* -* (2,4)* 32

Customer 6 (4,2)* (3,3)* (1,5)* (5,1)* (2,4)* 31

Customer 7 (1,5)* (4,2)* (2,4)* -* (3,3)* 25

Customer 8 (1,5)* -* (3,3)* (2,4)* -* 25

Customer 9 -* -* (2,4)* (1,5)* -* 25

Customer 10 (2,4)* (1,5)* -* (4,2)* (3,3)* 16

Optimal prices 40* 16* 53* 25* 31*

Table 2.1: Preference matrix, vector of budgets and an optimal solution to an instance of
the RPP with 10 customers and 5 products

vmi , i ∈ I, m ∈ M representing the candidate prices of products, that is, vmi = 1 if and
only if the price of product i is set to bm in a feasible solution. Since each product i has
only one price, only one binary variable vmi can take value 1 ∀i ∈ I. Therefore, the price
of product i can be expressed as pi =

∑
m∈M bmvmi . Furthermore, the set of indices m of

candidate prices bm at which k can afford i is defined as Mk = {1, . . . , σ(k)}.

We can now reformulate the problem replacing pi variables by vmi variables, replacing
constraints (2.1b) with the following constraints in order to ensure products have at most
one price: ∑

m∈M

vmi ≤ 1 ∀i ∈ I, (2.2a)

vmi ∈ {0, 1} ∀i ∈ I,m ∈M, (2.2b)

and replacing constraints (2.1e) of the lower level problem with

xki ≤
∑
m∈Mk

vmi ∀k ∈ K, i ∈ Ik. (2.2c)

The resulting bilevel formulation is:

(BNLMv) max
v

∑
k∈K

∑
i∈Ik

( ∑
m∈Mk

bmvmi

)
xki (2.3a)

s.t.
∑
m∈M

vmi ≤ 1 ∀i ∈ I, (2.3b)

vmi ∈ {0, 1} ∀i ∈ I,m ∈M, (2.3c)

where ∀k ∈ K, xk is an optimal solution of

max
xk

∑
i∈Ik

ski x
k
i (2.3d)
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s.t.
∑
i∈Ik

xki ≤ 1, (2.3e)

xki ≤
∑
m∈Mk

vmi ∀k ∈ K, i ∈ Ik, (2.3f)

xki ∈ {0, 1} ∀i ∈ Ik. (2.3g)

Now, we focus on the lower level problem of a customer k for a fixed integer vector of
prices v. The fact that the matrix corresponding to the feasible set of each lower level
problem of (BNLMv) is TU and the RHS of the constraints are integer enables us to relax
the integrality constraints (2.1f) (see Chapter 1). The lower level problem can be further
simplified taking into account that once the leader variables vmi are known, a subset of
x-variables is determined. If we consider the subset Ik∗ = {i ∈ Ik :

∑
m∈Mk vmi = 1},

variables {xki , k ∈ K, i ∈ Ik \ Ik∗} are automatically settled to 0 since customer k cannot
afford these products. Hence, constraints (2.2c) can be eliminated and the lower level
problem can be formulated as

max
xk

∑
i∈Ik∗

ski x
k
i

s.t.
∑
i∈Ik∗

xki ≤ 1,

xki ≥ 0 i ∈ Ik∗.

For each customer k, the dual problem of the lower level problem is

min
uk

uk

s.t. uk ≥ ski i ∈ Ik∗,
uk ≥ 0.

By duality theory, xk and uk are optimal solutions to the primal and dual problems,
respectively, if and only if ∑

i∈Ik∗
ski x

k
i = uk,∑

i∈Ik∗
xki ≤ 1,

uk ≥ sk ∀i ∈ Ik∗,
xki , u

k ≥ 0.

Thus, the resultant formulation after substitution of uk is

(BNLM) max
v,x

∑
k∈K

∑
i∈Ik

( ∑
m∈Mk

bmvmi

)
xki (2.4a)

s.t.
∑
m∈M

vmi ≤ 1 ∀i ∈ I, (2.4b)
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∑
i∈Ik

xki ≤ 1 ∀k ∈ K, (2.4c)

xki ≤
∑
m∈Mk

vmi ∀k ∈ K, i ∈ Ik, (2.4d)∑
j∈Ik

skjx
k
j ≥ ski

∑
m∈Mk

vmi ∀k ∈ K, i ∈ Ik, (2.4e)

vmi , x
k
i ∈ {0, 1} ∀k ∈ K, i ∈ Ik,m ∈M, (2.4f)

where the objective function (2.4a) is the same as in model (BNLMv) after replacing pi by∑
m∈Mk bmvmi (since for vmi = 1 with m > σ(k), xki = 0). Constraints (2.4b) are the upper

level constraints (2.2a) that guarantee that products have at most one price. Constraints
(2.4c) and (2.4d) are the lower level constraints (2.1d) and (2.2c), respectively. These
constraints ensure that customers purchase at most one product which they can afford.
Finally, constraints (2.4e) assure that, if customer k can afford product i, he purchases a
product j he likes the same or better than i. Note that constraints (2.4e) affect i ∈ Ik
instead of i ∈ Ik∗. If i ∈ Ik \ Ik∗ then

∑
m∈Mk vmi = 0 and the constraint always holds.

Otherwise,
∑

m∈Mk vmi = 1 and the constraint applies.

2.2 Single level formulation

In this section, we formulate the problem directly as a single level optimization problem.
First of all, we introduce some definitions that will be used to represent the preferences
of the customers in all the formulations from now on.

Let k ∈ K be a customer and i, j ∈ Ik two products. If customer k prefers product i over
product j (i.e. ski > skj ), it is denoted i ≺k j or j �k i. Since preferences are strict, for
any given products i, j ∈ Ik, it follows i ≺k j or i �k j. It is also worth noticing that a
customer k buys product i if and only if i ∈ Ik, its price is below the customer budget
and all the products more preferred than i have a price higher than his budget. In terms
of the binary variables xki , v

m
i previously defined:

xki = 1 ⇔
∑
m∈Mk

vmi = 1 and
∑
m∈Mk

vmj = 0 ∀j ∈ Ik : j ≺k i.

Using this notation and decision variables xki , v
m
i , a single level nonlinear formulation

with two-index variables is

(2INLM) max
v,x

∑
k∈K

∑
i∈Ik

( ∑
m∈Mk

bmvmi

)
xki (2.5a)

s.t.
∑
i∈Ik

xki ≤ 1 ∀k ∈ K, (2.5b)∑
m∈M

vmi ≤ 1 ∀i ∈ I, (2.5c)

xki +
∑
m∈Mk

vmj ≤ 1 ∀k ∈ K, i ∈ Ik, j ∈ Ik : j ≺k i, (2.5d)
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xki +
∑
m∈M :
m>σ(k)

vmi ≤ 1 ∀k ∈ K, i ∈ Ik, (2.5e)

vmi , x
k
i ∈ {0, 1} ∀k ∈ K, i ∈ Ik,m ∈M, (2.5f)

where constraints (2.4d) have been replaced by (2.5e) using constraints (2.5c). Constraints
(2.5d), also called preference constraints, are given by the previous reasoning and can be
strengthened by means of the following result:

Proposition 2.3. The following constraints∑
j∈Ik:
j�ki

xkj +
∑
m∈Mk

vmi ≤ 1 ∀k ∈ K, i ∈ Ik, (2.6)

are valid for (2INLM) and dominate constraints (2.5d).

Proof. First of all, we shall prove the validity of (2.6). We have
∑

j∈Ik:j�ki x
k
j ≤

∑
j∈Ik x

k
j ≤

1 using (2.5b) and
∑

m∈Mk vmi ≤
∑

m∈M vmi ≤ 1 because of (2.5c). Furthermore, provided
that product i is within k’s budget, i.e. if

∑
m∈Mk vmi = 1, then customer k will not buy

any product he likes less than i, so
∑

j∈Ik:j�ki x
k
j = 0, so (2.6) are valid.

If we change the notation of (2.6) and write
∑

i′∈Ik:i′�kj x
k
i′ +

∑
m∈Mk vmj ≤ 1, ∀k ∈ K,

j ∈ Ik, we obtain

xki +
∑
m∈Mk

vmj ≤
∑
i′∈Ik:
i′�kj

xki′ +
∑
m∈Mk

vmj ≤ 1.

Therefore, we have proved that (2.6) are stronger than (2.5d).

Interestingly, we can compare formulations (BNLM) and (2INLM) (with set (2.6) instead
of (2.5d)) theoretically.

Set (2.6) is dominated by the following set:∑
m∈Mk

vmi ≤ xki +
∑
j∈Ik:
j≺ki

xkj ∀k ∈ K, i ∈ Ik. (2.7)

The justification is clear considering that the RHS of (2.7) is smaller than or equal to
1 −

∑
j∈Ik:
j�ki

xkj due to constraints (2.5b). However, in practice the sets (2.6) and (2.7)

perform nearly identically, so throughout the chapter we refer to model (2INLM) with (2.6)
instead of (2.7). The reason is that in Section 2.4 we study the Set Packing problem related
to a subset of the constraints of (2INLM), but (2.7) are not set packing constraints. In
the following, we use (2.7) to prove that formulation (2INLM) is tighter than formulation
(BNLM). The result is straightforward noting that the formulations are identical except
for sets (2.6) and (2.4e), and considering the following proposition.

Proposition 2.4. The family of constraints (2.7) from (2INLM) dominates family (2.4e)
from (BNLM).
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Proof. Consider a fixed customer k ∈ K and product i ∈ Ik, and assume that the cor-
responding inequality from set (2.7) holds. We are going to prove that, in this case, the
corresponding inequality from set (2.4e) holds as well. Taking into account that for a

given product j ∈ Ik such that j ≺k i it holds skj > ski > 0 and hence
skj
ski

> 1, we can

write: ∑
m∈Mk

vmi ≤ xki +
∑

j∈Ik:j≺ki

xkj <
ski
ski
xki +

∑
j≺ki

skj
ski
xkj +

∑
j�ki

skj
ski
xkj =

∑
j∈Ik

skj
ski
xkj .

In Section 2.6, we see that the computational results confirm the theoretical comparison
of the formulations obtained in this section.

2.3 Linearizing and strengthening formulations

Formulations (BNLM) and (2INLM) are nonlinear because of the objective functions
(2.4a) and (2.5a). Since both objective functions are the same, from now on we refer to
(2.5a). In order to linearize it, one approach consists in introducing variables zk, k ∈ K,
representing the profit obtained from customer k. Thus, the objective (2.5a) can be
replaced by

max
v,x,z

∑
k∈K

zk

and the following constraints need to be added to the formulation

zk ≤
∑
m∈Mk

bmvmi + bσ(k)
(
1− xki

)
∀k ∈ K, i ∈ Ik, (2.8a)

zk ≤ bσ(k)
∑
i∈Ik

xki ∀k ∈ K, (2.8b)

where constraints (2.8a) ensure that if customer k buys product i, zk =
∑

m∈Mk bmvmi and
(2.8b) guarantee zk = 0 if customer k does not make any purchase. Constraints (2.8a) can
be strengthened taking into account that customer k buys at most one item, obtaining

zk ≤
∑
m∈Mk

bmvmi + bσ(k)
∑

j∈Ik:j 6=i

xkj ∀k ∈ K, i ∈ Ik. (2.9)

Therefore, we can reformulate problem (2INLM) obtaining a linear model as follows:

(2IM1) max
v,x,z

∑
k∈K

zk (2.10a)

s.t.
∑
i∈Ik

xki ≤ 1 ∀k ∈ K, (2.10b)∑
m∈M

vmi ≤ 1 ∀i ∈ I, (2.10c)
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∑
j∈Ik:
j�ki

xkj +
∑
m∈Mk

vmi ≤ 1 ∀k ∈ K, i ∈ Ik, (2.10d)

xki +
∑
m∈M :
m>σ(k)

vmi ≤ 1 ∀k ∈ K, i ∈ Ik, (2.10e)

zk ≤
∑
m∈Mk

bmvmi + bσ(k)
∑

j∈Ik:j 6=i

xkj ∀k ∈ K, i ∈ Ik, (2.10f)

zk ≤ bσ(k)
∑
i∈Ik

xki ∀k ∈ K, (2.10g)

vmi , x
k
i ∈ {0, 1}, zk ≥ 0 ∀k ∈ K, i ∈ Ik,m ∈M. (2.10h)

The nonlinearity of the objective function (2.5a) can alternatively be handled through
the introduction of variables zki , k ∈ K, i ∈ Ik, representing the profit obtained from
customer k associated to product i. With these variables, the objective is

max
v,x,z

∑
k∈K

∑
i∈Ik

zki

and the following constraints ought to be added to the model:

zki ≤
∑
m∈Mk

bmvmi ∀k ∈ K, i ∈ Ik,

zki ≤ bσ(k)xki ∀k ∈ K, i ∈ Ik.

Thus, the resulting model is

(2IM2) max
v,x,z

∑
k∈K

∑
i∈Ik

zki (2.11a)

s.t.
∑
i∈Ik

xki ≤ 1 ∀k ∈ K, (2.11b)∑
m∈M

vmi ≤ 1 ∀i ∈ I, (2.11c)∑
j∈Ik:
j�ki

xkj +
∑
m∈Mk

vmi ≤ 1 ∀k ∈ K, i ∈ Ik, (2.11d)

xki +
∑
m∈M :
m>σ(k)

vmi ≤ 1 ∀k ∈ K, i ∈ Ik, (2.11e)

zki ≤
∑
m∈Mk

bmvmi ∀k ∈ K, i ∈ Ik, (2.11f)

zki ≤ bσ(k)xki ∀k ∈ K, i ∈ Ik, (2.11g)

vmi , x
k
i ∈ {0, 1}, zki ≥ 0 ∀k ∈ K, i ∈ Ik,m ∈M. (2.11h)

In formulations (2IM1) and (2IM2), the values of the z-variables associated to an as-
signment of prices to products (v-variables) and products to customers (x-variables) are
obtained, respectively, by means of constraints (2.10f)-(2.10g) and (2.11f)-(2.11g). Al-
though these constraints suffice to obtain the desired values of the z-variables, they lead
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to weak linear relaxations. Given the shape of the objective function, this weakness is
directly transmitted to the upper bounds in the branch-and-bound method. Furthermore,
in (2.10f) (resp. (2.11f)), a bound for z is obtained exclusively from the v-variables, and in
(2.10g) (resp. (2.11g)), from the x-variables. These two issues invite to develop stronger
constraints on the z-variables.

In what follows, two families of valid inequalities for (2IM1) and (2IM2) are presented.
As will be shown in the computational study, they produce the desired improvement in
the upper bounds given by the LP relaxation, and they have the particularity of relating
the z-variables with both the x- and the v-variables at a time.

Proposition 2.5. The following inequalities are valid for (2IM1):

zk ≤
∑
i∈Ik

brki xki +

σ(k)∑
m=rki +1

(
bm − brki

)
vmi +

∑
m∈Qki

(
bm − brki

) (
xki + vmi − 1

) , (2.12)

∀k ∈ K, integers rki ∈ {0, . . . , σ(k)} ∀i ∈ Ik and subsets Qk
i ⊆ {1, . . . , rki − 1} ∀i ∈ Ik.

Proof. Notice that in the case rki = 0, set Qk
i must be empty. We aim at proving that

constraints (2.12) are valid for (2IM1). Let us assume xki0 = 1 for some i0 ∈ Ik, and prove
that the sum of the addends corresponding to product i0 in the RHS of the constraint is
greater than or equal to its price. Thus, such sum is

br
k
i0 +

σ(k)∑
m=rki0

+1

(
bm − br

k
i0

)
vmi0 +

∑
m∈Qki0

(
bm − br

k
i0

)
vmi0 , (2.13)

and we know that vm0
i0

= 1 for some m0 ≤ σ(k). If m0 > rki0 , then vmi0 = 0 ∀m ∈ Qk
i0

and

we get br
k
i0 + (bm0 − br

k
i0 ) = bm0 , which is exactly the price of i0. On the other hand, if

m0 ≤ rki0 we have vmi0 = 0 ∀m : rki0 < m ≤ σ(k), and therefore (2.13) becomes

br
k
i0 +

∑
m∈Qki0

(
bm − br

k
i0

)
vmi0 .

If m0 /∈ Qk
i0

, we obtain br
k
i0 , which is greater than or equal to bm0 because rki0 ≥ m0;

otherwise, if m0 ∈ Qk
i0

, then the term becomes br
k
i0 + (bm0 − br

k
i0 ) = bm0 .

Now, let us suppose xki0 = 0 for i0 ∈ Ik. Then the addends corresponding to product i0
become

σ(k)∑
m=rki0

+1

(
bm − br

k
i0

)
vmi0 +

∑
m∈Qki0

(
bm − br

k
i0

) (
vmi0 − 1

)
.

Since (bm − br
k
i0 ) > 0 for m : rki0 < m ≤ σ(k) and (bm − br

k
i0 ) < 0 for m ∈ Qk

i0
, then the

sum is greater than or equal to zero.

Therefore, if xki = 0 ∀i ∈ Ik, zk is bounded from above by a sum of non-negative values.
Otherwise, at any feasible solution at most one x-variable can take value 1 for a fixed
customer k, say xki0 . In this case, the upper bound is obtained as the sum of the term
corresponding to product i0 (which has been proved to be greater than or equal to the
price assigned to i0) plus some non-negative addends.
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Remark 2.6. The family of inequalities (2.12) contains all of the previous upper bound
constraints on zk of (2IM1). Constraints (2.10f) are obtained by, given a customer k ∈ K
and a product i ∈ Ik, setting rki = 0, rkj = σ(k) ∀j ∈ Ik \ {i} and Qk

j = ∅ ∀j ∈ Ik in
(2.12); constraints (2.10g), by, given a customer k ∈ K, setting rki = σ(k) and Qk

i = ∅
∀i ∈ Ik.

Proposition 2.7. The inequalities of the following family are valid for (2IM2):

zki ≤ br
k
i xki +

σ(k)∑
m=rki +1

(
bm − brki

)
vmi +

∑
m∈Qki

(
bm − brki

) (
xki + vmi − 1

)
, (2.14)

∀k ∈ K, i ∈ Ik, any integer rki ∈ {0, . . . , σ(k)} and any subset Qk
i ⊆ {1, . . . , rki − 1}.

Proof. First assume that xki = 1. This implies vm0
i = 1 for some m0 ≤ σ(k). If m0 ≤ rki ,

then vmi = 0 ∀m : rki < m ≤ σ(k) and (2.14) becomes zki ≤ br
k
i +

∑
m∈Qki

(bm − brki )vmi .

If m0 ∈ Qk
i , then the RHS of the constraint is br

k
i + (bm0 − br

k
i ) = bm0 , which is valid

as it is the exact price of product i; otherwise, the RHS of the constraint is br
k
i , valid

since br
k
i ≥ bm0 . If m0 > rki , then vmi = 0 ∀m ∈ Qk

i and the inequality we obtain is
zki ≤ br

k
i + (bm0 − brki ), also valid.

On the other hand, if we assume xki = 0, then the inequality holds trivially because its
RHS is non negative and zki = 0.

Remark 2.8. The family of inequalities (2.14) contains all of the previous upper bound
constraints on zki of (2IM2): constraints (2.11f) are obtained by setting rki = 0 and Qk

i = ∅
∀k ∈ K, i ∈ Ik, whereas constraints (2.11g) appear as a result of setting rki = σ(k), Qk

i = ∅
∀k, i ∈ Ik.

The family of inequalities from Proposition 2.7 (and consequently that of Proposition 2.5)
is further improved in Chapter 4. However, we present these sets here because they were
introduced in this way in the corresponding paper Calvete et al. (2019). Furthermore, the
inequalities presented here are the ones used in the computational tests of Section 2.6.

The number of inequalities of Propositions 2.5 and 2.7 increases exponentially as the
number of customers and products grows. However, these inequalities can be efficiently
separated and added dynamically to formulations (2IM1) and (2IM2), respectively, in a
branch-and-cut mode. Thus, regarding the family of valid inequalities (2.12), and given
a fractional optimal solution of the linear relaxation of (2IM1), (vmi , x

k
i , z

k), our aim is to
find, for each k ∈ K, integers rki and subsets Qk

i ∀i ∈ Ik such that the upper bound given
by the RHS of the resultant constraint of the family is as tight as possible. As the sum
given by the RHS of (2.12) can be decomposed by products and given that z is fixed, our
problem reduces to

min
r∈{0,...,σ(k)},
Q⊆{1,...,r−1}

brxki +

σ(k)∑
m=r+1

(bm − br) vmi +
∑
m∈Q

(bm − br)
(
xki + vmi − 1

)
, (2.15)

where (k, i) ∈ K × Ik is fixed, and we have denoted rki as r and Qk
i as Q so as to

simplify notation. It is worth noticing that this pair (r,Q) also minimizes the RHS of the
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corresponding constraint of family (2.14) when given an optimal fractional solution of the
linear relaxation of (2IM2), (vmi , x

k
i , z

k
i ), and fixed (k, i) ∈ K × Ik. Thus, finding a pair

(r,Q) that minimizes (2.15) for a given customer k and product i not only leads to the
development of an efficient separation algorithm for the set of valid inequalities (2.12),
but also for the set (2.14).

The fact that (bm−br) ≤ 0 ∀m ≤ r implies that, for a given r, Qr := {m ∈ {1, . . . , r−1} :
xki + vmi > 1} minimizes (2.15). Therefore, if W (r) is the value of the sum (2.15) when
Q = Qr, our problem consists in minimizing W (r) for r ∈ {0, . . . , σ(k)}.

To do so, we shall study the variation of W (r) as r increases. Given that Qr+1 = Qr∪{r}
if xki + vri > 1, Qr+1 = Qr otherwise, for r < σ(k) we get

W (r + 1)−W (r) =

br+1xki +

σ(k)∑
m=r+2

(
bm − br+1

)
vmi +

∑
m∈Qr+1

(
bm − br+1

) (
xki + vmi − 1

)
−

brxki +

σ(k)∑
m=r+1

(bm − br) vmi +
∑
m∈Qr

(bm − br)
(
xki + vmi − 1

)
= (br+1 − br)xki +

σ(k)∑
m=r+2

(
br − br+1

)
vmi −

(
br+1 − br

)
vr+1
i

+
∑

m∈Qr+1

(
br − br+1

) (
xki + vmi − 1

)
=
(
br+1 − br

)xki − σ(k)∑
m=r+1

vmi +
∑

m∈Qr+1

(
1− xki − vmi

) . (2.16)

First of all, we are going to prove that, when r increases from 0 to σ(k), W (r) first de-
creases and then increases. We can achieve that by proving that W (r)−W (r− 1) ≥ 0⇒
W (r+1)−W (r) ≥ 0. Since br+1−br > 0 ∀r, it follows from (2.16) that W (r+1)−W (r) ≥
0 ⇔ xki −

∑σ(k)
m=r+1 v

m
i +

∑
m∈Qr+1

(
1− xki − vmi

)
≥ 0 ∀r < σ(k), and therefore demon-

strating the above is equivalent to proving xki −
∑σ(k)

m=r+1 v
m
i +

∑
m∈Qr+1

(
1− xki − vmi

)
−(

xki −
∑σ(k)

m=r v
m
i +

∑
m∈Qr

(
1− xki − vmi

))
≥ 0. But we have

xki −
σ(k)∑

m=r+1

vmi +
∑

m∈Qr+1

(
1− xki − vmi

)
−

xki − σ(k)∑
m=r

vmi +
∑
m∈Qr

(
1− xki − vmi

)
= vri + min

{
0, 1− xki − vri

}
= min

{
vri , 1− xki

}
≥ 0.

Hence, W (r) reaches its minimum value for the smallest r such that W (r)−W (r−1) ≤ 0
and W (r + 1)−W (r) > 0.

Furthermore, noticing in (2.16) that
∑

m∈Qr+1

(
1− xki − vmi

)
≤ 0 ∀r allows us to deduce

that W (r) − W (r − 1) ≤ 0 provided that xki −
∑σ(k)

m=r v
m
i ≤ 0, i.e., if r is such that
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xki ≤
∑σ(k)

m=r v
m
i . This fact saves us having to compute the whole sum (2.16) in order to

know if W (r)−W (r − 1) ≤ 0 whenever xki ≤
∑σ(k)

m=r v
m
i .

After finding a separation for valid inequalities (2.12), the next step consists in defining
a procedure to incorporate these inequalities into formulation (2IM1) dynamically in a
branch-and-cut framework where the starting subproblem of every child node is the final
formulation of the parent node with the corresponding branching x- or v-variable fixed to
either zero or one. A scheme of this procedure is depicted in Algorithm 1. Preliminary
testing shows that the best strategy amounts to adding these inequalities to the formu-
lation provided that the node depth in the branching tree is less than or equal to 4. The
termination criterion is that the optimal value of the linear relaxation of that node does
not improve in the last iteration. Both the algorithm and the branch-and-cut procedure
used to include dynamically inequalities (2.14) into model (2IM2) are analogous to these
ones.

Algorithm 1 Separation of inequalities (2.12)

Let (xki , v
m
i , z

k) be an optimal fractional solution of the linear relaxation of (2IM1).
For every customer k ∈ K do

Step 1. For every product i ∈ Ik do

Step 1.1. Set rki = 0.

Step 1.2. If rki < σ(k) and
∑σ(k)

m=r v
m
i ≤ xki , update rki := rki +1 and repeat Step

1.2.

Otherwise, go to Step 1.3.

Step 1.3. If rki < σ(k) and W (rki + 1) −W (rki ) ≤ 0, update rki := rki + 1 and
repeat Step 1.3.

Otherwise, go to Step 2.

Step 2. Set Qki := {m ∈ {1, . . . , rki − 1} : xki + vmi > 1} ∀i ∈ Ik.
Step 3. Incorporate constraint

zk ≤
∑
i∈Ik

brki xki +

σ(k)∑
m=rki +1

(
bm − br

k
i

)
vmi +

∑
m∈Qk

i

(
bm − br

k
i

)(
xki + vmi − 1

)
to the formulation if and only if it is violated.

2.4 Polyhedral analysis of the set packing subprob-

lem

In this section, we analyze the subproblem of model (2IM1) (resp. model (2IM2)) asso-
ciated to x- and v-variables and constraints (2.10b)-(2.10e) (resp. constraints (2.11b)-
(2.11e)), given that it constitutes a special case of an SP problem. Since this subproblem
is the same for both models (2IM1) and (2IM2), in the rest of the section we shall refer
to the subproblem of model (2IM1). First, we give an introduction on Set Packing prob-
lems and how their properties can be exploited to derive strong valid inequalities, and in
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particular facets of the polytope given by the convex hull of the integer feasible solutions
(see subsection 1.1.3 of Chapter 1).

2.4.1 Set Packing problems

The Set Packing problem is a classical problem in pure Integer Programming and has
been extensively studied (see Balas and Padberg (1976)). A Set Packing Problem (SP)
can be formulated as an integer linear program of the form

max
x

cx (2.17a)

s.t. Ax ≤ e, (2.17b)

x ∈ {0, 1}n, (2.17c)

where c ∈ Rn, A ∈ {0, 1}m×n and et = (1, . . . , 1) is a m-vector of ones. The interpretation
can be stated as follows. Let M = {1, . . . ,m} be a set of elements associated with the
rows of A, and several subsets Mj ⊂M of weight cj, j ∈ {1, . . . , n} such that Mj contains
an element i ∈ M iff aij = 1. Then find a maximum-weight family of subsets Mj such
that each element i ∈M belongs to at most one subset Mj.

The SP problem is closely related (in fact, both problems are equivalent) to the Set
Partitioning Problem (SPP), where the set of constraints (2.17b) has to be satisfied in
equality. The name comes from the interpretation, since in this case we seek for subsets
Mj that constitute a partition of M . It also has a more distant relative called the Set
Covering Problem (SC), where (2.17b) is replaced with Ax ≥ e. The SP, SC and SPP
problems find applications in a large variety of fields, like crew scheduling of airlines or
railroads, facility location, stock cutting or truck delivery (see Vemuganti (1998)). They
can also appear as subproblems associated to a subset of binary variables, like in our case.
The three problems are NP-hard (see Garey and Johnson (1979)). Here we focus on the
polyhedral structure of the SP problem. We introduce the connection between the SP
problem and the Node Packing Problem, and explain how the study of the intersection
graph of the latter is useful in the generation of valid inequalities for the former. A more
in-depth introduction to these topics can be found in Padberg (1973); Balas and Padberg
(1976); Atamtürk et al. (2000).

Let G = (V,E) be a loopless undirected graph with |V | = n, |E| = m. A node packing
(vertex packing, stable set, independent set) in G is a non empty subset V ′ ⊂ V of
pairwise non adjacent nodes. The Node Packing Problem (NP) is then the problem of
obtaining a node packing of maximal cardinality on G, and can be formulated as

max
x

etx

s.t. AGx ≤ e,

x ∈ {0, 1}n,

where AG is the (node-edge) incidence matrix of G, i.e. AG = (aij) is a n×m (0,1)-matrix
such that aij = 1 iff node j is one of the ends of edge i. Clearly, the NP problem is a special
case of the SP problem. Furthermore, we can reinterpret the SP as a node packing by
noticing that every SP instance can be univocally identified with a graph GA = (VA, EA)
called the intersection graph (conflict graph). GA consists of a node vj representing each
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binary variable and xj and (vi, vj) ∈ EA if and only if akiakj = 1 in some row k of A, i.e.
columns i and j of A have at least one positive entry in common. The incidence vector
of a subset V ′ ⊂ V is a binary vector (x1, . . . , x|V |) where xj = 1 if and only if vj ∈ V ′,
for j ∈ {1, . . . , |V |}. The packing polytope PG is the convex hull of the incidence vectors
of all the packings of the intersection graph G. And since the feasible solutions of the SP
problem can be identified with packings in its conflict graph, the polytope PG is the same
as the polytope given by the convex hull of feasible solutions to the original SP program.
This result is useful to identify valid inequalities of an SP instance by means of special
structures (subgraphs) of its intersection graph. G[V ′] = (V ′, EV ′) denotes the subgraph
of graph G = (V,E) induced by V ′ ⊆ V when EV ′ = {(vi, vj) ∈ E : vi, vj ∈ S}.

One of the first structures of the intersection graph derived in the literature that originates
facets of PG is called clique.

Definition 2.9 (Clique). A complete graph is that in which all the nodes are pairwise
adjacent. Given a graph G = (V,E) and a subset of nodes V ′ ⊆ V , G[V ′] is a clique in
G if it is a maximal complete subgraph of G, i.e. if G[V ′] is complete and G[V ′ ∪ {v}] is
not complete for any node v ∈ V \ V ′.

Fulkerson (1971) and Padberg (1973) proved that the valid inequalities associated to
cliques are facet-defining:

Theorem 2.10. An inequality
∑

v∈V ′ xv ≤ 1, where V ′ ⊆ V , is a facet for PG if and only
if G[V ′] is a clique in G.

Padberg (1973) also proved that some facets can be derived from odd holes (chordless
cycles of odd length) in G. Other configurations that help to derive facets of the packing
polytope include odd anti-holes (Nemhauser and Trotter (1974)), some types of webs and
anti-webs (Trotter (1975)), subdivided wheels (Cheng and Cunningham (1997)), grilles
(Cánovas et al. (2000)), and many more. Clique facets (valid inequalities induced by a
clique) are particularly interesting because they are easier to identify in the graph than
other structures, and their addition to a problem generally provides better results (when
trying to solve it) than the addition of other types of facets which are more complex.
Another reason is that, unlike cliques, other subgraphs G[V ′] of G (for instance holes or
webs) do not produce facets of PG, but of PG[V ′]. They are nonetheless useful to derive
facet-defining inequalities of the original graph when combined with lifting procedures
(see Nemhauser and Trotter (1974); Padberg (1975); Landete (2001), among others).

2.4.2 Set packing subproblem of (2IM1)

In order to apply the SP properties to our problem, we begin by identifying the intersection
graph G2IM associated to the previously defined subproblem of formulation (2IM1). G2IM
has a set of nodes associated to variables xki and another set associated to variables vmi . As
for the edges, the large amount of them makes drawing it impractical, so we will follow
a different approach in order to describe the intersection graph based on the following
proposition. Before proving the main results of this section, we introduce some useful
notation:

Definition 2.11. Let k be a customer, i ∈ Ik a product and P ⊆ Ik a subset of products
in which k is interested. Then we define B(k, i) = {j ∈ Ik : j ≺k i} as the set of products
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k prefers over i, and B(k, i) = {j ∈ Ik : j �k i} as the set of products k likes less than i.
Similarly, we define B(k, P ) = {i ∈ Ik : i ≺k j ∀j ∈ P} as the set of products that are
preferred by k to all the products in P . Finally, B(k, P ) := {i ∈ Ik : i �k j ∀j ∈ P}. In
the special case when P = ∅ we define B(k, ∅) := I and B(k, ∅) := I.

Proposition 2.12. Given the intersection graph G2IM associated to the subgraph of
(2IM1):

(1) Two nodes xki , xkj , i 6= j, are adjacent ∀i, j ∈ Ik.

(2) Two nodes xki , xk
′
i , k 6= k′, are never adjacent.

(3) Two nodes xki , xk
′
j , k 6= k′, i 6= j, are adjacent if and only if σ(k) ≥ σ(k′) and

j ∈ B(k, i) (or, equivalently, i ∈ B(k, j)).

(4) Two nodes xki , vmi , are adjacent if and only if m > σ(k).

(5) Two nodes xki , vmj , i 6= j are adjacent if and only if m ≤ σ(k) and j ∈ B(k, i).

(6) Two nodes vmi , vm
′

i , m 6= m′, are adjacent ∀m,m′.

(7) Two nodes vmi , vm
′

j , i 6= j, are never adjacent.

Proof.

(1) A customer k purchases at most one product.

(2) The fact that a customer k purchases a product i does not imply that another
customer cannot afford it (that depends on i’s price), and therefore does not allow
us to determine whether another customer is going to buy it or not.

(3) Let us suppose xki = 1, i.e., customer k purchases product i. That implies k is not able
to afford any product j ∈ B(k, i), and therefore no customer k′ with σ(k′) ≤ σ(k) is
able to afford it either, hence xk

′
j = 0. However, the fact that k purchases product i

does not allow us to infer which products will not be purchased by other customers
k′ richer than k or which customers will not purchase a product j ∈ B(k, i) ∪ {i}.

(4) If xki = 1, k can afford product i, so there must exist m0 ≤ σ(k) such that vm0
i = 1.

Since product i can have one price at most, it follows vmi = 0 ∀m > σ(k).

(5) Let us suppose xki = 1, i.e. customer k purchases product i. That implies k is not able
to afford any product j such that j ≺k i, that is, vmj = 0 ∀j ∈ B(k, i), ∀m ≤ σ(k).

However, it does not provide any insight into the prices of products j ∈ B(k, i).

(6) A product i can have at most one price.

(7) Knowing the price of a product does not provide any insight into the price of the
rest.

In what follows, and for the sake of clarity, we show an example of the neighborhoods
corresponding with given nodes xki and vmi in the intersection graph we have just intro-
duced.
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Figure 2.1: Preference matrix of an instance of (2INLM) and nodes xki adjacent to x3
5 (x3

5

in grey)

Figure 2.2: Matrix (vmi ) of an instance of (2INLM) and nodes vmi adjacent to x3
5

Figure 2.3: Preference matrix of an instance of (2INLM) and nodes xki adjacent to v3
4



36 The Rank Pricing Problem

Figure 2.4: Matrix (vmi ) of an instance of (2INLM) and nodes vmi adjacent to v3
4 (v3

4 in
grey)

Example 2.13. Figure 2.1 shows a small instance of the RPP that we will use throughout
the section combined with Figures 2.2-2.4 to illustrate our results. Thus, the matrix in
Figures 2.1 and 2.3 (it is the same matrix) is the preference matrix, and entry (k, i) shows
the ranking tki of customer k over product i. If i is the favorite product for customer k,
then tki = 1; if j is the second most preferred product for k, tkj = 2, et cetera. Similarly,
making use of the previously described notation, we have |M | = 4, and b1 = 5, b2 = 8,
b3 = 14 and b4 = 20.

Furthermore, we make use of the preference matrix to depict the nodes of G2IM associated
to x-variables, so that the node associated to xki is represented in the entry (k, i) of the
matrices in Figures 2.1 and 2.3. The nodes associated to v-variables are represented
through a different matrix in Figures 2.2 and 2.4, where again entry (m, i) of the matrix
corresponds to node (and variable) vmi . We use Figure 2.1 to show which nodes related to
x-variables are adjacent to a specific x-variable, x3

5 in our example. Figure 2.2 depicts the
set of v-nodes adjacent to this same node. As for Figures 2.3 and 2.4, they show the set of
x-nodes and v-nodes (resp.) adjacent to a given v-node, which is v3

4 in this example. The
nodes adjacent to a given one due to the same item of Proposition 2.12 are highlighted
using a particular symbol (such as a triangle or a square) or color in each of the figures.

Let us suppose x3
5 = 1, i.e. customer 3 purchases product 5 (t35 = 3 and it is grey in

Figure 2.1). Our aim is to determine all nodes of G2IM adjacent to x3
5 by making use of

Proposition 2.12. Due to (1), we know x3
5 is adjacent to x3

2, x3
3 and x3

4 (marked with a
square in Figure 2.1). By (3) applied to k = 1, k′ = 3, j = 5, we obtain that there exists
a link between nodes x3

5 and x1
i ∀i ∈ B(1, 5) = {1}. (3) applied to k = 2, k′ = 3 and

j = 5 indicates x3
5 is adjacent to x2

2 and x2
3 (all of these nodes are marked in Figure 2.1

through a triangle). Since σ(2) = σ(3), we can also apply (3) to k = 3, i = 5, k′ = 2,
obtaining edges between nodes x3

5 and x2
3, x2

4. Similarly, applying (3) to k = 3, i = 5 and
k′ = 4, 5 leads to edges between x3

5 and the nodes x4
3, x4

4 and x5
4 (all of which are circled

in Figure 2.1).

Next, for the same instance of the problem we are going to determine which nodes vmi
are linked by edges with the same node x3

5, by making use of Figure 2.2. By Proposition
2.12(4) we obtain that x3

5 and vm5 are adjacent for m > σ(3) = 3, i.e. for m = 4 (in black
in Figure 2.2). Applying (5), there exist edges between x3

5 and vmj for j ∈ B(3, 5) = {3, 4}
and m ≤ 3 (colored in dark grey in Figure 2.2).
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Now let us suppose v3
4 = 1 (i.e. product 4 has a price of b3 = 14), so as to determine

which nodes xki are adjacent to it. By Proposition 2.12(4), v3
4 is adjacent to xk4 for

k ∈ {4, 5} (marked with a square in Figure 2.3). Since σ(1) = 4 ≥ 3, for (5) v3
4 and x1

i

are adjacent for i ∈ B(1, 4) = {1, 2, 5}. Similarly, we can obtain edges between v3
4 and x2

i

for i ∈ B(2, 4) = {1, 2, 3, 5} and x3
i for i ∈ B(3, 4) = {2, 5} (all of them circled in Figure

2.3).

Finally, nodes vmi adjacent to v3
4 (in grey) can be seen in Figure 2.4. Thus, by (6) v3

4 is
adjacent to vm4 for m 6= 3 (nodes in black), and (7) establishes that v3

4 is not adjacent to
any other node.

Having identified the intersection graph G2IM, the next subsection focuses on character-
izing all its cliques.

2.4.3 Characterization of all the cliques in the intersection graph

We first include a lemma that will be useful when characterizing all the cliques.

Lemma 2.14. Any clique in G2IM containing nodes vm1
i , vm2

i with m1 < m2, includes
vmi ∀m such that m1 < m < m2.

Proof. Let (V ′, E ′) be a clique in G2IM and suppose vm1
i , vm2

i ∈ V ′, for m1 < m2.

Let us suppose that there exists k ∈ K with xki ∈ V ′. Then, xki is adjacent to vm1
i , and

thus for Prop. 2.12(4) it follows σ(k) < m1. Therefore, for every m > m1 > σ(k), the
same result implies xki is adjacent to vmi .

Now let us suppose that xkj ∈ V ′ for some k ∈ K and j ∈ Ik, j 6= i. By hypothesis we
have xkj adjacent to vm2

i , which for Proposition 2.12(5) implies i ∈ B(k, j) and σ(k) ≥ m2.
Thus, for every m < m2 ≤ σ(k), it follows from the same result that xkj is adjacent to vmi .

Finally, we know from Proposition 2.12(6) and (7) that vmj adjacent to vm1
i ⇔ j = i,

hence vmi is adjacent to vm
′

i ∀m 6= m′ and vmj /∈ V ′ for j 6= i.

All in all, we have proven that for m such that m1 < m < m2, any variable xkj or vm
′

i ∈ V ′
is adjacent to vmi . Thus, the statement follows.

Now we can state the two main results in this section. Note that, in order to keep a
consistent notation, a set {k2, . . . , kn} is defined in Theorem 2.15 that will be extended
to {k1, . . . , kn} in Theorem 2.17.

Theorem 2.15. Given a set of customers {k2, . . . , kn}, n ≥ 2, with σ(k2) ≤ · · · ≤ σ(kn),
and non empty pairwise disjoint sets of products P kq ⊆ Ikq , q = 2, . . . , n, such that

P kq ⊆

 q−1⋂
r=2:

σ(kr)<σ(kq)

B(kq, P kr)

⋂
 q−1⋂

r=2:
σ(kr)=σ(kq)

(
B(kq, P kr) ∪B(kr, P

kr)
) ∀q ∈ {3, . . . , n},

the following inequalities are valid for (2IM1):

n∑
q=2

∑
j∈Pkq

x
kq
j ≤ 1. (2.19)
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Valid inequalities (2.19) are facets for the subproblem of (2IM1) if and only if @(k0, i0) ∈
K × Ik0 satisfying

1. i0 ∈ B(kq, P
kq) ∀q ∈ {2, . . . , n} : σ(kq) ≥ σ(k0),

2. i0 ∈ B(k0, P kq) ∀q ∈ {2, . . . , n} : σ(kq) ≤ σ(k0),

and |
n⋃

q=2:
σ(kq)=σ(k2)

P kq | ≥ 2. Furthermore, all the clique facets for the subproblem of (2IM1)

containing only x-variables are in family (2.19).

Proof. Let G2IM = (VG, EG) be the intersection graph of the subproblem of (2IM1) as-
sociated to x- and v-variables and constraints (2.10b)-(2.10e), and let Q = (V ′, E ′) be a
clique of G2IM containing only x-variables.

Let k2 be a customer with minimum budget in the clique and a subset of products P k2 ⊆
Ik2 such that xk2

j ∈ V ′ ∀j ∈ P k2 (taking into account that, by Proposition 2.12(1), xk2
i is

adjacent to xk2
j ∀i 6= j).

Provided that there exist customers kq, ∀q ∈ {3, . . . , n} such that σ(k2) ≤ σ(k3) ≤ · · · ≤
σ(kn) and sets of products P kq ⊆ Ikq , P kq 6= ∅ ∀q ∈ {3, . . . , n}, such that x

kq
j ∈ V ′

∀j ∈ P kq , then by Proposition 2.12(2) P k2 , . . . , P kn are pairwise disjoint, and verify the
following conditions:

�

P kq ⊆
q−1⋂
r=2

σ(kr)<σ(kq)

B(kq, P kr) ∀q ∈ {3, . . . , n}.

Otherwise, there exist kr with σ(kr) < σ(kq) and products i ∈ P kr , j ∈ P kq such

that xkri , x
kq
j ∈ V ′ but j /∈ B(kq, i), and by Proposition 2.12(3) this implies xkri ,

x
kq
j are not neighbors in the intersection graph. Therefore, V ′ does not induce a

complete graph.

�

P kq ⊆
q−1⋂
r=2

σ(kr)=σ(kq)

(
B(kq, P kr) ∪B(kr, P

kr)
)
∀q ∈ {3, . . . , n}.

Otherwise, there exist kr with σ(kr) = σ(kq) and products i ∈ P kr , j ∈ P kq such

that xkri , x
kq
j ∈ V ′ but Proposition 2.12(3) does not hold for k = kr, k

′ = kq or for
k = kq, k

′ = kr, and hence V ′ does not induce a complete graph.

Therefore, the above conditions guarantee that the nodes corresponding with the x-
variables in an inequality in the form of (2.19) induce a complete graph, so the family of
inequalities (2.19) is valid.

In addition, if there exist (k0, i0) ∈ K× Ik0 meeting the conditions of the statement, then
xk0
i0

is adjacent in the intersection graph to every other node in V ′ by Proposition 2.12(3)
and conditions 1 and/or 2, and therefore the complete subgraph is not maximal.
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x

k = 2 k = 3 k = 4 k = 5

i 12345

1235 4

234 5

235 14

23 45

23 45

2 345

2 5 34

2 345

345 2

34 25

35 24

3 245

3 2 45

2345

25 34

2 345

124

Table 2.2: Facets obtained applying Theorem 2.15 to the instance of the RPP given in
Figure 2.1

On the other hand, if |
n⋃

q=2:
σ(kq)=σ(k2)

P kq | ≥ 2 holds, no v-variable can be adjacent in the

intersection graph to all nodes in V ′. Otherwise, P k2 = {i} and either n = 2 or σ(k2) <

σ(k3), and hence variable v
σ(k2)+1
i would be adjacent to every node in V ′ and the complete

subgraph would not be maximal.

Example 2.16. By making use of the instance shown in Figure 2.1, we are going to give
examples of clique facets containing only x-variables and valid inequalities that are not
cliques. Consider first the set of x-variables {x2

1, x
2
2, x

2
3, x

2
5}. Given that all these variables

share the superindex, their corresponding nodes are neighbors in the intersection graph and
then x2

1 + x2
2 + x2

3 + x2
5 ≤ 1 is a valid inequality for (2INLM). This inequality corresponds

with n = 2, k2 = 2 (σ(k2) = 3) and P 2 = {1, 2, 3, 5} in Theorem 2.15. Nevertheless, it
does not define a facet for (2INLM) since a pair (k0, i0) = (4, 4) exists (with σ(4) = 2 ≤ 3)
in the case 1 of the theorem, with 4 ∈ B(2, {1, 2, 3, 5}) = {4}). Then, variable x4

4 could
be added to the LHS to produce the tighter inequality x2

1 + x2
2 + x2

3 + x2
5 + x4

4 ≤ 1. This
inequality corresponds now to n = 3, k2 = 4, k3 = 2, P 4 = {4}, P 2 = {1, 2, 3, 5} and it is
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not a facet for (2INLM) either, since |
n⋃

q=2:
σ(kq)=σ(k2)

P kq | = |
3⋃

q=2:
σ(kq)=2

P kq | = |P k2| = 1 and, in

this case, variable v3
4 could be added to the inequality to produce the tighter one given by

x2
1 + x2

2 + x2
3 + x2

5 + x4
4 + v3

4 ≤ 1.

Consider, instead, (k0, i0) = (3, 4), i.e., n = 3, k2 = 3, k3 = 2, P 3 = {4}, P 2 = {1, 2, 3, 5}

where |
n⋃

q=2:
σ(kq)=σ(k2)

P kq | = |
3⋃

q=2:
σ(kq)=3

P kq | = |P 3 ∪ P 2| = 5. No v-variables can be added to the

inequality, and conditions 1 and 2 in the theorem are also satisfied, thus producing the
facet x2

1 + x2
2 + x2

3 + x2
5 + x3

4 ≤ 1.

Even though the preprocessing techniques are presented in the following section, in the
rest of this section we assume that the decision variables of the richest customer have been
preprocessed setting x1

4 = 1, x1
i = 0 ∀i 6= 4. Broadly speaking, the reasoning behind this

is that since the richest customer can afford any product, he purchases his most preferred
one. As we will see in Section 2.5, this can always be applied to the richest customers,
and it makes the instance smaller and more manageable.

Table 2.2 shows every clique facet that can be obtained applying Theorem 2.15 to the
instance of the RPP given in Figure 2.1. Each row of the table represents a clique, and a
variable xk

′
i belongs to that clique if and only if the number i appears in column k = k′ in

that row, for k′ = {2, . . . , 5}, i ∈ Ik′ (variables related to customer 1 do not appear in any
clique because they have been previously settled to either zero or one). For instance, the
first row of Table 2.2 refers to clique

∑5
i=1 x

2
i ≤ 1, whereas the fourth one makes reference

to clique x2
2 + x2

3 + x2
5 + x5

1 + x5
4 ≤ 1.

Theorem 2.17. Given a nonempty set L = {m1, . . . ,mp} ⊆M , a product i ∈ I and

� if m1 > 1, a customer k1 such that σ(k1) = m1 − 1, i ∈ Ik1, and a set P k1 = {i};
otherwise, P k1 = ∅;

� if mp < |M |, customers k2, . . . , kn, n ≥ 2, such that mp = σ(k2) ≤ · · · ≤ σ(kn)
(n = 1 otherwise) and non empty pairwise disjoint sets of products P kq ⊆ Ikq \ {i},
q = 2, . . . , n such that P k2 ⊆ B(k2, i) and

P kq ⊆

 q−1⋂
r=1:

σ(kr)<σ(kq)

B(kq, P kr)

⋂
 q−1⋂

r=1:
σ(kr)=σ(kq)

(
B(kq, P kr) ∪B(kr, P

kr)
)

∀q ∈ {3, . . . , n},

the following inequalities are valid for (2IM1):

∑
m∈L

vmi +
n∑
q=1

∑
j∈Pkq

x
kq
j ≤ 1. (2.20)

Valid inequalities (2.20) are facets for the previously defined subproblem of (2IM1) if and
only if @(k0, i0) ∈ K × (Ik0 \ {i}): σ(k0) ≥ mp satisfying



Polyhedral analysis of the set packing subproblem 41

1. i0 ∈ B(kq, P
kq) ∀q ∈ {1, . . . , n} : σ(kq) ≥ σ(k0),

2. i0 ∈ B(k0, P kq) ∀q ∈ {1, . . . , n} : σ(kq) ≤ σ(k0).

Furthermore, all the clique facets for the subproblem of (2IM1) containing v-variables are
in family (2.20).

Proof. Let G2IM = (VG, EG) be the intersection graph of the previously defined subprob-
lem of (2IM1) and let Q = (V ′, E ′) be a clique of G2IM containing v-variables. Taking into
account Proposition 2.12(7), all v-variables in the same clique must share the subindex,
and by Lemma 2.14, all v-variables in the same clique must have consecutive superindices.
We represent with L = {m1, . . . ,mp} this set of consecutive superindices and with i the
common subindex. We thus distinguish several cases depending on L:

1. L = {1, . . . , |M |} = M .

Then by Proposition 2.12(5) we know that a node xkj in the neighborhood of

v1
i , . . . , v

|M |
i must satisfy σ(k) = |M | and j ∈ B(k, i). However, as we will see

in Section 2.5, the richest customers always purchase their most preferred prod-
uct. Therefore we have removed all these x-nodes from the intersection graph, i.e.,
P k2 = · · · = P kn = ∅.

Since Proposition 2.12(4) does not either provide any node adjacent to vmi ∀m,
we obtain P k1 = ∅ and thus the set of nodes {vmi : m ∈ M} induces a maximal
complete subgraph in G2IM.

2. L = {m1, . . . , |M |} for some m1 > 1.

As vmi /∈ V ′ ∀m ∈ {1, . . . ,m1 − 1}, a node adjacent to vmi for m ≥ m1 but not to
vm1−1
i must belong to the clique. Applying Lemma 2.14 and Proposition 2.12, we

know this node corresponds with an x-variable, so there exists a node xkj ∈ V ′ for
some customer k and product j. As in the previous case, Proposition 2.12(5) does

not provide any node adjacent to v
|M |
i , thus P k2 = · · · = P kn = ∅. Therefore, node

xkj must be adjacent to vmi for m ≥ m1 by Proposition 2.12(4), so j = i and k = k1

for a customer k1: σ(k1) < m1 and P k1 = {i}. Since xk1
i is not adjacent to vm1−1

i ,
also by Proposition 2.12(4) σ(k1) ≥ m1 − 1, and hence σ(k1) = m1 − 1.

If we suppose there exists another node xkj ∈ V ′, then xkj must be adjacent to vmi
∀m ≥ m1 by Proposition 2.12(4), and therefore j = i. However, xki and xk1

i are not
adjacent for any customer k 6= k1 by (2), so the set {vmi : m ≥ m1}∪{xk1

i } induces
a clique in G2IM.

3. L = {1, . . . ,mp} for some mp < |M |.

Since vmi /∈ V ′ ∀m > mp, applying Lemma 2.14 and Proposition 2.12 there must

exist a node xki0 ∈ V
′ such that xki0 is adjacent to v

mp
i but not to v

mp+1
i . Proposition

2.12(4) does not provide any node adjacent to v1
i , hence P k1 = ∅ and xki0 has to be

adjacent to vmi , m ≤ mp, by Proposition 2.12(5). Hence, there exists a customer

k2: σ(k2) ≥ mp and a subset of products P k2 ⊆ B(k2, i) such that i0 ∈ P k2 and
xk2
j ∈ V ′ ∀j ∈ P k2 (taking into account that, by Proposition 2.12(1), xk2

j is adjacent

to xk2

j′ ∀j 6= j′). Since xk2
i0

is not adjacent to v
mp+1
i , it follows σ(k2) = mp.
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Provided that there exist customers kq, ∀q ∈ {3, . . . , n} such that σ(k2) ≤ σ(k3) ≤
· · · ≤ σ(kn) and sets of products P kq ⊆ Ikq , P kq 6= ∅ ∀q ∈ {3, . . . , n}, such that

x
kq
j ∈ V ′ ∀j ∈ P kq , then by Proposition 2.12(2) P k1 , . . . , P kn are pairwise disjoint.

Moreover, P kq ⊆ Ikq \ {i} ∀q ∈ {3, . . . , n}; otherwise, x
kq
i ∈ V ′ for some kq: σ(kq) ≥

mp and is not adjacent to v
mp
i (Proposition 2.12(4)), thus V ′ does not induce a

complete graph.

Applying arguments analogous to those of Theorem 2.15, the rest of the conditions
stated above must hold.

4. L = {m1, . . . ,mp} for some m1 > 1, mp < |M |.

Applying arguments analogous to those of the previous items, we can conclude that
there exist customers k1 ∈ K: σ(k1) = m1 − 1, i ∈ Ik1 such that P k1 = {i} and
k2 ∈ K: σ(k2) = mp with P k2 ⊆ B(k2, i), P

k2 6= ∅. The rest of the conditions also
hold applying a reasoning analogous to that of Theorem 2.15.

Example 2.18. By making use of the instance given in Figure 2.1, we are going to
give examples of each of the different types of clique facets that can be encountered. We
consider i = 4 and different possibilities for set L.

Consider first L = {1, 2, 3, 4}. Due to condition 1 in Theorem 2.17, P k1 = ∅, and by
condition 2, n = 1. Then a facet in the shape of v1

4 + v2
4 + v3

4 + v4
4 ≤ 1 is obtained.

If we remove 1 from L, L = {2, 3, 4}, now m1 = 2 and condition k1: σ(k1) = 1 and
4 ∈ Ik1 applies, giving k1 = 5. Then P 5 = {4} and the new facet is v2

4 + v3
4 + v4

4 + x5
4 ≤ 1.

Removing also 2 from L, L = {3, 4}, facet v3
4 + v4

4 + x4
4 ≤ 1 is produced.

If, instead, we remove 4 from L, L = {1, 2, 3}, by condition 2 a new customer k2 such
that σ(k2) = mp = 3 is required. Customer k2 can be chosen in the set {2, 3}. If we

choose n = 2 and k2 = 2, condition 2.a, P 2 ⊆ B(2, 4) = {1, 2, 3, 5}, applies. Taking
P 2 = {1, 2, 3, 5} the new facet is v1

4 + v2
4 + v3

4 +x2
1 +x2

2 +x2
3 +x2

5 ≤ 1, since no pair (k0, i0)
in the conditions of the theorem exists and condition 2.b is also satisfied. If, instead, we
choose n = 3, k2 = 2 and k3 = 3, a possibility that satisfies all the requirements is to take
P 2 = {3, 5}, P 3 = {2} to produce the facet v1

4 + v2
4 + v3

4 + x2
3 + x2

5 + x3
2 ≤ 1. However, if

we also remove 3 from L, i.e., L = {1, 2}, 4 is the only customer whose budget meets the
requirement σ(k2) = mp = 2, but B(4, 4) = ∅, and thus condition 2.a in Theorem 2.17
can not be verified for any customer. Therefore, no clique facet in this instance contains
only v-variables v1

4 and v2
4.

If we take now L = {2, 3}, again with k1 = 5, n = 3, k2 = 2 and k3 = 3, we can obtain
facets such as v2

4 + v3
4 + x5

4 + x2
3 + x2

5 + x3
2 ≤ 1.

Now that we have established the different shapes that clique facets can adopt, we are
able to determine whether constraints (2.10b)-(2.10e) always define clique facets in the
corresponding subproblem of (2IM1). Thus, we can conclude that constraints (2.10c) and
(2.10e) always define clique facets by applying cases 1 and 2 of the proof of Theorem
2.17, respectively. By Theorem 2.15, and given that B(k, Ik) = ∅ ∀k, we know a valid
inequality from the family (2.10b) is a clique if and only if |Ik| ≥ 2 and @(k0, i0) ∈ K×Ik0
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x v
k = 2 k = 3 k = 4 k = 5 m = 1 m = 2 m = 3 m = 4

235 1 1 1
245 3 3

2 45 3 3
1235 4 4 4
3 25 4 4 4
23 5 4 4 4

L = {m1, . . . ,mp} 35 2 4 4 4
1235 4 4
3 25 4 4
23 5 4 4
35 2 4 4
23 5 5
3 2 5 5

235 1 1 1
24 1

235 4 1
4 2 2 2

2 45 3 3 3
245 3 3 3

2 45 3 3
2 45 3 3

L = {1, . . . ,mp} 2 5 4 3 3
25 4 3 3

3 25 4 4 4
35 2 4 4 4
23 5 4 4 4
1235 4 4 4
23 5 5 5
3 2 5 5 5
23 4 5 5
3 2 4 5 5
1 1

1 1 1 1
2 2

2 2
2 2 2 2

3 3
3 3

L = {m1, . . . , |M |} 3 3 3
4 4

4 4
4 4 4

4 4 4 4
5 5

5 5
5 5 5

1 1 1 1
2 2 2 2

L =M 3 3 3 3
4 4 4 4
5 5 5 5

Table 2.3: Facets obtained applying Theorem 2.17 to the instance of the RPP given in
Figure 2.1
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satisfying σ(k0) ≥ σ(k) and i0 ∈ B(k0, Ik). For example, the valid inequality
∑

i∈I4 x4
i ≤ 1

is not a clique facet in the instance of the RPP given by Figure 2.1, since there exists
(3, 2) ∈ K× I3 satisfying σ(3) ≥ σ(2) and 2 ∈ B(3, I4), and therefore x3

2 is adjacent to x4
i

∀i ∈ I4. As for constraints (2.10d), they do not necessarily define clique facets either: in
the same instance,

∑3
m=1 v

m
4 +

∑
i∈B(3,4) x

3
i ≤ 1 is valid but is not a clique facet, because

x2
3 could be added to the LHS and the constraint would still be valid, since the pair

(2, 3) ∈ K × I2 \ {4} satisfies σ(2) ≥ m3 and meets conditions 1 and 2 of Theorem 2.17.
But, like in the former case, they define clique facets in most cases. Table 2.3 includes
every facet that can be obtained applying Theorem 2.17 to the instance given by Figure
2.1, previously preprocessed setting x1

4 = 1, x1
i = 0 ∀i 6= 4.

Even though the valid inequalities given by Theorems 2.15 and 2.17 are facet defining for
the subproblem of (2IM1) associated to x- and v-variables and constraints (2.10b)-(2.10e),
they might not define facets of the polyhedra obtained once we consider also z-variables
and their corresponding constraints of model (2IM1). Nevertheless, they are still strong
valid inequalities and, as such, make the extended formulation (2IM1) stronger in turn.
As we have previously stated, the same applies to model (2IM2). Additionally, we have
incorporated some of these valid inequalities into models (2IM1) and (2IM2), but they do
not significantly improve their performance, given that the original models are already
tight since they contain mainly inequalities which are facet-defining in the corresponding
subproblems, as we have been able to prove through this section. Therefore, in the
computational study of Section 2.6 we will test the performance of both models without
any additional clique facet of their subproblems.

2.5 Preprocessing techniques

In this section, our aim is to fix x- and v-variables to zero in order to reduce the size of
the RPP instances before solving them.

Let us begin by recursively defining a function u : K → I as follows, for the set of
customers according to their budgets in decreasing order:

1. If σ(k) = |M |, then u(k) = i if and only if i ∈ Ik and @j ∈ Ik : j ≺k i.

2. If σ(k) < |M | and ∃i ∈ Ik such that ∀k′ : σ(k′) > σ(k), u(k′) 6= i, then u(k) = i if
and only if i ∈ Ik, @k′ with σ(k′) > σ(k) such that u(k′) = i and ∀j ∈ Ik : j ≺k i,
∃k′, σ(k′) > σ(k), such that u(k′) = j.

3. If σ(k) < |M | and ∀i ∈ Ik, ∃k′ with σ(k′) > σ(k) and u(k′) = i, then u(k) = i if
and only if i ∈ Ik and @j ∈ Ik : j �k i.

Function u assigns, to the richest customers, their most preferred product; and to the
rest of the customers, their most preferred product among the ones which have not been
previously assigned to any richer customer (or their least preferred one if all of them have
already been assigned).

Based on the definition of u, we are going to establish a partition of the set of customers.
Thus, let Cr, r ∈ {1, 2, 3}, be such that k ∈ Cr if and only if u(k) has been defined for k
making use of item r of the definition of u. It is clear that ∪r∈{1,2,3}Cr = K, but given
this definition it is possible that both C2 and C3 are empty or C3 is. If C2 = C3 = ∅, then
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σ(k) = |M | ∀k ∈ K, and the problem becomes trivial: it suffices to establish v
|M |
i = 1

∀i ∈ I, every customer purchases his most preferred item and the objective value is the
sum of every customer’s budget, i.e. b|M ||K|. If C1 6= ∅ 6= C2 and C3 = ∅, then we will see
in Corollary 2.26 that an optimal solution can be found by inspection.

The following result shows the usefulness of this function when fixing x-variables to zero:

Proposition 2.19. There exist optimal solutions (ṽ, x̃) of (BNLM) and (2INLM) such
that x̃ki = 0 ∀k ∈ K, ∀i ∈ Ik : i �k u(k).

Proof. Suppose we have an optimal solution (v̂, x̂) which does not satisfy the statement
conditions. By slightly modifying (v̂, x̂), we aim at building another solution (ṽ, x̃), with
the same objective value, which does satisfy them.

Let us proceed by induction on k. First consider one of the richest customers, k0 : σ(k0) =
|M |. Then we know k0 is able to afford every product he is interested in, and therefore in
every optimal solution he purchases his most preferred product. Therefore, x̂k0

i = 0 must
hold for all k0 such that σ(k0) = |M | and i ∈ Ik0 : i �k0 u(k0).

Since (v̂, x̂) does not satisfy the statement conditions, there exists k0 ∈ K such that
σ(k0) = m0 < |M | and ∀k such that σ(k) > m0 x̂

k
i = 0 ∀i �k u(k) but x̂k0

i0
= 1 for a

product i0 �k0 u(k0). It is clear that k0 ∈ C2. The fact that k0 buys product i0 implies
he cannot afford product u(k0), i.e.,

∑m0

m=1 v̂
m
u(k0) = 0 and x̂k0

u(k0) = 0. We are going to

show that x̂ku(k0) = 0 ∀k, that is to say, that product u(k0) has not been sold in the

considered optimal solution. On the one hand, it is clear that x̂ku(k0) = 0 for all k such

that σ(k) ≤ σ(k0) because these customers cannot afford it either. On the other hand, let
us prove that for all k such that σ(k) > σ(k0), it holds u(k0) �k u(k) or u(k0) 6∈ Ik. First
of all, we know u(k0) 6= u(k) ∀k : σ(k) > σ(k0) because k0 ∈ C2. Besides, let us suppose
u(k0) ≺k1 u(k1) for k1 : σ(k1) > σ(k0). In this case, σ(k1) < |M |, so k1 ∈ C2 ∪ C3. But
then, by definition of u, u(k0) ≺k1 u(k1)⇒ ∃k2 : σ(k2) > σ(k1) and u(k2) = u(k0), which
is a contradiction with k0 ∈ C2. Therefore, we have proved that customers with budget
greater than k0 do not purchase product u(k0) because they buy others that prefer more,
and customers k such that σ(k) ≤ σ(k0) cannot afford product u(k0). Hence, u(k0) is not
sold in this optimal solution.

Let us consider now a price vector ṽ defined by ṽmi = v̂mi ∀m, ∀i 6= u(k0) and ṽm0

u(k0) = 1,

ṽmu(k0) = 0 ∀m 6= m0. If prices are settled this way, customers k with σ(k) < m0 can
afford the same products as before, so they purchase the same item. Customers k with
σ(k) = m0 are now able to afford product u(k0). However, if they purchase it (because
they prefer it over the one they were buying in the previous solution) they spend their
whole budget. Therefore, the revenue does not decrease. Further, customers k with
σ(k) > m0 were already buying a product more preferable than u(k0) in the previous
solution, so they buy the same as previously. Thus, x̃ki = x̂ki ∀k : σ(k) 6= m0, ∀i ∈ Ik;
x̃ki = x̂ki ∀k : σ(k) = m0 and uk0 �k j for j : x̂kj = 1, ∀i ∈ Ik; and x̃ku(k0) = 1, x̃ki = 0

∀k : σ(k) = m0 and u(k0) ≺k j for j : x̂kj = 1, and ∀i 6= u(k0).

Therefore, through ṽ we have built a feasible solution (ṽ, x̃) with the same objective value
as the one given by solution (v̂, x̂) and such that x̃k0

i = 0 ∀i �k0 u(k0). Proceeding by
induction on k, we deduce that we can obtain an optimal solution satisfying the statement
conditions.
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Product 1 Product 2 Product 3 Product 4 Product 5 Budgets

Customer 1 -* 3* 1 * -* 2* 53

Customer 2 2 * -* 1* -* -* 40

Customer 3 1 * -* 2* 4* 3* 40

Customer 4 4* 3* 5* 2* 1 * 38

Customer 5 1* -* 3 * -* 2* 32

Customer 6 4* 3 * 1* 5* 2* 31

Customer 7 1* 4 * 2* -* 3* 25

Customer 8 1* -* 3* 2 * -* 25

Customer 9 -* -* 2* 1 * -* 25

Customer 10 2* 1* -* 4 * 3* 16

Table 2.4: Preprocessing of the x-variables of Example 2.2

*

Example 2.20. To illustrate the above result, we use the instance given in Table 2.1. In
Table 2.4, we only show tki from Table 2.1, i.e. the ranking that every customer gives to
each product (so the lower the number, the greater the preference over the product). For
every customer k ∈ K, tki is circled in the preference matrix provided that u(k) = i. If xki
is fixed to 0 by Proposition 2.19, then tki appears in grey. If customer k purchases product
i in the optimal solution from Table 2.1, tki is marked with an asterisk.

Now, we present how the preprocessing has been applied for some customers. Since cus-
tomer 1 is the richest one, by item 1 of the definition of u we obtain that u(1) = 3, which
is his favorite product. By applying Proposition 2.19, x1

i = 0 for i ∈ {2, 5}. Notice that
u(2) = u(3) = 1 by item 2 of the definition of u. In the case of customer 2, his most
preferred product has been assigned to customer 1. By applying Proposition 2.19, neither
customer 2 nor customer 3 purchase any product they like less than product 1. If we turn
to customer 5, with budget 32 and I5 = {1, 3, 5}, we remark that for each product i in his
list of preferences there exists another customer k with budget greater than 32 such that
u(k) = i (these are, respectively for products 1, 3 and 5, customers 2, 1 and 4). There-
fore, u(5) = 3 by item 3 of the definition of u, and no x-variable related to this customer
can be set to zero by Proposition 2.19. Furthermore, comparing with the optimal solution
displayed in Table 2.1, as expected, in this optimal solution every customer k obtains a
product he likes more or the same than product u(k).

Remark 2.21. Besides being useful to fix variables to zero, the proof of Proposition 2.19
derives an optimal solution (ṽ, x̃) from another solution (v̂, x̂) which satisfies

∑
i∈Ik t

k
i x̃

k
i ≤∑

i∈Ik t
k
i x̂

k
i ∀k ∈ K, that is, it allows us to obtain an optimal solution in which customers

either buy the same product or buy another one they prefer more. It is also remarkable
that there may be more than one optimal solution satisfying Proposition 2.19.

Function u also lets us conclude that some products are not sold in any optimal solution
that satisfies Proposition 2.19:

Corollary 2.22. Let (ṽ, x̃) be an optimal solution of (BNLM) or (2INLM) satisfying the
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conditions of Proposition 2.19. Then for every product i ∈ I such that u−1(i) = ∅, it
follows x̃ki = 0 for every customer k ∈ K with i ∈ Ik, i.e., product i is not sold.

Proof. Let us consider an optimal solution (ṽ, x̃) which meets the requirements given by
Proposition 2.19, and a customer k and a product i such that x̂ki = 1. Then u(k) = i
or i ≺k u(k), and in the last case by definition of u there exists a customer k′ with
σ(k′) > σ(k) and u(k′) = i.

Remark 2.23. Corollary 2.22 allows us to eliminate {xki }k∈K and {vmi }m∈M for all prod-
ucts i we know will not be sold, thus reducing the size of the problem. Furthermore, after
this procedure, and by definition of u, we will always obtain instances of the problem with
|I| ≤ |K|. However, there might still remain products which will not be sold in one or
more optimal solutions.

The following result is useful to fix v-variables to zero, reducing the size of the problem.

Proposition 2.24. There exist optimal solutions (ṽ, x̃) of (BNLM) and (2INLM) such
that ∀i, m : @k with σ(k) = m and i ∈ Ik, it follows vmi = 0.

Proof. Let us suppose we have an optimal solution (v̂, x̂) which does not satisfy the
statement requirements, that is, there exist i0,m0 such that v̂m0

i0
= 1 and @k with σ(k) =

m0 and i0 ∈ Ik. We aim at building another solution (ṽ, x̃) in which ṽm0
i0

= 0 and the
objective value does not decrease.

First of all, let us suppose product i0 is sold in solution (v̂, x̂), i.e., there exists at least
a customer k with σ(k) > m0 and x̂ki0 = 1. Let m1 = min{σ(k) : k ∈ K, σ(k) >
m0 and x̂ki0 = 1}. Let ṽ be such that ṽmi = v̂mi ∀m,∀i 6= i0 and ṽm1

i0
= 1, ṽmi0 = 0 ∀m 6= m1.

If we set prices this way, it is clear that every customer who was previously purchasing
product i0 will continue to purchase it, and will pay bm1 for it instead of bm0 . Moreover,
the rest of the customers will also purchase the same products than in solution (v̂, x̂).
Therefore, we have obtained another solution (ṽ, x̃) with x̃ki = x̂ki ∀k ∈ K, i ∈ Ik, and
objective value strictly greater than the one given by (v̂, x̂), which is a contradiction.

On the other hand, let us assume product i0 is not sold in solution (v̂, x̂). Let m1 = σ(k1)
for a customer k1 : i0 ∈ Ik1 and σ(k) ≤ σ(k1) ∀k : i0 ∈ Ik. Let ṽmi = v̂mi ∀m, i 6= i0
and ṽm1

i0
= 1, ṽmi0 = 0 ∀m 6= m1. Given this price vector, it is clear that x̃ki = x̂ki

∀k : σ(k) 6= σ(k1), i ∈ Ik. As for customers k : σ(k) = σ(k1), they will purchase their
most preferred product between the one they were purchasing in solution (v̂, x̂) and i0,
but if they prefer i0 they will spend their whole budget. Thus, the objective value of
solution (ṽ, x̃) is equal to the one given by solution (v̂, x̂) and it satisfies ṽm0

i0
= 0. We

obtain the result by induction on i.

Remark 2.25. Although optimal solutions satisfying Proposition 2.19 do not necessarily
satisfy Proposition 2.24, there exist optimal solutions satisfying both propositions. Fur-
thermore, we can assume that if a variable xki can be fixed to zero in an optimal solution
(v̂, x̂) according to Proposition 2.19, then i no longer belongs to the list of products of
interest of customer k, i.e., i /∈ Ik, thus fixing more v-variables to zero when applying
Proposition 2.24.
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By recursively building function u and using the previous results, xki -variables with i �k
u(k) can be removed from all formulations based on v- and x-variables. This implies
that xku(k) = 1 for all richest customers k and their favorite products u(k). Variables in
the conditions of Proposition 2.24 can also be removed. In some cases, as shown in the
following result, an optimal solution to the problem can be directly obtained from the
preprocessing phase:

Corollary 2.26. If for all customers k ∈ K with σ(k) < |M | an i ∈ Ik exists such that
∀k′ : σ(k′) > σ(k), u(k′) 6= i, that is, if C3 = ∅, an optimal solution can be derived by
inspection.

Proof. Let (ṽ, x̃) be defined as follows: for all k ∈ K, x̃ku(k) = 1, x̃ki = 0 ∀i 6= u(k) and

ṽ
σ(k)
u(k) = 1, ṽmu(k) = 0 ∀m 6= σ(k); for all i : u−1(i) = ∅, ṽ|M |i = 1, ṽmi = 0 ∀m < |M |. We are

going to show that solution (ṽ, x̃) is optimal.

First of all, we know by hypothesis that u(k) = u(k′) ⇒ σ(k) = σ(k′), and therefore ṽ
is well defined. Moreover, x̃ is also well defined because for all k ∈ K, i ≺k u(k) there

exists k′ : σ(k′) > σ(k) with u(k′) = i, and thus ṽ
σ(k′)
i = 1 and k cannot afford product

i. Finally, since in this solution all customers k are purchasing a product for their whole
budget σ(k), then the objective value is equal to the sum of the budgets of every customer
(which is an upper bound), and therefore (ṽ, x̃) is optimal.

Corollary 2.27. If |K| ≤ |I| and Ik = I ∀k ∈ K, then an optimal solution can be derived
by inspection.

Proof. It suffices to notice that Corollary 2.26 can be applied.

2.6 Computational results

Computational experiments were carried out in order to compare the different models and
check the performance of the valid inequalities proposed in Section 2.3 and the prepro-
cessing techniques described in Section 2.5. The commercial IP solver used through all
the testing was Xpress mosel version 4.0.3, on a computer Dell PowerEdge T110 II Server
(Intel Xeon E3-1270, 3.40GHz) with 16 GB of RAM.

The reader can find all the results of the computational experiment detailed in several
tables, and the most relevant information of the tables is summarized by means of several
figures.

To begin with, we performed a first computational study to compare models (BNLM)
and (2INLM). Thus, we tested the performance of the linearization of these models by
means of zk- and zki -variables, as well as both linearizations of model (2INLM) including
the branch-and-cut algorithm described in Section 2.3.

In this first experiment, the instances include |K| = 30 customers whose budgets have
been randomly generated independently and uniformly. We consider sets of products of
sizes |I| =5, |I| =15 and |I| =25, and lists of products of interest of sizes the 10, 25, 50,
75 and 100% of |I|, rounded up. The items included in the lists of products of interest
and their order have also been selected independently and uniformly at random, and the
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Figure 2.5: Percentage of instances solved with a time limit by models (BM1), (BM2),
(2IM1), (2IM2) and (2IM1), (2IM2) with the branch-and-cut procedure

number of products of interest is the same for every customer in all the instances. We
generated ten instances for each combination of the three mentioned parameters, 150 in
total. For the computational study, we have fixed ski = |I| + 1 − n if i is the n-th most
preferred product for customer k, ∀k ∈ K, i ∈ Ik.

So as to be able to compare the integrality gaps and resolution times for these models,
we disabled automatic cuts and switched Xpress presolve settings off. The time limit
for each instance and model was fixed to 600 seconds. The only preprocessing applied
to the instances consisted in setting xki = 1 for every richest customer k and for every
product i ∈ Ik which is their favorite or first-ranked. In order to check the usefulness of
the valid inequalities proposed for formulations (2IM1) and (2IM2) in Section 2.3, we also
implemented a branch-and-cut algorithm following the separation procedure explained in
Section 2.3. In every node of the branching tree, a fractional solution (v, x, z) was obtained
after solving the linear relaxation of the corresponding subproblem, and, provided that
the depth of this node in the tree was 4 or less, we checked for valid inequalities (2.12)
or (2.14), respectively, and re-optimized the subproblem until no more valid inequalities
were violated or the linear relaxation bound was no further improved.

Figures 2.5, 2.6 and 2.7 illustrate the results obtained, and refer to Table 2.5. As described
in Section 2.3, models (BM1) and (2IM1) (resp. (BM2) and (2IM2)) are the linearizations
of models (BNLM) and (2INLM) by means of zk-variables (resp. zki -variables). Models
(BM1), (BM2), (2IM1), (2IM2), as well as models (2IM1) and (2IM2) with the correspond-
ing branch-and-cut algorithms, appear in the legend of the figures, respectively, as BM1,
BM2, 2IM1, 2IM2, 2IM1+VI and 2IM2+VI. Figure 2.5 shows the percentage of instances
solved within a given time limit, where the axis of abscissas has been represented using
a logarithmic scale. The accumulated percentage of solved instances depending on the
number of nodes explored in the branching tree is shown in Figure 2.6, also using a log-
arithmic scale in the axis of abscissas. And Figure 2.7 shows the percentage of instances
which have an integrality gap less than or equal to that of the x-axis. For models (BM1),
(BM2), (2IM1) and (2IM2), this integrality gap is equal to LRGap = 100UB−OPT

OPT
%, where
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Figure 2.6: Percentage of solved instances depending on the number of nodes explored in
the branching tree by models (BM1), (BM2), (2IM1), (2IM2) and (2IM1), (2IM2) with the
branch-and-cut procedure

UB is the upper bound of the linear relaxation and OPT is the optimal value of the in-
stance. In the case of models (2IM1) and (2IM2) with the corresponding branch-and-cut
algorithms, the integrality gap is given by RGap = 100UBC−OPT

OPT
%, where UBC represents

the upper bound given by the linear relaxation in which the cuts have been added in the
root node.

As we can see in Figure 2.5, models (BM1) and (BM2) were only able to solve around
the 65% and the 70%, respectively, of the instances proposed within a time limit of 600
seconds. For its part, models (2IM1) and (2IM2) solved all the instances in 300 seconds,
and this time is further improved to only a few seconds when adding the branch-and-cut
procedure. In fact, we can see how the lines 2IM1+VI and 2IM2+VI of Figure 2.5 are very
close to each other and reach 100% almost immediately. In Figure 2.6 we can observe that
models (2IM1), (BM1) and (BM2) reached the million of nodes explored in the branching
tree in some of the instances, and this amount decreases in two orders of magnitude for
model (2IM2). Models (2IM1) and (2IM2) with the branch-and-cut algorithm solved the
totality of the instances exploring on average less than 10 nodes, highly improving the
performance of the other four models. Figure 2.7 shows that models (BM1) and (BM2)
reached integrality gaps of more than 30% in some instances. The maximum gap reached
by model (2IM1) is of around 20%, and this gap was halved when using model (2IM2)
and divided by eight when adding the cuts in the root node in models (2IM1) and (2IM2),
illustrating how these cuts have a significant importance in the reduction of the integrality
gaps.

The results represented in Figures 2.5, 2.6 and 2.7 show that, whilst the linearization of
(BNLM) using zk variables provides slightly better results in terms of time and nodes than
the one using zki , the opposite occurs when comparing both linearizations of formulation
(2INLM), since model (2IM2) performs clearly better than (2IM1) in terms of both the
number of nodes explored in the branching tree and the integrality gaps. The introduction
of the branch-and-cut algorithm into the models leads to a considerable improvement in
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Figure 2.7: In the ordinate axis, the percentage of instances with an integrality gap less
than or equal to that of the corresponding abscissas is represented for models (BM1),
(BM2), (2IM1), (2IM2) and (2IM1) and (2IM2) with the branch-and-cut procedure

both models.

With the aim of testing the performance of the preprocessing proposed in Section 2.5, we
ran the same instances after fixing x- and v-variables to zero by applying Propositions
2.19 and 2.24, respectively, with the six previous models. The results are detailed in Table
2.6, where it can be appreciated the great improvement provided by the preprocessing.
The results provided by the two best previous models, (2IM1) and (2IM2), both with the
branch-and-cut procedure, are represented in Figures 2.8 and 2.9.

Figure 2.8 shows the average time (in seconds, using a logarithmic scale) needed to opti-
mally solve the ten instances previously generated for each number of products (|I| = 5,
|I| = 15 and |I| = 25) and each size of the list of products of interest of every customer
(|Ik| = d0.1|I|e, |Ik| = d0.25|I|e, |Ik| = d0.5|I|e, |Ik| = d0.75|I|e and |Ik| = |I|). The size
of the set of products is included after the letter i in the notation of the instances, and
the number of products of interest of every customer appears after the letter s. Regarding
the instances, it is noticeable from the results of Figure 2.8 that the difficulty to solve
them increases when the number of products in which every customer is interested grows.
It is also remarkable that the preprocessing techniques are more efficient in the reduction
of the times when the number of products increases: for the instances with 25 products
and complete list of products of interest, fixing x- and v-variables to zero according to
Propositions 2.19 and 2.24 leads to a reduction in the average resolution times of two and
one orders of magnitude for models (2IM1) and (2IM2), respectively. This is due to the
fact that instances with more products (with respect to the number of customers) lead
to the fixing of a greater number of x-variables, which results in the elimination of more
v-variables, thus considerably reducing the size of the problem. Finally, we can observe
that the average resolution times for the preprocessed instances (green and yellow bars)
never exceed five seconds.

The average integrality gaps of the linear relaxation LRGap are represented in Figure 2.9.
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Figure 2.8: Average time needed to solve instances with |K| = 30 by models (2IM1) and
(2IM2), with and without the preprocessing techniques (ten instances averaged per size)

Figure 2.9: Average integrality gaps of the linear relaxation, LRGap, for instances with
|K| = 30 by models (2IM1) and (2IM2), with and without the preprocessing techniques
(ten instances averaged per size)
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The greatest integrality gaps are reached when the size of the set of products is small,
which may be because these instances have a smaller optimal value. It is noticeable the
improvement of the gaps when adding the preprocessing to the model (2IM1), regardless
of the number of products and the size of the list of products of interest. Probably due to
the small size of the instances, the preprocessing applied to model (2IM2) with the branch-
and-cut algorithm does not result in any reduction on the integrality gaps. However, as
it will be stated in the second computational study, the preprocessing techniques applied
to (2IM2) improve the results when the instances have a bigger size.

Regarding the number of nodes explored in the branching tree, in the majority of the
instances only one node is explored, and the average number does not exceed six nodes.
Furthermore, the average integrality gaps are reduced to zero in all cases after the cuts
in the root node.
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Figure 2.10: Percentage of instances solved with a time limit by models (2IM1) and
(2IM2), with and without the preprocessing techniques detailed in Section 2.5

Considering the results of the first computational experiment, we generated instances
of bigger and more varied sizes and discarded the models derived from (BNLM). We
extended the time limit for each instance and model to 1200 seconds as well. In order
to generate the instances of our second computational study, we designed a model based
on the Characteristics Model proposed by Fernandes et al. in Fernandes et al. (2016).
This model has an economic interpretation, and focuses on the idea that each product
has a profile of characteristics, and each customer is interested in several of them. In this
way, a product is more preferred by a customer than another provided that more of its
characteristics, or the most important ones, are among the ones he desires.

Let C be the set of characteristics, o the number of options for any characteristic and
p the number of options in which a customer is interested for any characteristic. The
characteristics of every product i are represented by means of a vector of options Ei = (eic),
c ∈ C, whose entries are in the set {1, 2, . . . , o}, chosen independently and uniformly at
random. The set of characteristics in which a customer k is interested is represented
by a matrix Ak|C|×o = (akcv) where, for every row, p positions are set independently and

uniformly at random to 1 (the ones in which k is interested) and o−p positions to 0. The
relevance of each characteristic c is determined by its weight w(c), so that w(c) > w(c′)
if characteristic c is considered (for every customer) more important than c′. In this way,
the score each customer k gives to a product i is defined as the sum of the weights of the
characteristics of i in which k is interested, i.e., scoreki :=

∑
c∈C w(c)akceic . The preferences

of a customer are based on the score he has given to each product, since customer k prefers
product i over product j if and only if scoreki > scorekj . Each customer is interested in
s ∈ {1, . . . , |I|} products; therefore, if s < |I|, the set of products of interest of every
customer only includes the s products with the greatest scores for each of them. Note
that the lists of products of interest have equal size s for all the customers in all the
instances.

The instances for the computational experiment were generated fixing the number of
options of each characteristic as o = 8; the number of options preferred by each customer
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Figure 2.11: Percentage of solved instances depending on their size. Instances with 100
customers are shown in the graphic of the left, and instances with 150 customers, in
the graphic of the right. The size of the set of products is included after the letter i in
the notation of the instances, and the number of products of interest of every customer
appears after the letter s

as p = 7; the number of characteristics as |C| = 50|I|; and the budgets of the customers are
integers randomly selected between 1 and 2|K|. With the aim of testing the performance
of the models (2IM1) and (2IM2) with the branch-and-cut procedure, with and without
preprocessing, using instances of different sizes and densities, we generated instances of
|K| =50, |K| =100 and |K| =150 customers and 0.1|K|, 0.5|K| and |K| products. We
generated 10 instances of each size, 360 in total. Once the customers (including their
budgets and scores for each product) and products were randomly generated following
the previously described procedure, we generated four different instances by modifying s,
that is, considering s = 1, s = d0.2|I|e, s = d0.5|I|e and s = |I|.

Figures 2.10, 2.11 and 2.12 illustrate the results obtained. We have included a detailed
description of the results in which these figures are based in Tables 2.7 and 2.8.

Figure 2.10 shows the percentage of instances solved within a given time limit. In this
figure we can observe how model (2IM1) performed clearly worse than the rest of the
models, not reaching the 60% of solved instances. Models (2IM2) and (2IM1) and (2IM2)
with the preprocessing techniques had a similar behavior, the three of them solving more
than the 80% of instances in less than 1200 seconds. Model (2IM2) with the preprocessing
techniques offered the best results, reaching the 89%. We can also notice that model
(2IM1) with the preprocessing outperformed model (2IM2) without it at the beginning,
but it performed worse after approximately 800 seconds.

Figure 2.11 represents the percentage of instances solved attending to their size. The
graphic of the left shows the instances with |K| = 100, and the graphic of the right, the
instances with |K| = 150, given that models (2IM1) with the preprocessing techniques
and (2IM2) with and without the preprocessing techniques solved all the instances of
50 customers. The size of the set of products (|I|) is indicated by the number that
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Figure 2.12: Average integrality gaps for models (2IM1) and (2IM2) with the preprocess-
ing techniques. Instances with 100 customers are shown in the graphic of the left, and
instances with 150 customers, in the graphic of the right

follows letter i in the notation of the instances; the size of the set of products in which
a customer is interested (|Ik|), by the number after the letter s. As we had noted in
the first computational study, the difficulty of the instances grows when the size of Ik

increases. In particular, instances with complete list of products of interest are the most
difficult ones, and none of them was solved in less than 1200 seconds for |K| = 150
and 15 and 75 products. For the instances with the same number of customers and
products, the preprocessing makes a great improvement. This is specially noticeable
when |K| = |I| = |Ik| = 150, where adding the preprocessing led to the resolution of all
the instances, taking into account that none of them had been solved without it.

Figure 2.12 shows the integrality gaps for both models with the preprocessing techniques.
The LRGap is calculated using the objective value of the best solution found by any of the
models (OV): LRGap = 100UB−OV

OV
%, and RGap = 100UBC−OV

OV
%, where UBC represents

the upper bound given by the linear relaxation in which the cuts have been added in
the root node. The notation used to express the size of the instances is the same as
the notation of Figure 2.11. It can be observed how, even though there were sizes of
instances for which the average LRGap was smaller for model (2IM1) than for (2IM2), the
cuts in the root node were more effective in the reduction of the upper bound for model
(2IM2) regardless of the case, since the RGap is smaller in this model. In most cases,
the reduction of the integrality gap by the branch-and-cut procedure was crucial in the
resolution of the instances. It is also remarkable that, for |K| = |I|, the LRGap did not
reach the 3%, and the inclusion of the cuts reduced it to zero.
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|K| |I| |Sk| (SLL1) + VI (SLL1) + VI + preprocessing

Cuts Nodes LRGap RGap t(s) Sol %X %V Cuts Nodes LRGap RGap t(s) Sol

50 5 1 68 1 8.4 0.0 0.1 10 0 76 65 1 7.4 0.0 0.0 10

50 5 2 132 2 44.7 0.5 0.4 10 4 56 124 2 38.8 0.5 0.3 10

50 5 3 227 5 39.9 0.8 1.9 10 5 37 216 4 35.8 0.8 1.6 10

50 5 5 516 9 33.5 0.9 8.1 10 7 6 474 13 32.1 0.9 6.9 10

50 25 1 77 1 3.7 0.0 0.1 10 0 95 66 1 2.1 0.0 0.1 10

50 25 5 318 1 10.5 3.1 1.8 10 33 84 186 1 7.6 0.0 0.2 10

50 25 13 1338 35 7.8 7.8 29.9 10 41 66 541 16 7.6 0.3 10.7 10

50 25 25 2331 64839 6.2 6.2 812.3 5 45 45 1286 99 6.2 0.3 91.3 10

50 50 1 85 1 2.3 0.0 0.1 10 0 97 75 1 1.2 0.0 0.1 10

50 50 10 823 5033 1.3 1.3 22.2 10 73 93 137 1 1.2 0.0 0.1 10

50 50 25 358 252303 1.0 1.0 1184.0 1 87 92 140 1 1.0 0.0 0.1 10

50 50 50 282 143773 1.0 1.0 1200.0 0 93 92 144 1 1.0 0.0 0.2 10

100 10 1 134 1 7.3 0.0 0.1 10 0 87 130 1 5.9 0.0 0.1 10

100 10 2 270 1 44.1 0.0 0.6 10 4 76 243 1 36.5 0.0 0.4 10

100 10 5 1130 735 34.9 2.2 40.6 10 7 47 999 815 33.0 2.2 43.7 10

100 10 10 3348 2944 27.1 7.6 1130.7 1 8 8 3099 2969 27.1 2.8 1180.7 1

100 50 1 158 1 3.1 0.0 0.2 10 0 98 133 1 1.4 0.0 0.2 10

100 50 10 1797 8 7.5 7.5 61.2 10 38 85 874 5 7.1 0.1 14.5 10

100 50 25 3821 3790 5.7 5.7 1200.0 0 44 68 2790 532 5.7 0.5 834.8 6

100 50 50 1157 13096 5.0 5.0 1200.0 0 47 45 4841 0 5.0 1.5 1200.0 0

100 100 1 172 1 1.8 0.0 0.3 10 0 99 149 1 0.8 0.0 0.2 10

100 100 20 1507 8133 0.6 0.6 1200.0 0 84 96 297 1 0.6 0.0 0.4 10

100 100 50 969 3365 0.5 0.5 1200.0 0 92 95 314 1 0.5 0.0 0.8 10

100 100 100 1139 2075 0.5 0.5 1200.0 0 96 95 315 1 0.5 0.0 0.8 10

150 15 1 206 1 7.7 0.0 0.2 10 0 92 197 1 6.2 0.0 0.1 10

150 15 3 730 62 39.3 0.7 10.7 10 5 77 651 77 34.5 0.7 9.0 10

150 15 8 3320 2443 28.5 2.9 1200.0 0 8 45 2949 1900 28.1 2.9 1200.0 0

150 15 15 1821 8562 24.4 24.4 1200.0 0 9 8 7746 0 24.4 4.6 1200.0 0

150 75 1 237 1 2.7 0.0 0.4 10 0 98 203 1 1.2 0.0 0.3 10

150 75 15 5831 14 6.2 6.2 1022.6 4 41 86 2146 713 6.2 0.3 493.5 9

150 75 38 2094 807 5.1 5.1 1200.0 0 46 69 5447 0 5.1 1.0 1200.0 0

150 75 75 1316 331 9.8 9.8 1200.0 0 48 47 3542 0 9.8 8.8 1200.0 0

150 150 1 259 1 1.7 0.0 0.5 10 0 99 228 1 0.6 0.0 0.6 10

150 150 30 1380 1325 0.4 0.4 1200.0 0 88 97 445 1 0.4 0.0 1.4 10

150 150 75 1600 139 0.3 0.3 1200.0 0 94 97 462 1 0.3 0.0 2.0 10

150 150 150 357 2 0.3 0.3 1200.0 0 97 96 464 1 0.3 0.0 2.9 10

Table 2.7: Results obtained for model (SLL1) strengthened with valid inequalities, without
and with the preprocessing described in Section 2.5, for instances of 50, 100 and 150
customers (10 instances averaged per line). The table includes the number of customers
of the instance (|K|), the number of products (|I|) and the number of products in which
every customer is interested (|Sk|) and, in the model which includes preprocessing, it also
shows the average percentage of x- and v-variables fixed to zero during the preprocessing
((%X) and (%V), respectively). For each model, the table shows the average number of
cuts in the branching tree (Cuts), the number of nodes of the branching tree (Nodes), the
average integrality gap of the linear relaxation (LRGap), the average integrality gap of
the linear relaxation after the cuts in the root node (RGap), the execution time in seconds
taking into account that the time limit was settled to 1200 seconds (t(s)) and the number
of instances solved within that time period (Sol)
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|K| |I| |Sk| (SLL2) + VI (SLL2) + VI + preprocessing

Cuts Nodes LRGap RGap t(s) Sol %X %V Cuts Nodes LRGap RGap t(s) Sol

50 5 1 69 1 1.6 0.0 0.0 10 0 76 72 1 1.6 0.0 0.0 10

50 5 2 168 1 7.4 0.5 0.3 10 4 56 170 2 7.3 0.5 0.3 10

50 5 3 293 4 10.6 0.8 1.4 10 5 37 273 3 10.4 0.8 1.5 10

50 5 5 576 6 15.6 0.9 4.1 10 7 6 524 8 15.1 0.9 3.5 10

50 25 1 61 1 1.3 0.0 0.1 10 0 95 67 1 1.3 0.0 0.1 10

50 25 5 519 1 7.7 0.0 0.4 10 33 84 295 1 5.9 0.0 0.2 10

50 25 13 1777 13 17.0 0.3 6.0 10 41 66 767 8 11.2 0.3 2.2 10

50 25 25 4213 19 29.5 0.3 18.0 10 45 45 1651 12 17.6 0.3 7.5 10

50 50 1 57 1 1.1 0.0 0.1 10 0 97 76 1 1.1 0.0 0.1 10

50 50 10 1377 1 9.9 0.0 1.1 10 73 93 226 1 2.7 0.0 0.1 10

50 50 25 4623 1 24.3 0.0 6.7 10 87 92 268 1 3.1 0.0 0.1 10

50 50 50 11186 1 48.5 0.0 29.2 10 93 92 282 1 3.2 0.0 0.1 10

100 10 1 144 1 0.8 0.0 0.1 10 0 87 147 1 0.8 0.0 0.1 10

100 10 2 338 1 4.9 0.0 0.3 10 4 76 333 1 4.9 0.0 0.2 10

100 10 5 1292 173 12.7 2.2 16.6 10 7 47 1191 513 12.5 2.2 22.5 10

100 10 10 3122 2308 17.9 2.8 112.9 10 8 8 2754 4378 17.4 2.8 164.8 10

100 50 1 123 1 0.6 0.0 0.2 10 0 98 135 1 0.6 0.0 0.2 10

100 50 10 2528 4 8.1 0.1 7.8 10 38 85 1232 3 6.1 0.1 3.4 10

100 50 25 8345 247 16.2 0.5 125.9 10 44 68 3442 901 10.4 0.5 113.8 10

100 50 50 20934 719 29.3 0.7 900.5 6 47 45 8237 1956 17.1 0.7 815.3 5

100 100 1 118 1 0.6 0.0 0.2 10 0 99 149 1 0.6 0.0 0.2 10

100 100 20 6849 1 9.9 0.0 13.2 10 84 96 543 1 1.6 0.0 0.3 10

100 100 50 23424 1 24.5 0.0 123.3 10 92 95 638 1 2.0 0.0 0.5 10

100 100 100 58245 1 49.0 0.0 803.2 10 96 95 676 1 2.1 0.0 0.6 10

150 15 1 218 1 0.5 0.0 0.2 10 0 92 220 1 0.5 0.0 0.1 10

150 15 3 942 32 7.6 0.7 7.6 10 5 77 870 28 7.5 0.7 6.2 10

150 15 8 3476 9046 14.3 2.9 810.4 5 8 45 3004 20033 14.1 2.9 938.9 6

150 15 15 7548 5571 19.5 4.6 1200.0 0 9 8 6619 2463 19.0 4.6 1200.0 0

150 75 1 183 1 0.4 0.0 0.3 10 0 98 207 1 0.4 0.0 0.3 10

150 75 15 6569 118 8.0 0.3 69.8 10 41 86 2915 120 5.9 0.3 29.3 10

150 75 38 22443 418 16.1 0.8 1135.0 1 46 69 8638 1602 10.1 0.8 1108.3 1

150 75 75 55813 0 35.3 6.2 1200.0 0 48 47 20458 299 22.4 6.1 1200.0 0

150 150 1 174 1 0.4 0.0 0.4 10 0 99 230 1 0.4 0.0 0.5 10

150 150 30 17432 1 10.1 0.0 66.7 10 88 97 876 1 1.2 0.0 1.0 10

150 150 75 60096 1 25.3 0.0 998.2 9 94 97 987 1 1.4 0.0 1.2 10

150 150 150 122181 0 50.6 16.7 1200.0 0 97 96 1006 1 1.4 0.0 1.3 10

Table 2.8: Results obtained for model (SLL2) strengthened with valid inequalities, without
and with the preprocessing described in Section 2.5, for instances of 50, 100 and 150
customers (10 instances averaged per line). The table includes the number of customers
of the instance (|K|), the number of products (|I|) and the number of products in which
every customer is interested (|Sk|) and, in the model which includes preprocessing, it also
shows the average percentage of x- and v-variables fixed to zero during the preprocessing
((%X) and (%V), respectively). For each model, the table shows the average number of
cuts in the branching tree (Cuts), the number of nodes of the branching tree (Nodes), the
average integrality gap of the linear relaxation (LRGap), the average integrality gap of
the linear relaxation after the cuts in the root node (RGap), the execution time in seconds
taking into account that the time limit was settled to 1200 seconds (t(s)) and the number
of instances solved within that time period (Sol)



Chapter 3

The Rank Pricing Problem with Ties

In this chapter, we consider a generalization of the RPP in which customers are not forced
to define a strict preference between all the pairs of candidate products. Instead, we allow
for indifference and consider ties in the list of preferences. We name this problem the Rank
Pricing Problem with Ties (RPPT).

Considering ties in the preference lists of the customers leads to a different bilevel structure
of the problem. As detailed in Chapter 2, in the RPP (without ties) the second level
problem associated to each customer has a unique optimal solution for a given vector
of prices of the products. However, in this extension, the indifference results in second
level problems that may have multiple optimal solutions. In the RPPT, we consider the
pessimistic optimal solution. In case of indifference, the customers’ selection of products
is the most natural for the customers since it is based on the price - they purchase (one
of) the cheapest products. Although in the RPPT we consider a positive budget per
customer, all our results apply to the extension where customers are endowed with a
product-dependent reservation price that reflects their willingness to pay (WTP). The
slight changes required are detailed in Section 3.1.

To tackle the problem from the field of discrete optimization, we begin with a formal
introduction of the RPPT and propose an integer linear formulation with three-index
variables. Next, we derive two exact resolution methods for our three-index formulation.

The first method is based on a second formulation for the RPPT that uses a small set of
two-index variables. Since the linear relaxation of this reduced model provides a weaker
bound, we project out the variables of the three-index formulation by means of Farkas’
Lemma to obtain a set of valid inequalities that strengthen the two-index model. Due
to the particular structure of the RPP, the separation problem relative to these valid
inequalities can be transformed into a min-cost flow problem. In this way, we avoid
solving a linear problem with a commercial solver and instead apply a suitable resolution
algorithm, making the separation procedure computationally efficient.

The second resolution approach is motivated by a very recent work by Bertsimas and Mǐsić
(2019). The authors study the Product Line Design (PLD) problem under a ranking-based
customer choice model (see Section 1.2.3 from Chapter 2). They introduce a new mixed-
integer formulation, theoretically analyze it, and present a solution approach based on
Benders decomposition that significantly outperforms the previous results. Thus, our sec-
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ond resolution approach is based on Benders decomposition and takes advantage of the
structure of the problem. First we reformulate the three-index model, obtaining a master
problem with a set of constraints whose separation can be done by solving linear subprob-
lems. Then we are able to identify a small (polynomial) subset of constraints from the
previous set to obtain a reduced master formulation that constitutes a valid formulation
for the RPPT. The rest of the constraints (now valid inequalities) are separated in our
resolution method and included dynamically, in a branch-and-cut framework. Although
the valid inequalities are different from the reduced model ones, the separation procedure
is analogous to the first one. To speed up the cut separation in the linear relaxation phase,
we include an in-out method, a technique used to stabilize and accelerate the convergence
of the cut loop.

We also provide a preprocessing techniques section where we reduce the size of the in-
stances by making use of the properties of the problem. We conclude the chapter with the
results of extensive numerical experiments, where we compare the two resolution methods
proposed in terms of number of nodes of the branching tree, integrality gap and compu-
tational time, and we show the efficiency of the valid inequalities and the preprocessing
techniques.

The chapter is organized as follows. Section 3.1 states the notation used throughout
the chapter and Section 3.2 is devoted to the presentation of the three-index model.
Section 3.3 includes all the results regarding the two-index formulation. In Section 3.4, we
provide the results concerning the Benders decomposition resolution approach. Section
3.5 includes the preprocessing techniques, and Section 3.6 contains the computational
study.

3.1 Notation

The aim of the RPPT is to establish the prices of the products of the company so as to
maximize its revenue, taking into account that we assume unit-demand customers with
a positive budget who, once the prices are settled, will purchase their highest-ranked
product among the ones they can afford (if any). Besides, if a customer is indifferent
between two products and he can afford both, he will purchase the cheapest one (or one
of the cheapest if there are more than one). We consider an unlimited supply of products,
which is reasonable provided that the company owns at least as many copies of a product
as there are customers or when products can be produced quickly at negligible cost.

As for the notation, like in Chapter 2, K denotes the set of customers and I denotes the
set of products, with Ik the set of acceptable products for k and Ki = {k ∈ K : i ∈
Ik}. Likewise, the budgets of the customers B = (bm)m∈M are represented through the
previously defined function σ : K → M , so σ(k) = m if the budget of customer k is the
m-th smallest budget bm.

The acceptable products for k (i.e. the products in Ik) are ranked by k from the best
to the worst in a preference list. However, some customers may not be able to define a
clear strict preference over certain products, and they are allowed to express indifference
in their preference lists. Therefore, there exists a weak order on the set Ik for each
k ∈ K. We denote i ≺k j when we say that a customer k ∈ K prefers product i
to j, and we use i ∼k j if k is indifferent between two products i and j. Naturally,
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Table 3.1: Preference matrix, vector of budgets and an optimal solution to an instance of
the RPPT

Prod. 1 Prod. 2 Prod. 3 Prod. 4 Prod. 5 Budgets

Customer 1 1* 3* 1* -* 2* 120

Customer 2 2* 1* 1* -* -* 95

Customer 3 1* 2* 4* 1* 3* 82

Customer 4 -* 3* 1* 3* 2* 82

Customer 5 -* 1* 3* 2* -* 79

Customer 6 2* -* 1* 2* 1* 65

Customer 7 3* 2* 5* 1* 4* 64

Customer 8 1* 4* 2* -* 3* 53

Optimal prices -* 95* 120* 79* 53* 585

{j ∈ Ik : j �k i} = {j ∈ Ik : j ∼k i}∪{j ∈ Ik : j ≺k i}. Furthermore, ∼k is an equivalence
relation (reflexive, symmetric, transitive) which defines a partition S k = {Sk1 , . . . , Sknk}
of the set Ik such that i, j ∈ Skn if i ∼k j and i ∈ Skn, j ∈ Skn′ with n < n′ if i ≺k j. Notice
that for a given customer k, ≺k defines a total order on the set of the equivalence classes
S k.

As explained in Chapter 2, there is always an optimal solution of the RPP in which the
prices of the products are equal to a customer budget bm, m ∈M . Furthermore, in Section
2.5 we showed that the set of candidate prices of a product could be further reduced.
Indeed, there always exists an optimal solution in which the optimal price of a product
i is one of the budgets from the set {bm ∈ B : ∃k ∈ Ki such that σ(k) = m}. Since this
reasoning also applies to the RPPT, we define Mi := {m ∈M : ∃k ∈ Ki with σ(k) = m}
as the set of indices of budget values that are candidates to be the optimal price of product
i. Moreover, for k ∈ Ki, M

k
i := {m ∈ Mi : m ≤ σ(k)} represents the set of indices m of

candidate prices bm at which k can purchase i in a feasible solution. Finally, we define
MSkn

= ∪i∈SknM
k
i as the subset of indices m ∈ M of candidate prices bm at which k could

purchase some product i ∈ Skn.

Although for simplicity in the notation we have considered a positive budget per cus-
tomer, the formulations and algorithms presented in the following sections can be ap-
plied to a more general framework where customers are endowed with product-dependent
reservation prices. It suffices to redefine M as the set of indices that refer to the different
reservation prices of all the customers for all the products, and order all the different reser-
vation prices {bm}m∈M like previously. Next, we define a set of functions σi : Ki → M
(instead of σ) such that σi(k) = m if the reservation price of k for i is the m-th small-
est reservation price. In this way, the sets Mi and Mk

i would naturally correspond with
Mi := {m ∈ M : ∃k ∈ Ki with σi(k) = m} and Mk

i := {m ∈ Mi : m ≤ σi(k)}. Our
results are valid assuming that σi(k) = σj(k) for any two products i, j : i ∼k j, that
is, customers have the same reservation price for the products among which they are
indifferent.
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Example 3.1. Table 3.1 shows an instance of the RPPT with |K| = 8 and |I| = 5 and
an optimal solution. The entry (k, i) of the preference matrix denotes the index n of the
equivalence class Skn to which i belongs for k (the symbol - indicates that the corresponding
product i /∈ Ik). Clearly, the smaller the entry of the preference matrix, the greater the
preference of the customer over that product. Customer 1 is thus interested in all products
except for product 4, that is, I1 = {1, 2, 3, 5}, and from the preference matrix we deduce
1 ∼1 3 ≺1 5 ≺1 2, so we have |S 1| = n1 = 3 and S1

1 = {1, 3}, S1
2 = {5}, S1

3 = {2}.
Similarly, the acceptable set of customers for product 1 is K1 = {1, 2, 3, 6, 7, 8}.

There are 7 different customer budgets: b1 = 53, b2 = 64, . . . , b5 = 82, b6 = 95, b7 = 120.
Following the notation, σ(1) = 7, i.e., customer 1 has the 7th smallest budget (i.e. the
greatest one), σ(2) = 6, σ(3) = σ(4) = 5, et cetera. Furthermore, the last row of the
table shows a vector of optimal prices along with the optimal value (585). The purchase
decision of every customer in this optimal solution is represented by an asterisk next to
the entry of the matrix associated to the product he purchases. Notice that, since product
1 is not sold, it does not have an optimal price, but it can implicitly be assumed an optimal
price greater than b|M | = 120.

The set of indices of budget values that are candidates to be the optimal price of product 4
are M4 = {2, 3, 4, 5}, and in the optimal solution, 4 has price b4 = 79. Likewise, the set of
indices of candidate prices at which customer 6 may purchase product 4 is M6

4 = {2, 3}.
Indeed, since product 4 is not acceptable for customer 8, its price cannot be set to 53,
so customer 6 can only buy product 4 at prices 64 or 65. And finally the set of indices
of candidate prices at which customer 6 may purchase a product from S6

2 = {1, 4} is
MS6

2
= {1, 2, 3}.

Notice that, even if there are less products than customers and six customers interested
in product 1, this product remains unsold in the optimal solution. One could think that,
since customer 7 purchases a product with price 53 but he has a budget of 64 and prefers
product 1, setting the price 64 for product 1 would lead to a feasible solution with greater
objective value. However, the fact that ties are allowed in the RPPT prevents this solution
from being optimal. Indeed, in this case customers 1 and 3 would also purchase product
1 (given that they are indifferent between 1 and the product they are currently purchasing
but 1 has a smaller price), and therefore the revenue would be 525 instead of 585.

3.2 Three-Index Model for the RPPT

In this section, we propose a mixed-integer formulation using two sets of variables. Firstly,
we define binary variable vmi , ∀i ∈ I, ∀m ∈Mi, that takes value 1 if the price of product
i is equal to the m-th smallest budget bm. For each k ∈ K, and considering the partition
S k, we define ykmn , ∀k ∈ K, n ∈ Nk := {1, . . . , nk}, m ∈ MSkn

, that takes value 1 in a
solution provided that customer k purchases a product i ∈ Skn at price bm.

With these sets of variables, we present a first model called the Three-Index Model (3ITM)
for the RPPT:

(3ITM) max
v,y

∑
k∈K

∑
n∈Nk

∑
m∈M

Skn

bmykmn (3.1a)
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s.t.
∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (3.1b)∑
n∈Nk

∑
m∈M

Skn

ykmn ≤ 1 ∀k ∈ K, (3.1c)

ykmn ≤
∑
i∈Skn

vmi ∀k ∈ K,n ∈ Nk,m ∈MSkn
, (3.1d)

∑
m′∈Mk

i
:

m′≤m

vm
′

i +
∑

m′∈M
Skn

:

m′>m

ykm
′

n +
nk∑

n′=n+1

∑
m′∈M

Sk
n′

ykm
′

n′ ≤ 1

∀k ∈ K,n ∈ Nk, i ∈ Skn,m ∈Mk
i , (3.1e)

vmi ∈ {0, 1} ∀i ∈ I,m ∈Mi, (3.1f)

ykmn ∈ {0, 1} ∀k ∈ K,n ∈ Nk,m ∈MSkn
. (3.1g)

Constraints (3.1b) ensure that each product price is unique. Constraints (3.1c) guarantee
that each customer purchases at most one product. Constraints (3.1d) state that if a
customer k purchases a product from class Skn at price bm, then there exists i ∈ Skn at
price bm. And constraints (3.1e) are the preference constraints, and they ensure that the
preferences of the customers are satisfied in any feasible solution. Thus, if the first sum∑

m′∈Mk
i :m′≤m v

m′
i is equal to 1, then k can purchase i at a price smaller than or equal to

bm
′
. So the second and third sums of the LHS of (3.1e) are equal to 0, ensuring that k

does not purchase either a product from a class Skn′ with n′ > n, or any product from
Skn at a higher price bm

′
, m′ > m. Notice that, even though the inequalities (3.1e) have

indices i and n, there is actually one inequality for each k ∈ K, i ∈ Ik, since n is uniquely
determined by i because each product i belongs to exactly one class Skn (this also applies
to the rest of the formulations).

Remark 3.2. Formulation (3ITM) is also valid for the RPP.

Now we prove that the integrality of the set of y-variables can be relaxed:

Proposition 3.3. The integrality of variables ykmn , ∀k ∈ K, ∀n ∈ Nk, ∀m ∈ MSkn
, can

be relaxed in formulation (3ITM). Indeed, family (3.1g) can be replaced with family

ykmn ≥ 0 ∀k ∈ K,n ∈ Nk,m ∈MSkn
. (3.2)

Furthermore, for a given fixed feasible vector (v̄mi ) ∈ {0, 1}I×Mi and a fixed customer k,
the optimal values of variables ykmn for (3ITM) with (3.2) instead of (3.1g) are as follows.

1. If
∑
i∈Ik

∑
m∈Mk

i

v̄mi = 0, then ykmn = 0 ∀n ∈ Nk,m ∈MSkn
.

2. Otherwise, let n∗ := min
{
n ∈ Nk :

∑
i∈Skn

∑
m∈Mk

i
v̄mi ≥ 1

}
,

m∗ := min
{
m ∈MSkn∗

:
∑

i∈Skn∗
v̄mi ≥ 1

}
. Then, ykm

∗
n∗ = 1, ykmn = 0 for (n,m) 6=

(n∗,m∗).

Proof.
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1. This is a direct consequence of (3.1d).

2. If
∑
i∈Ik

∑
m∈Mk

i

v̄mi > 0, let n∗, m∗ be as stated, and i∗ ∈ {i ∈ Skn∗ : v̄m
∗

i = 1}. Then for

all n ∈ Nk, m ∈MSkn
, (n,m) 6= (n∗,m∗), it holds

� If (n,m) < (n∗,m∗) (with the lexicographic order), then by the corresponding
constraint from (3.1d) we obtain ykmn ≤

∑
i∈Skn

v̄mi = 0.

� If (n,m) > (n∗,m∗), then we turn to the constraint from (3.1e) given by
(n, i,m) = (n∗, i∗,m∗):

∑
m′∈Mk

i∗ :

m′≤m∗

v̄m
′

i∗ +
∑

m′∈M
Sk
n∗

:

m′>m∗

ykm
′

n∗ +
nk∑

n′=n∗+1

∑
m′∈M

Sk
n′

ykm
′

n′

= 1 +
∑

m′∈M
Sk
n∗

:

m′>m∗

ykm
′

n∗ +
nk∑

n′=n∗+1

∑
m′∈M

Sk
n′

ykm
′

n′ ≤ 1.

We distinguish two cases:

– If n = n∗, then m > m∗ and ykmn belongs to the sum
∑

m′∈M
Sk
n∗

:m′>m∗ y
km′
n∗ .

– If n > n∗, then ykmn belongs to
∑nk

n′=n∗+1

∑
m′∈M

Sk
n′
ykm

′

n′ .

Hence, in both cases the constraint implies ykmn = 0.

We just proved that ykmn = 0 ∀(n,m) 6= (n∗,m∗). Finally, for ykn
∗

m∗ , we have that
constraints (3.1b) and (3.1c) reduce to ykn

∗
m∗ ≤ d with d ≥ 1. As for constraints

(3.1e), ykn
∗

m∗ may belong to the second or third sum of the LHS for a given k. If
ykn

∗
m∗ belongs to the second sum, then m∗ > m and hence the sum of v-variables∑
m′∈Mk

i :m′≤m v
m′
i is equal to 0. Otherwise, ykn

∗
m∗ belongs to the third sum, so n < n∗

and the way n∗ is defined once again implies
∑

m′∈Mk
i :m′≤m v

m′
i = 0 for such i ∈ Skn.

Therefore, ykn
∗

m∗ is free, and it will take value 1 in the optimal solution because its
coefficient in the objective function is positive.

Example 3.4. Let us describe the variables used to solve the instance given in Table 3.1
with formulation (3ITM). First, we define the v-variables associated with each product.
For instance, for product 5 we define variables vm5 for m ∈M5 = {1, 2, 3, 5, 7}. Regarding
the y-variables, for customer 2 we have that n2 = 2, and S2

1 = {2, 3}, S2
2 = {1}. For

the products in S2
1 , MS2

1
= {1, 2, 3, 4, 5, 6}, so we define variables y2m

1 for m ∈ MS2
1
. As

for S2
2 , we define y2m

2 for m ∈ MS2
2

= {1, 2, 3, 5, 6} (there are no customers with budget

b4 = 74 interested in product 1, so 1 will not have price 74 in an optimal solution). In
the optimal solution, customer 2 purchases 2 ∈ S2

1 at price b4, so y24
1 = 1.

Formulation (3ITM) yields very good linear relaxation bounds. As we will address in
Section 3.6, the main drawback of this formulation is that it has a large number of
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variables and constraints, and therefore it is not suitable for instances with a large number
of customers or dense matrices of preferences.

3.3 Projecting the customer decision variables on the

two-index model

In this section, we discuss how to project out formulation (3ITM) on a formulation of
a smaller size, the two-index model (2ITM). The projection results in a set of valid
inequalities for (2ITM) for which we develop a separation algorithm.

First, we define the sets of two-index variables of (2ITM). We use variables vmi , ∀i ∈ I,
m ∈ Mi, that represent, as in (3ITM), the price of a product. Considering once again
the partition of Ik into equivalence classes Sk1 , . . . , S

k
nk

, we define binary variables xkn,
∀k ∈ K, n ∈ Nk, as decision variables that take value 1 if customer k purchases some
product i ∈ Skn, and zero otherwise. And finally, to be able to model the profit of the
company, we define continuous variables zkn, ∀k ∈ K, ∀n ∈ Nk, that represent the profit
associated to a customer k and an equivalence class Skn. In a feasible solution, the value
of zkn is equal to the price of the least expensive product from Skn provided that customer
k purchases a product from Skn, and zero otherwise.

Using these variables, the formulation with two-index variables (2ITM) for the RPPT is:

(2ITM) max
v,x,z

∑
k∈K

∑
n∈Nk

zkn (3.3a)

s.t.
∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (3.3b)∑
n∈Nk

xkn ≤ 1 ∀k ∈ K, (3.3c)

xkn ≤
∑
i∈Skn

∑
m∈Mk

i

vmi ∀k ∈ K,n ∈ Nk, (3.3d)

∑
m∈Mk

i

vmi +
nk∑

n′=n+1

xkn′ ≤ 1 ∀k ∈ K,n < nk, i ∈ Skn, (3.3e)

zkn ≤ bσ(k)xkn ∀k ∈ K,n ∈ Nk, (3.3f)

zkn ≤ bσ(k) +
∑
m∈Mk

i

(
bm − bσ(k)

)
vmi ∀k ∈ K,n ∈ Nk, i ∈ Skn, (3.3g)

vmi ∈ {0, 1} ∀i ∈ I,m ∈Mi, (3.3h)

xkn ∈ {0, 1} ∀k ∈ K,n ∈ Nk, (3.3i)

zkn ≥ 0 ∀k ∈ K,n ∈ Nk. (3.3j)

Constraints (3.3b) ensure that each product price is unique. Constraints (3.3c) guarantee
that each customer purchases at most one product, i.e., that all customers are unit-
demand. Constraints (3.3d) prevent a customer k from purchasing a product i ∈ Skn
when he cannot afford it. Constraints (3.3e) are the preference constraints, and they
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guarantee that if a customer k can afford a product i, that is if
∑

m∈Mk
i
vmi = 1, then k

does not purchase any other product j �k i, i.e.
∑nk

n′=n+1 x
k
n = 0. The sets of constraints

(3.3f) and (3.3g) model the profit. Constraints (3.3f) ensure that if customer k does not
purchase any product from Skn (xkn = 0), then zkn = 0 and the corresponding profit is zero.
When customer k can afford a product j ∈ Ik, then constraints (3.3g) ensure that the
profit associated to k and a class Skn is the minimum of the prices of the products in Skn.
Indeed, when vm0

i = 1 for some m0 ≤ σ(k), then
∑

m 6=m0
vmi = 0 and the RHS is equal to

bσ(k)−(bm0−bσ(k)) = bm0 . Since zkn is bounded by the price of all the products i ∈ Skn, it is
actually bounded by the price of the cheapest product from the set. Finally, the objective
function (3.3a) represents the profit of the company, that is maximized.

3.3.1 Comparison of formulations (2ITM) and (3ITM)

In this subsection, we compare the bounds given by the linear relaxations of formulations
(3ITM) and (2ITM).

Proposition 3.5. The upper bound given by the linear relaxation of formulation (3ITM)
is always less than or equal to that of formulation (2ITM).

Proof. Consider a feasible fractional solution (v̄, ȳ) of the linear relaxation of (3ITM) that
yields an objective value v(v̄, ȳ). We build a fractional solution (v̂, x̂, ẑ) of (2ITM) with
an objective value v(v̂, x̂, ẑ) ≥ v(v̄, ȳ). In this way, if v(v̄, ȳ) is an optimal solution of the
linear relaxation of (3ITM), we obtain v(2ITM) ≥ v(v̂, x̂, ẑ) ≥ v(v̄, ȳ) = v(3ITM), where
v(2ITM) (resp. v(3ITM)) is the optimal value of the linear relaxation of (2ITM) (resp.
(3ITM)).

We define v̂mi := v̄mi , x̂kn :=
∑

m∈M
Skn

ȳkmn , ẑkn :=
∑

m∈M
Skn

bmȳkmn ∀k ∈ K, m ∈ Mk
i ,

n ∈ Nk, i ∈ Skn.

First, we prove that this solution is feasible for the linear relaxation of (2ITM). Constraints
(3.3b) hold because (3.1b) hold. Fixing v̄ and v̂, the problems are decomposable by
customers, so we assume a fixed customer k in the following, and we prove that the
associated constraints from sets (3.3c)-(3.3g) hold. As for the corresponding constraint
from (3.3c), using the above we have

∑
n∈Nk x̂kn =

∑
n∈Nk

∑
m∈M

Skn

ȳkmn , and the last sum

is less than or equal to 1 because of (3.1c). As for the constraint from (3.3d), it translates
to
∑

m∈M
Skn

ȳkmn ≤
∑

i∈Skn

∑
m∈Mk

i
v̄mi , which holds because of constraints (3.1d) (summing

up on m). Regarding the constraint from (3.3e)
∑

m∈Mk
i
v̂ki +

∑nk

n′=n+1 x̂
k
n′ ≤ 1, it translates

to
∑

m∈Mk
i
v̄ki +

∑nk

n′=n+1

∑
m∈M

Sk
n′
ȳkmn′ ≤ 1, which is exactly the inequality from set (3.1e)

for such k and m = σ(k), so it also holds. Constraint ẑkn ≤ bσ(k)x̂kn from set (3.3f) holds
trivially using the definition of x̂ and ẑ, since ẑkn =

∑
m∈M

Skn

bmȳkmn ≤ bσ(k)
∑

m∈M
Skn

ȳkmn =

bσ(k)x̂kn. And finally let us prove the feasibility of the corresponding constraint from (3.3g).
To begin with, we know that for a given customer k and product i ∈ Ik, (3.1c) and (3.1e)
imply

∑
m′∈Mk

i :m′<m v̄
m′
i +

∑
m′∈M

Skn
:m′≥m ȳ

km′
n ≤ 1 ∀ m such that m − 1 ∈ Mk

i . Let us

suppose Mk
i := {1, 2, . . . , σ(k)}. Then, multiplying the previous constraint m such that

m − 1 ∈ Mk
i by bm − bm−1 (where b0 = 0) and adding together all the constraints, we
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Table 3.2: Preference matrix of a small instance of the RPPT

Prod. 1 Prod. 2 Prod. 3 Budgets

Customer 1 1 3 2 2

Customer 2 - 2 1 4

Customer 3 2 1 1 8

obtain:

σ(k)∑
m=1

m−1∑
m′=1

(
bm − bm−1

)
v̄m
′

i +

σ(k)∑
m=1

σ(k)∑
m′=m

(
bm − bm−1

)
ȳkm

′

n ≤
σ(k)∑
m=1

(
bm − bm−1

)
= bσ(k). (3.4)

The LHS of (3.4) is equal to

σ(k)∑
m=1

m−1∑
m′=1

(
bm − bm−1

)
v̄m
′

i +

σ(k)∑
m=1

σ(k)∑
m′=m

(
bm − bm−1

)
ȳkm

′

n

=

σ(k)−1∑
m′=1

σ(k)∑
m=m′

(
bm − bm−1

)
v̄m
′

i +

σ(k)∑
m′=1

m′−1∑
m=1

(
bm − bm−1

)
ȳkm

′

n

=

σ(k)−1∑
m′=1

(
bσ(k) − bm′

)
v̄m
′

i +

σ(k)∑
m′=1

bm
′
ȳkm

′

n =
∑

m′∈Mk
i

(
bσ(k) − bm′

)
v̄m
′

i + ẑkn.

All in all, we obtain that constraint ẑkn+
∑

m′∈Mk
i

(
bσ(k) − bm′

)
v̄m
′

i ≤ bσ(k) is satisfied, so the

corresponding constraint from (3.3g) holds. On the other hand, if Mk
i ( {1, 2, . . . , σ(k)}

it suffices to multiply each constraint associated to m ∈ Mk
i by bm − bm

′
, where m′ =

max
{
m′′ ∈ {0} ∪Mk

i : m′′ < m
}

instead, and the same result is obtained applying the
previous procedure.

Finally, we need to prove that v(v̂, x̂, ẑ) ≥ v(v̄, ȳ). But this is straightforward by definition
of ẑ, since v(v̂, x̂, ẑ) =

∑
k∈K

∑
n∈Nk ẑkn =

∑
k∈K

∑
n∈Nk

∑
m∈M

Skn

bmȳkmn = v(v̄, ȳ).

Example 3.6. Let us show through the small example illustrated by Table 3.2 how the
linear relaxation bound given by formulation (3ITM) can be strictly less than that of
(2ITM). An optimal solution of this example is obtained when we assign price b1 = 2
to product 1 and price b2 = 4 to product 2 (and product 3 remains unsold). For this price
vector, customer 1 purchases 1 and customers 2 and 3 purchase 2, so the optimal value
is 10.

The upper bound given by the linear relaxation of formulation (2ITM) is 14. The fractional
values of v-variables are v1

1 = 1, v2
2 = v2

3 = 0.5 (and the rest equal to zero). Likewise, the
values of x-variables different from zero are x1

1 = 1, x2
1 = x2

2 = 0.5, x3
1 = 0.75, x3

2 = 0.25,
and the values of z-variables are z1

1 = 2, z2
1 = z2

2 = 2, z3
1 = 6, z3

2 = 2. However, if we use
the same v-values in (3ITM) and calculate the y-values by means of constraints (3.1c)-
(3.1e), we obtain y11

1 = 1, y22
1 = y22

2 = 0.5, y32
1 = 1. This solution yields an objective value
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of 10 in (3ITM). In fact, the upper bound given by the linear relaxation of model (3ITM)
is 12.

As we will see in the computational experiments of Section 3.6, the upper bounds given by
the linear relaxation of formulation (3ITM) are usually strictly less than those given by
formulation (2ITM). Regarding the previous instance from Table 3.1, the upper relaxation
bounds given by the linear relaxation of formulations (2ITM) and (3ITM) are, respectively,
640 and 588 (recall that its optimal value is equal to 585).

3.3.2 Strengthening the two-index model (2ITM)

The linear relaxation of formulation (3ITM) generally yields a smaller upper bound
than that of formulation (2ITM). By including variables ykmn in (2ITM) and the related
constraints, and then projecting them out, we can derive a set of valid inequalities to
strengthen model (2ITM).

We first extend formulation (2ITM) adding y-variables and the corresponding constraints
from (3ITM) relating them to the previous variables. By definition, we have xkn =∑

m∈M
Skn

ykmn and zkn =
∑

m∈M
Skn

bmykmn for all k ∈ K, n ∈ Nk. Incorporating the con-

straints from model (3ITM) and using x- and z-variables in place of y-variables when
possible leads to:

(2ITM+) max
v,y,x,z

∑
k∈K

∑
n∈Nk

zkn (3.3a)

s.t. (3.3b)− (3.3j), (3.1d), (3.1g),∑
m′∈Mk

i
:

m′≤m

vm
′

i +
∑

m′∈M
Skn

:

m′>m

ykm
′

n +
nk∑

n′=n+1

xkn′ ≤ 1

∀k ∈ K,n ∈ Nk,m ∈MSkn
, i ∈ Skn : m ∈Mk

i , (3.5a)

xkn ≥
∑

m∈M
Skn

ykmn ∀k ∈ K,n ∈ Nk, (3.5b)

zkn ≤
∑

m∈M
Skn

bmykmn ∀k ∈ K,n ∈ Nk, (3.5c)

(3.5d)

Constraints (3.3b)-(3.3j) along with the objective function constitute model (2ITM). Con-
straints (3.1d) dominate constraints (3.3d). As for (3.5a), they are actually (3.1e) with x
replacing y in the third sum. And finally, constraints (3.5b) and (3.5c) relate variables y
with x and z. Even though they are inequalities, they are satisfied as equalities by any
optimal solution of (2ITM+).

Proposition 3.7. Consider a fixed customer k ∈ K and a fixed set of products Skn ∈ S k.
Then the following family of constraints

zkn ≤ xknα +
∑

m∈M
Skn

∑
i∈Skn:

m∈Mk
i

1−
∑
m′≤m

vm
′

i −
nk∑

n′=n+1

xkn′

 βmi +
∑

m∈M
Skn

∑
i∈Skn:

m∈Mk
i

vmi γ
m (3.6)
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is valid for (2ITM) if for all α ≥ 0, βmi ≥ 0 for i ∈ Skn, m ∈ Mk
i , γm ≥ 0 for m ∈ MSkn

,
it holds

α +
∑

m′∈M
Skn

:

m′<m

∑
i∈Skn:

m′∈Mk
i

βm
′

i + γm ≥ bm ∀m ∈MSkn
. (3.7)

Furthermore, the linear relaxation of (2ITM) plus the set of valid inequalities (3.6) is
exactly the projection of the linear relaxation of (3ITM) on the space of variables (v,x, z).

Proof. For fixed k ∈ K, n ∈ Nk, we are going to project out the y-variables of formulation
(2ITM+) to obtain (3.6) and prove the statement. We make use of (3.5b) and (3.5c) from
(2ITM+), and we associate dual variables α, βmi , γm, δ to the corresponding constraints
(3.5b), (3.5a), (3.1d), (3.5c), respectively. By Farkas’ Lemma (see Chapter 1), we have
the following result: given a feasible solution (v,x, z) of the linear relaxation of (2ITM),
there exists a vector y satisfying these four sets of inequalities if and only if it holds

zknδ ≤ xknα +
∑

m∈M
Skn

∑
i∈Skn:

m∈Mk
i

1−
∑
m′≤m

vm
′

i −
nk∑

n′=n+1

xkn′

 βmi +
∑

m∈M
Skn

∑
i∈Skn:

m∈Mk
i

vmi γ
m (3.8)

∀k ∈ K, n ∈ Nk, and ∀(α,β,γ, δ) ≥ 0 such that

α +
∑

m′∈M
Skn

:

m′<m

∑
i∈Skn:

m′∈Mk
i

βm
′

i + γm ≥ bmδ ∀m ∈MSkn
. (3.9)

If δ > 0, we obtain (3.6) if we normalize by setting δ = 1. Otherwise, the obtained
inequality is dominated by (3.3e) and the nonnegativity constraints on variables vmi and
xkn. It is indeed easy to see that for any feasible solution of (2ITM), the RHS of (3.8) is
nonnegative.

Proposition 3.7 provides a family of valid inequalities for (2ITM) of infinite size. Therefore,
their inclusion in the model requires the election of a subset of them following a separation
procedure. Below, we formally determine the separation problem and show that it is
equivalent to a minimum cost flow problem (MCFP).

Let us assume we are given a fractional optimal solution (v̄mi , x̄
k
n, z̄

k
n) of the linear relaxation

of (2ITM) or a current solution at a given node of the search tree. We solve a separation
problem for each customer k and equivalence class Skn ∈ S k.

First of all, the special structure of conditions (3.7) implies that to minimize of RHS in
(3.6), we can set, for each m, at most one βmi to a positive value. More precisely, for

each m, we define im ∈ arg mini∈Skn:m∈Mk
i

{
1−

∑
m′≤m v

m′
i −

∑nk

n′=n+1 x
k
n′

}
and then set

βmi = 0 ∀i ∈ Skn, i 6= im. Hence, the separation problem (SPk
n) can be stated as:

(SPk
n) min

α,β,γ
x̄knα +

∑
m∈M

Skn

1−
∑

m′∈Mk
im

:

m′≤m

v̄m
′

im −
nk∑

n′=n+1

x̄kn′

 βmim +
∑

m∈M
Skn

∑
i∈Skn:

m∈Mk
i

v̄mi γ
m

(3.10a)
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s.t. α +
∑
m′<m

βm
′

im′
+ γm ≥ bm ∀m ∈MSkn

, (3.10b)

α, βmim , γ
m ≥ 0 ∀m ∈MSkn

.

Problem (SPk
n) is linear and the matrix associated to constraints (3.10b) is binary and

possesses the Consecutive Ones Property: the elements equal to 1 in each column appear
consecutively. This property permits to solve the problem as a MCFP, see e.g. page 304
in Ahuja et al. (1988). We now describe how to derive this MCFP.

To begin with, we sort the budgets bm,m ∈MSkn
by increasing order of their values. Then,

we transform the constraints in (3.10b) into equalities by introducing slack variables δm

for each row m in (3.10b). We also add the row 0 · α+ 0 ·
∑

m∈Mk
n
βmim + 0 ·

∑
m∈Mk

n
γm +

0 ·
∑

m∈Mk
n
δm = 0. These modifications lead to an equivalent formulation with the same

objective function (3.10a) and the following constraints:

1 0 · · · 0 1 0 · · · 0 −1 0 · · · 0

1 1 · · · 0 0 1 · · · 0 0 −1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

1 1 · · · 1 0 0 · · · 1 0 0 · · · −1

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0





α

βmim

γm

δm


=



b1

b2

...

bσ(k)

0


,

α, βmim , γ
m ≥ 0 ∀m ∈MSkn

.

To finish the transformation, we carry out a row operation for each m = σ(k), σ(k) −
1, . . . , 1 in this order: we subtract the m-th constraint to the (m + 1)-th one. The
equivalent linear formulation (SP-MCFPk

n) obtained is:

min
α,β,γ

αx̄kn +
∑

m∈M
Skn

βmim

1−
∑

m′∈Mk
im

:

m′≤m

v̄m
′

im −
nk∑

n′=n+1

x̄kn′

+
∑

m∈M
Skn

γm
∑
i∈Skn:

m∈Mk
i

v̄mi (3.11a)

s.t.



1 0 · · · 0 1 0 · · · 0 −1 0 · · · 0

0 1 · · · 0 −1 1 · · · 0 1 −1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 0 0 · · · 1 0 0 · · · −1

−1 −1 · · · −1 0 0 · · · −1 0 0 · · · 1





α

βmim

γm

δm


=



b1

b2 − b1

...

bσ(k) − bσ(k)−1

−bσ(k)


,

(3.11b)

α, βmim , γ
m ≥ 0 ∀m ∈MSkn

. (3.11c)

The constraint matrix in (3.11b) is the incidence matrix of a graph G = (N,A). Each row
corresponds to a node in N = MSkn

whose supply/demand is given by the corresponding
RHS of (3.11b) and each column corresponds to an arc. Hence, the variables represent
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Figure 3.1: MCFP corresponding to (SP-MCFPk
n). Next to each node we have its sup-

ply/demand, and variables (α,β,γ, δ) are associated to the flow of the corresponding arc

uncapacitated flows on the arcs and the objective function consists in minimizing the total
cost of the flow. The node corresponding to the last row is the unique sink with demand
bσ(k) and all other nodes are sources with offer equal to the difference of two consecutive
budget values in MSkn

. The MCFP corresponding to problem (SP-MCFPk
n) is illustrated

in Figure 3.1. Given that there is no capacity on the arcs and there is only one sink, the
problem can be solved in MSkn

steps, by computing one shortest path from each source to
the sink.

To solve the RPPT with formulation (2ITM) we thus use a branch and cut algorithm
that adds violated inequalities from (3.6) at the root node as well as at every node of the
branch and bound tree of depth less than 4. Algorithm 2 details the different steps of the
separation procedure.

Algorithm 2 Resolution of the separation problems (SPk
n)

Let (v̄mi , x̄
k
n, z̄

k
n) be an optimal fractional solution of the linear relaxation of (2ITM) or

a solution found in a node of the search tree of depth less than 4.
For every customer k ∈ K and integer n ∈ Nk, do

Step 1. Obtain īm ∈ arg mini∈Skn

{
1−

∑
m′≤m v̄

m′
i −

∑nk

n′=n+1 x̄
k
n′

}
∀m ∈MSkn

.

Step 2. Transform the instance of (SPk
n) into an instance of the MCFP.

Step 3. Compute an optimal flow on the corresponding graph of the instance of
MCFP, obtaining ᾱ, β̄mim , γ̄m ∀m ∈MSkn

.
Step 4. Incorporate constraint

zkn ≤ ᾱxkn +
∑

m∈M
Sk
n

β̄mim

1−
∑

m′∈Mk
im

:

m′≤m

vm
′

im
−

nk∑
n′=n+1

xkn′

+
∑

m∈M
Sk
n

γ̄m
∑

i∈Sk
n:

m∈Mk
i

vmi

to (2ITM) provided that it is violated.
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3.4 Solution of (3ITM) via Benders Decomposition:

the Benders Model

Formulation (3ITM) yields very good linear relaxation bounds but it has a large number
of variables and constraints. However, as shown in this section, its structure allows for its
resolution by means of a Benders decomposition.

First, we introduce the Benders Model (BDM). To reformulate (3ITM), we need to be
able to relax the integrality on the set of y-variables. However, this result is shown in
Proposition 3.3. We address the Benders reformulation of (3ITM) and relate it to the
Benders Model in the following subsections.

We define continuous variables zk, ∀k ∈ K, that represent the profit associated to cus-
tomer k. With this set of variables and the set of v-variables used for (3ITM) and (2ITM),
we present the Benders Model (BDM) for the RPPT:

(BDM) max
v,z

∑
k∈K

zk (3.12a)

s.t.
∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (3.12b)

zk ≤
∑
i∈Ik

∑
m∈Mk

i

bmvmi ∀k ∈ K, (3.12c)

zk ≤ bσ(k) +
∑
m∈Mk

i

(
bm − bσ(k)

)
vmi +

∑
j∈Ik:
j≺ki

∑
m∈Mk

j

bmvmj

∀k ∈ K, i ∈ Ik, (3.12d)

vmi ∈ {0, 1} ∀i ∈ I,m ∈Mi, (3.12e)

zk ≥ 0 ∀k ∈ K. (3.12f)

Proposition 3.8. Model (BDM) is valid for the RPPT.

Proof. Constraints (3.12c) guarantee that if customer k cannot afford any product, then
zk = 0. When k can afford several products, the RHS of (3.12c) is an upper bound on
the value of zk.

Constraints (3.12d) model the preferences and ensure that k purchases his most preferred
product (at the cheapest price in case of ties). Indeed, given an integer feasible solution
(v̄, z̄), let n∗ := min{n ∈ Nk :

∑
i∈Skn

∑
m∈Mk

i
v̄ki ≥ 1}, and i∗ ∈ arg mini∈Sk

n∗
{
∑

m∈Mk
i
bmv̄mi }.

Clearly, Skn∗ is the first class (according to the ranking) from which k is able to afford
a product, whereas i∗ is one of the cheapest products from Skn∗ . So assuming v̄m

∗
i∗ = 1,

we need to prove that it holds zk =
∑

m∈Mk
i∗
bmv̄mi∗ = bm

∗
. Since we are maximizing the

objective, it suffices to prove that all the RHSs of (3.12c) and (3.12d) for such k are all
greater than or equal to bm

∗
, and that at least one is equal to bm

∗
. We have one constraint

per product i ∈ Ik, so to begin with we distinguish two cases:

� i � i∗. In this case, the last sum of the corresponding constraint from (3.12d)∑
j∈Ik:j≺ki

∑
m∈Mk

j
bmvmj equals 0. We have three subcases to consider:
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– i ≺k i∗. Then k cannot afford i or any j ≺k i, so the RHS of (3.12d) is equal
to bσ(k), an upper bound on the profit from k.

– i = i∗. In this case, the RHS of (3.12d) is equal to bm
∗
:

bσ(k) +
∑

m∈Mk
i∗

(
bm − bσ(k)

)
v̄mi∗ = bσ(k) +

(
bm
∗ − bσ(k)

)
= bm

∗
.

– i ∼k i∗, i 6= i∗. In this case, by definition of i∗ we know that v̄m̂i = 1 for some
m̂ ≥ m∗. If m̂ > σ(k), then the RHS of (3.12d) is equal to bσ(k). Otherwise,
we have

∑
m∈Mk

i
bmv̄mi = bm̂ ≥ bm

∗
and it holds

bσ(k) +
∑
m∈Mk

i

(
bm − bσ(k)

)
v̄mi = bσ(k) +

(
bm̂ − bσ(k)

)
= bm̂.

� i �k i∗. Then it holds

bσ(k) +
∑
m∈Mk

i

(
bm − bσ(k)

)
v̄mi +

∑
j∈Ik:
j≺ki

∑
m∈Mk

j

bmv̄mj ≥
∑
j∈Ik:
j≺ki

∑
m∈Mk

j

bmv̄mj ≥ bm
∗
,

where the last inequality holds because vm
∗

i∗ = 1 belongs to the previous sum.

3.4.1 Benders Reformulation

We can proceed with a Benders reformulation of (3ITM):

(BDMMAS) max
v,z

∑
k∈K

zk (3.13a)

s.t.
∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (3.13b)

zk ≤ P k(v), ∀k ∈ K (3.13c)

vmi ∈ {0, 1} ∀i ∈ I,m ∈Mi, (3.13d)

zk ≥ 0 ∀k ∈ K, (3.13e)

where ∀k ∈ K, P k(v) is defined as the optimal value of

(BDMSUBk) max
y

∑
n∈Nk

∑
m∈M

Skn

bmymn (3.14a)

s.t.
∑
n∈Nk

∑
m∈M

Skn

ymn ≤ 1, (3.14b)

ymn ≤
∑
i∈Skn

vmi ∀n ∈ Nk,m ∈MSkn
, (3.14c)

∑
m′∈M

Skn
:

m′≥m

ym
′

n +
nk∑

n′=n+1

∑
m′∈M

Sk
n′

ym
′

n′ ≤ 1−
∑

m′∈Mk
i

:

m′<m

vm
′

i
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∀n ∈ Nk, i ∈ Skn,m ∈Mk
i , (3.14d)

ymn ≥ 0 ∀n ∈ Nk,m ∈MSkn
. (3.14e)

In (BDMSUBk), we drop the upper index k of the y-variables for the sake of notation.
Constraints (3.13b) guarantee that every product price is unique. This guarantees the
feasibility in problem (BDMSUBk) for a given integer solution (vmi ) of (3ITM), since the
RHS of constraints (3.14b)-(3.14d) is always nonnegative. Hence, these constraints act
as feasibility cuts ensuring that any pricing v in the master problem (BDMMAS) admits a
feasible allocation y in the original model (3ITM). As a consequence, no feasibility cuts
are added in our Benders decomposition (see Section 1.1.3 from Chapter 2).

Furthermore, constraint (3.14b) ensures that (BDMSUBk) is bounded. Therefore, by linear
optimization strong duality (see Section 1.1.1), the optimal value of problem (BDMSUBk)
is equal to the optimal value of its dual problem, (BDMSUBDk). Associating variables
α, βmi , γ

m
n to the corresponding constraint from sets (3.14b), (3.14d), (3.14c), respectively,

(BDMSUBDk) can be stated as

(BDMSUBDk) min
α,β,γ

α +
∑
n∈Nk

∑
i∈Skn

∑
m∈Mk

i

1−
∑

m′∈Mk
i :m′<m

vm
′

i

 βmi

+
∑
n∈Nk

∑
i∈Skn

∑
m∈Mk

i

vmi γ
m
n (3.15a)

s.t. α +
n−1∑
n′=1

∑
i∈Sk

n′

∑
m′∈Mk

i

βm
′

i +
∑
i∈Skn

∑
m′∈Mk

i
:

m′≤m

βm
′

i + γmn ≥ bm

∀n ∈ Nk,m ∈MSkn
, (3.15b)

α, βmi , γ
m
n ≥ 0 ∀n ∈ Nk,m ∈MSkn

, i ∈ Skn. (3.15c)

Now, we can rewrite problem (BDMMAS) making use of subproblems (BDMSUBDk). Thus,
defining Dk for each k ∈ K as the set of feasible solutions (αk, βkmi , γkmn ) for the dual
subproblem (BDMSUBDk), we have:

(BDMMAS) max
v,z

∑
k∈K

zk (3.16a)

s.t.
∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (3.16b)

zk ≤ αk +
∑
n∈Nk

∑
i∈Skn

∑
m∈Mk

i

1−
∑

m′∈Mk
i :m′<m

vm
′

i

 βkmi

+
∑
n∈Nk

∑
i∈Skn

∑
m∈Mk

i

vmi γ
km
n , ∀k ∈ K, (α,β,γ) ∈ Dk, (3.16c)

vmi ∈ {0, 1} ∀i ∈ I,m ∈Mi, (3.16d)
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zk ≥ 0 ∀k ∈ K. (3.16e)

Finally, we state that model (BDMMAS) obtained by means of a Benders reformulation is
in fact a reinforcement of the previous Benders Model (BDM):

Proposition 3.9. The sets of constraints (3.12c) and (3.12d) are included in (3.16c).

Proof. We drop the k index from the variables for the sake of notation. Constraints (3.12c)
are obtained, for a fixed customer k, when fixing α := 0, βmi := 0 ∀i ∈ Ik, m ∈Mk

i , γmn :=
bm ∀n ∈ Nk, m ∈MSkn

. The described (α,β,γ) belongs to Dk because constraints (3.15b)

are trivially satisfied, since for each m ∈ MSkn
it holds α +

∑n−1
n′=1

∑
i∈Sk

n′

∑
m′∈Mk

i
βm

′
i +∑

i∈Skn

∑
m′∈Mk

i
:

m′<m

βm
′

i + γmn ≥ γmn = bm.

As for constraints (3.12d), consider for fixed k ∈ K, n∗ ∈ Nk and i∗ ∈ Skn∗ ⊂ Ik, and
assume Mk

i∗ = {1, . . . , σ(k)}. Let us set the values α := b1, βmi∗ := bm+1− bm for m ∈Mk
i∗ :

m < σ(k), β
σ(k)
i∗ := 0, βmi := 0 ∀i 6= i∗, m ∈ Mk

i , γmn := bm ∀n < n∗, m ∈ MSkn
, γmn := 0

for n ≥ n∗, m ∈ MSkn
. Then it follows

∑
m∈Mk

i∗
βmi∗ =

∑σ(k)−1
m=1 (bm+1 − bm) = bσ(k) − b1

and
∑

m∈Mk
i∗ :m≥m′ β

m
i∗ = bσ(k)− bm′ for m′ ∈Mk

i∗ . Therefore, we have that the RHS of the

corresponding constraint from (3.16c) is

α +
∑
n∈Nk

∑
i∈Skn

∑
m∈Mk

i

1−
∑

m′∈Mk
i

:

m′≤m

vm
′

i

 βmi +
∑
n∈Nk

∑
i∈Skn

∑
m∈Mk

i

vmi γ
m
n

= b1 +
∑

m∈Mk
i∗

1−
∑

m′∈Mk
i∗ :

m′≤m

vm
′

i∗

 βmi∗ +
∑
n<n∗

∑
i∈Skn

∑
m∈Mk

i

vmi b
m

= b1 +
∑

m∈Mk
i∗

βmi∗ −
∑

m′∈Mk
i∗

 ∑
m∈Mk

i∗ :

m≥m′

βmi∗

 vm
′

i∗ +
∑
i∈Ik:
i≺i∗

∑
m∈Mk

i

vmi b
m

= b1 +
(
bσ(k) − b1

)
−

∑
m′∈Mk

i∗

(
bσ(k) − bm′

)
vm
′

i∗ +
∑
i∈Ik:
i≺i∗

∑
m∈Mk

i

vmi b
m,

which is equal to the RHS of (3.12d) for customer k and product i∗ ∈ Skn∗ .

To check whether (α,β,γ) belongs to Dk, and knowing that the vectors are nonnegative
by definition, it is left to prove that (3.15b) hold ∀n ∈ Nk, m ∈ MSkn

, i ∈ Skn. To do so,
we study three cases depending on n ∈ Nk:

� n < n∗. Then for given m ∈MSkn
, we have the LHS of (3.15b) equal to

α +
n−1∑
n′=1

∑
i∈Sk

n′

∑
m′∈Mk

i

βm
′

i +
∑
i∈Skn

∑
m′∈Mk

i
:

m′<m

βm
′

i + γmn ≥ γmn = bm.
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� n = n∗. Then it holds for m ∈MSkn
:

α+
n∗−1∑
n′=1

∑
i∈Sk

n′

∑
m′∈Mk

i

βm
′

i +
∑
i∈Sk

n∗

∑
m′∈Mk

i
:

m′<m

βm
′

i +γmn∗ = α+
∑

m′∈Mk
i∗ :

m′<m

βm
′

i∗ = b1+
(
bm − b1

)
= bm.

� n > n∗. Then for given m ∈MSkn
, we have the LHS of (3.15b) equal to

α +
n∗−1∑
n′=1

∑
i∈Sk

n′

∑
m′∈Mk

i

βm
′

i +
∑
i∈Sk

n∗

∑
m′∈Mk

i
:

m′<m

βm
′

i + γmn∗ = α +
∑

m′∈Mk
i∗

βm
′

i∗ = bσ(k).

In the three cases, the LHS of (3.15b) is greater than or equal to bm, so the given (α,β,γ)
satisfies (3.15b) and thus it belongs to Dk.

If Mk
i∗ ( {1, 2, . . . , σ(k)}, the proof follows analogously applying the previous procedure

to the same α and γ, but defining βmi∗ := bm
′− bm, where m′ = min{m′′ ∈Mk

i∗ : m′′ > m},
for m ∈Mk

i : m < σ(k), β
σ(k)
i∗ := 0, βmi := 0 ∀i 6= i∗, m ∈Mk

i .

3.4.2 Resolution Approach

The classical Benders resolution approach begins by solving to optimality the master prob-
lem (BDMMAS) without constraints (3.16c). Then, a subset of constraints from (3.16c)
is obtained by solving problems (BDMSUBDk) for all k ∈ K, and the violated constraints
are added to the master problem, which is again solved to optimality. This process is
done iteratively until none of the constraints from (3.16c) is violated, and thus the solu-
tion is optimal for (BDMMAS). The drawback of this method is that the integer model
(BDMMAS) is solved many times, which can take a considerable amount of time.

In the lazy approach, however, the resolution starts by solving the linear relaxation of
(BDMMAS) without the set (3.16c), obtaining a fractional solution and an upper bound
on the optimal value. In order to decrease this bound, the subproblems (BDMSUBDk)
are solved for each customer using the fractional solution of the master problem, and
a set of constraints is added to the problem. Optimality cuts are added at this phase
until the bound is no longer improved. The second step of the resolution is to solve the
integer problem with the usual branch-and-bound algorithm. In this phase, constraints
are added in the so-called lazy fashion, i.e. only checking for them when the resolution
of a node in the search tree leads to an integer solution. In such case, if a constraint is
violated, the cut is pulled into the active node and the solution is discarded. Otherwise,
the solution is feasible for (BDMMAS). At this step, constraints from (3.16c) may also
be added at a current fractional node of the branching tree. The interested reader may
find the advantages of this method thoroughly explained in Naoum-Sawaya and Elhedhli
(2013).

In this work, we solve the Benders Model (BDM) instead of (BDMMAS). The advantage
is that, since (BDM) gives feasible solutions for the RPPT, we no longer need to solve
(BDMSUBDk) in order to check the validity of an integer solution of the master. Never-
theless, we can still add valid inequalities from (3.16c) to cut off fractional solutions of
(BDM), thus strengthening the model.
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Figure 3.2: Structure of the MCFP graph corresponding to (BDMSUBDk). Source nodes
appear in white and sink nodes appear in grey

Resolution of the dual subproblem (BDMSUBDk)

Solving problem (BDMSUBDk) for fractional solutions of (BDM) is interesting because it
allows for the incorporation of valid inequalities in the linear relaxation phase, thus helping
to decrease the upper bound before solving the integer phase. An analogous procedure to
that of the resolution of the separation problem (SPk

n) in Subsection 3.3.2 can be applied
to (BDMSUBDk). In this case, it suffices to consider the lexicographical order in the rows
of matrix (3.15b) (that is, (n,m) < (n′,m′) if n < n′ or n = n′ and m < m′) in order
to state that it also satisfies the Consecutive Ones Property. Thus, (BDMSUBDk) can
be transformed into a MCFP and solved by means of an efficient implementation of an
existing algorithm.

For our implementation, we have selected the Successive Shortest Path (SSP) Algorithm
to obtain the solution of the MCFP. In each iteration, this algorithm selects a shortest
path between a supply and a demand node and increases the flow along the path (it
also modifies the reduced costs of the arcs used to compute the shortest path and the
residual network in each iteration). Since our graph has

∑
n∈Nk |MSkn

|+ 1 nodes, solving
the problem for a given customer k can take at most

∑
n∈Nk |MSkn

| iterations. When the
preference matrix is dense, this amounts to |Nk|σ(k).

Leveraging the special structure of our MCFP, we have reduced the number of iterations in
which a shortest path is computed. The structure of the graph associated to our MCFP is
depicted in Figure 3.2. As in the graph from Figure 3.1, the white nodes represent sources,
the grey ones represent sinks and sending flow through δ-arcs (the arcs from a node to
the previous one) has cost equal to zero. Hence, we need not compute the shortest path
between a node with excess supply (n,m) and a node with unfulfilled demand (n′,m′)
whenever (n,m) > (n′,m′). In the first phase of the algorithm, we select a source (n,m)
and a sink (n′,m′) with (n,m) > (n′,m′), and then apply the SSP algorithm without
computing the shortest path. Then, when for all supply node (n,m) and demand node
(n′,m′) it holds (n,m) < (n′,m′), we continue with the second phase, where we apply
the SSP algorithm in the standard way. This preprocessing of the MCFP reduces the
number of iterations in which an algorithm to obtain a shortest path is executed to at
most σ(k) iterations. Thus, the amount of computational time saved during the first
phase is significant.

Finally, note that the transformation of the subproblems into a MCFP can also be used
to solve the subproblems of the Benders decomposition proposed by Bertsimas and Mǐsić
(2019) for the resolution of the PLD problem. Indeed, the Consecutive Ones Property
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holds in this case as well.

In-out stabilization method and overall resolution approach

In this subsection, we present our resolution strategy to solve model (BDM) as well as an
in-out stabilization method implemented to speed up the linear relaxation phase of the
resolution.

The procedure is divided in two phases:

1. Linear relaxation phase. The linear relaxation of (BDM) is solved, obtaining a
fractional solution and an upper bound on the optimal value. In order to decrease
this bound, the corresponding MCFP of subproblems (BDMSUBDk) are solved for
each customer and for the fixed fractional solution of the master, and a set of valid
inequalities from (3.16c) is derived and added to the formulation. Valid inequalities
are added at this phase until the upper bound is no longer improved.

2. Integer phase. The integer problem with the subset of constraints derived in the
previous phase is solved to optimality by means of a branch-and-cut. Due to the fact
that it is very time consuming, no more valid inequalities from (3.16c) are added in
this phase.

As we have proved, the SSP algorithm used to solve the transformation of subproblems
(BDMSUBDk) into a MCFP constitutes an exact algorithm of separation. In this sense,
it finds at least one violated constraint for any solution of (BDM) which is infeasible
for (BDMMAS). On the other hand, when the problem size is large, computing these
inequalities is time consuming, and frequently the upper bound decreases very slowly and
many cuts are generated in the process. In order to speed up this cutting phase, we
implemented an in-out stabilization method with the aim of generating less cuts of better
quality. The steps of the cutting plane in-out algorithm are detailed in Ben-Ameur and
Neto (2007) and Bonami et al. (2020).

LetD represent the domain given by all the constraints of problem (BDMMAS), and P ⊇ D
the domain given by the constraints from (BDM). Then the in-out stabilization method
is based on the election of good separation points. Specifically, at each loop iteration of
the linear relaxation phase three points are considered: a point (vout, zout) ∈ P \D given
by the optimal solution of the linear relaxation of the current reduced master problem
(BDM), a feasible interior point (vin, zin) ∈ D, and a separation point (vsep, zsep), which is
a convex combination of the previous two: (vsep, zsep) := λ(vout, zout)+(1−λ)(vin, zin) with
λ ∈ (0, 1]. At each iteration, two possibilities can occur. If (vsep, zsep) /∈ D, then we use it
instead of (vout, zout) as a separation point to solve the dual subproblem (BDMSUBDk), since
the inequalities provided by this point are expected to be more efficient. We finish the
iteration by solving the new optimization problem and obtaining a new point (vout, zout).
Otherwise, (vsep, zsep) ∈ D, and in this case solving the dual subproblem does not provide
new violated cuts. Therefore, in this iteration no constraints are added but (vin, zin) is
replaced with (vsep, zsep), which is a feasible point with greater objective value. As we
can see, at each iteration either (vin, zin) or (vout, zout) are updated, until convergence
is obtained because the relative difference between the two points is lower than a fixed
tolerance ε. Although λ is a scalar that can change in every iteration, preliminary testing
led us to set λ = 0.99 for all iterations.
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As for the interior point (vin, zin), it is frequently obtained using the barrier algorithm
with crossover. In our case, an interior point (vin, zin) ∈ D can be very easily derived
by exploiting the particular structure of the problem. To do so, it suffices to build a
non-degenerated convex combination of |I ×M I | + |K| + 1 points of the polytope and
then compute the centroid. Point (i,m) of the first feasible set of |I ×M I | points was
created taking vmi = 1, vm

′

i′ = 0 for (i′,m′) 6= (i,m), z = 0. Point k of the next |K| points
is zk = bσ(k), zk

′
= 0 for k′ 6= k, vmi = 1 for i = min{i ∈ Sk1}, m = σ(k), vm

′

i′ = 0 for
(i′,m′) 6= (i,m). Finally, we used (v, z) = 0.

3.5 Preprocessing

In this section, we present a preprocessing procedure with the aim of reducing the size
of the problem by fixing variables to zero. Note that, even though the results are stated
for models (2ITM) and (3ITM), they also apply to subproblems (BDMSUBDk) during the
resolution of model (BDM). This preprocessing is based on the one described in Chapter
2. We define a recursive function u′ : K → S K that assigns the index n of an equivalence
class Skn ∈ S k to each customer k ∈ K. Function u′ is defined as follows, for the set of
customers ordered according to their budgets in decreasing order:

1. If σ(k) = |M |, then u′(k) := 1.

2. If σ(k) < |M | and it holds Ik *
(
∪ k′∈K:
σ(k′)>σ(k)

Sk
′

u′(k′)

)
, then

u′(k) := min

{
n ∈ Nk : Skn *

(
∪ k′∈K:
σ(k′)>σ(k)

Sk
′

u′(k′)

)}
.

3. If σ(k) < |M | and it holds Ik ⊆
(
∪ k′∈K:
σ(k′)>σ(k)

Sk
′

u′(k′)

)
, then u′(k) := nk.

Function u′ assigns to the richest customers the equivalence class that contains their
favorite products. To the rest of the customers it assigns, among the equivalence classes
with products that are not in the equivalence classes associated to richer customers, the
equivalence class with the highest ranked ones. And if for every product i ∈ Ik it holds
that i is already in another customer’s class Sk

′

u′(k′), then u′ assigns to k the index of the
class with his least favorite products. Function u′ allows for the same partition of the set
of customers than u did in Chapter 2. Thus, let Cr, r = {1, 2, 3}, be such that k ∈ Cr if
and only if u′(k) has been defined for k making use of item r of the definition of u′.

For any instance of the RPP (without ties) it follows |Skn| = 1 ∀k, n, and therefore u′(k) =
n ⇒ u(k) = i for i ∈ Skn, for the function u described in Chapter 2. However, the
definition of u does not apply to the RPPT, since there may be more than one product on
each class Skn. This is the reason for defining a function that assigns equivalence classes to
customers instead of products. Now the use of this new function allows us to fix variables
to zero:

Proposition 3.10. For (2ITM) (resp. (3ITM)), there exists an optimal solution (v̄mi , x̄
k
n,

z̄kn) (resp. (v̄mi , ȳ
km
n )) such that x̄kn = 0 (resp. ȳkmn = 0) for all k ∈ K, n > u′(k), m ∈MSkn

.

Proof. We shall prove the statement for model (2ITM), since the proof for model (3ITM)
is analogous. Thus, suppose we have an optimal solution (v̂mi , x̂

k
n, ẑ

k
n) not satisfying the
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Table 3.3: Preprocessing of the instance shown in Table 3.1

Prod. 1 Prod. 2 Prod. 3 Prod. 4 Prod. 5 Budgets

Customer 1 1 * 3* 1 * -* 2* 120

Customer 2 2* 1 * 1 * -* -* 95

Customer 3 1 * 2* 4* 1 * 3* 82

Customer 4 -* 3* 1* 3* 2 * 82

Customer 5 -* 1* 3 * 2* -* 79

Customer 6 2 * -* 1* 2 * 1* 65

Customer 7 3* 2* 5 * 1* 4* 64

Customer 8 1* 4 * 2* -* 3* 53

Optimal prices -* 95* 120* 79* 53* 585

statement conditions. Our aim is to build another one which does satisfy them. We will
proceed by induction on k.

To begin with, it is clear that the statement holds for all customers k with budget b|M |.
Indeed, since these customers can afford any product, they always get one of their favorite
ones, so one in the set Sk1 , and x̂kn = 0 for n > 1 = u′(k). Now, let k0 ∈ K be such that
the statement holds ∀k ∈ K with σ(k) > σ(k0) but x̂k0

n = 1 for some n > u′(k0). Then
it is clear that k0 /∈ C3. Besides, from the definition of u′ we know there is a product
i0 ∈ Sk0

u′(k0) \ ∪ k∈K:
σ(k)>σ(k0)

Sku′(k), and we also know that i0 remains unsold in this solution.

Hence, consider the vector of prices v̄mi obtained by modifying the price of i0: v̄mi =

v̂mi ∀i 6= i0,m ∈ Mk
i , v̄

σ(k0)
i0

= 1, v̄mi0 = 0 ∀m 6= σ(k0). Given this vector of prices,
customers k with σ(k) < σ(k0) can afford the same products than in solution (v̂mi , x̂

k
n, ẑ

k
n),

so they make the same purchase. Customers k with σ(k) > σ(k0) were already purchasing
in the previous solution a product that they liked better than i0. And customers k
with σ(k) = σ(k0) might purchase product i0 in the new solution, but in this case,
since they pay their whole budget, the objective value does not decrease with respect
to the previous solution. Therefore, (v̂mi , x̂

k
n, ẑ

k
n) is an optimal solution that meets the

statement requirements for customer k0. Applying the procedure iteratively, we can obtain
an optimal solution satisfying the statement.

Example 3.11. To illustrate the previous proposition, Table 3.3 shows the instance pro-
posed in Table 3.1 already preprocessed. For every customer k, the preferences associated
to products in Sku′(k) are circled. Preferences appear in grey for those products in Skn such

that xkn has been fixed to zero. For customer 1, by definition we have n1 = 3, S1
1 = {1, 3},

S1
2 = {5} and S1

3 = {2}. Since he has the greatest budget, he belongs to C1 and u′(1) = 1.
In this case, his favorite products, 1 and 3, are circled, and the rest of the products in
his list of preferences appear in grey because x1

2 = x1
3 = 0 by Proposition 3.10. As for

customer 2, since S2
1 = {2, 3} and 2 /∈ S1

u′(1) = {1, 3}, he belongs to C2, u′(2) = 1 and

there exists an optimal solution in which customer 2 will not purchase product 1 ∈ S2
2 .
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And finally, we turn to customer 5. For all i ∈ I5, ∃k ∈ K : σ(k) > σ(5) and i ∈ Sku′(k).

Hence, 5 ∈ C3, u′(5) = n5 = 3 and none of the variables associated to the equivalence
classes can be set to zero. Note that, in the optimal solution given, all the customers k
purchase a product i ∈ Skn such that n ≤ u′(k).

Finally, we give a condition under which an optimal solution can be found by inspection.

Corollary 3.12. If C3 = ∅, an optimal solution of (2ITM) (resp. (3ITM)) can be found
by inspection.

Proof. We will prove the statement for formulation (2ITM), and the proof for (3ITM) is
analogous. Let us define a solution (v̄mi , x̄

k
n, z̄

k
n) of (2ITM) and prove its optimality.

We begin by defining the vector v̄ of prices in the following way: ∀i ∈ I : i ∈ Sku′(k) for

some k ∈ K, then v̄m0
i = 1 for m0 := max{m ∈ Mi : ∃k ∈ K with σ(k) = m0, i ∈ Sku′(k)},

v̄mi = 0 ∀m 6= m0; and ∀i ∈ I such that {k ∈ K : i ∈ Sku′(k)} = ∅, then v̄m0
i = 1 for

m0 := max{m ∈Mi}, v̄mi = 0 ∀m 6= m0.

Now let us see the customers’ purchase decision based on vector v̄. Thus, given k ∈ K
we have that ∀i ∈ Skn with n < u′(k), it holds by definition of u′ that i ∈ Sku′(k′) for some

k′ : σ(k′) > σ(k), and therefore v̄mi = 1 for some m > σ(k) and thus k cannot afford
i. Hence, we have x̄kn = 0 ∀n < u′(k). Moreover, since k /∈ C3, there exists i0 ∈ Sku′(k)

such that v̄
σ(k)
i0

= 1. This combined with the fact that ∀i ∈ Sku′(k) it holds v̄mi = 1 for

some m ≥ σ(k) by definition of v̄, implies that customer k purchases i0, so x̄ku′(k) = 1 and

z̄ku′(k) = bσ(k).

Given that the objective value of this above derived feasible solution is
∑

k∈K b
σ(k), which is

an upper bound on the profit the company can obtain, solution (v̄mi , x̄
k
n, z̄

k
n) is optimal.

3.6 Computational results

Extensive computational experiments were carried out to compare the performance of
(2ITM) and (BDM) in terms of the number of nodes of the branching tree, computational
time and integrality gap, as well as the performance of the valid inequalities derived for
both formulations and the preprocessing techniques. We implemented both formulations
by means of Mosel version 4.0.3 of Xpress-MP, Optimizer version 29.01.10, running on a
Dell PowerEdge T110 II Server (Intel Xeon E3-1270, 3.40 GHz) with 16 GB of RAM.

Regarding the instances, we modified those proposed in Chapter 2, that were designed
following a model based on the Characteristics Model proposed by Fernandes et al. (2016).
For each previous size (|K| = 50, |K| = 100 and |K| = 150 customers and 0.1|K|, 0.5|K|
and |K| products), four types of instances were generated in Chapter 2 modifying |Ik|.
Out of the four types, we consider the instances with sizes |Ik| = d0.2|I|e, |Ik| = d0.5|I|e
and |Ik| = |I|. These instances were proposed for the RPP, so we modified them by
randomly adding ties in the ranked lists of preferences of the customers. Thus, for each
size we generated three instances varying the number of ties in the list of preferences
(denoted Ties in Tables 3.4-3.11 and in the following), with 1, 2, 3, 5 or 10 ties depending
on the instance. This parameter establishes the relationship between |Ik| and nk = |S k|
in the following way: |Ik| −Ties = nk. We modified 5 instances of each size, 365 in total.
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Figure 3.3: In the y-axis, the percentage of instances with an integrality gap less than or
equal to that of the x-value is represented for formulations (2ITM), (BDM) and (3ITM),
with the branch-and-cut procedures and/or the preprocessing techniques

All the instances are available at https://github.com/cdomsa/RPPT/. The time limit
was set to 3600 seconds, and the default setting of Xpress was used.

To begin with, we consider the instances of sizes |K| = 50 and |K| = 100 to compare
formulations (2ITM), (BDM) and (3ITM) with and without the preprocessing techniques
and the valid inequalities included in a branch-and-cut procedure. For completeness, we
report the results of the computational experiments in six tables. Tables 3.4-3.6 (resp. 3.7-
3.9) contain all the results concerning the instances of sizes |K| = 50 (resp. |K| = 100).
In the remaining of the section, the most significant information from those tables is
summarized by means of several figures. Formulations (2ITM), (BDM) and (3ITM) are
shown in the legends of the figures as 2ITM, BDM and 3ITM. If the instances have been
preprocessed using the results from Section 3.5, in the legends it is shown 2ITM+prepro,
BDM+prepro and 3ITM+prepro. And for formulations (2ITM) and (BDM) with the
branch-and-cut procedure included (as well as the preprocessing techniques), they are
shown as 2ITM+prepro+VI and BDM+prepro+VI.

Figure 3.3 is a performance profile that shows the percentage of instances having an in-
tegrality gap less than or equal to the value on the x-axis. For the formulations without
the branch-and-cut procedure, the integrality gap is RLGap = 100UB−BV

BV
, where UB rep-

resents the upper bound given by the linear relaxation and BV is the best objective value
found by any of the models (the optimal value in most cases). As for formulations (2ITM)
and (BDM) with the branch-and-cut procedure and the preprocessing techniques, the in-
tegrality gap represented corresponds to: RGap = 100UBC−BV

BV
, where UBC is the upper

bound obtained after adding the cuts in the root node. Figure 3.3 shows that the linear
relaxation bound given by formulation (BDM) is in general much smaller than that of
(2ITM), which in some cases goes up to a gap of 50%. Moreover, adding the preprocessing
techniques only improves the gaps for formulation (2ITM), and the improvement is very
small compared to the gaps provided by the rest of the formulations. The cuts added in
the root node are very efficient in formulations (2ITM) and (BDM). Adding these cuts

https://github.com/cdomsa/RPPT/
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Figure 3.4: Percentage of solved instances depending on the number of nodes explored in
the branching tree by formulations (2ITM), (BDM) and (3ITM), with the branch-and-cut
procedures and/or the preprocessing techniques

leads to gaps 2-3% in 80% of the instances, and gaps smaller than 14% in all the in-
stances. As we stated in Section 3.3, the upper bound in this case is in fact the bound
provided by formulation (3ITM), and this is why the integrality gap is roughly the same
for formulation (3ITM) and formulations (2ITM) and (BDM) with the branch-and-cut
procedure (since the value BV used is the same in all cases). Hence, Figure 3.3 illustrates
the decisive role of the valid inequalities derived in Sections 3.3 and 3.4 when reducing
the upper bounds to close the integrality gap and reach optimality.

We also compared the performance of the eight resolution approaches in terms of the
number of nodes explored during the branching process. Figure 3.4 shows the percentage
of solved instances depending on the number of nodes explored in the branching tree. It
is clear that (BDM) outperforms (2ITM) with and without the preprocessing, solving a
greater percentage of instances by exploring the same amount of nodes, and that these
two formulations with the preprocessing explore far less nodes than without these im-
provements. As for (3ITM), with the preprocessing it performs better than (2ITM) and
(BDM). It is not so straightforward to compare the performance in terms of number of
nodes between formulations (2ITM) and (BDM) with the valid inequalities. However, we
can see that for greater number of nodes explored, (2ITM) slightly outperforms (BDM),
since the former solves around 3% more instances than the latter.

Finally, the percentage of solved instances with respect to the time (up to a time limit
of one hour) by the four models is illustrated in Figure 3.5. This figure shows results
coherent with the previous ones, in the sense that it shows that formulation (BDM)
outperforms (2ITM), but the opposite occurs if we consider the formulations with the
valid inequalities and the preprocessing. It is remarkable how formulation (2ITM) solves
44% of the instances in less than 3600 seconds, whereas the same formulation with the
improvements solves twice as many. As for formulation (3ITM), the percentage of solved
instances shows that, even though it yields the tightest linear relaxation gaps, it performs
worse than the two resolution strategies developed in the chapter. Furthermore, some
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Figure 3.5: Percentage of instances solved (with a time limit of 3600 seconds) by for-
mulations (2ITM), (BDM) and (3ITM), with the branch-and-cut procedures and/or the
preprocessing techniques

of the instances with |K| = 100 could not be solved with this formulation without the
preprocessing due to the extremely large amount of memory required by this formulation
at this scale (the unsolved sizes are shown in Table 3.9).
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Formulations (2ITM) and (BDM) solved to optimality the majority of the instances with
50 customers, and the same formulations including the branch-and-cut and the prepro-
cessing solved all of them and nearly all the instances with |K| = 100. Hence, we decided
to compare our two best resolution methods with the instances of greater size, those with
150 customers. Table 3.10 and 3.11 report the results of the comparison of formulations
(2ITM) and (BDM) with formulations (2ITM) and (BDM) including the branch-and-cut
method and the preprocessing techniques. Many of the instances could not be solved with
formulation (3ITM) due to the requirement of an extensive amount of memory, so (3ITM)
is not included in the comparison. Tables 3.10 and 3.11 show the number of products
(|I|) of the instances, the number of products in which every customer is interested (|Ik|)
and the number of ties (Ties). Depending on the model, they also feature the integrality
gap of the linear relaxation (LRGap), the average time (in seconds) needed to optimally
solve the instances (t(s)), and the number of instances solved to optimality in less than
the time limit of 3600 seconds.

As we can see, the relationship between the number of customers |K| and products |I|
determines the difficulty of the instance: the instances with |I| = 15 and |I| = 75 take
generally much more computational time. Only (2ITM) and (BDM) with the branch-and-
cut and preprocessing are able to solve some of the instances with |K| = 150 and |I| = 75.
The fact that they are more difficult than those with 15 customers is explained because
the preference matrices of the latter ones are less dense and they have a much smaller
number of variables and constraints, so the branch-and-cut and the branching procedures
are faster. As for the instances with |K| = |I| (the ones at the bottom of each table),
they take less time to solve due to the preprocessing techniques, which eliminate a great
number of customer decision variables when the number of products is large compared
to the number of customers. Within the instances with the same amount of customers
and products, the increase in the numbers of products in the list of preferences of each
customer (|Ik|) also increases the difficulty of the instance, as well as the growth in the
number of Ties.

Overall, it is clear that the preprocessing techniques, and specially the branch-and-cut
procedures applied, constitute a major improvement in the performance of both (2ITM)
and (BDM). The cuts added in the root node are essential to reduce the integrality gap
and allow for the resolution of up to twice as many instances. Comparing the two best
formulations without the upgradings, it can be seen that the linear relaxation gap is
always smaller for formulation (BDM) than for (2ITM). However, from the number of
nodes explored in the branching tree, the average time, the number of instances solved
and the final integrality gaps, it is clear that formulation (2ITM) slightly outperforms
formulation (BDM) when the preprocessing and the valid inequalities are included. The
reason is that computing the valid inequalities for formulation (BDM) is harder and time
consuming. Indeed, we compute one inequality for each customer for (BDM), but we
obtain one inequality per customer and product in the case of (2ITM). The fact that
valid inequalities added to (2ITM) can be separated by products makes the processes of
computing the inequalities and branching a lot more efficient.
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(2ITM)+VIs+prepro

Ins
LR phase Cuts phase MIO phase

Nodes
Total

time (s)
Best Bound Time (s) Best Bound Time (s) Obj Best Bound Time (s)

1 217071 0.5 155889 3534.5 148414 148414 8575.4 21113 12109.9

2 216549 0.6 154642 5482.7 143469 143483 72255.2 276914 77737.9

(BDM)+ VIs+prepro

Ins
LR phase Cuts phase MIO phase

Nodes
Total

time (s)
Best Bound Time (s) Best Bound Time (s) Obj Best Bound Time (s)

1 172006 1.1 155889 21540.3 148414 148414 2103.7 23279 23644

2 170810 0.9 154642 21805.8 143469 143481 3487.1 120415 25292.9

Table 3.12: Results of two large-scale instances (|K| = 350, |I| = 10) given by formu-
lations (2ITM) and (BDM) including the branch-and-cut method and the preprocessing
techniques. The LR phase of the table shows the bound and time of the linear relaxation
phase. The Cuts phase includes the bound after the cuts in the root node and the time to
generate them. And the MIO phase shows the best solution (Obj), the best bound and
the time. We set a final integrality gap of 0.01% or lower for this integer phase. Finally,
the table shows the number of nodes explored in the branching tree and the total time in
seconds

Motivated by the results obtained by Bertsimas and Mǐsić (2019) with a Benders decom-
position procedure to tackle the PLD problem, we decided to test the performance of
our resolution schemes using some large-scale instances. We randomly generated two in-
stances of the RPPT with 350 customers, all with different budgets, and 10 products. We
tested both instances with formulations (2ITM) and (2ITM) including the corresponding
branch-and-cut procedures and the preprocessing techniques, and the results are shown
in Table 3.12.

Table 3.12 shows that the time needed to solve the Cuts phase is much smaller for for-
mulation (2ITM), with times of around an hour for the first instance and an hour and a
half for the second. Formulation (BDM), on the contrary, takes nearly six hours to add
the cuts in the Cuts phase. These results are consistent with the ones obtained in the
previous experiment.

Nonetheless, we can see a different performance in the MIO phase. Formulation (BDM)
takes less than an hour to close the gap and reach optimality for both instances. Regarding
instance 1, the MIO phase for formulation (2ITM) takes two hours and a half. But for
instance 2, this phase takes 72255 seconds, i.e. more than 20 hours. Comparing the
number of nodes explored during the MIO phase with the time taken to solve instance 1,
we see that both formulations explore a similar amount of nodes, but formulation (2ITM)
takes four times longer. We observe a similar pattern for instance 2. Therefore, it is clear
that exploring a node is much faster for formulation (BDM) than for (2ITM), and this is
decisive in the reduction of the MIO phase time.



Chapter 4

The Capacitated Rank Pricing
Problem with envy

In this chapter, we tackle an extension of the RPP that we have named the Capacitated
Rank Pricing Problem with envy. In the first place, we assume that each customer has
a different reservation price that reflects his willingness to pay for each product of his
interest, and therefore he purchases the highest-ranked product among the ones priced
under their corresponding reservation prices. Furthermore, we assume that the company
can only offer a limited amount of copies of each product for sale and might not have
enough supply to satisfy its clients. Limiting the number of copies of each product implies
that in some solutions, some customers are unable to purchase their favorite product
because it has sold out, even if they can afford it. This results in two versions of the
problem that differ in the type of solution sought by the company.

On the one hand, the company may opt for a solution in which its profit is maximized
restricting the search to the solutions that avoid (possible) conflicts among customers. In
this case, it shall choose what is known as an envy-free solution, that is, a solution in which
it can provide to each customer the product he prefers the most among all those that have
a price lower than his reservation price. An envy-free solution always exists, it suffices to
consider the solution where the products are very expensive and no customer can afford
them, so there is no possible envy among customers. On the other hand, the company
may choose to maximize its profit regardless of possible conflicts among customers. Such
conflicts arise when a customer prefers a product more than the one he is given and he
can afford it, but the product is not available because all the copies have been sold to
other customers. In some settings, envy solutions can lead to dissatisfied customers, what
can result in the loss of clients in the long term. The concept of envy-freeness and its
introduction in the pricing literature is further discussed in subsection 1.2.2 of Chapter 1.

Although an envy-free pricing (i.e. a pricing that admits a feasible, envy-free allocation
of products) prevents the customers’ possible displeasure with their purchase, it generally
provides a smaller profit for the company than a solution that allows for envy. Further-
more, like in the RPP, if the pricing is envy-free the allocation of the products to the
customers is uniquely determined. Thus, any envy-free pricing leads to a unique feasible
allocation of the products. However, if the envy-freeness is not required, a pricing can
lead to multiple feasible allocations of the products to the customers that yield different

97
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profit. As a consequence, a feasible solution in the envy-free setting is also a solution for
the envy setting, and moreover the version of the CRPP that allows for envy is inherently
more difficult than the envy-free one. We address the resolution of the envy version of
the CRPP by means of discrete optimization methods, basing our results on the ones
developed in Chapters 2 and 3.

We introduce two integer linear formulations for the CRPP, one with three-index customer
decision variables and a second one that makes use of a much smaller set of variables
but generally provides worse linear relaxation bounds. The three-index formulation is
strengthened by means of alternative sets of constraints derived leveraging the capacity
constraints and the three-index variables. As for the reduced formulation, three families of
valid inequalities of exponential size are presented along with their respective separation
procedures to include them dynamically in branch-and-cut frameworks. We then compare
the performance of both models and the different resolution algorithms described by means
of extensive computational experiments.

The rest of the chapter is organized as follows. In Section 4.1, we introduce the notation,
explain the difference between the envy-free and the envy case by means of an exam-
ple, and prove that the assignment of the CRPP with envy is NP-complete. In Section
4.2, we introduce the three-index integer linear formulation and several families of valid
inequalities derived to strengthen it. Section 4.3 is devoted to the presentation of the
reduced formulation. In Section 4.4 we include the families of valid inequalities for the
reduced model and the separation procedures developed to incorporate constraints in a
branch-and-cut fashion. Finally, Section 4.5 includes the computational study.

4.1 Notation and problem description

Recall that the CRPP aims at maximizing the profit of a company selling different prod-
ucts with a limited supply, taking into account the preferences and reservation prices of
the unit-demand customers. Since we tackle the version of the problem that allows for
envy, once the prices are settled, clients are assigned their highest-ranked product among
the ones that are not sold out and have a price below the corresponding reservation price
(if any).

Like in previous chapters, let us define K = {1, . . . , |K|} as the set of customers and
I = {1, . . . , |I|} as the set of products. Each customer k ∈ K has a subset of products
Ik ⊆ I he could potentially purchase, and he ranks the products in Ik from the best to
the worst (ties in the ranking are not allowed). If k ranks product i higher than product
j, we say that k prefers i to j, and we denote i ≺k j. Furthermore, {j ∈ Ik : j �k i} =
{i} ∪ {j ∈ Ik : j ≺k i}. For a given product i ∈ I, we define Ki := {k ∈ K : i ∈ Ik} as
the set of customers that could purchase product i ∈ I. Without loss of generality, we
assume Ik 6= ∅ ∀k ∈ K, Ki 6= ∅ ∀i ∈ I.

In this extension, each customer k has a reservation price for each product i ∈ Ik, instead
of a fixed budget. Therefore, the notation concerning the reservation prices varies slightly
with respect to that of Chapters 2 and 3. Since different customers may have the same
reservation price for the same product i, we define set Mi = {1, . . . , |Mi|} as the set of
indices that refer to the different reservation prices of the customers, and (bmi )m∈Mi

as the
set of different reservation prices for i, so that bm1

i < bm2
i if m1 < m2. To represent the
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reservation prices of a customer for a product, we define a function σi : Ki → Mi ∀i ∈ I
such that σi(k) = m iff the reservation price of k is the m-th smallest reservation price
bmi . Following the notation and taking into account that, like previously, there always
exists an optimal solution of the CRPP in which the price of any product i is equal to the
reservation price of a customer for such product, Mk

i := {m ∈Mi : m ≤ σi(k)} represents
the set of indices m of candidate prices bmi at which k could purchase i in a feasible
solution. Finally, let ci represent the number of copies for sale of product i, ∀i ∈ I.

As explained in the introduction, the feasible solutions of the CRPP differ depending on
the setting that we choose. If we solve the envy-free version of the CRPP, then for a fixed
pricing there is a unique feasible allocation of the products to the customers because each
of them purchases the highest-ranked product below his reservation price (if any). On
the other hand, if we allow for envy in the solutions, different allocations with different
revenues may exist. In the following, we illustrate the difference between an envy-free
solution of the CRPP and a solution that allows for envy by means of the example of
Figure 4.1.

Prod. 1 Prod. 2

c1 = 2 c2 = 2

Customer 1 2* | 5 1* | 3

Customer 2 1* | 4 2* | 4

Customer 3 2* | 3 1* | 2

Opt. price 2* | 3 2* |3

(a) Envy-free solution

Prod. 1 Prod. 2

c1 = 2 c2 = 2

Customer 1 2* | 5 1* | 3

Customer 2 1* | 4 2* | 4

Customer 3 2* | 3 1* | 2

Opt. price 2* | 3 2* | 4

(b) Solution that allows for envy

Figure 4.1: Optimal solutions of an instance of the CRPP

Example 4.1. Figure 4.1a shows an instance of the CRPP problem with |K| = 3 cus-
tomers and |I| = 2 products. The number of copies ci of each product i is represented right
below the product. In our instance, there are two copies of each product for sale. The left
number in an entry represents the preference of the customer for that product. If product
i is the highest ranked product for customer k, then the number represented is 1; and for
his second product, the number is 2. The right number in each entry corresponds to the
reservation price of that customer for that product. In this example, customers 1, 2 and
3 have reservation prices of 3, 4 and 2 for product 2, respectively. Therefore, the number
of different reservation prices for product 2 is |M2| = 3. As for the ordered reservation
prices, they are b1

2 = 2, b2
2 = 3 and b2

3 = 4. Lastly, the reservation prices for product 2 are
related to the customers by means of function σ2. For instance for customer 1 it holds
σ2(1) = 2 because he owns the second lowest reservation price for product 2. Similarly,
σ2(2) = 3 and σ2(3) = 1. The optimal envy-free solution is obtained setting the prices
depicted at the bottom of the table. Customers purchase the product whose preference is
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marked with an asterisk in the preference matrix, and the total revenue of the company is
equal to 9.

However, the revenue of the company increases if we allow for envy among customers.
Figure 4.1b contains the same instance with the optimal solution in the envy setting.
In this solution, customer 2 is allocated product 2 even though product 1 is under his
reservation price and he prefers 1 to 2, because product 1 is sold out. Thus, this allocation
of products is not feasible for the envy-free setting. The optimal value in this case is equal
to 10. A different allocation of products (with the same pricing and with envy) that yields
a smaller optimal value consists in assigning product 1 to customers 1 and 2. Product 2
remains unsold because customer 2 is purchasing product 1 and customers 1 and 3 have
a reservation price below 4. In this case, the revenue is equal to 6.

We have just seen that, given a pricing, different allocations (in the envy setting) may
have different revenue. This leads to the question of whether there exists an efficient
algorithm for the problem of finding an allocation of maximum revenue in the restricted
version of the CRPP where the prices are fixed. In the following subsection, we show that
this problem is in fact NP-complete.

4.1.1 Complexity of the non envy-free assignment problem of
the CRPP

In Rusmevichientong et al. (2006) it is proved that the RPP is NP-complete in the strong
sense, and hence so is the CRPP. We now consider a fixed pricing of the products in
the CRPP, and study the assignment of the products to the customers. It is clear that
in the envy-free case, the assignment of the products is straightforward: each customer
purchases the highest-ranked product in his list below his reservation price (if any). In
this subsection, however, we prove that the non envy-free assignment of the CRPP is
NP-complete. To do so, we consider a restricted case of the CRPP where all the prices of
the products are fixed to one single price p and the number of copies of each product is
equal to one. We begin the subsection introducing a matching problem called the Stable
Marriage problem with Ties and Incomplete Lists (SMTI). We then reduce an NP-hard
particular case of the SMTI to our problem to prove the result. We refer the reader to
subsection 1.2.3 of Chapter 1 for a brief introduction to bipartite matching problems with
preferences.

An instance of the SMTI involves a set U = {u1, . . . , un2} of men, a set W = {w1, . . . , wn1}
of women, and a set E ⊆ U ×W of acceptable man-woman pairs. Thus, each man ui ∈ U
has an acceptable set of women A(ui) = {wj ∈ W : (ui, wj) ∈ E} and likewise, each
woman wj has an acceptable set of men A(wj) = {ui ∈ W : (ui, wj) ∈ E}. The agents
are the men and women in U ∪ W . Each agent ak ∈ U ∪ W has a preference list in
which he/she ranks A(ak). However, agents are allowed to express indifference in their
preference lists. We denote wj ≺ui wj′ when man ui prefers woman wj to wj′ , and we
use wj ∼ui wj′ if ui is indifferent between two women wj and wj′ . Specifically, ∼k is an
equivalence relation (reflexive, symmetric, transitive) and there exists a linear order over
the equivalence classes of A(ak) for each k ∈ K. The special case of the SMTI in which
every man-woman pair is acceptable and all the preferences are strict is called the Stable
Marriage problem (SM). The SM was first studied by Gale and Shapley (1962).
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An assignment M is a subset of E. If (ui, wj) ∈ E, then ui is assigned to wj and wj is
assigned to ui. For each ak ∈ U ∪W , the set of assignees of ak in M is denoted by M(ak).
If ak ∈ U ∪W and M(ak) = ∅, ai is unassigned; otherwise ak is assigned. A matching M
is an assignment such that |M(ak)| ≤ 1 ∀ak.

Given a matching M in an instance I of the SMTI, a pair (ui, wj) is said to block M , or
to be a blocking pair of M , if the following conditions are satisfied:

1. ui is unassigned or prefers wj to his assigned woman in M , and

2. wj is unassigned or prefers ui to her assigned man in M .

M is said to be weakly stable (or simply stable) if it has no blocking pair. Every instance of
the SMTI has a stable matching, and finding one can be done in linear time. Furthermore,
all the stable matchings in an instance of the SM have the same size. However, instances
of the SMTI can have stable matchings of different sizes. In fact, the problem of finding
a maximum cardinality weak stable matching in an instance of the SMTI, called MAX-
SMTI, is NP-hard. The NP-hardness holds even in the restricted case where the ties occur
in the women’s preference lists only, any tie forms the whole list in which it appears, and
each tie is of length 2 (Manlove et al. (2002, Theorem 2)). In the following, we reduce the
restricted case of the MAX-SMTI aforementioned to our problem to prove that the non
envy-free assignment of the CRPP is NP-hard. Define the following decision problem:

Name: Non envy-free assignment of the CRPP
Instance: K customers, I products with the same fixed price, a number of copies of each
product, a subset of acceptable products Ik for each customer k, a preference list (with no
ties) of products for each customer, integer reservation prices of the customers, an integer
T ∈ Z+.
Question: Does the given instance admit a feasible non envy-free assignment of products
of revenue equal to T?

Proposition 4.2. The non envy-free assignment of the CRPP is NP-complete, even if
there is only one copy of each product and the price of every product is fixed to a common
price 1.

Proof. It is easy to see that the non envy-free assignment of the CRPP is in NP. Given a
pricing and an assignment of the products, checking for feasibility translates to checking
that, for a given customer, all the products he prefers to the one he is assigned either
are sold out or have a price above his reservation price. Clearly, this can be done in
polynomial time. To show NP-hardness, we reduce the particular version of the MAX-
SMTI where ties occur in the women’s preference lists only, any tie forms the whole list
in which it appears, and each tie is of length 2.

Let I be an instance of the MAX-SMTI, U = {u1, . . . , un2} the set of men, W =
{w1, . . . , wn1} the set of women, and E ⊆ U × W . Assume that the preference list of
every man has no ties, and that every woman wj has an acceptable set A(wj) with two
men and is indifferent between them. We construct an instance I ′ of the CRPP as follows:
let U be the set of customers, and W be the set of products. The acceptable products
for a customer coincide with the acceptable women for the corresponding man and his
preference list is also the same. The set of customers interested in a product wj is defined
as the set A(wj). Assume that there is only one copy of each product wj. Set the price
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of every product to 1. Finally, for each customer ui, set the reservation price of wj equal
to 0 if wj /∈ A(ui), and equal to 1 otherwise. In this way, every customer can afford every
product in his list of preference. We claim that the SMTI instance I has a (weak) stable
matching of size T if and only if I ′ admits a feasible solution of revenue T .

For, suppose that I has a stable matching M of size T . We construct an assignment
of products M ′ to customers assigning product wj to customer ui for each (ui, wj) ∈ M .
Clearly, the revenue of this assignment is equal to the number of customers that purchase,
i.e. T . Now suppose, with the aim of contradiction, that the assignment is not feasible.
Then there exists a customer ui that has been assigned product wj but he prefers product
wj′ . Furthermore, ui ∈ A(wj′) and wj′ is not sold out. But then (ui, wj′) is a blocking
pair in M , since ui prefers wj′ to wj and wj′ is unassigned.

Conversely, suppose that M ′ is a feasible assignment of the products to the customers
with revenue T . Then, M = {(ui, wj) ∈ E : ui purchases product wj in M ′} is a stable
matching of size T of I of the SMTI. Otherwise, let (ui, wj′) block M . Then wj′ is
unassigned (because every men is tied in the list of preferences of wj′), and there exists
wj such that (ui, wj) ∈ E and ui prefers wj′ to wj. But then the assignment M ′ is not
feasible in the CRPP, because ui is purchasing wj but he prefers wj′ , and wj′ is not sold
out.

Having seen that the assignment of products is intrinsically different in the envy and
envy-free versions of the CRPP, we now provide the formulations and results for the envy
version of the problem.

4.2 Three-index mixed integer formulation for the

CRPP

We first define the variables required to introduce our three-index formulation for the
CRPP named (3ICM). Like in previous chapters, we define binary variable vmi , ∀i ∈ I,
∀m ∈ Mi, that takes value 1 if the price of product i is equal to the m-th smallest
reservation price bmi , and binary variable ykmi , ∀k ∈ K, i ∈ Ik, m ∈ Mk

i , that takes value
1 if customer k purchases product i at price bmi . Lastly, we define binary variable umi ,
∀i ∈ I, m ∈ Mi, which takes value 1 if that product i sells out at price bmi . Formulation
(3ICM) is as follows:

(3ICM) max
v,y,u

∑
k∈K

∑
i∈Ik

∑
m∈Mk

i

bmi y
km
i (4.1a)

s.t.
∑
i∈Ik

∑
m∈Mk

i

ykmi ≤ 1 ∀k ∈ K, (4.1b)

∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (4.1c)∑
k∈Ki

∑
m∈Mk

i

ykmi ≤ ci ∀i ∈ I, (4.1d)

ykmi ≤ vmi ∀k ∈ K, i ∈ Ik,m ∈Mk
i , (4.1e)

umi ≤ vmi ∀i ∈ I,m ∈Mi, (4.1f)
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ci
∑
m∈Mi

umi ≤
∑
k∈Ki

∑
m∈Mk

i

ykmi ∀i ∈ I, (4.1g)

∑
m∈Mi

umi + (ci − 1)
∑
m∈Mi

vmi ≥
∑
k∈Ki

∑
m∈Mk

i

ykmi ∀i ∈ I, (4.1h)

∑
m∈Mk

i

vmi ≤
∑
m∈Mk

i

umi +
∑
j∈I:
j�ki

∑
m∈Mk

j

ykmj ∀k ∈ K, i ∈ Ik, (4.1i)

vmi , u
m
i ∈ {0, 1} ∀i ∈ I,m ∈Mi, (4.1j)

ykmi ∈ {0, 1} ∀k ∈ K, i ∈ Ik,m ∈Mk
i . (4.1k)

Constraints (4.1b) ensure that customers are unit-demand. Constraints (4.1c) guaran-
tee that each product has at most one price. If

∑
m∈Mi

vmi = 0, then the product is
not proposed to the customers (or equivalently its price is set arbitrarily high). Con-
straints (4.1d) are the capacity constraints, and they assure the capacity is not exceeded.
Constraints (4.1e) guarantee that customer k purchases product i at its right price. Con-
straints (4.1f)-(4.1h) force the u-variables to take their right value. Constraints (4.1f)
establish that a product i can only sell out at price bmi (i.e. umi = 1) if it has such price.
Constraints (4.1g) force umi to be 0 when

∑
k∈Ki

∑
m∈Mk

i
ykmi < ci, and (4.1h) imply

umi = 1 when
∑

k∈Ki

∑
m∈Mk

i
ykmi = ci. Constraints (4.1i) are the preference constraints

and guarantee that the preferences are satisfied when the products are not sold out. When∑
m∈Mk

i
vmi = 1, customer k can afford product i. Therefore, either

∑
m∈Mk

i
umi = 1, that

is, the product is sold out, or customer k must purchase i or a product he prefers over
i, so

∑
j∈I:
j�ki

∑
m∈Mk

j
ykmj = 1. Finally, the objective function (4.1a) is the revenue of the

company.

The set of u-variables used to derive formulation (3ICM) is not essential, in the sense that
a formulation can be derived using only the sets of v- and y-variables. However, in the
following we introduce several sets of valid inequalities that can strengthen formulation
(3ICM), some of which incorporate u-variables, so this is the motivation to include them.
First, we give a necessary definition:

Definition 4.3. Let i be a product and ci the number of copies available. Then we
define cmi as the minimum between the capacity ci and the number of customers that can
purchase i in a feasible solution at price bmi , i.e. cmi := min {ci, |{k ∈ Ki : σi(k) ≥ m}|}.

This definition allows for the introduction of a strengthened set of capacity constraints:

Proposition 4.4. The set of constraints∑
k∈Ki

∑
m∈Mk

i

ykmi ≤
∑
m∈Mi

cmi v
m
i ∀i ∈ I (4.2)

is valid for CRPP and dominates set (4.1d).

Proof. If
∑

m∈Mi
vmi = 0, then i is not sold and therefore

∑
k∈Ik y

km
i = 0. Otherwise, there

exists vmi = 1 for somem ∈Mi, and
∑

k∈Ik
∑

m∈Mk
i
ykmi ≤ min {ci, |{k ∈ Ki : σi(k) ≥ m}|} =:

cmi . Therefore, (4.2) are valid.
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Let us prove that they dominate (4.1d). The fact that cmi ≤ ci ∀m ∈Mi implies:∑
k∈Ki

∑
m∈Mk

i

ykmi ≤
∑
m∈Mi

cmi v
m
i ≤

∑
m∈Mi

civ
m
i ≤ ci.

Since sets (4.1d) and (4.2) have the same number of constraints, from now on we will con-
sider formulation (3ICM) with (4.2) instead of (4.1d). Set (4.2) can be further strength-
ened:

Proposition 4.5. The set of constraints∑
k∈Ki:
σi(k)≥m

ykmi ≤ cmi v
m
i ∀i ∈ I,m ∈Mi (4.3)

is valid for CRPP and dominates set (4.2).

Proof. The proof of the validity of set (4.3) follows an analogous reasoning than that of
set (4.2). The fact that (4.3) dominate (4.2) is clear, since we can obtain (4.2) from (4.3)
summing up each size of the constraints for m ∈Mi.

We can also strengthen sets (4.1g) and (4.1i):

Proposition 4.6. The family of constraints

ciu
m
i ≤

∑
k∈Ki:
σi(k)≥m

ykmi ∀i ∈ I,m ∈Mi (4.4)

is valid for CRPP and dominates family (4.1g).

Proof. If umi = 0 then the inequality holds trivially. Otherwise, umi = 1 means that
product i is sold out and that it has price bmi , so

∑
k∈Ki:
σi(k)≥m

ykmi = ci. The fact that (4.4)

dominate (4.1g) is clear.

Proposition 4.7. The set of constraints

vmi ≤ umi + ykmi +
∑
j∈I:
j≺ki

∑
m∈Mk

j

ykmj ∀k ∈ K, i ∈ Ik,m ∈Mk
i (4.5)

is valid for CRPP and dominates constraints (4.1i).

Proof. If vmi = 0, then the inequality holds trivially. If vmi = 1, then product i is sold
out (i.e. umi = 1) or k purchases i at price bmi and ykmi = 1, or k purchases a product he
prefers to i (at any price) and thus

∑
j∈I:
j≺ki

∑
m∈Mk

j
ykmj = 1. The fact that (4.5) dominate

(4.1i) is straightforward considering (4.1f).
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Proposition 4.8. The set of constraints

(ci − |S|)umi ≤
∑

k∈Ki\S:
σi(k)≥m

ykmi ∀i ∈ I,m ∈Mi, S ⊂ Ki : |S| < ci (4.6)

is valid for CRPP. If we set S = ∅, we obtain constraints (4.4).

Proof. If umi = 0, then the inequality holds trivially. If umi = 1, then product i is sold
out, so exactly ci copies are sold among customers from S and from Ki \ S. In the worst
case, every customer k ∈ S has bought one copy of i, so at least ci − |S| copies of i must
be sold to customers from Ki \ S.

MET1 is the first method considered in the computational study presented in Section 4.5,
and consists in formulation (3ICM). To assess the performance of the valid inequalities
presented, we compare MET1 with MET2, where we solve formulation (3ICM) and include
valid inequalities from (4.3), (4.4), (4.5) and (4.6) in a branch-and-cut fashion. Since sets
(4.3)-(4.5) include a polynomial number of inequalities, we separate them by complete
enumeration.

As for set (4.6), it includes an exponential number of inequalities. To separate them, it
is useful to notice that (4.6) come from the linearization of constraints

ciu
m
i ≤

∑
k∈Km

i

ykmi umi ∀i ∈ I,m ∈Mi, k ∈ Km
i , (4.7)

where Km
i := {k ∈ Ki : σi(k) ≥ m}.

In order to linearize (4.7), we must replace each nonlinear term of the RHS with an
upper bound. Since all the variables are binary, it suffices to select one of the variables
involved in each term. In this way, for any set S ⊂ Ki, we obtain the linear constraint
ciu

m
i ≤

∑
k∈S u

m
i +

∑
k∈Ki\S y

km
i , which is precisely (4.6). From here, the separation

procedure is simple. Given a fractional solution (v̄mi , ȳ
km
i , ūmi ) of (3ICM), for each i and

m we consider set S := {k ∈ Ki : ūmi ≤ ȳkmi }. The resultant constraint is added if and
only if it is violated. Preliminary testing amounts for adding the violated cuts (from the
four families) both at the root node and in the nodes of the branching tree of depth less
than or equal to 3.

4.3 Two-index mixed integer formulation for the CRPP

In this section, we introduce formulation (2ICM), that involves a much smaller number
of variables than (3ICM). As for variables, we use the sets vmi and umi , ∀i ∈ I, m ∈ Mi,
previously introduced, and we define two more sets. In order to model the customers’
purchasing decision, we define binary variable xki , ∀i ∈ I, k ∈ Ki, that takes value 1 if
customer k purchases product i. Finally, in order to model a linear objective function,
we define zki , ∀k ∈ K, i ∈ Ik, as a continuous variable that takes as value the price of
product i if customer k purchases it, and 0 if k does not purchase it. Using these sets of
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variables, we introduce formulation (2ICM):

(2ICM) max
v,x,z,u

∑
k∈K

∑
i∈Ik

zki (4.8a)

s.t.
∑
i∈Ik

xki ≤ 1 ∀k ∈ K, (4.8b)∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (4.8c)∑
k∈Ki

xki ≤
∑
m∈Mi

cmi v
m
i ∀i ∈ I, (4.8d)

xki ≤
∑
m∈Mk

i

vmi ∀k ∈ K, i ∈ Ik, (4.8e)

umi ≤ vmi ∀i ∈ I,m ∈Mi, (4.8f)

ci
∑
m∈Mi

umi ≤
∑
k∈Ki

xki ∀i ∈ I, (4.8g)∑
m∈Mi

umi + (ci − 1)
∑
m∈Mi

vmi ≥
∑
k∈Ki

xki ∀i ∈ I, (4.8h)∑
m∈Mk

i

vmi ≤
∑
m∈Mk

i

umi +
∑
j∈I:
j�ki

xkj ∀k ∈ K, i ∈ Ik, (4.8i)

zki ≤ b
σi(k)
i xki ∀k ∈ K, i ∈ Ik, (4.8j)

zki ≤
∑
m∈Mk

i

bmi v
m
i ∀k ∈ K, i ∈ Ik, (4.8k)

vmi , u
m
i ∈ {0, 1} ∀i ∈ I,m ∈Mi, (4.8l)

xki ∈ {0, 1} ∀k ∈ K, i ∈ Ik, (4.8m)

zki ≥ 0 ∀k ∈ K, i ∈ Ik. (4.8n)

Constraints (4.8b) guarantee that customers purchase at most one product from the com-
pany. Constraints (4.8c) ensure that each product has at most one price. Constraints
(4.8d) are the capacity constraints, and they assure that no more than ci copies of product
i are sold. Constraints (4.8e) prevent customer k from purchasing product i if he cannot
afford it. Constraints (4.8f)-(4.8h) force the u-variables to take their right value: (4.8f)
establish that a product i can only sell out at price bmi (i.e. umi = 1) if it has such price;
(4.8g) force umi to be 0 when

∑
k∈Ki x

k
i < ci; and (4.8h) imply umi = 1 when

∑
k∈Ki x

k
i = ci.

Constraints (4.8i) are the preference constraints and guarantee that the preferences are
satisfied when the products are not sold out. Note that when

∑
m∈Mk

i
vmi = 1, customer k

can afford product i. Therefore, either
∑

m∈Mk
i
umi = 1, that is, the product is sold out, or

customer k must purchase i or a product he prefers over i, so
∑

j∈I:
j�ki

xkj = 1. The last sets

of constraints (4.8j)-(4.8k) bound the z-variables to their value. If customer k does not
purchase product i, then by (4.8j) we deduce zki = 0. On the other hand, if xki = 1, then
the RHS of (4.8j) is an upper bound on zki , and k is able to afford i, so vm̄i = 1 for some
m̄ ≤ σi(k). But then by (4.8k) we obtain that zki ≤ bm̄i , which is exactly the price of i.
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Finally, the objective function (4.8a) is the sum of the revenue of the company obtained
for each customer k and product i.

Much like (3ICM), formulation (2ICM) can be strengthened adding valid inequalities. In
the following section, we include three sets of valid inequalities developed for (2ICM).

4.4 Valid inequalities for formulation (2ICM) and res-

olution schemes

In this section, we introduce three families of valid inequalities for formulation (2ICM). In
the last subsection, we also explain the separation procedures developed to include them
and the branch-and-cut algorithms. We have also included an in-out stabilization proce-
dure to avoid the tailing off effect. In Section 4.5, we test and compare the performance
of these resolution schemes.

4.4.1 Projecting out the customer decision variables

Formulation (3ICM) has a larger number of variables and constraints than (2ICM), but
the linear relaxation of (3ICM) with the valid inequalities (4.3)-(4.6) gives a stronger
upper bound. In this subsection, we discuss how to project out formulation (3ICM) on
formulation (2ICM), obtaining a subproblem that can be solved for a given fractional
feasible solution of (2ICM) to derive valid inequalities.

First of all, let us extend formulation (2ICM) adding the y-variables used in (3ICM), as
well as the necessary constraints to relate them to the rest of the variables. By definition,
xki =

∑
m∈Mi

ykmi and zki =
∑

m∈Mi
bmi y

km
i for all k ∈ K, i ∈ Ik. Adding the valid

inequalities developed in Section 4.2, we obtain:

(2ICM+) max
v,y,x,z,u

∑
k∈K

∑
i∈Ik

zki (4.8a)

s.t. (4.8b)− (4.8n), (4.1e), (4.1k), (4.3), (4.4),

vmi ≤ umi + ykmi +
∑
j∈I:
j≺ki

xkj ∀k ∈ K, i ∈ Ik,m ∈Mk
i , (4.9a)

zki ≤
∑
m∈Mk

i

bmi y
km
i ∀k ∈ K, i ∈ Ik, (4.9b)

xki ≥
∑
m∈Mk

i

ykmi ∀k ∈ K, i ∈ Ik. (4.9c)

Constraints (4.8b)-(4.8n) along with the objective function constitute formulation (2ICM).
Constraints (4.1e), (4.3), (4.4) and (4.9a) dominate, respectively, constraints (4.8e), (4.8d),
(4.8g) and (4.8i). In fact, constraints (4.9a) are (4.5) with xkj replacing

∑
m∈M∈Mk

j
ykmj

in the third sum. Finally, constraints (4.9b) and (4.9c) relate the y-variables with the x-
and z-variables. Although (4.9b) appear as inequalities, they are satisfied as equalities
by any optimal solution of (2ICM+) due to the objective function. As for (4.9c), let
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us assume that there exists a feasible solution with xki >
∑

m∈Mk
i
ykmi . Then since the

variables are binary, it follows xki = 1 and
∑

m∈Mk
i
ykmi = 0. But then

∑
m∈Mk

i
ykmi = 0⇒∑

m∈Mk
i
bmi y

km
i = 0, so by (4.9b) we obtain zki = 0. Therefore k is purchasing product i

but the revenue of the company associated to this customer is 0, so the solution is not
optimal.

Proposition 4.9. Consider a fixed product i ∈ I. Then the following family of constraints

∑
k∈Ki

zki α
k +

∑
m∈Mi

ciu
m
i λ

m +
∑
k∈Ki

∑
m∈Mk

i

vmi − umi +
∑
j∈I:
j≺ki

xki

 εkm ≤

∑
k∈Ki

xki β
k +

∑
k∈Ki

∑
m∈Mk

i

vmi γ
km +

∑
m∈Mi

cmi v
m
i δ

m (4.10)

is valid for (2ICM) if for αk, βk ≥ 0 ∀k ∈ Ki, γ
km, ε ≥ 0 ∀k ∈ Ki,m ∈ Mk

i and
δm, λm ≥ 0, ∀m ∈Mk

i , it holds

bmi α
k + λm + εkm ≤ βk + γkm + δm ∀k ∈ Ki,m ∈Mk

i . (4.11)

Proof. For a fixed i ∈ I, we associate dual variables αk, βk, γkm, δk, λm and εkm to
constraints (4.9b), (4.9c), (4.1e), (4.3), (4.4) and (4.9a), respectively.

Then by Farkas’ Lemma (see Lemma 1.2 from Chapter 1), we obtain the following result:
given a solution (v,x, z,u), there exist variables y satisfying the above sets of constraints
if and only if

∑
k∈Ki

zki α
k +

∑
m∈Mi

ciu
m
i λ

m +
∑
k∈Ki

∑
m∈Mk

i

vmi − umi +
∑
j∈I:
j≺ki

xkj

 εkm ≤

∑
k∈Ki

xki β
k +

∑
k∈Ki

∑
m∈Mk

i

vmi γ
km +

∑
m∈Mi

civ
m
i δ

m

for all α,β,γ, δ,λ ≥ 0, ∀k ∈ Ki, m ∈Mk
i satisfying

bmi α
k + λm + εkm ≤ βk + γkm + δm.

As for constraints (4.6), they cannot be projected out because the set includes an expo-
nential number. However, an alternative consists in developing an equivalent set of valid
inequalities for (2ICM). Thus, we can linearize constraints

ciu
m
i ≤

∑
k∈Km

i

xki v
m
i u

m
i ∀i ∈ I,m ∈Mi, k ∈ Km

i , (4.12)

with Km
i := {k ∈ Ki : σi(k) ≥ m}, in a similar manner to family (4.7), obtaining

ciu
m
i ≤

∑
k∈S1

umi +
∑
k∈S2

vmi +
∑
k∈Ki\

(S1∪S2)

xki , ∀i ∈ I,m ∈Mi, S1, S2 ⊂ Ki : S1∩S2 = ∅. (4.13)
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Family (4.13) can be reduced noticing that the subfamily where S2 = ∅ dominates (4.13)
due to (4.8f). Nonetheless, preliminary testing showed that the inclusion of valid inequali-
ties from this family does not improve the linear relaxation bound from (2ICM), so (4.13)
is not included in the computational experiments of Section 4.5.

4.4.2 Separation of valid inequalities from family (4.10)

In what follows, we are going to analyze the problem that results from fixing λ = δ = ε = 0
in (4.10). The reason is that the inequalities associated to variables α, β and γ can be
separated by customer (as well as by product). Next, we study the particular case α = 1.
Thus, in order to obtain the strongest bound we look for values of α and β which provide
the smaller value of the RHS of (4.10). Considering a fixed product i and customer k,
our problem (SP1) can be stated as:

(SP1) min
β,γ

xki β +
∑
m∈Mk

i

vmi γ
m (4.14a)

s.t. β + γm ≥ bmi ∀m ∈Mk
i , (4.14b)

β, γ ≥ 0. (4.14c)

For a given β, constraints (4.14b) can be expressed as γm ≥ bmi − β for each m. Hence,
γm = max{0, bmi −β}. Let us see that the best value for β belongs to the set of candidate

reservation prices {b1
i , . . . , b

σi(k)
i }. Suppose that bri < β < br+1

i . Then γm = 0 for m ≤ r,
and γm = bri − β for m > r. Substituting γ in the objective function of (SP1), we obtain:

xki β +
∑
m∈Mk

i
:

m>r

(bri − β) vmi =

xki − ∑
m∈Mk

i
:

m>r

vmi

 β +
∑
m∈Mk

i
:

m>r

briv
m
i . (4.15)

The above linear function in β attains its minimum value in one of its extreme values,
that is, β = bri or β = br+1

i , depending on the sign of the slope xki −
∑

m∈Mk
i

:

m>r

vmi . This

leads to the following proposition:

Proposition 4.10. The family of inequalities

zki ≤ b
rki
i x

k
i +

σi(k)∑
m=rki +1

(
bmi − b

rki
i

)
vmi , ∀k ∈ K, i ∈ Ik, rki ∈ {0, . . . , σi(k)} (4.16)

is valid for (2ICM).

Family (4.16) is included in a family of valid inequalities of exponential size originally
developed in Chapter 2 for the RPP (we include it here because we have replaced the
budgets with reservation prices):

zki ≤ b
rki
i x

k
i +

σi(k)∑
m=rki +1

(
bmi − b

rki
i

)
vmi +

∑
m∈Qki

(
bmi − b

rki
i

) (
xki + vmi − 1

)
, (4.17)

∀k ∈ K, i ∈ Ik, any integer rki ∈ {0, . . . , σi(k)} and any subset Qk
i ⊆ {1, . . . , rki − 1}. In

the following, we prove that family (4.16) dominates (4.17).
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Proposition 4.11. Given k ∈ K, i ∈ Ik, the strongest valid inequality from family (4.17)
is obtained when Qk

i = ∅.

Proof. Let us consider k ∈ K, i ∈ Ik fixed and, for the sake of notation, r := rki and
Q := Qk

i . First of all, let q := minQ{m} (and therefore, q < r and bqi < bri ). Then the
following inequality

zki ≤ brix
k
i +

σi(k)∑
m=q

(bmi − bri ) vmi + (bqi − bri )
(
xki − 1

)
(4.18)

is valid and stronger than the corresponding inequality of (4.17), for all r and Q.

Let us prove its validity first. If xki = 1, then vmi = 1 for some m̄ ≤ σi(k), and the
inequality becomes zki ≤ bri +(bm̄i − bri ) = bm̄i , valid because the price of product i is exactly

bm̄i . On the other hand, if xki = 0, then the inequality becomes zki ≤
∑σi(k)

m=q (bmi − bri ) vmi +
br − bq. If vm0

i = 1 for m0 ≥ r, then the first sum of the RHS is non negative. If vm0
i = 1

for m0 < r, then the inequality is zki ≤ bm0
i − bri + bri − b

q
i = bm0

i − b
q
i , non negative because

of the definition of q. In both cases, since zki = 0 and the RHS of the inequality is greater
than or equal to zero, the inequality holds.

Now, to prove that it is stronger, let us subtract the RHS of (4.18) from the RHS of (4.17)
to see that the difference is non negative:brixki +

σi(k)∑
m=r+1

(bmi − bri ) vmi +
∑
m∈Q

(bmi − bri )
(
xki + vmi − 1

)−
brixki +

σi(k)∑
m=q

(bmi − bri ) vmi + (bqi − bri )
(
xki − 1

) =

=
∑

m∈{q,...,r−1}\Q

(bmi − bri ) vmi − max
m∈Q\{q}

{bmi − bri}
(
xki − 1

)
≥ 0.

In the following, let us consider W (r) as the RHS of (4.18) with q fixed to study its
variation when r increases:

W (r + 1)−W (r) =
(
br+1
i − bri

)
xki +

σi(k)∑
m=q

(
br+1
i − bri

)
vmi +

(
b−ri − br+1

i

) (
xki − 1

)
=

=
(
br+1
i − bri

)1−
σi(k)∑
m=q

vmi

 ≥ 0. (4.19)

Supposing q is fixed yields a non negative difference whenever we increment r, so the
optimal is to select the smallest possible r. Given that q ≤ r, we will hence choose r = q.
This implies that Q = ∅, and we have proved the statement.

4.4.3 An additional set of valid inequalities

In this subsection, we present another set of valid inequalities developed for model (2ICM).
Unlike set (4.16), this set includes one inequality per product, and in this case the capacity
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is used to strengthen the inequalities.

Proposition 4.12. Consider the set of inequalities

∑
k∈Ki

zki +
∑
m∈Mi

|Mi|∑
m′=m+1

(
bm
′

i − bm
′−1

i

)
Umm′

i umi ≤

∑
k∈Ki

br
k

i x
k
i +

∑
m∈Mi

m∑
m′=1

(
bm
′

i − bm
′−1

i

)
V mm′

i vmi , (4.20)

∀i ∈ I, rk ∈ {0, . . . , σi(k)} ∀k ∈ Ki, where Umm′
i := max {0, ci − |{k ∈ Ki : σi(k) ≥ m,

rk < m′}|
}

and V mm′
i := min

{
cmi , |{k ∈ Ki : σi(k) ≥ m, rk < m′|}

}
, ∀i ∈ I, m ∈ Mi,

m′ ∈Mi. Set (4.20) is valid for (2ICM).

Proof. Let i ∈ I be a fixed product and let rk ∈ {0, . . . , σi(k)} be fixed reservation prices
indices ∀k ∈ Ki. Let (v̄, x̄, z̄, ū) be a feasible (integer) solution of formulation (2ICM). If∑

m∈Mi
v̄mi = 0, then the corresponding inequality holds trivially because all the variables

have value zero. Therefore, we assume v̄m̄i = 1 for some m̄ ∈ Mi. This yields ūmi = 0 for
m 6= m̄, and ūm̄i ∈ {0, 1}.

First of all, let K̄i := {k ∈ Ki : x̄ki = 1} be the set of customers purchasing i. Then the
following inequality holds:∑

k∈Ki

z̄ki +
∑
m∈Mi

∑
k∈K̄i:
rk>m

(
br
k

i − bmi
)
ūmi ≤

∑
k∈Ki

br
k

i x̄
k
i +

∑
m∈Mi

∑
k∈K̄i:
rk<m

(
bmi − br

k

i

)
v̄mi . (4.21)

Indeed, if ūm̄i = 1 the LHS of (4.21) is equal to
∑

k∈K̄i b
m̄
i +

∑
k∈K̄i: rk>m̄

(
br
k

i − bm̄i
)

, which

is equal to its RHS,
∑

k∈K̄i b
rk

i +
∑

k∈K̄i: rk<m̄

(
bm̄i − br

k

i

)
. Otherwise, the LHS is

∑
k∈K̄i b

m̄
i

and thus it also holds. Now, in order to see that the statement holds, we shall prove that
the LHS (resp. RHS) of (4.20) is smaller than or equal to (resp. greater than or equal to)
the LHS (resp. the RHS) of (4.21). Given that ūmi = v̄mi = 0 ∀m 6= m̄ and v̄m̄i = 1, this
translates to proving:

(1)
∑
k∈K̄i:
rk<m̄

(
bm̄i − br

k

i

)
≤

m̄∑
m′=1

(
bm
′

i − bm
′−1

i

)
V m̄m′

i ,

(2)
∑
k∈K̄i:
rk>m̄

(
br
k

i − bm̄i
)
≥

|Mi|∑
m′=m̄+1

(
bm
′

i − bm
′−1

i

)
U m̄m′

i if ūm̄i = 1.

To prove (1), we have

∑
k∈K̄i:
rk<m̄

(
bm̄i − br

k

i

)
=
∑
k∈K̄i:
rk<m̄

m̄∑
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(
bm
′

i − bm
′−1

i

)
=
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) ∑
k∈K̄i:
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1

=
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m′=1

(
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′

i − bm
′−1

i

)
|{k ∈ K̄i : rk < m′}|,
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where the second equality is obtained switching the sums in m′ and m. Thus, the fact
that |K̄i| ≤ cm̄i and that for all k ∈ K̄i it holds σi(k) ≥ m̄ implies |{k ∈ K̄i : rk < m′}| ≤
min

{
cm̄i , |k ∈ Ki : σi(k) ≤ m̄, rk < m′|

}
=: V m̄m′

i , and (1) holds.

To prove (2), we follow an analogous procedure:

∑
k∈K̄i:
rk>m̄

(
br
k

i − bm̄i
)

=
∑
k∈K̄i:
rk>m̄

rk∑
m′=m̄+1

(
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′

i − bm
′−1

i

)
=
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(
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i − bm
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i

) ∑
k∈K̄i:
rk≥m′

1

=

|Mi|∑
m′=m̄+1

(
bm
′

i − bm
′−1

i

)
|{k ∈ K̄i : rk ≥ m′}|.

The result follows because |{k ∈ K̄i : rk ≥ m′}| = |K̄i| − |{k ∈ K̄i : rk < m′}| =
ci− |{k ∈ K̄i : σi(k) ≥ m̄, rk < m′}| ≥ ci− |{k ∈ Ki : σi(k) ≥ m̄, rk < m′}|, and therefore
|{k ∈ K̄i : rk ≥ m′}| ≥ U m̄m′

i .

Method MET3 consists in solving an instance of the CRPP using formulation (2ICM).
We have developed four additional methods based on (2ICM), that are fully detailed in
the following subsection.

4.4.4 Separation algorithms and resolution schemes using for-
mulation (2ICM) and an in-out stabilization method

We begin this subsection with the introduction of the three separation procedures de-
signed to include valid inequalities (4.10), (4.16) and (4.20) dynamically into formulation
(2ICM). Then, we show the four resolution methods developed and the in-out stabilization
method proposed. The first three methods (MET4-MET6) correspond to a branch-and-
cut involving valid inequalities from each of the three families presented, namely (4.10),
(4.16) and (4.20). The last one (MET7) is a branch-and-cut including a combination
of valid inequalities from families (4.16) and (4.20). These approaches are compared in
Section 4.5 using extensive computational experiments.

The first method MET4 incorporates violated inequalities from (4.10) to formulation
(2ICM). In order to obtain the dual variables for the inequalities in (4.10), we solve the
following separation problem (SPi) (by means of a commercial solver) for each product
i ∈ I:

max
α,β,γ,δ,λ

∑
k∈Ki

zki α
k +

∑
m∈Mi

ciu
m
i λ

m −
∑
k∈Ki

xki β
k −

∑
k∈Ki

∑
m∈Mk

i

vmi γ
km −

∑
m∈Mi

civ
m
i δ

m

(4.22a)

s.t. bmi α
k + λm ≤ βk + γkm + δm ∀k ∈ Ki,m ∈Mk

i , (4.22b)

αk, βk ≥ 0 ∀k ∈ Ki, (4.22c)

γkm ≥ 0 ∀k ∈ Ki,m ∈Mk
i , (4.22d)

δm, λm ≥ 0 ∀m ∈Mi. (4.22e)

Cuts from (4.10) are included after the linear relaxation of (2ICM), until no more valid
inequalities are violated or the linear relaxation bound does not decrease, and in the nodes
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of the branching tree. Preliminary testing led us to include valid inequalities during the
branch-and-bound in the nodes of depth less than or equal to 3.

Method MET5 requires a separation procedure to include inequalities from (4.16) dynam-
ically in a branch-and-cut framework. Thus, if we are given a fractional feasible solution
of formulation (2ICM), we calculate the r that minimizes the RHS of (4.16) for each k
and i fixed simplifying the reasoning developed in Chapter 2 for (4.17). In essence, we
study the variation of the RHS of (4.16) as r increases. Calling W (r) the RHS of (4.16)
for a given r, we have

W (r + 1)−W (r) =
(
br+1 − br

)xki − σi(k)∑
m=r+1

vmi

 . (4.23)

Clearly br+1 − br > 0, and the sum
∑σi(k)

m=r+1 v
m
i has less terms as r increases. Therefore,

the slope xki −
∑σi(k)

m=r+1 v
m
i is negative and for some r, the slope changes to a positive

value. So the minimum in (4.23) is obtained for the r such that xki −
∑σi(k)

m=r+1 v
m
i ≤ 0 and

xki −
∑σi(k)

m=r+2 v
m
i > 0. Algorithm 3 depicts the separation used in MET5 to incorporate

inequalities from set (4.16) in a branch-and-cut fashion.

Algorithm 3 MET5: Separation of inequalities (4.16)

Let (v̄, x̄, z̄, ū) be a fractional solution obtained after the linear relaxation of formulation
(2ICM) or in a node of the branching tree of depth smaller than or equal to three.
For every product i ∈ I and for every customer k ∈ Ki do

Step 1. Set r = 0.

Step 2. If r < σi(k) and xki −
∑σi(k)

m=r+1 v
m
i ≤ 0, update r := r + 1 and repeat Step 2.

Otherwise, go to Step 3.

Step 3. Incorporate constraint

zki ≤ brixki +
σi(k)∑
m=r+1

(bmi − bri ) vmi

to formulation (2ICM) if and only if it is violated by solution (v̄, x̄, z̄, ū).

MET6 consists in solving (2ICM) including valid inequalities from set (4.20) in a branch-
and-cut. It also requires a separation algorithm for set (4.20), but this algorithm is very
similar to Algorithm 3. In this case, the calculation of rk ∀k ∈ Ki is analogous to that
depicted in Algorithm 3. But here, at each iteration in a node of the branching tree we
include one inequality per product (if violated). Like in MET3, inequalities from (4.20)
are also included when fractional solutions are found in the nodes of the branching tree
of depth smaller than or equal to three.

When valid inequalities from set (4.16) are separated, we include one inequality per cus-
tomer and product at each iteration. However, in the case of inequalities from family
(4.20), only one inequality per product is included at each step, and each of them com-
bines variables associated to all the customers. Therefore, valid inequalities from (4.20)
have a much larger number of non zero elements than those from (4.16). Moreover, and
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Name Description

MET1 (3ICM)

MET2 (3ICM) + branch-and-cut with valid inequalities from sets (4.3), (4.4), (4.5) and (4.6)

MET3 (2ICM)

MET4 (2ICM) + branch-and-cut with valid inequalities from set (4.10)

MET5 (2ICM) + branch-and-cut with valid inequalities from set (4.16)

MET6 (2ICM) + branch-and-cut with valid inequalities from set (4.20)

MET7 (2ICM) + branch-and-cut with valid inequalities from sets (4.16) and (4.20)

Table 4.1: Details of methods MET1-MET7 tested in the computational study

according to preliminary testing, the linear relaxation bound of model (2ICM) improves
slowly when adding inequalities from (4.20), so a great number of iterations is required
in this case. These are the reasons for incorporating an in-out algorithm to stabilize the
inclusion of inequalities in the root node in the last two methods MET6 and MET7. This
algorithm has been developed by Ben-Ameur and Neto (2007), used for other capacitated
problems (e.g. in Fischetti et al. (2016)) and it is widely used to include Benders decom-
position cuts, like in Chapter 3. It is of particular importance when only a few valid
inequalities are separated at each iteration, like in this case. It allows to generate less
cuts of better quality, hopefully reducing the tailing-off effect. For a detailed explanation
on the in-out procedure, we refer the reader to subsection 3.4.2. As for the initial interior
point, it is frequently obtained using the barrier algorithm with crossover. In our case,
we built a non-degenerate convex combination of enough linearly independent points of
the polytope and then obtained the centroid.

Finally, in MET7 we separate inequalities from families (4.16) and (4.20). Through pre-
liminary computational experiments, we observed that the upper bound of the linear
relaxation obtained separating inequalities from (4.20) was tighter than that obtained
with valid inequalities from (4.16). However, inequalities from (4.16) require less itera-
tions to reduce the bound. To combine them in the cut loop previous to the branching,
we begin including only constraints from (4.16) until no more are found. Then, we include
only inequalities from (4.20) and further reduce the bound. The separation oracles are
the ones previously described, and the in-out algorithm is included in this step of MET7.
We also separate inequalities from both sets in all the fractional solutions obtained in the
nodes of the branching tree of depth less than or equal to three (including all the violated
ones from both sets at every node).

We have depicted the seven resolution methods developed and their characteristics in
Table 4.1, to help to identify them easily.
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4.5 Computational study

In this section, we compare the performance of formulations (2ICM) and (3ICM) and
the valid inequalities proposed testing the methods MET1-MET7. The computational
experiments were carried out on a personal computer with Intel Xeon E3-1270, 3.40 GHz
with 16 GB of RAM. The optimization problems were solved exactly by using the solver
Xpress Optimizer Version: 29.01.10 and the methods were coded using Mosel Version:
4.0.3.

To test the algorithms, we created instances with |K| = 50, |K| = 75, |K| = 100,
|K| = 125 and |K| = 150 customers. For each size of set K, we designed instances
with |I| = 5, |I| = 10 and |I| = 15 products. For the instances with |I| = 15, the
number of acceptable products for each customer is equal to 3, whereas for instances with
|I| = 10 and |I| = 15 products, the number ascends to 5 acceptable products. In all
instances, the number of copies of each product available (called C in the following) is
the same for all the products in I. So for each combination of the previous parameters,
we considered four different sizes for C. The reservation prices of the customers were
randomly generated between 1 and 4|K|, and their ranked lists of preferences were also
randomly generated. We generated 5 instances of each combination of parameters, 300 in
total. All the instances can be found at https://github.com/cdomsa/CRPP/. The time
limit was set to 3600 seconds, and the default setting of Xpress was used.

We first compare the performance of MET1-MET7 using the instances of smaller size,
namely those with |K| = 50, |K| = 75 and |K| = 100. The most significant information
obtained is summarized by means of several figures.

Figure 4.2: In the y-axis, the percentage of instances with an integrality gap less than or
equal to that of the x-value is represented for MET1-MET7

First, we compare the integrality gaps obtained. Figure 4.2 is a performance profile that
shows the percentage of instances having an integrality gap less than or equal to that on
the x-axis. For MET1 and MET3, the gap depicted is the linear relaxation gap LRGap
= 100UB-BV

BV
% where UB is the upper bound given by the linear relaxation and BV is

https://github.com/cdomsa/CRPP/
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the best objective value found by any of the models (the optimal value almost always).
For MET2, MET4-MET7, the figure shows the integrality gap obtained after adding the
violated cuts in the linear relaxation, before branching: RGap = 100UBC-BV

BV
%, where

UBC corresponds to the upper bound obtained after adding the violated cuts in the root
node.

As expected, MET3 yields the worst linear relaxation gap of the seven, with gaps of
up to 35%. MET1 (formulation (3ICM)) has the second worst linear relaxation bound,
and this bound is the same for MET5. This is consistent with the results obtained in
Section 4.4. Indeed, valid inequalities (4.16) are obtained projecting formulation (3ICM)
on formulation (2ICM), because the parameters associated to valid inequalities (4.3), (4.4)
and (4.9a) are set to 0 in the separation problem. As for MET4, MET6 and MET7, they
provide similar integrality gaps, MET7 slightly outperforming the others. These methods
yield gaps smaller than 10% for all the instances proposed. It is remarkable that the
gap obtained adding valid inequalities to (2ICM) can outperform that of (3ICM), as it
happens in four out of the seven methods developed. Finally, the best scheme in terms
of gap is MET2. This is also consistent with our theoretical results, since this method
includes a branch-and-cut with all the valid inequalities developed for (3ICM). The gaps
provided by MET2 are always smaller than 7%.

Figure 4.3: In the y-axis, the percentage of instances solved exploring an amount of nodes
in the branching tree less than or equal to that of the x-value is represented for MET1-
MET7

Figure 4.3 compares MET1-MET7 in terms of the number of nodes explored in the branch-
ing tree with respect to the percentage of instances solved to optimality. Once again,
formulation (2ICM) (MET3) is clearly the worst in performance, it only solves about a
25% of the instances proposed. Methods MET4-MET6 perform similarly to MET1 (for-
mulation (3ICM)), whereas MET7 performs a bit better than the rest of the approaches,
solving up to an 81% of the instances. Finally, MET2 solves the greatest amount of
instances and it does so with the least amount of nodes explored.

Finally, Figure 4.4 shows the number of instances solved with respect to the time (in
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Figure 4.4: Percentage of instances solved with respect to the time (with a time limit of
3600 seconds) by MET1-MET7

seconds), up to 3600 seconds of time limit. This figure confirms the results already seen
in the two previous figures, where MET2 and MET3 are the best and worst (respectively)
in terms of solved instances. The addition of inequalities to formulation (2ICM) triples
the number of instances that are solved to optimality, regardless of the method. Here,
the difference in performance between MET4-MET7 is more pronounced than in the
previous figures. Thus, we can see that valid inequalities (4.16) alone (in MET5) perform
slightly better than (4.20) (in MET6), even though the upper bound provided by MET6 is
smaller. Moreover, the combination of both types of valid inequalities in the branch-and-
cut makes MET7 outperform the two previous approaches. MET4, the branch-and-cut
obtained solving the Farkas separation problem (4.10), provides the worst results of the
group.

In view of the results obtained, we decided to run the largest instances (those with |K| =
125 and |K| = 150) with the three best methods developed: MET2, MET5 and MET7.
Table 4.2 summarizes the main results obtained. It shows the integrality gap of the linear
relaxation (LRGap, the same for MET5 and MET7), the integrality gap of the linear
relaxation after the cuts in the root node (RGap), the integrality gap after 3600 seconds
(FGap), the average time in seconds needed to optimally solve the instances (t(s)) and
the number of instances solved to optimality in less than the time limit of 3600 seconds.
Note that RGap for MET5 is the same as LRGap for MET2.

We can see that the relationship between the number of customers, products and copies
of each product determines the number of instances that can be solved to optimality
within an hour. In some cases, the three methods can solve all the instances, whereas
in other cases none of the instances is solved. Moreover, each method performs better
than the rest for certain combinations of parameters. For instance, for a small number
of products (|I| = 5), MET5 yields the best results in terms of time, even if all the
instances are also solved by MET7 within the time limit. However, for |I| = 15, MET5 is
worse than MET7 in terms of time, final bound and number of instances solved. Besides,
for greater values of C, valid inequalities (4.20) added in MET7 reduce the gap RGap
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significantly. For instance, for |K| = 150, |I| = 15, C = 30, RGap for MET5 is equal to
14.6, whereas RGap for MET7 is equal to 4.2. As for MET2, it solves less instances than
MET5 and MET7. Nonetheless, it provides better final bounds for the combinations of
parameters that make the instances hard to solve in one hour. All in all, the inclusion
of valid inequalities to models (2ICM) and (3ICM) in a branch-and-cut fashion highly
improves their performance. Valid inequalities (4.16) are essential to reduce the bound
of (2ICM) regardless of the instance, whereas (4.20) are particularly useful for instances
with a greater number of products and/or copies of each product.

|K| |I| C
MET2 MET5 MET7

LRGap RGap FGap t(s) Sol. LRGap RGap FGap t(s) Sol. RGap FGap t(s) Sol.

125 5 5 0.3 0.2 0.0 10 5 5.9 0.3 0.0 4 5 0.3 0.0 12 5

125 5 13 2.4 2.1 0.0 254 5 17.8 2.4 0.0 41 5 2.3 0.0 65 5

125 5 20 4.0 3.6 0.0 1479 5 29.8 4.0 0.0 81 5 3.9 0.0 196 5

125 5 25 6.2 4.5 1.0 3271 2 34.7 6.2 0.0 206 5 5.6 0.0 520 5

125 10 5 0.7 0.6 0.0 78 5 8.8 0.7 0.0 53 5 0.7 0.0 84 5

125 10 13 4.4 3.5 3.0 3600 0 23.3 4.4 1.8 3529 1 4.0 2.9 3600 0

125 10 20 11.3 5.6 5.0 3600 0 31.6 11.3 7.4 3600 0 7.8 6.9 3600 0

125 10 25 15.2 6.7 6.3 3600 0 36.6 15.2 8.9 3600 0 9.0 7.5 3600 0

125 15 5 1.1 0.8 0.0 266 5 11.1 1.1 0.0 231 5 1.0 0.0 219 5

125 15 13 8.3 4.0 3.0 3101 1 26.0 8.3 4.9 3600 0 5.8 4.5 3600 0

125 15 20 14.2 4.7 3.7 3600 0 32.6 14.2 7.7 3600 0 6.4 4.6 3600 0

125 15 25 15.0 4.2 2.2 3377 1 33.7 15.0 7.5 3600 0 4.9 1.1 2763 2

150 5 6 0.2 0.1 0.0 21 5 6.5 0.2 0.0 4 5 0.2 0.0 18 5

150 5 15 1.8 1.5 0.0 647 5 16.7 1.8 0.0 57 5 1.7 0.0 151 5

150 5 24 4.4 4.1 2.0 3334 1 30.8 4.4 0.0 127 5 4.3 0.0 226 5

150 5 30 7.1 4.7 4.0 3600 0 35.5 7.1 0.0 395 5 6.0 0.0 1259 5

150 10 6 0.8 0.7 0.0 229 5 9.3 0.8 0.0 177 5 0.8 0.0 183 5

150 10 15 4.4 3.8 3.4 3600 0 24.2 4.4 3.5 3600 0 4.2 3.3 3600 0

150 10 24 12.8 6.9 6.4 3600 0 34.0 12.8 10.5 3600 0 9.2 8.6 3600 0

150 10 30 15.7 6.9 6.6 3600 0 37.2 15.7 11.9 3600 0 9.5 8.7 3600 0

150 15 6 1.2 0.9 0.0 1064 5 12.1 1.2 0.0 1078 5 1.1 0.0 683 5

150 15 15 9.2 4.9 4.4 3600 0 27.8 9.2 7.3 3600 0 6.8 6.2 3600 0

150 15 24 13.7 4.6 4.0 3600 0 33.3 13.7 10.3 3600 0 6.4 4.9 3600 0

150 15 30 14.6 3.7 2.3 3421 1 33.7 14.6 10.4 3600 0 4.2 0.9 2318 3

Table 4.2: Results obtained testing MET2, MET5 and MET7 with the instances with
125 and 150 customers (5 instances averaged per line). The table includes the integrality
gap of the linear relaxation (LRGap), the integrality gap of the linear relaxation after the
cuts in the root node (RGap), the integrality gap after 3600 seconds (FGap), the average
time in seconds needed to optimally solve the instances (t(s)) and the number of instances
solved to optimality in less than the time limit of 3600 seconds



Chapter 5

Conclusions / Conclusiones

In this dissertation, we have focused on the study of a pricing optimization problem
entitled The Rank Pricing Problem, and two generalizations that consist in adding ties in
the list of preferences and capacities. We have introduced the first mixed-integer linear
formulations for the three problems, enabling their resolution by means of off-the-shelf
solvers. In many cases, we have developed valid inequalities tailored to the problem at
hand that we have then separated, solving the problems using a branch-and-cut algorithm.
In other cases, we have obtained theoretical results like the characterization of clique facets
of model (2IM1) in Section 2.4 or the complexity result establishing that the assignment
problem associated to the CRPP with envy is NP-complete in Section 4.1.1. In what
follows, we give a brief summary of the main contributions of this doctoral thesis and
discuss possible future research lines.

In Chapter 2, we give two nonlinear formulations for the RPP, one that comes from
a bilevel formulation and another one (model (2INLM)) that is directly formulated as a
single-level one. We compare them theoretically, linearize their objective functions (which
are the same) in two different ways and propose preprocessing techniques that effectively
reduce the size of the instances by fixing variables to either zero or one. By studying
the SPP associated to the binary variables of the strongest model, we prove that this
formulation is very tight, since the majority of its constraints are facet-defining in the
corresponding subproblem. The computational results are consistent with our theoretical
comparison, given that they show the superiority of the single-level model (2INLM).
They also disclose that the linearization carried out using variables zki outperforms the
one made through variables zk regardless of the model, due to the enormous impact of
the valid inequalities associated to zki in the reduction of the bounds and the overall
performance of the models. These results are carried out to the following chapters, where
the linearizations always occur by means of variables zki (the models are already linear in
Chapters 3 and 4) and some of the preprocessing (specifically Proposition 2.24) is made
in the definition of the variables at the beginning of the chapters.

In Chapter 3, we propose the first formulation with three-index variables for the RPPT
(also valid for the RPP). Next, we propose a resolution method based on the introduction
of a weaker model with much less variables and constraints and its strengthening by means
of valid inequalities. Although the Benders decomposition is a widely used approach for
solving mixed-integer programs, in this work we adapt the procedure in a few ways and
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make it more efficient for our problem. In the first place, we opt for solving a valid model
from the beginning instead of the relaxed master problem. Indeed, our Benders Model
has a very small set of variables and constraints but is valid for the RPPT, so it does not
require the search for constraints when a feasible solution is found during the tree search.
Furthermore, we take advantage of the properties of the Benders subproblems (and of
the separation problem of the first resolution method) to transform them into min-cost
flow problems. In the computational testing, each of the resolution algorithms proposed
excels in a specific phase. In the linear relaxation phase, the upper bound of the linear
relaxation of the Benders Model initially outperforms that of the two-index model. In
this case, one inequality per customer is separated for the Benders Model, whereas an
inequality per customer and product is computed for the two-index formulation. But it is
interesting how, like in the RPP, the introduction of inequalities that can be separated by
products (even if a bigger number of them are introduced) results in a faster separation
procedure, that of the two-index model. In the integer phase, however, the Benders Model
outperforms the two-index model in the tree search because the node exploration is faster,
probably due to the small number of variables and constraints it has.

Chapter 4 begins with the introduction of a model with three-index variables for the
CRPP. Unlike in the previous chapters, here the capacity constraints and the inclusion of
new variables associated to the capacity allow to derive several sets of valid inequalities for
the three-index formulation. These sets are then included in the projection of the three-
index formulation into the two-index one, so the resultant inequalities are more difficult
to separate because they depend on six sets of parameters. Besides solving the separation
problem with Xpress, we theoretically separate a particular set of inequalities (family
(4.16)) that proves to be very effective in practice, and link it with the family (2.14)
proposed for the RPP. The combination of these inequalities with the last set proposed
(4.20) results in a very efficient resolution method (MET7) that combines the best linear
relaxation gap (that of (4.20)) with a rather quick inclusion of cuts in the root node and
an effective node search provided by (4.16).

An interesting future line of research consists in modifying the problems’ characterization
of the customers to make them more realistic and the problem more robust. Examples
of this include considering that the given rankings correspond to a possible behavior of a
customer, instead of a given customer. In this setting, we could represent the customers’
choice rule using a probability mass function over the set of rankings that would alter
the objective function (very much in the spirit of Bertsimas and Mǐsić (2019)). Another
option consists in considering near-optimal robust bilevel solutions (recently introduced in
Besançon (2020)) of the RPP and the RPPT. The seek of a near-optimal robust solution
relies on the fact that the lower level (customers in our setting) sometimes makes decisions
that are not optimal but are close to the optimal one, so we might want to seek for a global
solution that is robust with respect to near-optimal lower level solutions, thus protecting
the upper level. It is a generalization of the pessimistic approach of the problem where
the follower can choose any optimal or near-optimal solution.

Another challenging line of research is to study the pessimistic approach of the allocation
of the products in the CRPP with envy. In the CRPP, we assume that the company
can decide the allocation of a product to its clients if (and only if) it is sold out in the
solution. In the pessimistic version, the company cannot decide the allocation of the
products, so it seeks for an optimal pricing assuming the worst possible allocation (a
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worst-case scenario). Since the real allocation is unknown in general (it may e.g. come
from the ordering in which the customers make their purchase), this assumption fits more
realistic settings because it gives a lower bound of the expected profit. This setting would
very likely need to be studied from a bilevel perspective, and the formulations would be
drastically different to the ones introduced here for the CRPP with envy.



122 Conclusions / Conclusiones

En esta tesis doctoral nos hemos centrado en el estudio de un problema de optimización
titulado Problema de Tarificación basado en Preferencias, y en dos generalizaciones de este
que consisten en la inclusión de empates en la lista de preferencias y capacidades. Hemos
introducido las primeras formulaciones lineales enteras mixtas para los tres problemas,
facilitando su resolución mediante optimizadores comerciales. En muchos casos, el estudio
del problema ha dado lugar a desigualdades válidas que hemos añadido implementando
algoritmos de ramificación y corte. En otros casos, hemos llevado a cabo estudios teóricos
como la caracterización de las facetas clique del modelo (2IM1) en la Sección 2.4 o el
resultado de complejidad que establece que el problema de asignación asociado al CRPP
con envidia es NP-duro en el Caṕıtulo 4 (Sección 4.1.1). A continuación, resumimos
las principales conclusiones y resultados obtenidos en el trabajo, y damos posibles ĺıneas
futuras de investigación.

En el Caṕıtulo 2 introducimos dos formulaciones no lineales para el RPP, una que surge
de una formulación binivel y otra (el modelo (2INLM)) que está formulada directamente
en un solo nivel. Las comparamos teóricamente, linealizamos su función objetivo (que es
la misma en ambos casos) de dos formas distintas y proponemos técnicas de preprocesa-
miento que reducen el tamaño de las instancias fijando variables binarias a cero o a uno.
También estudiamos el problema de empaquetamiento asociado a las variables binarias
del modelo más fuerte, con lo que probamos que esta formulación es muy fuerte porque
la mayoŕıa de las restricciones que contiene definen facetas del subproblema asociado.
Los resultados computacionales son consistentes con nuestra comparación teórica, ya que
muestran la superioridad del modelo uninivel (2INLM). También revelan que se obtienen
mejores cotas y un mejor rendimiento en general con la linealización llevada a cabo usando
variables zki que con la linealización hecha con las variables zk. Estos resultados se uti-
lizan en los siguientes caṕıtulos: las linealizaciones siempre se llevan a cabo utilizando
las variables zki (aunque los modelos se presentan ya linealizados en los caṕıtulos 3 y 4)
y parte de las técnicas de preprocesamiento (en concreto la Proposición 2.24) se lleva a
cabo en la definición de las variables al principio de los caṕıtulos.

En el Caṕıtulo 3, proponemos la primera formulación con variables de tres ı́ndices para
el RPPT (que también es válida para el RPP). Luego incluimos un método de resolución
basado en la introducción de un modelo más débil con un conjunto de variables y res-
tricciones de menor tamaño, formulación que a continuación fortalecemos añadiendo de-
sigualdades válidas. Aunque la descomposición de Benders es un método de resolución
ampliamente utilizado para problemas enteros mixtos, en este trabajo modificamos el pro-
cedimiento para adaptarlo a nuestro problema. En primer lugar, optamos por resolver
un modelo válido desde el principio, en vez de una relajación de la formulación master.
Aśı, nuestro Modelo de Benders (BDM) tiene un conjunto de variables y restricciones
realmente pequeño, pero es válido para el RPPT, por lo que evitamos tener que buscar
restricciones cada vez que se encuentra una solución entera en el árbol de ramificación.
Además, aprovechamos las propiedades de los subproblemas de Benders (y de los proble-
mas de separación del primer método de resolución) para transformarlos en problemas de
flujo a coste mı́nimo. En los experimentos computacionales, observamos que cada uno de
los algoritmos de resolución propuestos destaca en una fase de la resolución del problema.
En la fase de la relajación lineal, la cota superior de la relajación lineal del Modelo de
Benders es inicialmente mejor que la del modelo de dos ı́ndices. En este caso, en el Mo-
delo de Benders se separa una desigualdad por cada cliente, mientras que en el modelo
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de dos ı́ndices se separa una desigualdad por cliente y producto. Pero es interesante com-
probar que, al igual que en el RPP, resulta más rápida la adición de cortes cuando las
desigualdades se pueden separar por productos (incluso si se incluyen más cortes). En
la fase entera, sin embargo, el Modelo de Benders lleva a cabo la exploración de nodos
más rápido que el otro modelo, probablemente debido a su reducido número de variables
y restricciones.

El Caṕıtulo 4 comienza introduciendo una formulación con variables de tres ı́ndices para
resolver el CRPP. Al contrario que en los caṕıtulos precedentes, en este se incluyen varios
conjuntos de desigualdades válidas para dicha formulación que utilizan las restricciones
de capacidad y nuevas variables binarias. Estos conjuntos se utilizan después cuando
se proyecta el modelo de tres ı́ndices en el modelo de dos ı́ndices, por lo que las de-
sigualdades obtenidas son más dif́ıciles de separar porque dependen de seis conjuntos de
parámetros. Además de resolver el problema de separación con Xpress, también separamos
teóricamente un conjunto de desigualdades (el conjunto (4.16)) que resulta muy efectivo
en la práctica, y lo relacionamos con el conjunto de cortes (2.14) propuesto para el RPP.
La combinación de estas desigualdades con las últimas que proponemos (4.20) da como
resultado un algoritmo muy eficiente (el método de resolución MET7) que reúne las ven-
tajas de ambas: proporciona unas de las mejores cotas de la relajación lineal (obtenidas
usando (4.20)) y fases de inclusión de cortes en el nodo ráız y de ramificación muy rápidas
(dadas por (4.16)).

Una ĺınea de investigación futura interesante consiste en modificar la caracterización de
los clientes para hacerla más realista y para hacer el problema más robusto. Una forma
de hacerlo consiste en asumir que los rankings representan en realidad posibles comporta-
mientos de los clientes, en vez de a los propios clientes. En este contexto, la decisión de
compra de los consumidores se representaŕıa mediante una distribución de probabilidad
en el conjunto de rankings (de forma similar a Bertsimas and Mǐsić (2019)). Otra opción
consiste en considerar una solución binivel robusta casi óptima (recientemente acuñada en
Besançon (2020)) del RPP y del RPPT. La búsqueda de una solución casi óptima se basa
en el hecho de que los consumidores a menudo toman decisiones que no son óptimas pero
están cerca de la óptima, por lo que buscar una solución óptima global robusta con res-
pecto a las decisiones de los consumidores. Es una generalización de la posición pesimista
binivel en la que los seguidores pueden elegir cualquier solución óptima o casi óptima.

Otra ĺınea de investigación prometedora es el estudio del CRPP con envidia considerando
la posición pesimista en la asignación de los productos a los clientes. En el CRPP, se
asume que la compañ́ıa puede asignar un producto a los clientes si (y solo si) se agota en
la solución. En la versión pesimista, la asignación no puede ser hecha por la compañ́ıa,
por lo que esta busca una tarificación óptima asumiendo el peor de los casos, es decir,
la asignación que da el menor beneficio. Como la asignación real es desconocida (puede
venir dada, por ejemplo, por el orden en el que los clientes compran), esta suposición
es más realista porque da una cota inferior del beneficio esperado. Muy probablemente,
habŕıa que estudiar este caso desde una perspectiva binivel, y las formulaciones resultantes
seŕıan drásticamente distintas a las aqúı propuestas para el CRPP.
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Myklebust, T., Sharpe, M., & Tunçel, L. (2016). Efficient heuristic algorithms for maxi-
mum utility product pricing problems. Computers & Operations Research, 69, 25–
39.

Naoum-Sawaya, J., & Elhedhli, S. (2013). An interior-point Benders based branch-and-
cut algorithm for mixed integer programs. Annals of Operations Research, 210 (1),
33–55.



BIBLIOGRAPHY 131

Nemhauser, G. L., & Trotter, L. E. (1974). Properties of vertex packing and independence
system polyhedra. Mathematical Programming, 6 (1), 48–61.

Nemhauser, G. L., & Wolsey, L. A. (1999). Integer and Combinatorial Optimization. John
Wiley & Sons.

Nemhauser, G. L., & Wolsey, L. A. (1990). A recursive procedure to generate all cuts for
0–1 mixed integer programs. Mathematical Programming, 46 (1), 379–390.

Outrata, J. V. (1993). Necessary optimality conditions for Stackelberg problems. Journal
of Optimization Theory and Applications, 76 (2), 305–320.

Padberg, M. W. (1973). On the facial structure of set packing polyhedra. Mathematical
Programming, 5 (1), 199–215.

Padberg, M. W. (1975). A note on zero-one programming. Operations Research, 23 (4),
833–837.

Papadimitriou, C. H. (1981). On the complexity of integer programming. Journal of the
ACM (JACM), 28 (4), 765–768.

Paruchuri, P., Pearce, J. P., Kraus, S., & Marecki, J. (2008). Playing Games for Security:
An Efficient Exact Algorithm for Solving Bayesian Stackelberg Games. Proceedings
of the 7th International Joint Conference on Autonomous Agents and Multiagent
Systems, 2, 895–902.

Rothblum, U. G. (1992). Characterization of stable matchings as extreme points of a
polytope. Mathematical Programming, 54 (1-3), 57–67.

Rusmevichientong, P. (2003). A non-parametric approach to multi-product pricing: Theory
and application. (Doctoral dissertation). Stanford University.

Rusmevichientong, P., Van Roy, B., & Glynn, P. W. (2006). A non-parametric approach
to multiproduct pricing. Operations Research, 54 (1), 82–98.

Santos, F. (2012). A counterexample to the Hirsch conjecture. Annals of Mathematics,
172, 383–412.

Savard, G., & Gauvin, J. (1994). The steepest descent direction for the nonlinear bilevel
programming problem. Operations Research Letters, 15 (5), 265–272.

Schön, C. (2010a). On the Optimal Product Line Selection Problem with Price Discrimi-
nation. Management Science, 56 (5), 896–902.

Schön, C. (2010b). On the product line selection problem under attraction choice models
of consumer behavior. European Journal of Operational Research, 206 (1), 260–264.



132 BIBLIOGRAPHY

Schrijver, A. (1998). Theory of Linear and Integer Programming. John Wiley & Sons.

Sherali, H. D., & Adams, W. P. (1998). Reformulation-Linearization Techniques for Dis-
crete Optimization Problems. In D.-Z. Du & P. M. Pardalos (Eds.), Handbook of
Combinatorial Optimization: Volume1–3 (pp. 479–532). Springer US.
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