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Exhaled volatilome analysis 
as a useful tool to discriminate 
asthma with other coexisting 
atopic diseases in women 
of childbearing age
Rosa A. Sola‑Martínez1,2, Gema Lozano‑Terol1,2, Julia Gallego‑Jara1,2, Eva Morales2,3, 
Esther Cantero‑Cano2, Manuel Sanchez‑Solis2,4,5,6, Luis García‑Marcos2,4,5,6, 
Pedro Jiménez‑Guerrero7, José A. Noguera‑Velasco1,2,8, Manuel Cánovas Díaz1,2, 
Teresa de Diego Puente1,2* & the NELA study group*

The prevalence of asthma is considerably high among women of childbearing age. Most asthmatic 
women also often have other atopic disorders. Therefore, the differentiation between patients 
with atopic diseases without asthma and asthmatics with coexisting diseases is essential to avoid 
underdiagnosis of asthma and to design strategies to reduce symptom severity and improve quality 
of life of patients. Hence, we aimed for the first time to conduct an analysis of volatile organic 
compounds in exhaled breath of women of childbearing age as a new approach to discriminate 
between asthmatics with other coexisting atopic diseases and non‑asthmatics (with or without atopic 
diseases), which could be a helpful tool for more accurate asthma detection and monitoring using a 
noninvasive technique in the near future. In this study, exhaled air samples of 336 women (training 
set (n = 211) and validation set (n = 125)) were collected and analyzed by thermal desorption coupled 
with gas chromatography‑mass spectrometry. ASCA (ANOVA (analysis of variance) simultaneous 
component analysis) and LASSO + LS (least absolute shrinkage and selection operator + logistic 
regression) were employed for data analysis. Fifteen statistically significant models (p‑value < 0.05 
in permutation tests) that discriminated asthma with other coexisting atopic diseases in women 
of childbearing age were generated. Acetone, 2‑ethyl‑1‑hexanol and a tetrahydroisoquinoline 
derivative were selected as discriminants of asthma with other coexisting atopic diseases. In addition, 
carbon disulfide, a tetrahydroisoquinoline derivative, 2‑ethyl‑1‑hexanol and decane discriminated 
asthma disease among patients with other atopic disorders. Results of this study indicate that 
refined metabolomic analysis of exhaled breath allows asthma with other coexisting atopic diseases 
discrimination in women of reproductive age.

Asthma is a chronic disease that involves an enormous economic cost for the healthcare systems of nations. 
Moreover, asthma prevalence worldwide has increased considerably in recent  years1. Previous studies have 
suggested that factors associated with changes in lifestyles and environmental contaminants during pregnancy 
influence the risk of asthma or other atopic conditions in  children2,3. Atopic conditions usually include such 
diseases as atopic dermatitis, asthma, food allergy or allergic rhinitis. All these diseases are strongly associated 
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with each other, and the manifestation of one often involves the onset of the  others4,5. Thus, asthma frequently 
also coexists with other atopic  diseases6. To date, many studies have shown the progression of atopic disorders 
from atopic dermatitis in infants to allergic rhinitis and asthma in  children7–9. Furthermore, the prevalence of 
asthma differs between males and females: although asthma is more prevalent in males during childhood, the 
prevalence is higher in females in adulthood. Specifically, the prevalence is rather high among women of child-
bearing age, and symptoms tend to be more  severe10,11.

Airway inflammation is the most typical characteristic of asthma. Increased oxidative stress plays an important 
role in airway  inflammation12 and is often linked to enhanced ROS (reactive oxygen species) production or mal-
function of antioxidant  defenses13,14. ROS generation can affect DNA, lipids, proteins and  carbohydrates15. ROS 
may be derived from endogenous sources, such as cellular organelles (mitochondria, peroxisomes or the endo-
plasmic reticulum), among others; allergens or environmental pollutants can also promote ROS  production12,14,16. 
In allergic asthma (the most prevalent asthma), the presence of allergens generates ROS via a complex activation 
mechanism that involves mainly dendritic cell (DC) activation, CD4 + T cell activation, interleukin production, 
IgE production by B cells, and activation of mast cells and  eosinophils12 (Fig. 1).

Currently, clinical history and spirometry are the most reliable methods for asthma  diagnosis17,18. However, 
they do not allow for assessment of airway inflammation. Although blood eosinophil count has been suggested 
as a useful tool for asthma diagnosis, levels can be influenced by several  factors19,20. Techniques such as induced 
sputum, bronchoscopy with bronchoalveolar lavage (BAL) and biopsy are suitable for airway inflammation and 
oxidative stress assessment, but only induced sputum is a noninvase  technique21,22. In this sense, scientific com-
munity is searching for new alternative noninvasive techniques or biomarkers for asthma phenotypes identifica-
tion, treatment monitoring, exacerbations prediction, differential diagnosis of other pathologies with similar 
symptoms and personalized diagnosis when patients suffer from comorbidities such as rhinosinusitis or other 
atopic  disorders6,22,23.

Exhaled breath analysis is a noninvasive approach for assessing inflammation of the airway and oxidative 
 stress21. In fact, several volatile organic compounds (VOCs) are produced during oxidative stress and lipid 
 peroxidation24. The determination of exhaled fractional nitric oxide (FeNO) has provided additional informa-
tion on airway inflammation as a diagnostic tool for atopic asthma in numerous studies. Nevertheless, it is not 
useful for non-allergic asthma, and changes in FeNO levels can be indicative of several disorders other than 
 asthma21,25,26. Hundreds of different volatile organic compounds can be detected in exhaled  breath27, and VOCs 
in exhaled breath are analyzed mainly by technologies based on mass spectrometry or on sensor arrays such as 
the electronic nose (e-NOSE)23,28 Currently, gas chromatography coupled with mass spectrometry (GC/MS) is 
one of the most suitable techniques because it enables VOC identification in exhaled breath samples with high 
sensitivity in the ppb  range29. VOCs measured in exhaled breath may be due to exposure to exogenous contami-
nants (exposomes) or have an endogenous source, whereby they are produced by human metabolism or even gut 
 bacteria30. For all these reasons, analysis of VOCs in exhaled breath has been suggested as an emerging approach 
for the prediction, diagnosis, and monitoring of  asthma22,31.

Figure 1.  Lipid peroxidation and volatile organic compounds production in allergic asthma. PUFAs 
polyunsaturated fatty acids, ROS reactive oxygen species, Nos NADPH oxidase, Acox AcilCoA-oxidase, AaOx 
amino acid oxidase.
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Unfortunately, this strategy is still in the exploratory phase, and several aspects have to be improved for its 
introduction in a clinical  context29,32,33. Therefore, the best metabolomic practices are essential to overcome this 
initial phase, for instance, conducting studies that involve large numbers of subjects, assessment of environmental 
influences on breath samples, implementation of reproducible and transparent data preprocessing workflows 
and performing a robust data analysis, among  others29,33. In this regard, the identification of VOCs as possible 
biomarkers of diseases requires an adequate data analysis. A large volume of research has considered the creation 
of predictive models for clinical data; however, much existing literature reports attractive results not validated 
in an independent set for checking model interpretability and  generalizability29,33.

This paper is focused on VOC analysis in exhaled breath from women of childbearing age participating in 
a population-based birth cohort to discriminate between asthmatics with other coexisting atopic diseases and 
non-asthmatics (with or without atopic diseases). In this study, well-established metabolomics practices were 
implemented. In this sense, we have carried out a modeling process with a cross-validation on training set and 
an external validation using a separate test set which guarantees the generalizability of the model to apply to 
unknown data. In addition, data compiled in the European Health Survey in Spain 2014 (EHSS) and in the 
Spanish National Health Survey 2017 were statistically analysed in order to identify factors associated with 
asthma disease.

Methodological development of exhaled breath analysis can greatly enhance our ability to understand the 
heterogeneity of asthma with other coexisting atopic diseases and atopic disorders without asthma by identifying 
exhaled volatile organic compounds biomarkers.

Results
Analysis of the data collected in health surveys in Spain in recent years. Analysis of data collected 
in the European Health Survey in Spain of 2014 (EHSS‑2014). Representation of MCA (multiple correspond-
ence analysis) conducted with the EHSS-2014 data collection is shown in Fig. 2A. The results of chi-square tests 
and Fisher’s exact tests (Supplemental Table S1) showed that the variable "asthma" had a significant relationship 
with the following variables: age, gender, health status, arterial hypertension, other atopic disorders (allergic 
rhinitis, atopic dermatitis, allergic conjunctivitis, food allergy or other allergies (excluding asthma)), diabetes, 
skin disorders, cirrhosis, depression, anxiety disorders, kidney problems, thyroid problems, osteoporosis, Body 
Mass Index (BMI), physical activity and tobacco. Representation of MCA conducted with an open cohort of 
18- to 45-year-old women constructed using EHSS-2014 data collection is shown in Fig. 2B. 6.9% of women of 
childbearing age were asthmatics. The results of chi-square tests and Fisher’s exact tests on data of women of 
childbearing age (Supplemental Table S1) showed that the variable "asthma" had a significant relationship with 
the following variables: nationality, health status, arterial hypertension, other atopic disorders, skin disorders, 
anxiety disorders, cholesterol, BMI and diet.

Analysis of data collected in the Spanish National Health Survey of 2017 (ENSE‑2017). Representation of MCA 
conducted with the ENSE-2017 data collection is shown in Supplemental Fig. S1. The results of chi-square tests 
and Fisher’s exact tests (Supplemental Table S1) showed that the variable "asthma" had a significant relationship 
with the following variables: age, gender, nationality, arterial hypertension, health status, other atopic disor-
ders, diabetes, skin disorders, cholesterol, cirrhosis, depression, anxiety disorders, kidney problems, malignant 
tumors, thyroid problems, osteoporosis, BMI, tobacco and alcohol. Representation of MCA conducted with an 
open cohort of 18- to 45-year-old women constructed using ENSE-2017 data collection is shown in Supplemen-
tal Fig. S1. 7.1% of women of childbearing age were asthmatics. The results of chi-square tests and Fisher’s exact 
tests on data of women of childbearing age (Supplemental Table S1) showed that the variable "asthma" had a 
significant relationship with the following variables: health status, arterial hypertension, other atopic disorders, 
skin disorders, depression, anxiety disorders and alcohol.

Subject characteristics: associations between atopic conditions. A total of 337 women from 
the NELA (Nutrition and Early Life) cohort participated in the present study. The women were randomly dis-
tributed into two groups: Group 1 (n = 211) used as training set and Group 2 (n = 126) used as validation set. 
Based on asthma and other atopic diseases diagnosed, women in each group were classified into four categories: 
asthmatics with other coexisting atopic diseases (A-AD), non-asthmatics with other atopic diseases (NA-AD), 
non-asthmatics without atopic diseases (NA-NAD), and non-asthmatics (NA) (this category includes both non-
asthmatics with other atopic disease and non-asthmatics without atopic diseases). Study flow chart is shown in 
Fig. 3. One woman of Group 2 was excluded for being asthmatic without other atopic diseases. Figure 4 includes 
two Venn diagrams that show the coexistence of atopic conditions in women with asthma in both groups. Aller-
gic rhinitis and allergic conjunctivitis were the most common coexisting atopic conditions in the women with 
asthma. The characteristics of the women of Group 1 and Group 2 are shown in Tables 1 and 2, respectively. The 
percentage of women with allergic rhinitis was higher in A-AD than in NA-AD in both Group 1 and Group 2. 
The number of females of Group 1 with atopic parental history (parental history of asthma and allergic rhinitis) 
in NA and NA-NAD was lower than in A-AD. Moreover, in Group 1, percentage of women with parental allergic 
rhinitis history was higher in NA-AD and NA-NAD. In addition, blood eosinophil count has been found to be 
significantly higher in A-AD than in NA, NA-AD and NA-NAD in both Group 1 (A-AD vs. NA (p-value = 4.4e-
05), A-AD vs. NA-AD (p-value = 8.3e-05), and A-AD vs. NA-NAD (p-value = 0.00014)) and Group 2 (A-AD 
vs. NA (p-value = 0.0012), A-AD vs. NA-AD (p-value = 0.0086), and A-AD vs. NA-NAD (p-value = 0.00075)) 
(Supplementary Fig. S2).
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Figure 2.  Representation of MCA (multiple corresponde analysis) results performed on data collection from 
European Health Survey in Spain 2014 (EHSS-2014). (A) All data collected from the EHSS-2014. (B) Open 
cohort of 18- to 45-year-old women constructed using the EHSS-2014.
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Predictive modeling for VOC discriminant identification in exhaled breath analysis. No group-
ing by asthma disease was observed with exploratory data analysis based on principal component analysis (PCA) 
(Supplemental Fig. S3). However, grouping by seasonal variation in sampling was observed for all sample types: 
exhaled breath samples and ambient air samples (Supplemental Figs. S4, S5). Therefore, ANOVA (analysis of 
variance)-simultaneous component analysis (ASCA) was performed to avoid seasonal variation influences. The 
factors selected were the season of measurement and the usual residence zone defined by air quality modeling 
using the Weather Research and Forescasting (WRF) + CHIMERE modeling system, considering levels of ozone 
 (O3), nitrogen dioxide  (NO2), sulfur dioxide  (SO2) and particulate  matter34,35.

Figure 3.  Study flow chart. Other atopic diseases include allergic rhinitis, atopic dermatitis, allergic 
conjunctivitis, food allergy or drug allergy.

Figure 4.  Coexistence of atopic conditions in women with asthma. (A) Venn diagram of the coexistence of 
atopic conditions in women with asthma in Group 1. (B) Venn diagram of the coexistence of atopic conditions 
in women with asthma in Group 2.
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The properties and receiver operator characteristic (ROC) curves of the constructed models are shown in 
Fig. 5. For more information, the formulas of the models are provided in Supplemental Table S2, and the attrib-
utes of the features selected by the models are detailed in Supplemental Table S3. The compound including feature 
F62 had an ion fragmentation pattern characteristic of several compounds of the tetrahydroisoquinoline family; 
therefore, this compound was named a “tetrahydroisoquinoline derivative” and not with a specific name. Com-
pound identification of all selected features was conducted based on mass spectra and retention times matching 
with the NIST (National Institute of Standard and Technology) library and commercial standards (match factor 
and error RI (retention index error) value computation), except for three compounds (isoprene, tetrahydroiso-
quinoline derivative and 2-propenoic acid, 3-(2-hydroxyphenyl)-), which were identified based only on mass 
spectral library matching. The extent to which the prediction accuracy of the constructed models and variables 
were used in each model are summarized in Table 3.

Asthmatics with other coexisting atopic diseases (A‑AD) vs. Non‑asthmatics (NA). Seven models (model I.A, 
model I.B, model I.C, model I.D, model I.E, model I.F and model I.G) were generated to distinguish between 
asthmatics with other coexisting atopic diseases and non-asthmatics. All models were significant (p-value < 0.05 
in permutation test), and selected features of 2-ethyl-1-hexanol and tetrahydroisoquinoline derivative acted as 
discriminants in all models. The features of acetone, 2-ethyl-1-hexanol and a tetrahydroisoquinoline derivate 
were selected in model I.A, which included only VOC measurements. The AUC (area under the receiver operat-
ing characteristic curve) value of this model in the validation set was 0.67 (71% sensitivity and 63% specificity). 

Table 1.  Characteristics of the study population: women of childbearing age (Training set—Group 1). A‑AD 
asthmatics with other coexisting atopic diseases; NA non-asthmatics; NA‑NAD non-asthmatics without atopic 
diseases; NA‑AD non-asthmatics with other atopic diseases. a Significantly different (p-value < 0.05) from 
asthmatics with coexisting other atopic diseases (A-AD). b Significantly different (p-value < 0.05) from non-
asthmatics (NA). c Significantly different (p-value < 0.05) from non-asthmatics with other atopic diseases (NA-
AD). d Significantly different (p-value < 0.05) from non-asthmatic without atopic diseases (NA-NAD).

Group 1 (211)

A-AD NA NA-AD NA-NAD

Subjects n 25 186 72 114

Age (years), mean (range) 32.4 (20–39) 32.9 (20–43) 32.8 (23–41) 33.0 (20–43)

BMI (kg/m2) before pregnant, mean (range) 25.23 (19.72–36.81) 24.13 (16.23–42.32) 23.59 (16.65–38.67) 24.48 (16.23–42.32)

Social class

Managers-technicians/skilled/semiskilled-
unskilled/unemployed, % 36.0/20.0/20.0/24.0 35.5/18.3/22.0/24.2 34.7/15.2/20.8/29.2 36.0/20.2/22.8/21.1

Educational level

Incomplete secondary or less/complete sec-
ondary/university % 28.0/12.0/60.0 19.3/25.3/55.4 25.0/27.8/47.2 15.8/23.7/60.5

Smoking during pregnancy, Yes/No n/n 2/23 30/156 9/63 21/93

Smoker, Yes/No n/n 3/22 30/156 8/64 22/92

Other atopic disorders, yes 25 (100%)b 72 (39%)a 72 (100%) -

Allergic rhinitis, yes 23 (92%)b,c 47 (25%)a 47 (65%)a -

Atopic dermatitis, yes 8 (32%)b 12 (6%)a 12 (17%) -

Allergic conjunctivitis, yes 17 (68%)b 26 (14%)a 26 (36%) -

Food allergy, yes 5 (20%)b 10 (5%)a 10 (14%) -

Drug allergy, yes 5 (20%) 14 (8%) 14 (19%) -

Parental asthma, yes 6 (24%)b,d 11 (6%)a 6 (8%) 5 (4%)a

Parental allergic rhinitis, yes 10 (40%)b,d 36 (19%)a 21 (29%)d 15 (13%)a,c

Parental atopic dermatitis, yes 3 (12%) 8 (4%) 2 (3%) 6 (5%)

Antibiotics consumption, yes 11 (44%) 57 (31%) 22 (31%) 35 (31%)

Paracetamol consumption, yes 18 (72%) 107 (56%) 39 (54%) 68 (60%)

Inhaled corticosteroids consumption, yes 2 (8%) 5 (3%) 3 (4%) 2 (2%)

Injectable corticosteroids consumption, yes 2 (8%) 7 (4%) 6 (8%)d 1 (1%)c

Blood leucocyte count /µl, mean (range) 9548 (6380–16,610) 9247 (5270–16,720) 9054 (5270–15,560) 9369 (5270–16,720)

Blood monocyte count /µl, mean (range) 590 (320–1080) 614 (240–1460) 618 (370–1160) 611 (240–1460)

Blood lymphocyte count /µl, mean (range) 1847 (1160–3130) 2017 (770–4290) 2021 (960–3600) 2015 (770–4290)

Blood basophil count /µl, mean (range) 32 (10–60) 31 (0–100) 28 (10–60) 32 (0–100)

Blood eosinophil count /µl, mean (range) 213 (70–350)b,c,d 138 (0–500)a 131 (0–380)a 143 (0–500)a

Blood neutrophil count /µl, mean (range) 6866 (3960–12,780) 6447 (3380–11,360) 6255 (3380–11,360) 6568 (3380–10,970)

Season at sampling

Winter/spring/summer/autumn % 24.0/20.0/20.0/36.0 25.3/10.8/22.0/41.9 38.9/11.1/19.4/30.6 d 16.7/10.5/23.7/49.1 c
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Model I.B, which also included atopic parental history, selected the same features set as model I.A as well as vari-
ables related to atopic antecedents (parental asthma, parental rhinitis and parental dermatitis).

Asthmatics with other coexisting atopic diseases (A‑AD) vs. Non‑asthmatics without atopic diseases 
(NA‑NAD). Four models were constructed to distinguish between asthmatics with other coexisting atopic 
diseases and non-asthmatics without atopic diseases. The features of acetone, 2-ethyl-1-hexanol and a tetrahy-
droisoquinoline derivative were selected in the four models, and all models were significant (p-value < 0.05 in 
permutation test).

Asthmatics with other coexisting atopic diseases (A‑AD) vs. Non‑asthmatics with other atopic diseases 
(NA‑AD). Four models were constructed (model III.A, model III.B, model III.C and model III.D)) for 
asthma discrimination among women who suffer any atopic disease. All models showed statistical significance 
(p-value < 0.05 in permutation tests). The features of carbon disulfide, a tetrahydroisoquinoline derivative, 
decane and 2-ethyl-1-hexanol were selected in the four models.

Non‑asthmatics with other atopic diseases (NA‑AD) vs. Non‑asthmatics without atopic diseases (NA‑NAD). Model 
IV.A was unable to discriminate between non-asthmatics with other atopic diseases and non-asthmatics without 

Table 2.  Characteristics of the study population: women of childbearing age (Validation set—Group 2). A‑
AD asthmatics with other coexisting atopic diseases; NA non-asthmatics; NA‑NAD non-asthmatics without 
atopic diseases; NA‑AD non-asthmatics with other atopic diseases. a Significantly different (p-value < 0.05) 
from asthmatics with coexisting other atopic diseases (A-AD). b Significantly different (p-value < 0.05) from 
non-asthmatics (NA). c Significantly different (p-value < 0.05) from non-asthmatics with other atopic diseases 
(NA-AD). d Significantly different (p-value < 0.05) from non-asthmatic without atopic diseases (NA-NAD). 
† One woman was not included in any of the four categories for being asthmatic without other atopic diseases.

Group 2 (n = 126)†

A-AD NA NA-AD NA-NAD

Subjects n 14 111 47 64

Age (years) mean (range) 33.0 (25–39) 33.3 (18–42) 33.0 (18–42) 33.5 (22–41)

BMI (kg/m2) before pregnant mean (range) 23.50 (18.46–34.37) 23.28 (15.94–39.91) 23.35 (17.63–37.29) 23.23 (15.94–39.91)

Social class

Managers-technicians/skilled/semiskilled-
unskilled/unemployed % 28.6/50.0/14.3/7.1 39.6/20.7/18.0/21.6 29.8/19.1/23.4/27.7 46.9/21.9/14.1/17.2

Educational level

Incomplete secondary or less/complete second-
ary/university % 7.1/35.7/57.1 11.7/28.8/59.5 14.9/31.9/53.2 9.4/26.6/64.1

Smoking during pregnancy, Yes/No n/n 2/12 14/97 4/43 10/54

Smoker, Yes/No n/n 3/11 13/98 6/41 7/57

Other atopic disorders, yes 14 (100%)b 47 (42%)a 47 (100%) –

Allergic rhinitis, yes 14 (100%)b,c 34 (31%)a 34 (72%)a –

Atopic dermatitis, yes 5 (36%)b 13 (12%)a 13 (28%) –

Allergic conjunctivitis, yes 8 (57%)b 20 (18%)a 20 (43%) –

Food allergy, yes 1 (7%) 7 (6%) 7 (15%) –

Drug allergy, yes 3 (21%) 8 (7%) 8 (17%) –

Parental asthma, yes 3 (21%) 12 (11%) 5 (11%) 7 (11%)

Parental allergic rhinitis, yes 7 (50%) 34 (31%) 19 (40%) 15 (23%)

Parental atopic dermatitis, yes 2 (14%) 11 (10%) 6 (13%) 5 (8%)

Antibiotics consumption, yes 1 (7%) 32 (29%) 12 (26%) 20 (31%)

Paracetamol consumption, yes 8 (57%) 67 (60%) 31 (66%) 36 (56%)

Inhaled corticosteroids consumption, yes 2 (14%)b,d 1 (1%)a 1 (2%) 0 (0%)a

Injectable corticosteroids consumption, yes 0 (0%) 2 (2%) 1 (2%) 1 (2%)

Blood leucocyte count /µl, mean (range) 8537 (7050–11,570) 9268 (5180–15,310) 9258 (5760–14,090) 9276 (5180–15,310)

Blood monocyte count /µl, mean (range) 630 (450–960) 595 (320–1280) 601 (360–1030) 590 (320–1280)

Blood lymphocyte count /µl, mean (range) 2035 (1270–2650) 2002 (990–3790) 1988 (1110–3790) 2013 (990–3700)

Blood basophil count /µl, mean (range) 34 (20–60) 34 (0–90) 37 (10–80) 33 (0–90)

Blood eosinophil count /µl, mean (range) 234 (90–510)b,c,d 146 (20–430)a 159 (20–430)a 135 (30–430) a

Blood neutrophil count /µl, mean (range) 5604 (4390–8320) 6491 (3470–10,990) 6473 (3510–9790) 6504 (3470–10,990)

Season at sampling

Winter/spring/summer/autumn % 0.0/35.7/35.7/28.6 3.6/32.4/41.4/22.5 2.1/36.2/38.3/23.4 4.7/29.7/43.8/21.9
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atopic diseases. Moreover, it was not significant (p-value = 0.236), and the accuracy in the validation set was poor 
(AUC = 0.54, 46% sensitivity and 62% specificity).

The levels in exhaled breath of the features selected by the fifteen significant models were not influenced by 
either smoking habits or consumption of drugs reported by women (antibiotics, paracetamol, inhaled corticos-
teroids and injectable corticosteroids), except for the levels of 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate 
(99 m/z) which were significantly higher in women who consumed paracetamol (p-value = 0.013) (Supplemen-
tary Figs. S6–S10). However, no significant differences in paracetamol consumption were observed between the 
four categories (A-AD, NA, NA-AD and NA-NAD) (Table 1 and Table 2). Furthermore, intensities of features 
from discriminant VOCs were significantly higher in human exhaled breath samples than in ambient samples 
(Supplementary Fig. S11). Moreover, 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate (99 m/z) was not detected 
in environmental samples.

Discussion
Results of the two last health survey in Spain (EHSS-2014 and ENSE-2017) elaborated by INE (the National 
Institute of Statistics of Spain) data analysis indicated a gender bias in asthma disease in Spain, owing to its high 
prevalence in women. In plots of MCA results of both surveys (Fig. 2A and Supplemental Fig. S1), age of sub-
jects was the variable with the highest contribution to Dimension 1. Category "woman" of gender variable was 
extremely close to the category "asthma_Yes" in both dimensions (Dimension 1 and Dimension 2). In addition, 
asthma disease was very close in Dimension 2 to other diseases such as thyroid problems, other atopic disor-
ders (any atopic disease excluding asthma) or skin disorders. Moreover, a significant relationship was observed 
between asthma and other diseases such as skin disorders, other atopic disorders, thyroid problems, diabetes, 
kidney problems, arterial hypertension or osteoporosis (Supplemental Table S1). Asthma influences some chronic 
diseases such as coronary heart disease, diabetes mellitus, and hypertension, but the impact on vital diseases such 
chronic kidney disease is not yet verified. However, patients with bronchial asthma may have increased risk of 
developing chronic kidney  disease36. The connection between asthma and thyroid problems has been  noted37,38 
but the effects of thyroid hormones on airway contractility are unclear. Prevalence of thyroid problems is higher 
in women. It is reported that the sex bias could be due to the fact that hormone regulation may play a relevant role 

Figure 5.  The constructed models. Top panel. Characteristics of the constructed models. (WBCs: white blood 
cell counts). Bottom panel. Receiver operator characteristic (ROC) curves of the constructed models. (A) ROC 
curves for discriminating between A-AD (asthmatics with other coexisting atopic diseases) and NA (non-
asthmatics). (B) ROC curves for discriminating between A-AD and NA-NAD (non-asthmatic without atopic 
diseases). (C) ROC curves for discriminating between A-AD and NA-AD (non-asthmatic with other atopic 
diseases).
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Table 3.  Accuracy of constructed models and selected variables in each model (discriminant volatile organic 
compounds (VOCs) and other variables). A‑AD asthmatics with other coexisting atopic diseases; NA non-
asthmatics; NA‑NAD non-asthmatics without atopic diseases; NA‑AD non-asthmatics with other atopic 
diseases; AUC  area under the receiver operating characteristic curve; AUCcv AUC obtained by fivefold cross-
validation; AUCvs AUC obtained by testing in validation set.

Models AUC CV p-value AUC VS Sensitivity (%) Specificity (%) VOCs Other variables

(I) A-AD vs NA

I.A 0.70 0.017 0.67 71 63
Acetone (CAS number: 67-64-1)
Tetrahydroisoquinoline derivative
2-Ethyl-1-hexanol (CAS number: 104-76-7)

I.B 0.73 0.003 0.70 71 60
Acetone (CAS number: 67-64-1)
Tetrahydroisoquinoline derivative
2-Ethyl-1-hexanol (CAS number: 104-76-7)

Parental asthma
Parental rhinitis
Parental dermatitis

I.C 0.79 0.001 0.77 71 65 Tetrahydroisoquinoline derivative
2-Ethyl-1-hexanol (CAS number: 104-76-7) Blood eosinophil count

I.D 0.80 0.001 0.76 86 63 Tetrahydroisoquinoline derivative
2-Ethyl-1-hexanol (CAS number: 104-76-7)

Parental asthma
Parental rhinitis
Blood eosinophil count

I.E 0.88 0.001 0.88 100 69
Carbon disulfide (CAS number: 75-15-0)
Tetrahydroisoquinoline derivative
2-Ethyl-1-hexanol (CAS number: 104-76-7)

Allergic rhinitis
Atopic dermatitis
Allergic conjunctivitis
Food allergy
Drug allergy

I.F 0.90 0.001 0.89 100 70
Acetone (CAS number: 67-64-1)
Carbon disulfide (CAS number: 75-15-0)
Tetrahydroisoquinoline derivative
2-Ethyl-1-hexanol (CAS number: 104-76-7)

Parental asthma
Parental dermatitis
Allergic rhinitis
Atopic dermatitis
Allergic conjunctivitis
Food allergy
Drug allergy

I.G 0.91 0.001 0.90 100 68
Carbon disulfide (CAS number: 75-15-0)
Tetrahydroisoquinoline derivative
2-Ethyl-1-hexanol (CAS number: 104-76-7)

Parental asthma
Parental dermatitis
Blood eosinophil count
Allergic rhinitis
Atopic dermatitis
Allergic conjunctivitis
Food allergy
Drug allergy

(II) A-AD vs NA-NAD

II.A 0.68 0.031 0.63 64 55
Acetone (CAS number: 67-64-1)
Tetrahydroisoquinoline derivative
2-Ethyl-1-hexanol (CAS number: 104-76-7)

II.B 0.73 0.008 0.68 71 58
Acetone (CAS number: 67-64-1)
Tetrahydroisoquinoline derivative
2-Ethyl-1-hexanol (CAS number: 104-76-7)

Parental asthma
Parental rhinitis

II.C 0.77 0.001 0.75 64 68
Acetone (CAS number: 67-64-1)
Tetrahydroisoquinoline derivative
2-Ethyl-1-hexanol (CAS number: 104-76-7)

Blood eosinophil count

II.D 0.79 0.002 0.75 71 62
Acetone (CAS number: 67-64-1)
Tetrahydroisoquinoline derivative
2-Ethyl-1-hexanol (CAS number: 104-76-7)

Parental asthma
Parental rhinitis
Blood eosinophil count

(III) A-AD vs NA-AD

III.A 0.70 0.025 0.68 71 72

Carbon disulfide (CAS number: 75-15-0)
Tetrahydroisoquinoline derivative
Decane (CAS number: 124-18-5)
2-Ethyl-1-hexanol (CAS number: 104-76-7)
2,2,4-Trimethyl-1,3-pentanediol diisobutyrate (TXIB) (CAS number: 6846-
50-0)

III.B 0.67 0.042 0.81 86 60

Carbon disulfide (CAS number: 75-15-0)
Tetrahydroisoquinoline derivative
Decane (CAS number: 124-18-5)
2-Ethyl-1-hexanol (CAS number: 104-76-7)
2,2,4-Trimethyl-1,3-pentanediol diisobutyrate (TXIB) (CAS number: 6846-
50-0)

Parental asthma
Parental dermatitis

III.C 0.80 0.001 0.74 71 60

Carbon disulfide (CAS number: 75-15-0)
Tetrahydroisoquinoline derivative
Decane (CAS number: 124-18-5)
2-Ethyl-1-hexanol (CAS number: 104-76-7)
1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester (CAS number: 
84-69-5)

Blood eosinophil count
Blood lymphocyte count

III.D 0.82 0.001 0.75 79 70

Carbon disulfide (CAS number: 75-15-0)
Tetrahydroisoquinoline derivative
Decane (CAS number: 124-18-5)
2-Ethyl-1-hexanol (CAS number: 104-76-7)
1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester (CAS number: 
84-69-5)

Parental asthma
Parental dermatitis
Blood eosinophil count
Blood lymphocyte count

(IV) NA-AD vs NA-NAD

IV.A 0.55 0.236 0.54 46 62
Isoprene (CAS number: 78-79-5)
2-Propenoic acid, 3-(2-hydroxyphenyl)-, (E)-(CAS number: 614-60-8)
2,2,4-Trimethyl-1,3-pentanediol diisobutyrate (TXIB) (CAS number: 6846-
50-0)
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in thyroid  problems10,39. Nevertheless, no significant association between asthma and thyroid problems, diabetes, 
kidney problems and osteoporosis were observed when only data from 18- to 45-year-old women were selected 
in both health surveys (Supplemental Table S1). On the other hand, results of data analysis of open cohorts of 
18- to 45-year-old women confirmed that asthma disease is associated to skin disorder and other atopic disorders. 
The category “asthma_Yes” was very close to categories “skin_disorders_Yes” and “other atopic disorders_Yes” in 
Dimension 1 in both plots of MCA (Fig. 2B and Supplemental Fig. S1). As a result, the factors most associated 
with asthma disease in adults are gender, other atopic disorders and skin disorders. Thus, this paper shows the 
first study focused on discrimination of asthma with other coexisting atopic diseases in women of childbearing 
age using a noninvasive technique such as VOC analysis in exhaled breath.

Although VOC analysis of exhaled air has been proposed as a potential strategy for the diagnosis and moni-
toring of asthma, its implementation in clinical practice has been impossible so far. In this sense, metabolomics 
practice is crucial to overcome the current limitations to its integration into day-to-day clinical  practice29,33. 
Thus, a metabolomics perspective was used in this study. So, a large cohort of subjects were recruited, and a 
room air content sample was collected for each participant sample to assess possible contamination through 
the sample collection and analysis processes. Special emphasis has been placed on the data preprocessing step, 
which is a classic bottleneck in exhaled breath analysis by GC/MS. The biggest challenge for the development 
of the technique has been to address the preprocessing of the data to transform it into a useful matrix for data 
analysis. In fact, a reproducible and transparent workflow developed by our group for data preprocessing using 
open sources has been implemented for the first time for biomarker discovery in the present  study40. VOC 
identification was performed based on spectral similarity and retention times. Once this phase is over, robust 
data analysis with adequate validation are required to measure the predictive performance of a statistical model 
with reliable predictions of unseen cases.

In this sense, a novel combination of robust techniques (ASCA and LASSO + LR (least absolute shrinkage and 
selection operator + logistic regression)) was applied for data analysis. Although these techniques have previ-
ously been used independently for VOC analysis of exhaled air, since ASCA was used by van de Kant et al.41 and 
LASSO + LR by Monasta et al.42, both statistical tests have to our knowledge never been implemented together 
in hypothesis testing. ASCA is a useful tool for large longitudinal cohorts, as many factors (e.g., season of meas-
urement) can indirectly influence the  results43. On the other hand, LASSO + LR allows for high-dimensional 
data analysis without being a "black box", as are other supervised learning techniques, such as support vector 
machines (SVMs). In fact, it is as easy to interpret as conventional logistic regression, which is essential in the 
medical field. Another advantage of LASSO is its ability to select variables and identify discriminant  features44. 
Here, the models constructed were validated by cross-validation and testing using an independent set that was not 
involved in the model-building process. To date, few studies carry out this statistical treatment. This is of course 
computationally expensive, but worth it as the bias introduced by improper performance estimation can be large. 
In addition, this is the first study about exhaled breath analysis using GC/MS focused in asthma disease where 
the statistical significance of each model was assessed by permutation test (p-value was computed)29,33. Never-
theless, model validation in another set of subjects outside the NELA cohort would be of interest in the future.

This study has shown that discrimination between asthmatics with other coexisting atopic diseases and 
non-asthmatics (with or without atopic diseases) using exhaled breath analysis is feasible when metabolomics 
best practices are implemented. All constructed models that included subjects with asthma were significant 
(p-value < 0.05 in permutation tests). In addition, overfitting of the models was low, since the performance was 
similar for both cross-validation and testing using the validation set. This ensures good generalization perfor-
mance of the model to new unknown samples. Furthermore, although the accuracy of the models which also 
involved other variables related to atopic parental history and white blood cell counts (WBCs) were higher than 
the models that included only VOC variables, the same features were selected. In fact, features from acetone, 
tetrahydroisoquinoline derivative and 2-ethyl-1-hexanol were selected as discriminants of asthma with other 
coexisting atopic diseases. Accordingly, process reliability modeling confirmed that VOC analysis together with 
atopic parental history is sensitive for discriminating asthma with other coexisting atopic diseases.

Acetone is a secondary product of lipid peroxidation of polyunsaturated fatty acids (PUFAs)45,46, and a posi-
tive association between asthma and acetone levels in exhaled breath has been previously  reported47. 2-ethyl-
1-hexanol is an indoor contaminant, because it is the main metabolite of di(2-ehylhexyl)phthalate, which is 
a frequent plasticizer of polyvinylchloride (PVC)48–50. Moreover, levels of this compound rise with increased 
relative humidity rising in  homes51. However, the intensity of 2-ethyl-1-hexanol in the Tedlar bags was found 
to be negligible compared to the exhaled breath samples (Supplementary Fig. S12). Furthermore, besides being 
an indoor contaminant, it is also well documented that 2-ethyl-1-hexanol is an endocrine-disrupting chemical 
(EDC)52–54. Evidence supports that EDCs may be associated with increased oxidative stress and modulate the 
immunological  response55. Previous studies indicate that exposure to 2-ethyl-1-hexanol increases CD4 + T cell 
activation and asthma  prevalence52,56. Moreover, a significant increase in 2-ethyl-1-hexanol has been observed 
from lung cancer in exhaled  breath57, as well as, in cancer cell lines of different histological  origins58. In addi-
tion, ethyl-1-hexanol is considered an exogenous substance that induces the proliferation of peroxisomes in the 
 liver59. On the other hand, the tetrahydroisoquinoline derivative containing 5-phenyl-2-furan exhibits consider-
able inhibitory activity of PD4 phosphodiesterases, increasing the intracellular concentration of the secondary 
signal messenger cyclic adenosine monophosphate (cAMP)60. These compounds have been extensively stud-
ied as anti-inflammatory  drugs60. The tetrahydroisoquinoline skeleton is commonly found in pharmaceutical 
drugs, notably quaternary ammonium muscle relaxants. Tetrahydroisoquinoline derivatives may be formed in 
the body as metabolites of some drugs; they are usually located in the cell membrane, and their neurotoxicity, 
among other aspects, depends on their propensity to form free  radicals61. Endogenous production of neurotoxic 
tetrahydroisoquinoline derivatives such as norsalsolinol continues to be investigated as possible causes for some 
conditions, such as Parkinson’s  disease62. Nevertheless, no significant relationship was observed between drugs 
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reported by the women included in our study and levels of the tetrahydroisoquinoline derivative (Supplementary 
Figs. S7–S10). On the other hand, although previous studies show that several compounds such as hydroqui-
nones can be Tenax degradation  products63, the intensity observed of the tetrahydroisoquinoline derivative in 
the reconditioned Tenax tubes was marginal compared to exhaled breath samples (Supplementary Fig. S12).

Most volatilome studies focus exclusively on the comparison of those with asthma and healthy controls. 
However, it is also important to compare the exhaled breath of patients with asthma and those with similar 
 symptoms33. Moreover, since the most asthmatics have other coexisting  diseases6,23, it is crucial to take them into 
account for the correct study of this disease. So, in this study, exhaled breath profiles of A-AD and NA-AD were 
compared, successfully discriminating between the two categories (four significant models were generated). In 
this regard, Dragonieri et al.64 distinguished between asthma patients with allergic rhinitis and patients without 
asthma but with allergic rhinitis. However, they could not determine the identity of discriminant VOCs, and only 
a “breathprint” was obtained because e-NOSE instead of technologies based on mass spectrometry was used. 
In our study, VOCs with features selected as discriminants of asthma disease among patients with other atopic 
disorders were carbon disulfide, tetrahydroisoquinoline derivative, 2-ethyl-1-hexanol and decane in model III.A, 
model III.B, model III.C and model III.D. Carbon disulfide is an environmental pollutant classified as neurotoxic 
that has been previously selected as a discriminant for  asthma65. On the other hand, the endogenous origin of 
alkanes in exhaled breath is under debate, as they can also derive from exogenous  sources66. Regardless, decane 
has been highlighted as a discriminant of allergic asthma by previous  studies67,68. Traditionally, alkanes have 
been identified as a possible biomarker for asthma  diagnosis69 because some of them are produced during lipid 
 peroxidation24,70,71 (Fig. 1).

In this study, in addition to the main VOC variables, other variables in addition to VOC variables were 
included in the model-building process, such as atopic parental history or WBCs, with successful outcomes. This 
is in line with the results of previous studies which have also shown that analysis of VOCs in exhaled breath can 
be compatible with established  strategies72–74. In this regard, a radical change of concept in asthma diagnosis is 
urgently being demanded by physicians and scientists. Hence, the diagnostic protocol must be based on a com-
bination of techniques that are preferably noninvasive and do not rely on a single method.

Study limitations. The study has several limitations. It was not possible to distinguish between asthma 
phenotypes. All but one of the asthmatics included in the study were diagnosed with other atopic diseases. 
Therefore, it was not possible to differentiate between asthmatics with coexisting other atopic diseases and asth-
matics without other atopic diseases. Furthermore, other pharmacological treatments not included in the ques-
tionnaires may have a confounding effect that could affect the exhaled breath samples.

Conclusion
The results of the present study mainly show that the distinction between asthmatics with other coexisting atopic 
diseases and non-asthmatics (with or without atopic diseases) using VOC analysis in exhaled breath is feasible 
when metabolomics best practices are performed (e.g., a large cohort of subjects were recruited, environmental 
influence was assessed, a reproducible workflow was used by data preprocessing step, a robust data analysis was 
carried out for models construction, the model performance was assessed by two approaches (fivefold cross-
validation and testing in the validation set), and significance of models was evaluated). In addition, the output 
of the modeling process confirms that VOC analysis together with the subject’s parental history can be a good 
strategy for asthma with other coexisting atopic diseases screening. Moreover, the findings of this study confirmed 
that VOC analysis (either by itself or together with other established techniques) is helpful to distinguish asthma 
among patients with other atopic diseases.

Methods
Analysis of the data collected in the European Health Survey in Spain of 2014 (EHSS‑2014) 
and in the Spanish National Health Survey of 2017 (ENSE‑2017). The information compiled in 
both the European Health Survey in Spain 2014 (EHSS-2014) and the Spanish National Health Survey 2017 
(ENSE-2017), elaborated by the National Institute of Statistics (INE) in Spain was analysed using R (version 
3.6.1). Specifically, a multiple correspondence analysis (MCA) was performed using package FactoMineR75. 
In addition, chi-square test or Fisher’s exact test was carried out to check if there were significant differences 
(p-value < 0.05) in variables between asthmatics and non-asthmatics76. Firstly, the analysis was conducted on 
data from all subjects and, secondly, only on data from women of childbearing age (18- to 45-year-old women).

Study design and participants. The data used comes from subjects of the Nutrition in Early Life and 
Asthma (NELA) study (www. nela. imib. es), a prospective population-based birth cohort set up in Murcia 
(Spain)34,35,40. The study protocol was reviewed and approved by the Ethics Committee of the Virgen de la Arrix-
aca Clinical University Hospital (HCUVA) in accordance with the guidelines of The Declaration of Helsinki. 
Written informed consent was obtained from participants at recruitment.

Recruitment of pregnant women was carried out during 36 months (March 2015–April 2018) at the time of 
ultrasound control at 20 weeks of gestation at the Maternal–Fetal Unit at HCUVA. The enrolled subjects had 
several follow-up points: follow-up visit 1 (at 20–24 weeks of pregnancy), follow-up visit 2 (at 32 weeks of preg-
nancy), follow-up visit 3 (at delivery), follow-up visit 4 (3 months after childbirth) (Supplementary Fig. S13). 
The inclusion criteria included: usual residence in Health Area I and certain districts of Health Areas VI and 
VII of the Region of Murcia; planning to live in the area of study for at least 2 years; intention to give birth at the 
reference hospital; Spanish Caucasian origin; 18–45 years of age; singleton pregnancy; nonassisted conception; 
and normal echography at 20 weeks of gestation (no major malformations). The exclusion criteria included: 

http://www.nela.imib.es


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13823  | https://doi.org/10.1038/s41598-021-92933-2

www.nature.com/scientificreports/

existing chronic disease; pregnancy complications (except gestational diabetes and hypertensive disorders); and 
not intending to deliver in the reference hospital.

Among the 1350 women invited to participate, 738 were ultimately enrolled in the NELA study. Exhaled 
breath sampling was conducted at follow-up visit 4 (3 months after childbirth) between May 2017 and October 
2018. During that period, it was collected exhaled breath from 337 women who were included in the present 
study (Supplementary Fig. S13).

Information on asthma and other atopic disorders. Information for women of reproductive age with 
a medical history of asthma and other atopic manifestations was collected through a structured questionnaire 
administered in person by trained interviewers at 20–24 weeks of gestation (follow-up visit 1). Women who 
reported asthma were defined as having a positive response to the question ‘Have you ever been diagnosed with 
asthma?’. Women who reported other atopic disorders were defined as having a positive response to the ques-
tion “Have you ever been diagnosed with allergic rhinitis, atopic dermatitis, allergic conjunctivitis, food allergy 
and drug allergy?”. Thus, the women were divided into four categories: asthmatics with other coexisting atopic 
diseases (A-AD), non-asthmatics with other atopic diseases (NA-AD), non-asthmatics without atopic diseases 
(NA-NAD), and non-asthmatics (NA) (this category includes both NA-AD and NA-NAD) (Fig. 3). Information 
on parental history of asthma (yes/no), allergic rhinitis (yes/no) and atopic dermatitis (yes/no) was also collected 
by questionnaire.

Other variables. Using questionnaires administered in person during pregnancy, we obtained information 
through about the following: age; social class (defined as occupation during pregnancy based on the highest 
social class by using a widely used Spanish adaptation of the international ISCO88 coding system: I–II, manag-
ers/technicians; III, skilled; IV–V, semiskilled/unskilled; and unemployed)77; educational level (incomplete sec-
ondary or less, complete secondary, and university); smoking during pregnancy (yes/no); antibiotics consump-
tion (yes/no); paracetamol consumption (yes, no), inhaled corticosteroids consumption (yes/no); and injectable 
corticosteroids consumption (yes/no). Prepregnancy body mass index (BMI) based on height and prepregnancy 
self-reported weight (kg/m22) were calculated. White blood cell counts (WBCs) in blood samples of the pregnant 
women were determined using a Sysmex® XN9000 (Sysmex Corporation, Kobe, Japan) hematology analyzer that 
combines light scatter and optical detection with electrical impedance. In addition, information about smok-
ing habits (smoker (yes/no)) at the sampling of exhaled breath (follow-up visit 4) was obtained by question-
naires administered in person three months post gestation. The season at the sampling of exhaled breath (winter, 
December-February; spring, March–May; summer, June–August; and autumn, September–November) was also 
considered.

Breath sampling. Breath sampling was performed at 3 months after childbirth (follow-up visit 4) following 
the protocol described by Sola Martínez et al.40. Briefly, exhaled breath was collected in 1 L Tedlar gas sampling 
bags. Specifically, mixed breath sample (alveolar and dead space) were collected. Then, the exhaled breath con-
tained in the gas sampling bags was immediately transferred to to thermal desorption tubes (Tenax TA, Markes 
International) to avoid the diffusion through the bag wall. A room air content sample was also collected directly 
through Tenax tube for each exhaled breath sample using an Easy-VOC syringe (Markes International) to con-
trol for environmental conditions at sampling. Almost all samples were analysed on the same day of collection, 
being a maximum storage period of less than one week. The Tenax tubes were stored at 4 °C for storage periods 
longer than one day. Tenax tubes were heated to 335ºC for 25 min for reconditioning after each use. The Tedlar 
bags were cleaned with 10 nitrogen flushes (99.9% nitrogen purity) before use. Thus, the levels of background 
artefacts (N,N-dimethylacetamide and phenol) in the gas sampling bags were strongly reduced (Supplementary 
Fig. S12).

Exhaled breath analysis and data preprocessing. Exhaled breath analysis and data preprocessing 
were performed using a protocol previously  detailed40. The breath samples were analyzed using a thermal des-
orption system coupled with gas chromatography-single quadrupole mass spectrometry (TD-GC/q-MS). In 
GC/MS analysis, hundreds of features (ion peaks with a retention time and a characteristic m/z signal) were 
obtained from the fragmentation of compounds of the exhaled breath in the mass  spectra78. Then, the raw data 
were converted to mzXML. format by MsConvert from Proteowizard79,80. Later, an open source workflow that 
used the functions of three packages (xcms81, cliqueMS82 and eRah78)written in the R language was conducted 
for data preprocessing. This workflow enables integration between the two main approaches for data preprocess-
ing from GC/MS analysis (feature detection and compound detection). Thus, a matrix of relative intensities of 
features from breath samples was obtained. In addition, it was able to determine which detected feature belongs 
to each chemical compound. Furthermore, compound identification was carried out by matching with the NIST 
(National Institute of Standard and Technology) spectral library and by calculating two factors (match factor and 
retention index error) using the eRah78 package. For retention index error computation, retention times of two 
commercial standards (C7-C30 saturated alkane standard and VOC calibration standard, Sigma-Aldrich) and 
retention indexes of the compounds recorded in the NIST library were used.

Data analysis. Subject characteristics. Associations between atopic conditions. The study subjects (n = 336) 
were randomly divided into two sets according to the sampling date: Group 1 (n = 211) and Group 2 (n = 125). 
Exhaled breath samples collected between May 2017 and February 2018 constituted Group 1, and exhaled breath 
samples collected between March 2018 and October 2018 constituted Group 2.
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The characteristics of the study population were analyzed by R version 3.6.1 to identify differences between 
asthmatic and non-asthmatic cases and associations with other atopic conditions. Shapiro–Wilk and Lilliefors 
tests (nortest83 package) were employed to assess a normal distribution of the data. According to the data dis-
tribution, parametric tests (Student’s t-test or ANOVA test) or nonparametric tests (Mann–Whitney U test or 
Kruskal–Wallis test) were performed to confirm statistically significant differences between continuous variables 
(p-value < 0.05). Moreover, the chi-square test or Fisher’s exact test was applied to assess differences between 
categorical variables.

Predictive modeling for VOC discriminant identification in exhaled breath analysis. The workflow carried out 
for data modeling using R version 3.6.1 is shown in Fig. 6. Matrices with relative intensities of filtered features 
obtained after data preprocessing were used for data analysis. Moreover, features due to contaminants of gas 
sampling bags (N,N-dimethylacetamide and phenol), pump oils and siloxanes from the GC/MS columns were 
discarded. To reduce the influence of exogenous pollutants in ambient air, nonnormalized intensities of the 
human sample features and room air content features were compared. For this purpose, Wilcoxon signed-rank 
tests were carried out to compare feature intensities between environmental samples and human exhaled breath 
samples of the NELA cohort; features with significantly higher intensities in room air content samples were also 
removed. The features resulting from this screening process were named hyper-filtered features.

Then, an initial exploratory analysis on the hyper-filtered features was performed using PCA (FactoMineR75 
package) to detect trends, clusters and outliers. Afterward, ANOVA-simultaneous component analysis (ASCA) 
(MetStaT84 package) was conducted on hyper-filtered features to reduce possible variations induced by different 
experimental factors. This method allows separate contributions of different factors of variation in the original 
data matrix to obtain a residual matrix free of that influence (40).

In the modeling process, samples of Group 1 were used as a training set; samples of Group 2 were used as 
a validation set as shown in Fig. 6. Models were generated by least absolute shrinkage and selection operator 
(LASSO) and logistic regression (LR) using the R glmnet85 package. The process of model construction involves 
two steps: (1) parameter optimization and (2) model construction. LASSO + LR is a linear method based on a 
combination of a shrinkage method and a supervised learning technique. Although LASSO + LR is interpreted 
as a logistic regression that allows for analyzing the relationship between variables and calculating odds ratio 

Figure 6.  Data modeling workflow. The performance of the models was assessed by two approaches: (1) 
fivefold cross-validation and (2) testing in the validation set. CV cross-validation, ASCA ANOVA-simultaneous 
component analysis, LASSO least absolute shrinkage and selection operator, LR logistic regression, AUC  area 
under the receiver operating characteristic curve, AUC cv AUC obtained by fivefold cross-validation, AUC vs AUC 
obtained by testing in the validation set.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13823  | https://doi.org/10.1038/s41598-021-92933-2

www.nature.com/scientificreports/

values, the coefficient computation is different from that of conventional linear methods. Due to multicollin-
earity and high dimensionality issues, the coefficients of models obtained by conventional linear methods can 
reach extremely high values. LASSO incorporates a penalization in likelihood maximization through param-
eter λ during coefficient calculation. As many coefficients obtain a value of 0 after penalty, they are excluded. 
Therefore, avoiding or reducing overfitting is possible by variable  selection44,86. Parameter λ was optimized by 
fivefold cross-validation.

The model performance was estimated through two approaches. First, the constructed model was validated 
by fivefold cross-validation. Samples of Group 1 were randomly divided into 5 subgroups. Four of them were 
used for training and the model-building process. Testing was conducted using the remaining subgroup, and 
ROC curves using the pROC87 package were determined to obtain AUCs. Cut-off values were computed auto-
matically on the basis of the case/control balance in the training set of each model. This process was repeated 
5 times for each model such that all subgroups were used as a testing set. The cross-validated AUC value, AUC 
CV, was calculated as the average of the AUC values of the 5 submodels. Moreover, permutation tests with 1000 
permutations were carried out to obtain the statistical significance of the constructed models. It is important to 
note that in permutation tests, a p-value is obtained by comparing the performances of constructed models and 
predictive models with randomly permuted class labels. The second strategy involves performance evaluation 
of the constructed model on Group 2 exhaled samples (validation set) and obtaining the AUCvs by testing with 
the validation set.

Sixteen predictive models using the residual matrices were constructed, and their characteristics are shown 
in Fig. 5 (top panel). Apart from VOC variables, variables such as atopic parental history, white blood cell count 
or other atopic disorders were included in the corresponding models.
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