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ABSTRACT 20 

Head-space (HS) gas chromatography (GC) coupled to mass spectrometry (MS) is 21 

proposed for the assessment of the contamination of mayonnaise as an alternative to plate 22 

counting, which is the technique commonly used for evaluating microbial contamination. 23 

More specifically, this method was applied in the detection of Candida metapsilosis and 24 

Zygosaccharomyces bailii, both of great importance in term of food spoilage since they 25 

are resistant to many of the common methods of food preservation. Different 26 

chemometric models were investigated using the data obtained by GC-MS (m/z profile, 27 

area of the chromatographic peaks and entire chromatographic profile), in order to obtain 28 

the highest classification success. The best results were obtained using the 29 

chromatographic profile (success rate of 92%). Contaminated samples could also be 30 

classified according to the concentration of yeast, obtaining a success rate of 87.5%. 31 

Finally, a chemometric model was constructed in an attempt to differentiate between 32 

strains. 33 

 34 
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1. Introduction  38 

Microbial contamination, a major problem in the food industry because of associated 39 

economic losses, may occur due to the appearance of bacteria, filamentous fungi or yeasts 40 

in food. However, because of the great damage they originate, most studies have 41 

concentrated on bacteria or filamentous fungi. Although yeast plays a secondary role in 42 

food contamination, the environmental conditions of food preservation, which tend to 43 

inhibit the growth of bacteria, have favoured the appearance of contaminating yeasts, 44 

which are responsible for alterations in the organoleptic properties of foods and, 45 

consequently, for food quality.  46 

Among yeasts, the genus Zygosaccharomyces is of great importance in food deterioration. 47 

Its biochemical characteristics enable it to tolerate high concentrations of sugar, ethanol 48 

or acetic acid, and it is resistant to most common preservatives used in food, such as 49 

sorbic acid, benzoic acid or SO2 (Kurtzman, Rogers, & Hesseltine, 1971); it is extremely 50 

osmotolerant and is capable of vigorously fermenting hexagonal sugars, with a capacity 51 

to grow in media with a pH of around 2.2. Z. bailii is one of the most problematic species 52 

due to its exceptional tolerance to stressful conditions; for example, it can tolerate up to 53 

70 °C in a high glucose environment. Z. bailii can therefore contaminate a wide variety 54 

of acidic or high-sugar foods, which would normally be considered stable during storage, 55 

such as mayonnaise. Besides its effect on the quality of the product, the alterations of the 56 

organoleptic properties of foods caused by this yeast, make them more susceptible to 57 

colonization by other microorganisms (Vermeulen, 2008).  58 

For its part, Candida parapsilosis is a pathogenic yeast that has been taxonomically 59 

classified into 3 groups: C. parasilopsis, C. orthopsilosis and C. metapsilosis (Lo et al., 60 

2017; van Asbeck et al., 2008). This yeast is part of the normal flora of the skin, hands 61 

and mucous membranes and can contaminate food in situation of poor hygiene or 62 

manufacturing practices. C. parasilopsis has been detected and isolated in fruits (Lo et 63 

al., 2017), yogurt at concentrations between 10 colony forming units (CFU)/g and 106 64 

CFU/g (Rohm, Lechner, & Lehner, 1990), and sauces (Robl et al., 2014), being also very 65 

resistant to food preservation treatments. The determination of Z. bailii and C. 66 

parasilopsis is therefore a factor of great importance in the shelf life of certain foods such 67 

as sauces. 68 
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The most commonly used technique to detect the presence of yeasts is microbial plate 69 

counting. However, this methodology requires long periods of time compared to other 70 

analytical techniques and so its routine application is not practical, which is one of the 71 

reasons why, in the last years, have seen growing interest in the development and 72 

application of alternative analytical methods to solve this agrifood problem. 73 

To date, several alternatives have been proposed, such as methods based on direct 74 

amplification of the yeast DNA of a sample through the polymerase chain reaction (PCR) 75 

(Andorrà, Berradre, Mas, Esteve-Zarzoso, & Guillamón, 2012), or molecular methods 76 

based on the analysis of genes encoding ribosomal RNA (Garner, Starr, McDonough, & 77 

Altier, 2010). However, these methods are tedious, slow or expensive, and do not 78 

distinguish between viable and dead cells (Elizaquível et al., 2013), which complicates 79 

their implementation in the food industry. Enzymatic immunoassays (ELISA, enzyme 80 

linked immunosorbent assay) have also been proposed, although they have lack of 81 

sensitivity when matrices are complex, cross reactions between related antigens, and their 82 

automation would also involve a high cost (García et al., 2004). More recent studies 83 

describe the use of mass spectrometry (MS) for detecting and identifying yeasts, more 84 

specifically, the use of matrix-assisted laser desorption/ionization (MALDI) coupled to a 85 

time-of-flight (TOF) analyser (Bizzinia & Greubab, 2010; Quiles-Melero, García-86 

Rodríguez, Gómez-López & Mingorance, 2011; Taverna et al., 2019). This technique 87 

allows the identification of microorganisms through an analysis of proteins, associating a 88 

specific mass spectrum to a given species. However, it presents drawbacks when used in 89 

direct samples due to its low sensitivity, and the need for a considerable amount of protein 90 

in order to obtain reliable profiles.  91 

Wang et al. (2015) also proposed a metal oxide sensor to detect two osmotolerant yeasts, 92 

Z. rouxii and C. tropicalis, in a high-sugar medium. This sensor array comprises 10 metal 93 

oxide semiconductor chemical that allow to detect mainly aromatic compounds, nitrogen 94 

oxide, ammonia, hydrogen, alkanes, sulfur compounds, many terpenes and sulphur and 95 

alcohols. They demonstrated that sensors sensitive to methane, alcohol, and aromatic 96 

compounds might the most important for detection of spoilage caused by Z. rouxii and C. 97 

tropicalis. 98 

In addition, the authors studied the evolution of the volatile organic compounds (VOCs) 99 

fingerprint during the growth of these two yeasts using solid-phase microextraction 100 
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(SPME) and gas chromatography (GC) coupled to MS. The VOCs produced were mainly 101 

composed of alcohols, ketones, aldehydes, acids, and esters. Although the SPME-GC-MS 102 

method was not proposed for classifying real contaminated food samples, since the above 103 

experiments were only carried out in culture media, it seems that studying the evolution 104 

of VOCs by means of GC-MS could be a good alternative for the detection and 105 

quantification of yeasts in food.  106 

In fact, it has also been demonstrated that different yeast strains (Saccharomyces 107 

cerevisiae and Lachancea thermotolerans), used during the fermentation of sun-dried 108 

must, exercise a great influence on volatile profile of wine (Morales, Fierro-Risco, Ríos-109 

Reina, Ubeda & Paneque, 2019). In this case, volatile composition was determined by 110 

dual sequential stir bar sorptive extraction, followed by GC–MS analysis.  111 

The chromatogram obtained from the analysis of microbial volatile compounds can 112 

provide information on microbial activity, abundance, community structure, community 113 

level and physiological activity (Araki et al., 2012). However, the difficulty of these 114 

experiments lies in the large number of metabolites produced, and the diverse nature of 115 

their chemical and physical properties, which makes the simultaneous quantification of 116 

all metabolites unattainable with current instrumental capacities (García et al., 2004). On 117 

the other hand, the limited distribution of molecular weight does not allow for a complete 118 

and detailed analysis using only MS, so that it generally needs to be coupled to a 119 

separation technique such as GC (Viswanadhan, Rajesh, & Balaji, 2011). This coupling 120 

generates a large volume of data, making their processing more complicated.  121 

In this work, head-space (HS) GC-MS is presented as an alternative method for the 122 

detection and quantification of two problematic yeasts (Z. bailii and C. parasilopsis) in 123 

sauces, avoiding lengthy times and costs involved in the traditional plate counting 124 

technique. Different chemometric models are investigated using all the data obtained by 125 

GC-MS (m/z profile, peak area of the chromatogram, the entire chromatographic profile 126 

or TIC and combination of m/z values and TIC), in order to obtain the highest 127 

classification success. The results are compared with the chemometric models 128 

constructed using other characteristics of the contaminated sauce such as pH or colour. 129 

2. Materials and methods   130 

2.1. Reagents 131 
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All the reagents used in this work were of analytical grade and the solvents were of HPLC 132 

grade. Hexanal, acetaldehyde, acetone, dimethylsulfide, 2,3-butanodione, ethyl acetate, 133 

pentanal, chlorobenzene and methanol (MeOH) were supplied by Sigma Aldrich (St. 134 

Louis, MO, USA) and dimethyl sulfoxide by ApplicChem GmbH (Darmstadt, Germany). 135 

Tryptic soy broth (TSB), sabouraud dextrose agar with chloramphenicol and peptone 136 

water, all from Pronadisa Conda (Madrid, Spain), were used for the preparation of culture 137 

media. In addition, chlorobenzene was used as internal standard (IS) in the GC-MS 138 

analyses. This was prepared by diluting 2 μL of chlorobenzene in 25 mL of dimethyl 139 

sulfoxide to obtain a concentration of 80 μL/L. The solution was stored at -4°C until use. 140 

Standard solutions of 1000 mg/L of hexanal, acetaldehyde, acetone, dimethylsulfide, 2,3-141 

butanodione, ethyl acetate and pentanal were prepared in MeOH. 142 

2.2. Instrumentation and software 143 

GC-MS analyses were carried out on a 7890A GC-System gas chromatograph from 144 

Agilent Technologies (California, USA), equipped with a temperature-controlled 145 

vaporizer (PTV) model CIS4-C506 and an automatic injector (Headspace model 146 

Multipurpose Sampler MPS), both from Gerstel (Mülheim an der Ruhr, Germany). The 147 

GC system was coupled to a mass spectrometer (5975C inert MSD-triple axis detector 148 

from Agilent Technologies). The chromatographic separation was carried out on a DB-149 

624 column with an internal diameter of 0.25 mm, a length of 60 m and a film thickness 150 

of 1.40 μm, consisted of 94% dimethylpolysiloxane and 6% by cyanopropylphenyl, also 151 

from Agilent Technologies. The injection was made in split mode with a ratio of 1:10. 152 

The GC temperature programme was: start temperature 40 °C, hold for 5 min, increase to 153 

150 °C at 10 °C/min and maintain for 2 min; next, the temperature of 220 °C was reached 154 

at 25 °C/min and held for 2 min. The mass spectrometer was operated using electron-155 

impact (EI) mode (70 V) and the temperature of the ion source was 230°C. Analyses were 156 

carried out using scan mode from 29 to 150.  157 

A SensIONTM pHmeter (Hach, Colorado, USA) was used for pH measurements. Colour 158 

determination was carried out using a 962 colorimeter from X-Rite (Michigan, USA) and 159 

a Nicolet Evolution 300 spectrophotometer of Thermo Electron Corporation 160 

(Massachusetts, USA) was used to prepare the inoculum of C. metapsilosis and Z. bailli. 161 
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Data were processed using Microsoft Office Excel (Microsoft, Washington, USA) and 162 

Simca-P (Umetrics, Malmö, Sweden).  163 

2.3. Strains and culture conditions  164 

Two different species of yeast were used: Z. bailii and C. metapsilosis. The first was 165 

obtained from the Spanish Collection of Valencia Type Crops (CBS 680) which was 166 

isolated by Lindner and Guilliermond in 1912. C. metapsilosis was isolated from a sauce 167 

by Productos del Sur S.A., and its identity was verified by comparing the DNA 168 

sequencing of the isolated strain with that available in the Spanish Collection of Valencia 169 

Type Crops. 170 

The yeast inoculum was prepared by transferring a colony obtained on Sabouraud 171 

dextrose with chloramphenicol agar plate to a soybean digested medium (TSB), which 172 

was incubated for 24 hours at 25°C. Fresh cultures for the experiments were performed 173 

with a sterile seeding loop by incubating a colony of a pure culture for 24 hours in TSB 174 

at 25°C. The inoculum was standardized by dilution in TSB to an optical density of 0.9 175 

at 600 nm for C. metapsilosis and 0.5 for Z. bailli, which is equivalent to a yeast 176 

concentration of 107 CFU / mL and 105 CFU / mL, respectively. Yeast populations were 177 

estimated by diffusing suitably diluted aliquots onto plates with agar and 178 

chloramphenicol, followed by incubation at 25°C for 48 hours. 179 

2.4. Elaboration and inoculation of mayonnaise 180 

The experiments were carried out using light mayonnaise, i.e. mayonnaise but with lower 181 

fat content, and it was prepared using a cooking robot under sterile conditions. The 182 

formulation of each mayonnaise consisted of 55.05% soybean oil, 29.00% water, 8.00% 183 

yogurt, 3.00% vinegar, 1.80% salt, 1.70% sugar, 0.50% caseinate, 0.80% xanthan gum 184 

and 0.15% guar gum. Two different food additives were tested to increase the variability 185 

of the samples and the profile of volatiles generated. Specifically, GNS-plus, a synergistic 186 

combination of vegetable extracts of citrus fruits (orange, lemon and grapefruit) and dill, 187 

and sorbate-benzoate, a mixture (1:1) of potassium sorbate and sodium benzoate. In this 188 

way, 21.60 kg of mayonnaise was prepared, which was divided into two batches (10.80 189 

kg each). A batch contained 0.1% of sorbate-benzoate and the other 0.1% of GNS 190 

additive. 191 
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Aliquots of 50 g of mayonnaise were placed in sterile polyethylene bags. One third of the 192 

bags was inoculated with Z. bailii and another third with C. metapsilosis at concentration 193 

of 103 CFU/mL. The bags were heat sealed and incubated at 5°C, 25°C and 37°C until 194 

sampling. One gram of each bag was sampled weekly for seven weeks, obtaining a sample 195 

for each temperature, each strain, and each additive. The remaining bags were not 196 

inoculated in order to monitor the evolution of the mayonnaise with no yeast 197 

contamination and were incubated and sampled in the same conditions. 198 

Colony forming units (CFU) were determined by plate count, following ISO 6887-1. 199 

Mayonnaise samples were diluted in peptone water, and the appropriate dilutions were 200 

seeded in sterile plates. Then, sabouraud dextrose agar with chloramphenicol was added 201 

and the plates were incubated at 25 °C for 48 hours before counting. 202 

2.5. Sample analysis by GC-MS 203 

For HS-GC-MS analyses, 1 g of mayonnaise was weighed into a 10 mL vial and 50 μL 204 

of the chlorobenzene internal standard solution at 80 µL/L was added. 205 

Samples were incubated at 80°C for 20 minutes and injected into the GC. In the PTV, the 206 

sample was cooled to 0°C, and heated for 30 seconds at 12°C/s until reaching 180°C, 207 

which was maintained for five minutes.  208 

To quantify the hexanal content a calibration curve was established using standard 209 

solutions in dimethyl sulfoxide at the following concentrations: 2, 4, 8, 12 and 16 µg/L, 210 

considering the ratio peak area of hexanal/peak area of chlorobenzene (IS) as the 211 

analytical signal. 212 

2.6. Measurement of pH and colour  213 

Each sample was measured for pH and colour. For the colour determination, the 214 

parameters L* (lightness), a* (balance between green and red) and b* (balance between 215 

yellow and blue) were determined with an X-Rite 962 spectrophotometer using the 216 

D65/10° illumination/observation method. Although the three parameters (L*, a* and b*) 217 

were determined, only the L* parameter was considered for the construction of the 218 

chemometric models because the other two parameters remained constant throughout the 219 

experiment. 220 
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2.6. Data treatment 221 

The chemometric analysis consisted of a qualitative analysis of the principal components 222 

(PCA) with a confidence interval of 95%, followed by a discriminant analysis of 223 

orthogonal partial least squares (OPLS-DA). The OPLS-DA filtered the variation not 224 

directly related to the response and maximized the variance among the categories by 225 

minimizing it within them. In all the cases, data were randomly divided into two different 226 

sets: a classification set (80%) for construction of the models and a validation set (20%). 227 

In addition, six different scaling (unit variance (UV), unit variance none (UVN), pareto 228 

(Par), pareto none (ParN), centering (Crt) and freeze), as well as the logarithmic 229 

transformation of the data, were tested. With UV scaling, the variable j is centered and 230 

scaled to "Unit Variance", i.e. the base weight is computed as 1/sdj, where sdj is the 231 

standard deviation of variable j computed around the mean. The Par scaling is in between 232 

no scaling and UV scaling. The variable j is centered and scaled to Pareto Variance, i.e. 233 

the base weight is computed as 1/sqrt(sdj), where sdj is the standard deviation of variable 234 

j computed around the mean. UVN and ParN scaling are the same as UV and Par, 235 

respectively, but the variable is not centered, i.e. the standard deviation is computed 236 

around 0. With Crt, the variable is centered but not scaled and with freeze, the scaling 237 

weight of the variable is frozen and will not be re-computed when observations in the 238 

workset change or the variable metric is modified after the freezing. 239 

Variable importance in projection (VIP) graphics were also obtained, to check the 240 

importance of each variable on the construction of the final model.  241 

3. Results and discussion 242 

3.1. Yeast detection in mayonnaise samples 243 

Initially, all mayonnaises were analyzed using plate counting to assess the microbial 244 

contamination level. Based on these results, samples were divided into two groups: 245 

contaminated (120 samples) and non-contaminated (130 samples) and were analysed by 246 

HS-GC-MS. The pH and colour were also measured. The evolution of log10, pH and 247 

colour is shown in Supplemental Figure S1 and as can be seen, no significant differences 248 

were obtained between incubation temperatures and sampling time. 249 
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Then, chemometric models were constructed using the available data in order to obtain a 250 

classification model that allowed the differentiation of contaminated and non-251 

contaminated samples, as an alternative to plate counting. 252 

Four different chemometric models were constructed using: a) the variables of pH, colour 253 

and hexanal content obtained by GC-MS analysis; b) the m/z profile, simulating that the 254 

samples have not been previously separated in the GC; c) area of all the peaks present in 255 

the total ion chromatogram (TIC) obtained by GC-MS; and d) the entire chromatographic 256 

profile. 257 

3.1.1. Sample classification using pH, colour and hexanal content 258 

The variables of pH, colour and hexanal content (by-product of fat oxidation) have been 259 

widely related to microbial food contamination (Huis in't Veld, 1996; Shahidi & Pegg, 260 

2007; Collins & Buick, 1989). For this reason, in a first attempt to obtain a fast and simple 261 

analytical method, as an alternative to plate counting, a chemometric model was obtained 262 

using these three parameters. 263 

Initially, a PCA model was carried out using the UV scaling. However, separation 264 

between the classes was not good and so an OPLS-DA model was therefore implemented. 265 

The best validation results were obtained using raw data and UV scaling (Supplemental 266 

Table S1). However, the separation between contaminated and non-contaminated 267 

samples was not effective using these three parameters (Figure 1), which produced a 268 

success rate of 60.0%. While 76.9% of non-contaminated samples were correctly 269 

classified, only 41.7% of contaminated samples were well identified (Supplemental Table 270 

S2).  271 

Alterations in pH, colour and hexanal content seemed to be mainly related to the additive 272 

used, in this case sorbate-benzoate or GNS, since both group of samples appear well 273 

separated in the OPLS-DA chart.  274 

3.1.2. Sample classification using m/z profile 275 

The monitored m/z ranged from 29 to 150 and the m/z profile was obtained using GC 276 

software. Data were processed by summing each m/z throughout the entire analysis time, 277 

i.e. it simulates the sample not being previously separated in the chromatographic column. 278 
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Data differed considerably between samples and, in order to equalize the data matrices so 279 

that they were comparable, m/z were rounded to the nearest whole number, summing all 280 

the intensity values for the same whole number. 281 

As in the previous section, a PCA model did not provide good separation between groups. 282 

Therefore, an OPLS-DA was performed using the 80% of samples (Figure 2). In this case, 283 

different scaling data transformations were also tested, obtaining the best results with data 284 

transformed to the logarithm ParN scaling (Supplemental Table S3). This scaling reduces 285 

the impact of noise and artefacts on models (Wiklund et al., 2008), dividing each variable 286 

by the square root of its standard deviation. 287 

OPLS-DA was validated using the remaining 20% of samples and a success rate of 78.0% 288 

was obtained (84.6% of non-contaminated and 70.8% of contaminated samples were 289 

correctly classified, Supplemental Table S4).  290 

The contribution plots (Supplemental Figure S2) showed that m/z values of between 121 291 

and 150 contributed significantly to the correct classification of non-contaminated 292 

samples, while m/z values of between 29 and 74 were suitable for classifying 293 

contaminated samples. It could be associated to the decomposition of the mayonnaise 294 

components in volatile compounds of smaller size by the action of the yeasts, although it 295 

would be studied in more detail. 296 

3.1.3. Classification of samples using area of all the peaks present in the TIC obtained by 297 

HS-GC-MS 298 

As mentioned above, the limited distribution of molecular weight does not allow for a 299 

complete and detailed analysis using only MS, and so the chromatogram obtained by GC-300 

MS was studied.  301 

Initially, the peaks present in the TIC were integrated manually (Figure 3). These peaks 302 

were normalized with respect to the area of the IS. Of the 13 peaks integrated, seven of 303 

them could be identified as acetaldehyde, acetone, dimethyl sulphide, 2,3-butanodione, 304 

ethyl acetate, pentanal and hexanal, while the remaining 6 were processed as unknown 305 

compounds. The seven compound were identified using the GC-MS library and were 306 

confirmed by injecting fine sauce spiked with each compound at 1 µg/g.  307 
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OPLS-DA models were also constructed using different scaling and data transformation. 308 

In this case, the highest classification success was obtained using raw data without 309 

transformation and an UVN scaling (Supplemental Figure S3, Supplemental Table S5). 310 

However, the use of peak area was also insufficient for the totally successful classification 311 

of samples, since contaminated and non-contaminated samples appeared intermixed. The 312 

application of the OPLS-DA models to the validation set gave a classification success of 313 

76.0%, classifying correctly 88.4% of non-contaminated samples but only 62.5% of 314 

contaminated samples (Supplemental Table S6). Therefore, this method would result in 315 

a high number of false negatives. The peaks that contributed most to the classification 316 

corresponded to acetaldehyde, ethyl acetate, hexanal, 2,3-butanodione and one non-317 

identified compound (unknown compound 5) (Supplemental Figure S4). These 318 

compounds tended to show higher intensity in the contaminated samples, but due to the 319 

great variability between samples, a clear relationship could not be established 320 

(Supplemental Figure S5). 321 

3.1.4. Classification of samples using the total ion chromatogram 322 

The TIC is the sum of the intensities of all the mass spectral peaks belonging to the same 323 

scan, so it contains all the information concerning a sample and can be used as a 324 

fingerprint. OPLS-DA models were therefore constructed using TIC data. 325 

Baseline correction was not necessary, since the TICs were stable throughout the 326 

experiment. In this case, the best models were obtained using logarithmic transformation 327 

and the UV scaling (Figure 4, Supplemental Table S7), which provided a success rate of 328 

92.0%. The 92.3% of the non-contaminated samples and 91.7% of the contaminated 329 

samples were correctly classified (Table 1). 330 

3.1.5. Classification of samples by combining the m/z values with the chromatographic 331 

profile 332 

The best classification results were obtained using TIC (92.0 %) and m/z data (78.0%) 333 

separately. Then, new OPLS-DA models were obtained combining both data in order to 334 

enhance the classification success. The best results were also obtained using logarithmic 335 

transformation and UV scaling (Supplemental Table S8). However, the classification 336 

success was the same as when only the TIC data were used.  337 
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3.2. Classification of contaminated samples according to microbial concentration 338 

The chemometric models constructed using the TIC data obtained by HS-GC-MS 339 

demonstrated high success in classifying samples contaminated and non-contaminated by 340 

yeast. Therefore, the potential of TIC data to quantify the yeast level was investigated. 341 

First, contaminated samples were divided into seven groups with different concentration 342 

levels of yeast: group 1 (between 101 and 102 CFU/g), group 2 (between 102 and 103 343 

CFU/g), group 3 (between 103 and 104 CFU/g), group 4 (between 104 and 105 CFU/g), 344 

group 5 (between 105 and 106 CFU/g), group 6 (between 106 and 107 CFU/g) and group 345 

7 (between 107 and 108 CFU/g). OPLS-DA models were also constructed with 80% of 346 

samples (calibration set) using both the raw data matrix and the logarithmically 347 

transformed matrix, and different scaling. The optimal model was obtained using the raw 348 

matrix again adjusted to a UV scaling. However, this model was not sufficient for 349 

differentiating between the seven groups of samples and a success rate of 54.17% was 350 

obtained when it was applied to classify the validation set (20% of remaining samples).  351 

Therefore, other concentration ranges were selected, and the calibration set was divided 352 

into three balanced groups: group 1 comprised the concentration range from 101 to 103 353 

CFU/g (31 samples), group 2 from 103 to 105.5 CFU/g (32 samples) and group 3 from 354 

105.5 to 108 CFU/g (32 samples). In this case, good separation was achieved between 355 

groups (Figure 5) and the best model was also obtained applying a logarithmic 356 

transformation and UV scaling (Supplemental Table S9). The validated model had a 357 

classification success of 87.50%. 358 

3.3. Classification of contaminated samples according to yeast strain 359 

Given the success of HS-GC-MS to classify contaminated sauce samples according to the 360 

yeast concentration, the suitability of the method for differentiating between different 361 

types of yeast was studied.  362 

For that, contaminated samples were divided into two groups: samples contaminated with 363 

Z. bailii and samples contaminated with C. metapsilosis. Most of the contaminated 364 

samples belonged to the Z. bailii group, since this yeast grows faster than C. metapsilosis. 365 

So, in order to obtain balanced group a number of 31 samples was included in each group.  366 
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The best chemometric model was obtained with data transformed logarithmically and 367 

adjusted to a UV scaling. Both groups appeared completely separate (Supplemental 368 

Figure S6). However, when this model was applied to the validation sample set, only 369 

62.50% success was achieved. This model should be improved, e.g. by increasing the 370 

number of samples during the calibration, for it be used successfully. 371 

4. Conclusions  372 

HS-GC-MS analysis is proven to be a viable alternative to classical microbial counting 373 

methods for the identification and quantification of yeasts in sauces, reducing time and 374 

costs. 375 

The use of MS without previous separation in GC does not allow the optimal 376 

classification of samples, and it needs to be coupled to GC. Most authors opt to monitor 377 

some VOCs by GC-MS to detect samples contaminated by microorganisms. However, it 378 

was demonstrated that the use of the entire chromatographic profile (TIC), and therefore 379 

of the complete VOC profile, achieves better results when classifying sauces 380 

contaminated by yeasts, since a validation success of 92.0% was achieved. Other 381 

parameters such as pH and colour were not suitable for the correct classification of the 382 

samples.  383 

Moreover, the complete VOCs profile obtained by HS-GC-MS allowed the contaminated 384 

samples to be classified according to yeast concentration level, with a validation success 385 

rate of 87.50%. 386 

Chemometric modelling using these data allows different type of yeast to be 387 

differentiated, in the present case C. metapsilosis and Z. bailii. However, although two 388 

well-differentiated groups were obtained, when the model was applied to the validation 389 

set only 62.50% of samples were correctly classified.  390 
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Figures 461 

 462 

Figure 1. OPLS-DA model obtained using variables of pH, colour and hexanal content. 463 

The additive sorbate-benzoate and GNS are indicated with an “S” or “G” at the end of the 464 

sample code, respectively. 465 

466 
Figure 2. OPLS-DA model obtained with m/z profile data 467 
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 468 

Figure 3. Chromatogram of a sauce sample obtained by HS-GC-MS. 1: Unknown 1, 2: 469 

Acetaldehyde, 3: Acetone, 4: Dimethyl sulphide, 5: Unknown 2, 6: Unknown 3, 7: 2,3-470 

Butanodione, 8: Ethyl acetate, 9: Unknown 4, 10: Pentanal, 11: Hexanal, 12: Unknown 471 

5, 13: Unknown 6, 14: Chlorobenzene (IS). 472 

 473 

Figure 4. OPLS-DA model obtained using total ion chromatogram data 474 
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 475 

Figure 5. OPLS-DA model constructed using TIC data to classify contaminated samples 476 

into three groups of yeast concentrations. 477 

  478 
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Table 1. Validation matrix for non-contaminated/contaminated sauce samples of the 479 

OPLS-DA model built using the TIC 480 

PREDICTION / ACTUAL Contaminated samples Non-contaminated samples 

Contaminated samples 22 2 

Non-contaminated samples 2 24 

Total 24 26 

% Correct 91.7% 92.3% 

 481 

 482 


