
Summary. The tumor environment plays an integral part
in the biology of cancer, participating in tumor initiation,
progression, and response to therapy. Integrins, a family
of cell surface receptors, bridge the extracellular matrix
to the intracellular cytoskeleton. Since their first
characterization 25 years ago, a vast amount of work has
been performed to understand the essential role of
integrins in cell development, tissue organization, tumor
growth, vessel development and their signaling
mechanisms. Their potential as therapeutic targets in
various types of cancer is intensively studied. In this
review, we discuss the expression patterns and functional
role of integrin in primary brain tumors and brain
metastases, provide an overview of clinical data on
integrin inhibition and their potential application in
imaging and therapy of these tumors. 
Key words: Integrin, Extracellular matrix, Immuno-
histochemistry

Introduction

Many brain tumors are associated with considerable
morbidity and poor prognosis. They may originate from
neuronal or glial elements within the brain, or they may
represent the spread of distant cancers. 

Gliomas are the most frequently occurring primary
intraaxial brain tumors. The most common glioma type
is the glioblastoma WHO grade IV (GBM). The majority
of these tumors appear “de novo” after a short clinical
history. In contrast, approximately 10% of the tumors
manifest in younger patients as secondary glioblastomas,
progressing from diffuse astrocytoma (grade II and III)
precursor (Ohgaki and Kleihues, 2013). Morphologically
indistinguishable, GBM of different age groups and
tumor location comprise several different biologic
entities with defined driver mutations such as IDH,
H3F3A and TERT (Appin et al., 2015). Macroscopic
complete neurosurgical resection of these tumors is only
possible in some patients because of the highly
infiltrating growth pattern. In high-grade (ie. WHO
grade III and IV) lesions, surgical resection is followed
by postoperative therapeutic interventions, including
radiation therapy and alkylating chemotherapy, yet the
prognosis often remains poor (Stupp et al., 2009; Venur
et al., 2015).

Metastatic brain tumors are more common than
primary brain tumors. Approximately 20-40% of
patients with malignant neoplasms will develop brain
metastases (Mehta et al., 2005; Nayak et al., 2012). The
incidence of single vs multiple sites of central nervous
system (CNS) metastasis is similar (Tsao et al., 2012). A
formidable complication of brain metastases is the
spread of tumor cells along the cerebrospinal fluid
(neoplastic meningitis) and is seen in up to 15% of the
cases (Chamberlain, 2012). Common anatomic sites of
primary tumors are breast, lung cancer and skin
(melanomas). Together they account for up to 80% of all
CNS metastases (Nayak et al., 2012). The prognosis of
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brain metastases is usually very poor, with a median
survival of 4-6 months even after whole brain
radiotherapy (Sundstrom et al., 1998, Lagerwaard et al.,
1999) although in some cases there is the possibility of
long-term survival (Lutterbach et al., 2002). Prognostic
factors include tumor location, number of metastases,
response to steroid treatment (Lagerwaard et al., 1999)
and in breast cancer a positive HER2 status with
appropriate treatment (Bartsch et al., 2012).
Mechanism of tumor spread and the role of the
extracellular matrix

Among glial brain tumors, diffuse gliomas (ie.
astrocytoma, oligodendroglioma and glioblastoma) are
characterized by extensive diffuse tumor cell spread in
the CNS neuropil with only minimal destruction of the
preexisting neuronal structures (Scherer 1940). The
intrafascicular, perifascicular and interfibrillary growth
is predominantly observed along blood vessels and
prominently myelinated axons such as the corpus
callosum (Giese and Westphal, 1996). Consequently,
almost half of the tumours have spread to contralateral
hemispheres at the time of diagnosis (Matsukado et al.,
1961). Glial tumour spread involves several steps
including local degradation, migration into the newly
created space and re-adhesion to local matrix proteins.
Laminin and collagen, the classical components of the
extracellular matrix (ECM) and potent stimulators of
glioma growth (Giese et al., 1995), are usually not
observed directly adjacent to the glial tumor cells, except
in desmoplastic transformed tumor areas (Paulus and
Tonn, 1994). Instead, tenascin is upregulated at the
invasive edge of gliomas, surrounding single invasive
cells facilitating tumor migration (Zagzag et al., 1995).
To breach the integrity of the ECM, glial tumor cells
secrete matrix-degrading proteases, serine proteases and
matrix metalloproteinases, all of them upregulated in
tumours compared to normal brain (Nakagawa et al.,
1994; Allmendinger et al., 2012). Cell adhesion is then
mediated by ECM receptor families such as cadherins
that include NCAM and CD44, selectins and the
integrins (Denda and Reichardt, 2007). Because
migration of tumor cells along basal membrane
containing structures is most likely mediated by
specialized receptors, the integrin receptor family has
moved into the focus of researchers.

Brain metastasis includes several steps, including
detachment of tumor cells from primary site,
intravasation into vessels, extravasation, hiberniation in
vascular niches, proliferation and invasion to their target
(Winkler, 2015). In the last steps, the highly specialized
tumor brain microenvironment plays an important role.
Not only does the blood brain barrier (BBB) limit
penetration of active substances or immunomodulatory
cells, but also astrocytes, pericytes and microglia
contribute directly to tumor cell colonization in the brain
(Fidler 2011). Brain metastases usually show a

surrounding gliosis by increased number of reactive
astrocytes. It has been demonstrated that astrocytes
protect tumor cells from chemotherapy-induced
cytotoxicity (Lin et al., 2010). The tumor cells
themselves gain access to the surrounding parenchyma
and promote their growth through induction of
angiogenesis (Langley and Fidler, 2011). The ECM
involvement is crucial for this last challenging step and
it is thought that less than 1% of the circulating tumor
cells are successful in forming metastasis (Barkan et al.,
2010; Langley and Fidler, 2011) A specific tumor-ECM
interaction provides a good explanation for the
predilection of specific tumor types in selected organs
(“seed and soil” hypothesis by Stephen Paget (Paget,
1889)). Very recent data indicate that this organotropism
is mediated by tumour exosomes containing specific
integrin components (Hoshino et al., 2015).
The structure and role of integrins in the human
brain

The ECM is essential for architectural support of
tissue, regulation of cell proliferation and differentiation
(De Archangelis and Georges-Labouesse, 2000). The
composition of the ECM macromolecules is tissue-
dependent and may vary within the tissue itself and in
response to reactive stimuli (Jones and Jones 2000;
Radisky et al., 2002). Epithelial (and in neoplasms, the
carcinoma) cells are separated from the surrounding
stroma by the basement membrane, a specialized ECM.
Major constituents of the ECM are laminins, collagens,
proteaoglycans, fibronectins and tenascins. Not
surprisingly, these ECM macromolecules are often
upregulated in glioma and brain metastases (Radisky et
al., 2002). 

Integrins consist of a superfamily of cell adhesion
receptors that bind to extracellular matrix (ECM)
proteins and cell-surface ligands. The name “integrin”
was coined in 1986 for these integral membrane protein
complexes after their first characterization (Tamkun et
al., 1986). They are heterodimeric transmembrane
receptors at the cell surface that have a key role in the
crosstalk between the cell and its surrounding stroma
(Takada et al., 2007). Integrins are obligate non-
covalently interacting alpha / beta heterodimers; each
chain has a large extracellular domain and, with the
exception of αvβ4, a short cytoplasmic domain. The size
varies but typically the α- and β-subunits contain around
750 to 1000 amino acids. By combination of at least
currently recognized 18 α-subunits and 8 β -subunits,
twenty-four different integrin heterodimers are formed
(Plow et al., 2000). The proteins are usually present in a
“bent” conformation that would place the ligand binding
site near the membrane surface. The ligand-binding
properties of these heterodimers is determined by the
alpha subunit; some of them have only a single beta-
subunit partner (Cox and Huttenlocher, 2000). Among
the alpha subunits αv is most remarkable for having
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multiple beta partners that do not bind to other alpha
subunits (αvβ3, αvβ5, αvβ6 and αvβ8). The non-
enzymatic cytoplasmic tails and the transmembrane
helices are essential for coordination of cellular response
upon activation by binding of extracellular ligands (Cox
et al., 2010). Alternatively to this outside-in signaling,
integrins can be activated directly by intracellular
proteins which results in modification of the
extracellular parts (inside-out signaling) (Hynes 2002).
This bidirectional integrin activity might explain their
different functional, sometimes opposite, role in cell fate
(Desgrosellier and Cheresh, 2010). 

Usually, Integrins are not constitutively active
(Tabatabai et al., 2011; Seguin et al., 2015). Ligand
binding activates cytoplasmic kinase cascades which
regulate cell attachment, tissue differentiation, cell
migration and growth (Hynes, 2002). This activation
includes several important intracellular pathways,
including mitogen-activated protein kinase,
serine/threonine kinase and tyrosine kinase (Clark and
Brugge, 1995) pathways. The interaction of the αv-
family (and α5β1, and αIIbβ3) of integrins is mediated
by binding to specific arginine-glycine-aspartic acid
(RGD) sequences of the ECM ligands (eg. vitronectin,
fibronectin, osteopontin and fibrinogen), while α4β1,
α4β7, and α9β1 bind to an acidic motif, termed “LDV,”
that is functionally related to RGD (Hynes, 2002;
Campbell and Humphries, 2011). Some integrins,
especially αvβ6 and αvβ8 have been associated with
local activation of TGF-β (Sheppard, 2004) and this
integrin-mediated activiation of TGF-β1 via the aryl-
hydrocarbon receptor is necessary for proper function of
this key controlling molecule (Platten et al., 2000;
Siligner et al., 2015). 

In the developing brain, integrins spatiotemporally
contribute in a cell-specific manner for distinct patterns
of neuronal migration, cortical layer formation and
differentiation within the cortex through interaction with
neurotrophic factors (Schmid and Anton, 2003). Neural
crest cells, the precursor cells derived from the dorsal
neural tube, express many integrins and especially β 1
seems to be essential for Schwann cell differentiation
(Feltri et al., 2002). The αv integrin subunit is expressed

in radial glia fibers of the developing cerebral cortex and
remains persistent in mature astrocytes (Hirsch et al.,
1994). Of the β integrins, β1, β5, β8 integrin are
expressed in all regions of the developing cerebrum and
their expression persists in the adult animal cortex, while
β6 is restricted to neuronal cells and β2, β3, β4 are
completely absent (Cousin et al., 1997; Nishimura et al.,
1998). The adult human brain parenchyma is
characterized by a αvβ3 negative / αvβ5 negative / αvβ6
negative / αvβ8 positive phenotype (Schittenhelm et al.,
2013a). Loss of β1 results in abnormal lamination of the
cortex and cerebellum (Gleeson and Walsh, 2000). In the
cerebelleum, β1 enhances the proliferative potential of
the external granule cell layer to sonic hedgehog
signaling that is relevant for stimulating neuronal
precursors (Blaess et al., 2004). Blockade of α3β1 in
animal models results in retarded radial and tangential
neuronal migration (Schmid and Anton, 2003). Integrins
are expressed at most synapses in the brain, and genetic
and pharmacological studies indicate that they are
required for normal synaptic plasticity but are not
involved in synapse formation (Denda and Reichardt,
2009). Although αvβ8 and β1 integrins are present in
normal human oligodendrocytes, data from animal
models lacking β8 or β1 indicate that they are not
required for normal myelinisation (McCarthy et al.,
2005).

However, parenchymal αvβ8 is required for normal
vascular development in the brain. Absence of αvβ8
results in increased brain hemorrhages. Surprisingly, the
brain endothelia do not express αvβ8 but are surrounded
by αvβ8 positive perivascular astrocytes guiding the
vessel outgrowth (Arnold et al., 2014). Normal human
brain vessels also do not express αvβ3 and αvβ6 but are
positive for αvβ5 (Schittenhelm et al., 2013a). The
possible role of some integrins in neurodegenerative
diseases has sparked some interest, because they are
expressed in Alzheimer plaques (Eikelenboom et al.,
1994). Microglial phagocytosis of fibrillar amyloid in
Alzheimer disease seems to be mediated by a integrin β1
dependent mechanism (Koenigsknecht and Landreth,
2004). Data on this subject, however, remains quite
limited. 
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Table. Integrin targeting strategies (selection).

Substance Strategy type Target Status References

Cilengitide RGD-based antagonist αvβ3/αvβ5 clinical Carter, 2010, Stupp et al., 2010, Nabors et al., 2012
S137, S247 RGD-peptidomimetic αvβ3/αvβ5 preclinical Shannon et al., 2004
S36578-2 RGD-peptidomimetic αvβ3/αvβ5 preclinical Maubant et al., 2006
Etaracizumab (Abegrin) antibody αvβ3 clinical Hersey et al., 2010
Intetumumab (CNTO95) antibody αvβ3, αvβ1, αvβ5, αvβ6 clinical Heidenreich et al., 2013
ATN-161 antagonist α5β1 clinical Cianfrocca et al., 2006
DI17E6 Nanoparticle-coupled antagonist αv clinical Uhl et al., 2014
Fluciclatide Radiolabelled RGD peptide αvβ3/αvβ5 clinical Sharma et al., 2015
IRDye 800CW-RGD Fluorescence labelled RGD peptide αvβ3 preclinical Huang et al., 2012
Abituzumab antibody αv clinical Élez et al., 2015
Volociximab antibody α5β1 clinical Barkan and Chambers, 2011
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Fig 1. Example for the role of integrins in brain tumors (A: glioma, a primary brain tumor, B: Secondary brain tumor, metastatic adenocarcinoma). A1.
In normal white matter human brain, αvβ3 expression is absent. A2. Upregulation of αvβ3 in primary glioblastoma vessels. A3. Glioma tumor infiltration
border shows additional parenchymal upregulation of αvβ. B1. Carcinoma primary with partial αvβ5 expression in the tumor cells. B2. Strong
upregulation of αvβ5 in brain metastasis. At the tumor-brain interface αvβ3 upregulation in the CNS indicates remodeling of the extracellular matrix
along carcinoma tumor spread. Scale bars: 100 µm.



Role of integrins in glioma and brain metastasis
biology

Like other constituents of the ECM, the integrins
have a fundamental role in several types of cancer
(Worthington et al., 2011). Alterations in integrin
expression accompany and may contribute to the ability
of cancer cells to cross physiological barriers in their
tissue of origin and allow them to invade other structures
(Caccavari et al., 2010). Recent data indicate that
integrins are capable of regulating cancer stemness, and
drug resistance (Seguin et al., 2015). The receptors for
the extracellular signals providing increased
proliferation of the cells are mainly β1 integrin-
containing complexes (Park et al., 2000). Several
important growth cascades are regulated through β1
including epidermal growth factor receptor (EGFR
platelet-derived growth factor receptor (PDGFR) and the
vascular endothelial growth factor receptor (VEGFR).
The αv subunit is generally moderately to highly
expressed in most brain tumors, while the corresponding
β complexes are more dependent on the tumor type.
Integrin αvβ6 is associated with cells of epithelial
lineage and is rapidly upregulated on during tissue injury
for activation of latent transforming growth factor β 1
(TGF-β1). In contrast, reactive astrocytes display a αvβ6
negative / αvβ8 positive phenotype (Schittenhelm et al.,
2013a; Vogetseder et al., 2013). 

In gliomas, especially α5β1, αvβ3 and αvβ5
integrins, which are frequently expressed in tumor
endothelia and in some tumor cells, may affect glioma
tumor initiation and progression (Aavramides et al.,
2008). In contrast, αvβ3 is absent in non-neoplastic
vessels (Gladson, 1996). Already the first studies in
1991 noted that αvβ3 expression in glioma cells is
increased with tumour grade (Gladson and Cheresh,
1991). Subsequent larger immunhistochemical studies
revealed that α3, αv, β1, β3 and β4 are regularly
expressed in neoplastic astrocytes and are often
upregulated compared to normal brain (Paulus et al.,
1993). As expected from the αvβ3 expression, one major
ligand of αvβ3, Osteopontin is similarly overexpressed
in gliomas. In addition, detailed analysis revealed α6β4
upregulation in neoplastic astrocytes, while α6β1
remained unchanged compared to normal brain (Previtali
et al., 1996). Integrin α5β1 expression correlates with a
worse prognosis in high-grade glioma and α5β1
blockade triggered a caspase (Casp) 8/Casp 3-dependent
strong apoptosis in glioma cells expressing a functional
p53 (Renner et al., 2016). Because integrin β8 is
expressed in most gliomas (~95%), regardless of WHO
grading, a combination of of integrin complexes has
diagnostic potential, especially an αvβ8-positive/ αvβ6-
negative immunoprofile might help determine whether a
tumor is of glial origin (Schittenhelm et al., 2013a). This
is useful, when the glial fibrillary acidic protein
immunophenotype in late-stage dedifferentiated GBM is
equivocal. Surprisingly, data on integrin expression in
other brain tumor entities such as oligodendroglial and

ependymal tumors is very limited, but a single study
indicates that expression is similar to astrocytic
neoplasms (Paulus et al., 1993). Data from embryonal
tumors is also very scarce, a few studies indicate that at
least αv and α3 complexes are present in these tumors
(Kishima et al., 1999; Thompson et al., 2013). Except
for a single pilocytic astrocytoma immunreactive for β1
integrin, no studies in pediatric glial/glioneuronal tumors
has been performed so far.

Direct inhibition of the αv complex resulted in
migration arrest of glioma cells, suggesting that the αv-
complex related integrins are more relevant in tumors
than those associated with the β1 complex
(Treasurywala et al., 1998). Subsequent functional
studies with αvβ3 neutralizing antibody inhibited glioma
cell migration in αvβ3 expressing cell lines (Wild-Bode
et al., 2001). Integrin β3-knockout mice display
enhanced tumor growth and a proangiogenic phenotype
which has led to the concept that β3 expression may
mediate a balance between protumor and antitumor
effects (Hodivala-Dilke, 2008). This data indicates that
αvβ3 integrin plays a key role in malignant gliomas and
is a promising target for treatment. There is controversial
data as to what extent αvβ3 blockading agents are
effective, ie. stopping the migratory properties or even
resulting in tumor cell death (Tabatabai et al., 2011).
Recent obervations indicate that the tumor vascular
pathology and hemorrhage seen in high-grade gliomas
may be related to loss of parenchymal αvβ8 (McCarty et
al., 2005).

In solid tumours the expression of integrin
complexes is highly tissue dependent. For example,
αvβ3 is prominently expressed in melanomas, αvβ5 in
renal and colorectal carcinoma, αvβ6 is associated with
lung adenocarcinomas, gastric cancer and pancreatic
ductal adenocarcinomas (Mittelbronn et al., 2012;
Schittenhelm et al., 2013b, Sipos et al., 2004) and αvβ8
is consistently expressed in gliomas and in some renal
carcinomas. Prostate cancer is characterized by a α5β1+/
α7β1+/ αvβ5+ phenotype (Schittenhelm et al., 2013b;
Drivaloset al., 2016). In breast cancer integrin
complexes show a broad diversity. Approximatly 20% of
the tumours are positive for at least one complex of
α9β1 αvβ5, αvβ6 (Arihiro et al., 2000; Mittelbronn et
al., 2012). Other publications report αvβ5 expression in
up to 90% of breast cancer samples (Vogetseder et al.,
2013). These discrepancies are most likely due to the
poor ability of some integrin antibodies to stain
formalin-fixated, paraffin-embedded (FFPE) samples.
Recently developed recombinant rabbit monoclonal
antibodies not only recognize integrins in FFPE material
with high signal-to-noise contrast, but also bind intact
extracellular domains of the targets, and show
reproducibly results on automated immunohisto-
chemistry systems (Goodman et al., 2012). 

Brain metastases show divergent invasion patterns,
designated well-demarcated, vascular co-option and
diffuse infiltration (Berghoff et al., 2013). Levels of
αvβ6 integrin were significantly higher in the well-
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demarcated group than in the vascular co-option and the
diffuse infiltration groups, indicating that αv integrin
complexes influence the growth behaviour of solid
cancers. Expression patterns of the αv integrin
complexes differ between primary and metastatic
lesions. For example in lung cancer brain metastases,
vascular αvβ3 expression was more frequently than in
primary lesions (Berghoff et al., 2014). In contrast,
parenchymal expression of αvβ5 and αvβ6 were often
higher in primary tumors compared to their brain
deposits (Schittenhelm et al., 2013b). Melanomas
showing parenchymal αvβ3 expression have a higher
metastatic potential (Felding-Habermann et al., 2002). In
many solid tumours α5β1 upregulation is associated
with a poor prognosis (Schaffner et al., 2013). 

Targeting the ubiquitous expressed αv integrin
complex with intetumumab in a brain metastasis model
resulted in reduced brain metastasis formation (Wu et
al., 2012). In breast cancer cell lines, integrin β3
knockdown in combination with integrin antagonist
treatment resulted in increased radiosensitization in a
previously non-responsive cell line (Lautenschlaeger et
al., 2013). Silencing of integrin β1 in breast-cancer cell
lines resulted in decreased migration and invasion in cell
lines. Furthermore an increased integrin β1 gene level
(ITGB1) was associated to lower survival in patients
with triple-negative breast cancer (Klahan et al., 2016).
Reduction of integrin β4 and β6 in triple-negative breast
cancer cell lines through penfluridol inhibited growth in
introduced metastatic brain tumors (Ranjan et al., 2016). 
Integrins as therapeutic target in brain tumors

Because of the functional role of αv integrins in
brain tumors several integrin inhibitors have been
developed. For a detailed overview the reader is referred
to the review by Tabatabai et al. (2011). Drugs targeting
specific arginine-glycine-aspartic acid (RGD) sequences
of integrins that are present in the “on-state” of the
receptors are extensively tested to deliver anticancer
molecules or contrast agents for improved diagnosis.
The affinity of RGD peptides for their ligands is highly
dependent on peptide conformation and flanking amino
acid sequences that influence receptor selectivity (Liu et
al., 2015). Cilengitide is the most widely studied RGD
αvβ3 and αvβ5 antagonist and has undergone phase III
clinical trials (Carter, 2010). By modification of the
guanidine groups it is possible to obtain a αvβ6-specific
ligand or αvβ6/α5β1-biselective affinity (Kapp et al.,
2016). Preclinical and initial phase II studies
demonstrated a significant tumor growth inhibitory
effect of cilengitide in glioblastoma (Stupp et al., 2010;
Nabors et al., 2012). Yet, phase III studies with
cilengitide in patients with lung cancer or metastatic
melanoma or recurrent or metastatic head and neck
tumours showed little effect on overall survival.
Furthermore, Cilengitide given in combination with the
standard drug temozolomide in glioblastoma patients did
not improve overall survival (Stupp et al., 2014). This

might be due to the limited pharmacokinetic properties
of cilengitide with biweekly infusions of 2000 mg. In
addition these studies might further highlight the
necessity for patient selection in future trials with
integrin inhibition strategies, e.g. by RDG PET.

Other integrin-targeting approaches include RGD-
grafted nanoparticles or liposomes that are internalized
by integrin-mediated endocytosis and then localized in
perinuclear regions (reviewed by Danhier et al., 2012).
RGD-targeted nanocarries require ligand-binding for
uptake, otherwise the coupled drugs are gradually
released by the cell. Preclinical studies included RGD
carriers coupled with paclitaxel, doxorubicin and
gemcitabine in carcinoma and glioma cell lines. It is
thought that αvβ3-positive vasculature is destroyed due
to local cytotoxic effects thus resulting in oxygen
deprivement of the nearby tumor cells. These RGD
strategies are also exploited to deliver radionucleotides
or serve as a radiotracer such as [18F]-Galacto-RGD in
PET and SPECT (Haubner et al., 2014). Another RGD
radiolabeled marker with high affinity for αvβ3/αvβ5
integrin, Fluciclatide is currently being tested to assess
angiogenesis in solid tumors (Sharma et al., 2015).
Intraoperative tumor visualization through near-infrared
fluorescent imaging of integrin expression in
glioblastoma models has recently sparked some interest.
The RGD-coupled probe called IRDye 800CW-RGD
was capable of binding specifically to integrin β3 and
showed a high tumor to normal brain fluorescence ratio
in glioblastomas (Huang et al., 2012). 

Alternative approaches include monoclonal
antibodies and non-RGD antibodies. Etaracizumab is a
humanized monoclonal antibody that showed promising
results in experimental studies but failed to show a
benefit in phase 2 studies (Hersey et al., 2010).
Apparently this substance is no longer tested in clinical
trials (Tabatabai et al., 2011). Abituzumab targeting
integrin αv heterodimers has demonstrated preclinical
activity and has been tested in metastatic colorectal
cancer indicating that a subgroup may benefit from this
therapy (Élez et al., 2015). Inhibitors targeting the α5β1
component such as ATN-161 and Volociximab in
dormant metastatic tumor cells have been recently tested
in phase 1 studies (Barkan et al., 2011). Vedolizumab
binds to the α4β7 integrin complex and is used for the
treatment of ulcerative colitis but has currently no role in
cancer tretament. S247, an RGD peptidomimetic αvβ3
antagonist in combination with fractionated radiotherapy
demonstrated reduced cell proliferation and increased
radiosensivity though inhibition of the Akt
phosphorylation in human glioma xenograft models
(Abdollahi et al., 2005). Another RGD-mimetic, S
36578 showed antiangiogenic properties in endothelial
cells but is currently no longer evaluated (Maubant et al.,
2006; Tabatabai et al., 2011). 
Conclusions

Among the extracellular matrix proteins, the
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integrins are a critical component in determining the
growth and metastasis of tumors. Specific integrin
complexes are one of the major mediators for the brain
organotropism by tumour exosomes in carcinoma and
melanoma metastasis. In primary brain tumors, integrins
contribute to the ability of glioma cells to migrate and
invade preexisting brain parenchymal structures. The
upregulation of divergent integrin complexes in most
cancers associated with malignancy and metastatic
behavior may serve as a diagnostic as well as prognostic
biomarker. While direct antagonism treatment failed in
larger studies, the coupling of molecules with high
affinity to selective integrins via the RGD-motif
provides not only new therapeutic approaches but also
has potential for specific preoperative tumor imaging.
Subsequent studies are needed to explore whether
exosomal anti-integrin strategies can be used in cancer
therapeutics.
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