Delimitando los rasgos biológicos de la vegetación de los ríos secos: el caso de las ramblas de la cuenca del Segura (SE de España)

Néstor Martínez-Yoshino, María Luisa Suárez-Alonso & María Rosario Vidal-Abarca-Gutiérrez Departamento de Ecología e Hidrología. Universidad de Murcia, Campus de Espinardo. 30100 Murcia.

Resumen

Correspondencia
MR. Vidal-Abarca Gutiérrez
E-mail: charyvag@um.es
Recibido: 9 septiembre 2020
Aceptado: 3 diciembre 2020
Publicado on-line: 6 febrero 2021

Las ramblas (ríos secos) son ecosistemas de gran relevancia en la cuenca del Segura por la extensión que ocupan. Estos ecosistemas albergan comunidades vegetales caracterizadas por la diversidad y singularidad de especies que las componen. El objetivo de este trabajo es analizar los rasgos biológicos que caracterizan estas comunidades y relacionarlos con su capacidad para provee servicios ecosistémicos a la sociedad. Los resultados obtenidos indican que las comunidades vegetales de estos ecosistemas presentan rasgos biológicos claramente terrestres y xerófilos con dominancia de formas fanerófitas y caméfitas, con diversas adaptaciones a la sequía y total inexistencia de especies helófitas. Además, más del 90% de las especies estudiadas proporcionan algún servicio ecosistémico.

Palabras clave: Cauces efímeros; Ramblas; Servicios ecosistémicos; Comunidad vegetal; Cuenca del Segura.

Abstract

Delimiting the biological traits of the vegetation of dry rivers: the case of the ramblas of the Segura basin (SE of Spain)

Dry rivers (ramblas) are ecosystems of great relevance in the Segura Basin due to the extent they occupy. These ecosystems harbour plant communities characterized by the diversity and unique ness of the species that make it up. The objective of this paper is to analyze the biological traits that characterize these communities and relate them to its capacity to provide ecosystem services to society. The results obtained indicate that the plant communities of these ecosystems present clearly terrestrial and xerophilous biological traits with a dominance of phanerophytic and camephytic forms, with various adaptations to drought and a total absence of helophyte species. Furthermore, more than 90% of the species studied provide some ecosystem service.

Key words: Ephemeral streams; *Ramblas*; Ecosystem services; Plant community; Segura Basin

Introduction

La situación de la cuenca del Segura en el sureste de la península ibérica, junto con la presencia de un contorno litoral orientado hacia el Este y el Sur y la configuración de los relieves béticos, constituyen los factores geográficos principales que caracterizan la dominancia del clima semiárido en buena parte de ella (Conesa 2006). Los registros pluviométricos anuales superan los 1.000 mm/año en las sierras del Noroeste de la cuenca y no alcanzan los 300 mm/año en los sectores más áridos del Este y del Sur (OISMA 2004, Esteve et al. 2003). Las temperaturas medias anuales oscilan entre los 10-12 °C en el Noroeste y los 14-16 °C en el interior, ascendiendo hasta los 17°C en el litoral (Conesa 2006), con más de 2.500 horas de sol al año (Esteve et al. 2003), con un máximo de 356 horas en el mes de agosto (Conesa 2006). Este conjunto de características climáticas se traduce en un balance hídrico negativo (Vidal-Abarca et al. 2004) y definen a esta región como una de las más secas del continente europeo.

Tal v como sucede en muchas otras zonas semiáridas y áridas del planeta, los ríos secos (cauces que permanecen secos en el espacio y en el tiempo y en los que el agua superficial solo dura unas pocas horas o algunos días como consecuencia de fuertes lluvias, desconectados de las aguas subterráneas y que no albergan vida acuática; Vidal-Abarca et al. 2020) son predominantes en este tipo de paisajes. En la cuenca del Segura, y en buena parte del territorio español, estos cauces son conocidos como ramblas, las cuales presentan particularidades geomorfológicas e hidrológicas propias: sustratos heterogéneos, canales muy anchos (Gómez et al. 2005), normalmente con forma de artesa y un lecho llano (Conesa 2006). El papel que juegan estas ramblas en el Sureste español es de enorme importancia dado que son los cauces de evacuación del agua de escorrentía provocada por los fenómenos de lluvias torrenciales (episodios normalmente asociados a depresiones aisladas en niveles altos o DANAS), agravados por la escasez de cobertura vegetal terrestre de los terrenos circundantes (Conesa 2006). Estas ramblas pueden ser colonizadas por la vegetación que cubre las laderas de origen terrestre, en caso de permanecer secas durante largos periodos de tiempo, o bien cubrirse con vegetación más hidrófila, en caso de la existencia de un subálveo cercano a la superficie del

cauce.

Se pueden hacer diferentes aproximaciones para estudiar la vegetación que coloniza las ramblas (por ejemplo, desde la perspectiva taxonómica; su abundancia y diversidad, etc.). En este trabajo, se ha optado por analizar la vegetación de estos ecosistemas a través de sus rasgos biológicos. Un rasgo es una característica distintiva y medible cuantitativamente de un organismo que se puede usar para comparar distintas especies (Stokes et al. 2009). Estas características pueden ser morfológicas, ecofisiológicas, bioquímicas, regenerativas y demográficas de un grupo taxonómico (Martin-López & Montes 2011), y también, aquellas estrategias de las que disponen los seres vivos para adaptarse a las características del entorno donde viven. Por lo tanto, estos rasgos representan vínculos mecanicistas entre los organismos y su entorno (Lavorel & Garnier 2002). En este sentido, los rasgos biológicos de las plantas que habitan los ríos secos deben responder a las condiciones de estrés ocasionadas tanto por el déficit hídrico (Vidal-Abarca & Suárez 2006) como por los eventos de avenidas provocadas por las lluvias torrenciales. Por tanto, determinadas características biológicas relacionadas con su capacidad para la acumulación de agua, como por ejemplo un sistema radical extenso o el mantenimiento de las hojas durante todo el año pueden suponer una ventaja adaptativa en estos ecosistemas.

Además, los rasgos biológicos que caracterizan a las especies que habitan las ramblas también pueden servir para valorar su potencialidad para proveer servicios ecosistémicos (Garnier & Navas 2012) e, incluso, vincular dichas características con algunos de ellos (García-Llorente *et al.* 2011). Los servicios ecosistémicos surgen de la interrelación entre el medio abiótico y biótico que conforman los ecosistemas naturales y que producen benefícios a la sociedad (MA 2005, Balvanera & Cotler 2007).

Existen diferentes maneras de clasificar los servicios ecosistémicos, pero uno de los más utilizados es el propuesto por la Evaluación de los Ecosistemas del Milenio (MA 2005), que los agrupa en tres tipos diferentes: (1) servicios de abastecimiento, que son los beneficios generados directamente por los ecosistemas (alimentos, agua dulce, materiales de origen biótico, leña, etc.); (2) servicios de regulación, directamente ligados al funcionamiento de los ecosistemas (regulación del clima o de las enfermedades, purificación del

agua, polinización, etc.); y (3) servicios culturales, que englobarían los beneficios de tipo inmaterial que el ser humano puede disfrutar de los ecosistemas (paisajes bellos, herencia cultural, actividades de ocio y recreo o valores educativos). El análisis de los servicios ecosistémicos implica reconocer que es la biodiversidad la que genera las funciones de los ecosistemas y, en consecuencia, su capacidad para proveer servicios a la sociedad (Martin-López & Montes 2011). Este análisis cobra especial importancia en la actualidad debido a la preocupación existente en torno a la pérdida de la biodiversidad de los ecosistemas y su relación con la afección al bienestar humano, ya que de ella depende la provisión de servicios ecosistémicos.

En este contexto se enmarcan los objetivos de este trabajo, que pretende definir los rasgos biológicos de las especies vegetales que habitan las ramblas de la cuenca del Segura y su capacidad para suministrar servicios ecosistémicos a la sociedad. En concreto se pretende: 1) caracterizar las especies vegetales recolectadas en distintas ramblas de la cuenca del Segura según sus rasgos biológicos, 2) identificar los rasgos biológicos que ayuden a definir grupos de especies vegetales de las ramblas del territorio objeto de estudio y 3) analizar la capacidad de la vegetación de las ram-

blas para proporcionar servicios ecosistémicos.

Metodología

Descripción del área de estudio y método de recolección de las plantas

El estudio se ha llevado a cabo en 51 ramblas localizadas en la cuenca del Segura (Tabla 1) (Fig. 1). Atendiendo a la litología del sector de la cuenca donde se ubican, 25 de ellas se clasifican como ramblas calizas, 11 margosas, 11 metamórficas y, finalmente, 4 son de naturaleza margo-calizas (Vidal-Abarca & Suárez 2006). El rango de altitud donde se localizan los puntos de muestreo oscila entre los 1.250 msnm de la Rambla de la Rogativa y los 0 msnm en la desembocadura de la Rambla de Ramonete (Tabla 1).

La recogida de los datos se llevó a cabo durante la primavera de 2005. Para la recolección de las plantas se seleccionó en cada rambla un tramo de 100 m de longitud que se recorría dos veces (ida y vuelta) y se registraban todos los taxones observados. Aquellas especies difíciles de determinar en campo fueron recogidas y transportadas al laboratorio para su posterior identificación. Todos los taxones fueron confirmados por profesores del Departamento de Biología Vegetal de la Universidad de Murcia (Prof. Diego Rivera

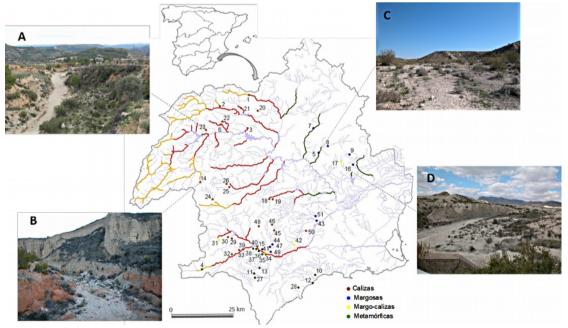


Figura 1. Localización geográfica de las ramblas estudiadas en la cuenca del Segura. A: Rambla de Peñarrubia; B: Rambla de la Rogativa; C: Rambla del Moro; D: Rambla del Font.

Figure 1. Geographical location of the *ramblas* studied in the Segura basin. A: Rambla de Peñarrubia; B: Rambla de la Rogativa; C: Rambla del Moro; D: Rambla del Font.

0	ESTACIÓN	LITM	LITM V	Time execusive	Altitud (manage)
nº		UTM_X	UTM_Y	Tipo sustrato	Altitud (msnm)
1	Rambla del Mullidar	599821	4276023	Calizo	782
2	Rambla Honda. Carretera a Ayna	580868	4268761	Calizo	831
3	Rambla del Algarrobo	599026	4254220	Calizo	494
4	Rambla Chirivel. Bermejo	569164	4162100	Metamórfico	980
5	Rambla del Moro	645408	4238352	Margoso	273
6	Arroyo de Anchura. Elche de la Sierra	581529	4256829	Calizo	658
7	Rambla del Judío. Carretera Jumilla	642073	4254245	Margoso	423
8	Rambla de la Raja	651395	4242547	Margoso	360
9	Rambla del Balonga	665650	4237077	Margoso	210
10	Rambla del Villalba	643249	4158462	Metamórfico	40
11	Rambla de Nogalte	603383	4159268	Metamórfico	530
12	Rambla del Ramonete. Desembocadura	641572	4153210	Metamórfico	0
13	Rambla Bejar	606682	4162994	Metamórfico	430
14	Rambla de la Rogativa	568132	4219002	Calizo	1.250
15	Rambla de los Canales	608717	4175204	Margoso	410
16	Rambla del Font	667782	4230469	Margoso	270
17	Rambla de Cantalar	660162	4231984	Margo-Calizo	380
18	Rambla Ceacejo	613257	4208131	Calizo	690
19	Rambla Ucenda	615454	4207936	Calizo	680
20	Rambla del Boquerón	605559	4265737	Calizo	670
21	Rambla Talave	594685	4267619	Calizo	620
22	Rambla del Derramadero	582485	4258674	Calizo	690
23	Rambla de Peñarrubia	571787	4253041	Calizo	565
24	Rambla de Inazares	576193	4207902	Calizo	1.030
25	Rambla de la Higuera	587073	4215938	Calizo	920
26	Rambla de Parriel	585223	4217802	Calizo	960
27	Rambla de Vilerda	603743	4156527	Metamórfico	493
28	Rambla de la Cuesta de Gos	632143	4150290	Metamórfico	169
29	Rambla de Estepares	588608	4182319	Calizo	819
30	Rambla seca	586197	4183014	Calizo	790
31	Rambla de la Tia Polonia	580264	4181318	Margo-Calizo	890
32	Rambla del Castillo	588767	4171905	Calizo	715
33	Rambla de las Peladillas del Churtal	593485	4174752	Calizo	620
34	Rambla de la Quinquilla	610940	4171765	Calizo	363
35	Rambla de los diecisiete arcos	608546	4171972	Metamórfico	411
36	Rambla de la Canteras	606345	4173981	Metamórfico	426
37	Rambla de Enmedio	604635	4175275	Metamórfico	435
38	Rambla de los Coroneles	602748	4175628	Metamórfico	474
39	Rambla del Gigante	596135	4175165	Calizo	542
40	Rambla de la Rosa	605308	4177227	Calizo	418
41	Rambla del Estrecho	610755	4173021	Margo-Calizo	360
42	Rambla de Lébor	629228	4178125	Margo-Calizo	267
43	Rambla de Algeciras	644070	4193955	Margoso	183
44	Rambla del Chorrillo	615214	4178229	Margoso	450
45	Barranco del Muerto	616300	4187582	Calizo	830
46	Rambla de Zarzadilla	614938	4191255	Calizo	780
47	Rambla de Torrealvilla	613618	4176711	Margosa	410
48	Rambla de la Cabezas	606378	4190114	Calizo	695
49	Rambla Salada (Lorca)	614091	4173490	Margoso	350
50	Rambla Celada	637314	4187291	Calizo	185
51	Rambla de Librilla o del Orón	643326	4196926	Margoso	190

 Tabla 1. Características geográficas de las ramblas estudiadas en la cuenca del Segura. Datum ERS89.

 Table 1. Geographical characteristics of the ramblas studied in the Segura basin. Datum ERS89.

y Prof. Francisco Alcaraz). Como resultado del muestreo se recolectaron un total de 71 especies vegetales (Tabla 2) (Fig. 2).

Selección de los rasgos biológicos

Se seleccionaron un total de 15 características biológicas de las especies recolectadas usando trabajos y revisiones realizadas por diferentes autores (Tabla 3). En concreto, se emplearon las recomendaciones de Cornelissen *et al.* (2003), de De Bello *et al.* (2010), de García-Llorente *et al.* (2011) y de Pérez-Harguindeguy *et al.* (2013). Estas características biológicas recogen rasgos de las especies relacionados con su forma de vida y crecimiento, tamaño, tipos de estructuras y modo de dispersión.

Análisis de los datos: elaboración de la matriz de datos y técnicas estadísticas

Para la recopilación de los rasgos biológicos de las especies recolectadas se utilizaron, básicamente, la Flora básica de la Región de Murcia (Alcaraz *et al.* 2002) y la obra Flora Ibérica del Real Jardín Botánico (CSIC, Madrid) (http://www.floraiberica.es/index.php). Para aquellos rasgos que no se pudieron encontrar en estas referencias se

realizaron búsquedas en Google Scholar (Google Inc. 2004). Las referencias utilizadas se encuentran en el <u>Anexo</u>. Finalmente, se elaboró una matriz de datos de 15 rasgos x 71 especies.

Con el fin de agrupar las plantas recolectadas según la similitud de sus características biológicas, se realizó un análisis de agrupamiento (Clúster) mediante el método aglomerativo de Ward (Ward 1963) y, para identificar los rasgos biológicos que ayuden a definir los grupos de especies vegetales, se efectuó un análisis de componentes principales (PCA). Ambas técnicas estadísticas se llevaron a cabo mediante el programa IBM SPSS Statistics 24.0 (IBM Corporation 2016). Para comprobar la idoneidad del análisis también se realizó una prueba de medida Kaiser-Meyer-Olkin (KMO) y una prueba de esfericidad de Bartlett.

Resultados

Rasgos biológicos de las especies recolectadas en las ramblas

Las fanerófitas (40,85% del total) y caméfitas (33,80%) son las formas de crecimiento dominantes en las ramblas estudiadas. En menor proporción se presentan las especies terófitas (4,23%) y

Nombre científico	Nombre vulgar	Nombre científico	Nombre vulgar
Agave americana L.	Pitera	Mercurialis tomentosa L.	
Anabasis hispanica Pau		Moricandia arvensis (L.) DC.	Collejon
Anthyllis cytisoides L.	Albaida	Nerium oleander L.	Baladre, adelfa
Artemisia barrelieri Besser	Boja negra	Nicotiana glauca Graham	Gandul
Artemisia campestris subsp. glutinosa (Besser) Batt.	Bocha, Escobilla parda	Ononis natrix L.	Pegamoscas
Artemisia herba-alba Asso	Boja pudenda	Onopordum micropterum Pau	Cardo borriquero
Arundo donax L.	Caña	Opuntia maxima Mill	Chumera
Asparragus horridus L.	Esparraguera	Pallenis spinosa (L.) Cass.	Cebadilla
Asphodelus fistulosus L.	Cebollana, Gamón	Phlomis lychnitis L.	Candilera
Atriplex halimus L.	Salao	Phoenix iberica Rivera	Palmera
Ballota hirsuta Benth	Manrrubio	Phragmites australis (Cav.) Trin. Ex Steude	l Carrizo
Caparis ovata Desf.	Tapenera	Pinus halepensis Mill.	Pino
Cistanche phelipaea (L.) Cout.	Pijolobo	Pistacia lentiscus L.	Lentisco
Cistus albidus L.	Estepa	Populus alba L.	Chopo blanco
Cistus clusii subsp. clusii Dunal	Romero macho	Populus nigra L.	Chopo negro
Daphne gnidium L.	Matapollos	Psoralea bituminosa (L.) C.H. Stirt	
Dittrichia viscosa (L.) Greuter	Mosquera	Retama sphaerocarpa (L.) Boiss.	Retama
Dorycnium pentaphyllum Scop.	Boja blanca	Rhammus lycioides L.	Espino negro
Echium creticum subsp. coincyanum L.	Viborera	Rosa micrantha Borrer ex Sm.	Rosal silvestre
Eruca vesicaria (L.) Cav.	Amargo	Rosmarinus officinalis L.	Romero
Eryngium campestre L.	Cardo setero	Rubus ulmifolius Schott	Zarzamora
Foeniculum vulgare subsp. piperitum (Ucria) Sweet	Hinojo	Salsola genistoides Juss	Escobilla
Genista scorpius (L.) DC.	Aliaga	Santolina chamaecyparissus L.	Manzanilla amarga
Globularia alypum L.	Cebollana	Sarcocornia fruticosa (L.) A.J. Scott	Almarjo
Helichrysum decumbens (Lag.) Cambess	Boja ramblera	Scirpus holoschoenus (L.) Soják	Junco churrero
Helichrysum serotinum (DC.) Boiss		Sedum sediforme (Jacq.) Pau	Uña gato
Helichrysum stoechas (L.) Moench	Cerca mar	Sideritis leucanta subsp. bourgeana (Boiss	
Juncus acutus L.	Junco	& Reut) Alcaraz & al.	
Juniperus oxycedrus L.	Enebro	Suaeda vera Forssk.	Almajo
Juniperus phoenicea L.	Sabina negra	Tamarix canariensis Willd.	Taray
Lavandula dentata L.	Cantueso, Espliego	Thymelaea hirsuta (L.) Endl.	Bolaga
Lavandula stoechas L.	Lavanda	Thymus membranaceus Boiss	Cantueso
Limonium caesium (Girard) Kuntze	Sopaenvino	Thymus vulgaris L.	Tomillo
Limonium cossonianum Kuntze	Acelga borde	Ulmus minor Mill.	Olmo
Limonium insigne (Coss.) Kuntze	Siempreviva	Zygophyllum fabago L.	Morsana
I vaeum spartum l	Albardin		

Tabla 1. Características geográficas de las ramblas estudiadas en la cuenca del Segura. Datum ERS89.

Table 1. Geographical characteristics of the *ramblas* studied in the Segura basin. Datum ERS89.

Rasgos	Atributo	Tipo
Forma de crecimiento	Geófito (0=no; 1=sí); Fanerófito (0=no; 1=sí); Hemicriptófito (0=no; 1=sí); Helófito (0=no; 1=sí); Terófito (0=no; 1=sí); Camefito (0=no; 1=sí)	Binario
Esperanza de vida	Perenne (0=no; 1=sí); Anual (0=no; 1=sí); Bianual (0=no; 1=sí); Semi-caduco (0=no; 1=sí); Caduco (0=no; 1=sí)	Binario
Altura de la planta	Distancia entre la superficie del suelo y los tejidos fotosintéticos (mm)	Continuo
Fenología temprana	Entre abril y septiembre (0); Antes de abril (1); Durante todo el año (2)	Ordinal
Arquitectura vertical	Único meristemo apical (0=no; 1=sí); Múltiples meristemos apicales (0=no; 1=sí)	Binario
Textura de las hojas	Duras (0); Blandas (1)	Ordinal
Defensas físicas en tallos	Con defensas (0=no; 1=sí)	Binario
Defensas físicas en hojas	Con defensas (0=no; 1=sí)	Binario
Raíces y estructuras subterráneas	Raíces simples (0=no; 1=sí); Estolones (0=no; 1=sí); Rizomas (0=no; 1=sí); Tubérculos (0=no; 1=sí)	Binario
Modo de dispersión	Autocoria (0=no; 1=sí); Anemocoria (0=no; 1=sí); Hidrocoria (0=no; 1=sí); Zoocoria (0=no; 1=sí)	Binario
Tamaño de la planta	Grande (>2m) (1); Mediana (1-2m) (2); Pequeña (<1m) (3)	Ordinal
Tamaño de las flores	Grandes (>3-4 cm) (1); Mediana (1,5-3 cm) (2); Pequeñas (<1,5 cm) (3)	Ordinal
Agrupación de las flores	Solas (1); Racimos (2); Pomos: inflorescencia múltiple (3)	Ordinal
Color de las flores	Rojo (1); Amarillo (2); Blanco (3); Azul (4); Verdoso (5); Gris (6); Violáceo (7); Rosa (8); Pardo (9)	Ordinal
Tamaño de los frutos	Grandes (>2 cm) (1); Medianos (1-2 cm) (2); Pequeños (<1 cm) (3)	Ordinal
Color de los frutos	Negro (1); Rojo (2); Amarillo (3); Blanco (4); Verdoso (5); Gris (6); Pardo (7)	Ordinal

 Tabla 3. Lista de rasgos biológicos aplicados a las especies de plantas recogidas en las ramblas de la cuenca del Segura.

Table 3. List of biological traits applied to plant species collected on the *ramblas* of the Segura basin.



Figura 2. Ejemplos de algunas plantas de las ramblas estudiadas en la cuenca del Segura. A: Santolina chamaecyparissus; B: Thymus membranaceus; C: Asphodelus fistulosus; D: Cistus clusii subsp. clusii; E: Lavandula stoechas; F: Juniperus phoenicea; G: Sedum sediforme; H: Ononis natrix; I: Nerium oleander.

Figure 2. Examples of some plants of the ramblas studied in the Segura basin. A: Santolina chamaecyparissus; B: Thymus membranaceus; C: Asphodelus fistulosus; D: Cistus clusii subsp. clusii; E: Lavandula stoechas; F: Juniperus phoenicea; G: Sedum sediforme; H: Ononis natrix; I: Nerium oleander.

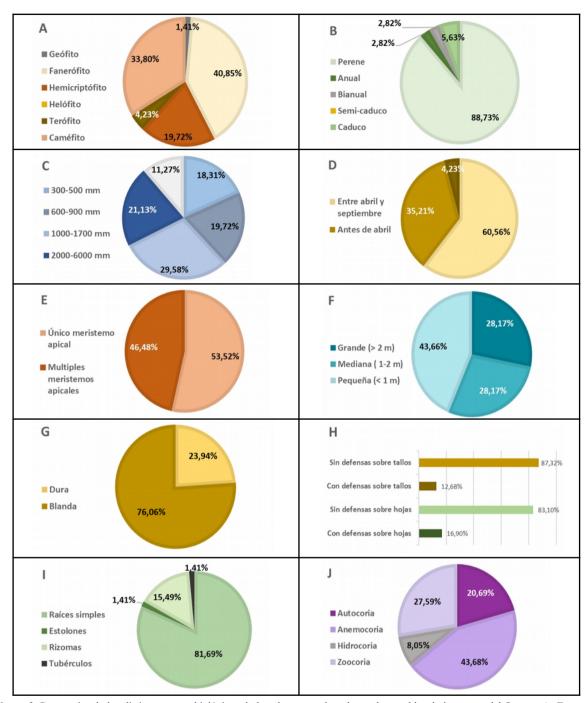


Figura 3. Porcentajes de los distintos rasgos biológicos de las plantas recolectadas en las ramblas de la cuenca del Segura. A: Forma de crecimiento; B: Esperanza de vida; C: Altura de la planta; D: Fenología temprana; E: Arquitectura vertical; F: Tamaño de la planta; G: Textura de las hojas; H: Defensas físicas en tallos y hojas; I: Raíces y estructuras subterráneas; J: Modo de dispersión.

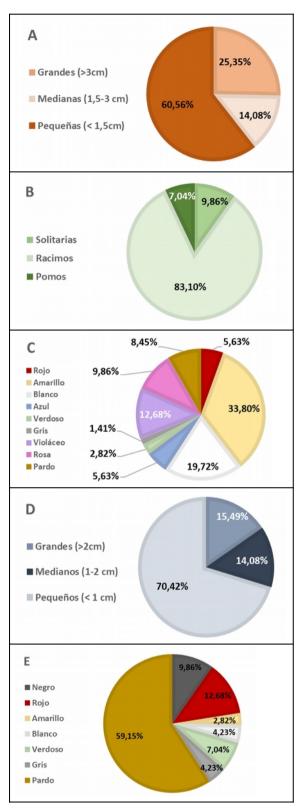
Figure 3. Percentages of the different biological traits of the plants collected in the *ramblas* of the Segura basin. **A:** Growth form; B: Life expectancy; C: Height of the plant; D: Early phenology; E: Vertical architecture; F: Size of the plant; G: Texture of the leaves; H: Physical defenses in stems and leaves; I: Roots and underground structures; J: Mode Dispersion.

geófitas (1,41%). No se ha encontrado ninguna helófita (Fig. 3A). La gran mayoría de las especies muestreadas son perennes (88,73% del total) (Fig. 2B). Hay una pequeña representación de caducifolios (5,63%) y de especies anuales y bianuales (2,82% en ambos casos). No se han encontrado plantas semi-caducifolias.

La altura de las plantas recolectadas oscila entre 30 y 3.000 cm. Aunque hay plantas en todos los rangos de altura (Fig. 3C), el mayor porcentaje de ellas corresponde con el comprendido entre 100 a 170 cm (29,58% del total). Las especies de menor tamaño, comprendidas entre los 60 a 90 cm y 30 a 50 cm están presentes en un 19,72% y

18,31% respectivamente. Por último, la vegetación menos abundante, que se corresponde con las especies arbóreas, es la comprendida entre 1 y 3 m (11,27% del total).

La mayoría de las especies recolectadas (60.56% del total) presentan su crecimiento entre abril y septiembre (Fig. 3D). Por el contrario, las plantas con fenología temprana (antes de abril) suponen un 35,21% y las especies con crecimiento todo el año tan solo representan el 4,23% del total. En cuanto a la arquitectura vertical de la planta, un 53,52% del total de especies presentan un único meristemo apical frente al 46,48% que poseen múltiples meristemos (Fig. 3E). Las plantas pequeñas (menores de un metro) suponen casi la mitad de las especies estudiadas en las ramblas, con un 43,66% del total. Por el contrario, las plantas medianas (entre uno y dos metros) y grandes (mayores de dos metros) están presentes en un porcentaje menor (28,17%, Fig. 3F).


Mayoritariamente, la vegetación de las ramblas estudiadas (76,06%) presentan hojas de textura blanda (Fig. 3G) y carecen de defensas (83,10%), al igual que ocurre con los tallos (87,32%) (Fig. 3H).

En cuanto a las estructuras subterráneas, la mayoría de las plantas recolectadas presentan raíces simples (81,69% del total de especies). Entre las demás estructuras destaca la presencia de rizomas en un 15,49% de ellas, mientras que la existencia de tubérculos o estolones solo supone un 1,41% en ambos casos (Fig. 3I).

El mecanismo más utilizado por las plantas de las ramblas para su dispersión es la anemocoria (el 43,68% de las especies). La dispersión por zoocoria y autocoria es utilizada por un 27,59% y 20,69% respectivamente. Finalmente, el mecanismo menos utilizado es la hidrocoria (8,05%) (Fig. 3J).

La mayor parte de las especies recolectadas presentan flores pequeñas (menores de 1,5 cm) (60,56%) (Fig. 4A) y agrupadas en racimos (83,10% del total) (Fig. 4B). Por el contrario, las flores grandes (mayores de 3 cm) se presentan en el 25,35% de ellas (Fig. 4A). Las plantas con flores solitarias representan tan solo el 9,86% y las flores agrupadas en pomos (inflorescencia múltiple) el 7,04% (Fig. 4B). En cuanto a los colores de las flores, predominan el amarillo (33,80%) y el blanco (19,72%) (Fig. 4C).

En relación con el tamaño de los frutos, la mayo ría de las especies recolectadas presentan frutos

Figura 4. Porcentajes de los rasgos biológicos de las flores y frutos de las plantas recolectadas en las ramblas de la cuenca del Segura. **A:** Tamaño de las flores; **B:** Agrupación de las flores; **C:** Color de las flores; **D:** Tamaño de los frutos; **E:** Color de los frutos.

Figure 4. Percentages of the biological traits of the flowers and fruits of the plants collected in the ramblas of the Segura basin. **A:** Size of flowers; **B:** Grouping of flowers; **C:** Color of flowers; **D:** Size of fruits; **E:** Color of fruits.

pequeños (menores de 1 cm) (70,42% del total de especies). Por el contrario, los frutos grandes (mayores de 2 cm) suponen el 15,49% y los frutos medianos (entre 1 y 2 cm) el 14,08% (Fig. 4D). El color predominante en los frutos es el pardo ya que está presente en más de la mitad de las especies estudiadas (59,15%) (Fig. 4D).

Análisis estadísticos

El análisis de agrupamiento clúster permitió diferenciar seis grupos de plantas diferentes (Tabla 4). El grupo A engloba a la mayoría de las especies caméfitas muestreadas. Incluye, principalmente, a plantas perennes de tamaño pequeño, con hojas de textura blanda y sin defensas en hojas y tallos, y con frutos pequeños de color pardo. El grupo B está compuesto principalmente por especies fanerófitas que presentan hojas de textura blanda, raíces simples y flores agrupadas en racimos. Todas las plantas que conforman el grupo C son perennes y, en casi todos los casos, no presentan defensas físicas ni en tallos ni en hojas, y poseen raíces simples, flores pequeñas que se agrupan en racimos y frutos de tamaño pequeño. El grupo D está formado tan solo por 4 especies fanerófitas, perennes, de raíces simples, flores pequeñas agrupadas en racimos y que presentan colores pardos o rosados. Todas las especies incluidas en el grupo E son perennes y, gran parte de ellas, poseen hojas de textura blanda, raíces simples, flores de color violáceo y frutos de color pardo. Por último, el grupo F está formado por especies sin defensas de

ningún tipo, flores agrupadas en racimos y frutos de color pardo.

Además, estos taxones presentan un único meristemo apical y hojas de textura blanda.

Con el fin de identificar los rasgos biológicos que avuden a definir los grupos de especies vegetales de las ramblas de la cuenca del Segura, se llevó a cabo un análisis factorial de componentes principales (PCA). Antes de llevar a cabo el análisis se realizaron dos pruebas estadísticas: la prueba de medida Kaiser-Meyer-Olkin (KMO) y la prueba de esfericidad de Bartlett. El objeto de estas dos pruebas fue comprobar la idoneidad de realizar el análisis factorial. En el caso de la prueba de KMO, los resultados son más favorables cuanto más se acercan a 1; el valor obtenido en este trabajo ha sido 0,625. En cuanto a la prueba de esfericidad de Bartlett, los mejores resultados son los más cercanos a 0, valor que es el que precisamente se ha obtenido en este estudio, lo que indica que los datos siguen una distribución normal.

Para comprobar si era necesario eliminar alguna variable que pudiera distorsionar el PCA se analizó, igualmente, la matriz de correlación antimagen. Los valores más próximos a 1 indican que las variables son adecuadas para explicar la varianza de los datos y, por el contrario, las variables más alejadas de 1 deben ser descartadas. Siguiendo esta pauta, se han descartado 4 variables no adecuadas: fenología temprana, arquitectura vertical, raíces y estructuras subterráneas y el

GRUPO A	GRUPO B	GRUPO C	GRUPO D	GRUPO F
Artemisia campestris	Agave americana	Anabasis hispanica	Juniperus oxycedrus	Cistus albidus
subsp. glutinosa	Arundo donax	Anthyllis cytisoides	Juniperus phoenicea	Juncus acutus
Artemisia herba-alba	Atriplex halimus	Artemisia barrelieri	Rubus ulmifolius	Nerium oleander
Cistanche phelipaea	Caparis ovata	Asparragus horridus	Salsola genistoides	Phragmites australis
Dorycnium pentaphyllum	Cistus clusii subsp. clusii	Asphodelus fistulosus		Pinus halepensis
Eruca vesicaria	Echium creticum subsp.	Daphne gnidium		Populus alba
Eryngium campestre	coincyanum	Dittrichia viscosa		Scirpus holoschoenus
Globularia alypum	Foeniculum vulgare subsp.	Opuntia maxima		Ulmus minor
Helichrysum decumbens	piperitum	Pistacia lentisco		
Helichrysum serotinum	Genista scorpius	Retama sphaerocarpa		
Helichrysum stoechas	Nicotiana glauca	Rhammus lycioides	GRUPO E	
Limonium cossonianum	Pallenis spinosa	Rosa micrantha	Ballota hirsuta	
Mercurialis tomentosa	Phoenix iberica	Sideritis leucanta subsp.	Lavandula dentata	
Ononis natrix	Populus nigra	bourgeana	Lavandula stoechas	
Phlomis lychnitis	Rosmarinus officinalis	Stipa tenacissima	Limonium caesium	
Santolina	Tamarix canariensis	Suaeda vera	Limonium insigne	
chamaecyparissus	Zygophyllum fabago	Thymelaea hirsuta	Lygeum spartum	
Sarcocornia fruticosa			Moricandia arvensis	
Sedum sediforme			Psoralea bituminosa	
Thymus membranaceus			Thymus vulgaris	

Tabla 4. Grupos de especies resultantes del análisis de agrupamiento clúster.

Table 4. Species groups resulting from the cluster grouping analysis.

20 N. Martínez-Yoshino *et al.* Anales de Biología 43, 2021

	Componentes				
	1	2	. 3	4	5
Altura	-0,931	-0,102	0,022	-0,085	0,149
Tamaño de la planta	0,886	0,208	-0,021	0,069	-0,026
Forma de crecimiento	0,694	0,272	-0,157	0,193	-0,173
Esperanza de vida	-0,590	0,489	0,097	0,133	-0,084
Color de los frutos	0,132	0,832	-0,047	-0,025	0,159
Modo de dispersión	-0,162	-0,529	0,082	-0,098	0,077
Defensa en hojas	-0,040	-0,034	0,890	0,031	0,168
Defensa en tallos	-0,085	-0,122	0,788	-0,206	-0,132
Agrupación de las flores	0,019	0,199	-0,026	0,813	-0,158
Tamaño de las flores	0,318	-0,134	-0,369	0,612	0,097
Color de las flores	-0,148	0,207	-0,052	-0,282	0,794
Textura de las hojas	0,115	0,415	-0,153	-0,340	-0,605
% varianza acumulada	22,253	35,817	49,326	60,593	70,327

Tabla 5. Valores propios de los rasgos biológicos estudiados en las ramblas de la cuenca del Segura para los cinco primeros componentes del análisis de componentes principales (PCA). Se señalan en negrita los valores más significativos.

Table 5. Eigenvalues of the biological traits studied in the *ramblas* of the Segura basin for the first five components of the principal component analysis (PCA). The most significant values are indicated in bold.

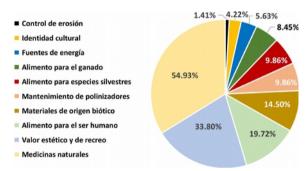
tamaño de las flores.

Los 5 primeros componentes del PCA explican el 70,327% de la varianza total de los datos (Tabla 5). El primer componente está definido positivamente por el tamaño de la planta y la forma de crecimiento, y negativamente por la altura de la planta y la esperanza de vida (Tabla 5). Este componente separa las especies perennes, puesto que son las más abundantes, de aquellas que tienen una esperanza de vida diferente y, a su vez, contrasta dicha información con la proporcionada por la forma de crecimiento. De esta manera, de entre las especies perennes diferencia aquellas que tienen forma de crecimiento fanerófito de las caméfitas, ambos grupos mayoritarios para este rasgo biológico. La contraposición de dos rasgos similares (el tamaño de la planta y la altura) se debe a que se han medido de forma opuesta (Tabla 5). El componente 2 se define positivamente por el color de los frutos y negativamente por el modo de dispersión. Esta relación en sentido opuesto se debe a que la mayoría de las especies presentan dispersión anemócora, es decir, por el viento y, por tanto, un color de fruto llamativo no tiene influencia en este tipo de dispersión, al contrario de lo que podría ocurrir si la dispersión mayoritaria fuera a través de animales (zoocoria). El componente 3 es un eje que explica la posibilidad de que existan defensas físicas en las especies contra los depredadores, separando así las plantas que las presentan de aquellas que no utilizan ningún tipo de protección física (Tabla 5).

El componente 4 está definido positivamente por la agrupación de las flores y el tamaño de los frutos, lo que podría relacionarse con el hecho de que una agrupación de flores, como puede ser en racimos, puede conllevar una producción de frutos de menor tamaño que si aparecen en flores solitarias. Finalmente, el componente 5 está definido principalmente por el color de las flores y la textura de las hojas, ambos relacionados positivamente (Tabla 5).

Capacidad de la vegetación de las ramblas para proveer servicios ecosistémicos

Con el fin de analizar la capacidad de la vegetación de las ramblas para proporcionar servicios ecosistémicos, se exploraron dos guías básicas que contienen información sobre las especies vegetales localizadas en las ramblas estudiadas. En concreto, los trabajos de Alcaraz *et al.* (2002) y de Sánchez *et al.* (2015) y se añadió la información de un reciente artículo de Herrera (2020) sobre la capacidad de algunas de estas plantas para mantener polinizadores.


De acuerdo con los textos consultados, el 90,14% del total de plantas muestreadas, proporciona algún servicio ecosistémico. En general, la mayoría de las especies consideradas proveen servicios de abastecimiento (69,83%) y, en mucha menor medida, servicios culturales (23,27%) y de regulación (6,90%).

El uso de estas plantas como materiales de origen biótico para la realización de cestas, jabones, cercas, etc. representa el 14,5% de las especies y, finalmente, las fuentes de energía como leña y combustible suponen un 5,63%.

En cuanto a los servicios de abastecimiento, la gran mayoría de especies (54,93%) son utilizadas como medicinas naturales (Fig. 5). También destacan las especies que sirven como alimento para los seres humanos (19,72%) y, en menor medida, las que se utilizan como alimento para el ganado (8,45%) y para las especies silvestres (9,86%). Este último servicio se ha basado en la capacidad de las plantas para proveer alimento a distintos

grupos de invertebrados (coleópteros, dípteros, himenópteros y lepidópteros) (Herrera 2020). No se ha recopilado información sobre su uso como alimento por especies de aves, mamíferos no domésticos o de otros invertebrados.

Respecto a los servicios de regulación, el 9,86% de las especies son utilizadas para el mantenimiento de insectos polinizadores y el 1,41% para el control de la erosión (Fig. 5). En cuanto a los servicios culturales, un 33,8% son utilizadas por su valor estético y de recreo (jardinería, como ornamento o uso forestal), mientras que el 4,22% forman parte de la identidad cultural en ritos y juegos tradicionales.

Figura 5. Porcentajes de los distintos servicios ecosistémicos proporcionados por las plantas recolectadas en las ramblas de la cuenca del Segura.

Figure 5. Percentages of the different ecosystem services provided by plants collected in the *ramblas* of the Segura basin.

Discusión

El establecimiento de comunidades vegetales en los cauces de los "ríos secos", como las ramblas, depende de distintos factores ambientales, pero fundamentalmente de la presencia de agua (Fossati et al. 1999). La disponibilidad de agua es tanto un recurso crítico como un agente disruptor (en caso de las avenidas de agua) para la colonización y establecimiento de esta comunidad vegetal y responsable, en último término, de su biodiversidad. En términos generales, las estrategias de la vegetación que coloniza ambientes áridos incluyen modificaciones de valor adaptativo tanto morfológicas como fisiológicas, como por ejemplo cutículas gruesas, sistemas radicales extensos, potencial osmótico bajo y tolerancia a la deshidratación (Sánchez-Díaz 1989).

Las ramblas del Sureste ibérico que no transportan agua durante largos periodos de tiempo (ríos secos en el sentido de Vidal-Abarca *et al.* 2020), albergan una comunidad vegetal de rasgos claramente terrestres y xerófilos, es decir, plantas capaces de permanecer vivas durante largos periodos secos (Sánchez-Díaz 1989).

El análisis multivariante (PCA) realizado con los rasgos biológicos de las especies de plantas estudiadas seleccionó el tipo de crecimiento (caméfitos frente a fanerófitos), el de dispersión y su relación con el color del fruto y la existencia o no de defensas físicas como los rasgos biológicos más significativos para definir grupos de plantas que habitan las ramblas estudiadas. Todos estos rasgos son coincidentes con las adaptaciones típicas de la vegetación a ambientes áridos (Sánchez-Díaz 1989). Así, en las ramblas estudiadas dominan las fanerófitas (40,85%) y caméfitas (33,80%) frente a otras formas de crecimiento (por ejemplo, geófitas) y ausencia de especies helófitas. La mayoría son perennes (88,73%), un rasgo biológico que también puede contribuir a su supervivencia en entornos secos al tener que invertir menos energía en generar tejidos nuevos cada año o en períodos más cortos como ocurre con las plantas caducifolias. No obstante, la pérdida de hojas (abscisión foliar), e incluso de otras partes de la planta como raíces y tallos, es muy común en plantas perennes, lo que se interpreta como una estrategia para sobrevivir durante largos periodos de sequía (Sánchez-Díaz 1989). La mayor presencia de especies con una fenología entre abril y septiembre (60,56%), es decir, durante el período seco, puede suponer una ventaja competitiva frente a otras especies de fenología diferente al permitirles crecer y dispersarse en un momento del ciclo anual en que otras especies no pueden hacerlo. Asimismo, la predominancia en las ramblas estudiadas de especies vegetales con sistemas radicales simples, superficiales y ampliamente extendidos (81,69%) son adaptaciones para absorber el agua cuando la superficie del cauce se humedece ocasionalmente tras las escasas lluvias (Sánchez-Díaz 1989). Mayoritariamente, las plantas de las ramblas estudiadas no presentan defensas físicas en hojas y tallos (83,10% y 87,32%, respectivamente), y a diferencia de lo que ocurre en ambientes desérticos, dominan las que presentan hojas de textura blanda (76,06%). Finalmente, aunque el principal mecanismo de dispersión utilizado es la anemocoria (43,68%), la zoocoria y autocoria también son utilizados por un importante porcentaje de las plantas de las ramblas estudiadas (27,59% y 20,69%, respectivamente).

En general, el estudio de los rasgos funciona-

les de las especies aporta información sobre cómo su capacidad para proveer servicios ecosistémicos a la sociedad se encuentra muy vinculada a la composición de las comunidades que conforman el ecosistema (Hanisch et al. 2020). En este estudio se ha detectado que más del 90% de las especies vegetales muestreadas en las ramblas proporcionan algún tipo de servicio ecosistémico (Fig. 6). En cuanto a los servicios de abastecimiento, las especies que pueden servir como alimento para el ganado presentan, generalmente, tamaños pequeños, textura de hojas blandas y ausencia de cualquier tipo de defensa (Cornelissen et al. 2003; García-Llorente et al. 2011). Como ejemplo de especies vegetales de las ramblas estudiadas que respondan a estas características cabe citar a Atriplex halimus, Dorycnium pentaphyllum, Moricandia arvensis y Salsola genistoides. En relación con el servicio ecosistémico de alimentación de animales salvajes, muchas plantas abastecen a un gran número de especies diferentes (Fig. 6). Por ejemplo, numerosas aves se alimentan de los frutos de Rhammus lycioides y, además, ayudan en la dispersión de sus semillas (Chirino et al. 2013). Igualmente, los frutos de Juniperus oxycedrus y Rubus ulmifolius son consumidos por mamíferos carnívoros como el zorro (Vulpes vulpes L., 1758)), la garduña (Martes foina Erxleben, 1777)) y el tejón (Meles meles L., 1758) (Herrera 1989). Otras especies vegetales que pertenecen a la familia de las Chenopodiaceae, como Suaeda vera, son consumidas habitualmente por conejos (Oryctolagus cuniculus (L., 1758) (Martín et al. 2003). Para el caso de aves o mamíferos, en general, cobrarían especial importancia los rasgos relacionados con el color y el tamaño del fruto (García-Llorente et al. 2011). Sin embargo, en este trabajo se ha estudiado en base a cuáles de ellas proporcionan alimento para cuatro grupos de insectos (coleópteros, dípteros, himenópteros y lepidópteros), para los que el tamaño y la agrupación de las flores suponen los rasgos distintivos (Herrera 2020). Muy relacionado con este servicio, el mantenimiento de polinizadores pasa por la presencia de flores abundantes y de colores llamativos (De Bello et al. 2010). Como especies ejemplo que proporcionan los dos servicios anteriores es oportuno mencionar a Cistus albidus, Daphne gnidium, Eryngium campestre, Phlomis lychnitis, Rosa micrantha, Rosmarinus officinalis y Rubus ulmifolius (Fig. 6). Mas del 50 % de las especies de plantas que habitan las ramblas son utilizadas

también como medicinas naturales por la población humana, bien directamente (Rivera et al. 2005), bien en farmacología como principios activos para la elaboración de medicamentos (Benítez et al. 2010) (Fig. 6). Este hecho puede estar relacionado con la gran cantidad de plantas aromáticas que componen las comunidades vegetales de las ramblas analizadas, y que producen una amplia variedad de metabolitos secundarios (por ejemplo, fenoles), que son los principios activos para muchos medicamentos. Según el Prof. Diego Rivera (com. per.), la elevada variedad de especies aromáticas que se presentan en todas las ramblas probablemente se deba a la selección provocada por el ganado que habitualmente pasta en ellas.

Los servicios de regulación están relacionados tanto con rasgos morfológicos como con las características químicas y fisiológicas de las especies (Hanisch et al. 2020). Por ejemplo, rasgos biológicos como el tamaño y la arquitectura del dosel o el tamaño de la raíz, y la profundidad que éstas pueden alcanzar, participan tanto en la regulación climática como en la regulación del agua y en la estabilidad del suelo. Concretamente, el tamaño de la raíz influye en el mantenimiento de la humedad del suelo (De Bello et al. 2010), así como el área foliar participa en la evapotranspiración y, por lo tanto, influye en la regulación del agua (García-Llorente et al. 2011). En este estudio hay que destacar a Agave americana como especie utilizada en el control de la erosión, dado que se trata de una planta perenne, de alta estatura y con rizomas, todos ellos rasgos que favorecen la fijación del suelo (De Bello et al. 2010; García-Llorente et al. 2011). Por último, en relación con los servicios culturales, los rasgos biológicos a destacar están relacionados con su atracción visual y con el tamaño de las plantas (Fig. 6). En concreto, Lavandula dentata, L. stoechas, Limonium insigne y Santolina chamaecyparissus tienen un uso ornamental debido a la presencia de flores de colores llamativos y en número abundante formando agrupaciones, y Nerium oleander, a su vez, presenta un mayor tamaño, pero flores también coloridas que la hacen útil en jardinería (García-Llorente et al. 2011). Finalmente, especies forestales de mayor tamaño como Pinus halepensis o con flores llamativas, como Pistacia lentiscus, pueden contribuir al ecoturismo al poseer rasgos atractivos para la población humana (De Bello et al. 2010).

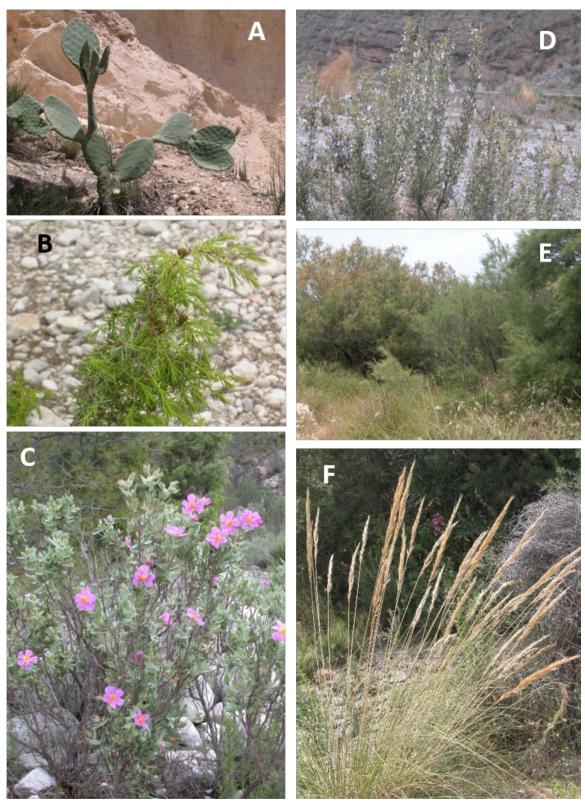


Figura 6. Ejemplos de plantas de las ramblas de la cuenca del Segura que proveen servicios ecosistémicos. A: *Opuntia maxima* (alimento para seres humanos y medina tradicional); B: *Juniperus oxycedrus* (alimento para seres humanos y ornamental); C: *Cistus albidus* (alimento para especies silvestres, mantenimiento de polinizadores y ornamental); D: *Rosmarinus officinalis* (medicina tradicional, alimento para especies silvestres, mantenimiento de polinizadores y ornamental); E: *Tamarix* spp. (leña y ornamental); F: *Stipa tenacissima* (medicina tradicional y cestería).

Figure 6. Examples of plants from the *ramblas* of the Segura basin that provide ecosystem services. **A:** *Opuntia maxima* (food for humans and traditional medina); **B:** *Juniperus oxycedrus* (food for humans and ornamental); **C:** *Cistus albidus* (food for wild species, maintenance of pollinators and ornamental); **D:** *Rosmarinus officinalis* (traditional medicine, food for wild species, maintenance of pollinators and ornamental); **E:** *Tamarix* spp. (firewood and ornamental); **F:** *Stipa tenacissima* (traditional medicine and basketwork).

Conclusiones

- 1) Las especies que componen las comunidades vegetales de las ramblas de la cuenca del Segura estudiadas muestran un claro perfil xerófilo, con la presencia dominante de taxones perennes, de pequeño tamaño, principalmente fanerófitas y caméfitas, con hojas de textura blanda, flores pequeñas de colores claros (amarillo y blanco), agrupadas en inflorescencias y frutos pequeños de colores pardos; con raíces simples, sin defensas físicas en hojas y tallos, y que utilizan la anemocoria como principal mecanismo de dispersión.
- 2) Los análisis multivariantes aplicados seleccionaron el tipo de crecimiento (caméfitos frente a fanerófitos), el de dispersión y su relación con el color del fruto y la existencia o no de defensas físicas como los rasgos biológicos más significativos para definir grupos de plantas que habitan las ramblas estudiadas.
- 3) Más del 90% de las especies estudiadas proporcionan algún tipo de servicio ecosistémico a la sociedad. Destaca el gran número de taxones (más del 50 %) utilizados como medicinas naturales.
- 4) Los rasgos biológicos de las especies estudiadas en las ramblas de la cuenca del Segura pueden ser vinculados a su capacidad para proveer servicios ecosistémicos a la población humana.

Agradecimientos

Este trabajo ha sido financiado por el proyecto de referencia: CGL2017-84625-C2-2-R, del Ministerio de Economía, Industria y Competitividad y los Fondos FEDER (Fondo Europeo de Desarrollo Regional). Un agradecimiento especial a los Profesores Diego Rivera y Francisco Alcaraz que confirmaron muchas de las especies vegetales recolectadas en las ramblas.

Material digital suplementario

Existe un <u>Anexo</u> como material digital suplementario.

Referencias

Alcaraz F, Botías M, García R, Ríos S, Rivera D & Robledo A. 2002. Flora básica de la Región de Murcia. Murcia: Sociedad Cooperativa de Enseñanza Severo Ochoa.

Balvanera P & Cotler H. 2007. Acercamientos al estudio

- de los servicios ecosistémicos. Gaceta Ecológica 84-85: 8-15.
- Benítez G, González-Tejero MR & Molero-Mesa J. 2010. Pharmaceutical ethnobotany in the western part of Granada province (southern Spain): Ethnopharmacological synthesis. Journal of Ethnopharmacology 129: 87–105 https://doi.org/10.1016/j.jep.2010.02.016
- Chirino E, Puértolas J, García JI, Gastón A & Prada MA. 2013. Rhamnus spp (Rhamnus alaternus L.; Rhamnus lycioides L.). En Producción y manejo de semillas y plantas forestales (Tomo II) (Pemán J. Navarro R. Nicolás J, Prada MA & Serrada R eds.). Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente, pp. 354-367.
- Conesa C. 2006. El medio físico de la Región de Murcia. Murcia: Universidad de Murcia.
- Cornelissen JH, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, Van der Heijden MG, Pausas JG & Poorter H. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51: 335-380. https://doi.org/10.1071/BT02124
- De Bello F, Lavorel S, Díaz S, Harrington R, Johannes H, Cornelissen JH, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, Martins P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA & Harrison PA. 2010. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation 19: 2873-2893. https://doi.org/10.1007/s10531-010-9850-9
- Esteve MA, Lloréns M & Martínez C. 2003. Los recursos naturales de la Región de Murcia. Murcia: Servicio de Publicaciones de la Universidad de Murcia.
- Fossati J, Pautou G & Peltier JP. 1999. Water as resource and disturbance for wadi vegetation in a hyperarid área (Wadi Sannur, Eastern Desert, Egypt). Journal of Arid Environments 43: 63–77
- García-Llorente M, Martín-López B, Díaz S & Montes C. 2011. Can ecosystem properties be fully translated into service values? An economic valuation of aquatic plant services. Ecological Applications 21(8): 3083-3103. https://doi.org/10.2307/41417113
- Garnier E. & Navas, ML. 2012. A trait-based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology. A review. Agronomy for Sustainable Development 32: 365– 399. https://doi.org/10.1007/s13593-011-0036-y
- Gómez R, Hurtado I, Suárez ML & Vidal-Abarca MR. 2005. Ramblas in south-east Spain: threatened and valuable ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 387-402. https://doi.org/10.1002/aqc.680
- Hanisch M, Schweiger O, Cord AF, Volk M & Knapp S. 2020. Plant functional traits shape multiple ecosystem services, their trade-offs and synergies in grasslands. Journal of Applied Ecology 00: 1-16. https://doi.org/10.1111/1365-2664.13644
- Herrera CM. 1989. Frugivory and seed dispersal by carnivorous mammals, and associated fruit characteristics, in undisturbed Mediterranean habitats. Oikos 55:250-262. https://doi.org/10.2307/3565429

- Herrera CM. 2020. Flower traits, habitat, and phylogeny as predictors of pollinator service: a plant community perspective. Ecological Monographs 90(2): e01402. https://doi.org/10.1002/ecm.1402
- IBM Corporation. 2016. IBM SPSS Statistics for Windows, Ver 24.0. Armonk, NY: IBM Corp.
- Lavorel S & Garnier E. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology 16(5): 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x
- MA (Millennium Ecosystem Assessment). 2005. Ecosystems and human well-being. Washington, D.C.: Island Press.
- Martín MC, Marrero P & Nogales M. 2003. Seasonal variation in the diet of wild rabbits Oryctolagus cuniculus on a semiarid Atlantic island (Alegranza, Canarian Archipelago). Acta Theriologica 48(3): 399-410. https://doi.org/10.1007/BF03194178
- Martín-López B. & Montes C. 2011. Biodiversidad y servicios de los ecosistemas. En Biodiversidad en España. Bases de la sostenibilidad ante el cambio global. Observatorio de Sostenibilidad de España (OSE ed.). Madrid: Mundi-Prensa Libros, pp.1-26.
- OISMA (Oficina de Impulso Socioeconómico del Medio Ambiente de la Región de Murcia). 2004. Características climáticas de la Región de Murcia. Disponible en http://www.murcianatural.carm.es/web/guest/clima (accedido el 12-V-2020).
- Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, . . . Cornelissen JHC. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61(3): 167-234. http://dx.doi.org/10.1071/BT12225
- Rivera D, Obon C, Inocencio C, Heinrich M, Verde A, Fajardo J & Llorach R. 2005. The ethnobotanical

- study of local Mediterranean food plants as medical resources in Southern Spain. Journal of Physiology and Pharmacology 56, Suppl 1, 97.114
- Sánchez P, Guerra J, Jiménez JF, Cánovas JL, Torrente P, Sotomayor JA & Jordán MJ. 2015. Guía de las plantas aromático-medicinales y otras especies de interés económico del Noroeste de la Región de Murcia. Aprovechamiento y medidas de gestión. Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente.
- Sánchez-Díaz M. 1989. Adaptación de la vida vegetal a la aridez. En Zonas áridas en España. Madrid: Real Academia de Ciencias Exactas, Físicas y Naturales, pp. 175-197.
- Stokes A, Atger C, Glyn Bengough A, Fourcaud T & Sidle RC. 2009. Desirable plant root traits for protecting natural and engineered slopes against land-slides. Plant and Soil 324:1–30. https://doi.org/10.1007/s11104-009-0159-y
- Vidal-Abarca MR, Gómez R & Suarez ML. 2004. Los ríos de las regiones semiáridas. Ecosistemas 2004(1): 1-15.
- Vidal-Abarca MR. & Suárez ML. 2006. Los caminos del agua en el ámbito Mediterráneo semiárido: un estudio ecológico-ambiental de las ramblas de sureste Ibérico. Universidad do Algarve. V Congreso ibérico, gestión y planificación del agua: cuencas compartidas. Claves para la gestión sostenible del agua y del territorio. Faro: Universidad do Algarve.
- Vidal-Abarca MR, Gómez R, Sánchez-Montoya MM, Arce MI, Nicolás N & Suárez ML, 2020. Defining Dry Rivers as the Most Extreme Type of Non-Perennial Fluvial Ecosystems. Sustainability 12, 7202; https://doi.org/10.3390/su12177202
- Ward J. 1963. Hierarchical grouping to optimize and objective function. Journal of the American Statistical Association 58: 236-244.