
Summary. The role of the tumor microenvironment
(TME) is critical in cancer pathobiology. Of the
components of the TME, cancer-associated fibroblasts
(CAFs) play a major role. Breast cancer is a typical
tumor type, forming abundant tumor stroma, and CAFs
are involved in various aspects of breast cancer,
including carcinogenesis, tumor progression, invasion,
metastasis, inflammation, metabolism, therapy
resistance, and prognosis. Various factors, such as
growth factors, cytokines, hormones secreted from
CAFs, paracrine effects promoted by the extracellular
matrix (ECM), and mechanical pressure, are involved in
cancer development, and there are various crosstalk and
signaling pathways among CAFs, cancer cells, epithelial
cells, and the ECM. Recent studies have evaluated the
potential of CAFs as therapeutic targets in breast cancer.
In this review, we discuss the role of CAFs and their
clinical implications.
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Introduction

With the progression of cancer research studies, the
importance of the tumor microenvironment (TME) is
becoming clear. The TME is a nontumor, non-
transformed element present in the region surrounding
the tumor and includes immune system elements (such
as macrophages and lymphocytes), blood vessel cells,
fibroblasts, myofibroblasts, mesenchymal stem cells,
adipocytes, and extracellular matrix (ECM). In breast
cancers, the TME plays an important role in tumor
formation, the progression from ductal carcinoma in situ
(DCIS) to invasive carcinoma, and metastasis (Hu et al.,
2008; Mao et al., 2013). The tumor:stroma ratio and
stroma type are associated with the recurrence, distance
metastasis, and survival of breast cancer, indicating the
importance of the TME in breast cancer (de Kruijf et al.,
2011; Qian et al., 2011a,b). 

Of the elements that form the TME, the most
important and most extensively investigated are cancer-
associated fibroblasts (CAFs) (Hu et al., 2008). CAFs
are located adjacent to cancer cells and are involved in
tumor initiation, tumor-stimulatory inflammation,
metabolism, metastasis, drug response, and immune
surveillance (Mao et al., 2013). In breast cancers, CAFs
are the most common component of the tumor stroma
and are involved in the determining tumor biology.
Recently, preclinical and clinical trials have been
performed to determine the effects of targeting CAFs in
various tumors (Gonda et al., 2010). 

In this review, we will discuss the various roles of
CAFs in breast cancer and the clinical implications of
CAFs in the development of anticancer therapies.
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Origin and phenotypes of CAFs

Although CAFs play an important role in tumor
biology by crosstalk with tumor cells, there is no clear
definition of CAFs because the cellular origin and
markers of CAFs are unclear. CAFs have been proposed
to originate from resident fibroblasts (Moskovits et al.,
2006; Kojima et al., 2010), bone marrow-derived
mesenchymal stem cells, cancer cells undergoing the
epithelial-mesenchymal transition (EMT) (Petersen et
al., 2003), endothelial cells undergoing the endothelial-
mesenchymal transition (Zeisberg et al., 2007), and
adipocytes (Jotzu et al., 2010). 

Like tumor cells, the TME is heterogeneous owing
to the existence of multiple subpopulations of
fibroblasts. Therefore, there have been efforts to identify
specific markers of CAFs with different characteristics,
including the positive markers α-smooth muscle actin
(SMA) (Huang et al., 2010), CD10 (Desmedt et al.,
2012), podoplanin (Schoppmann et al., 2012), fibroblast
activation protein (FAP) (Park et al., 1999), tenascin-C
(Spenle et al., 2015), platelet-derived growth factor
receptor (PDGFR) α/β (Forsberg et al., 1993; Shao et al.,
2000), and fibroblast-specific protein 1 (FSP1)
(O'Connell et al., 2011) and the negative markers
caveolin-1 (Mercier et al., 2008) and laminin (Tlsty,
2001). Each specific CAF phenotype has unique
characteristics depending on variable marker expression,
with CAFFAP, CAFFSP1, CAFPDGFRα, and CAFPDGFRβ
representing the most common phenotypes (Cortez et al.,
2014). The CAFFAP phenotype is associated with
characteristics of activated CAFs, including invasive and
immunomodulatory functions, whereas the CAFFSP1
phenotype is associated with metastatic colonization and
macrophage infiltration. Moreover, the CAFPDGFRα
phenotype is associated with angiogenesis and
macrophage recruitment, and the CAFPDGFRβ phenotype
is associated with metastatic spread and high interstitial
fluid pressure. Therefore, it is difficult to clearly define
CAFs because of variability in their cellular origins and
markers. Some authors have defined CAFs as a dynamic
status of fibroblast-like cells in the tumor region, called
‘CAF status’ (Madar et al., 2013). 

Signaling pathways mediating the interaction
between breast cancer cells and CAFs

CAFs must be activated to affect breast cancer cells;
this process involves multiple molecular signaling
pathways. First, the autocrine signaling loop of tumor
cell-derived factors, such as transforming growth factor
(TGF)-β and CXCL12/SDF-1, activate CAFs (Kojima et
al., 2010). Next, molecules secreted from cancer cells,
such as PDGF-α/β (Shao et al., 2000), basic fibroblast
growth factor (bFGF) (Strutz et al., 2000), and
interleukin (IL)-6 (Hugo et al., 2012), can activate
resident fibroblasts. Finally, downregulation of tumor-
suppressor genes, such as p53 (Moskovits et al., 2006),
p21 (Trimis et al., 2008), PTEN (Trimboli et al., 2009),
caveolin-1 (Trimmer et al., 2011), and p16INK4A (Al-
Ansari et al., 2013), by CAFs can induce
procarcinogenic effects in breast stromal fibroblasts.
Effects of CAFs on breast cancer

CAFs influence breast cancer cells through various
mechanisms and are involved in the initiation,
progression, metastasis, therapeutic effects, and
prognosis of breast cancer. The associations between
CAF markers and breast cancer clinicopathological
characteristics are summarized in Table 1.
Carcinogenesis

CAFs can be activated by interactions with cancer
cells. However, several reports have proposed that CAFs
can also mediate carcinogenesis, even before the
existence of cancer cells. In a previous study, several
proteins extracted from normal fibroblasts were shown
to be involved in breast carcinogenesis (Fleming et al.,
2010). Additionally, normal fibroblasts from reduction
mammoplasty have been shown to have tumorigenic
potency in vitro and in vivo (Dumont et al., 2013). In
animal models, genetic manipulation or irradiation of
fibroblasts increases cancer incidence (Trimboli et al.,
2009; Cichon et al., 2010; Nguyen et al., 2011). In
addition, inoculation of breast cancer cells (MCF-7 and
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Table 1. Correlation between CAF marker expression and the clinic-pathologic parameters of breast cancer.
CAF marker T N M Grade ER PR HER-2 Ki-67 Drug resistance DFS OS Reference
Loss of caveolin-1 Mercier et al., 2008; Witkiewicz et al., 2009, 2010
α-SMA Yazhou et al., 2004; Yamashita et al., 2012
Podoplanin Schoppmann et al., 2012; Niemiec et al., 2014
FAP Ariga et al., 2001
MMPs Del Casar et al., 2009; Ranogajec et al., 2012
Tenascin-C Ishihara et al., 1995; Iskaros et al., 1998
PDGFR α/β Weigel et al., 2013
FSP1 Park et al., 2015
NG2 Park et al., 2015
Shadow mean significant association.



MDA-MB-231) with CAFs has been shown to promote
breast cancer development compared with that of breast
cancer cell inoculation alone (Trimis et al., 2008). The
mechanisms through which CAFs influence breast
carcinogenesis include secretion of mutagenic materials,
such as reactive oxygen species, and inactivation of
tumor-suppressor genes. Indeed, a previous study
showed that hyperactivation of PTEN in CAFs
suppressed the role of CAFs in tumor initiation
(Trimboli et al., 2009).
Breast cancer progression

CAFs contribute to breast cancer progression
through paracrine effects by secreting various
substances. First, CAFs secrete various growth factors,
such as hepatic growth factor (HGF), epidermal growth
factor (EGF), bFGF, and insulin-like growth factor
(IGF), which are involved in breast cancer progression
(Tyan et al., 2011; Locatelli et al., 2012). Second, CAFs
secretes cytokine. For example, SDF-1 activates CAFs
and acts on tumor cell progression by cross-reacting with
CXCR4 on the cancer cell surface (Orimo et al., 2005;
Kojima et al., 2010). Additionally, CAFs secrete
hormones and are a source of local estrogen (Sasano et
al., 2010). Moreover, CAFs release cancer-associated
aromatase and promote tumor cell progression
(Yamaguchi et al., 2005; Miki et al., 2007).
Breast cancer cell invasion and metastasis

CAFs play a key role in invasion and metastasis in
breast cancers. Studies have shown that CAFs promote
the EMT (Soon et al., 2013), which involves molecules
such as TWIST (Lee et al., 2015) and SNAIL (Desmedt
et al., 2012). CAFs also promote ECM degradation by
matrix metalloproteinases (MMPs) and plasminogen
activator (Kessenbrock et al., 2010), leading to
modulation of cancer cell motility and the EMT through

the degradation of growth factors and cytokines
(Przybylo et al., 2007; Roy et al., 2009). Secretion of
vascular endothelial growth factor by CAFs promotes
angiogenesis and invasion (Hu et al., 2009).
Additionally, CAFs are associated with the formation of
a mechanical gradient pressure or force during
tumorigenesis when CAFs are recruited and migrate
from the tumor margin into the tumor center region; this
force may promote tumor invasion (Karagiannis et al.,
2012). Lastly, CAFs promotes the survival of circulating
tumor cells (CTCs) by inducing circulating tumor cell
stemness (Mani et al., 2008). Moreover, CAFs are
involved in the invasion and metastasis of breast cancer,
as well as organ-specific metastasis. For example, CAFs
have been reported to be present in 80% of cases of
brain metastasis associated with primary breast cancer
(Duda et al., 2010) and to secrete CCL5, which
stimulates CD4+ FOXP3+ regulatory T cells to promote
lung metastasis of primary breast cancer (Tan et al.,
2011).
Drug resistance

Breast cancer is treated with various
chemotherapies, including endocrine therapy and
molecular targeted therapy, and CAFs are involved in
mediating drug resistance to these therapies. Collagen
type I, which is secreted by CAFs, is involved in
chemotherapy resistance (Loeffler et al., 2006);
specifically, chemotherapy-induced DNA damage in
fibroblast induces the secretion of WNT16B, activates
nuclear factor (NF)-κB, and induces mitoxantrone
resistance (Johnson et al., 2013). Moreover, induction of
HMGB1 expression by CAF is involved in doxorubicin
resistance (Amornsupak et al., 2014). Several
mechanisms involved in resistance to tamoxifen, a type
of endocrine therapy, have been described, including
mitogen-activated protein kinase (MAPK) and Akt
hyperactivation by CAFs (Shekhar et al., 2007), CAF-
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Table 2. CAF targeted anti-cancer therapy.

Action mechanism Target Drug Types of cancer References

CAF differentiation
DNMT1 5-Aza-2′-deoxycytidine Leukemia, lung cancer Thottassery et al., 2014
FAPα Sibrotozumab Colon cancer, lung cancer Scott et al., 2003

CAF-cancer cell interaction

HGF/Met
NK4 gene therapy Mesothelioma, gastric cancer Zhu et al., 2014; Tada et al., 2015
Anti-HGF mAbs Glioma Kim et al., 2006

MMPs Non-peptidic MMP inhibitors, TIMPs Advanced cancer Molina et al., 2005
SDF1/CXCL12 AMD-3100 Skin cancer Sarchio et al., 2014
Smo IPI-926 Sarcoma Campbell et al., 2014

CAF-ECM interaction PAI-1/uPAR Urokinase-derived peptide (A6) Ovarian cancer Gold et al., 2012
CAF-endothelial interaction PDGF-C Antibodies used with anti-VEGF-A Renal cell carcinoma Crawford et al., 2009

CAF targeted anti-
inflammatory signaling

CD11b+myeloid
stromal cells CTL Brain tumor Zhang et al., 2008

COX-2 Celecoxib, Rofecoxib Colon cancer Buecher et al., 2005



mediated mitochondrial dysfunction (Martinez-
Outschoorn et al., 2011), EGF receptor (EGFR) and
phosphoinositol 3-kinase (PI3K)/AKT pathway
activation (Pontiggia et al., 2012), and the EMT,
promoted by secretion of inflammatory cytokines from
CAFs (Mao et al., 2013). CAFs are also involved in
target resistance. In triple-negative breast cancer
(TNBC), HGF secreted by CAFs activates MET and
induces resistance to gefitinib, an EGFR inhibitor
(Mueller et al., 2012). 
Immune and metabolic alterations

CAFs induce tumor-associated inflammation.
Because CAFs release various cytokines and
chemokines, they attract immune cells to the TME
(Galdiero et al., 2013; Raz et al., 2013). Among
mediators secreted by CAFs, CCL2 (Qian, et al., 2011),
IL-6, tumor necrosis factor (TNF), and SDF-1 (Raz et
al., 2013) are involved in immune cell recruitment.
These mediators also affect the functional differentiation
of immune cells.

CAFs are also involved in cancer metabolism in
breast cancer. In general, the metabolism of malignant
neoplasms can be explained by the Warburg effect
theory, which is a metabolic shift towards glycolysis
rather than oxidative phosphorylation (OXPHOS) in the
mitochondria (Warburg, 1956). However, in breast
cancers, there is metabolic crosstalk between the tumor
cells and stromal cells, called the reverse Warburg effect
theory (Pavlides et al., 2009; Bonuccelli et al., 2010;
Martinez-Outschoorn et al., 2010a; Pavlides et al.,
2010). In breast cancer cells, reactive oxygen species
(ROS), such as nitric oxide (NO), are generated, and
stromal cells are subjected to oxidative stress, resulting
in glycolysis, autophagy (mitophagy), and mitochondrial
dysfunction through hypoxia-inducible factor (HIF)-1α
and NF-κB pathways. Pyruvate and lactate generated by
glycolysis in stromal cells enters into tumor cells and
produces ATP through OXPHOS, thereby promoting the
survival and growth of tumor cells. In breast cancer,
CAFs exhibiting loss of caveolin-1 expression owing to
degradation by autophagy, are thought to interact with
tumor cells (Pavlides et al., 2009, Martinez-Outschoorn
et al., 2010, 2011).
Breast cancer prognosis

CAFs are involved in the initiation, progression,
metastasis, and therapeutic effects of breast cancer and
are therefore expected to be associated with prognosis.
Studies have shown that the expression of CAF markers
is associated with poor prognosis and tumor
aggressiveness. In breast cancers, the expression of
ECM-related genes (Bergamaschi et al., 2008) and tumor
stroma histologic type are associated with prognosis
(Ahn et al., 2012), suggesting that the tumor stroma is an
important factor affecting breast cancer prognosis.

Future targets for breast cancer treatment

Because CAFs affect a wide range of processes,
including initiation, progression, invasion, metastasis,
and therapy resistance, and are more genetically stable
than tumor cells, therapies that target CAFs may be an
effective approaches for treating breast cancer (Tchou
and Conejo-Garcia, 2012). Therapeutic agents can target
either the CAFs directly or the interaction between CAFs
and other cells/components, such as cancer cells, the
ECM, and endothelial cells. Many of these types of
agents are under preclinical or clinical evaluation
(Gonda et al., 2010).
Conclusion

CAFs are a main component of the TME and
originate from various types of cells. Moreover, CAFs
express a range of different markers; therefore, the
definition of CAFs has not yet been clearly established.
Because breast cancers have an abundant tumor stroma,
CAFs, the main component of the tumor stroma, affect
the tumor biology of breast cancer and are involved in
the carcinogenesis, progression, invasion, metastasis,
inflammation, metabolism, therapy resistance, and
prognosis of breast cancer. Various factors, including
growth factors, cytokines, hormones released by CAFs,
paracrine effects of the ECM, and mechanical pressure,
are involved in the mediation of breast cancer biology by
CAFs. Multiple crosstalk and signaling pathways
mediate the interactions among CAFs, cancer cells,
epithelial cells, and the ECM. Therefore, targeting of
CAFs may represent a novel anticancer strategy, and
various agents are in preclinical and clinical trials.
However, the use of these agents may be limited because
of the diversity of biological pathways active in CAFs,
with lack of a specific, predominant pathway identified.
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