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Resumen

Esta memoria ha sido elaborada durante el periodo de disfrute de una beca FPI de la
Fundacién Séneca - Agencia de Ciencia y Tecnologia de la Regién de Murcia. Una ayuda
complementaria de dicho programa nos ha permitido realizar una estancia en la Facultad
de Matemadticas y Fisica de la Universidad Carolina de Praga (enero-abril de 2020).

Esta investigacion también ha sido financiada parcialmente por el proyecto de inves-
tigaciéon 20797/P1/18 de la Fundacién Séneca - Agencia de Ciencia y Tecnologia de la
Region de Murcia, y por el proyecto MTM2017-86182-P del Ministerio de Economia y
Competitividad y FEDER.

La tesis doctoral tiene como marco general la teoria de los reticulos de Banach. Mas
concretamente, se estudian los reticulos de Banach libres generados por determinadas
estructuras, tales como los espacios de Banach y los reticulos, si bien en este ultimo caso
nos centramos mas en el caso particular de los conjuntos linealmente ordenados.

El concepto de objeto libre es bien conocido, puede expresarse en el lenguaje general de
la teoria de categorias, y se ha probado de gran utilidad en diversas areas tanto en analisis
como en algebra. Sin embargo, en el contexto de los reticulos de Banach su introducciéon
ha sido reciente. En [15] es donde se menciona por primera vez, definiéndose tal concepto
para conjuntos, y posteriormente, en [8], se generaliza a espacios de Banach, el cual
contiene al caso de los conjuntos como caso particular.

Dentro del estudio de los reticulos de Banach, nos centramos en estudiar dos propiedades:
condiciones de cadena y proyectividad, las cuales marcan en gran parte la estructura de
esta memoria. Dicho esto, podemos ambientar este texto dentro del Analisis Funcional, y
en cierto sentido, la Topologia General.

Los resultados originales incluidos en esta tesis pueden encontrarse en nuestros trabajos:

[5] AVILES, A., MARTINEZ-CERVANTES, G., AND RODRIGUEZ ABELLAN, J. D. On projective
Banach lattices of the form C(K) and FBL[E]. J. Math. Anal. Appl. 489, 124129
(2020)
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[6] AVILES, A., MARTINEZ-CERVANTES, G., AND RODRIGUEZ ABELLAN, J. D. On the
Banach lattice ¢y. To appear in Rev. Mat. Complut. https://doi.org/10.1007/s13163-
019-00342-x, 2020

[7] AVILES, A., PLEBANEK, G., AND RODRIGUEZ ABELLAN, J. D. Chain conditions in free
Banach lattices. J. Math. Anal. Appl. 465 (2018), 1223-1229

[9] AVILES, A., AND RODRIGUEZ ABELLAN, J. D. The free Banach lattice generated by a
lattice. Positivity 23 (2019), 581-597

[10] AVILES, A., AND RODRIGUEZ ABELLAN, J. D. Projectivity of the free Banach lattice
generated by a lattice. Archiv der Mathematik 113 (2019), 515-524

En la introducciéon de cada capitulo indicaremos explicitamente en cudles de ellos se
basa cada uno.

El Capitulo 1 sirve como introduccidn a la teoria general de los reticulos de Banach.
En €l se dan las definiciones bésicas y las propiedades que uno necesita conocer para poder
comprender el resto de contenidos que aqui se muestran. Con esto, ademads, se intenta que
la memoria sea tan autocontenida como sea posible, asi como establecer en gran medida la
notacién que se usa a lo largo de todo el texto.

Esta dividido en tres secciones: la Seccién 1.1, como pequeiia introduccion histdrica al
estudio de los reticulos vectoriales y reticulos de Banach, la Seccién 1.2, correspondiente
a los reticulos vectoriales, y la Seccion 1.3, en relacién a los reticulos de Banach. En
esta ultima se introduce, ademads, el concepto de reticulo de Banach libre generado por
un conjunto, y por un espacio de Banach, dos de los principales protagonistas de este
texto, y se enuncian sus principales propiedades, estudiadas originalmente en [15] y [8],
respectivamente.

En el Capitulo 2 se define un nuevo objeto, el reticulo de Banach libre generado por
un reticulo, siguiendo las mismas ideas de [15] y [8]. Grosso modo, el reticulo de Banach
libre generado por un reticulo es un reticulo de Banach que estd generado, como reticulo
de Banach, por una copia de los elementos del reticulo.

El resultado principal de este capitulo es una descripcién explicita, como un cierto
espacio de funciones, del reticulo de Banach libre generado por un reticulo. En [8] se hace
lo mismo para el reticulo de Banach libre generado por un conjunto, y para el reticulo
de Banach libre generado por un espacio de Banach. La descripcion explicita en nuestro
caso es andloga a la comentada en ese articulo. Sin embargo, la prueba de ello requiere
herramientas completamente diferentes.

En la Seccion 2.1 damos la definicién de reticulo de Banach libre generado por un
reticulo, esto es, como aquel que cumple una cierta propiedad universal de objeto libre, y
enunciamos el teorema principal del capitulo, que nos da la descripcion explicita de tal
reticulo de Banach mencionada lineas arriba.
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Como apoyo a la demostracién, lo que hacemos en primer lugar, en la Seccion 2.2, es
demostrar que, efectivamente, tal objeto existe y es tnico salvo isometrias. Demostramos
que cualesquiera dos reticulos de Banach candidatos a ser libres son, de hecho, isométricos
entre si, y, posteriormente, describimos el reticulo de Banach libre generado por un reticulo
como un cierto cociente del reticulo de Banach libre generado por el reticulo de partida
visto como conjunto, olvidandonos de su estructura reticular.

En la Seccién 2.3 lo que hacemos es observar que el caso mds natural de considerar el
reticulo de Banach libre generado por un reticulo es cuando este es distributivo (es decir,
las operaciones de supremo e infimo son distributivas entre si), lo cual nos facilita la prueba
del teorema principal, y que el caso general se reduce a este de manera sencilla.

La Seccion 2.4 estd dedicada a la prueba del teorema principal, que nos da la descripcién
explicita del reticulo de Banach libre generado por un reticulo como un cierto espacio de
funciones. La idea de la prueba es demostrar que tal espacio de funciones, que describiremos
en su momento, es isométrico al cociente comentado anteriormente. Ahora bien, nos vemos
obligados a distinguir dos casos. En primer lugar, consideramos el caso en el que el reticulo
es finito, pues gracias a B. de Pagter y a A. W. Wickstead [15] sabemos que, con esta
hipétesis, el reticulo de Banach libre generado por el reticulo visto como conjunto es
isomorfo al reticulo de Banach C),([—1, 1]") de las funciones continuas y positivamente
homogéneas sobre [—1, 1]", siendo n la cardinalidad del reticulo, y el cual no es dificil de
manejar. El caso infinito lo reducimos, en cierto sentido, al caso finito.

Finalmente, en la Seccidn 2.5 probamos que, en el caso en el que el reticulo es un
conjunto linealmente ordenado, la copia del mismo dentro del reticulo de Banach libre
generado por €l se comporta como la base sumante de ¢y desde el punto de vista de los
espacios de Banach.

En el Capitulo 3 estudiamos determinadas condiciones de cadena para los reticulos de
Banach libres generados por conjuntos linealmente ordenados y por espacios de Banach.

En la Seccién 3.1 recordamos las definiciones de las condiciones de cadena para
reticulos de Banach que se estudian en el capitulo, esto es, las definiciones de condicién de
cadena o-acotada y condicién de cadena contable. Ademas, en la misma enunciamos los
principales teoremas que demostramos después.

Por un lado, en la Seccién 3.2, demostramos que el reticulo de Banach libre generado
por un conjunto linealmente ordenado satisface la condicién de cadena contable si, y solo
si, el conjunto linealmente ordenado se embebe dentro del conjunto de los nimeros reales
con su orden usual. Para ello, nos sera de gran utilidad la conocida caracterizacién de
los subconjuntos linealmente ordenados de la recta real como aquellos separables en la
topologia del orden para los cuales el conjunto de saltos es contable. Ademas, en la prueba
del mismo resultado usaremos un hecho que ya tiene bastante interés por si solo, esto es,
que si L es un subconjunto del conjunto linealmente ordenado M, entonces el reticulo de
Banach libre generado por IL es isométrico al reticulo de Banach generado por la copia de
L dentro del reticulo de Banach libre generado por M, al igual que ocurre en el caso de los
reticulos de Banach libres generados por conjuntos.

Mas aun, demostraremos que si el conjunto linealmente ordenado se embebe en la
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recta real, el reticulo de Banach libre generado por él no solo satisface la condicién de
cadena contable, sino que es ademds o-centrado.

La Seccién 3.3 esta dedicada al caso del reticulo de Banach libre generado por un
espacio de Banach. B. de Pagter y A. W. Wickstead ya probaron en [15] que el reticulo de
Banach libre generado por un conjunto siempre satisface la condicién de cadena contable.
Nosotros vamos mas alld, y demostramos que, en efecto, tal reticulo de Banach satisface
la condicién de cadena o-acotada, la cual implica trivialmente la condicién de cadena
contable. Es mas, esto lo probamos para el caso en el que el objeto de partida es un espacio
de Banach, del cual se deduce el caso anterior.

Mads concretamente, usando el teorema de Ramsey, demostramos que el reticulo de
Banach de las funciones continuas y positivamente homogéneas sobre la bola cerrada
unidad del dual de cualquier espacio de Banach E, Cp;,(Bg-), satisface tal condicién. Pero
ahora, como el reticulo de Banach libre generado por cualquier espacio de Banach F es un
subreticulo de Banach de C);(Bg-), y la condicién de cadena o-acotada es hereditaria, se
tiene como caso particular que este ultimo también satisface la misma condicion.

Finalmente, en la Seccién 3.4 estudiamos la posibilidad de la existencia de condiciones
de cadena mds fuertes sobre el reticulo de Banach C,,(Bg-), y en consecuencia, sobre el
reticulo de Banach libre generado por el espacio de Banach F.

El Capitulo 4 estd dedicado al estudio de la proyectividad de ciertos reticulos de
Banach.

De manera similar a lo que hacemos en los capitulos anteriores, la introduccion, que
corresponde con la Seccién 4.1, la dedicamos a dar la definiciédn del concepto clave del
capitulo, en este caso, la de reticulo de Banach \-proyectivo para A > 1, y enunciamos los
diferentes resultados que demostramos a lo largo de él.

En la Seccién 4.2 enunciamos y demostramos una serie de resultados simples que son
de utilidad para probar los teoremas principales del capitulo.

En las Secciones 4.3 y 4.4 nos centramos en el caso del reticulo de Banach libre generado
por un reticulo. Por un lado, demostramos que el reticulo de Banach libre generado por un
reticulo finito es siempre \-proyectivo para cualquier A > 1 (o 1"-proyectivo), mientras
que si el reticulo de partida es un conjunto linealmente ordenado infinito, entonces el
reticulo de Banach libre generado por él no es A-proyectivo para ningtin A > 1 (es decir, no
es co-proyectivo, seglin nuestra terminologia). En la demostracién de ambos resultados
usamos fuertemente el hecho de que el reticulo de Banach libre generado por un reticulo
es un cociente del reticulo de Banach libre generado por el reticulo visto simplemente
como conjunto. Otra de las claves del primer resultado es que el reticulo de Banach libre
generado por cualquier conjunto es siempre 1*-proyectivo, como prueban B. de Pagter y A.
W. Wickstead en [15]. Para demostrar el segundo de los resultados, lo que hacemos es ver
que los reticulos de Banach libres generados por el conjunto de los numeros naturales, y el
conjunto de los nimeros naturales junto con el +oo, vistos como conjuntos linealmente
ordenados, no son co-proyectivos, y después, probamos que, o bien el reticulo de Banach
libre generado por el conjunto de los nimeros naturales, o bien el reticulo de Banach libre
generado por el conjunto de los nimeros naturales junto con el +oco, vistos como conjuntos
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linealmente ordenados, estdn complementados en el reticulo de Banach libre generado por
el conjunto linealmente ordenado de partida, de donde se sigue facilmente el resultado.

La Seccién 4.5 contiene dos resultados principales. Por un lado, demostramos que si
un reticulo de Banach es oco-proyectivo, entonces toda sucesion acotada que pueda ser
llevada via un homomorfismo de reticulos de Banach a la base canénica de ¢y de manera
sobreyectiva debe contener una /;-subsucesién, de donde obtenemos, en particular, que ni
co ni ¢, (para 2 < p < 00) SON co-proyectivos.

El otro resultado que probamos en esta seccién nos dice que si E es un espacio de
Banach con la propiedad de que el reticulo de Banach libre generado por €l es co-proyectivo,
entonces E tiene la propiedad de Schur (es decir, toda sucesion débilmente convergente
converge en norma). Dicho en otras palabras, para que el reticulo de Banach libre generado
por un espacio de Banach E sea oco-proyectivo, la estructura de ' debe ser bastante parecida
ala de ¢;(A) para algtin conjunto A.

Mas aun, al final de esta seccion proporcionamos un contraejemplo que nos dice que,
en la categoria de los espacios de Banach no separables, el reciproco de este resultado no
es cierto.

En la Seccién 4.6 probamos que si K es un espacio topoldgico compacto de Hausdorff,
entonces el reticulo de Banach de las funciones continuas sobre K, C'(K), con la norma del
supremo es 1T -proyectivo si, y solo si, K es un retracto de entornos absoluto en la categoria
de los espacios topoldgicos compactos de Hausdorff. B. de Pagter y A. W. Wickstead ya
probaron en [15] que si C'(K) es 1T-proyectivo, entonces K es un retracto de entornos
absoluto en categoria de los espacios topologicos compactos de Hausdorff. Sin embargo,
solamente consiguieron probar el reciproco bajo la hipétesis adicional de que K esta dentro
de R™.

Finalmente, en la Seccidn 4.7 estudiamos la complementabilidad del reticulo de Banach
¢o en el reticulo de Banach libre generado por él visto como espacio de Banach, mientras
que en la Seccién 4.8 proponemos varios problemas abiertos que tenemos en relacién a los
reticulos de Banach proyectivos.






Abstract

This memoir has been prepared during the period of an FPI grant from the Fundacién
Séneca - Agencia de Ciencia y Tecnologia de la Regién de Murcia. A complementary grant
from this program has allowed us to carry out a stay at the Faculty of Mathematics and
Physics of the Charles University in Prague (January-April 2020).

This research was also partially supported by the research project 20797/P1/18 funded
by Fundacién Séneca - Agencia de Ciencia y Tecnologia de la Region de Murcia, and by the
research project MTM2017-86182-P funded by Ministerio de Economia y Competitividad
and FEDER.

The general framework of this doctoral thesis is the theory of Banach lattices. More
specifically, we study the free Banach lattices generated by certain structures, such as
Banach spaces and lattices, although in the latter case we mainly focus on the particular
case of linearly ordered sets.

The concept of free object is well known, can be expressed in the general language of
the theory of categories, and has been proved very useful in various areas in both analysis
and algebra. However, in the context of Banach lattices, it has been recently introduced. It
is mentioned for the first time in [15], defining such a concept for sets, and later, in [8], it
is generalized for Banach spaces, which contains the set case as a particular case.

Within the study of Banach lattices, we focus on studying two properties: chain condi-
tions and projectivity, which mark the structure of this memoir. That said, we can set this
text within Functional Analysis, and in a certain sense, General Topology.

The original results included in this thesis can be found in our works:

[5] AVILES, A., MARTINEZ-CERVANTES, G., AND RODRIGUEZ ABELLAN, J. D. On projective
Banach lattices of the form C(K) and FBL[E]. J. Math. Anal. Appl. 489, 124129
(2020)

[6] AVILES, A., MARTINEZ-CERVANTES, G., AND RODRIGUEZ ABELLAN, J. D. On the
Banach lattice ¢y. To appear in Rev. Mat. Complut. https://doi.org/10.1007/s13163-
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019-00342-x, 2020

[7] AVILES, A., PLEBANEK, G., AND RODRIGUEZ ABELLAN, J. D. Chain conditions in free
Banach lattices. J. Math. Anal. Appl. 465 (2018), 1223-1229

[9] AVILES, A., AND RODRIGUEZ ABELLAN, J. D. The free Banach lattice generated by a
lattice. Positivity 23 (2019), 581-597

[10] AVILES, A., AND RODRIGUEZ ABELLAN, J. D. Projectivity of the free Banach lattice
generated by a lattice. Archiv der Mathematik 113 (2019), 515-524

In the introduction of each chapter we will explicitly indicate which of them is based
on each one.

Chapter 1 is an introduction to the general theory of Banach lattices. In it we give the
basic definitions and properties one needs to know in order to understand the rest of the
content shown here. With this, in addition, we try to make the memoir as self-contained as
possible, as well as to establish the notation that is used throughout the text.

It is divided into three sections: Section 1.1, as a short historical introduction to the
study of vector lattices and Banach lattices, Section 1.2, devoted to vector lattices, and
Section 1.3, in relation to Banach lattices. In this section we also introduce the concept
of free Banach lattice generated by a set, and by a Banach space, two of the main pro-
tagonists of this text, and its main properties, originally studied in [15] and [8], respectively.

In Chapter 2 a new object is defined, the free Banach lattice generated by a lattice,
following the same ideas as [15] and [8]. Roughly speaking, the free Banach lattice
generated by a lattice is a Banach lattice that is generated, as a Banach lattice, by a copy of
the elements of the lattice.

The main result of this chapter is an explicit description, as a certain function space, of
the free Banach lattice generated by a lattice. In [8] the same is done for the free Banach
lattice generated by a set, and for the free Banach lattice generated by a Banach space. The
explicit description in our case is analogous to that discussed in that paper. However, the
proof of this requires completely different tools.

In Section 2.1 we give the definition of a free Banach lattice generated by a lattice, that
is, as one that satisfies a certain universal property of free object, and we state the main
theorem of the chapter, which gives us the explicit description of such a Banach lattice
mentioned above.

In support of the proof, what we do first, in Section 2.2, is to prove that indeed such
an object exists and is unique up to isometries. We prove that any two candidate Banach
lattices to be free are, in fact, isometric to each other, and subsequently describe the
free Banach lattice generated by a lattice as a certain quotient of the free Banach lattice
generated by the starting lattice seen as a set, forgetting about its lattice structure.

In Section 2.3 we observe that the most natural case of considering the free Banach
lattice generated by a lattice is when it is distributive (that is, the operations of supremum
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and infimum are distributive to each other), which makes the proof of the main theorem
easier, and that the general case is reduced to this in a simple way.

Section 2.4 is devoted to the proof of the main theorem, which gives us the explicit
description of the free Banach lattice generated by a lattice as a certain function space.
The idea of the proof is to show that such a function space, which we will describe in due
course, is isometric to the quotient mentioned above. Now, we are forced to distinguish
two cases. First, we consider the case in which the lattice is finite, since thanks to B. de
Pagter and A. W. Wickstead [15] we know that, with this hypothesis, the free Banach lattice
generated by the lattice seen as a set is isomorphic to the Banach lattice Cp,([—1, 1]") of the
continuous and positively homogeneous functions on [—1, 1], where n is the cardinality of
the lattice, and which is not difficult to handle. We reduce the infinite case, in a certain
sense, to the finite case.

Finally, in Section 2.5 we prove that, in the case in which the lattice is a linearly ordered
set, the copy of it within the free Banach lattice generated by it behaves like the summing
basis of ¢y from a Banach space point of view.

In Chapter 3 we study certain chain conditions in free Banach lattices generated by
linearly ordered sets and Banach spaces.

In Section 3.1 we recall the definitions of the chain conditions in Banach lattices
discussed in the chapter, that is, the definitions of the o-bounded chain condition and the
countable chain condition. In addition, in it we state the main theorems that will be later
proved.

On the one hand, in Section 3.2, we prove that the free Banach lattice generated by
a linearly ordered set satisfies the countable chain condition if, and only if, the linearly
ordered set can be embedded into the set of the real numbers with its usual order. For this,
the well-known characterization of the linearly ordered subsets of the real line as those
that are separable in the order topology and for which the set of leaps is countable will be
very useful. Furthermore, in the proof of the same result we will use a fact that is already
quite interesting on its own, that is, if I is a subset of the linearly ordered set M, then the
free Banach lattice generated by L is isometric to the Banach lattice generated by the copy
of LL inside the free Banach lattice generated by M, just as it happens in the case of the free
Banach lattices generated by sets.

Furthermore, we will prove that if the linearly ordered set can be embedded into the
real line, the free Banach lattice generated by it not only satisfies the countable chain
condition, but it is also o-centered.

Section 3.3 is devoted to the case of the free Banach lattice generated by a Banach
space. B. de Pagter and A. W. Wickstead already proved in [15] that the free Banach lattice
generated by a set always satisfies the countable chain condition. We go further, and show
that, in fact, such a Banach lattice satisfies the o-bounded chain condition, which trivially
implies the countable chain condition. Furthermore, we prove this for the case in which
the starting object is a Banach space, from which the previous case is deduced.

More specifically, using the Ramsey’s theorem, we show that the Banach lattice of
continuous and positively homogeneous functions on the closed unit ball of the dual of any
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Banach space E, Cp;,(Bg-), satisfies such a condition. But now, as the free Banach lattice
generated by any Banach space F is a Banach sublattice of C,,(Bg-), and the o-bounded
chain condition is hereditary, we have as a particular case that the latter also satisfies the
same condition.

Finally, in Section 3.4 we study the possibility of the existence of stronger chain condi-
tions in the Banach lattice C};,(Bg- ), and consequently, in the free Banach lattice generated
by the Banach space E.

Chapter 4 is devoted to the study of the projectivity of certain Banach lattices.

Similar to what we did in the previous chapters, in the introduction, which corresponds
to Section 4.1, we give the definition of the key concept of the chapter, in this case, that of
A-projective Banach lattice for A > 1, and we state the different results we prove throughout
it.

In Section 4.2 we state and prove some simple results that are useful to prove the main
theorems of the chapter.

In Sections 4.3 and 4.4 we focus on the case of the free Banach lattice generated by a
lattice. On the one hand, we prove that the free Banach lattice generated by a finite lattice
is always \-projective for any A > 1 (or 1*-projective), whereas if the starting lattice is an
infinite linearly ordered set, then the free Banach lattice generated by it is not \-projective
for any A > 1 (i.e. it is not oo-projective, according to our terminology). In the proof of
both results, we strongly use the fact that the free Banach lattice generated by a lattice is a
quotient of the free Banach lattice generated by the lattice viewed as a set. Another key to
the first result is that the free Banach lattice generated by any set is always 17 -projective,
as B. de Pagter and A. W. Wickstead proved in [15]. To prove the second of the results,
we show that the free Banach lattices generated by the set of the natural numbers, and
the set of the natural numbers together with 400, seen as linearly ordered sets, are not
oo-projective, and then we prove that either the free Banach lattice generated by the set of
the natural numbers or the free Banach lattice generated by the set of the natural numbers
together with +oo, seen as linearly ordered sets, are complemented in the free Banach
lattice generated by the starting linearly ordered set, from which the result easily follows.

Section 4.5 contains two main results. On the one hand, we prove that if a Banach
lattice is oco-projective, then every bounded sequence that can be mapped by a Banach
lattice homomorphism onto the basis of ¢y must contain an ¢;-subsequence, from which we
obtain, in particular, that neither ¢ nor ¢, (for 2 < p < oo) are co-projective.

The other result we prove in this section tells us that if £ is a Banach space with the
property that the free Banach lattice generated by it is co-projective, then E has the Schur
property (i.e. every weakly convergent sequence converges in norm). In other words, for
the free Banach lattice generated by a Banach space F to be co-projective, the structure of
E must be very close to that of ¢;(A) for some set A.

Moreover, at the end of this section we provide a counterexample which shows that, in
the category of nonseparable Banach spaces, the converse of this result does not hold.

In Section 4.6 we prove that if K is a compact Hausdorff topological space, then
the Banach lattice of continuous functions on K, C(K), with the supremum norm is 17-
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projective if, and only if, K is an absolute neighbourhood retract in the category of compact
Hausdorff topological spaces. B. de Pagter and A. W. Wickstead have already proved in
[15] that if C(K) is 1"-projective, then K is an absolute neighbourhood retract in the
category of compact Hausdorff topological spaces. However, they only managed to show
the converse with the additional hypothesis that K is inside R"™.

Finally, in Section 4.7 we study the complementability of the Banach lattice ¢ in the
free Banach lattice generated by itself seen as a Banach space, while in Section 4.8 we
propose some open problems we have about projective Banach lattices.






Chapter 1

Vector and Banach lattices

1.1 Introduction

We all know that the starting point of functional analysis was the investigation of the
classical function spaces, which provide its most important applications. However, the
natural order in these spaces was neglected almost completely. A first attempt to include a
compatible order structure in the study of linear and normed spaces was due to F. Riesz,
H. Freudenthal and L. V. Kantorovic in the mid-thirties. In the following years, schools
of research on vector lattices were subsequently founded and these investigations were
continued by various mathematicians in the Soviet Union (B. Z. Vulikh, A. G. Pinsker, A. I.
Judin), in Japan (H. Nakano, T. Ogasawara, K. Yosida), and in United States (G. Birkhoff,
S. Kakutani, H. F. Bohnenblust, M. H. Stone) (see [28] and [29]).

L. V. Kantorovi¢ and his school first recognized the importance of studying vector lattices
in connection with Banach’s theory of normed spaces; they investigated normed vector
lattices as well as order-related linear operators between such vector lattices (see [28]).

This chapter is about the basic theory of vector and Banach lattices. We will try to
collect the basic definitions and properties one has to know for understanding the content
of this memoir. The interested reader can find more about this subject in books [12], [25],
[28] and [29], for example.

It is divided into two sections, one concerning vector lattices (basic concepts and the
free vector lattice generated by a set) and the other one concerning Banach lattices (basic
concepts and the free Banach lattices generated by a set and a Banach space).

1.2 Vector lattices

In this section we show the basic definitions and properties concerning vector lattices and
the free vector lattice generated by a set.

15
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1.2.1 Basic concepts
Most of the definitions and examples we show here are extracted from [38].
Definition 1.1. An order on a non-empty set M is a relation < such that

1. x<zforallz € M,

2. r <yandy < z implies that z = y,

3. x <yand y < z implies that x < z.

We use y > x as a synonym for x < y, and z < y for x < y but z # y. Similarly, we
write y > x for x < y.

Definition 1.2. If A is a non-empty subset of M, then

1. x € M is an upper bound (resp. lower bound) of A if y < x (resp. x < y) for every
y € A.

2. A is bounded from above (resp. bounded from below) if there is an upper bound (resp.
lower bound) of A.

3. An upper bound (resp. lower bound) x of A is the supremum (resp. infimum) of A if
for any other upper bound (resp. lower bound) y of A we have = < y (resp. y < x).

4. If A is bounded from above and bounded from below, we will say that A is order
bounded.

5. A is an order interval if it is of the form [z,y] := {m € M : z < m <y} for some
z,y € M.

Definition 1.3. A lattice is a non-empty set L with an order < such that for every pair of
elements z,y € L, the set {x,y} has both a supremum (which is denoted by z V y, and
also called the supremum of z and ) and an infimum (which is denoted by = A y, and also
called the infimum of x and ).

The supremum of a general subset A of M, when it exists, is denoted by any of sup(A),
sup{a:a € A}, \/{a:a € A} or \/,.,a. The notation for the infimum is analogous,
replacing \/ by A and sup by inf.

Often, throughout this memoir we will focus on studying properties related to the
following particular case of lattice:

Definition 1.4. A linearly ordered set (or linear order) is a non-empty set . with an order
< with the property that for any x,y € L, either x < y or y < .

Definition 1.5. Amap 7': L; — L, between two lattices, IL; and Lo, is said to be a lattice
homomorphism if it preserves the lattice operations, i.e.

T(xVy) =T(x)vVT(y)and T(x Ny) = T(x) ANT(y) for every x,y € L;.

If T is also bijective, we will say that T is a lattice isomorphism.
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Definition 1.6. A real vector space F which is ordered by some order relation < is called
a vector lattice (or Riesz space) if any two elements z,y € E have a supremum and an
infimum, and the following properties are satisfied:

1. x <yimpliesz+ 2z <y+zforall x,y,z € E,

2. 0 < ximpliesO < tx forallz € Fandt € R*.

The set Et := {z € F: x > 0} is called the positive cone of E and its elements are
termed positive (rather than non-negative), while for z € F,

rt=2Vv0, 27 = (—z)Vv0,and |z| ;== z V (—2)

are called the positive part, the negative part, and the absolute value of x, respectively. If
x € E™T is not zero, we will often say that x is strictly positive.
We will also say that z,y € E are disjoint if |z| A |y| = 0.

Example 1.7. The most obvious example of a vector lattice is the reals with all the usual
operations. The usual or standard order on R" is that in which (x1,...,2,) < (y1,...,9n)
means that z;, < y; for k = 1,...,n. This order makes R™ into a vector lattice in which
the supremum of two vectors is (zx) V (yx) = (zx V yx) and the infimum is (zx) A (yx) =
(zx N yr). Hence, the positive part, the negative part and the absolute value are given by
(x) " = (), ()~ = (¢}) and |(zx)| = (Jzx]), respectively.

We now show some basic properties of the absolute value:

Proposition 1.8 ([28, Proposition 1.4]). Let E be a vector lattice. For all x, y, x1, y1 € F
and all \ € R, the following relations are valid:

2. |z|=at + a7,

3. |zl =0z =0; [Ax| = [Mz]; |z +y| < |z + |yl,
4 z+y=xVy+zAy,

5 lx—yl=xzVy—zAy,

6. [xVy -z Vyll < |o—a1|+ |y —ul

7. |le ANy =z Ayr| <z — 21|+ |y — vl

Moreover, the equality in 1 is the unique representation of x as a difference of disjoint
positive elements of E.
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Definition 1.9. Amap T: E; — E> between two vector lattices, E; and Es, is said to be
a vector lattice homomorphism if it is linear and preserves the lattice operations, i.e.

T(ax + By) = oT(x) + BT (y) for every z,y € Eq,a, 5 € R,

T(xVy)=T(x)VT(y) and T'(z ANy) = T'(z) AT (y) for every x,y € Ej.

If T is also bijective, we will say that T is a vector lattice isomorphism.

A very important concept in the theory of vector lattices, as we will see later, is the
following:

Definition 1.10. A vector lattice F has the Archimedean property (or is Archimedean) if
(Vn>1)ny <z e ET] = [y <0].

Example 1.11. Clearly, R™ with the usual order has the Archimedean property. However,
R"™ with the lexicographic order fails to have this property. For example, on R?, the
lexicographic order is given by (z1,x2) < (y1,y2) if, and only if, either 21 < y; or z1 = 11
and x5 < yo. Here, n(0,1) < (1,0) for all n € N, but (0,1) £ (0,0).

Example 1.12. Function spaces are important examples of Archimedean vector lattices.
Let X be a non-empty set and take £ = R¥, that is to say, the space of all real-valued
functions on X. Order this with the pointwise order under which f < g if, and only
if, f(x) < g(z) for every x € X and give it the pointwise vector operations, we have a
vector lattice, where the supremum of two functions f and g is the function given by
(fVg)(z)= f(z)Vg(z) for every x € X, and the infimum of two functions f and g is the
function given by (f A g)(z) = f(z) A g(z) for every x € X.

E is Archimedean as if nf < g for all n € N then nf(z) < g(z) for all n € N and for all
x € X. As R is Archimedean it follows that f(x) < 0 for all x € X and hence that f <0
(where this 0 is the zero function on X).

E will have many vector subspaces which are also vector lattices under the same order,
for example the bounded functions; if X has a topology then we could take the continuous
functions or continuous bounded functions.

Definition 1.13. A subset A of a lattice LL is a sublattice if z,y € A implies that zVy, Ay €
A, where these lattice operations are computed in IL. A vector sublattice of a vector lattice is
simply a vector subspace which is also a sublattice.

Example 1.14. Both ¢y and ¢ are vector sublattices of /.

Definition 1.15. Let A be a non-empty subset of a vector lattice E. The sublattice generated
(or lattice generated) by A is the smallest subset of F containing A and closed under the
operations V and A. The vector sublattice generated (or vector lattice generated) by A is the
smallest vector space of F containing A and closed under the operations V and A.
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If we denote by \/ A (resp. /\ A) the set of suprema (resp. infima) of all non-empty finite
subsets of A, then it is easy to check that \/ (A A) = A (/ A4) is the sublattice generated
by A. Moreover, if A is a vector subspace of E, then \/ ( A A) is a vector sublattice of £
(see [21, page 47]).

Throughout this memoir, we will denote the vector lattice generated by a non-empy set
Abylat Aorlat{a:ac A}.

Definition 1.16. Anideal 7 in a vector lattice E is a vector subspace suchthaty € Z, z € £
and |z| < |y| together imply that x € 7.

Example 1.17. In (o, co is an ideal, but cis not as |((—1)")| < (1) € c¢but ((-1)") ¢ c.

Definition 1.18. Let A be a non-empty subset of a vector lattice E. The ideal generated by
A is the smallest ideal in F containing A.

Now we are going to show a very important result about Archimedean vector lattices
which is very useful.

Definition 1.19. An elementary inequality in a vector lattice is an inequality or an equality
which involves only linear and lattice operations and a finite number of elements of the
vector lattice.

For example, z + (y V z) = (z + y) V (= + 2) is an elementary inequality, which can be
true or false. Then, if we want to know if such an elementary inequality is true or false
in every Archimedean vector lattice one just has to see if it is true or false in R. More
concretely:

Theorem 1.20 ([25]). An elementary inequality is true in every Archimedean vector lattice if,
and only if; it is true in the reals.

On pages 66 and 67 of [25] there is a proof of this theorem for a special class of vector
lattices (the class of uniformly complete vector lattices). However, all Archimedean vector
lattices may be embedded as vector sublattices inside a vector lattice in this class, namely,
their Dedekind completion (see [28, Proposition 1.10], or [24, Theorem 32.5] for further
details), from which the general result follows.

1.2.2 The free vector lattice generated by a set

In [13] the existing theory of free vector lattices is recapitulated. The basic facts we show
here are extracted from [15].

Definition 1.21. Let A be a non-empty set. A free vector lattice over or generated by A is
a vector lattice F' together with a function ¢: A — F with the property that for every
vector lattice £ and every map 7: A — E there is a unique vector lattice homomorphism
T:F — Esuchthat T =T o ¢.
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Clearly, » must be injective, as we can certainly choose £ and 7' to make ¢ injective.
Now we are going to list some basic properties one has to know about free vector
lattices:

Proposition 1.22 ([15, Proposition 3.2]). If F' together with ¢: A — F is a free vector
lattice over a non-empty set A, then F' is generated, as a vector lattice, by ¢(A).

Proposition 1.23 ([15, Proposition 3.3]). If F; together with the function ¢1: A — Fy
and F> together with the function ¢o: A — F; are free vector lattices over a non-empty set A,
then there is a unique vector lattice isomorphism T': X; — Xs such that T'(¢1(a)) = ¢2(a)
for every a € A.

Then, we can say the free vector lattice over A instead of a free vector lattice over
A because all free vector lattices over A are isomorphic as vector lattices between them.
We will denote it by FV L(A). Moreover, if A and B are sets of equal cardinality, then
FVL(A) and FV L(B) are isomorphic vector lattices, so that 7'V L(A) depends only on the
cardinality of the set A.

Now, the question is whether such an object exists. Let us denote by RE" the vector
lattice consisting of all functions f: R® — R together with the pointwise order and the
pointwise operations. Then, we have that:

Theorem 1.24 ([15, Theorem 3.6]). For any non-empty set A, F'V L(A) exists and is the
vector sublattice of RE" generated by 4, (a € A), where 6,(x*) = *(a) for every z* € R4

Thus, identifying a with d,, one may view A as a subset of F'V L(A). Since FVL(A) is
a sublattice of R®”, and the latter is Archimedean, FVL(A) is also Archimedean.

It is easy to see that if ay,...,a, € A, then FVL({ay,...,a,}) may be identified with
the vector sublattice of FV L(A) generated by {d,,,...,d,} (see [15, Proposition 3.5]).
Moreover, if f € FVL(A), then there exists a finite subset {ai,...,a,} of A such that
fe€FVL({ai,...,a,}) (see [15, Proposition 3.7]).

Note that FV L(A) may be interpreted as the set of all lattice-linear expressions of
elements of A, where we identify two expressions if they are equal when we substitute the
elements of A by real numbers.

1.3 Banach lattices

In this section we show the basic definitions and properties concerning Banach lattices and
the free Banach lattices generated by a set and a Banach space.

1.3.1 Basic concepts
Most of the definitions, and the example we show here, are extracted from [38].

Definition 1.25. A Banach lattice is a vector lattice X together with a norm that is also
a Banach space in which |z| < |y| = ||z|| < ||y|| (.e. ||| is a lattice norm). A Banach
sublattice Y of a Banach lattice is simply a vector subspace which is also a sublattice and
closed under the norm of the Banach lattice. This makes Y a Banach lattice.
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Example 1.26. Classical examples of Banach lattices are ¢,, co, ¢, C(K) and LP(p) with
their usual norm and the pointwise (almost everywhere in the last case) order.

Definition 1.27. Let A be a non-empty subset of a Banach lattice X. The Banach sublat-
tice generated (or Banach lattice generated) by A is the smallest Banach sublattice of X
containing A.

Definition 1.28. Amap 7: X — Y between two Banach lattices, X and Y, is said to be
a Banach lattice homomorphism if it is a bounded linear operator and preserves the lattice
operations.

If T is also bijective and 7! is a Banach lattice homomorphism, we will say that 7T is a
Banach lattice isomorphism. If moreover, T' preserves the norm (that is, || 7'(z)| = ||=| for
every = € X), we will say that 7" is a Banach lattice isometry.

If X is a Banach lattice and 7 is a closed ideal in X, we can define an equivalence
relation on X given by = ~7 y if, and only if, x — y € Z.

For z € X, if we denote by z + 7 := {y € X : x ~7 y} the equivalence class of z, the
set X/Z :={x + 71 :x € X} together with the operations

(x+I)+(y+2Z):=(r+y)+Zand \N(z +Z) := \z + Z for every A € R,

is a real vector space.
If we equip this vector space with the quotient norm, which is defined as

Izl = llz + Zllz == inf{[lyl : y € X, 2 ~z y} =inf {[lx +y| : y € I},

we obtain a Banach space (see [16, Proposition 1.21]).
Moreover, this Banach space together with the operations

(+I)V(y+I)=@xVy)+Zand (z+I)AN(y+ZI):=(xAy)+T

is a Banach lattice (see [28, page 85, Proposition 5.4]).

It is easy to check that the map @Q: X — X/Z given by Q(z) = x + Z for every z € X
is a surjective Banach lattice homomorphism of norm 1. We will call this map the quotient
map.

1.3.2 The free Banach lattice generated by a set

As the title of the thesis indicates, the main objects of study in this thesis are the free
Banach lattices over Banach spaces and ordered sets.

The first authors who introduced the concept of free object within the category of
Banach lattices were B. de Pagter and A. W. Wickstead in 2015, who defined and studied
properties about the free Banach lattice generated by a set [15].

Definition 1.29. Let A be a non-empty set. A free Banach lattice over or generated by A is a
Banach lattice F' together with a bounded map ¢: A — F' with the property that for every
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Banach lattice X and every bounded map 7: A — X there is a unique Banach lattice
homomorphism 7': F' —s X such that 7 =T o ¢ and ||T|| = || T|.

Here, the norm of T'is || T|| := sup {||T(a)|| : @ € A}, while the norm of 7" is the usual
for Banach spaces.

It is easy to check (see [15, Remark 4.2]) that this definition forces that ||¢(a)|| = 1 for
every a € A, so the norm ||¢|| = sup {||¢(a)|| : a € A} = 1.

Similar to Proposition 1.22 for the free vector lattice generated by A, we have that:

Proposition 1.30 ([15]). If F together with ¢: A — F is a free Banach lattice over a
non-empty set A, then F is generated, as a Banach lattice, by ¢(A).

Moreover, we have that:

Proposition 1.31 ([15, Proposition 4.3]). If F together with the function ¢1: A — Fj
and F5 together with the function ¢2: A — F; are free Banach lattices over a non-empty set
A, then there is a unique Banach lattice isometry T': F; — Fy such that T (¢1(a)) = ¢2(a)
for every a € A.

Then, we can speak of the free Banach lattice over A instead of a free Banach lattice
over A because all free Banach lattices over A are isometric as Banach lattices between
them. We will denote it by FBL(A).

Now, the question is whether such an object exists. The answer is affirmative. B. de
Pagter and A. W. Wickstead prove it in [15], but A. Avilés, J. Rodriguez and P. Tradacete
give an alternative and more tangible way of constructing it in [8]. They describe it as a
space of functions:

Fora € A, let §,: [-1,1]* — R be the evaluation function given by d,(z*) = z*(a) for
every z* € [-1,1]4, and for f: [-1,1]* — R define

If|l = sup {Z [f)]:ineN, af,...,a} € [-1,1]", sup ) _|2}(a)] < 1} ,
i=1

a€A
which we will denote by || || or || f||FpL(a)-

Theorem 1.32 ([8, Corollary 2.9]). The free Banach lattice generated by a set A is the
closure of the vector lattice generated by {J, : a € A} under the above norm inside the Banach
lattice of all functions f € RI=5U with | f|| < oo, endowed with the norm | - ||, the pointwise
order and the pointwise operations.

The natural identification of A inside FBL(A) is given by the map ¢: A — FBL(A)
where ¢(a) = 4, for every a € A. Since every function in F’BL(A) is a uniform limit of such
functions, they are all continuous (in the product topology) and positively homogeneous
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(that is, f(Az*) = Af(z*) for every 2* € [—1,1]" and for every A > 0 such that \z* €
[—1,1]4, or equivalently, f(Az*) = \f(x*) for every 2* € [~1,1]* and for every 0 < X < 1).

On the other hand, we can view FFBL(A) as FV L(A) equipped with the greatest lattice
norm one can put on it. Indeed, V. G. Troitsky proved the following:

Theorem 1.33 ([36, Theorem 2.1]). There exists a maximal lattice seminorm v on FV L(A)
with v(a) < 1 for every a € A. It is a lattice norm, and the completion of F'V L(A) with
respect to it is FBL(A).

1.3.3 The free Banach lattice generated by a Banach space

The concept of a Banach lattice freely generated by a given Banach space has been recently
introduced and investigated by A. Avilés, J. Rodriguez and P. Tradacete in [8], and provides
a new tool for better understanding the relation between Banach spaces and Banach
lattices.

Consider any Banach space F. Roughly speaking, the free Banach lattice generated by
E is a Banach lattice F' which contains a subspace linearly isometric with F in such a way
that its elements work as lattice-free generators. More formally:

Definition 1.34. Let F be a Banach space. A free Banach lattice over or generated by F is a
Banach lattice F' together with a bounded operator ¢: £ — F with the property that for
every Banach lattice X and every bounded operator T: E — X there is a unique Banach
lattice homomorphism 7': ' —s X such that T = T o ¢ and ||T'|| = ||T|.

This property uniquely determines F' up to Banach lattices isometries, and so we can
speak of the free Banach lattice generated by F, denoted by FFBL[E]. This definition
generalizes the notion of the free Banach lattice generated by a set A. Namely, the free
Banach lattice generated by a set A is the free Banach lattice generated by the Banach
space /1(A) (see [8, Corollary 2.9]).

Again, it is possible to give an explicit description of it as a space of functions:

Let us denote by H|[F] the vector subspace of R¥" consisting of all positively homoge-
neous functions f: E* — R (that is, all functions that satisfy f(Az*) = \f(z*) for every
xz* € E* and for every A > 0). For any f € H[E] let us define

n

||f||FBL[E] :Sup{Zf(:L’j)\ ne Na xT?"‘?‘IE’tL € E*7 sup Z|l‘:(l’)’ S ]‘} .

i=1 2€BB =1
Let us take Hy[E] = {f € HE]: [|[flpprim < oo}. It is easy to check that Hy[E] is a
Banach lattice when equipped with the norm ||-|| p 55 and the pointwise order.

Now, given x € E, let §,: E* — R be the evaluation function given by ¢, (z*) = z*(z)
for every z* € E*.
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Theorem 1.35 ([8, Theorem 2.5]). The free Banach lattice generated by a Banach space E
is the closure of the vector lattice generated by {J, : + € E} under the above norm inside
Hy[E].

The natural identification of E inside F'BL[E] is given by the map ¢: F — FBL|E]
where ¢(z) = §, for every x € FE (it is a linear isometry between E and its image in
FBLIE]). Moreover, all the functions in F'BL[E] are weak*-continuous when restricted to
the closed unit ball Bg- (see [8, Lemma 4.10]).

Similar to the previous case, V. G. Troitsky also proved the following:

Theorem 1.36 ([36, Theorem 3.1]). Let E be a Banach space, and let L be the vector
sublattice of R¥" generated by {6, : * € E}. There is a maximal lattice seminorm v on L
satisfying v(0,) < ||x|| for every x € E. It is a lattice norm and the completion of L with
respect to it is FBL[E].

It is natural to wonder about the motivation for the explicit expression for the norm of
FBL[E] and FBL(A) = FBL[(;(A)]. It is explained in [8] and [11], but we summarize it
here for the convenience of the reader:

The free vector lattice generated by F (seen as a set), F'V L(E), can be identified with
the vector sublattice of H[E] generated by the evaluation functions §, (x € E). The norm
of FBL[E] must be the largest possible lattice norm that we can define on this space. In
particular, given arbitrary (z})}_, € E*, we can define a bounded operator T': E — /7 by
the expression 7'(z) = (z}(z))}_, for every x € E. Itis easy to check that the Banach lattice
homomorphism 7': FBL[E] — (7 extending T is necessarily given by T'(f) = (f (3)iy
for every f € FV L(E). Hence, the norm of F'BL[E| must satisfy the inequality

||T(f)\|e7; <7 fllFBLIE)-

Therefore, we have that

leppg > Ol _ 55 | (@p)l
B2 T supaen, S e @)

which motivates the explicit expression for the norm of FBL[E]| and FBL(A).



Chapter 2

The free Banach lattice generated by
a lattice

2.1 Introduction

The purpose of this chapter is to introduce the free Banach lattice generated by a lattice,
prove its existence and give an explicit description of it as a space of functions. Its content
is basically extracted from our publication:

[9] AVILES, A., AND RODRIGUEZ ABELLAN, J. D. The free Banach lattice generated by a
lattice. Positivity 23 (2019), 581-597

The idea is similar to the free Banach lattices explained in [Chapter 1, Sections 1.3.2
and 1.3.3], using lattices instead of sets without any structure or Banach spaces.

Remember that a lattice is a set L. together with two operations A and V that are the
infimum and supremum of some partial order relation on L, and a lattice homomorphism
is a function between lattices that commutes with the two operations.

Definition 2.1. Given a lattice L, a free Banach lattice over or generated by L is a Banach
lattice F' together with a bounded lattice homomorphism ¢: . — F with the property
that for every Banach lattice X and every bounded lattice homomorphism 7: L. — X
there is a unique Banach lattice homomorphism 7': F — X such that 7 = T o ¢ and
1] = (1.
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Here, the norm of T'is || T|| := sup {||T(z)| : = € L}, while the norm of 7" is the usual
for Banach spaces.

This definition determines a Banach lattice that we denote by F'BL(LL) in an essentially
unique way. When L is a distributive lattice (which is a natural assumption in this context,
see Section 2.3) the function ¢ is injective and, loosely speaking, we can view FBL(L) as
a Banach lattice which contains a subset lattice-isomorphic to L. in a way that its elements
work as free generators modulo the lattice relations on L.

Using the existence of the free Banach lattice generated by the set I (viewing IL as a set
with no extra structure), F'BL(LL), we will prove that F BL(LL) also exists and that can be
viewed as a certain quotient of FFBL(L).

In order to give an explicit description of it similar to the mentioned in [Chapter 1,
Theorems 1.32 and 1.35], define

L*={z*: L — [-1,1] : 2" is a lattice homomorphism} .

For every z € L consider the evaluation function 4,: L* — R given by d,(z*) = z*(z),
and for f € R, define

n n
”fu*zsup{z:mxm :neN, z},..., x5 e L, suEZm;(xn < 1}.
i=1 zek o1

Theorem 2.2. Consider F' to be the closure of the vector lattice generated by {Sx cx €L}
under the norm || - ||, inside the Banach lattice of all functions f € R with || f||« < oo,
endowed with the norm || - ||, the pointwise order and the pointwise operations. Then F,
together with the assignment ¢(x) = 0, is the free Banach lattice generated by L.

In spite of the similarity to the Banach space case from [8], our proof requires completely
different techniques. Section 2.4 is entirely devoted to this. In Section 2.5 we check, when
L is a linearly ordered set, that the elements of L inside F BL(LL) behave like the summing
basis of ¢y from a Banach space point of view.

Later, in [Chapter 3, Section 3.2], we will study when the free Banach lattice also
generated by a linearly ordered set satisfies the countable chain condition. Moreover, in
[Chapter 4, Sections 4.3 and 4.4], we will focus on the projectivity of such an object.

2.2 The Banach lattice F'BL(IL) as a quotient of a space of
functions

Throughout this section L is a fixed lattice. Let us start by checking that Definition 2.1 forces
each ¢(z) to have norm precisely 1. Indeed, if we take 7': .. — R the bounded lattice
homomorphism given by T'(z) = 1 for every x € L, then the Banach lattice homomorphism
T that is guaranteed to exist has norm 1, so that 1 = || T(¢(z))| < ||¢(z)||. On the other
hand, if we take T' = ¢, then 7 is the identity Banach lattice homomorphism, with norm 1,
so that |[¢]| = sup {[|¢(z)]| : € L} = 1.

On the other hand, Definition 2.1 provides a uniquely determined object. If ¢: L. — F’
and ¢': L. — F” satisfy this definition, then we can get a Banach lattice homomorphism
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¢+ F — F' with ¢/ = ¢’ o ¢. Reversing the roles, we also get ¢: F/ —» F with ¢ = ¢o ¢'.
The function ¢ o ¢’ and the identity function idy on F both satisfy Definition 2.1 as 7’ when
T = ¢. So ¢ o @' = idp. Similarly, reversing roles, ¢’ o ¢ = idp. Thus, we obtained inverse
Banach lattice homomorphism of norm 1 between F and F’ that commute with ¢ and ¢'.

Now, we are going to construct a Banach lattice F' that satisfies Definition 2.1. We will
show later that the Banach lattice described in Theorem 2.2 also satisfies Definition 2.1. We
take as a starting point that, when we view L as a set with no extra structure, we have the
free Banach lattice F BL(LL), together with a bounded map u: L. — FBL(L) (u(z) = d,),
constructed by de B. Pagter and A. W. Wickstead, whose universal property was described
in [Chapter 1, Section 1.3.2]. Take 7 the closed ideal in FBL(IL) generated by

{u(x) Vuly) —u(x Vy), ulx)Auly)—u(lxAy) : z,y€L}.

We take F' = FBL(L)/Z, and ¢: L — FBL(LL)/Z given by ¢(z) = u(z) + Z. The very
definition of Z provides that ¢ is a bounded lattice homomorphism. Now, let X be a Banach
lattice and 7': . — X a bounded lattice homomorphism. We know that F'BL(LL) satisfies
the universal property of the free Banach lattice. Therefore, there exists a Banach lattice
homomorphism 7" : FBL(L) — X such that 7! ou = T and |T"|| = ||T||. The fact
that 7 was a lattice homomorphism implies that 7" vanishes on Z. Thus, we can have a
Banach lattice homomorphism 7': FBL(L)/Z —s X given by T'(f +Z) = T'(f). It is clear
that 7o ¢ = T. Let us see that || T|| = ||T’]|. We only need to check that ||T|| > ||T||. Let
f+7Z e FBL(L)/Z with || f||; < 1. We have that

1fllz = inf{l[f + gl : 9 €L},

and, therefore, there exists g € Z such that || f + g|| < L. Thus, |T(f+Z)|| = |T"(f +g)|| <
||T||. Only the uniqueness of the extension 7" remains to be checked. But this follows from
the uniqueness of the extension to FBL(LL), because if To¢p=T,thenTomrou="T,
where 7: FBL(L) — FBL(LL)/Z is the quotient map.

We have proved that FF = FBL(LL)/Z together with ¢ above satisfy Definition 2.1.
Now, our aim is to make this represantion more concrete. We are going to give an explicit
description of it as a space of functions, but before that, we need to show some additional
observations.

2.3 Distributivity

A lattice L is said to be distributive if the two operations A and V distribute each other.
Thatis,z A (yVz)=(xAy)V(zrAz)andzV (yAz)=(zVy A(zVz)forall z,y,z € L.
For a lattice I, let L = ¢(IL) be the image of L inside FBL(L). The following proposition
collects some well known facts and observations:

Proposition 2.3. For a lattice L the following are equivalent:
1. L is distributive,

2. L is lattice-isomorphic to a subset of a Boolean algebra,
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3. L is lattice-isomorphic to a bounded subset of a Banach lattice,
4. The canonical map ¢: L — F BL(L) is injective.

Proof. The equivalence of 1, 2 and 3 is well known, see [17, Theorem II.19] for 1 = 2,
[23, Theorem 1.b.3] for 2 = 3 and [28, Proposition II.1.5] for 3 = 1. It is obvious that 4
implies 3. If 3 holds, then we have a bounded injective lattice homomorphism 7": L. — X
for some Banach lattice X. Using Definition 2.1, there is 7': FBL(L) — X such that
T o¢ = T. Since T is injective, ¢ is injective and therefore 4 holds. O]

Proposition 2.4. F'BL(L) = FBL(LL). More precisely, if F with ¢ is the free Banach lattice
over the lattice I, then F with the inclusion map is the free Banach lattice over the lattice L.

The proof is immediate from Definition 2.1. The conclusion of these observations is
that the most natural case in which to consider F'BL(L) is when L is distributive, and that
the case of general IL reduces to the distributive case in a natural easy way. Still, we find
that it may be useful to state the results for any lattice .. Two more facts:

Proposition 2.5. Every lattice homomorphism z*: L. — [—1, 1] factors through L. That is,
there exists y*: L. — [—1, 1] such that z* = y* o ¢.

Proof. Find a Banach lattice homomorphism of norm at most 1 #*: FBL(L) — R with
x* = 1 o ¢, as in Definition 2.1. Take y* = *|;. O

Proposition 2.6 ([12, Lemma II1.3]). Every finitely generated sublattice of a distributive
lattice is finite.

2.4 The Banach lattice F'BL(IL) as a space of functions

This section is devoted to the proof of Theorem 2.2. First of all, note that the vector space
{f € RY :||f|l, < oo} together with the norm ||-||, and the pointwise order is a Banach
lattice. Indeed, the only possibly delicate point is the fact that if f € RY" has norm 0, then
f =0, but this is straightforward because if || f||, = 0, then for every n € N and for every
zi, ...,z € L* withsup,op Y0 |zf(2)| < 1wehavethat > 7" | |f(z})| = 0. Taking n =1,
since sup,y, |z*(x)| < 1 for every 2* € L*, we have in particular that | f(z*)| = 0 for every
¥ elL* so f=0.

Now, let F'BL, (L) be the Banach lattice described in that theorem. By Propositions 2.4
and 2.5, both FBL(L) and FBL,(L) remain unchanged if we change L by L. So we
can assume throughout this section that L is distributive. Since we already know that
FBL(L)/Z, where T is the ideal defined in Section 2.2, is the free Banach lattice over
the lattice L, what we have to do is to find a Banach lattice isometry 7': FBL(L)/Z —
FBL,(L) such that (6, +Z) = 0.

We know that FBL(L) = Tat! {6, : 2 € L} ¢ R where

LAl = Sup{z @Dl :neN, af,... a; € [-1,1]%, sup ) |2f(2)| < 1},
=1

z€eL i—1
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and recall that FBL, (L) = laf " . {5 ‘x € IL} c R, where

n
|UL:$m{E:U@ﬁMnGNNﬁ,Hm;€U wpz]x |<1}
=1

For every function f: [-1,1]% — R, consider its restriction R(f) = f|.-. It is clear
that the function R commutes with linear combinations and the lattice operations and
that |R(f)||, < ||f|l. Moreover, R(5,) = , for every x € L. From this, we conclude
that if f € FBL(L), then R(f) € FBL.(L), and we can view R: FBL(L) — FBL,(L)
as a Banach lattice homomorphism of norm 1. Moreover, since L* consists of lattice
homomorphisms, R vanishes on the ideal Z. Thus, we have a Banach lattice homomorphism
of norm at most 1

Rz: FBL(L)/T —s FBL,(L)

given by Rz(f +Z) = R(f) for every f +Z € FBL(LL)/Z. What we want to prove is that
Rz is an isometry. That is, we have to show that

1fllz < [1flel.

for every f € FBL(L).

First, suppose that L is finite (say L. = {0,...,n — 1} = n with some lattice operations).
B. de Pagter and A. W. Wickstead showed that in this case, FF'BL(L) consists exactly
of all the positively homogeneous continuous functions on [—1,1]* = [~1,1]" (see [15,
Proposition 5.3]). Moreover, if we consider the boundary d[—1, 1], and the Banach lattice
of continuous functions C(9[—1, 1]"), the restriction map P: FBL(L) — C(9]-1,1]")
is a Banach lattice isomorphism (it is not however, an isometry: the norm of FBL(L) is
transferred to a lattice norm that is equivalent to the supremum norm).

A closed ideal in a Banach lattice of continuous functions on a compact space always
consists of the functions that vanish on a certain closed set. Thus, there exists a closed set
S C J[—1,1]" such that

I={feFBL(L): fls = 0}.

In fact, the points of S must be those where f vanish for all f € Z, or equivalently, for
all generators f of Z:

S = {(gx)ace]L € 8[—1, 1]n &V éy = fsc\/ya & /\gy = 5%‘/\1/7 T,y € L} =L*N 8[—1, 1]n.

Now fix f € FBL(L), and let us prove that || f||; < || f|v+||,. Remember that

m
*:sup{2|f(x;‘)|:meN,x’{,...,xanL* sup2|x ]<1}
i=1

I1f

L*
xE]L

and
I fllz =inf{||f+gl:9€Z}=inf{|g]: g€ FBL(L), f ~z g},

where f ~7 g if,and only if, f — g € 7.
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Given k € N, let

Si = {x € 9[-1,1]" : d(a*, S) < ;}

and .
S, = {a: € J[-1 ]":d(m*,S)zk},

where d is the square metric in R".
Since S and S, are disjoint closed subsets of J[—1,1]", by Urysohn’s lemma we can
find a continuous function 1j: d[—1,1]* — [0, 1] such that 1,(S) = 1 and 17€(Sk_) =0.
Define f, = P~'(1xf|s) € FBL(L) be the positively homogeneous extension of 1 f|s
to the cube [—1,1]". Since fx|s = f|s, we have that f;, ~7 f for every k. Therefore, it is
enough to prove that for a given ¢ > 0, there exists k& € N such that || fx|| < ||f|L<]|, + ¢.
We have that

m
||f\L*H*:sup{Z|rif(a:;‘):xi,...,x;knes, Tlye.oyTm € R, Supzm ]<1}
=1

xG]L
m m
|| fi|| = sup {Z Irifu(zd)| s 2t .. 2k, € O[-1,1]", 71,...,7m € R, SUEZ rixt ()| < 1} .
i=1 el =1
Notice that the scalars r,...,r, € R that appear in these formulas always satisfy

>oit |ri| < n. This is because for every ¢ we can find §; € L with z}(¢) = +1, and then,

ZM‘—ZZ‘H \Slen.

gell &= £eL

The function f is bounded and unlformly continuous on [—1, 1]”, so we can pick £ € N
satisfying the following two conditions:

1. For all z*,y* € [-1,1]", if d(z*,y*) < 1, then | f(z*) — f(y*)| < &/2n.
2. n+k < 5, where M = max{|f(y*)| : y* € [-1,1]"}.

By the definition of S}, given z} € S;, there exists y; € S such that d(z},y;) < 1. When
x} € S, we can take y = z. In this way, we can estimate any sum in the supremum that
gives || fx|| as follows:

Dolrife@)l = Y IrifulaDl+ Y Irifula)
i=1

zreSE zres,
= > Irife@) <Y Irif(a))]
zres; zres;
< D IO+ D Irllf @) — £l
zreSH zreSH
« €
< 3 ImfDl+ 5 o Il
zrest zreST
€
< D IS+ 5

+
Ty €S,
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We have estimated a sum in the supremum that gives || f;|| by something that looks very
much like a sum in the supremum that gives || f|«||,. Still, in order to have a sum in that
supremum we would need that sup . > |r;y} (x)| < 1. This is not the case, but we will
get it after a small perturbation. For x € L,

Do i@ < Y Inai@)+ Y iy (@) - 2 (@)
zreSH zres;yt zres;
1
< Y @i+ Y I
zrESH zreSy
n
< 14 —.
< +l<:

Thus, the scalars 7; = 1+TT/k and the elements y, for every i with z] € SiF, are as
required in the supremum that gives || f|r-||,. Coming back to our estimate of the sum in
the sup of || fx||:

L*

2 Irifidl < 3 raf 1+ 5

zreS;
~ * ~ " €
< D mfEHI+ Y |(ri = 7) F(y)| + 5
Ry zreS;
< Wb+ (1= =) S s+ 2
* _—_— T 3 —
- Ll 1+n/k i\ 2
zreS;
_ n s €
= Mlll+ g D0 IfDl+3
meS,j
Mn €
< . |4z
< Ml + o D0 Il 4
zreSH
Mn?2 ¢
< . - < .
< Ml + 7 5 < el +ey

as we needed to prove. This finishes the proof of Theorem 2.2 in the case when L is finite.
Before getting to the infinite case, we state a lemma.

Lemma 2.7. Let LL be a distributive lattice and Fy C 1L be a finite subset. Then, there exists a
finite sublattice F1 C L that contains Fy and such that for every lattice M and every lattice
homomorphism y*: F1 — M there exists a lattice homomorphism z*: . — M such that

2*|ro = Y*|F,-

Proof. We start with a claim: If M is a finite lattice and x*: F; — M is a function which
is not the restricion of any lattice homomorphism z*: . — M, then there exists a finite
sublattice F1[z*] C L that contains [Fy and such that z* is not the restriction of any lattice
homomorphism y*: Fy[z*] — M.
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Proof of the claim: For every finite subset F C L that contains F(, consider the set

Kp={z":L—M : 2p, =2,
2" (aVb) =z%(a)V z*(b), forall a,b € T,
z*(a ANb) = z*(a) A 2*(b), forall a,b € F}.

Since every finitely generated sublattice of a distributive lattice is finite, the negation of
the claim above implies that Ky # () whenever F is finite. It is easy to check that Ky is a
closed subset of M (with the product topology of the discrete topology on M). We also
have that (| K: D K| for any F!,... ,F*. Thus, the sets of the form Ky form a family
of closed subsets of M with the finite intersection property. By compactness, there exists
z*: L. — M that belongs to all sets K. But then, z* is a lattice homomorphism with
2*|r, = «* in contradiction with the hypothesis of the claim.

Once the claim is proved, we return to the proof of the Lemma. First, let us notice that
we can suppose that [y is a finite sublattice of I and that M is finite. The first assumption
is because we can pass to the sublattice generated by F(, and remember that every finitely
generated sublattice of a distributive lattice is finite. The second assumption is because
we can consider the restriction of y* onto its range. Let us say that two surjective lattice
homomorphisms z7: Fp — M; and z%: Fy; — M are equivalent if there exists a lattice
isomorphism ¢: M; — My such that ¢ o z7 = z3. Clearly, there are only finitely many
equivalence classes of such surjective lattice homomorphisms, so let C = {z7,73,...,7,}
be a finite list that contains a representative of each equivalence class. Let C’' be the
smallest list made of all the z} € C that are not the restriction of any lattice homomorphism
z*: L. — Mj;. We can construct then [F; to be the sublattice of I. generated by Fy and by
all the Fy[z}] for z7 € C'. O

Now, we consider the case when L is infinite. Again, we fix ¢ € FBL(L), and have to
show that [|g[l7 < [lg|u-]].-

For this proof it will be convenient to explicitly indicate the domain of the evaluation
functions, so we write % : [~1, 1] — R for the function 6% (z*) = 2*(z). We can suppose
that g can be written as g = P(d~ ..., 0% ) for some z1,...,z, € L, where P is a formula
that involves linear combinations and the lattice operations A and V. This is because this
kind of functions are dense in ' BL(L), that was generated by the functions §' as a Banach
lattice. Let Fy = {«1,...,x,} and let F; be the finite sublattice of L. provided by Lemma 2.7.
For any set A such that Fy C A C L, we consider

9" =P,

z10t

08 ) [-1,1) — R

Claim X: If A C B and 2* € [-1,1]®, then ¢®(2*) = ¢*(2*|a).

Proof of the claim X: This is easily checked by induction on the complexity of the
expression P. If P is just a variable P(uq,...,u,) = u;, then we have the fact that
o2 (z*) = a*(z) = 5;% (z*|a). And it is trivial that if the claim X is satisfied by P and @), it
is also satisfied for P A Q, P V @ and any linear combination of P and @. This finishes the
proof of the claim X.
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Let 7, be the closed ideal in FBL(F;) generated by the elements of the form 5mvy

851 v 651 and 6}, — 051 A 651, By the finite case that we already proved, we have that

T, < H Fy
< F*
Hg Zl g ’ 1 *

Thus, it is enough to prove that [|g]|; < |[¢™ ||, and that ||¢"™|r;
Let us see first that ||g™ |r: ||, < [lg|r- ||« We have that

o < Mgl ll+

Hg]“hw; :m €N, y; € FY, supZIyz )| < 1}

z€F1 5

_=sup {i (gFl ()
=1

m
\IQIL*II*ZSUP{ZIQ(ZZ‘ :meN, z7 e L7, SHEZ\Z |<1}
i=1 r€

We take a sum Y., | (y})| and we will find a sum }_7", |g(2})| like in the second
supremum with the same value. Consider

M= {(yi (), ym(z)) s x € Fr} C [=1,1]™

Notice that, since each y; is a lattice homomorphism, the set M is a sublattice of R™
and we have a lattice homomorphism y*: F; — M given by y*(z) = (yi(z), ..., y},(z)).
Also, since we are assuming that the y are as in the supremum above, we have that
Yot |&| < 1 whenever (¢1,...,&y) € M. We are in a position to apply Lemma 2.7, and
we find a lattice homomorphism z*: L — M C [—1,1]" such that z*|p, = y*|p,. Write
2*(x) = (25 (), ..., 2}, (x)), so that we have =z, ...,z € L*. Since the range of z* is inside

M, we have that ", |27(z)| < 1 for all z € L. Finally, using Claim X above

S lgG1= Y g D] = D0 o Gtk | = D o i1k = Do o™ )
=1 =1 =1 i=1 =1

as required.

Now, we prove the remaining inequality ||g||; < ||g"||z,. In this proof, it will be useful
to use a subindex on norms to indicate in which free Banach lattice these norms are
calculated. Remember that

Y

lgly = inf {|fl e : f € FBLL), f g€},

gz = inf {Ihllppre, b€ FBLEL. h=g™ €T},

where

Hf”FBL(]L)_Sup{Z’f(z;)’ meN, 2 € [-1,1]", SHPZ’Z ’<1}

i=1 z€l ;5
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i=1 z€lfy =1

17l e,y = sup {Zlh(yf)l cmeN, yi € =117, sup Y |yi (2)] < 1}-

Thus, the question is if given h € FBL(F;) such that h — ¢t € 7, there exists
f € FBL(L) suchthat f — g € ZTand ||f| pprwy < 7l ppLm,)-

For every h: [-1,1]' — R, we consider e(h): [-1,1]* — R given by e(h)(z*) =
h(z*|r,). Tt is clear that e(s¥1) = 6L, and e preserves linear combinations, the lattice
operations and |e(h)||rprw) = |PllFBLer,)- Thus, we can view e as a Banach lattice
homomorphism e: FBL(F;) — FBL(L) that preserves the norm.

Now, we see that f = e(h) is what we are looking for. It only remains to check that

f — g € I. We know that h — ¢! € T;, which is the closed ideal generated by
AN I AR AREATES S 3
Therefore, e(h) — e(g™) is in the closed ideal generated by

{e (5};?% _oF1y 551) e (5}2@ —oF1 A 551) Lz,y € Fl}

- {%vy — oLyl b — b Ak iy e }Fl}.
Notice that e(¢g1) = g by Claim X above. So we conclude that e(h) —e(¢g") = f—g€ T

as required.

2.5 Linear structure of a line in its free Banach lattice

In this section, L is a linearly ordered set, and FBL(L) = FBL.(L) its free Banach
lattice, in the form of Theorem 2.2. For x € I, we will denote the evaluation functions
as §,: L* — R instead of §,, as we do not distinguish it from other evaluations. We will
show that in this case, the linear combinations of the copy of L inside F’BL(L) behave
similarly to the summing basis of ¢y. More precisely:

Proposition 2.8. Let 1L be a linearly ordered set. Then, for every u; < ... < uy,, € L and
ai,...,am, € R we have that

m m m

Zaisi < Zaiéui <6 Zaisi ,

i=1 o i=1 « i=1 oo
where s; = (1,1,...,1,0,0,0,...) € co.

*
1
Proof. Let T': . — ¢y be the map given by
s1 if & < uog;
T(x) =1 s ifup<x<upy forsome2<k<m-—1;

Sm i x> Uy,.
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Clearly, T is a bounded and increasing map. Let T': FBL(L) — cg be its extension as in
Definition 2.1. Since ||T|| < 1, we have that | T(37", aidu,)|loo < || 320", @iby,||+, where
T(™, aidy,) = 32", a;s;. This proves the first inequality in the proposition.

For f € FBL,(L) we have that

n n
£, = supa > |f@})|:neN, af,... 2} € L7, SEEZ\J;;@)}Q
j=1 =

n n

< 2sup Zf(x;) :neN, x,...,z, € L, supZ{x;(x)’ <1
j=1

This is because
n

SIFENI=1 > @D+ D f@)-
=1 : :

F(@9)>0 f(@})<0
Therefore
m n m n
Zaiéui < 2sup ZZazxj(uz) :neN, x],...,z, € L, supz ‘:v;“(ac)} <1
i=1 . j=1i=1 zel 5y
m n n
= 2sup Zal(Zx;‘)(uz) :neN, af,...,xz, € L7, supz |25 (z)] <1
i1 =1 z€l ;5
m
< QSup{ Zaim*(ui) cxt e IL*} .
i=1

On the other hand,

m
Zaisi = sup { 12' e BBgl} )
i=1 o

Given z* € L*, if we define z; = 2*(u1) and 2z = z*(u) — x*(ug—1) for every k > 2,
then z* = (21,22, 23,...) € 3By, and z*(s;) = z*(w;) for all ¢ = 1,...,m. Combining all
these facts, we get the second inequality in the proposition. O

3

m
Z%Z*(Si)
=1

m
z* (Z aisi> | AN 3300*} = sup{
=1 )







Chapter 3

Chain conditions in free Banach
lattices

3.1 Introduction

In this chapter we investigate what chain conditions hold in free Banach lattices generated
by Banach spaces and linearly ordered sets. Its content is basically extracted from our
publications:

[7] AVILES, A., PLEBANEK, G., AND RODRIGUEZ ABELLAN, J. D. Chain conditions in free
Banach lattices. J. Math. Anal. Appl. 465 (2018), 1223-1229

[9] AVILES, A., AND RODRIGUEZ ABELLAN, J. D. The free Banach lattice generated by a
lattice. Positivity 23 (2019), 581-597

Let us recall that the countable chain condition and its various strengthenings, typically
considered in the context of Boolean algebras or topological spaces, in a more general
setting define combinatorial properties of partially ordered sets, see e.g. Todorcevic’s survey
article [33]. Given a Banach lattice X, it is natural to discuss chain conditions of the
partially ordered set Xt of positive elements of the lattice. We shall consider the following
chain conditions formed in this way:

Definition 3.1. We say that a Banach lattice X

(i) satisfies the countable chain condition (ccc) if for every uncountable family 7 c X+
there are distinct f, g € F such that f A g # 0;

(ii) satisfies Knaster’s condition K, if every uncountable family # ¢ X contains an
uncountable family G with the property that f A g # 0 for every f,g € G;

37
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(iii) satisfies the o-bounded chain condition (o-bcc) if X ™ admits a countable decomposition
X =, o Fn such that, for every n, in every subset G C F,, of size n there are two
distinct elements f, g € G such that f A g # 0.

We have listed those chain conditions according to their increasing strength; in fact, the
implications
o-bcc = Ky = ccc,

are valid for arbitrary partially ordered sets. While it is clear that K5 implies ccc, the
first implication is less obvious. Nonetheless, the o-bounded chain condition implies Ko,
as a consequence of the Dushnik-Miller partition theorem, cf. [33, page 52]. We are
grateful to Stevo Todorcevic for bringing this fact to our attention. The first version of [7]
contained a separate argument that the lattice /"B L[F] satisfies Knaster’s condition under
an additional assumption that F is weakly compactly generated. The role of the o-bounded
chain condition is briefly discussed in Section 3.4.

B. de Pagter and A. W. Wickstead showed that the free Banach lattice FBL[(;(A)] =
FBL(A) generated by any set A always satisfies the ccc ([15, Corollary 6.6]). This is in
analogy with the well-known property of free Boolean algebras, which satisfy the countable
chain condition regardless of their size ([26, Chapter 4, Corollary 9.18]). Assuming some
linear and metric restrictions does not seem to help in constructing large sets of disjoint
elements, and for this reason it is natural to guess that the free Banach lattice generated by
any Banach space FE should also satisfy the ccc. Although the original proof from [15] does
not admit a straightforward generalization, we shall prove in this chapter that this is the
case; in fact, our main result in Section 3.3 reads as follows:

Theorem 3.2. For every Banach space E, the free Banach lattice F'BL|FE] satisfies the o-
bounded chain condition.

Recall that all the functions in F' BL[E] are positively homogeneous and weak*-continuous
when restricted to the closed unit ball Bg+. So, there is a natural inclusion

FBL[E] C Cyy(Bg-),

where the right-hand side is the set of all weak*-continuous and positively homogeneous
functions on Bg-. This inclusion preserves the order relation < and the infimum and
supremum operations (A, V), that are always defined pointwise. Theorem 3.2 follows from
Theorem 3.3 below, because the o-bounded chain condition is transferred by the inclusion
mentioned above.

Theorem 3.3. The lattice C,,(BE+) satisfies the o-bounded chain condition for every Banach
space E.

Before proving it, in Section 3.2, we will focus on the countable chain condition for the
free Banach lattice generated by a linearly ordered set. The main result in this section is
the following:

Theorem 3.4. For L linearly ordered set, F'BL(L) satisfies the countable chain condition if,
and only if, IL is order-isomorphic to a subset of the real line.
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3.2 Chain conditions in F'BL(L)

Throughout this section L is a linearly ordered set, and FFBL(L) = FBL,(LL) is the free

Banach lattice generated by L, in the concrete form described in [Chapter 2, Theorem 2.2].

Again, for z € L, we will denote the evaluation functions as 4, : L* —» R instead of .
Before proving Theorem 3.4, we state a couple of lemmas:

Lemma 3.5. For a linearly ordered set I the following are equivalent:
1. L is order-isomorphic to a subset of the real line.

2. L is separable in the order topology, and the set of leaps {(a,b) € L% : a < b, [a,b] =
{a,b}} is countable.

3. For every uncountable family of triples
F={{a}, b, 24} 2l ab, 2l €L, 2l <ab<ab,ieJ}
there exist i # j such that x% < a:]2 <z and x{ <ah < 93%

Proof. The equivalence of 1 and 2 is easy and is well known folklore, cf. [32, Corollary
3.1]. Assume now 2 and let us prove 3. Take a countable dense subset D C L that contains
all the elements a,b € L for which a < b and [a,b] = {a,b}. Let f: F — D? be the map
given by f(a}, 2%, x§) = (d1, d2), where dj, is an element of D such that x| < dj, < z}, if
such an element exists, and dj, = zj, otherwise, when z},z}_, € D form a leap. Since F
is uncountable and D? is countable, there exists an uncountable Fy C F such that f|z, is
constant. Any pair of distinct elements {x}, 25, 2%}, {a], 23, 2%} € Fp is as required because
we can interpolate x} < dj, < x}_ . Let us prove now that 3 implies 2. First, let us see
that the set of leaps is countable. Let us say two leaps (a,b) and (a’, V') are equivalent if
there exist ¢y < ¢; < --- < ¢, finitely many elements of L such that each (¢, cx41) is a
leap and either ¢y = a and ¢, =¥/, or ¢y = @’ and ¢, = b. It is clear that each equivalence
class of leaps is countable. So if there were uncountably many leaps, we could find an
uncountable family G = {{x%, 2%} : i € J} of nonequivalent leaps 2 < z%. We can assume
that 2% is never the maximum of L and we choose an arbitrary x§ > z%. Applying 3 to the
family F = {{z%, 2z}, 2%} : i € J} , we could find i < j such that z¢ < 27 and 2 < 2. But
when we have two nonequivalent leaps, one has to be strictly to the right of the other, so
either a:% <axiorazl < x{, a contradiction. Now we prove that LL is separable. Using Zorn’s
lemma, we can find a maximal family F that fails the property stated in 3. This family must
be then countable. Let D be the set of all elements of L that either appear in some triple of
the family F or are one of the two sides of a leap. We know now that D is countable. Let
us check that it is dense. Take a non-empty open interval (a,b) C L. If the interval (a, b)
is finite, then all its elements are parts of leaps, so it intersects D. Suppose that (a,b) is
infinite but does not intersect D. Then if we pick a < 27 < 2 < x3 < b, then the triple
{z1,x2,z3} could be added to F, in contradiction with its maximality. O

We notice that the use of triples in Lemma 3.5 is essential. The analogous property
of condition 3 for couples instead of triples would be that for every uncountable family
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F = {{a}, 23} : 2% < xb} there are i # j such that 2 < aJ and 2] < z}. A connected
Suslin line has this weaker property but it does not embed into the real line.

Lemma 3.6. Let L. C M be two linearly ordered sets. Then F' BL(L) is isometric to a Banach
sublattice of F BL(M).

Proof. We will prove that, in fact, F BL(L) is isometric to the closure of the vector lattice
generated by the image of L via the inclusion mapping of M inside FFBL(M). That
is, if we denote by ¢y : M — FBL(M) the inclusion of M inside FBL(M) (given by
om(y)(y*) = 6, (y*) = y*(y), for every y € M,, y* € M*), we have that

FBL(L) = lat - {52“ Lz € L} C FBL(M).

To prove that, let us denote by +: . — M the inclusion mapping of IL inside M, and
let ¢: FBL(L) — FBL(M) be the extension of the bounded lattice homomorphism
¢mot: L — FBL(M) to FBL(L) given by the universal property of the free Banach
lattice.

It is clear that the action of ¢ is given by ¢(f)(y*) = f(y*|L) for every f € FBL(L),
y* € M*, and that ||¢(f)|, < || f, for every f € FBL(L), where

CEE]L

n
Ifll, = sup{2|f(x;)|:neN, zt,.. . ak e LX, supZ|x |<1}
i=1

(A, SUP{ZW) vl ineN, yi,... y; € M, SupZ!yz |<1}

= sup{Z|f(y;\L)|;neN, yi, .. yh € MY, 5upZ|yZ |<1}
=1

yGMz 1

Thus, to see that ¢ gives an isometry from F BL(L) onto Tat! - {M:2 €L} c FBL(M),
it only remains to prove that we also have || f||, < |¢(f)||. for every f € FBL(L).
First, observe that

L*={z":L —[-1,1]:u<v=2"(u) <z*(v)}

and
M ={y""M— [-1,1] :u<v=y"(u) <y"(v)}.

Fix f € FBL(L) and let 27, ...,z € L* like in the expression of the norm || f||,. Let
~: L* — M* be the map given by

sup {z*(x) : x € L,z <y} if there exists z € L with z < y,
inf {z*(x) :x € L,z >y} otherwise,

(@) (y) = {

for every z* € L*, y € M.
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Put y} := vy(z}) € M* forevery i = 1,...,n, and let us see that yj, ...,y are like in the

expression of the norm [(f), satisfying that 7, | £(a})| < S0, [£(7 1)
Since «y(z*)| = z* for every z* € L*, we have that

fil) = Fiy(@)lL) = f(7)

foreveryi=1,...,n.

Finally, we have to check that sup,cp > iy |y7 (y)] < 1.

Suppose not, and let y € M and € > 0 such that >~ , |y (y)| > 1 +¢. Suppose also that
there exists x € L with x < y (the other case is analogous).

Since, in this case, y(y) = sup {zf(z) : x € L,z <y} for every i = 1,...,n, we have
that there exists #; € L, with #; < y, such that y;(y) — 2} (#;) < . Now, if z € L is
such that #; < = < y, since z} is increasing, we have that z}(#;) < z!(x). But then,
|27 (2) — v ()| = yi (y) — 27 (2) < yi'y) — 2} (@) < 3.

Let  := max {271, ...,2,} € L. Due to the above, we have that |z} (Z) — y; (y)| <  for
every i = 1,...,n. Then, using that 7" | |yF(y)] > 1+cand /", |27 (Z) — y(y)] < e, we
have that

Dol @ = Y lai(@) —yi () +yi ()]
i=1 i=1

Vv

n n
Sl = | (@) - vi ()
i=1 i=1
> l4+e—e=1,
which is a contradiction. O

We prove now Theorem 3.4. Endow L* with the pointwise topology. If a function
f: L* — R belongs to FBL(L), then it is continuous. This is because the functions 4,
are continuous, and the property of being continuous is preserved under all Banach lattice
operations (including limits, because every limit in F BL(L) is a uniform limit).

A basis for the topology of IL* is given by the sets of the form

U(zi, I, zn, Iy) i ={z" € L* : 2% (a;) € [; foralli=1,...,n},

for z1,...,z, € L and Iy, ..., I, open intervals with rational endpoints. Write I; < I; if
sup(/;) < inf(1;), and consider the family

W ={U(1, 11, ... an, Ip) i1 <y < <ap, [y <Iy <--- < I}

This is not a basis anymore. But since IL* consists of nondecreasing functions, it is clear that
W is a w-basis. That means that every non-empty open subset of L* contains a non-empty
open subset from W.

Let us suppose that L is a subset of the real line, and we prove that F BL(ILL) satisfies
the countable chain condition. Let D C IL be a countable dense subset of L. that contains all
elements that are part of a leap, D D {a,b: a < b,[a,b] = {a,b}}. Observe that in this case

W():{U(dl,fl,...,dn,fn) EW:dl,dg,...,dnGD}
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is also a w-basis of L*. This is because for every U(xy, I1,...,x,,I,) € W, we can in-
terpolate d; < z1 < df < dy <y <dj <---<d, <z, <d} withdi € D, and
then

U(dy, h,df I,....d, , I,d}, I,) CU(x1, I, ..., o0, I).

YN

Take an uncountable family of strictly positive elements G C FBL(L)". For each f € G
there exists Vy € W such that Vy C {z* € L* : f(2*) > 0}. Notice that f A g # 0 whenever
Vi N Vg # (. Since G is uncountable and W, is countable, there are plenty of pairs f, g
such that in fact V; = Vj,. This finishes the proof that F'BL(L) satisfies the countable chain
condition whenever L. embeds into the real line.

We may notice that we proved a property stronger that the ccc: If a linear order L
embeds into the real line, then FBL(L) is o-centered. That means, we can decompose
the strictly positive elements into countably many pieces in such a way that every finite
infimum inside each piece is nonzero. Indeed, if we take as G the uncountable family of all
strictly positive elements of FBL(L)", the decomposition is given by

G=|J {feFBLIL)" : f>0,V; =w}.
weEWp

Now we turn to the proof that if . does not embed into the real line, then F'BL(IL) does
not satisfy the countable chain condition. We are going to prove it first under the extra
assumption that L has a maximum M or a minimum m. First, suppose it has a maximum
M. We fix an uncountable family of triples F that fails property 3 in Lemma 3.5. For every
i € J consider

hi =0V (% A (55,0é — 8, — 04 5M) A (%g — 5, — 04 5M)) .

Let us see that these elements of F'BL(L) witness the failure of the ccc. Obviously h; > 0.
First, we fix i and we check that h; > 0. For this, define z*: L. — [—1, 1] by

0.1 if z < ab,
z*(z) =4 055 if 2 <z < ai,
1 if xé < z.

We have that h;(z*) = 0V (0.1 A (0.55 — 0.1 — 0.4) A (1 — 0.55 — 0.4)) = 0.05, s0 h; # 0.
Now, we prove that h; A h; = 0 for ¢ # j. Suppose on the contrary that h; A h; > 0.
Then, there exists 2* € L.* such that h;(z*) A h;(z*) > 0. Then
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Remember that property 3 of Lemma 3.5 fails, and therefore either xé ¢ [x%,24] or

zy ¢ [z],x}]. For example, say that a2} < x{ (all other cases are analogous). Then,

combining the fact that 2* is nondecreasing with the above inequalities, we get that

(M) > z*(M)—z*(z}

) — a*(a})
() — 2% (2})

= 2*(z}) — 2" (@) + 2" (2}) — 2" (2]) +
v*(]) — 2% (ah) + ¥ (2h) — 2" (a})

> 1.22%(M),

a contradicition because x*(M) > z*(z%) > 0.

The proof of the case when L has a maximum is over. Let L be the linear order whose
underlying set is the same as L., but with the reverse order. It is easy to check that the map
®: FBL(L) — FBL(E) given by ®(f)(z*) = —f(—2*) is an isomorphism of Banach
lattices with ®(d,) = d, for all z € L. Thus, FBL(L) and FFBL(L ) are isomorphic, so
we will have that . embeds into the real line whenever FFBL(L) satisfies the countable
chain condition and L. has a minimum. The case when L has neither a maximum nor a
minimum remains. In that case, we just pick an arbitrary element a € IL and consider
Li={zel:x<a}and Ly = {x € L: 2 > a}. By Lemma 3.6, if FBL(L) satisfies the
countable chain condition then both FBL(L;) and F'BL(L,) satisfy the countable chain
condition. But IL; and L, have a maximum and a minimum respectively, so by the cases
that we already proved, we conclude that both IL; and L, embed into the real line. This
implies that I. embeds into the real line, as required.

3.3 Chain conditions in FBL[E]

This section is devoted to the proof of Theorem 3.3, in which case we will also have
proved Theorem 3.2. In the sequel, we often identify a natural number n with the set
{0,1,2,...,n — 1}. For any set A and s € N, we use the following standard notation:
[A]* ={B C A:|B| = s}.

We start by recalling the classical Ramsey’s theorem which we use in the proof of
Lemma 3.8 below.

Theorem 3.7 ([34, Corollary 1.4]). Given p, q,r € N, with p < r, there exists N =
N(p,q,r) € N such that for every map

p: [N]P —q
there exists B € [N]" such that @i is constant.
Given any set A, we write A4 for the diagonal in A x A.

Lemma 3.8. For every a € N, there exists N = N(a) € N such that for every map

c: Nx N\ Ay — a,
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there exist i < j < k € N such that
c(i,j) = c(i, k) and c(k, i) = c(k, j).

Proof. We shall check that the Ramsey number N = N (3,a?,5) given by Theorem 3.7 has
the required property. Fix any function ¢: N x N \ Ay — a.
Let ¢: [N]®> — a? be the map given by

90({1.7].7 k}) = (C(iaj)ac(kuj))v

whenever {i,j,k} € [N]* and i < j < k. By Theorem 3.7, there exists B € [N]’ such that
¢ is constant on [B]*. Write B = {by,...,bs} sothatb; < ... < bs.
We now check that b, b3, by is the triple satisfying the assertion of the lemma. Since

©({b2,b3,b4}) = @({b2,bs,b5}),

we get ¢(ba, b3) = c(be, by) by the definition of .
Analogously, since
©({b1,b3,b4}) = @({b1, b2, bs}),

we conclude that ¢(by, b3) = ¢(b4, b2), and the proof is complete. O
Let us now fix a Banach space E and consider the compact space K = (Bpg«,w®*).

Theorem 3.9. There is a countable decomposition X = |, oy X, of the family

X ={f€CK): [l #0}
such that for every G C X, of cardinality v there exist two distinct f,g € G such that f - g # 0.

Proof. What we are going to find is a countable decomposition X = | J,,cy Yu, indicated
on a suitable countable set W, together with a function M : W — N such that for every
G C Y, of cardinality M (w) there exist two distinct f, g € G such that f - g # 0. From such
a decomposition we can define one like stated in the theorem, by picking either X, = ()
or X, =Y, where w is the least element (in some enumeration of W) that has not been
previously chosen and M (w) < v.

Recall that for 2* € K, sets of the form

Ves(x1 .oy 20,0) ={y* € K : |y*(z;) — 2™ (a;)| < d foreveryi =1,...,n},

where z1,...,z, € E and ¢ > 0, form a base for the weak* topology at z* € K.
For every f € X we have f|i, # 0, so there is z} € E* such that ||z}| < 1/3 and
3

|£(z3)
£(z3)

Every function f € X is weak*-continuous at 2 so there is a weak*-neighbourhood Uy

> 0. Without loss of generality we can assume that there is ¢ > 0 such that

> ¢ for every f.

of z} such that ’f(y*) — f(a:})‘ < /2 for every y* € Uy. We may assume that every Uy
is a basic neighbourhood determined by n vectors from £ and some é; > 0 that can be
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supposed to be rational. Our index set willbe W =N x Q and Y, 5y = {f € X : ny =
n,0r =0}.

So we fix w = (n, d), and what we have is that for every f € Y, there exist a:{, . ,x£ €
Bp; satisfying

® |£(5)

> ¢ for every f € Y,;
(ii) writing Uy = Vm}(m{, . §), we have | f(y*) — f(z})| <e/2 for every y* € Uy.

In order to complete the proof it is enough to show that there is a large enough number
N (that will be our M (w)) that satisfies the following claim:

CLAIM A. Suppose that {fo, ..., fnv—1} C Y,. Putting zj := 2} forevery0 <a < N —1,
there exist 0 < i < j < k < N — 1 such that for y* = 27 — 27 + 2}, € K we have f;(y*) #0
and fi(y) # 0.

Indeed, the general case follows then by reindexing the functions in question. In turn,
Claim A follows from the following:

CLAIM B. In the setting of Claim A, putting U, := Uy, for every 0 < a < N — 1, there are
0<i<j< k<N —1such that

y*:xf—x;f—l—xZeUiﬂUk.

Indeed, if y* € U; N Uy then

|filx}) = fily™)| < /2
|fi(z})] > e

and f(y*) # 0 for the same reason. To complete the proof we shall now verify Claim B.
Write [—1,1] = U;";Ol I, where I, are pairwise disjoint intervals (with or without
endpoints) of diameter less than 0.
The number N = M (w) that we need to take is the number N = N(m") given by
Lemma 3.8. Put zj, := x{;“ forevery 1 < p <nand 0 < a < N — 1, and consider the

mapping

} = [fily) >e/2= fily") # 0,

c: Nx N\ Ay — m", c(a,b) = (ci(a,b),...,cy(a,b)),

where for every 1 < p < n, the value of 0 < ¢,(a,b) < m — 1 is defined by the condition

zh(3) € Loy (a)-
By Lemma 3.8, there exist i < j < k < N — 1 such that

c(i,j) = c(i, k) and c(k, i) = c(k, j).

As c(i, j) = c(i, k), for every p < n we have < 0, and

z;(ap) — wi (7))
|27 (2) — " ()| = |2 (a3) — k()] <6,

R

which means that y* € V- (zt,...,2,8) = U,.
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In the same manner, from c(k, i) = c(k, j) we get

2t (zk) — x*f(x';)) <4, and

Again, this means that y* € V- («f, ..., z},8) = Uy, and this verifies Claim B. O

o

Theorem 3.3 follows immediately from Theorem 3.9, because all strictly positive ele-
ments of Cy,(K) satisfy f]| 1g # 0. As it was observed in the introduction, Theorem 3.2
follows from Theorem 3.3.

3.4 Concluding remarks

Let us note that the proof of Theorem 3.9 works even if we replace Bg+ by any weak*-closed
and absolutely convex subset K of Bg~. The only delicate point in the proof that one has to
be careful about is that the vector y* = z} — 2 + 2, chosen in Claim B is still an element of
K and this is guaranteed by x, T;, Ty € %K . Thus, Theorem 3.3 may be stated as follows:

Theorem 3.10. Given a Banach space E and a weak*-closed absolutely convex set K C Bpg-,
the lattice Cy,(K) satisfies the o-bounded chain condition.

The question arises if there are natural stronger chain conditions that would hold in
Cpn(BEg+), and so in FBL[E)], for every Banach space E.

The o-bounded chain condition was introduced by Horn and Tarski in connection with
Boolean algebras carrying strictly positive measures. It is worth recalling that the related
Horn-Tarski problem, whether the condition o-bcc is equivalent to its certain formally
weaker version was solved in the negative only a few years ago by Thiimmel [31] and
Todorcevic [35].

Suppose that 2( is a Boolean algebra and p: 2 — [0, 1] is a finitely additive probability
measure such that u(a) > 0 for every a € 2A*. Then we can write

At = | J Fn, where 7, = {a € A p(a) > 1/n}.
n>2

Clearly, F,, contains no n many pairwise disjoint elements, so 2l satisfies the o-bounded
chain condition. This cannot be reversed, there are algebras with o-bcc not carrying strictly
positive measures; cf. Chapter 6 of [14].

If X is a sublattice of the space C'(K) for some compact space K then one can think
of an analogous chain-like condition, stating that there is a finitely additive probability
measure 1 on K which is strictly positive on X+t \ {0}, that is [, f du > 0 for every
f € X*\ {0}. Note that to have [, f du well-defined for every continuous function f we
need only to assume that the domain of i contains the algebra A(K) generated by closed
subsets of K. Once we have such y, it is not difficult to verify the condition o-bcc. Let us
first observe that whether the measure in question is actually countably additive or merely
finitely additive is not essential here.
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Remark 3.11. Suppose that p is finitely additive probability measure which is strictly
positive on Xt \ {0} for some sublattice X of the lattice C'(K') of continuous functions on
a compact space K. Then there is a countably additive Borel measure p/ on K which is
again strictly positive on X \ {0}.

For f € X\ {0} writee = [, fdpand A= {z € K : f(z) > ¢/2}; then

6=/Afdu+/K\Afdu§Hflloo-u(A)Jrf/?,

which gives p(A) > 0. This implies that whenever a finitely additive measure 1’ satisfies
p/'(A) > p(A) for every closed A C K then again [, f dy/ > 0 for every f € X T\ {0}.
Now the point is that there is such y that is closed-inner-regular on the algebra A(K),
see [27]; 1/ is then countably additive (by compactness) and, consequently, extends to a
countable additive Borel measure on K which is positive on X \ {0}.

Using Remark 3.11 it is not difficult to give an example showing that the o-bounded
chain condition that holds in every F'BL[FE] does not admit the obvious measure-theoretic
strengthening mentioned above.

Example 3.12. Consider the Banach space £ = ¢y(I"), where I' is a uncountable set; then
E* = ¢1(I"). There is no measure on K = Bp- which would be positive on all elements
from Cpp,(K)™.

Indeed, every v € I defines f, € Cp,(K)*, where f,(z) = |z,|. Suppose that y is a
measure on K such that [, f, du > 0 for every 7. By Remark 3.11 we can assume that p
is countable additive. Then for every v there is §(v) > 0 such that

p({z e K: fr(x) =2 6(7)}) > 0.

Using the fact that I' is uncountable, we conclude easily that there is § > 0 and a sequence
of distinct v, € I' such that, writing A, = {x € K : f,, (z) > 0}, we have u(A,) > §. But
then 1((,, Up>,, Ak) > 0; in particular, there is = € K belonging to infinitely many sets A,,.
This clearly contradicts the fact that z € K C ¢,(~).






Chapter 4

Projective Banach lattices

4.1 Introduction

There is a very extensive theory about projective objects in the context of the general theory
of categories, see e.g. Semadeni’s book [30]. In this chapter we continue the program
proposed by B. de Pagter and A. W. Wickstead [15] of studying the projective Banach
lattices. Its content is basically extracted from our publications:

[5] AVILES, A., MARTINEZ-CERVANTES, G., AND RODRIGUEZ ABELLAN, J. D. On projective
Banach lattices of the form C(K) and FBL[E]. J. Math. Anal. Appl. 489, 124129
(2020)

[6] AVILES, A., MARTINEZ-CERVANTES, G., AND RODRIGUEZ ABELLAN, J. D. On the
Banach lattice ¢y. To appear in Rev. Mat. Complut. https://doi.org/10.1007/s13163-
019-00342-x, 2020

[10] AVILES, A., AND RODRIGUEZ ABELLAN, J. D. Projectivity of the free Banach lattice
generated by a lattice. Archiv der Mathematik 113 (2019), 515-524

Definition 4.1. Let A > 1 be a real number. A Banach lattice P is A-projective if whenever
X is a Banach lattice, J a closed ideal in X and Q: X — X/J the quotient map,
then for every Banach lattice homomorphism 7: P — X/.7, there is a Banach lattice
homomorphism 7': P —s X such that 7 = Q o 7' and ||T| < A || T

A Banach lattice is called projective in [15] if it is (1 + ¢)-projective for every € > 0. For
a more intuitive terminology, and by analogy to similar notions in Banach spaces, we will
call this 1"-projective instead of just projective. Note that if P is A-projective, then P is
u-projective for every p > . We will call a Banach lattice oco-projective if it is A-projective
for some A > 1.

49
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Since the canonical 1*-projective Banach lattice is the free Banach lattice FBL(A) ([15,
Proposition 10.2]), it is natural to think that its variants ' BL(LL) and F'BL[E] may also be
1" -projective at least in some cases. Sections 4.3, 4.4 and 4.5 are devoted to this.

On the one hand, we prove that:

Theorem 4.2. If L is a finite lattice, then FBL(LL) is a 1*-projective Banach lattice.

In this case, F'BL(IL) is a renorming of a Banach lattice of continuous functions C'(K)
on a compact neighbourhood retract K of R”, which is 1*-projective ([15, Theorem 11.4]).
However, 1" -projectivity is not preserved under renorming, because of the (1 + ) bound
required in the definition. Getting this bound will be the key point in the proof.

In the infinite case, we consider only linearly ordered sets, as they are easier to handle
than general lattices. We prove the following:

Theorem 4.3. Let L be an infinite linearly ordered set. Then, F'BL(LL) is not co-projective.

On the other hand, as we said before, the free Banach lattice FBL(A) = FBL[{1(A)] is
1T -projective. Here, we show that, for F BL[E] to be oo-projective, the structure of F must
be very close to that of /1 (A):

Theorem 4.4. Let E be a Banach space. If FBL[E] is co-projective, then E has the Schur
property (i.e. every weakly convergent sequence in E converges in norm).

Moreover, at the end of Section 4.5 we provide a counterexample which shows that, in
the category of nonseparable Banach spaces, the converse of this result does not hold. We
still do not know if there exists a separable Banach space E which has the Schur property
and such that FFBL[E] is not co-projective.

Other examples of 17-projective Banach lattices given in [15] include every finite
dimensional Banach lattice ([15, Theorem 11.1]), ¢; and any countable ¢;-sum of separable
1" -projective Banach lattices ([15, Theorem 11.11]). However, questions as whether cg, />
or C([0, 1)) are 1*-projective were left open in the same publication. In Sections 4.5 and
4.6 we answer these questions. In fact, we prove the following more general result:

Theorem 4.5. Let (u;);cny be a bounded sequence of vectors in an oo-projective Banach
lattice X. Suppose that there exists a Banach lattice homomorphism T: X — ¢y such
that T'(u;) = e; for every i € N, where (e;);en is the canonical basis of co. Then there is a
subsequence (u;, )ren equivalent to the canonical basis of ¢4,

where we get, in particular, that neither ¢y nor ¢, (for 2 < p < oo) are co-projective;
and the result below, answering [15, Question 12.12], where it was asked whether the fact
that a compact Hausdorff topological space K is an absolute neighbourhood retract in the
category of compact Hausdorff topological spaces implies that the space of the continuous
functions on K with the supremum norm is 17 -projective:

Theorem 4.6. If K is a compact Hausdorff topological space, then C(K) is 1T -projective if,
and only if, K is an absolute neighbourhood retract in the category of compact Hausdorff
topological spaces.
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In [15, Proposition 11.7] B. de Pagter and A. W. Wickstead prove that if C(K) is
1*-projective, then K is an absolute neighbourhood retract in the category of compact
Hausdorff topological spaces, while they only manage to show the converse with the
additional hypothesis that K is inside R™ ([15, Theorem 11.4]).

Finally, in Section 4.7 we study the complementability of the Banach lattice ¢, in
FBL|cy), while in Section 4.8 we propose some open problems we have about projective
Banach lattices.

It should be noted that the complementability of ¢y in F' BL]cy] is not a fact directly
related to the topic of this chapter, but nevertheless, in [6] we used this to show that
FBL]co] is not 1T -projective, which is already deduced here from Theorem 4.4 in a more
general way.

4.2 Preliminaries

We start this chapter with some preliminaries about projective Banach lattices, quotients of
projective Banach lattices and absolute neighbourhood retracts.

In Section 4.2.1 we show a simple but very useful result to study when the quotient of
a 17 -projective Banach lattice is also 17 -projective, and which we will use several times
throughout the chapter.

In Section 4.2.2 we show the definition of absolute neighbourhood retract and some
basic facts which we will need in the proofs of some of the theorems mentioned in the
introduction.

But before that, we prove that, in the case of co-projective, () can be taken any surjective
Banach lattice homomorphism. Moreover, we prove that if a Banach lattice has the property
that we can lift Banach lattice homomorphisms from it to another Banach lattice via
surjective Banach lattice homomorphisms (or just quotient maps), then it is A-projective
for some \. More concretely:

Proposition 4.7. A Banach lattice P is oo-projective if, and only if, whenever X and Y are
Banach lattices, and S: X — Y is a surjective Banach lattice homomorphism, then for
every Banach lattice homomorphism T: P — Y there is a Banach lattice homomorphism
T:P— X suchthat SoT =T.

Proof. Suppose that P is co-projective, and let S: X — Y be a surjective Banach lattice
homomorphism between two Banach lattices X and Y, and 7: P — Y a Banach lattice
homomorphism. Since S is surjective, we have that Y is isomorphic to the quotient
X/Ker S. Let V: Y — X /Ker S be the isomorphism, andlet Q@ :==V 0 S: X — X/Ker S
be the quotient map and 7" :=V o T: P — X/Ker S.

Using that P is co-projective, we have that there exists a Banach lattice homomorphism
T": P —s X such that Q o 7" = T". But then 7" := 7" is as required. Indeed, we have that
VoSoTl = VoT,whichimpliesthatSoT’ =T,50S0T =T.

For the converse, suppose that P satisfies such a property but it is not oco-projective.
Then, for every A € N there exist a Banach lattice X, a closed ideal 7, in X, and a
Banach lattice homomorphism 73 : P — X /7, of norm 1 for which every Banach lattice
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homomorphism Tv: P — X satisfying Q) o T\ = Ty, where Qy: X, — X»/J, is the
quotient map, has norm |73 > A.
Let

X := ®ren Xy = {x = (z1,22,...): x) € X) for every A € N, sup Hac,\HXA < oo} ,
AEN

together with the norm ||z([y := supyen ||zl x, , and the order given by
(w1,29,...) <x (2,2),...) if, and only if, z) <x, =\ for every \ € N,

be the /,,-sum of X, which is a Banach lattice, and let Y := @,enX)\/J) be the {-sum
of X, /J», defined in a similar way to X.

Let T: P — Y be the Banach lattice homomorphism given by 7'(p) = (T1(p), T2(p), . . .)
for every p € P, and let S: X — Y be the surjective Banach lattice homomorphism given
by S(z) = (Q1(z1), Q2(x2),...) for every x = (x1,x2,...) € X (S is, in fact, a quotient
map).

We are going to see that there is not any Banach lattice homomorphism 7': P —s X
such that S o 7' = T, which will be a contradiction.

Suppose that it exists, and let us denote 7: P — X by T'(p) = (T1(p), Tx(p),...) for
every p € P. Then, we have that

171 = mpﬁﬁwﬂuupefwmus1}

— sup Jx:pePlpll <1}

= sup{up!T,\ M, pGPHP’<1}

= sup {|ITA@)llx, A€ N,p e P o] < 1},

which implies that |7 (p)||x, < ||T|| for every A € N and p € P with |[p|| < 1.

But now, from the fact that S o 7' = T, we have that Q,(T)(p)) = Tx(p) for every A € N
and p € P, and then, if we view the A-th coordinate of T as a Banach lattice homomorphism
T\: P — X, we have that Qy o T\ = T) and ||T)|| < |T|| for every A € N, which is a
contradiction. O

4.2.1 Quotients of projective Banach lattices

The following result is a variation of [15, Theorem 10.3]:

Proposition 4.8. Let P be a 17 -projective Banach lattice, T a closed ideal in P and n: P —
P/T the quotient map. The quotient P/Z is 1T -projective if, and only if, for every ¢ > 0
there exists a Banach lattice homomorphism u.: P/T — P such that 7 o u. = idp;7 and
llue|| < 1+e.

Proof. If P/T is 1*-projective, then we can just apply Definition 4.1. On the other hand,
if we have the above property and we want to check Definition 4.1, take ¢y > 0, a
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quotient map @: X — X/J and a Banach lattice homomorphism 7': P/IT — X/J.
Take e with (1 4+ ¢)? < 1 + &;. Since P is 1*-projective we can find S: P — X with
QoS =Tomand ||S|| < (14 &)|Ton|| = (1+¢)|T|. If we take T' = S o u., then
QoT =QoSou.=Tomou.=Tand |T| < (1+¢)?|T| < (1+eo)|T| as desired. [

In the context of the free Banach lattice generated by a lattice FBL, (L), since FBL(L)
is 1*-projective, and the restriction map R: FBL(L) — FBL,(L) described in [Chapter
2, Section 2.4] (R(f) = f|v+) is a quotient map, we get, as a particular instance of
Proposition 4.8,

Proposition 4.9. Let L be a lattice and let R: FBL(L) — FBL.(L) be the restriction
map R(f) = f|L-. The Banach lattice FBL.(LL) is 1"-projective if, and only if, for every
e > 0 there exists a Banach lattice homomorphism u.: FBL,(LL) — FBL(L) such that
Rou, = idFBL*(]L> and Hugu <l+e

4.2.2 Absolute neighbourhood retracts

Definition 4.10. We say that a topological space K is an absolute neighbourhood retract
(ANR) if whenever i: K — X is a homeomorphism between K and a subspace of the
topological space X, there exist an open set V' in X and a continuous function ¢: V — K
such that i(K) C V C X and ¢(i(k)) =k forall k € K.

Note that when in Theorem 4.6 we say that “K is an absolute neighbourhood retract in
the category of compact Hausdorff topological spaces”, we mean that the condition of this
definition holds whenever X is a compact Hausdorff topological space.

The following result will be very useful in the proof of this theorem:

Lemma 4.11. In the situation of Definition 4.10, whenever X is a normal topological space,
there exist a continuous function u: X — [0, 1] and a continuous function p: X \u~(0) —
K such that u(i(k)) = 1 and ¢(i(k)) = k for every k € K.

Proof. By Urysohn’s lemma, we can find a continuous function u: X — [0, 1] such that
u(i(k)) = 1 for every k € K, u(z) = 0 for every x € X \ V, and u(z) € (0,1) for every
x € V \i(K). Notice that X \ u~'(0) C V, so we can take ¢ = ¢|y\,-1(0) and the statement
of the lemma is satisfied. O]

On the other hand, the following are two basic facts of the theory that can be found in
[37] as Theorems 1.5.1 and 1.5.9:

e Every closed convex subset of R™ is ANR.

e If K, K> are closed subsets of K, and K7, K and K1 N Ky are ANR, then K; U K>
is also ANR.

From this, one can easily prove that every finite union of closed convex subsets of R™ is
ANR, by induction on the number of convex sets in that union. We will use this fact in the
proof of Theorem 4.2.
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4.3 Projectivity of the free Banach lattice generated by a
finite lattice

In this section we prove Theorem 4.2, that is to say, we prove that if L is a finite lattice,
then FBL(L) is a 1*-projective Banach lattice.

Proposition 4.12. If L = {0,...,n — 1} with some lattice operations is a finite lattice, then
L* N 8[—1,1]" is ANR.

Proof. Clearly, 0]—1, 1]™ is a finite union of closed convex subsets of R"™. On the other hand,
for every i, j,k € L let

Aijk = {(3707 .- '7xn—1) S [—17 1]” xp Vg = xk}

and
Bijk: = {(:L‘(), - ,xnfl) S [—1, 1]“ 1T /\xj = l“k:} .

It is clear that

A'L]k: = {(330, N 7.%'”71) c [—1, 1]71 X = Tk, x] S xl}
U{(x07 .- '71"71—1) € [_1, 1]71 : I'j = Tk, Tj S J,‘]}

and

Bijr = {(wo,...,zn1) € [-1,1]" : 2 = 2p, 25 > 4}
U{(azo, s Tpo1) € [ty = xp, 1 > x4}

are union of two closed convex sets. Since

L =1{ () 4 || ) Bir |

ivj=k inj=k

we have that L* is the intersection of finite unions of closed convex sets. One can easily
rearrange this formula to obtain that it is also a finite union of intersections of closed
convex subsets of R"™. Now, by using that the intersection of closed convex subsets of R" is
again a closed convex subset of R™, we conclude that IL* is a finite union of closed convex
subsets of R". Thus, we have that both L* and 0[—1, 1]" are finite union of closed convex
subsets of R", so L* N J[—1, 1]" is also a finite union of closed convex subsets of R”, and
thus, ANR. O

In the context of compact metric spaces, the retractions in the definition of ANR can be
taken arbitrarily close to the identity. We state this fact as a lemma in the particular case
that we need:

Lemma 4.13. Let L = {0,...,n — 1} with some lattice operations be a finite lattice. Then,
given ¢ > 0, there exist an open set V. = V.(L*) with L* N 9]-1,1]" € V. C R" and
a continuous map ¢: V. — L* N 9[—1,1]" such that | «ngj—1,1]» = idpng[—1,1]» and
d(z*, p(z*)) < e for every x* € V., where d is the square metric in R™.
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Proof. AsL* N J[—1,1]™ is an ANR by Proposition 4.12, we cand find a bounded neighbour-
hood V of L*NJ[—1, 1]" in R" and a retraction ¢: V' — L*N0J[—1, 1]". Let us take an open
set W such that L* N 9[—1,1]* ¢ W C W C V C R™. Now, ¢|z7: W — L* N 9[—1,1]" is
a continuous map between compact metric spaces, so it is uniformly continuous. Given
e > 0, there exists § > 0 such that d(¢(z*), p(y*)) < /2 if 2*,y* € W and d(z*,y*) < 6.
Put 7 = min(e/2, ) and take

Ve = {z* € W : there exists y* € L* N 9[—1, 1]" with d(z*,y") < n},

and p = ¢ly.: Vo — L* N J[-1,1]". Clearly, ¢ is continuous and @[ -ng—11» =
idp+no[—1,1]n- Let o* € V, and let y* € L* N 9[-1, 1]" such that d(z*, y*) < n. Then,

A, o) < d(@",y") +d(y", o) = da” ") +dp(y") p(a™) < 5 + 5 =<

O]

We are ready to prove Theorem 4.2. Let n be the cardinality of L. We may suppose
that L = {0,...,n — 1} with some lattice operations, and in this way we identify [1,1]*
with [—1, 1]”. We fix ¢ > 0, and we will construct the map u.: FBL,.(L) — FBL(L) of
Proposition 4.9. Let V. and ¢ be given by Lemma 4.13. By Urysohn’s lemma, we can find a
continuous function 1.: 9[—1,1]" — [0, 1] such that 1.(z*) = 1 if 2* € L* N 9[-1,1]", and
le(z*) = 0if 2* & V.. We define u.(f)(z*) = 1.(2*) - f(p(x*)) if 2* € V,, and u.(f)(z*) =0
ifz* ¢ V., forevery f € FBL.(L) and z* € 9[—1, 1]". We extend the definition for elements

€ [-1,1]" \ 9[—1,1]™ in such a way that u.(f) is positively homogeneous. Since L is
finite, the fact that u.(f) is continuous on J[—1, 1]" and positively homogeneous guarantees
that u.(f) € FBL(L). It is easy to check that u. is a Banach lattice homomorphism and
that R o u. = idppy, (1)- It would remain to check that [[uc|| < 1+ ¢. We will prove instead
that for this u. we have ||u.|| < 1 + ne, which is still good enough. We know that

[uel| = sup {{luc ()] : f € FBL.(L), [ f]l« <1},

where

[ue(F)II = SUP{Z riue(f) (@) s @f € O[-1,1]", 1 € R, sup ) |riaj ()] < 1}~
=1

zell i—1

So we fix f € FBL.(L) with | f||, <1, where

m m
1711 =Sup{218if(y?)\ pyi €L, si € R, sup ) fsiyf(2)] < 1}7

i—1 z€l ;5

and we want to prove that ||u.(f)|| < 1+ne. Using the expression of ||u.(f)|| as a supremum,
we pick z7,..., 25, € 9[—1,1]", r1,...,rm € R such that sup,cp > v |rizf(z)] < 1, and

we want to prove that
m

> Iraue(f)(@5)] < 1+ ne.

i=1
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The first estimation is that

Y lriue(H@d) = Y Irile@)feE)) < Y Irif(p(z)))].
i=1

zreVs zreVe

If we write y;* := ¢(x}) for 2} € V, the inequality above becomes

0 Sl (e < 3 Irf )]
=1

zyeVe
On the other hand, if x € LL then

> rigi@) = Y |rip(ai) (@)l
zF€Ve z;€Ve

< 3 @)+ Y il le(e) (@) — 2} ()]

zreVe zreV.
<l+¢ Z |ri| <14 en.
zyeVe

The last inequality is because z} € 0[—1,1]", and therefore

m m m
DY ‘”’825 2} ()] <D0 il (z)] < JLJ -1 =n.
i=1 i=1 z

z€l i=1
Taking s; = ﬁ, we have that, for all x € L,
r
S i@l = Y i) <1
+ ne
xf€eVe z;€Ve

Thus, the s; and the y; are as in the supremum that defines || f||. < 1. Therefore
Yo lsif <1,
z7€Ve

and getting back to our initial estimation (%), we get

S (D@D < S Iraf ()] < 1+ ne.
=1

zieVe

4.4 Projectivity of the free Banach lattice generated by an
infinite linear order

Now, we are going to prove Theorem 4.3, that is, if L is an infinite linear order, then
FBL(L) is not co-projective. This will be a direct consequence of the fact that the free
Banach lattices generated by the set of the natural numbers and the set of the natural
numbers together with +oo as linearly ordered sets are not oo-projective. In the proof, we
will use the following:
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Lemma 4.14. Suppose that ¢;: [-1,1]N — R, i = 1,2,..., are continuous functions such
that, for every i,

1. ¢i((@n)nen) = x; whenever z1 < x5 < ...,
2. ¢i(z) < @iy1(x) for all x € [-1,1]N.

Then, when we view the ;s as elements of the free Banach lattice F BL(N), the sequence of
norms ||¢:|| ppr() is unbounded.

Proof. Let m;: [—1,1]N — [~1, 1] be the projection on the i-th coordinate. Consider the set
M = {(zn)pen € [-1,1]N : 2y <2y < ...} C [-1,1]". Since M is closed and [—1, 1]Y with
the product topology is compact, we have that M is compact. Condition 1 in the Lemma
means that ;| = 7|y for all 4. Using the compactness of M and the continuity of ¢; and
m;, we have that that there exists a neighbourhood U; of M such that

1
d(ilv;, milu,) = sup |gi(z) —mi(@)] < 5.
zeU;

For an integer k& > 3, let
Wy = {(xn)neN € [-1, 1]N cxy < T+ k~! whenever i < j < l{:} .

The family {W}, : k > 3} is a neighbourhood basis of A/. We define inductively an increasing
sequence of natural numbers kg < k1 < k2 < k3 < - - -, and a sequence of points 3!, y?,... €
[—1, 1] as follows. We take kg = 1 as a starting point of the induction. Suppose that
we have defined ky < k1 < --- < k; and y',...,y’. We choose kj;1 > k; such that

Wi,., C Uy,, and we define y/*!: N — [—1,1] to be the map given by
0 if  n<k
YY) =< 1 if kj<n <k,
0 of n > ki1
We have y/™ € Wy, ,, so o, (y7™) — 7, (v )] = |or, (171! — 1| < 3, and then,

o, (37T > 3.

Fix m € N. When j + 1 < m, using condition 2 of the Lemma, we get that

N | —

Pro () > 00, () >

Remember how the norm is defined:

lellrprm) =sup 3 D le(a)|:m €N, zj € [~1,1]", sup Y |z;(n)| < 1

=1 neN )

We have that sup,,cy 72, |4/ (n)| = 1, and therefore

m
@k |l FBLMN) > Pk ()] + - + loh, (™) > 5
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Now;, let Nt = NU {+o0}.
Lemma 4.15. FBL(N) and FBL(N™) are not co-projective.

Proof. First, if FBL,(N) was A-projective for some A\ > 1, by the very definition of A-
projectivity we would have a Banach lattice homomorphism u: FBL,(N) — FBL(N)
such that Rou = idppy, qvy and [lul < A\. Remember that if 7 € N, 6;: N* — R is the map
given by ¢;(z*) = z*(i) for every z* € N*, that is an element of FFBL,(N). We consider
¢; = u(d;) € FBL(N), that we view as continuous functions ¢;: [—1,1]N — R. The fact
that u is a lattice homomorphism gives condition 2 of Lemma 4.14, while the fact that
Rowu=idppgp, v gives condition 1 of Lemma 4.14. The fact that ||u|| < A contradicts the
conclusion of Lemma 4.14.

On the other hand, if F'BL,(N1) was A-projective for some A\ > 1, there would exists a
Banach lattice homomorphism w: FBL.(N*) — FBL(N') such that Row = idppp, (v+)
and ||w| < X. For every i € NT, let ¢ = w(d;). Then again ¢;((zy)npen+) = z; if
1 <x29< L. Seroo, andwl Sl/)g <... §¢+oo

Fix U/ a nonprincipal ultrafilter on N and define ¢;((zy)nen) = ¥i((x1, x2, . .., limy x4,))
for every i € N. Then the functions (; are as in Lemma 4.14, 50 [|¢;|| ppr(v) is unbounded.
We check now that |l¢;||rprayy < 19l peravt) < A, a contradiction. Take 377", [pi(z;)|
one of the sums that appear in the definition of |¢;||ppLay) as a supremum. Consider
yj = (2j(1),2(2),. .., limy x;(n)). Then, D77, |pi(x;)] = >°7%, [vi(y;)| and this is one of
the sums that appears in the supremum defining ||¢;|| ppr+) because

m
> lyjn I—Zm ) <1
=1

if n € Nand
m m
Z |y (4-00)| Z \ hmx] n)| = hmz |z;(n)] < 1.
j=1 =1
0

The following result is well known in the general theory of categories [30, Proposition
24.6.2], and tells us that A-projectivity is transferred to complemented Banach sublattices:

Lemma 4.16. Let P and P’ be Banach lattices, and let 7: P — P’ and 7: P’ — P be
Banach lattice homomorphisms such that ||7|| = ||7|| = 1 and 7 o7 = idp. If P is A-projective
for some \ > 1, then P’ is A\-projective.

Proof. In order to check the \-projectivity of P/, let Q: X — X/J and T": P — X/J
be as in Definition 4.1. Then, we can apply the \-projectivity of P considering T'=T" o 7,
so we get T: P — X such that Qo7 = T’ o7 and ||T]| < A|T| < M|T’||. The
desired lift is 7" = T o 7. On the one hand ||T”|| < ||T|| < A||T”||, and on the other hand
QoT' =QoToi=T oFoi=T. O
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We prove now Theorem 4.3. Let us denote by < the linear order on L. L contains either
an increasing or a decreasing sequence. Let us suppose without loss of generality that it
contains an increasing sequence xrj; < ro < 3 < - -.

First, suppose that it has no upper bound. The map :: (N, <) — (L, <) given by
1(n) = z,, for every n € N is a lattice homomorphism. Let 7: L. — N be the map given by

{ 1 if T < To,
m(z) = )
n if x € [z, xpy1) for any n > 2.

Notice that 7 is also a lattice homomorphism and 7 o 2 = idy. We are going to use the
universal property of the free Banach lattice over a lattice as stated in Definition 2.1. Let
¢1, and ¢y be the canonical inclusion of L and N into F BL(L) and F'BL(N), respectively,
and let 7: FBL(N) — FBL(L) and 7: FBL(L) — FBL(N) be the corresponding
extensions of ¢, o2 and ¢y o 7 according to Definition 2.1. The composition 7 o 7 and the
identity mapping F' BL(N) — F BL(N) are both extensions of ¢y so by the uniqueness in
Definition 2.1, 707 = idppr ). We can apply Lemma 4.16, so if F'BL(IL) was oo-projective,
then FBL(N) would also be co-projective, in contradiction with Lemma 4.15.

On the other hand, if the sequence z; < x2 < x3 < --- has an upper bound, x, ,, we
can take +: (NT, <) — (L, <) given by «(n) = z,, for everyn € Nt and 7: L. — N given
by

1 if T < Ta,
m(z)=4¢ n if x€[rp,znq1) foranyn > 2,
+oo if x > x, for all n,

and apply the same reasoning substituting N by N+,

4.5 Schur property in Banach spaces with projective free
Banach lattice

In this section we prove Theorems 4.5 and 4.4, in this order. As a preparation towards
Theorem 4.5 we provide a criterion to obtain /;-subsequences in the free Banach lattice
FBL(L). We denote the index set L instead of A for convenience in latter application.

Lemma 4.17. Let L be an infinite set, (x},),en a sequence in [—1,1]% and (f,,)nen a sequence
in FBL(L) with the following properties:

1. (fu)nen converges pointwise to 0, i.e. lim, o fn(x*) = 0 for every z* € [—1,1]%;
2. fo(x}) =1foreveryn € N;

3. For every finite set F' C L there is a natural number n such that z}|r = 0, i.e. the
restriction of x, to F' is null.

Then, for every € > 0 there is a subsequence ( fy, )xen such that for every | € N and for every
A,y N ER,

l
>(1=e)) el
k=1

l
Z )\k:fnk
k=1
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Proof. Fix e > 0 and (g;5)75_, a family of positive real numbers such that ¢ = Zz?:l Eij
and ¢;; = ¢;; for every i, j.

We are going to define a subsequence (fy,, )xen Of (fn)nen as follows:

Let m; := 1. Since the elements of FBL(L) are continuous with respect to the product
topology, there is a neighbourhood U,,,, of z;;,, such that f,,, (z*) € [1—&11, 14-€11] whenever
z* € Uy, . In particular, there is a finite set F},,, C L such that f,,,, (z*) € [1 —e11,1 + £11]
whenever z*|p,, = 7}, |R,, -

By property 3, there exists my € N such that z;,_| Fn, = 0. Since fp,, is continuous,

m
there exists a finite set F,,,, D F,, such that f,,,(z*) € [1 — €22,1 + €22] whenever

x*|Fm2 = 'r;kng |Fm2 *

Suppose that we have f,,,..., fm,_, for some k > 2, and F,,,,. .., Fy,,_, finite subsets
of L such that F,,, C --- C Fyy,,_,, :U;*,h_|pm_1 =0foreveryi=2,...,k—1and f,,(z*) €
[l —€i;, 1 + &) whenever 2|, = 27, |, -

Property 3 guarantees the existence of a number my, € N such that z7, |, =0.1t
follows from property 2 that there is a finite set F},,, C L, with F,,,, , C F},,, such that
fmy (") € [1 — ek, 1 + ex] whenever 2*|p,, = a7, |F,, -

For each k € N define y;,, : L — [-1,1] such that yy, |r, =27, |F, andy;, () =0
whenever x € L\ Fy,,. Notice that fp,, (y,,,) € [l — €k, 1 + exi] for every k € N. On the
other hand, if my < my and y;;, () # 0 then x € F,,, (by the definition of y;, ) and
therefore z7,  (x) =0, so yy, ,(z) = 0. It follows that y;, and y;,  have disjoint supports.
In particular,

l
. <1.
igkz:l Yy ()] <

Let v1 := my; = 1. Combining property 1 with the fact that the functions f,, are
continuous in [—1, 1]¥ and the functions y;;, converge to 0 in the product topology, we
have that there exists 15 € N such that

[ frmn (Um,, )| < €12 and | fin,, (47,,,)| < €21 = €12 for every n > vs.
Again, using the above, there exists a natural number v3 > v5 such that

| frme Ym, ) < €13, [, (U, )| < €31 = €13

and
| firn W, )| < €23, | fimu, (U, )| < €32 = €23

for every n > vs.
Suppose that we have v; < v, <--- <y, € Nsuch that

Fna W5, )| < i and [Fon,, (55,)] < 55 = &3, for every j < p and every n > v,
Then, there exists a natural number v, > v, such that

| Frnn Ui, | < o1y @0 [ fin,, (Y, )| < Epy)j = €jp1) for eVery j < p+1

and every n > vp41.
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Since fin,, (Y, ) € [1 = €viv;, 1+ €v,,] for every i, we can write fin, (47, ) =14 M,
with |1, | < €v,u;-

On the other hand, if k¥ # i, we have that fm, (y;“n%) € [—e€ix, €ix], and we will write
fmuk (y:nl’z) = Ny, With [0y, | < €ig.

We take the subsequence f,, := f,, foreveryk € N.

Now, let \1,...,\; € R. We have that

q
= up
1

l
Z)\kfnk Z)\k;fnk cqeN, 2z €] ) 5upZ|z <1}
k=1

i=1 k=1 velimg
l l l
> 1D M W )| = D N, W) + D A, Ui,
i=1 k=1 i=1 k#i

l
Ai + Z )\knuiuk

l
ML+ ) + > Nt | = D

|
MN

i=1 ki i=1 k=1
l l [ l [ [
o LIS S SIS SV SN (zm\)
=1 =1 k=1 =1 k=1 =1
l l l
> D N =D el e D e | = (=)D Ml
i—1 k=1 itk k=1

O]

Now, let L = Pﬁn(w) = Ptin(w) \ {0} be the set of the finite parts of w without the
empty set.

For A € L let us define the map x4: L — [—1,1] given by xa(B) = 1if B C A and
xa(B)=0if B ¢ A.

Let &: FBL(L) — cy be the map given by

O(f) = (f (xal1}))aer) » f ((xal{2D) acr) +---) = (F (kal{n})) aer) ) nen
for every f: [~1,1]% — R belonging to FBL(L).
Lemma 4.18. The map ®: FBL(L) — ¢y is a surjective Banach lattice homomorphism.

Proof. For every n € N let g,,: L — [~1,1] be the function g, = (xa({n})) ¢ - Then
the sequence (g,),y iS pointwise convergent to zero, so f(g,) converges to zero for
every f € FBL(L), and thus ®(f) € ¢y. Since ® preserves linear combinations, suprema,
infima and ||®(f)| ., < | f|| for every f € FBL(L), we have that ¢ is a Banach lattice
homomorphism.

Finally, let us see that ® is surjective. By the very definition of ®, if for A € L we
put eq := ) ;.4 ¢;, we have that ®(64) = ea. Let x = (x1,22,...) € ¢y and suppose,
without loss of generality, that > 0. Fix a sequence of natural numbers (n;),. with
n; # n; for every i # j and such that z,,, > x,, for every n € Nand z,,,,, > x, for every
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n e N\ {n;...,n;}. Now, let A; = {n,...,n;} and \; = z,,, — x,,, , foreveryi=1,2,...
We have that z = Z;”;l Ajea;, and then,
2= N®(0a;) =) P(Nba,) = (D Ada,),
j=1 j=1 j=1
where the last element E;’il Ao, is well-defined since Zj’;l Aj < oo and each d4; has
norm 1. u

We are ready to prove Theorem 4.5 from the introduction. Suppose that there is no
subsequence equivalent to the canonical basis of ¢;. Then, by Rosenthal’s ¢;-theorem [2,
Theorem 10.2.1], the sequence (u;);cn has a weakly Cauchy subsequence (u;, )xen. Thus,
the sequence (Y, )nen, With ¥, = u;,, , — u;,, for every n € N, is weakly null and bounded.

Let us denote T'(z) = (T(z);)jen € co forz € X, and let T: X — ¢ be the map given
by T'(z) = (T(:L')i2k+1)/€€N-

Let L and ®: FBL(L) — ¢ like in Lemma 4.18. Since @ is a surjective Banach lattice
homomorphism and X is co-projective, by Proposition 4.7 there exists a bounded Banach
lattice homomorphism 7': X — FBL(L) such that ® o 7' = T. We are going to find now
fn and z for the application of Lemma 4.17.

Let f, := T'(y,) for every n € N. The sequence ( f,),cn converges pointwise to 0, since
(Yn)nen is weakly null. It follows from the equality ®(f,,) = (® o T)(yn) = T(yn) = €, and
the definition of ® that

fo (xal{n ) acr) = (fn)n = enln) =1

for every n € N. Set z}, = (xa({n})) 4c;, € [—1,1]" for every n € N. Notice that if F' C L is
finite (i.e. F is a finite collection of finite subsets of w), and we take n € w \ g S, then
forevery S € F,n ¢ S, so z)(S) = xs({n}) = 0, and therefore condition 3 of Lemma 4.17
is also satisfied.

We can now apply Lemma 4.17, so for every ¢ > 0 there is a subsequence ( f,,, )ren such
that for every [ € N and for every A\q,..., \; € R,

l
> Mot
k=1

On the other hand, since 7" and (yn)nen are bounded, there are two constants C, M > 0

l
> (1—¢) ) |l
k=1

such that
l . l l l
D Aikug|| = T(Zxkynk> SO e[| S CM D Nl
k=1 k=1 k=1 k=1
Thus,
l l l
(=&)Y Il D M| S CM D [Ne],
k=1 k=1 k=1

so that (f,, )ren is equivalent to the canonical basis of ¢;, and in consequence, (y,, )ren is
also equivalent to the canonical basis of /1, which is a contradiction.
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Corollary 4.19. The Banach lattices cy and 1, (for 2 < p < oo) are not co-projective.

Proof. On the one hand, the canonical basis (u;);cy of ¢y does not have subsequences
equivalent to the canonical basis of ¢;, and the identity map 7" = id,, is a Banach lattice
homomorphism such that T'(u;) = e; for every ¢ € N, where (¢;);en is the canonical basis
of ¢p. On the other hand, the canonical basis (u;);en of [, does not have subsequences
equivalent to the canonical basis of ¢;, and the formal inclusion T of [, into ¢; is a Banach
lattice homomorphism such that 7'(u;) = e; for every i € N, where (e;);cn is the canonical
basis of c¢g. O

Remark 4.20. N. J. Laustsen pointed out to us that Theorem 4.5 gives us something stronger
than Corollary 4.19. Indeed, let E be a Banach space with a normalized 1-unconditional
basis (u;);en, and let X be the Banach lattice consisting of the Banach space £ endowed
with the coordinatewise order, that is, the order given by

Z aiu; < Z Biu; if, and only if, o; < j3; for every i € N.
i=1 i=1

Then we have the following result:

Corollary (N. J. Laustsen). If X is a Banach lattice as above and the basis (u;);en does not
have subsequences equivalent to the canonical basis of ¢1, then X is not co-projective.

Proof. Since (u;);cn is normalized, we have a formal inclusion map 7: X — ¢y given
by T'(>°:2, aiu;) = (vi)ien. By the very definition of the order on E, we have that T'is a
lattice homomorphism. The fact that (u;);cn is 1-unconditional asserts that 7" has norm 1.
Finally, T'(u;) = e; for every i € N, where (¢;);en is the canonical basis of cy. O

The following is a corollary of Theorem 4.5 in the context of free Banach lattices
FBL[E]:

Lemma 4.21. Let E be a Banach space such that FBL|E] is co-projective, and let (u;);en
be a bounded sequence of vectors in E. Suppose that there exists an operator S: E — ¢
such that S(u;) = e; for every i € N, where (e;);cn is the canonical basis of cy. Then there is a
subsequence (u;, )ken equivalent to the canonical basis of ¢;.

Proof. Let ¢: E — F BL[FE] be the inclusion of F into FBL[E], and let T: FBL[E] — cg
be the Banach lattice homomorphism given by the universal property of the free Banach
lattice over a Banach space which extends the operator S.

The sequence (¢(u;))ien is bounded in FBL[E] and T'(¢(u;)) = S(ui) = e; for every
i € N, so that applying Theorem 4.5 we have that (¢(u;));cn has a subsequence (¢(u;, ))ken
equivalent to the canonical basis of ¢;, which implies that (u;, )zen is a subsequence of
(u;)ien equivalent to the canonical basis of /;. O

We pass now to the proof of Theorem 4.4, which states that E has the Schur property
when FBL[E] is co-projective. Lemmas 4.22, 4.23 and 4.24 are necessary only to deal
with the case when F is nonseparable. The reader interested in the separable case may
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skip those lemmas and just apply Sobczyk’s extension theorem [2, Theorem 2.5.8] where
appropriate.

Lemma 4.22. Let F be a Banach space. If F BL[FE)] is co-projective, then E is isomorphic to
a subspace of C([—1,1]") for some set T..

Proof. Let I" be a dense subset of the unit ball Bg of E. Let Bg+ be the closed unit ball
of the dual space E*, endowed with the weak* topology. We have a surjective Banach
lattice homomorphism P: C([—-1,1]') — C(Bg+) given by P(f)(z*) = f((x*(z))zer)-
This is just the composition operator with the continuous injection z* — (z*(z)),er from
Bp~ into [-1,1)F. Let :: E — C(Bg+) be the canonical inclusion ¢(x)(z*) = z*(x), and
let i: FBL[E] — C(Bg-) be the Banach lattice homomorphism given by the universal
property of the free Banach lattice. Since F'BL[FE] is supposed to be co-projective, by
Proposition 4.7 there exists T': FBL|E] —s C([—1,1]") such that P o 7' = i. We take the
restriction T := T'|p: E — C([—1,1]"). Notice that PTz: = 1z, and therefore

1 Tz|| > | PT]| = ||| = ]|

for every x € FE. This implies that 7' gives an isomorphism of F onto a subspace of
C([-1,11). O

The following fact is well known in the context of a more general theory about Valdivia
compacta, Plichko spaces and projectional skeletons (cf. for instance [22]), but we provide
a short proof for the reader’s convenience:

Lemma 4.23. For every set T, the Banach space C([—1,1]") has the separable complementa-
tion property. That is, for every separable subspace G C C([—1,1]") there exists a separable
complemented subspace Gy of C([—1,1]') such that G C Gy.

Proof. Let S be a countable dense subset of G. By Mibu’s theorem [4, page 80, Theorem
4], for every f € S there exists a countable subset I'y C I such that f(z) = f(y) whenever
zlr, = ylr;. The set A = (J;c5I'y is a countable set such that f(z) = f(y) whenever
z|4 = y|la and f € G. The desired separable complemented subspace is

Go={f e C([-L1") :ala=yla= f(z) = fly)} = C(-1, 7).

The projection P: C([-1,1]'') — Gy is given by P(f)(z) = f(¥) where &; = z; if i € A
and ; = 0if i ¢ A. O

Lemma 4.24. Let E be a Banach space such that F BL[E] is co-projective, and let F' C E be a
separable subspace. Every operator Sy: F' — ¢y can be extended to an operator S: E — cy.

Proof. By Lemma 4.22, there is an operator T: E — C([—1,1]") that is an isomorphism
onto its range, so that G = T'(F) is a separable subspace of C([—1,1]"). By Lemma 4.23,
we can find a complemented separable subspace Gy of C([—1,1]") with G C Gy. Let
P: C([-1,1]") — Gy be the projection. If S;: Gy — ¢ is the extension of Sy given by
Sobczyk’s theorem, then S := S[/] oPoT: E — ¢ is the desired operator. O
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Theorem 4.4 follows from the previous results. Indeed, if £ does not have the Schur
property, then there is a weakly null sequence (u;);cn that does not converge to 0 in norm.
By passing to a subsequence we may assume that O is not in the norm closure of {u; };en-.
By the theorem of Kadets and Pelczynski [2, Theorem 1.5.6], by passing to a further
subsequence, we can suppose that (u;);en is a basic sequence. We are going to see that
there exists an operator S: F — ¢g such that S(u;) = e; for every i € N, where (¢;);en
is the canonical basis of ¢y, and then by Lemma 4.21, this will mean that (u;);en has a
subsequence equivalent to the canonical basis of /1, a contradiction with the fact that it is
weakly null.

Let F =span{u; : i € N} C E. For every n € N let u};: ' — R be the n-th coordinate
functional, given by u} (32, asu;) = oy, and let Sp: F' — {4 be the map given by
So(x) = (u}(z))nen for every x € F. Since the sequence (u),en is weak*-null, we have
that Sy(F') C ¢o. On the other hand, Sy(u;) = e; for every i € N. Now, since F' is separable
and F'BL[E] is oo-projective, applying Lemma 4.24 we can extend S, to an operator
S: E — ¢ such that S(u;) = e; for every i € N, which ends the proof.

As a remark, throughout the first lines of the proof we justify that the Schur property is
characterized by the property that every basic sequence contains a subsequence equivalent
to the canonical basis of /1. We may refer to [20] for a study of this kind of facts in a more
general context.

Finally, let us see that, in the category of nonseparable Banach spaces, the converse
does not hold. By [19, Theorem 1, e) and f)], there exist a separable Banach space F' and
a bounded set A in F* such that F := span(A) is nonseparable, has the Schur property
and does not contain any copy of /1(w;). Now, since for every set I the space [1,1]' is a
continuous image of {0,1}"" for some infinite cardinal number m, by [18, Corollary 3] we
have that E is not isomorphic to any subspace of C([—1,1]") for any set I, and then, by
Lemma 4.22, we have that F BL[E] cannot be co-projective.

4.6 Projectivity of C'(K)
This section is devoted to the proof of Theorem 4.6. We first start with two basic facts:

Lemma 4.25. Let A be asetand f: [-1,1]* — R a continuous and positively homogeneous
function that depends on finitely many coordinates, i.e. there exist a finite subset Ay C A
and f: [-1,1]4 — R such that f(z*) = f(z*|a,) for every z* € [~1,1]A Then, f is in
FBL(A).

Proof. The function f: [—1,1]4 — R is continuous and positively homogeneous. By [15,
Proposition 5.3], f is in FBL(A).

Let T: RI-LU% —y RI=LU* be the function given by T'(g)(z*) = g(2*|4,) for every
g € RELIA g o 21 1],

It is clear that 7" commutes with linear combinations and the lattice operations and
that | T(9)|l pprca) < 9]l pprca,)- Moreover, T(570) = ;! for every = € Ag. From this, we

conclude that if g € FBL(Ay), then T'(g) € FBL(A). Now, since f = T'(f), the affirmation
of the lemma holds. O
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Lemma 4.26. Let A be a set, f: [~1,1]* — R a continuous function, and a € A. Then, the
FBL(A)-norm of the pointwise product f - |0,| is less than or equal to the supremum norm

[/ lloc-
Proof.
IS - 1dalll = Sup{Z!fMa!(wZ)\:mEN, zy, € [1, 14, Supzm !<1}
k=1 ved k=1
= sup{ny(x;)|.5a(x;;)|:meN,x;e 114, supZ|J;k, |<1}
k=1 veA
< sup {Z [F@)] - [2i(a)] s m e N, @ € [-1, 104, Y |zf(a)| < 1}
k=1 k=1
< sup{max{\f(x;;)]:k—l, ,m}y:meN, zf e [-1,1)4, Z\aﬁ ]<1}
k=1
< [ flloo-

O]

We are ready to prove Theorem 4.6. In [15, Proposition 11.7] it is proved that if C(K)
is 1T-projective (or even, oo-projective), then K is an ANR in the category of compact
Hausdorff topological spaces, but we show the proof here for the sake of completeness.

Suppose that i: K — X is an homeomorphism between K and a subspace of the
compact Hausdorff topological space X. We want to see that there exist an open set V' in
X and a continuous function ¢: V' — K such that i(K) C V C X and ¢(i(k)) = k for all
keK.

The restriction map R: C'(X) — C(i(K)) is a surjective Banach lattice homomorphism.
If C(K) is 1T-projective (or co-projective), C(i(K)) so is, so that, by Proposition 4.7, the
identity map on C(i(K)) lifts to a Banach lattice homomorphism 7': C(i(K)) — C(X)
with R o T = idg(k))- Now, by [1, Theorem 4.25], there is a continuous function
w: X — R* and a continuous function ¢': V = {z € X : w(z) > 0} — i(K) such that

Tf(z) = {g(w) (@) ifw(@) >0,

otherwise ,

for every f € C(i(K)), z € X.

If k € K, then Tf(i(k)) = R(Tf(i(k))) = f(i(k)), so that w(i(k)) = 1 (which implies
that i(K) C V), and ¢/(i(k)) = i(k). Finally, if i~ !: i(K) — K is the inverse of i, taking
¢p=1i"lto¢: V — K we have that ¢(i(k)) = k as desired.

For the converse, let X := [—1,1]%¢t), where Beowgy = {f € C(K) : ||[fllo < 1} is
the closed unit ball of the space of continuous functions. The map :: K — X given by
i(k) = (v(k))yeBo, is an homeomorphism between K and i(K). By Lemma 4.11 there
exist a continuous function u: X — [0, 1] and a continuous function ¢: X \ v 1(0) — K
such that u(i(k)) = 1 and ¢(i(k)) = k for every k € K.
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By the universal property of the free Banach lattice, there is a Banach lattice ho-
momorphism 7: FBL(Bg)) — C(K) that extends the inclusion By — C(K).
This is clearly a quotient map and its action is given by T'f(k) = f(i(k)) for every
f € FBL(Bo)), k € K.

Since FBL(B¢ (k) is 1" -projective, by Proposition 4.8 it is enough to prove that there
exists a Banach lattice homomorphism S: C(K) — FBL(B¢(k)) such that T'o S = id¢ k)
and ||S|| < 1.

Let 1 € Be(k) be the constant function equal to 1, and let v: {zr € X : 21 #0} — X
be the map given by v(z) = (v(2),)yeBy(x,, Where

-1 if <1,
if 2 e[-1,1],
if >,

8
5

v(z)y =

=i
8
i

=8

for every x = (2)yeBc () € X with z1 # 0.
For a given h € C(K), define f: X — R by

o) = {éh pov) - (wov)(x) ifay #0and u(v(x)) £ 0,

otherwise .

Formally, we should call the function f} as it depends on h. But we omit the subindex
for a more friendly notation (in fact the subindex would always be “h” throughout the
proof). Notice also that z7 # 0 is required for x to be in the domain of v and u(v(x)) # 0 is
required for v(z) to be in the domain of ¢.

The desired S: C(K) — F'BL(B¢ (k) will be the map given by Sh(z) = (f - |67])(x)
for every h € C(K), x € X. The function Sh is a real-valued function on X = [—1, 1]Pcuo),
and we will need to prove that, in fact, Sh € FBL(B¢ (k). Once that is proved, the rest of
properties required for S are relatively easy to check: It is clear that S is a linear map, and
it preserves the lattice operations A and V. The fact that ||S|| < 1 comes from Lemma 4.26:

IShF=11f-1é1lll < I fllee = (R o pov)(uev))| < Al -

To see that T' o S = id¢ k), take h € C(K) and k € K. Remember that u(i(k)) = 1 and
©(i(k)) = k and notice that i(k); = 1 and v(i(k)) = i(k) for every k € K, so

T'Sh(k) = Sh(i(k)) = (f - [61])(i(k)) = hp(i(k))) - u(i(k)) = h(K).

So we turn now to the remaining more delicate question whether Sh € FBL(B¢ k)
for every h € C(K). Functions in the free Banach lattice must be continuous and positively
homogeneous. We check first that Sh has these two properties. Clearly, Sh is continuous on
the open set {x € X : z7 # 0,u(v(z)) # 0} because Sh is expressed there by the formula
(hopow)-(uow)-|d7|. If x1 = 0, then for every € > 0 there is a neighbourhood W such
that | f(y)| - lyz] < |||l - € for all y € W, so Sh is also continuous at those . If z7 # 0 but
u(v(z)) = 0, again, given ¢ > 0, we can find a neighbourhood W of = where y; # 0 and
|f(y)] - lyi] < ||h|lec - € for all y € W. For positive homogeneity, on the one hand, if z7 # 0,
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then v(Az) = v(x) for every 0 < A < 1 and z € X, while |d7] is positively homogeneous. If
x7 = 0, then for every 0 < A < 1 we have that Sh(Az) = 0 = A\Sh(x).

Finally, what we are going to prove is that Sh can be obtained as the limit, in the
FBL(Bg(k))-norm, of a sequence of continuous and positively homogeneous functions
that only depend on finitely many coordinates of the cube [—1, 1]%¢(*), Combining Lemma
4.25 with the fact that FBL(B¢ k) is a closed space, we will have that Sh € FBL(Bc¢(x))-

Consider L = {z € X : 1 = 1} C X. Since the restriction f|;, is a continuous function
on the compact space L, by Stone-Weierstrass’ theorem, for every n € N we can find a
continuous function f,; € C(L) that depends only on finitely many coordinates of the cube
[—1,1]Bet) such that

1= $ 0 <
Define f,,: X — R by
fa(u(z)) ifzg #0,
fn(x) =

0 otherwise .

It is clear that f,(Azx) = fn(z) forall 0 < A <1 and z € X, since v(Az) = v(x). Moreover,
f» depends on finitely many coordinates because f, does so, and each coordinate of v
depends on two coordinates (v(z), only depends on z- and z1). On the other hand, f, - /1]
is continuous in X. This is because f,, - |1 is continuous in {x € X : x7 # 0} clearly, and, if
x1 = 0, then for every £ > 0 there is a neighbourhood W such that | £, (y)| - |[y1| < | /i || - €
for all y € W. Thus, the functions f,, - |d;| are all continuous, positively homogeneous
and depend on finitely many coordinates. It follows from Lemma 4.25 that f,, - |07| €
FBL(B¢(k)) for every n € N. It only remains to prove that [|[Sh — f, - [01]|| — 0 when
n — oo. For this, first notice that v(v(z)) = v(z) for all z € X with 7 # 0. This is just
because v(x); = 1. From this, it follows that f(z) = f(v(x)) for all  with z7 # 0. This
together with Lemma 4.26 gives:

ISh=Fu- 1810l = 1161 = - 100l = 17 = ) - 131
< 7 -l
= sup{If() — fule)| s € X}
— sup{If(z) ~ fule)|: v € X2y 20}
= sup {[f(e) — ;i (w@)] 5 € X,y 0}
= sup {|£(v(a)) — £ (v(@))] 3 € X,y 0}
< swp {17 ) ~ W]y € L} = flr — il <

which ends the proof.

4.7 Complementability of ¢) in FBL[c)

Following the terminology of [3], a Banach lattice Y is said to be lattice-embeddable in a
Banach lattice X if it is isomorphic to a Banach sublattice of X, or equivalently, there exist
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a Banach lattice homomorphism «: Y — X and two constants K, M > 0 such that

Klylly < llu)llx < Mlylly

for every y € Y. Such a map w is called a Banach lattice embedding.

In this section we will prove that the Banach lattice ¢ is isometrically lattice-embeddable
in F'BL[c], and that the copy of ¢ inside F'BL[cy] is 1-complemented (as a Banach lattice)
in F'BL][co). Indeed, this is the main theorem of this section and can be stated as follows:

Theorem 4.27. There exist an isometric Banach lattice embedding u: ¢o — FBL[cy| and a
Banach lattice homomorphism P: FBL[cy] — ¢o of norm 1 such that P o u = idg,.

Remark 4.28. V. G. Troitsky pointed out to us that, by a direct consequence of [3, Theorem
4.60], we have a Banach lattice embedding u;: co — F BL[cy] together with an operator
projection Py : F'BL|[cy] — ¢ such that P ou; = id,,. On the other hand, if we extend the
identity operator id.,: co — cp, by using the universal property of the free Banach lattice,
to a Banach lattice homomorphism P,: F'BL[cy] — ¢, we have that P, o ¢ = id,.,, where
¢: co —» FBL]co] is the canonical inclusion of ¢, inside F'BL[cy], which is not a lattice
homomorphism. So, the difficulty is in getting Banach lattice homomorphism inclusion and
projection at the same time, and this is what Theorem 4.27 tells us that it is possible to get.

In order to prove Theorem 4.27, the following weaker version of [3, Theorem 4.50]
will be very useful:

Theorem 4.29 ([3, Theorem 4.50]). Let X be a Banach lattice. If there exists a disjoint
sequence (fn)nen € X T such that

@) (fn)nen does not converge in norm to zero, and

b) the sequence of partial sums of (fy)nen is norm bounded, i.e. there exists some M > 0
satisfying |>°1"; fill x < M for every n € N,

then the map u: ¢ — X given by the formula u(x) =Y ;2 x;fi for every x = (x1,z2,...) €
co is a Banach lattice embedding.

First, what we are going to do is to construct a sequence (fy,)nen € F BL[co] with the
above properties.

For it, let (IV,),en be a strictly increasing sequence of natural numbers.

For r € R let v = max{r,0} be the positive part of r, and for every n € N let
fn: ¢ — R be the map given by

fo(z®) = (‘xm — Ny max{|x,*n| m < n})+ : Hm>n9nm(x*)

for every x* = (27,23, ...) € ¢§ = {1, where g, : ¢ — [0, 1] is any continuous function
such that g, (z*) = 0if Ny |2k | < |2k, ], gnm (™) = 1if |2}, | < (Nyp—1) |2} and gpm (z*) =
G ( ch—”) whenever z* # 0.

Let us see that (fy,)nen is a disjoint sequence of positive elements of F BL[cy] which
satisfies both properties a) and b) in Theorem 4.29:
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Lemma 4.30. The sequence (f,)ncn Satisfies the following properties:
1. fnisin FBL]c) for every n € N.

2. fn >0 foreveryn e N.

%)

. fa N fi=0foreveryn #1.

N

i fill FBLje) < 1 for every n € N.

9]

- W fnllpBLiey) = 1 for every n € N. In particular; the sequence (fn)nen does not converge
in norm to zero.

Proof. For item 1, fix n € N. We are going to find a sequence of functions (hy)reny €
FBL[co] such that limy_, || — anFBL[CO] = 0. Then, we will have that f,, € FBL[c].
Let hy: ¢; — R be the map given by

hi(a") = (] = Nomax {Ja,| :m < 1)) - Docmensh g
for every «* = (27,25, ...) € ¢ = {1. Let us see that hj, € FBL[c] for every k € N.

Notice that hy, is continuous, positively homogeneous and satisfies that hy(z*) = hy(y*)
whenever =] = yf,..., 7}, = Yy, Let T: FBL(B,) — R% be the map given by
T(f)(z*) = f(("ﬁ;—(f"f)yegco) - |l=*|] if 2* # 0 and T(f)(0) = f(0), where 0 denotes the
identically zero function in the corresponding space. We have that T(FBL(B.,)) C
F BL[cy] because T maps the evaluation functions in FBL(B,,) to the evaluation functions
in FBL[co], preserves linear combinations, the lattice structure and ||7(f)||ppp, <

1 lle5ecs, )
Now, let Ay, : [—1,1]P«0 — R be the map given by

hk(z*) = hk((z*(el), ce ,Z*(6n+k),0,0, .. ))

for every z* € [—1,1]P. Since hy, is continuous, positively homogeneous and depends

only on finitely many coordinates, by Lemma 4.25 we have that h;, € FBL(B,,). It follows
that T(hNk) =h € FBL[CO].
Now, by definition, we have that

l l
1Pk = foll FBL ) ZSUP{ZI(hk—fn)I(fU?):ZGN,SET’---@? € By, sup Y Jaf ()] < 1}-

i=1 2€Beq 1

Take z7,...,2] € By, with 2} = (2}},2},,...) for every i = 1,...,l and such that
(hk — fn)(2}) # 0 forevery i = 1,..., 1l and sup,ep, Yo, o ()] < 1.

Note that h; > f,,, so we can remove absolute values in the previous expression. Then,
we have that
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l l
Z — Nymax {|z},| : m < n})"
=1 =1

[H <m<n-+k gnm( *) - 1_[n<m gnm(x;k)]

=
ko
|
S
~
~—
I

= Z 2| = Npmax {|27,[ : m < n})"

=1

[H <m<n+k gnm( ) - Hn<m§n+k gnm(x;‘k)]:[n—l-k<m gnm(x;k)]

~ Z(\xm\ Ny max {[af, | m < n})*
=1

Hn<m<n+k Grm (7)) [1 — Iy k<m Inm (xf)]

Z |xzn‘ 7’L+/€<m gnm( *)] .

IN

Since (hy — fn)(z}) # 0 for every i = 1,...,l, we have that |z,| # 0 and also that
1 — Il kem gnm(x)) # 0. Thus, for every i there exists m; > n + k such that gnm (xF) # 1,

that is to say, ‘| i, > Np, — 1. Since Ny, > Ny, this implies that |27, | < 5~ = |z s |-

x|

Thus,

E ,| zm,

+k_1

l

Therefore, since limy_, o, m = 0, the proof will follow from the following Claim.

Claim. For every x7,x3,...,2; € By, and every natural numbers m, ma,...,m; € N
we have

I
D g, <1
i=1

whenever sup,cp, Sz (2)] < 1.

Proof of the Claim. Fix m = max{m; : 1 < i <[}. We show first that

l l m
D @il <max Y|y Ce(i)ag| e e {—1,+13"
i=1 i=1 j=1
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In fact,

I om o
s Z‘Zg(j)mfj‘:ge{_lvﬂ}m > 2% > Z‘Zs(j)xfj

~
Il
—
<
Il
—
m
m
~~
|
—_
R
—
-
3
~
Il
—
<
Il
—

WV
N |
MN
[\
§ _
]
NE
o
<o
5

Let e € {—1,+1}" be the function which gives the maximum above. We have that

l

szJ—Z}Z M—ZW =t

i=1 =1 j=1
taking, in the equality, x = (¢(1),¢(2),...,e(m),0,...) € Bg,.
Item 2 is clear.
For item 3, suppose, for example, that n < [, and let 2* € ¢ such that f;(z*) # 0. We
have that |z]| > N;max {|z},| : m < (}. In particular, |z}| > N;|z};|. Now, if f,(z*) # 0, we
have that g, (z*) # 0 for every m > n, and then, that |z},| < Np,|z}| for every m > n.

Taking m = [ we have a contradiction.

For item 4, by definition, we have that

n

il o { S e kenai st s, Sz
— J— i T€ 0 j=1

Fix o050} © By with sup,cp, 305, 55(0)] < 1. Since the functions , ar

disjoint, for each j = 1,2,..., k there is at most one i; € {1,2,...,n} such that f;. (xj) #0.

Thus,
k n

k

j:l =1

Without loss of generality, we suppose that f;; (:cj) #0foreveryj =1,2,...,k.

Notice that each f;; (z}) < |a; | for every j = 1,2,...,k, so
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Now the Claim in the proof of item 1 applied to z7,. .., x} asserts that Z?Zl |$jz]| <1
and therefore

3
=

k
Z(Z fl)(x;() < Z jlj‘ <L
5 — =

Thus, |37, fz’”FBL[cO] =L

For item 5, we know that

||anFBL[CO]—sup an ckeN,zl,...,x; € By,, sup Z|x <1

:EEBQO J 1

Taking e}, € By, we have that f,(e},) = 1, so that || fu| ppL, = 1. In general, since
fn(z*) < |x*(ey)| for every z* € By,, we have that

el < swp Y@l <1,
$€Bc0] 1

IIMw

k
D falz
j=1
50 || full FLico) = 1- O

Theorem 4.27 easily follows from the above. Indeed, by Lemma 4.30 and Theorem
4.29, the map u: ¢o — FBL[c] given by the formula u(z) = >"°, x; f; for every z =
(z1,x2,...) € cois a Banach lattice embedding. It only remains to prove that it is an isometry
between ¢( and its image in F'BL[cy] and the existence of the projection P: F BL[cy] — ¢
of norm 1.

To prove the first fact, note that it is enough to check that

n
Ziﬂz’fz’
i=1

= max |z
1<i<n
FBL[co)
for every n € N and every x1, x2,...,x, € R. Fix any z1, xs, ..., z, € R. Without loss of

generality, suppose that |z;| = max;<;<, |2;|. Since each function f; is positive and has
norm 1, we have that

n n
ax jwi| = |21| = el All ppigeg) < [|D @il fi = (1D =ifi
i=1 FBL[co) i=1 FBL[co)
n
= Zl’z‘fz’
i=1 FBL[co]

On the other hand,
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n n n
> aifi = > lwilfi < D falfi
i=1 FBL[co] =1 FBL[co] i=1 FBL[co]
n
= el |D_ S
=1 FBL[co)
< |z1] = max |z,
1<i<n

so u: cg — F'BL[co] is an isometry between ¢ and its image in F'BL[cg].

Finally, the Banach lattice homomorphism P: F'BL[c)] — ¢o given by the formula
P(f) = (f(e}), f(e3),...) for every f: ¢; — R belonging to F'BL[cy] has norm 1 and
satisfies that P o u = id,,, so the proof of Theorem 4.27 is finished.

4.8 Problems

Concerning the different variations of projectivity, it was already observed in Proposition
4.7 that if a Banach lattice P has the property that every Banach lattice homomorphism into
a quotient T: P —s X/.J can be lifted to a Banach lattice homomorphism 7': P — X,
then P is \-projective for some . It is obvious that the class of co-projective Banach lattices
is closed under renorming but the 17-projective class is not. It was asked in [15] whether
every co-projective Banach lattice is the renorming of a 1™ -projective Banach lattice. But, in
fact, we do not know a single example that separates these two classes, even by renorming.

Problem 4.31. Find an equivalent norm on a 1™ -projective Banach lattice that makes it
oo-projective but not 17 -projective.

A natural candidate would be F'BL[E] with E a suitable Banach space renorming of /;.

Theorems 4.4 and 4.5 suggest a large presence of the Banach space ¢; inside projective
Banach lattices. This does not exclude other subspaces (C([0,1]) is 17-projective and
contains isometric copies of any separable Banach space) but we may at least ask:

Problem 4.32. If X is co-projective and infinite-dimensional, must X contain a Banach
subspace isomorphic to ¢;?

We proved that E has the Schur property if FBL[E] is co-projective. But the only
positive case that we know is that FBL[¢;(A)] = FBL(A) is 1" -projective.

Problem 4.33. Is there a Banach space F with the Schur property, not isometric to ¢1(A),
for which FBL[E] is 17 -projective? Is there a Banach space E with the Schur property, not
isomorphic to ¢;(A), for which FBL[E] is co-projective?
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