
UNIVERSIDAD DE MURCIA

ESCUELA INTERNACIONAL DE DOCTORADO

Free Banach lattices over Banach spaces and
ordered sets

Retículos de Banach libres sobre espacios de
Banach y conjuntos ordenados

D. José David Rodríguez Abellán
2021





No puedo empezar esta tesis doctoral de otra manera que agradeciendo infinitamente a mi
tutor y director, Antonio Avilés López, todo lo que ha hecho por mí y la paciencia que ha tenido
conmigo durante estos últimos cuatro años. Me faltarían palabras para poder expresar todo lo
que me ha ayudado y todo lo que he aprendido gracias a él, no solo a nivel matemático, sino
también a nivel general. Me ha hecho crecer como persona y madurar en todos los sentidos.
Son miles los recuerdos y anécdotas que me llevo gracias a él, que tiene gran parte de la culpa
de que esta etapa haya sido de las mejores de mi vida.

Acabar en sus manos no habría sido posible sin la ayuda de Luis José Alías Linares y María
de los Ángeles Hernández Cifre, quienes fueron mis profesores durante mis estudios en el Grado
en Matemáticas y los cuales marcaron en gran parte mi pasión por esta ciencia.

Quiero también dar las gracias a Gonzalo Martínez Cervantes y a Grzegorz Plebanek, con
quienes he compartido varios de los artículos que dan fruto a esta memoria. El primero de
ellos, además, ha sido como un hermano para mí desde el día en que lo conocí. Siempre ha
sabido escucharme y ha sido un ejemplo a seguir. Con Grzegorz no he tenido la suerte de
coincidir en muchas ocasiones, pero bastaron los tres meses que estuvo en Murcia a finales del
año 2017 para darme cuenta del gran matemático que lleva dentro y de lo afable que es. Él
me ayudó a dar el último empujón que necesitaba para publicar mi primer artículo.

En esta línea, me gustaría también agradecer a José Rodríguez Ruiz por todos los momentos
de discusiones sobre matemáticas y otras cosas que hemos compartido juntos. Si bien no he
trabajado directamente con él, sus consejos y sus recomendaciones, además de mantenerme al
tanto de todos los congresos habidos y por haber en todo el planeta, siempre han sido muy
útiles para mí y me han ayudado a mejorar.

Por otro lado, doy las gracias a Pedro Tradacete Pérez por haberme concedido la posibilidad
de hacer mi primera estancia fuera de la Universidad de Murcia, en el Instituto de Ciencias
Matemáticas (ICMAT) de Madrid, y haberme ofrecido impartir un seminario en la Universidad
Complutense de Madrid. Agradezco y valoro mucho la hospitalidad y el buen trato que tuvo
conmigo durante todos aquellos días. He de decir aquí también que fue uno de los principales
motivadores del tópico de esta tesis. Antes de conocerlo a él estaba trabajando en temas más
topológicos, pero a raíz de una visita que nos hizo en la Universidad de Murcia comencé a
trabajar en retículos de Banach. Aún recuerdo cuando estaba discutiendo con Antonio Avilés
y José Rodríguez sobre cuestiones relacionadas con el artículo que tienen sobre el retículo de
Banach libre generado por un espacio de Banach y tuve que interrumpirles tímidamente para
preguntarles la definición de retículo de Banach.

La estancia que hice en Praga de tres meses y medio de duración no habría sido posible sin
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Resumen

Esta memoria ha sido elaborada durante el período de disfrute de una beca FPI de la
Fundación Séneca - Agencia de Ciencia y Tecnología de la Región de Murcia. Una ayuda
complementaria de dicho programa nos ha permitido realizar una estancia en la Facultad
de Matemáticas y Física de la Universidad Carolina de Praga (enero-abril de 2020).

Esta investigación también ha sido financiada parcialmente por el proyecto de inves-
tigación 20797/PI/18 de la Fundación Séneca - Agencia de Ciencia y Tecnología de la
Región de Murcia, y por el proyecto MTM2017-86182-P del Ministerio de Economía y
Competitividad y FEDER.

La tesis doctoral tiene como marco general la teoría de los retículos de Banach. Más
concretamente, se estudian los retículos de Banach libres generados por determinadas
estructuras, tales como los espacios de Banach y los retículos, si bien en este último caso
nos centramos más en el caso particular de los conjuntos linealmente ordenados.

El concepto de objeto libre es bien conocido, puede expresarse en el lenguaje general de
la teoría de categorías, y se ha probado de gran utilidad en diversas áreas tanto en análisis
como en álgebra. Sin embargo, en el contexto de los retículos de Banach su introducción
ha sido reciente. En [15] es donde se menciona por primera vez, definiéndose tal concepto
para conjuntos, y posteriormente, en [8], se generaliza a espacios de Banach, el cual
contiene al caso de los conjuntos como caso particular.

Dentro del estudio de los retículos de Banach, nos centramos en estudiar dos propiedades:
condiciones de cadena y proyectividad, las cuales marcan en gran parte la estructura de
esta memoria. Dicho esto, podemos ambientar este texto dentro del Análisis Funcional, y
en cierto sentido, la Topología General.

Los resultados originales incluidos en esta tesis pueden encontrarse en nuestros trabajos:

[5] AVILÉS, A., MARTÍNEZ-CERVANTES, G., AND RODRÍGUEZ ABELLÁN, J. D. On projective
Banach lattices of the form C(K) and FBL[E]. J. Math. Anal. Appl. 489, 124129
(2020)
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[6] AVILÉS, A., MARTÍNEZ-CERVANTES, G., AND RODRÍGUEZ ABELLÁN, J. D. On the
Banach lattice c0. To appear in Rev. Mat. Complut. https://doi.org/10.1007/s13163-
019-00342-x, 2020

[7] AVILÉS, A., PLEBANEK, G., AND RODRÍGUEZ ABELLÁN, J. D. Chain conditions in free
Banach lattices. J. Math. Anal. Appl. 465 (2018), 1223–1229

[9] AVILÉS, A., AND RODRÍGUEZ ABELLÁN, J. D. The free Banach lattice generated by a
lattice. Positivity 23 (2019), 581–597

[10] AVILÉS, A., AND RODRÍGUEZ ABELLÁN, J. D. Projectivity of the free Banach lattice
generated by a lattice. Archiv der Mathematik 113 (2019), 515–524

En la introducción de cada capítulo indicaremos explícitamente en cuáles de ellos se
basa cada uno.

El Capítulo 1 sirve como introducción a la teoría general de los retículos de Banach.
En él se dan las definiciones básicas y las propiedades que uno necesita conocer para poder
comprender el resto de contenidos que aquí se muestran. Con esto, además, se intenta que
la memoria sea tan autocontenida como sea posible, así como establecer en gran medida la
notación que se usa a lo largo de todo el texto.

Está dividido en tres secciones: la Sección 1.1, como pequeña introducción histórica al
estudio de los retículos vectoriales y retículos de Banach, la Sección 1.2, correspondiente
a los retículos vectoriales, y la Sección 1.3, en relación a los retículos de Banach. En
esta última se introduce, además, el concepto de retículo de Banach libre generado por
un conjunto, y por un espacio de Banach, dos de los principales protagonistas de este
texto, y se enuncian sus principales propiedades, estudiadas originalmente en [15] y [8],
respectivamente.

En el Capítulo 2 se define un nuevo objeto, el retículo de Banach libre generado por
un retículo, siguiendo las mismas ideas de [15] y [8]. Grosso modo, el retículo de Banach
libre generado por un retículo es un retículo de Banach que está generado, como retículo
de Banach, por una copia de los elementos del retículo.

El resultado principal de este capítulo es una descripción explícita, como un cierto
espacio de funciones, del retículo de Banach libre generado por un retículo. En [8] se hace
lo mismo para el retículo de Banach libre generado por un conjunto, y para el retículo
de Banach libre generado por un espacio de Banach. La descripción explícita en nuestro
caso es análoga a la comentada en ese artículo. Sin embargo, la prueba de ello requiere
herramientas completamente diferentes.

En la Sección 2.1 damos la definición de retículo de Banach libre generado por un
retículo, esto es, como aquel que cumple una cierta propiedad universal de objeto libre, y
enunciamos el teorema principal del capítulo, que nos da la descripción explícita de tal
retículo de Banach mencionada líneas arriba.
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Como apoyo a la demostración, lo que hacemos en primer lugar, en la Sección 2.2, es
demostrar que, efectivamente, tal objeto existe y es único salvo isometrías. Demostramos
que cualesquiera dos retículos de Banach candidatos a ser libres son, de hecho, isométricos
entre sí, y, posteriormente, describimos el retículo de Banach libre generado por un retículo
como un cierto cociente del retículo de Banach libre generado por el retículo de partida
visto como conjunto, olvidándonos de su estructura reticular.

En la Sección 2.3 lo que hacemos es observar que el caso más natural de considerar el
retículo de Banach libre generado por un retículo es cuando este es distributivo (es decir,
las operaciones de supremo e ínfimo son distributivas entre sí), lo cual nos facilita la prueba
del teorema principal, y que el caso general se reduce a este de manera sencilla.

La Sección 2.4 está dedicada a la prueba del teorema principal, que nos da la descripción
explícita del retículo de Banach libre generado por un retículo como un cierto espacio de
funciones. La idea de la prueba es demostrar que tal espacio de funciones, que describiremos
en su momento, es isométrico al cociente comentado anteriormente. Ahora bien, nos vemos
obligados a distinguir dos casos. En primer lugar, consideramos el caso en el que el retículo
es finito, pues gracias a B. de Pagter y a A. W. Wickstead [15] sabemos que, con esta
hipótesis, el retículo de Banach libre generado por el retículo visto como conjunto es
isomorfo al reticulo de Banach Cph([−1, 1]n) de las funciones continuas y positivamente
homogéneas sobre [−1, 1]n, siendo n la cardinalidad del retículo, y el cual no es difícil de
manejar. El caso infinito lo reducimos, en cierto sentido, al caso finito.

Finalmente, en la Sección 2.5 probamos que, en el caso en el que el retículo es un
conjunto linealmente ordenado, la copia del mismo dentro del retículo de Banach libre
generado por él se comporta como la base sumante de c0 desde el punto de vista de los
espacios de Banach.

En el Capítulo 3 estudiamos determinadas condiciones de cadena para los retículos de
Banach libres generados por conjuntos linealmente ordenados y por espacios de Banach.

En la Sección 3.1 recordamos las definiciones de las condiciones de cadena para
retículos de Banach que se estudian en el capítulo, esto es, las definiciones de condición de
cadena σ-acotada y condición de cadena contable. Además, en la misma enunciamos los
principales teoremas que demostramos después.

Por un lado, en la Sección 3.2, demostramos que el retículo de Banach libre generado
por un conjunto linealmente ordenado satisface la condición de cadena contable si, y solo
si, el conjunto linealmente ordenado se embebe dentro del conjunto de los números reales
con su orden usual. Para ello, nos será de gran utilidad la conocida caracterización de
los subconjuntos linealmente ordenados de la recta real como aquellos separables en la
topología del orden para los cuales el conjunto de saltos es contable. Además, en la prueba
del mismo resultado usaremos un hecho que ya tiene bastante interés por sí solo, esto es,
que si L es un subconjunto del conjunto linealmente ordenado M, entonces el retículo de
Banach libre generado por L es isométrico al retículo de Banach generado por la copia de
L dentro del retículo de Banach libre generado por M, al igual que ocurre en el caso de los
retículos de Banach libres generados por conjuntos.

Más aún, demostraremos que si el conjunto linealmente ordenado se embebe en la
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recta real, el retículo de Banach libre generado por él no solo satisface la condición de
cadena contable, sino que es además σ-centrado.

La Sección 3.3 está dedicada al caso del retículo de Banach libre generado por un
espacio de Banach. B. de Pagter y A. W. Wickstead ya probaron en [15] que el retículo de
Banach libre generado por un conjunto siempre satisface la condición de cadena contable.
Nosotros vamos más allá, y demostramos que, en efecto, tal retículo de Banach satisface
la condición de cadena σ-acotada, la cual implica trivialmente la condición de cadena
contable. Es más, esto lo probamos para el caso en el que el objeto de partida es un espacio
de Banach, del cual se deduce el caso anterior.

Más concretamente, usando el teorema de Ramsey, demostramos que el retículo de
Banach de las funciones continuas y positivamente homogéneas sobre la bola cerrada
unidad del dual de cualquier espacio de Banach E, Cph(BE∗), satisface tal condición. Pero
ahora, como el retículo de Banach libre generado por cualquier espacio de Banach E es un
subretículo de Banach de Cph(BE∗), y la condición de cadena σ-acotada es hereditaria, se
tiene como caso particular que este último también satisface la misma condición.

Finalmente, en la Sección 3.4 estudiamos la posibilidad de la existencia de condiciones
de cadena más fuertes sobre el retículo de Banach Cph(BE∗), y en consecuencia, sobre el
retículo de Banach libre generado por el espacio de Banach E.

El Capítulo 4 está dedicado al estudio de la proyectividad de ciertos retículos de
Banach.

De manera similar a lo que hacemos en los capítulos anteriores, la introducción, que
corresponde con la Sección 4.1, la dedicamos a dar la definición del concepto clave del
capítulo, en este caso, la de retículo de Banach λ-proyectivo para λ > 1, y enunciamos los
diferentes resultados que demostramos a lo largo de él.

En la Sección 4.2 enunciamos y demostramos una serie de resultados simples que son
de utilidad para probar los teoremas principales del capítulo.

En las Secciones 4.3 y 4.4 nos centramos en el caso del retículo de Banach libre generado
por un retículo. Por un lado, demostramos que el retículo de Banach libre generado por un
retículo finito es siempre λ-proyectivo para cualquier λ > 1 (o 1+-proyectivo), mientras
que si el retículo de partida es un conjunto linealmente ordenado infinito, entonces el
retículo de Banach libre generado por él no es λ-proyectivo para ningún λ > 1 (es decir, no
es∞-proyectivo, según nuestra terminología). En la demostración de ambos resultados
usamos fuertemente el hecho de que el retículo de Banach libre generado por un retículo
es un cociente del retículo de Banach libre generado por el retículo visto simplemente
como conjunto. Otra de las claves del primer resultado es que el retículo de Banach libre
generado por cualquier conjunto es siempre 1+-proyectivo, como prueban B. de Pagter y A.
W. Wickstead en [15]. Para demostrar el segundo de los resultados, lo que hacemos es ver
que los retículos de Banach libres generados por el conjunto de los números naturales, y el
conjunto de los números naturales junto con el +∞, vistos como conjuntos linealmente
ordenados, no son∞-proyectivos, y después, probamos que, o bien el retículo de Banach
libre generado por el conjunto de los números naturales, o bien el retículo de Banach libre
generado por el conjunto de los números naturales junto con el +∞, vistos como conjuntos
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linealmente ordenados, están complementados en el retículo de Banach libre generado por
el conjunto linealmente ordenado de partida, de donde se sigue fácilmente el resultado.

La Sección 4.5 contiene dos resultados principales. Por un lado, demostramos que si
un retículo de Banach es ∞-proyectivo, entonces toda sucesión acotada que pueda ser
llevada vía un homomorfismo de retículos de Banach a la base canónica de c0 de manera
sobreyectiva debe contener una `1-subsucesión, de donde obtenemos, en particular, que ni
c0 ni `p (para 2 ≤ p <∞) son∞-proyectivos.

El otro resultado que probamos en esta sección nos dice que si E es un espacio de
Banach con la propiedad de que el retículo de Banach libre generado por él es∞-proyectivo,
entonces E tiene la propiedad de Schur (es decir, toda sucesión débilmente convergente
converge en norma). Dicho en otras palabras, para que el retículo de Banach libre generado
por un espacio de Banach E sea∞-proyectivo, la estructura de E debe ser bastante parecida
a la de `1(A) para algún conjunto A.

Más aún, al final de esta sección proporcionamos un contraejemplo que nos dice que,
en la categoría de los espacios de Banach no separables, el recíproco de este resultado no
es cierto.

En la Sección 4.6 probamos que si K es un espacio topológico compacto de Hausdorff,
entonces el retículo de Banach de las funciones continuas sobre K, C(K), con la norma del
supremo es 1+-proyectivo si, y solo si, K es un retracto de entornos absoluto en la categoría
de los espacios topológicos compactos de Hausdorff. B. de Pagter y A. W. Wickstead ya
probaron en [15] que si C(K) es 1+-proyectivo, entonces K es un retracto de entornos
absoluto en categoría de los espacios topológicos compactos de Hausdorff. Sin embargo,
solamente consiguieron probar el recíproco bajo la hipótesis adicional de que K está dentro
de Rn.

Finalmente, en la Sección 4.7 estudiamos la complementabilidad del retículo de Banach
c0 en el retículo de Banach libre generado por él visto como espacio de Banach, mientras
que en la Sección 4.8 proponemos varios problemas abiertos que tenemos en relación a los
retículos de Banach proyectivos.





Abstract

This memoir has been prepared during the period of an FPI grant from the Fundación
Séneca - Agencia de Ciencia y Tecnología de la Región de Murcia. A complementary grant
from this program has allowed us to carry out a stay at the Faculty of Mathematics and
Physics of the Charles University in Prague (January-April 2020).

This research was also partially supported by the research project 20797/PI/18 funded
by Fundación Séneca - Agencia de Ciencia y Tecnología de la Región de Murcia, and by the
research project MTM2017-86182-P funded by Ministerio de Economía y Competitividad
and FEDER.

The general framework of this doctoral thesis is the theory of Banach lattices. More
specifically, we study the free Banach lattices generated by certain structures, such as
Banach spaces and lattices, although in the latter case we mainly focus on the particular
case of linearly ordered sets.

The concept of free object is well known, can be expressed in the general language of
the theory of categories, and has been proved very useful in various areas in both analysis
and algebra. However, in the context of Banach lattices, it has been recently introduced. It
is mentioned for the first time in [15], defining such a concept for sets, and later, in [8], it
is generalized for Banach spaces, which contains the set case as a particular case.

Within the study of Banach lattices, we focus on studying two properties: chain condi-
tions and projectivity, which mark the structure of this memoir. That said, we can set this
text within Functional Analysis, and in a certain sense, General Topology.

The original results included in this thesis can be found in our works:

[5] AVILÉS, A., MARTÍNEZ-CERVANTES, G., AND RODRÍGUEZ ABELLÁN, J. D. On projective
Banach lattices of the form C(K) and FBL[E]. J. Math. Anal. Appl. 489, 124129
(2020)

[6] AVILÉS, A., MARTÍNEZ-CERVANTES, G., AND RODRÍGUEZ ABELLÁN, J. D. On the
Banach lattice c0. To appear in Rev. Mat. Complut. https://doi.org/10.1007/s13163-
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019-00342-x, 2020

[7] AVILÉS, A., PLEBANEK, G., AND RODRÍGUEZ ABELLÁN, J. D. Chain conditions in free
Banach lattices. J. Math. Anal. Appl. 465 (2018), 1223–1229

[9] AVILÉS, A., AND RODRÍGUEZ ABELLÁN, J. D. The free Banach lattice generated by a
lattice. Positivity 23 (2019), 581–597

[10] AVILÉS, A., AND RODRÍGUEZ ABELLÁN, J. D. Projectivity of the free Banach lattice
generated by a lattice. Archiv der Mathematik 113 (2019), 515–524

In the introduction of each chapter we will explicitly indicate which of them is based
on each one.

Chapter 1 is an introduction to the general theory of Banach lattices. In it we give the
basic definitions and properties one needs to know in order to understand the rest of the
content shown here. With this, in addition, we try to make the memoir as self-contained as
possible, as well as to establish the notation that is used throughout the text.

It is divided into three sections: Section 1.1, as a short historical introduction to the
study of vector lattices and Banach lattices, Section 1.2, devoted to vector lattices, and
Section 1.3, in relation to Banach lattices. In this section we also introduce the concept
of free Banach lattice generated by a set, and by a Banach space, two of the main pro-
tagonists of this text, and its main properties, originally studied in [15] and [8], respectively.

In Chapter 2 a new object is defined, the free Banach lattice generated by a lattice,
following the same ideas as [15] and [8]. Roughly speaking, the free Banach lattice
generated by a lattice is a Banach lattice that is generated, as a Banach lattice, by a copy of
the elements of the lattice.

The main result of this chapter is an explicit description, as a certain function space, of
the free Banach lattice generated by a lattice. In [8] the same is done for the free Banach
lattice generated by a set, and for the free Banach lattice generated by a Banach space. The
explicit description in our case is analogous to that discussed in that paper. However, the
proof of this requires completely different tools.

In Section 2.1 we give the definition of a free Banach lattice generated by a lattice, that
is, as one that satisfies a certain universal property of free object, and we state the main
theorem of the chapter, which gives us the explicit description of such a Banach lattice
mentioned above.

In support of the proof, what we do first, in Section 2.2, is to prove that indeed such
an object exists and is unique up to isometries. We prove that any two candidate Banach
lattices to be free are, in fact, isometric to each other, and subsequently describe the
free Banach lattice generated by a lattice as a certain quotient of the free Banach lattice
generated by the starting lattice seen as a set, forgetting about its lattice structure.

In Section 2.3 we observe that the most natural case of considering the free Banach
lattice generated by a lattice is when it is distributive (that is, the operations of supremum
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and infimum are distributive to each other), which makes the proof of the main theorem
easier, and that the general case is reduced to this in a simple way.

Section 2.4 is devoted to the proof of the main theorem, which gives us the explicit
description of the free Banach lattice generated by a lattice as a certain function space.
The idea of the proof is to show that such a function space, which we will describe in due
course, is isometric to the quotient mentioned above. Now, we are forced to distinguish
two cases. First, we consider the case in which the lattice is finite, since thanks to B. de
Pagter and A. W. Wickstead [15] we know that, with this hypothesis, the free Banach lattice
generated by the lattice seen as a set is isomorphic to the Banach lattice Cph([−1, 1]n) of the
continuous and positively homogeneous functions on [−1, 1]n, where n is the cardinality of
the lattice, and which is not difficult to handle. We reduce the infinite case, in a certain
sense, to the finite case.

Finally, in Section 2.5 we prove that, in the case in which the lattice is a linearly ordered
set, the copy of it within the free Banach lattice generated by it behaves like the summing
basis of c0 from a Banach space point of view.

In Chapter 3 we study certain chain conditions in free Banach lattices generated by
linearly ordered sets and Banach spaces.

In Section 3.1 we recall the definitions of the chain conditions in Banach lattices
discussed in the chapter, that is, the definitions of the σ-bounded chain condition and the
countable chain condition. In addition, in it we state the main theorems that will be later
proved.

On the one hand, in Section 3.2, we prove that the free Banach lattice generated by
a linearly ordered set satisfies the countable chain condition if, and only if, the linearly
ordered set can be embedded into the set of the real numbers with its usual order. For this,
the well-known characterization of the linearly ordered subsets of the real line as those
that are separable in the order topology and for which the set of leaps is countable will be
very useful. Furthermore, in the proof of the same result we will use a fact that is already
quite interesting on its own, that is, if L is a subset of the linearly ordered set M, then the
free Banach lattice generated by L is isometric to the Banach lattice generated by the copy
of L inside the free Banach lattice generated by M, just as it happens in the case of the free
Banach lattices generated by sets.

Furthermore, we will prove that if the linearly ordered set can be embedded into the
real line, the free Banach lattice generated by it not only satisfies the countable chain
condition, but it is also σ-centered.

Section 3.3 is devoted to the case of the free Banach lattice generated by a Banach
space. B. de Pagter and A. W. Wickstead already proved in [15] that the free Banach lattice
generated by a set always satisfies the countable chain condition. We go further, and show
that, in fact, such a Banach lattice satisfies the σ-bounded chain condition, which trivially
implies the countable chain condition. Furthermore, we prove this for the case in which
the starting object is a Banach space, from which the previous case is deduced.

More specifically, using the Ramsey’s theorem, we show that the Banach lattice of
continuous and positively homogeneous functions on the closed unit ball of the dual of any
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Banach space E, Cph(BE∗), satisfies such a condition. But now, as the free Banach lattice
generated by any Banach space E is a Banach sublattice of Cph(BE∗), and the σ-bounded
chain condition is hereditary, we have as a particular case that the latter also satisfies the
same condition.

Finally, in Section 3.4 we study the possibility of the existence of stronger chain condi-
tions in the Banach lattice Cph(BE∗), and consequently, in the free Banach lattice generated
by the Banach space E.

Chapter 4 is devoted to the study of the projectivity of certain Banach lattices.
Similar to what we did in the previous chapters, in the introduction, which corresponds

to Section 4.1, we give the definition of the key concept of the chapter, in this case, that of
λ-projective Banach lattice for λ > 1, and we state the different results we prove throughout
it.

In Section 4.2 we state and prove some simple results that are useful to prove the main
theorems of the chapter.

In Sections 4.3 and 4.4 we focus on the case of the free Banach lattice generated by a
lattice. On the one hand, we prove that the free Banach lattice generated by a finite lattice
is always λ-projective for any λ > 1 (or 1+-projective), whereas if the starting lattice is an
infinite linearly ordered set, then the free Banach lattice generated by it is not λ-projective
for any λ > 1 (i.e. it is not∞-projective, according to our terminology). In the proof of
both results, we strongly use the fact that the free Banach lattice generated by a lattice is a
quotient of the free Banach lattice generated by the lattice viewed as a set. Another key to
the first result is that the free Banach lattice generated by any set is always 1+-projective,
as B. de Pagter and A. W. Wickstead proved in [15]. To prove the second of the results,
we show that the free Banach lattices generated by the set of the natural numbers, and
the set of the natural numbers together with +∞, seen as linearly ordered sets, are not
∞-projective, and then we prove that either the free Banach lattice generated by the set of
the natural numbers or the free Banach lattice generated by the set of the natural numbers
together with +∞, seen as linearly ordered sets, are complemented in the free Banach
lattice generated by the starting linearly ordered set, from which the result easily follows.

Section 4.5 contains two main results. On the one hand, we prove that if a Banach
lattice is ∞-projective, then every bounded sequence that can be mapped by a Banach
lattice homomorphism onto the basis of c0 must contain an `1-subsequence, from which we
obtain, in particular, that neither c0 nor `p (for 2 ≤ p <∞) are∞-projective.

The other result we prove in this section tells us that if E is a Banach space with the
property that the free Banach lattice generated by it is∞-projective, then E has the Schur
property (i.e. every weakly convergent sequence converges in norm). In other words, for
the free Banach lattice generated by a Banach space E to be∞-projective, the structure of
E must be very close to that of `1(A) for some set A.

Moreover, at the end of this section we provide a counterexample which shows that, in
the category of nonseparable Banach spaces, the converse of this result does not hold.

In Section 4.6 we prove that if K is a compact Hausdorff topological space, then
the Banach lattice of continuous functions on K, C(K), with the supremum norm is 1+-
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projective if, and only if, K is an absolute neighbourhood retract in the category of compact
Hausdorff topological spaces. B. de Pagter and A. W. Wickstead have already proved in
[15] that if C(K) is 1+-projective, then K is an absolute neighbourhood retract in the
category of compact Hausdorff topological spaces. However, they only managed to show
the converse with the additional hypothesis that K is inside Rn.

Finally, in Section 4.7 we study the complementability of the Banach lattice c0 in the
free Banach lattice generated by itself seen as a Banach space, while in Section 4.8 we
propose some open problems we have about projective Banach lattices.





Chapter 1

Vector and Banach lattices

1.1 Introduction

We all know that the starting point of functional analysis was the investigation of the
classical function spaces, which provide its most important applications. However, the
natural order in these spaces was neglected almost completely. A first attempt to include a
compatible order structure in the study of linear and normed spaces was due to F. Riesz,
H. Freudenthal and L. V. Kantorovič in the mid-thirties. In the following years, schools
of research on vector lattices were subsequently founded and these investigations were
continued by various mathematicians in the Soviet Union (B. Z. Vulikh, A. G. Pinsker, A. I.
Judin), in Japan (H. Nakano, T. Ogasawara, K. Yosida), and in United States (G. Birkhoff,
S. Kakutani, H. F. Bohnenblust, M. H. Stone) (see [28] and [29]).

L. V. Kantorovič and his school first recognized the importance of studying vector lattices
in connection with Banach’s theory of normed spaces; they investigated normed vector
lattices as well as order-related linear operators between such vector lattices (see [28]).

This chapter is about the basic theory of vector and Banach lattices. We will try to
collect the basic definitions and properties one has to know for understanding the content
of this memoir. The interested reader can find more about this subject in books [12], [25],
[28] and [29], for example.

It is divided into two sections, one concerning vector lattices (basic concepts and the
free vector lattice generated by a set) and the other one concerning Banach lattices (basic
concepts and the free Banach lattices generated by a set and a Banach space).

1.2 Vector lattices

In this section we show the basic definitions and properties concerning vector lattices and
the free vector lattice generated by a set.

15
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1.2.1 Basic concepts

Most of the definitions and examples we show here are extracted from [38].

Definition 1.1. An order on a non-empty set M is a relation ≤ such that

1. x ≤ x for all x ∈M ,

2. x ≤ y and y ≤ x implies that x = y,

3. x ≤ y and y ≤ z implies that x ≤ z.

We use y ≥ x as a synonym for x ≤ y, and x < y for x ≤ y but x 6= y. Similarly, we
write y > x for x < y.

Definition 1.2. If A is a non-empty subset of M , then

1. x ∈ M is an upper bound (resp. lower bound) of A if y ≤ x (resp. x ≤ y) for every
y ∈ A.

2. A is bounded from above (resp. bounded from below) if there is an upper bound (resp.
lower bound) of A.

3. An upper bound (resp. lower bound) x of A is the supremum (resp. infimum) of A if
for any other upper bound (resp. lower bound) y of A we have x ≤ y (resp. y ≤ x).

4. If A is bounded from above and bounded from below, we will say that A is order
bounded.

5. A is an order interval if it is of the form [x, y] := {m ∈M : x ≤ m ≤ y} for some
x, y ∈M .

Definition 1.3. A lattice is a non-empty set L with an order ≤ such that for every pair of
elements x, y ∈ L, the set {x, y} has both a supremum (which is denoted by x ∨ y, and
also called the supremum of x and y) and an infimum (which is denoted by x ∧ y, and also
called the infimum of x and y).

The supremum of a general subset A of M , when it exists, is denoted by any of sup(A),
sup {a : a ∈ A},

∨
{a : a ∈ A} or

∨
a∈A a. The notation for the infimum is analogous,

replacing
∨

by
∧

and sup by inf.
Often, throughout this memoir we will focus on studying properties related to the

following particular case of lattice:

Definition 1.4. A linearly ordered set (or linear order) is a non-empty set L with an order
≤ with the property that for any x, y ∈ L, either x ≤ y or y ≤ x.

Definition 1.5. A map T : L1 −→ L2 between two lattices, L1 and L2, is said to be a lattice
homomorphism if it preserves the lattice operations, i.e.

T (x ∨ y) = T (x) ∨ T (y) and T (x ∧ y) = T (x) ∧ T (y) for every x, y ∈ L1.

If T is also bijective, we will say that T is a lattice isomorphism.
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Definition 1.6. A real vector space E which is ordered by some order relation ≤ is called
a vector lattice (or Riesz space) if any two elements x, y ∈ E have a supremum and an
infimum, and the following properties are satisfied:

1. x ≤ y implies x+ z ≤ y + z for all x, y, z ∈ E,

2. 0 ≤ x implies 0 ≤ tx for all x ∈ E and t ∈ R+.

The set E+ := {x ∈ E : x ≥ 0} is called the positive cone of E and its elements are
termed positive (rather than non-negative), while for x ∈ E,

x+ := x ∨ 0, x− := (−x) ∨ 0, and |x| := x ∨ (−x)

are called the positive part, the negative part, and the absolute value of x, respectively. If
x ∈ E+ is not zero, we will often say that x is strictly positive.

We will also say that x, y ∈ E are disjoint if |x| ∧ |y| = 0.

Example 1.7. The most obvious example of a vector lattice is the reals with all the usual
operations. The usual or standard order on Rn is that in which (x1, . . . , xn) ≤ (y1, . . . , yn)

means that xk ≤ yk for k = 1, . . . , n. This order makes Rn into a vector lattice in which
the supremum of two vectors is (xk) ∨ (yk) = (xk ∨ yk) and the infimum is (xk) ∧ (yk) =

(xk ∧ yk). Hence, the positive part, the negative part and the absolute value are given by
(xk)

+ = (x+
k ), (xk)

− = (x−k ) and |(xk)| = (|xk|), respectively.

We now show some basic properties of the absolute value:

Proposition 1.8 ([28, Proposition 1.4]). Let E be a vector lattice. For all x, y, x1, y1 ∈ E
and all λ ∈ R, the following relations are valid:

1. x = x+ − x−,

2. |x| = x+ + x−,

3. |x| = 0⇔ x = 0; |λx| = |λ||x|; |x+ y| ≤ |x|+ |y|,

4. x+ y = x ∨ y + x ∧ y,

5. |x− y| = x ∨ y − x ∧ y,

6. |x ∨ y − x1 ∨ y1| ≤ |x− x1|+ |y − y1|,

7. |x ∧ y − x1 ∧ y1| ≤ |x− x1|+ |y − y1|.

Moreover, the equality in 1 is the unique representation of x as a difference of disjoint
positive elements of E.
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Definition 1.9. A map T : E1 −→ E2 between two vector lattices, E1 and E2, is said to be
a vector lattice homomorphism if it is linear and preserves the lattice operations, i.e.

T (αx+ βy) = αT (x) + βT (y) for every x, y ∈ E1, α, β ∈ R,

T (x ∨ y) = T (x) ∨ T (y) and T (x ∧ y) = T (x) ∧ T (y) for every x, y ∈ E1.

If T is also bijective, we will say that T is a vector lattice isomorphism.

A very important concept in the theory of vector lattices, as we will see later, is the
following:

Definition 1.10. A vector lattice E has the Archimedean property (or is Archimedean) if[
(∀n ≥ 1)ny ≤ x ∈ E+

]
⇒
[
y ≤ 0

]
.

Example 1.11. Clearly, Rn with the usual order has the Archimedean property. However,
Rn with the lexicographic order fails to have this property. For example, on R2, the
lexicographic order is given by (x1, x2) ≤ (y1, y2) if, and only if, either x1 < y1 or x1 = y1

and x2 ≤ y2. Here, n(0, 1) ≤ (1, 0) for all n ∈ N, but (0, 1) � (0, 0).

Example 1.12. Function spaces are important examples of Archimedean vector lattices.
Let X be a non-empty set and take E = RX , that is to say, the space of all real-valued
functions on X. Order this with the pointwise order under which f ≤ g if, and only
if, f(x) ≤ g(x) for every x ∈ X and give it the pointwise vector operations, we have a
vector lattice, where the supremum of two functions f and g is the function given by
(f ∨ g)(x) = f(x) ∨ g(x) for every x ∈ X, and the infimum of two functions f and g is the
function given by (f ∧ g)(x) = f(x) ∧ g(x) for every x ∈ X.

E is Archimedean as if nf ≤ g for all n ∈ N then nf(x) ≤ g(x) for all n ∈ N and for all
x ∈ X. As R is Archimedean it follows that f(x) ≤ 0 for all x ∈ X and hence that f ≤ 0

(where this 0 is the zero function on X).
E will have many vector subspaces which are also vector lattices under the same order,

for example the bounded functions; if X has a topology then we could take the continuous
functions or continuous bounded functions.

Definition 1.13. A subset A of a lattice L is a sublattice if x, y ∈ A implies that x∨y, x∧y ∈
A, where these lattice operations are computed in L. A vector sublattice of a vector lattice is
simply a vector subspace which is also a sublattice.

Example 1.14. Both c0 and c are vector sublattices of `∞.

Definition 1.15. Let A be a non-empty subset of a vector lattice E. The sublattice generated
(or lattice generated) by A is the smallest subset of E containing A and closed under the
operations ∨ and ∧. The vector sublattice generated (or vector lattice generated) by A is the
smallest vector space of E containing A and closed under the operations ∨ and ∧.
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If we denote by
∨
A (resp.

∧
A) the set of suprema (resp. infima) of all non-empty finite

subsets of A, then it is easy to check that
∨(∧

A
)

=
∧(∨

A
)

is the sublattice generated
by A. Moreover, if A is a vector subspace of E, then

∨(∧
A
)

is a vector sublattice of E
(see [21, page 47]).

Throughout this memoir, we will denote the vector lattice generated by a non-empy set
A by lat A or lat {a : a ∈ A}.

Definition 1.16. An ideal I in a vector lattice E is a vector subspace such that y ∈ I, x ∈ E
and |x| ≤ |y| together imply that x ∈ I.

Example 1.17. In `∞, c0 is an ideal, but c is not as
∣∣((−1)n

)∣∣ ≤ (1) ∈ c but
(
(−1)n

)
/∈ c.

Definition 1.18. Let A be a non-empty subset of a vector lattice E. The ideal generated by
A is the smallest ideal in E containing A.

Now we are going to show a very important result about Archimedean vector lattices
which is very useful.

Definition 1.19. An elementary inequality in a vector lattice is an inequality or an equality
which involves only linear and lattice operations and a finite number of elements of the
vector lattice.

For example, x+ (y ∨ z) = (x+ y) ∨ (x+ z) is an elementary inequality, which can be
true or false. Then, if we want to know if such an elementary inequality is true or false
in every Archimedean vector lattice one just has to see if it is true or false in R. More
concretely:

Theorem 1.20 ([25]). An elementary inequality is true in every Archimedean vector lattice if,
and only if, it is true in the reals.

On pages 66 and 67 of [25] there is a proof of this theorem for a special class of vector
lattices (the class of uniformly complete vector lattices). However, all Archimedean vector
lattices may be embedded as vector sublattices inside a vector lattice in this class, namely,
their Dedekind completion (see [28, Proposition 1.10], or [24, Theorem 32.5] for further
details), from which the general result follows.

1.2.2 The free vector lattice generated by a set

In [13] the existing theory of free vector lattices is recapitulated. The basic facts we show
here are extracted from [15].

Definition 1.21. Let A be a non-empty set. A free vector lattice over or generated by A is
a vector lattice F together with a function φ : A −→ F with the property that for every
vector lattice E and every map T : A −→ E there is a unique vector lattice homomorphism
T̂ : F −→ E such that T = T̂ ◦ φ.

A

φ
��

T // E

F
T̂

88
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Clearly, φ must be injective, as we can certainly choose E and T to make φ injective.
Now we are going to list some basic properties one has to know about free vector

lattices:

Proposition 1.22 ([15, Proposition 3.2]). If F together with φ : A −→ F is a free vector
lattice over a non-empty set A, then F is generated, as a vector lattice, by φ(A).

Proposition 1.23 ([15, Proposition 3.3]). If F1 together with the function φ1 : A −→ F1

and F2 together with the function φ2 : A −→ F2 are free vector lattices over a non-empty set A,
then there is a unique vector lattice isomorphism T : X1 −→ X2 such that T (φ1(a)) = φ2(a)

for every a ∈ A.

Then, we can say the free vector lattice over A instead of a free vector lattice over
A because all free vector lattices over A are isomorphic as vector lattices between them.
We will denote it by FV L(A). Moreover, if A and B are sets of equal cardinality, then
FV L(A) and FV L(B) are isomorphic vector lattices, so that FV L(A) depends only on the
cardinality of the set A.

Now, the question is whether such an object exists. Let us denote by RRA the vector
lattice consisting of all functions f : RA −→ R together with the pointwise order and the
pointwise operations. Then, we have that:

Theorem 1.24 ([15, Theorem 3.6]). For any non-empty set A, FV L(A) exists and is the
vector sublattice of RRA generated by δa (a ∈ A), where δa(x∗) = x∗(a) for every x∗ ∈ RA.

Thus, identifying a with δa, one may view A as a subset of FV L(A). Since FV L(A) is
a sublattice of RRA , and the latter is Archimedean, FV L(A) is also Archimedean.

It is easy to see that if a1, . . . , an ∈ A, then FV L
(
{a1, . . . , an}

)
may be identified with

the vector sublattice of FV L(A) generated by {δa1 , . . . , δan} (see [15, Proposition 3.5]).
Moreover, if f ∈ FV L(A), then there exists a finite subset {a1, . . . , an} of A such that
f ∈ FV L

(
{a1, . . . , an}

)
(see [15, Proposition 3.7]).

Note that FV L(A) may be interpreted as the set of all lattice-linear expressions of
elements of A, where we identify two expressions if they are equal when we substitute the
elements of A by real numbers.

1.3 Banach lattices

In this section we show the basic definitions and properties concerning Banach lattices and
the free Banach lattices generated by a set and a Banach space.

1.3.1 Basic concepts

Most of the definitions, and the example we show here, are extracted from [38].

Definition 1.25. A Banach lattice is a vector lattice X together with a norm that is also
a Banach space in which |x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖ (i.e. ‖·‖ is a lattice norm). A Banach
sublattice Y of a Banach lattice is simply a vector subspace which is also a sublattice and
closed under the norm of the Banach lattice. This makes Y a Banach lattice.
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Example 1.26. Classical examples of Banach lattices are `p, c0, c, C(K) and Lp(µ) with
their usual norm and the pointwise (almost everywhere in the last case) order.

Definition 1.27. Let A be a non-empty subset of a Banach lattice X. The Banach sublat-
tice generated (or Banach lattice generated) by A is the smallest Banach sublattice of X
containing A.

Definition 1.28. A map T : X −→ Y between two Banach lattices, X and Y , is said to be
a Banach lattice homomorphism if it is a bounded linear operator and preserves the lattice
operations.

If T is also bijective and T−1 is a Banach lattice homomorphism, we will say that T is a
Banach lattice isomorphism. If moreover, T preserves the norm (that is, ‖T (x)‖ = ‖x‖ for
every x ∈ X), we will say that T is a Banach lattice isometry.

If X is a Banach lattice and I is a closed ideal in X, we can define an equivalence
relation on X given by x ∼I y if, and only if, x− y ∈ I.

For x ∈ X, if we denote by x + I := {y ∈ X : x ∼I y} the equivalence class of x, the
set X/I := {x+ I : x ∈ X} together with the operations

(x+ I) + (y + I) := (x+ y) + I and λ(x+ I) := λx+ I for every λ ∈ R,

is a real vector space.
If we equip this vector space with the quotient norm, which is defined as

‖x‖I = ‖x+ I‖I := inf {‖y‖ : y ∈ X,x ∼I y} = inf {‖x+ y‖ : y ∈ I} ,

we obtain a Banach space (see [16, Proposition 1.21]).
Moreover, this Banach space together with the operations

(x+ I) ∨ (y + I) := (x ∨ y) + I and (x+ I) ∧ (y + I) := (x ∧ y) + I

is a Banach lattice (see [28, page 85, Proposition 5.4]).
It is easy to check that the map Q : X −→ X/I given by Q(x) = x+ I for every x ∈ X

is a surjective Banach lattice homomorphism of norm 1. We will call this map the quotient
map.

1.3.2 The free Banach lattice generated by a set

As the title of the thesis indicates, the main objects of study in this thesis are the free
Banach lattices over Banach spaces and ordered sets.

The first authors who introduced the concept of free object within the category of
Banach lattices were B. de Pagter and A. W. Wickstead in 2015, who defined and studied
properties about the free Banach lattice generated by a set [15].

Definition 1.29. Let A be a non-empty set. A free Banach lattice over or generated by A is a
Banach lattice F together with a bounded map φ : A −→ F with the property that for every
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Banach lattice X and every bounded map T : A −→ X there is a unique Banach lattice
homomorphism T̂ : F −→ X such that T = T̂ ◦ φ and ‖T̂‖ = ‖T‖.

A

φ
��

T // X

F
T̂

88

Here, the norm of T is ‖T‖ := sup {‖T (a)‖ : a ∈ A}, while the norm of T̂ is the usual
for Banach spaces.

It is easy to check (see [15, Remark 4.2]) that this definition forces that ‖φ(a)‖ = 1 for
every a ∈ A, so the norm ‖φ‖ = sup {‖φ(a)‖ : a ∈ A} = 1.

Similar to Proposition 1.22 for the free vector lattice generated by A, we have that:

Proposition 1.30 ([15]). If F together with φ : A −→ F is a free Banach lattice over a
non-empty set A, then F is generated, as a Banach lattice, by φ(A).

Moreover, we have that:

Proposition 1.31 ([15, Proposition 4.3]). If F1 together with the function φ1 : A −→ F1

and F2 together with the function φ2 : A −→ F2 are free Banach lattices over a non-empty set
A, then there is a unique Banach lattice isometry T : F1 −→ F2 such that T (φ1(a)) = φ2(a)

for every a ∈ A.

Then, we can speak of the free Banach lattice over A instead of a free Banach lattice
over A because all free Banach lattices over A are isometric as Banach lattices between
them. We will denote it by FBL(A).

Now, the question is whether such an object exists. The answer is affirmative. B. de
Pagter and A. W. Wickstead prove it in [15], but A. Avilés, J. Rodríguez and P. Tradacete
give an alternative and more tangible way of constructing it in [8]. They describe it as a
space of functions:

For a ∈ A, let δa : [−1, 1]A −→ R be the evaluation function given by δa(x∗) = x∗(a) for
every x∗ ∈ [−1, 1]A, and for f : [−1, 1]A −→ R define

‖f‖ = sup

{
n∑
i=1

|f(x∗i )| : n ∈ N, x∗1, . . . , x∗n ∈ [−1, 1]A, sup
a∈A

n∑
i=1

|x∗i (a)| ≤ 1

}
,

which we will denote by ‖f‖ or ‖f‖FBL(A).

Theorem 1.32 ([8, Corollary 2.9]). The free Banach lattice generated by a set A is the
closure of the vector lattice generated by {δa : a ∈ A} under the above norm inside the Banach
lattice of all functions f ∈ R[−1,1]A with ‖f‖ <∞, endowed with the norm ‖ · ‖, the pointwise
order and the pointwise operations.

The natural identification of A inside FBL(A) is given by the map φ : A −→ FBL(A)

where φ(a) = δa for every a ∈ A. Since every function in FBL(A) is a uniform limit of such
functions, they are all continuous (in the product topology) and positively homogeneous
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(that is, f(λx∗) = λf(x∗) for every x∗ ∈ [−1, 1]A and for every λ ≥ 0 such that λx∗ ∈
[−1, 1]A, or equivalently, f(λx∗) = λf(x∗) for every x∗ ∈ [−1, 1]A and for every 0 ≤ λ ≤ 1).

On the other hand, we can view FBL(A) as FV L(A) equipped with the greatest lattice
norm one can put on it. Indeed, V. G. Troitsky proved the following:

Theorem 1.33 ([36, Theorem 2.1]). There exists a maximal lattice seminorm ν on FV L(A)

with ν(a) ≤ 1 for every a ∈ A. It is a lattice norm, and the completion of FV L(A) with
respect to it is FBL(A).

1.3.3 The free Banach lattice generated by a Banach space

The concept of a Banach lattice freely generated by a given Banach space has been recently
introduced and investigated by A. Avilés, J. Rodríguez and P. Tradacete in [8], and provides
a new tool for better understanding the relation between Banach spaces and Banach
lattices.

Consider any Banach space E. Roughly speaking, the free Banach lattice generated by
E is a Banach lattice F which contains a subspace linearly isometric with E in such a way
that its elements work as lattice-free generators. More formally:

Definition 1.34. Let E be a Banach space. A free Banach lattice over or generated by E is a
Banach lattice F together with a bounded operator φ : E −→ F with the property that for
every Banach lattice X and every bounded operator T : E −→ X there is a unique Banach
lattice homomorphism T̂ : F −→ X such that T = T̂ ◦ φ and ‖T̂‖ = ‖T‖.

E
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This property uniquely determines F up to Banach lattices isometries, and so we can
speak of the free Banach lattice generated by E, denoted by FBL[E]. This definition
generalizes the notion of the free Banach lattice generated by a set A. Namely, the free
Banach lattice generated by a set A is the free Banach lattice generated by the Banach
space `1(A) (see [8, Corollary 2.9]).

Again, it is possible to give an explicit description of it as a space of functions:
Let us denote by H[E] the vector subspace of RE∗ consisting of all positively homoge-

neous functions f : E∗ −→ R (that is, all functions that satisfy f(λx∗) = λf(x∗) for every
x∗ ∈ E∗ and for every λ ≥ 0). For any f ∈ H[E] let us define

‖f‖FBL[E] = sup

{
n∑
i=1

|f(x∗i )| : n ∈ N, x∗1, . . . , x∗n ∈ E∗, sup
x∈BE

n∑
i=1

|x∗i (x)| ≤ 1

}
.

Let us take H0[E] =
{
f ∈ H[E] : ‖f‖FBL[E] <∞

}
. It is easy to check that H0[E] is a

Banach lattice when equipped with the norm ‖·‖FBL[E] and the pointwise order.
Now, given x ∈ E, let δx : E∗ −→ R be the evaluation function given by δx(x∗) = x∗(x)

for every x∗ ∈ E∗.
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Theorem 1.35 ([8, Theorem 2.5]). The free Banach lattice generated by a Banach space E
is the closure of the vector lattice generated by {δx : x ∈ E} under the above norm inside
H0[E].

The natural identification of E inside FBL[E] is given by the map φ : E −→ FBL[E]

where φ(x) = δx for every x ∈ E (it is a linear isometry between E and its image in
FBL[E]). Moreover, all the functions in FBL[E] are weak∗-continuous when restricted to
the closed unit ball BE∗ (see [8, Lemma 4.10]).

Similar to the previous case, V. G. Troitsky also proved the following:

Theorem 1.36 ([36, Theorem 3.1]). Let E be a Banach space, and let L be the vector
sublattice of RE∗ generated by {δx : x ∈ E}. There is a maximal lattice seminorm ν on L

satisfying ν(δx) ≤ ‖x‖ for every x ∈ E. It is a lattice norm and the completion of L with
respect to it is FBL[E].

It is natural to wonder about the motivation for the explicit expression for the norm of
FBL[E] and FBL(A) = FBL[`1(A)]. It is explained in [8] and [11], but we summarize it
here for the convenience of the reader:

The free vector lattice generated by E (seen as a set), FV L(E), can be identified with
the vector sublattice of H[E] generated by the evaluation functions δx (x ∈ E). The norm
of FBL[E] must be the largest possible lattice norm that we can define on this space. In
particular, given arbitrary (x∗k)

n
k=1 ∈ E∗, we can define a bounded operator T : E −→ `n1 by

the expression T (x) = (x∗k(x))nk=1 for every x ∈ E. It is easy to check that the Banach lattice
homomorphism T̂ : FBL[E] −→ `n1 extending T is necessarily given by T̂ (f) = (f(x∗k))

n
k=1

for every f ∈ FV L(E). Hence, the norm of FBL[E] must satisfy the inequality

‖T̂ (f)‖`n1 ≤ ‖T‖‖f‖FBL[E].

Therefore, we have that

‖f‖FBL[E] ≥
‖T̂ (f)‖`n1
‖T‖

=

∑n
k=1 |f(x∗k)|

supx∈BE
∑n

k=1 |x∗k(x)|
,

which motivates the explicit expression for the norm of FBL[E] and FBL(A).



Chapter 2

The free Banach lattice generated by
a lattice

2.1 Introduction

The purpose of this chapter is to introduce the free Banach lattice generated by a lattice,
prove its existence and give an explicit description of it as a space of functions. Its content
is basically extracted from our publication:

[9] AVILÉS, A., AND RODRÍGUEZ ABELLÁN, J. D. The free Banach lattice generated by a
lattice. Positivity 23 (2019), 581–597

The idea is similar to the free Banach lattices explained in [Chapter 1, Sections 1.3.2
and 1.3.3], using lattices instead of sets without any structure or Banach spaces.

Remember that a lattice is a set L together with two operations ∧ and ∨ that are the
infimum and supremum of some partial order relation on L, and a lattice homomorphism
is a function between lattices that commutes with the two operations.

Definition 2.1. Given a lattice L, a free Banach lattice over or generated by L is a Banach
lattice F together with a bounded lattice homomorphism φ : L −→ F with the property
that for every Banach lattice X and every bounded lattice homomorphism T : L −→ X

there is a unique Banach lattice homomorphism T̂ : F −→ X such that T = T̂ ◦ φ and
‖T̂‖ = ‖T‖.
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Here, the norm of T is ‖T‖ := sup {‖T (x)‖ : x ∈ L}, while the norm of T̂ is the usual
for Banach spaces.

This definition determines a Banach lattice that we denote by FBL〈L〉 in an essentially
unique way. When L is a distributive lattice (which is a natural assumption in this context,
see Section 2.3) the function φ is injective and, loosely speaking, we can view FBL〈L〉 as
a Banach lattice which contains a subset lattice-isomorphic to L in a way that its elements
work as free generators modulo the lattice relations on L.

Using the existence of the free Banach lattice generated by the set L (viewing L as a set
with no extra structure), FBL(L), we will prove that FBL〈L〉 also exists and that can be
viewed as a certain quotient of FBL(L).

In order to give an explicit description of it similar to the mentioned in [Chapter 1,
Theorems 1.32 and 1.35], define

L∗ = {x∗ : L −→ [−1, 1] : x∗ is a lattice homomorphism} .

For every x ∈ L consider the evaluation function δ̇x : L∗ −→ R given by δ̇x(x∗) = x∗(x),
and for f ∈ RL∗ , define

‖f‖∗ = sup

{
n∑
i=1

|f(x∗i )| : n ∈ N, x∗1, . . . , x∗n ∈ L∗, sup
x∈L

n∑
i=1

|x∗i (x)| ≤ 1

}
.

Theorem 2.2. Consider F to be the closure of the vector lattice generated by {δ̇x : x ∈ L}
under the norm ‖ · ‖∗ inside the Banach lattice of all functions f ∈ RL∗ with ‖f‖∗ < ∞,
endowed with the norm ‖ · ‖∗, the pointwise order and the pointwise operations. Then F ,
together with the assignment φ(x) = δ̇x, is the free Banach lattice generated by L.

In spite of the similarity to the Banach space case from [8], our proof requires completely
different techniques. Section 2.4 is entirely devoted to this. In Section 2.5 we check, when
L is a linearly ordered set, that the elements of L inside FBL〈L〉 behave like the summing
basis of c0 from a Banach space point of view.

Later, in [Chapter 3, Section 3.2], we will study when the free Banach lattice also
generated by a linearly ordered set satisfies the countable chain condition. Moreover, in
[Chapter 4, Sections 4.3 and 4.4], we will focus on the projectivity of such an object.

2.2 The Banach lattice FBL〈L〉 as a quotient of a space of
functions

Throughout this section L is a fixed lattice. Let us start by checking that Definition 2.1 forces
each φ(x) to have norm precisely 1. Indeed, if we take T : L −→ R the bounded lattice
homomorphism given by T (x) = 1 for every x ∈ L, then the Banach lattice homomorphism
T̂ that is guaranteed to exist has norm 1, so that 1 = ‖T̂ (φ(x))‖ ≤ ‖φ(x)‖. On the other
hand, if we take T = φ, then T̂ is the identity Banach lattice homomorphism, with norm 1,
so that ‖φ‖ = sup {‖φ(x)‖ : x ∈ L} = 1.

On the other hand, Definition 2.1 provides a uniquely determined object. If φ : L −→ F

and φ′ : L −→ F ′ satisfy this definition, then we can get a Banach lattice homomorphism
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φ̂′ : F −→ F ′ with φ′ = φ̂′ ◦ φ. Reversing the roles, we also get φ̂ : F ′ −→ F with φ = φ̂ ◦ φ′.
The function φ̂ ◦ φ̂′ and the identity function idF on F both satisfy Definition 2.1 as T̂ when
T = φ. So φ̂ ◦ φ̂′ = idF . Similarly, reversing roles, φ̂′ ◦ φ̂ = idF ′ . Thus, we obtained inverse
Banach lattice homomorphism of norm 1 between F and F ′ that commute with φ and φ′.

Now, we are going to construct a Banach lattice F that satisfies Definition 2.1. We will
show later that the Banach lattice described in Theorem 2.2 also satisfies Definition 2.1. We
take as a starting point that, when we view L as a set with no extra structure, we have the
free Banach lattice FBL(L), together with a bounded map u : L −→ FBL(L) (u(x) = δx),
constructed by de B. Pagter and A. W. Wickstead, whose universal property was described
in [Chapter 1, Section 1.3.2]. Take I the closed ideal in FBL(L) generated by

{u(x) ∨ u(y)− u(x ∨ y), u(x) ∧ u(y)− u(x ∧ y) : x, y ∈ L} .

We take F = FBL(L)/I, and φ : L −→ FBL(L)/I given by φ(x) = u(x) + I. The very
definition of I provides that φ is a bounded lattice homomorphism. Now, let X be a Banach
lattice and T : L −→ X a bounded lattice homomorphism. We know that FBL(L) satisfies
the universal property of the free Banach lattice. Therefore, there exists a Banach lattice
homomorphism T̂ 1 : FBL(L) −→ X such that T̂ 1 ◦ u = T and ‖T̂ 1‖ = ‖T‖. The fact
that T was a lattice homomorphism implies that T̂ 1 vanishes on I. Thus, we can have a
Banach lattice homomorphism T̂ : FBL(L)/I −→ X given by T̂ (f + I) = T̂ 1(f). It is clear
that T̂ ◦ φ = T . Let us see that ‖T‖ = ‖T̂‖. We only need to check that ‖T‖ ≥ ‖T̂‖. Let
f + I ∈ FBL(L)/I with ‖f‖I < 1. We have that

‖f‖I = inf {‖f + g‖ : g ∈ I} ,

and, therefore, there exists g ∈ I such that ‖f + g‖ < 1. Thus, ‖T̂ (f+I)‖ = ‖T̂ 1(f+g)‖ ≤
‖T‖. Only the uniqueness of the extension T remains to be checked. But this follows from
the uniqueness of the extension to FBL(L), because if T̂ ◦ φ = T , then T̂ ◦ π ◦ u = T ,
where π : FBL(L) −→ FBL(L)/I is the quotient map.

We have proved that F = FBL(L)/I together with φ above satisfy Definition 2.1.
Now, our aim is to make this represantion more concrete. We are going to give an explicit
description of it as a space of functions, but before that, we need to show some additional
observations.

2.3 Distributivity

A lattice L is said to be distributive if the two operations ∧ and ∨ distribute each other.
That is, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z ∈ L.
For a lattice L, let L̃ = φ(L) be the image of L inside FBL〈L〉. The following proposition
collects some well known facts and observations:

Proposition 2.3. For a lattice L the following are equivalent:

1. L is distributive,

2. L is lattice-isomorphic to a subset of a Boolean algebra,
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3. L is lattice-isomorphic to a bounded subset of a Banach lattice,

4. The canonical map φ : L −→ FBL〈L〉 is injective.

Proof. The equivalence of 1, 2 and 3 is well known, see [17, Theorem II.19] for 1 ⇒ 2,
[23, Theorem 1.b.3] for 2⇒ 3 and [28, Proposition II.1.5] for 3⇒ 1. It is obvious that 4
implies 3. If 3 holds, then we have a bounded injective lattice homomorphism T : L −→ X

for some Banach lattice X. Using Definition 2.1, there is T̂ : FBL〈L〉 −→ X such that
T̂ ◦ φ = T . Since T is injective, φ is injective and therefore 4 holds.

Proposition 2.4. FBL〈L〉 = FBL〈L̃〉. More precisely, if F with φ is the free Banach lattice
over the lattice L, then F with the inclusion map is the free Banach lattice over the lattice L̃.

The proof is immediate from Definition 2.1. The conclusion of these observations is
that the most natural case in which to consider FBL〈L〉 is when L is distributive, and that
the case of general L reduces to the distributive case in a natural easy way. Still, we find
that it may be useful to state the results for any lattice L. Two more facts:

Proposition 2.5. Every lattice homomorphism x∗ : L −→ [−1, 1] factors through L̃. That is,
there exists y∗ : L̃ −→ [−1, 1] such that x∗ = y∗ ◦ φ.

Proof. Find a Banach lattice homomorphism of norm at most 1 x̂∗ : FBL〈L〉 −→ R with
x∗ = x̂∗ ◦ φ, as in Definition 2.1. Take y∗ = x̂∗|L̃.

Proposition 2.6 ([12, Lemma III.3]). Every finitely generated sublattice of a distributive
lattice is finite.

2.4 The Banach lattice FBL〈L〉 as a space of functions

This section is devoted to the proof of Theorem 2.2. First of all, note that the vector space{
f ∈ RL∗ : ‖f‖∗ <∞

}
together with the norm ‖·‖∗ and the pointwise order is a Banach

lattice. Indeed, the only possibly delicate point is the fact that if f ∈ RL∗ has norm 0, then
f = 0, but this is straightforward because if ‖f‖∗ = 0, then for every n ∈ N and for every
x∗1, . . . , x

∗
n ∈ L∗ with supx∈L

∑n
i=1 |x∗i (x)| ≤ 1 we have that

∑n
i=1 |f(x∗i )| = 0. Taking n = 1,

since supx∈L |x∗(x)| ≤ 1 for every x∗ ∈ L∗, we have in particular that |f(x∗)| = 0 for every
x∗ ∈ L∗, so f = 0.

Now, let FBL∗〈L〉 be the Banach lattice described in that theorem. By Propositions 2.4
and 2.5, both FBL〈L〉 and FBL∗〈L〉 remain unchanged if we change L by L̃. So we
can assume throughout this section that L is distributive. Since we already know that
FBL(L)/I, where I is the ideal defined in Section 2.2, is the free Banach lattice over
the lattice L, what we have to do is to find a Banach lattice isometry T : FBL(L)/I −→
FBL∗〈L〉 such that T (δx + I) = δ̇x.

We know that FBL(L) = lat
‖·‖ {δx : x ∈ L} ⊂ R[−1,1]L , where

‖f‖ = sup

{
n∑
i=1

|f(x∗i )| : n ∈ N, x∗1, . . . , x∗n ∈ [−1, 1]L, sup
x∈L

n∑
i=1

|x∗i (x)| ≤ 1

}
,
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and recall that FBL∗〈L〉 = lat
‖·‖∗

{
δ̇x : x ∈ L

}
⊂ RL∗ , where

‖f‖∗ = sup

{
n∑
i=1

|f(x∗i )| : n ∈ N, x∗1, . . . , x∗n ∈ L∗, sup
x∈L

n∑
i=1

|x∗i (x)| ≤ 1

}
.

For every function f : [−1, 1]L −→ R, consider its restriction R(f) = f |L∗ . It is clear
that the function R commutes with linear combinations and the lattice operations and
that ‖R(f)‖∗ ≤ ‖f‖. Moreover, R(δx) = δ̇x for every x ∈ L. From this, we conclude
that if f ∈ FBL(L), then R(f) ∈ FBL∗〈L〉, and we can view R : FBL(L) −→ FBL∗〈L〉
as a Banach lattice homomorphism of norm 1. Moreover, since L∗ consists of lattice
homomorphisms, R vanishes on the ideal I. Thus, we have a Banach lattice homomorphism
of norm at most 1

RI : FBL(L)/I −→ FBL∗〈L〉

given by RI(f + I) = R(f) for every f + I ∈ FBL(L)/I. What we want to prove is that
RI is an isometry. That is, we have to show that

‖f‖I ≤ ‖f |L∗‖∗

for every f ∈ FBL(L).
First, suppose that L is finite (say L = {0, . . . , n− 1} = n with some lattice operations).

B. de Pagter and A. W. Wickstead showed that in this case, FBL(L) consists exactly
of all the positively homogeneous continuous functions on [−1, 1]L = [−1, 1]n (see [15,
Proposition 5.3]). Moreover, if we consider the boundary ∂[−1, 1]n, and the Banach lattice
of continuous functions C(∂[−1, 1]n), the restriction map P : FBL(L) −→ C(∂[−1, 1]n)

is a Banach lattice isomorphism (it is not however, an isometry: the norm of FBL(L) is
transferred to a lattice norm that is equivalent to the supremum norm).

A closed ideal in a Banach lattice of continuous functions on a compact space always
consists of the functions that vanish on a certain closed set. Thus, there exists a closed set
S ⊂ ∂[−1, 1]n such that

I = {f ∈ FBL(L) : f |S = 0} .

In fact, the points of S must be those where f vanish for all f ∈ I, or equivalently, for
all generators f of I:

S = {(ξx)x∈L ∈ ∂[−1, 1]n : ξx ∨ ξy = ξx∨y, ξx ∧ ξy = ξx∧y, x, y ∈ L} = L∗ ∩ ∂[−1, 1]n.

Now fix f ∈ FBL(L), and let us prove that ‖f‖I ≤ ‖f |L∗‖∗. Remember that

‖f |L∗‖∗ = sup

{
m∑
i=1

|f(x∗i )| : m ∈ N, x∗1, . . . , x∗m ∈ L∗, sup
x∈L

m∑
i=1

|x∗i (x)| ≤ 1

}
,

and
‖f‖I = inf {‖f + g‖ : g ∈ I} = inf {‖g‖ : g ∈ FBL(L), f ∼I g} ,

where f ∼I g if, and only if, f − g ∈ I.
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Given k ∈ N, let

S+
k =

{
x∗ ∈ ∂[−1, 1]n : d(x∗, S) <

1

k

}
and

S−k =

{
x∗ ∈ ∂[−1, 1]n : d(x∗, S) ≥ 1

k

}
,

where d is the square metric in Rn.
Since S and S−k are disjoint closed subsets of ∂[−1, 1]n, by Urysohn’s lemma we can

find a continuous function 1̃k : ∂[−1, 1]n −→ [0, 1] such that 1̃k(S) = 1 and 1̃k(S
−
k ) = 0.

Define fk = P−1(1̃kf |S) ∈ FBL(L) be the positively homogeneous extension of 1̃kf |S
to the cube [−1, 1]n. Since fk|S = f |S , we have that fk ∼I f for every k. Therefore, it is
enough to prove that for a given ε > 0, there exists k ∈ N such that ‖fk‖ ≤ ‖f |L∗‖∗ + ε.

We have that

‖f |L∗‖∗ = sup

{
m∑
i=1

|rif(x∗i )| : x∗1, . . . , x∗m ∈ S, r1, . . . , rm ∈ R, sup
x∈L

m∑
i=1

|rix∗i (x)| ≤ 1

}
,

‖fk‖ = sup

{
m∑
i=1

|rifk(x∗i )| : x∗1, . . . , x∗m ∈ ∂[−1, 1]n, r1, . . . , rm ∈ R, sup
x∈L

m∑
i=1

|rix∗i (x)| ≤ 1

}
.

Notice that the scalars r1, . . . , rm ∈ R that appear in these formulas always satisfy∑m
i=1 |ri| ≤ n. This is because for every i we can find ξi ∈ L with x∗i (ξ) = ±1, and then,

m∑
i=1

|ri| =
∑
ξ∈L

∑
ξi=ξ

|rix∗i (ξ)| ≤
∑
ξ∈L

1 = n.

The function f is bounded and uniformly continuous on [−1, 1]n, so we can pick k ∈ N
satisfying the following two conditions:

1. For all x∗, y∗ ∈ [−1, 1]n, if d(x∗, y∗) ≤ 1
k , then |f(x∗)− f(y∗)| < ε/2n.

2. Mn2

n+k <
ε
2 , where M = max{|f(y∗)| : y∗ ∈ [−1, 1]n}.

By the definition of S+
k , given x∗i ∈ S

+
k , there exists y∗i ∈ S such that d(x∗i , y

∗
i ) ≤ 1

k . When
x∗i ∈ S, we can take y∗i = x∗i . In this way, we can estimate any sum in the supremum that
gives ‖fk‖ as follows:

m∑
i=1

|rifk(x∗i )| =
∑
x∗i∈S

+
k

|rifk(x∗i )|+
∑
x∗i∈S

−
k

|rifk(x∗i )|

=
∑
x∗i∈S

+
k

|rifk(x∗i )| ≤
∑
x∗i∈S

+
k

|rif(x∗i )|

≤
∑
x∗i∈S

+
k

|rif(y∗i )|+
∑
x∗i∈S

+
k

|ri| |f(x∗i )− f(y∗i )|

≤
∑
x∗i∈S

+
k

|rif(y∗i )|+
ε

2n

∑
x∗i∈S

+
k

|ri|

≤
∑
x∗i∈S

+
k

|rif(y∗i )|+
ε

2
.
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We have estimated a sum in the supremum that gives ‖fk‖ by something that looks very
much like a sum in the supremum that gives ‖f |L∗‖∗. Still, in order to have a sum in that
supremum we would need that supx∈L

∑
|riy∗i (x)| ≤ 1. This is not the case, but we will

get it after a small perturbation. For x ∈ L,

∑
x∗i∈S

+
k

|riy∗i (x)| ≤
∑
x∗i∈S

+
k

|rix∗i (x)|+
∑
x∗i∈S

+
k

|ri| |y∗i (x)− x∗i (x)|

≤
∑
x∗i∈S

+
k

|rix∗i (x)|+ 1

k

∑
x∗i∈S

+
k

|ri|

≤ 1 +
n

k
.

Thus, the scalars r̃i = ri
1+n/k and the elements y∗i , for every i with x∗i ∈ S+

k , are as
required in the supremum that gives ‖f |L∗‖∗. Coming back to our estimate of the sum in
the sup of ‖fk‖:

m∑
i=1

|rifk(x∗i )| ≤
∑
x∗i∈S

+
k

|rif(y∗i )|+
ε

2

≤
∑
x∗i∈S

+
k

|r̃if(y∗i )|+
∑
x∗i∈S

+
k

|(ri − r̃i)f(y∗i )|+
ε

2

≤ ‖f |L∗‖∗ +

(
1− 1

1 + n/k

) ∑
x∗i∈S

+
k

|rif(y∗i )|+
ε

2

= ‖f |L∗‖∗ +
n

n+ k

∑
x∗i∈S

+
k

|rif(y∗i )|+
ε

2

≤ ‖f |L∗‖∗ +
Mn

n+ k

∑
x∗i∈S

+
k

|ri|+
ε

2

≤ ‖f |L∗‖∗ +
Mn2

n+ k
+
ε

2
≤ ‖f |L∗‖∗ + ε,

as we needed to prove. This finishes the proof of Theorem 2.2 in the case when L is finite.
Before getting to the infinite case, we state a lemma.

Lemma 2.7. Let L be a distributive lattice and F0 ⊂ L be a finite subset. Then, there exists a
finite sublattice F1 ⊂ L that contains F0 and such that for every lattice M and every lattice
homomorphism y∗ : F1 −→ M there exists a lattice homomorphism z∗ : L −→ M such that
z∗|F0 = y∗|F0 .

Proof. We start with a claim: If M is a finite lattice and x∗ : F0 −→M is a function which
is not the restricion of any lattice homomorphism z∗ : L −→ M, then there exists a finite
sublattice F1[x∗] ⊂ L that contains F0 and such that x∗ is not the restriction of any lattice
homomorphism y∗ : F1[x∗] −→M.
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Proof of the claim: For every finite subset F ⊂ L that contains F0, consider the set

KF = {z∗ : L −→M : z∗|F0 = x∗,

z∗(a ∨ b) = z∗(a) ∨ z∗(b), for all a, b ∈ F,
z∗(a ∧ b) = z∗(a) ∧ z∗(b), for all a, b ∈ F}.

Since every finitely generated sublattice of a distributive lattice is finite, the negation of
the claim above implies that KF 6= ∅ whenever F is finite. It is easy to check that KF is a
closed subset of ML (with the product topology of the discrete topology on M). We also
have that

⋂
KFi ⊃ K⋃

Fi for any F1, . . . ,Fk. Thus, the sets of the form KF form a family
of closed subsets of ML with the finite intersection property. By compactness, there exists
z∗ : L −→ M that belongs to all sets KF. But then, z∗ is a lattice homomorphism with
z∗|F0 = x∗ in contradiction with the hypothesis of the claim.

Once the claim is proved, we return to the proof of the Lemma. First, let us notice that
we can suppose that F0 is a finite sublattice of L and that M is finite. The first assumption
is because we can pass to the sublattice generated by F0, and remember that every finitely
generated sublattice of a distributive lattice is finite. The second assumption is because
we can consider the restriction of y∗ onto its range. Let us say that two surjective lattice
homomorphisms x∗1 : F0 −→M1 and x∗2 : F0 −→M2 are equivalent if there exists a lattice
isomorphism φ : M1 −→ M2 such that φ ◦ x∗1 = x∗2. Clearly, there are only finitely many
equivalence classes of such surjective lattice homomorphisms, so let C = {x∗1, x∗2, . . . , x∗p}
be a finite list that contains a representative of each equivalence class. Let C′ be the
smallest list made of all the x∗i ∈ C that are not the restriction of any lattice homomorphism
z∗ : L −→Mi. We can construct then F1 to be the sublattice of L generated by F0 and by
all the F1[x∗i ] for x∗i ∈ C′.

Now, we consider the case when L is infinite. Again, we fix g ∈ FBL(L), and have to
show that ‖g‖I ≤ ‖g|L∗‖∗.

For this proof it will be convenient to explicitly indicate the domain of the evaluation
functions, so we write δLx : [−1, 1]L −→ R for the function δLx (x∗) = x∗(x). We can suppose
that g can be written as g = P (δLx1

, . . . , δLxn) for some x1, . . . , xn ∈ L, where P is a formula
that involves linear combinations and the lattice operations ∧ and ∨. This is because this
kind of functions are dense in FBL(L), that was generated by the functions δLx as a Banach
lattice. Let F0 = {x1, . . . , xn} and let F1 be the finite sublattice of L provided by Lemma 2.7.
For any set A such that F0 ⊂ A ⊂ L, we consider

gA = P (δAx1
, . . . , δAxn) : [−1, 1]A −→ R

Claim X: If A ⊂ B and x∗ ∈ [−1, 1]B, then gB(x∗) = gA(x∗|A).
Proof of the claim X: This is easily checked by induction on the complexity of the

expression P . If P is just a variable P (u1, . . . , un) = ui, then we have the fact that
δBxi(x

∗) = x∗(xi) = δAxi(x
∗|A). And it is trivial that if the claim X is satisfied by P and Q, it

is also satisfied for P ∧Q, P ∨Q and any linear combination of P and Q. This finishes the
proof of the claim X.
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Let I1 be the closed ideal in FBL(F1) generated by the elements of the form δF1
x∨y −

δF1
x ∨ δF1

y and δF1
x∧y − δF1

x ∧ δF1
y . By the finite case that we already proved, we have that∥∥∥gF1

∥∥∥
I1
≤
∥∥∥gF1 |F∗1

∥∥∥
∗
.

Thus, it is enough to prove that ‖g‖I ≤
∥∥gF1

∥∥
I1 and that

∥∥gF1 |F∗1
∥∥
∗ ≤ ‖g|L∗‖∗.

Let us see first that
∥∥gF1 |F∗1

∥∥
∗ ≤ ‖g|L∗‖∗. We have that

∥∥∥gF1 |F∗1
∥∥∥
∗

= sup

{
m∑
i=1

∣∣∣gF1(y∗i )
∣∣∣ : m ∈ N, y∗i ∈ F∗1, sup

x∈F1

m∑
i=1

|y∗i (x)| ≤ 1

}
,

‖g|L∗‖∗ = sup

{
m∑
i=1

|g(z∗i )| : m ∈ N, z∗i ∈ L∗, sup
x∈L

m∑
i=1

|z∗i (x)| ≤ 1

}
.

We take a sum
∑m

i=1

∣∣gF1(y∗i )
∣∣ and we will find a sum

∑m
i=1 |g(z∗i )| like in the second

supremum with the same value. Consider

M = {(y∗1(x), . . . , y∗m(x)) : x ∈ F1} ⊂ [−1, 1]m.

Notice that, since each y∗i is a lattice homomorphism, the set M is a sublattice of Rm

and we have a lattice homomorphism y∗ : F1 −→ M given by y∗(x) = (y∗1(x), . . . , y∗m(x)).
Also, since we are assuming that the y∗i are as in the supremum above, we have that∑m

i=1 |ξi| ≤ 1 whenever (ξ1, . . . , ξm) ∈ M. We are in a position to apply Lemma 2.7, and
we find a lattice homomorphism z∗ : L −→ M ⊂ [−1, 1]m such that z∗|F0 = y∗|F0 . Write
z∗(x) = (z∗1(x), . . . , z∗m(x)), so that we have z∗1 , . . . , z

∗
m ∈ L∗. Since the range of z∗ is inside

M, we have that
∑m

i=1 |z∗i (x)| ≤ 1 for all x ∈ L. Finally, using Claim X above

m∑
i=1

|g(z∗i )| =
m∑
i=1

∣∣∣gL(z∗i )
∣∣∣ =

m∑
i=1

∣∣∣gF0(z∗i |F0)
∣∣∣ =

m∑
i=1

∣∣∣gF0(y∗i |F0)
∣∣∣ =

m∑
i=1

∣∣∣gF1(y∗i )
∣∣∣ ,

as required.
Now, we prove the remaining inequality ‖g‖I ≤ ‖gF1‖I1 . In this proof, it will be useful

to use a subindex on norms to indicate in which free Banach lattice these norms are
calculated. Remember that

‖g‖I = inf
{
‖f‖FBL(L) : f ∈ FBL(L), f − g ∈ I

}
,

‖gF1‖I1 = inf
{
‖h‖FBL(F1) : h ∈ FBL(F1), h− gF1 ∈ I1

}
,

where

‖f‖FBL(L) = sup

{
m∑
i=1

|f(z∗i )| : m ∈ N, z∗i ∈ [−1, 1]L, sup
x∈L

m∑
i=1

|z∗i (x)| ≤ 1

}
,
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‖h‖FBL(F1) = sup

{
m∑
i=1

|h(y∗i )| : m ∈ N, y∗i ∈ [−1, 1]F1 , sup
x∈F1

m∑
i=1

|y∗i (x)| ≤ 1

}
.

Thus, the question is if given h ∈ FBL(F1) such that h − gF1 ∈ I1, there exists
f ∈ FBL(L) such that f − g ∈ I and ‖f‖FBL(L) ≤ ‖h‖FBL(F1).

For every h : [−1, 1]F1 −→ R, we consider e(h) : [−1, 1]L −→ R given by e(h)(z∗) =

h(z∗|F1). It is clear that e(δF1
x ) = δLx , and e preserves linear combinations, the lattice

operations and ‖e(h)‖FBL(L) = ‖h‖FBL(F1). Thus, we can view e as a Banach lattice
homomorphism e : FBL(F1) −→ FBL(L) that preserves the norm.

Now, we see that f = e(h) is what we are looking for. It only remains to check that
f − g ∈ I. We know that h− gF1 ∈ I1, which is the closed ideal generated by{

δF1
x∨y − δF1

x ∨ δF1
y , δ

F1
x∧y − δF1

x ∧ δF1
y : x, y ∈ F1

}
.

Therefore, e(h)− e(gF1) is in the closed ideal generated by{
e
(
δF1
x∨y − δF1

x ∨ δF1
y

)
, e
(
δF1
x∧y − δF1

x ∧ δF1
y

)
: x, y ∈ F1

}
=
{
δLx∨y − δLx ∨ δLy , δLx∧y − δLx ∧ δLy : x, y ∈ F1

}
.

Notice that e(gF1) = g by Claim X above. So we conclude that e(h)− e(gF1) = f − g ∈ I
as required.

2.5 Linear structure of a line in its free Banach lattice

In this section, L is a linearly ordered set, and FBL〈L〉 = FBL∗〈L〉 its free Banach
lattice, in the form of Theorem 2.2. For x ∈ L, we will denote the evaluation functions
as δx : L∗ −→ R instead of δ̇x, as we do not distinguish it from other evaluations. We will
show that in this case, the linear combinations of the copy of L inside FBL〈L〉 behave
similarly to the summing basis of c0. More precisely:

Proposition 2.8. Let L be a linearly ordered set. Then, for every u1 < . . . < um ∈ L and
a1, . . . , am ∈ R we have that∥∥∥∥∥

m∑
i=1

aisi

∥∥∥∥∥
∞

≤

∥∥∥∥∥
m∑
i=1

aiδui

∥∥∥∥∥
∗

≤ 6

∥∥∥∥∥
m∑
i=1

aisi

∥∥∥∥∥
∞

,

where si = (1, 1, . . . , 1︸ ︷︷ ︸
i

, 0, 0, 0, . . .) ∈ c0.

Proof. Let T : L −→ c0 be the map given by

T (x) =


s1 if x < u2;

sk if uk ≤ x < uk+1 for some 2 ≤ k ≤ m− 1;

sm if x ≥ um.
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Clearly, T is a bounded and increasing map. Let T̂ : FBL〈L〉 −→ c0 be its extension as in
Definition 2.1. Since ‖T̂‖ ≤ 1, we have that ‖T̂ (

∑m
i=1 aiδui)‖∞ ≤ ‖

∑m
i=1 aiδui‖∗, where

T̂ (
∑m

i=1 aiδui) =
∑m

i=1 aisi. This proves the first inequality in the proposition.
For f ∈ FBL∗〈L〉 we have that

‖f‖∗ = sup


n∑
j=1

∣∣f(x∗j )
∣∣ : n ∈ N, x∗1, . . . , x∗n ∈ L∗, sup

x∈L

n∑
j=1

∣∣x∗j (x)
∣∣ ≤ 1


≤ 2 sup


∣∣∣∣∣∣
n∑
j=1

f(x∗j )

∣∣∣∣∣∣ : n ∈ N, x∗1, . . . , x∗n ∈ L∗, sup
x∈L

n∑
j=1

∣∣x∗j (x)
∣∣ ≤ 1

 .

This is because
n∑
j=1

|f(x∗j )| =

∣∣∣∣∣∣
∑

f(x∗j )>0

f(x∗j )

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

f(x∗j )<0

f(x∗j )

∣∣∣∣∣∣ .
Therefore∥∥∥∥∥
m∑
i=1

aiδui

∥∥∥∥∥
∗

≤ 2 sup


∣∣∣∣∣∣
n∑
j=1

m∑
i=1

aix
∗
j (ui)

∣∣∣∣∣∣ : n ∈ N, x∗1, . . . , x∗n ∈ L∗, sup
x∈L

n∑
j=1

∣∣x∗j (x)
∣∣ ≤ 1


= 2 sup


∣∣∣∣∣∣
m∑
i=1

ai(

n∑
j=1

x∗j )(ui)

∣∣∣∣∣∣ : n ∈ N, x∗1, . . . , x∗n ∈ L∗, sup
x∈L

n∑
j=1

∣∣x∗j (x)
∣∣ ≤ 1


≤ 2 sup

{∣∣∣∣∣
m∑
i=1

aix
∗(ui)

∣∣∣∣∣ : x∗ ∈ L∗
}
.

On the other hand,

3

∥∥∥∥∥
m∑
i=1

aisi

∥∥∥∥∥
∞

= sup

{∣∣∣∣∣z∗
(

m∑
i=1

aisi

)∣∣∣∣∣ : z∗ ∈ 3Bc0∗

}
= sup

{∣∣∣∣∣
m∑
i=1

aiz
∗(si)

∣∣∣∣∣ : z∗ ∈ 3B`1

}
.

Given x∗ ∈ L∗, if we define z1 = x∗(u1) and zk = x∗(uk) − x∗(uk−1) for every k ≥ 2,
then z∗ = (z1, z2, z3, . . .) ∈ 3B`1 , and z∗(si) = x∗(ui) for all i = 1, . . . ,m. Combining all
these facts, we get the second inequality in the proposition.





Chapter 3

Chain conditions in free Banach
lattices

3.1 Introduction

In this chapter we investigate what chain conditions hold in free Banach lattices generated
by Banach spaces and linearly ordered sets. Its content is basically extracted from our
publications:

[7] AVILÉS, A., PLEBANEK, G., AND RODRÍGUEZ ABELLÁN, J. D. Chain conditions in free
Banach lattices. J. Math. Anal. Appl. 465 (2018), 1223–1229

[9] AVILÉS, A., AND RODRÍGUEZ ABELLÁN, J. D. The free Banach lattice generated by a
lattice. Positivity 23 (2019), 581–597

Let us recall that the countable chain condition and its various strengthenings, typically
considered in the context of Boolean algebras or topological spaces, in a more general
setting define combinatorial properties of partially ordered sets, see e.g. Todorcevic’s survey
article [33]. Given a Banach lattice X, it is natural to discuss chain conditions of the
partially ordered set X+ of positive elements of the lattice. We shall consider the following
chain conditions formed in this way:

Definition 3.1. We say that a Banach lattice X

(i) satisfies the countable chain condition (ccc) if for every uncountable family F ⊂ X+

there are distinct f, g ∈ F such that f ∧ g 6= 0;

(ii) satisfies Knaster’s condition K2 if every uncountable family F ⊂ X+ contains an
uncountable family G with the property that f ∧ g 6= 0 for every f, g ∈ G;

37
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(iii) satisfies the σ-bounded chain condition (σ-bcc) ifX+ admits a countable decomposition
X+ =

⋃
n≥2Fn such that, for every n, in every subset G ⊂ Fn of size n there are two

distinct elements f, g ∈ G such that f ∧ g 6= 0.

We have listed those chain conditions according to their increasing strength; in fact, the
implications

σ-bcc⇒ K2 ⇒ ccc,

are valid for arbitrary partially ordered sets. While it is clear that K2 implies ccc, the
first implication is less obvious. Nonetheless, the σ-bounded chain condition implies K2,
as a consequence of the Dushnik-Miller partition theorem, cf. [33, page 52]. We are
grateful to Stevo Todorcevic for bringing this fact to our attention. The first version of [7]
contained a separate argument that the lattice FBL[E] satisfies Knaster’s condition under
an additional assumption that E is weakly compactly generated. The role of the σ-bounded
chain condition is briefly discussed in Section 3.4.

B. de Pagter and A. W. Wickstead showed that the free Banach lattice FBL[`1(A)] =

FBL(A) generated by any set A always satisfies the ccc ([15, Corollary 6.6]). This is in
analogy with the well-known property of free Boolean algebras, which satisfy the countable
chain condition regardless of their size ([26, Chapter 4, Corollary 9.18]). Assuming some
linear and metric restrictions does not seem to help in constructing large sets of disjoint
elements, and for this reason it is natural to guess that the free Banach lattice generated by
any Banach space E should also satisfy the ccc. Although the original proof from [15] does
not admit a straightforward generalization, we shall prove in this chapter that this is the
case; in fact, our main result in Section 3.3 reads as follows:

Theorem 3.2. For every Banach space E, the free Banach lattice FBL[E] satisfies the σ-
bounded chain condition.

Recall that all the functions in FBL[E] are positively homogeneous and weak∗-continuous
when restricted to the closed unit ball BE∗ . So, there is a natural inclusion

FBL[E] ⊂ Cph(BE∗),

where the right-hand side is the set of all weak∗-continuous and positively homogeneous
functions on BE∗ . This inclusion preserves the order relation ≤ and the infimum and
supremum operations (∧,∨), that are always defined pointwise. Theorem 3.2 follows from
Theorem 3.3 below, because the σ-bounded chain condition is transferred by the inclusion
mentioned above.

Theorem 3.3. The lattice Cph(BE∗) satisfies the σ-bounded chain condition for every Banach
space E.

Before proving it, in Section 3.2, we will focus on the countable chain condition for the
free Banach lattice generated by a linearly ordered set. The main result in this section is
the following:

Theorem 3.4. For L linearly ordered set, FBL〈L〉 satisfies the countable chain condition if,
and only if, L is order-isomorphic to a subset of the real line.
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3.2 Chain conditions in FBL〈L〉

Throughout this section L is a linearly ordered set, and FBL〈L〉 = FBL∗〈L〉 is the free
Banach lattice generated by L, in the concrete form described in [Chapter 2, Theorem 2.2].
Again, for x ∈ L, we will denote the evaluation functions as δx : L∗ −→ R instead of δ̇x.

Before proving Theorem 3.4, we state a couple of lemmas:

Lemma 3.5. For a linearly ordered set L the following are equivalent:

1. L is order-isomorphic to a subset of the real line.

2. L is separable in the order topology, and the set of leaps {(a, b) ∈ L2 : a < b, [a, b] =

{a, b}} is countable.

3. For every uncountable family of triples

F =
{
{xi1, xi2, xi3} : xi1, x

i
2, x

i
3 ∈ L, xi1 < xi2 < xi3, i ∈ J

}
there exist i 6= j such that xi1 ≤ x

j
2 ≤ xi3 and xj1 ≤ xi2 ≤ x

j
3.

Proof. The equivalence of 1 and 2 is easy and is well known folklore, cf. [32, Corollary
3.1]. Assume now 2 and let us prove 3. Take a countable dense subset D ⊂ L that contains
all the elements a, b ∈ L for which a < b and [a, b] = {a, b}. Let f : F −→ D2 be the map
given by f(xi1, x

i
2, x

i
3) = (d1, d2), where dk is an element of D such that xik < dk < xik+1 if

such an element exists, and dk = xik otherwise, when xik, x
i
k+1 ∈ D form a leap. Since F

is uncountable and D2 is countable, there exists an uncountable F0 ⊆ F such that f |F0 is
constant. Any pair of distinct elements {xi1, xi2, xi3}, {x

j
1, x

j
2, x

j
3} ∈ F0 is as required because

we can interpolate xuk ≤ dk < xvk+1. Let us prove now that 3 implies 2. First, let us see
that the set of leaps is countable. Let us say two leaps (a, b) and (a′, b′) are equivalent if
there exist c0 < c1 < · · · < cp finitely many elements of L such that each (ck, ck+1) is a
leap and either c0 = a and cp = b′, or c0 = a′ and cp = b. It is clear that each equivalence
class of leaps is countable. So if there were uncountably many leaps, we could find an
uncountable family G = {{xi1, xi2} : i ∈ J} of nonequivalent leaps xi1 < xi2. We can assume
that xi2 is never the maximum of L and we choose an arbitrary xi3 > xi2. Applying 3 to the
family F = {{xi1, xi2, xi3} : i ∈ J} , we could find i ≤ j such that xi1 ≤ x

j
2 and xj1 ≤ xi2. But

when we have two nonequivalent leaps, one has to be strictly to the right of the other, so
either xj2 < xi1 or xi2 < xj1, a contradiction. Now we prove that L is separable. Using Zorn’s
lemma, we can find a maximal family F that fails the property stated in 3. This family must
be then countable. Let D be the set of all elements of L that either appear in some triple of
the family F or are one of the two sides of a leap. We know now that D is countable. Let
us check that it is dense. Take a non-empty open interval (a, b) ⊂ L. If the interval (a, b)

is finite, then all its elements are parts of leaps, so it intersects D. Suppose that (a, b) is
infinite but does not intersect D. Then if we pick a < x1 < x2 < x3 < b, then the triple
{x1, x2, x3} could be added to F , in contradiction with its maximality.

We notice that the use of triples in Lemma 3.5 is essential. The analogous property
of condition 3 for couples instead of triples would be that for every uncountable family
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F = {{xi1, xi2} : xi1 < xi2} there are i 6= j such that xi1 ≤ xj2 and xj1 ≤ xi2. A connected
Suslin line has this weaker property but it does not embed into the real line.

Lemma 3.6. Let L ⊂M be two linearly ordered sets. Then FBL〈L〉 is isometric to a Banach
sublattice of FBL〈M〉.

Proof. We will prove that, in fact, FBL〈L〉 is isometric to the closure of the vector lattice
generated by the image of L via the inclusion mapping of M inside FBL〈M〉. That
is, if we denote by φM : M −→ FBL〈M〉 the inclusion of M inside FBL〈M〉 (given by
φM(y)(y∗) = δMy (y∗) = y∗(y), for every y ∈M, y∗ ∈M∗), we have that

FBL〈L〉 ∼= lat
‖·‖∗

{
δMx : x ∈ L

}
⊂ FBL〈M〉.

To prove that, let us denote by ι : L −→ M the inclusion mapping of L inside M, and
let ϕ : FBL〈L〉 −→ FBL〈M〉 be the extension of the bounded lattice homomorphism
φM ◦ ι : L −→ FBL〈M〉 to FBL〈L〉 given by the universal property of the free Banach
lattice.

It is clear that the action of ϕ is given by ϕ(f)(y∗) = f(y∗|L) for every f ∈ FBL〈L〉,
y∗ ∈M∗, and that ‖ϕ(f)‖∗ ≤ ‖f‖∗ for every f ∈ FBL〈L〉, where

‖f‖∗ = sup

{
n∑
i=1

|f(x∗i )| : n ∈ N, x∗1, . . . , x∗n ∈ L∗, sup
x∈L

n∑
i=1

|x∗i (x)| ≤ 1

}
,

‖ϕ(f)‖∗ = sup

{
n∑
i=1

|ϕ(f)(y∗i )| : n ∈ N, y∗1, . . . , y∗n ∈M∗, sup
y∈M

n∑
i=1

|y∗i (y)| ≤ 1

}

= sup

{
n∑
i=1

|f(y∗i |L)| : n ∈ N, y∗1, . . . , y∗n ∈M∗, sup
y∈M

n∑
i=1

|y∗i (y)| ≤ 1

}
.

Thus, to see that ϕ gives an isometry from FBL〈L〉 onto lat
‖·‖∗ {δMx : x ∈ L

}
⊂ FBL〈M〉,

it only remains to prove that we also have ‖f‖∗ ≤ ‖ϕ(f)‖∗ for every f ∈ FBL〈L〉.
First, observe that

L∗ = {x∗ : L −→ [−1, 1] : u ≤ v ⇒ x∗(u) ≤ x∗(v)}

and
M∗ = {y∗ : M −→ [−1, 1] : u ≤ v ⇒ y∗(u) ≤ y∗(v)} .

Fix f ∈ FBL〈L〉 and let x∗1, . . . , x
∗
n ∈ L∗ like in the expression of the norm ‖f‖∗. Let

γ : L∗ −→M∗ be the map given by

γ(x∗)(y) =

{
sup {x∗(x) : x ∈ L, x ≤ y} if there exists x ∈ L with x ≤ y,
inf {x∗(x) : x ∈ L, x ≥ y} otherwise,

for every x∗ ∈ L∗, y ∈M.
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Put y∗i := γ(x∗i ) ∈M∗ for every i = 1, . . . , n, and let us see that y∗1, . . . , y
∗
n are like in the

expression of the norm ‖ϕ(f)‖∗ satisfying that
∑n

i=1 |f(x∗i )| ≤
∑n

i=1 |f(y∗i |L)|.
Since γ(x∗)|L = x∗ for every x∗ ∈ L∗, we have that

f(y∗i |L) = f(γ(x∗i )|L) = f(x∗i )

for every i = 1, . . . , n.

Finally, we have to check that supy∈M
∑n

i=1 |y∗i (y)| ≤ 1.
Suppose not, and let y ∈M and ε > 0 such that

∑n
i=1 |y∗i (y)| > 1 + ε. Suppose also that

there exists x ∈ L with x ≤ y (the other case is analogous).
Since, in this case, y∗i (y) = sup {x∗i (x) : x ∈ L, x ≤ y} for every i = 1, . . . , n, we have

that there exists x̃i ∈ L, with x̃i ≤ y, such that y∗i (y) − x∗i (x̃i) < ε
n . Now, if x ∈ L is

such that x̃i ≤ x ≤ y, since x∗i is increasing, we have that x∗i (x̃i) ≤ x∗i (x). But then,
|x∗i (x)− y∗i (y)| = y∗i (y)− x∗i (x) ≤ y∗i (y)− x∗i (x̃i) < ε

n .
Let x̃ := max {x̃1, . . . , x̃n} ∈ L. Due to the above, we have that |x∗i (x̃)− y∗i (y)| < ε

n for
every i = 1, . . . , n. Then, using that

∑n
i=1 |y∗i (y)| > 1 + ε and

∑n
i=1 |x∗i (x̃)− y∗i (y)| < ε, we

have that
n∑
i=1

|x∗i (x̃)| =
n∑
i=1

|x∗i (x̃)− y∗i (y) + y∗i (y)|

≥
n∑
i=1

|y∗i (y)| −
n∑
i=1

|x∗i (x̃)− y∗i (y)|

> 1 + ε− ε = 1,

which is a contradiction.

We prove now Theorem 3.4. Endow L∗ with the pointwise topology. If a function
f : L∗ −→ R belongs to FBL〈L〉, then it is continuous. This is because the functions δx
are continuous, and the property of being continuous is preserved under all Banach lattice
operations (including limits, because every limit in FBL〈L〉 is a uniform limit).

A basis for the topology of L∗ is given by the sets of the form

U(x1, I1, . . . , xn, In) := {x∗ ∈ L∗ : x∗(xi) ∈ Ii for all i = 1, . . . , n} ,

for x1, . . . , xn ∈ L and I1, . . . , In open intervals with rational endpoints. Write Ii < Ij if
sup(Ii) < inf(Ij), and consider the family

W = {U(x1, I1, . . . , xn, In) : x1 < x2 < · · · < xn, I1 < I2 < · · · < In} .

This is not a basis anymore. But since L∗ consists of nondecreasing functions, it is clear that
W is a π-basis. That means that every non-empty open subset of L∗ contains a non-empty
open subset fromW.

Let us suppose that L is a subset of the real line, and we prove that FBL〈L〉 satisfies
the countable chain condition. Let D ⊂ L be a countable dense subset of L that contains all
elements that are part of a leap, D ⊃ {a, b : a < b, [a, b] = {a, b}}. Observe that in this case

W0 = {U(d1, I1, . . . , dn, In) ∈ W : d1, d2, . . . , dn ∈ D}
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is also a π-basis of L∗. This is because for every U(x1, I1, . . . , xn, In) ∈ W, we can in-
terpolate d−1 ≤ x1 ≤ d+

1 ≤ d−2 ≤ x2 ≤ d+
2 ≤ · · · ≤ d−n ≤ xn ≤ d+

n with d±k ∈ D, and
then

U(d−1 , I1, d
+
1 , I1, . . . , d

−
n , In, d

+
n , In) ⊂ U(x1, I1, . . . , xn, In).

Take an uncountable family of strictly positive elements G ⊂ FBL〈L〉+. For each f ∈ G
there exists Vf ∈ W0 such that Vf ⊂ {x∗ ∈ L∗ : f(x∗) > 0}. Notice that f ∧ g 6= 0 whenever
Vf ∩ Vg 6= ∅. Since G is uncountable and W0 is countable, there are plenty of pairs f, g
such that in fact Vf = Vg. This finishes the proof that FBL〈L〉 satisfies the countable chain
condition whenever L embeds into the real line.

We may notice that we proved a property stronger that the ccc: If a linear order L
embeds into the real line, then FBL〈L〉 is σ-centered. That means, we can decompose
the strictly positive elements into countably many pieces in such a way that every finite
infimum inside each piece is nonzero. Indeed, if we take as G the uncountable family of all
strictly positive elements of FBL〈L〉+, the decomposition is given by

G =
⋃

w∈W0

{
f ∈ FBL〈L〉+ : f > 0, Vf = w

}
.

Now we turn to the proof that if L does not embed into the real line, then FBL〈L〉 does
not satisfy the countable chain condition. We are going to prove it first under the extra
assumption that L has a maximum M or a minimum m. First, suppose it has a maximum
M . We fix an uncountable family of triples F that fails property 3 in Lemma 3.5. For every
i ∈ J consider

hi = 0 ∨
(
δxi1
∧
(
δxi2
− δxi1 − 0.4 δM

)
∧
(
δxi3
− δxi2 − 0.4 δM

))
.

Let us see that these elements of FBL〈L〉 witness the failure of the ccc. Obviously hi ≥ 0.
First, we fix i and we check that hi > 0. For this, define x∗ : L −→ [−1, 1] by

x∗(x) =


0.1 if x < xi2,

0.55 if xi2 ≤ x < xi3,

1 if xi3 ≤ x.

We have that hi(x∗) = 0 ∨ (0.1 ∧ (0.55− 0.1− 0.4) ∧ (1− 0.55− 0.4)) = 0.05, so hi 6= 0.
Now, we prove that hi ∧ hj = 0 for i 6= j. Suppose on the contrary that hi ∧ hj > 0.

Then, there exists x∗ ∈ L∗ such that hi(x∗) ∧ hj(x∗) > 0. Then

x∗(xi1) > 0, x∗(xj1) > 0,

x∗(xi2)− x∗(xi1) > 0.4 x∗(M),

x∗(xi3)− x∗(xi2) > 0.4 x∗(M),

x∗(xj2)− x∗(xj1) > 0.4 x∗(M),

x∗(xj3)− x∗(xj2) > 0.4 x∗(M).
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Remember that property 3 of Lemma 3.5 fails, and therefore either xj2 6∈ [xi1, x
i
3] or

xi2 6∈ [xj1, x
j
3]. For example, say that xi2 < xj1 (all other cases are analogous). Then,

combining the fact that x∗ is nondecreasing with the above inequalities, we get that

x∗(M) > x∗(M)− x∗(xi1)

≥ x∗(xj3)− x∗(xi1)

= x∗(xj3)− x∗(xj2) + x∗(xj2)− x∗(xj1) +

x∗(xj1)− x∗(xi2) + x∗(xi2)− x∗(xi1)

> 1.2 x∗(M),

a contradicition because x∗(M) ≥ x∗(xi1) > 0.
The proof of the case when L has a maximum is over. Let

←−
L be the linear order whose

underlying set is the same as L, but with the reverse order. It is easy to check that the map
Φ: FBL〈L〉 −→ FBL〈

←−
L 〉 given by Φ(f)(x∗) = −f(−x∗) is an isomorphism of Banach

lattices with Φ(δx) = δx for all x ∈ L. Thus, FBL〈L〉 and FBL〈
←−
L 〉 are isomorphic, so

we will have that L embeds into the real line whenever FBL〈L〉 satisfies the countable
chain condition and L has a minimum. The case when L has neither a maximum nor a
minimum remains. In that case, we just pick an arbitrary element a ∈ L and consider
L1 = {x ∈ L : x ≤ a} and L2 = {x ∈ L : x ≥ a}. By Lemma 3.6, if FBL〈L〉 satisfies the
countable chain condition then both FBL〈L1〉 and FBL〈L2〉 satisfy the countable chain
condition. But L1 and L2 have a maximum and a minimum respectively, so by the cases
that we already proved, we conclude that both L1 and L2 embed into the real line. This
implies that L embeds into the real line, as required.

3.3 Chain conditions in FBL[E]

This section is devoted to the proof of Theorem 3.3, in which case we will also have
proved Theorem 3.2. In the sequel, we often identify a natural number n with the set
{0, 1, 2, . . . , n − 1}. For any set A and s ∈ N, we use the following standard notation:
[A]s = {B ⊂ A : |B| = s}.

We start by recalling the classical Ramsey’s theorem which we use in the proof of
Lemma 3.8 below.

Theorem 3.7 ([34, Corollary 1.4]). Given p, q, r ∈ N, with p ≤ r, there exists N =

N(p, q, r) ∈ N such that for every map

ϕ : [N ]p −→ q

there exists B ∈ [N ]r such that ϕ|[B]p is constant.

Given any set A, we write ∆A for the diagonal in A×A.

Lemma 3.8. For every a ∈ N, there exists N = N(a) ∈ N such that for every map

c : N ×N \∆N −→ a,
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there exist i < j < k ∈ N such that

c(i, j) = c(i, k) and c(k, i) = c(k, j).

Proof. We shall check that the Ramsey number N = N(3, a2, 5) given by Theorem 3.7 has
the required property. Fix any function c : N ×N \∆N −→ a.

Let ϕ : [N ]3 −→ a2 be the map given by

ϕ({i, j, k}) = (c(i, j), c(k, j)) ,

whenever {i, j, k} ∈ [N ]3 and i < j < k. By Theorem 3.7, there exists B ∈ [N ]5 such that
ϕ is constant on [B]3. Write B = {b1, . . . , b5} so that b1 < . . . < b5.

We now check that b2, b3, b4 is the triple satisfying the assertion of the lemma. Since

ϕ({b2, b3, b4}) = ϕ({b2, b4, b5}),

we get c(b2, b3) = c(b2, b4) by the definition of ϕ.
Analogously, since

ϕ({b1, b3, b4}) = ϕ({b1, b2, b4}),

we conclude that c(b4, b3) = c(b4, b2), and the proof is complete.

Let us now fix a Banach space E and consider the compact space K = (BE∗ , w
∗).

Theorem 3.9. There is a countable decomposition X =
⋃
ν∈NXν of the family

X =
{
f ∈ C(K) : f | 1

3
K 6= 0

}
such that for every G ⊂ Xν of cardinality ν there exist two distinct f, g ∈ G such that f · g 6= 0.

Proof. What we are going to find is a countable decomposition X =
⋃
w∈W Yw, indicated

on a suitable countable set W , together with a function M : W −→ N such that for every
G ⊂ Yw of cardinality M(w) there exist two distinct f, g ∈ G such that f · g 6= 0. From such
a decomposition we can define one like stated in the theorem, by picking either Xν = ∅
or Xν = Yw where w is the least element (in some enumeration of W ) that has not been
previously chosen and M(w) < ν.

Recall that for x∗ ∈ K, sets of the form

Vx∗(x1 . . . , xn, δ) = {y∗ ∈ K : |y∗(xi)− x∗(xi)| < δ for every i = 1, . . . , n} ,

where x1, . . . , xn ∈ E and δ > 0, form a base for the weak∗ topology at x∗ ∈ K.
For every f ∈ X we have f | 1

3
K 6= 0, so there is x∗f ∈ E∗ such that ‖x∗f‖ ≤ 1/3 and∣∣∣f(x∗f )

∣∣∣ > 0. Without loss of generality we can assume that there is ε > 0 such that∣∣∣f(x∗f )
∣∣∣ > ε for every f .

Every function f ∈ X is weak∗-continuous at x∗f so there is a weak∗-neighbourhood Uf

of x∗f such that
∣∣∣f(y∗)− f(x∗f )

∣∣∣ < ε/2 for every y∗ ∈ Uf . We may assume that every Uf
is a basic neighbourhood determined by nf vectors from E and some δf > 0 that can be
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supposed to be rational. Our index set will be W = N × Q and Y(n,δ) = {f ∈ X : nf =

n, δf = δ}.
So we fix w = (n, δ), and what we have is that for every f ∈ Yw there exist xf1 , . . . , x

f
n ∈

BE satisfying

(i)
∣∣∣f(x∗f )

∣∣∣ > ε for every f ∈ Yw;

(ii) writing Uf = Vx∗f (xf1 , . . . , x
f
n, δ), we have

∣∣∣f(y∗)− f(x∗f )
∣∣∣ < ε/2 for every y∗ ∈ Uf .

In order to complete the proof it is enough to show that there is a large enough number
N (that will be our M(w)) that satisfies the following claim:

CLAIM A. Suppose that {f0, . . . , fN−1} ⊆ Yw. Putting x∗a := x∗fa for every 0 ≤ a ≤ N − 1,
there exist 0 ≤ i < j < k ≤ N − 1 such that for y∗ = x∗i − x∗j + x∗k ∈ K we have fi(y∗) 6= 0

and fk(y∗) 6= 0.

Indeed, the general case follows then by reindexing the functions in question. In turn,
Claim A follows from the following:

CLAIM B. In the setting of Claim A, putting Ua := Ufa for every 0 ≤ a ≤ N − 1, there are
0 ≤ i < j < k ≤ N − 1 such that

y∗ = x∗i − x∗j + x∗k ∈ Ui ∩ Uk.

Indeed, if y∗ ∈ Ui ∩ Uk then

|fi(x∗i )− fi(y∗)| < ε/2

|fi(x∗i )| > ε

}
⇒ |fi(y∗)| > ε/2⇒ fi(y

∗) 6= 0,

and fk(y∗) 6= 0 for the same reason. To complete the proof we shall now verify Claim B.
Write [−1, 1] =

⋃m−1
s=0 Is, where Is are pairwise disjoint intervals (with or without

endpoints) of diameter less than δ.
The number N = M(w) that we need to take is the number N = N(mn) given by

Lemma 3.8. Put xap := xfap for every 1 ≤ p ≤ n and 0 ≤ a ≤ N − 1, and consider the
mapping

c : N ×N \∆N −→ mn, c(a, b) = (c1(a, b), . . . , cn(a, b)) ,

where for every 1 ≤ p ≤ n, the value of 0 ≤ cp(a, b) ≤ m − 1 is defined by the condition
x∗b(x

a
p) ∈ Icp(a,b).

By Lemma 3.8, there exist i < j < k ≤ N − 1 such that

c(i, j) = c(i, k) and c(k, i) = c(k, j).

As c(i, j) = c(i, k), for every p ≤ n we have
∣∣∣x∗j (xip)− x∗k(xip)∣∣∣ < δ, and∣∣x∗i (xip)− y∗(xip)∣∣ =

∣∣x∗j (xip)− x∗k(xip)∣∣ < δ,

which means that y∗ ∈ Vx∗i (x
i
1, . . . , x

i
n, δ) = Ui.
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In the same manner, from c(k, i) = c(k, j) we get
∣∣∣x∗i (xkp)− x∗j (xkp)∣∣∣ < δ, and∣∣∣x∗k(xkp)− y∗(xkp)∣∣∣ =

∣∣∣x∗i (xkp)− x∗j (xkp)∣∣∣ < δ.

Again, this means that y∗ ∈ Vx∗k(xk1, . . . , x
k
n, δ) = Uk, and this verifies Claim B.

Theorem 3.3 follows immediately from Theorem 3.9, because all strictly positive ele-
ments of Cph(K) satisfy f | 1

3
K 6= 0. As it was observed in the introduction, Theorem 3.2

follows from Theorem 3.3.

3.4 Concluding remarks

Let us note that the proof of Theorem 3.9 works even if we replace BE∗ by any weak∗-closed
and absolutely convex subset K of BE∗ . The only delicate point in the proof that one has to
be careful about is that the vector y∗ = x∗i − x∗j + x∗k chosen in Claim B is still an element of
K and this is guaranteed by x∗i , x

∗
j , x
∗
k ∈

1
3K. Thus, Theorem 3.3 may be stated as follows:

Theorem 3.10. Given a Banach space E and a weak∗-closed absolutely convex set K ⊂ BE∗ ,
the lattice Cph(K) satisfies the σ-bounded chain condition.

The question arises if there are natural stronger chain conditions that would hold in
Cph(BE∗), and so in FBL[E], for every Banach space E.

The σ-bounded chain condition was introduced by Horn and Tarski in connection with
Boolean algebras carrying strictly positive measures. It is worth recalling that the related
Horn-Tarski problem, whether the condition σ-bcc is equivalent to its certain formally
weaker version was solved in the negative only a few years ago by Thümmel [31] and
Todorcevic [35].

Suppose that A is a Boolean algebra and µ : A→ [0, 1] is a finitely additive probability
measure such that µ(a) > 0 for every a ∈ A+. Then we can write

A+ =
⋃
n≥2

Fn, where Fn = {a ∈ A : µ(a) > 1/n}.

Clearly, Fn contains no n many pairwise disjoint elements, so A satisfies the σ-bounded
chain condition. This cannot be reversed, there are algebras with σ-bcc not carrying strictly
positive measures; cf. Chapter 6 of [14].

If X is a sublattice of the space C(K) for some compact space K then one can think
of an analogous chain-like condition, stating that there is a finitely additive probability
measure µ on K which is strictly positive on X+ \ {0}, that is

∫
K f dµ > 0 for every

f ∈ X+ \ {0}. Note that to have
∫
K f dµ well-defined for every continuous function f we

need only to assume that the domain of µ contains the algebra A(K) generated by closed
subsets of K. Once we have such µ, it is not difficult to verify the condition σ-bcc. Let us
first observe that whether the measure in question is actually countably additive or merely
finitely additive is not essential here.
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Remark 3.11. Suppose that µ is finitely additive probability measure which is strictly
positive on X+ \ {0} for some sublattice X of the lattice C(K) of continuous functions on
a compact space K. Then there is a countably additive Borel measure µ′ on K which is
again strictly positive on X+ \ {0}.

For f ∈ X+ \ {0} write ε =
∫
K f dµ and A = {x ∈ K : f(x) ≥ ε/2}; then

ε =

∫
A
f dµ+

∫
K\A

f dµ ≤ ‖f‖∞ · µ(A) + ε/2,

which gives µ(A) > 0. This implies that whenever a finitely additive measure µ′ satisfies
µ′(A) ≥ µ(A) for every closed A ⊂ K then again

∫
K f dµ′ > 0 for every f ∈ X+ \ {0}.

Now the point is that there is such µ′ that is closed-inner-regular on the algebra A(K),
see [27]; µ′ is then countably additive (by compactness) and, consequently, extends to a
countable additive Borel measure on K which is positive on X+ \ {0}.

Using Remark 3.11 it is not difficult to give an example showing that the σ-bounded
chain condition that holds in every FBL[E] does not admit the obvious measure-theoretic
strengthening mentioned above.

Example 3.12. Consider the Banach space E = c0(Γ), where Γ is a uncountable set; then
E∗ = `1(Γ). There is no measure on K = BE∗ which would be positive on all elements
from Cph(K)+.

Indeed, every γ ∈ Γ defines fγ ∈ Cph(K)+, where fγ(x) = |xγ |. Suppose that µ is a
measure on K such that

∫
K fγ dµ > 0 for every γ. By Remark 3.11 we can assume that µ

is countable additive. Then for every γ there is δ(γ) > 0 such that

µ ({x ∈ K : fγ(x) ≥ δ(γ)}) > 0.

Using the fact that Γ is uncountable, we conclude easily that there is δ > 0 and a sequence
of distinct γn ∈ Γ such that, writing An = {x ∈ K : fγn(x) ≥ δ}, we have µ(An) ≥ δ. But
then µ(

⋂
n

⋃
k≥nAk) ≥ δ; in particular, there is x ∈ K belonging to infinitely many sets An.

This clearly contradicts the fact that x ∈ K ⊆ `1(γ).





Chapter 4

Projective Banach lattices

4.1 Introduction

There is a very extensive theory about projective objects in the context of the general theory
of categories, see e.g. Semadeni’s book [30]. In this chapter we continue the program
proposed by B. de Pagter and A. W. Wickstead [15] of studying the projective Banach
lattices. Its content is basically extracted from our publications:

[5] AVILÉS, A., MARTÍNEZ-CERVANTES, G., AND RODRÍGUEZ ABELLÁN, J. D. On projective
Banach lattices of the form C(K) and FBL[E]. J. Math. Anal. Appl. 489, 124129
(2020)

[6] AVILÉS, A., MARTÍNEZ-CERVANTES, G., AND RODRÍGUEZ ABELLÁN, J. D. On the
Banach lattice c0. To appear in Rev. Mat. Complut. https://doi.org/10.1007/s13163-
019-00342-x, 2020

[10] AVILÉS, A., AND RODRÍGUEZ ABELLÁN, J. D. Projectivity of the free Banach lattice
generated by a lattice. Archiv der Mathematik 113 (2019), 515–524

Definition 4.1. Let λ > 1 be a real number. A Banach lattice P is λ-projective if whenever
X is a Banach lattice, J a closed ideal in X and Q : X −→ X/J the quotient map,
then for every Banach lattice homomorphism T : P −→ X/J , there is a Banach lattice
homomorphism T̂ : P −→ X such that T = Q ◦ T̂ and ‖T̂‖ ≤ λ ‖T‖.

A Banach lattice is called projective in [15] if it is (1 + ε)-projective for every ε > 0. For
a more intuitive terminology, and by analogy to similar notions in Banach spaces, we will
call this 1+-projective instead of just projective. Note that if P is λ-projective, then P is
µ-projective for every µ ≥ λ. We will call a Banach lattice∞-projective if it is λ-projective
for some λ > 1.

49
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Since the canonical 1+-projective Banach lattice is the free Banach lattice FBL(A) ([15,
Proposition 10.2]), it is natural to think that its variants FBL〈L〉 and FBL[E] may also be
1+-projective at least in some cases. Sections 4.3, 4.4 and 4.5 are devoted to this.

On the one hand, we prove that:

Theorem 4.2. If L is a finite lattice, then FBL〈L〉 is a 1+-projective Banach lattice.

In this case, FBL〈L〉 is a renorming of a Banach lattice of continuous functions C(K)

on a compact neighbourhood retract K of Rn, which is 1+-projective ([15, Theorem 11.4]).
However, 1+-projectivity is not preserved under renorming, because of the (1 + ε) bound
required in the definition. Getting this bound will be the key point in the proof.

In the infinite case, we consider only linearly ordered sets, as they are easier to handle
than general lattices. We prove the following:

Theorem 4.3. Let L be an infinite linearly ordered set. Then, FBL〈L〉 is not∞-projective.

On the other hand, as we said before, the free Banach lattice FBL(A) = FBL[`1(A)] is
1+-projective. Here, we show that, for FBL[E] to be∞-projective, the structure of E must
be very close to that of `1(A):

Theorem 4.4. Let E be a Banach space. If FBL[E] is ∞-projective, then E has the Schur
property (i.e. every weakly convergent sequence in E converges in norm).

Moreover, at the end of Section 4.5 we provide a counterexample which shows that, in
the category of nonseparable Banach spaces, the converse of this result does not hold. We
still do not know if there exists a separable Banach space E which has the Schur property
and such that FBL[E] is not∞-projective.

Other examples of 1+-projective Banach lattices given in [15] include every finite
dimensional Banach lattice ([15, Theorem 11.1]), `1 and any countable `1-sum of separable
1+-projective Banach lattices ([15, Theorem 11.11]). However, questions as whether c0, `2
or C([0, 1]N) are 1+-projective were left open in the same publication. In Sections 4.5 and
4.6 we answer these questions. In fact, we prove the following more general result:

Theorem 4.5. Let (ui)i∈N be a bounded sequence of vectors in an ∞-projective Banach
lattice X. Suppose that there exists a Banach lattice homomorphism T : X −→ c0 such
that T (ui) = ei for every i ∈ N, where (ei)i∈N is the canonical basis of c0. Then there is a
subsequence (uik)k∈N equivalent to the canonical basis of `1,

where we get, in particular, that neither c0 nor `p (for 2 ≤ p < ∞) are ∞-projective;
and the result below, answering [15, Question 12.12], where it was asked whether the fact
that a compact Hausdorff topological space K is an absolute neighbourhood retract in the
category of compact Hausdorff topological spaces implies that the space of the continuous
functions on K with the supremum norm is 1+-projective:

Theorem 4.6. If K is a compact Hausdorff topological space, then C(K) is 1+-projective if,
and only if, K is an absolute neighbourhood retract in the category of compact Hausdorff
topological spaces.
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In [15, Proposition 11.7] B. de Pagter and A. W. Wickstead prove that if C(K) is
1+-projective, then K is an absolute neighbourhood retract in the category of compact
Hausdorff topological spaces, while they only manage to show the converse with the
additional hypothesis that K is inside Rn ([15, Theorem 11.4]).

Finally, in Section 4.7 we study the complementability of the Banach lattice c0 in
FBL[c0], while in Section 4.8 we propose some open problems we have about projective
Banach lattices.

It should be noted that the complementability of c0 in FBL[c0] is not a fact directly
related to the topic of this chapter, but nevertheless, in [6] we used this to show that
FBL[c0] is not 1+-projective, which is already deduced here from Theorem 4.4 in a more
general way.

4.2 Preliminaries

We start this chapter with some preliminaries about projective Banach lattices, quotients of
projective Banach lattices and absolute neighbourhood retracts.

In Section 4.2.1 we show a simple but very useful result to study when the quotient of
a 1+-projective Banach lattice is also 1+-projective, and which we will use several times
throughout the chapter.

In Section 4.2.2 we show the definition of absolute neighbourhood retract and some
basic facts which we will need in the proofs of some of the theorems mentioned in the
introduction.

But before that, we prove that, in the case of∞-projective, Q can be taken any surjective
Banach lattice homomorphism. Moreover, we prove that if a Banach lattice has the property
that we can lift Banach lattice homomorphisms from it to another Banach lattice via
surjective Banach lattice homomorphisms (or just quotient maps), then it is λ-projective
for some λ. More concretely:

Proposition 4.7. A Banach lattice P is∞-projective if, and only if, whenever X and Y are
Banach lattices, and S : X −→ Y is a surjective Banach lattice homomorphism, then for
every Banach lattice homomorphism T : P −→ Y there is a Banach lattice homomorphism
T̂ : P −→ X such that S ◦ T̂ = T .

Proof. Suppose that P is∞-projective, and let S : X −→ Y be a surjective Banach lattice
homomorphism between two Banach lattices X and Y , and T : P −→ Y a Banach lattice
homomorphism. Since S is surjective, we have that Y is isomorphic to the quotient
X/Ker S. Let V : Y −→ X/Ker S be the isomorphism, and let Q := V ◦ S : X −→ X/Ker S
be the quotient map and T ′ := V ◦ T : P −→ X/Ker S.

Using that P is∞-projective, we have that there exists a Banach lattice homomorphism
T̂ ′ : P −→ X such that Q ◦ T̂ ′ = T ′. But then T̂ := T̂ ′ is as required. Indeed, we have that
V ◦ S ◦ T̂ ′ = V ◦ T , which implies that S ◦ T̂ ′ = T , so S ◦ T̂ = T .

For the converse, suppose that P satisfies such a property but it is not ∞-projective.
Then, for every λ ∈ N there exist a Banach lattice Xλ, a closed ideal Jλ in Xλ, and a
Banach lattice homomorphism Tλ : P −→ Xλ/Jλ of norm 1 for which every Banach lattice
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homomorphism T̂λ : P −→ X satisfying Qλ ◦ T̂λ = Tλ, where Qλ : Xλ −→ Xλ/Jλ is the
quotient map, has norm ‖T̂λ‖ > λ.

Let

X := ⊕λ∈NXλ =

{
x = (x1, x2, . . .) : xλ ∈ Xλ for every λ ∈ N, sup

λ∈N
‖xλ‖Xλ <∞

}
,

together with the norm ‖x‖X := supλ∈N ‖xλ‖Xλ , and the order given by

(x1, x2, . . .) ≤X (x′1, x
′
2, . . .) if, and only if, xλ ≤Xλ x

′
λ for every λ ∈ N,

be the `∞-sum of Xλ, which is a Banach lattice, and let Y := ⊕λ∈NXλ/Jλ be the `∞-sum
of Xλ/Jλ, defined in a similar way to X.

Let T : P −→ Y be the Banach lattice homomorphism given by T (p) = (T1(p), T2(p), . . .)

for every p ∈ P , and let S : X −→ Y be the surjective Banach lattice homomorphism given
by S(x) = (Q1(x1), Q2(x2), . . .) for every x = (x1, x2, . . .) ∈ X (S is, in fact, a quotient
map).

We are going to see that there is not any Banach lattice homomorphism T̂ : P −→ X

such that S ◦ T̂ = T , which will be a contradiction.
Suppose that it exists, and let us denote T̂ : P −→ X by T̂ (p) = (T̂1(p), T̂2(p), . . .) for

every p ∈ P . Then, we have that

‖T̂‖ = sup
{
‖T̂ (p)‖X : p ∈ P, ‖p‖ ≤ 1

}
= sup

{
‖(T̂1(p), T̂2(p), . . .)‖X : p ∈ P, ‖p‖ ≤ 1

}
= sup

{
sup
λ∈N
‖T̂λ(p)‖Xλ : p ∈ P, ‖p‖ ≤ 1

}
= sup

{
‖T̂λ(p)‖Xλ : λ ∈ N, p ∈ P, ‖p‖ ≤ 1

}
,

which implies that ‖T̂λ(p)‖Xλ ≤ ‖T̂‖ for every λ ∈ N and p ∈ P with ‖p‖ ≤ 1.
But now, from the fact that S ◦ T̂ = T , we have that Qλ(T̂λ(p)) = Tλ(p) for every λ ∈ N

and p ∈ P , and then, if we view the λ-th coordinate of T̂ as a Banach lattice homomorphism
T̂λ : P −→ Xλ, we have that Qλ ◦ T̂λ = Tλ and ‖T̂λ‖ ≤ ‖T̂‖ for every λ ∈ N, which is a
contradiction.

4.2.1 Quotients of projective Banach lattices

The following result is a variation of [15, Theorem 10.3]:

Proposition 4.8. Let P be a 1+-projective Banach lattice, I a closed ideal in P and π : P −→
P/I the quotient map. The quotient P/I is 1+-projective if, and only if, for every ε > 0

there exists a Banach lattice homomorphism uε : P/I −→ P such that π ◦ uε = idP/I and
‖uε‖ ≤ 1 + ε.

Proof. If P/I is 1+-projective, then we can just apply Definition 4.1. On the other hand,
if we have the above property and we want to check Definition 4.1, take ε0 > 0, a
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quotient map Q : X −→ X/J and a Banach lattice homomorphism T : P/I −→ X/J .
Take ε with (1 + ε)2 ≤ 1 + ε0. Since P is 1+-projective we can find S : P −→ X with
Q ◦ S = T ◦ π and ‖S‖ ≤ (1 + ε)‖T ◦ π‖ = (1 + ε)‖T‖. If we take T̂ = S ◦ uε, then
Q ◦ T̂ = Q ◦ S ◦ uε = T ◦ π ◦ uε = T and ‖T̂‖ ≤ (1 + ε)2‖T‖ ≤ (1 + ε0)‖T‖ as desired.

In the context of the free Banach lattice generated by a lattice FBL∗〈L〉, since FBL(L)

is 1+-projective, and the restriction map R : FBL(L) −→ FBL∗〈L〉 described in [Chapter
2, Section 2.4] (R(f) = f |L∗) is a quotient map, we get, as a particular instance of
Proposition 4.8,

Proposition 4.9. Let L be a lattice and let R : FBL(L) −→ FBL∗〈L〉 be the restriction
map R(f) = f |L∗ . The Banach lattice FBL∗〈L〉 is 1+-projective if, and only if, for every
ε > 0 there exists a Banach lattice homomorphism uε : FBL∗〈L〉 −→ FBL(L) such that
R ◦ uε = idFBL∗〈L〉 and ‖uε‖ ≤ 1 + ε.

4.2.2 Absolute neighbourhood retracts

Definition 4.10. We say that a topological space K is an absolute neighbourhood retract
(ANR) if whenever i : K −→ X is a homeomorphism between K and a subspace of the
topological space X, there exist an open set V in X and a continuous function φ : V −→ K

such that i(K) ⊂ V ⊂ X and φ(i(k)) = k for all k ∈ K.

Note that when in Theorem 4.6 we say that “K is an absolute neighbourhood retract in
the category of compact Hausdorff topological spaces”, we mean that the condition of this
definition holds whenever X is a compact Hausdorff topological space.

The following result will be very useful in the proof of this theorem:

Lemma 4.11. In the situation of Definition 4.10, whenever X is a normal topological space,
there exist a continuous function u : X −→ [0, 1] and a continuous function ϕ : X \u−1(0) −→
K such that u(i(k)) = 1 and ϕ(i(k)) = k for every k ∈ K.

Proof. By Urysohn’s lemma, we can find a continuous function u : X −→ [0, 1] such that
u(i(k)) = 1 for every k ∈ K, u(x) = 0 for every x ∈ X \ V , and u(x) ∈ (0, 1) for every
x ∈ V \ i(K). Notice that X \u−1(0) ⊂ V , so we can take ϕ = φ|X\u−1(0) and the statement
of the lemma is satisfied.

On the other hand, the following are two basic facts of the theory that can be found in
[37] as Theorems 1.5.1 and 1.5.9:

• Every closed convex subset of Rn is ANR.

• If K1, K2 are closed subsets of K, and K1, K2 and K1 ∩K2 are ANR, then K1 ∪K2

is also ANR.

From this, one can easily prove that every finite union of closed convex subsets of Rn is
ANR, by induction on the number of convex sets in that union. We will use this fact in the
proof of Theorem 4.2.
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4.3 Projectivity of the free Banach lattice generated by a
finite lattice

In this section we prove Theorem 4.2, that is to say, we prove that if L is a finite lattice,
then FBL〈L〉 is a 1+-projective Banach lattice.

Proposition 4.12. If L = {0, . . . , n− 1} with some lattice operations is a finite lattice, then
L∗ ∩ ∂[−1, 1]n is ANR.

Proof. Clearly, ∂[−1, 1]n is a finite union of closed convex subsets of Rn. On the other hand,
for every i, j, k ∈ L let

Aijk = {(x0, . . . , xn−1) ∈ [−1, 1]n : xi ∨ xj = xk}

and
Bijk = {(x0, . . . , xn−1) ∈ [−1, 1]n : xi ∧ xj = xk} .

It is clear that

Aijk = {(x0, . . . , xn−1) ∈ [−1, 1]n : xi = xk, xj ≤ xi}⋃
{(x0, . . . , xn−1) ∈ [−1, 1]n : xj = xk, xi ≤ xj}

and

Bijk = {(x0, . . . , xn−1) ∈ [−1, 1]n : xi = xk, xj ≥ xi}⋃
{(x0, . . . , xn−1) ∈ [−1, 1]n : xj = xk, xi ≥ xj}

are union of two closed convex sets. Since

L∗ =

 ⋂
i∨j=k

Aijk

⋂ ⋂
i∧j=k

Bijk

 ,

we have that L∗ is the intersection of finite unions of closed convex sets. One can easily
rearrange this formula to obtain that it is also a finite union of intersections of closed
convex subsets of Rn. Now, by using that the intersection of closed convex subsets of Rn is
again a closed convex subset of Rn, we conclude that L∗ is a finite union of closed convex
subsets of Rn. Thus, we have that both L∗ and ∂[−1, 1]n are finite union of closed convex
subsets of Rn, so L∗ ∩ ∂[−1, 1]n is also a finite union of closed convex subsets of Rn, and
thus, ANR.

In the context of compact metric spaces, the retractions in the definition of ANR can be
taken arbitrarily close to the identity. We state this fact as a lemma in the particular case
that we need:

Lemma 4.13. Let L = {0, . . . , n− 1} with some lattice operations be a finite lattice. Then,
given ε > 0 , there exist an open set Vε = Vε(L∗) with L∗ ∩ ∂[−1, 1]n ⊂ Vε ⊂ Rn and
a continuous map ϕ : Vε −→ L∗ ∩ ∂[−1, 1]n such that ϕ|L∗∩∂[−1,1]n = idL∗∩∂[−1,1]n and
d(x∗, ϕ(x∗)) < ε for every x∗ ∈ Vε, where d is the square metric in Rn.
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Proof. As L∗ ∩ ∂[−1, 1]n is an ANR by Proposition 4.12, we cand find a bounded neighbour-
hood V of L∗∩∂[−1, 1]n in Rn and a retraction φ : V −→ L∗∩∂[−1, 1]n. Let us take an open
set W such that L∗ ∩ ∂[−1, 1]n ⊂ W ⊂ W ⊂ V ⊂ Rn. Now, φ|W : W −→ L∗ ∩ ∂[−1, 1]n is
a continuous map between compact metric spaces, so it is uniformly continuous. Given
ε > 0, there exists δ > 0 such that d(φ(x∗), φ(y∗)) < ε/2 if x∗, y∗ ∈ W and d(x∗, y∗) < δ.
Put η = min(ε/2, δ) and take

Vε = {x∗ ∈W : there exists y∗ ∈ L∗ ∩ ∂[−1, 1]n with d(x∗, y∗) < η} ,

and ϕ = φ|Vε : Vε −→ L∗ ∩ ∂[−1, 1]n. Clearly, ϕ is continuous and ϕ|L∗∩∂[−1,1]n =

idL∗∩∂[−1,1]n . Let x∗ ∈ Vε, and let y∗ ∈ L∗ ∩ ∂[−1, 1]n such that d(x∗, y∗) < η. Then,

d(x∗, ϕ(x∗)) ≤ d(x∗, y∗) + d(y∗, ϕ(x∗)) = d(x∗, y∗) + d(ϕ(y∗), ϕ(x∗)) <
ε

2
+
ε

2
= ε.

We are ready to prove Theorem 4.2. Let n be the cardinality of L. We may suppose
that L = {0, . . . , n− 1} with some lattice operations, and in this way we identify [−1, 1]L

with [−1, 1]n. We fix ε > 0, and we will construct the map uε : FBL∗〈L〉 −→ FBL(L) of
Proposition 4.9. Let Vε and ϕ be given by Lemma 4.13. By Urysohn’s lemma, we can find a
continuous function 1ε : ∂[−1, 1]n −→ [0, 1] such that 1ε(x

∗) = 1 if x∗ ∈ L∗ ∩ ∂[−1, 1]n, and
1ε(x

∗) = 0 if x∗ 6∈ Vε. We define uε(f)(x∗) = 1ε(x
∗) ·f(ϕ(x∗)) if x∗ ∈ Vε, and uε(f)(x∗) = 0

if x∗ /∈ Vε, for every f ∈ FBL∗〈L〉 and x∗ ∈ ∂[−1, 1]n. We extend the definition for elements
x∗ ∈ [−1, 1]n \ ∂[−1, 1]n in such a way that uε(f) is positively homogeneous. Since L is
finite, the fact that uε(f) is continuous on ∂[−1, 1]n and positively homogeneous guarantees
that uε(f) ∈ FBL(L). It is easy to check that uε is a Banach lattice homomorphism and
that R ◦ uε = idFBL∗〈L〉. It would remain to check that ‖uε‖ ≤ 1 + ε. We will prove instead
that for this uε we have ‖uε‖ ≤ 1 + nε, which is still good enough. We know that

‖uε‖ = sup {‖uε(f)‖ : f ∈ FBL∗〈L〉, ‖f‖∗ ≤ 1} ,

where

‖uε(f)‖ = sup

{
m∑
i=1

|riuε(f)(x∗i )| : x∗i ∈ ∂[−1, 1]n, ri ∈ R, sup
x∈L

m∑
i=1

|rix∗i (x)| ≤ 1

}
.

So we fix f ∈ FBL∗〈L〉 with ‖f‖∗ ≤ 1, where

‖f‖∗ = sup

{
m∑
i=1

|sif(y∗i )| : y∗i ∈ L∗, si ∈ R, sup
x∈L

m∑
i=1

|siy∗i (x)| ≤ 1

}
,

and we want to prove that ‖uε(f)‖ ≤ 1+nε. Using the expression of ‖uε(f)‖ as a supremum,
we pick x∗1, . . . , x

∗
m ∈ ∂[−1, 1]n, r1, . . . , rm ∈ R such that supx∈L

∑m
i=1 |rix∗i (x)| ≤ 1, and

we want to prove that
m∑
i=1

|riuε(f)(x∗i )| ≤ 1 + nε.
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The first estimation is that
m∑
i=1

|riuε(f)(x∗i )| =
∑
x∗i∈Vε

|ri1ε(x∗i )f(ϕ(x∗i ))| ≤
∑
x∗i∈Vε

|rif(ϕ(x∗i ))| .

If we write yi∗ := ϕ(x∗i ) for x∗i ∈ Vε, the inequality above becomes

(?)
m∑
i=1

|riuε(f)(x∗i )| ≤
∑
x∗i∈Vε

|rif(yi
∗)| .

On the other hand, if x ∈ L then

∑
x∗i∈Vε

|riy∗i (x)| =
∑
x∗i∈Vε

|riϕ(x∗i )(x)|

≤
∑
x∗i∈Vε

|rix∗i (x)|+
∑
x∗i∈Vε

|ri| |ϕ(x∗i )(x)− x∗i (x)|

≤ 1 + ε
∑
x∗i∈Vε

|ri| ≤ 1 + εn.

The last inequality is because x∗i ∈ ∂[−1, 1]n, and therefore

m∑
i=1

|ri| =
m∑
i=1

|ri| sup
x∈L
|x∗i (x)| ≤

∑
x∈L

m∑
i=1

|ri||x∗i (x)| ≤ |L| · 1 = n.

Taking si = ri
1+nε , we have that, for all x ∈ L,∑

x∗i∈Vε

|siy∗i (x)| =
∑
x∗i∈Vε

∣∣∣∣ ri
1 + nε

y∗i (x)

∣∣∣∣ ≤ 1.

Thus, the si and the yi are as in the supremum that defines ‖f‖∗ ≤ 1. Therefore∑
x∗i∈Vε

|sif(y∗i )| ≤ 1,

and getting back to our initial estimation (?), we get

m∑
i=1

|riuε(f)(x∗i )| ≤
∑
x∗i∈Vε

|rif(y∗i )| ≤ 1 + nε.

4.4 Projectivity of the free Banach lattice generated by an
infinite linear order

Now, we are going to prove Theorem 4.3, that is, if L is an infinite linear order, then
FBL〈L〉 is not ∞-projective. This will be a direct consequence of the fact that the free
Banach lattices generated by the set of the natural numbers and the set of the natural
numbers together with +∞ as linearly ordered sets are not∞-projective. In the proof, we
will use the following:



4.4. Projectivity of the free Banach lattice generated by an infinite linear order 57

Lemma 4.14. Suppose that ϕi : [−1, 1]N −→ R, i = 1, 2, . . ., are continuous functions such
that, for every i,

1. ϕi((xn)n∈N) = xi whenever x1 ≤ x2 ≤ . . .,

2. ϕi(x) ≤ ϕi+1(x) for all x ∈ [−1, 1]N.

Then, when we view the ϕi’s as elements of the free Banach lattice FBL(N), the sequence of
norms ‖ϕi‖FBL(N) is unbounded.

Proof. Let πi : [−1, 1]N −→ [−1, 1] be the projection on the i-th coordinate. Consider the set
M :=

{
(xn)n∈N ∈ [−1, 1]N : x1 ≤ x2 ≤ . . .

}
⊂ [−1, 1]N. Since M is closed and [−1, 1]N with

the product topology is compact, we have that M is compact. Condition 1 in the Lemma
means that ϕi|M = πi|M for all i. Using the compactness of M and the continuity of ϕi and
πi, we have that that there exists a neighbourhood Ui of M such that

d(ϕi|Ui , πi|Ui) = sup
x∈Ui
|ϕi(x)− πi(x)| < 1

2
.

For an integer k ≥ 3, let

Wk :=
{

(xn)n∈N ∈ [−1, 1]N : xi < xj + k−1 whenever i < j < k
}
.

The family {Wk : k ≥ 3} is a neighbourhood basis ofM . We define inductively an increasing
sequence of natural numbers k0 < k1 < k2 < k3 < · · · , and a sequence of points y1, y2, . . . ∈
[−1, 1]N as follows. We take k0 = 1 as a starting point of the induction. Suppose that
we have defined k0 < k1 < · · · < kj and y1, . . . , yj . We choose kj+1 > kj such that
Wkj+1

⊂ Ukj , and we define yj+1 : N −→ [−1, 1] to be the map given by

yj+1(n) =



0 if n < kj ,

1 if kj ≤ n < kj+1,

0 if n ≥ kj+1.

We have yj+1 ∈ Wkj+1
, so |ϕkj (yj+1) − πkj (y

j+1)| = |ϕkj (yj+1) − 1| < 1
2 , and then,

ϕkj (y
j+1) > 1

2 .
Fix m ∈ N. When j + 1 ≤ m, using condition 2 of the Lemma, we get that

ϕkm(yj+1) ≥ ϕkj (y
j+1) >

1

2
.

Remember how the norm is defined:

‖ϕ‖FBL(N) = sup


m∑
j=1

|ϕ(xj)| : m ∈ N, xj ∈ [−1, 1]N, sup
n∈N

m∑
j=1

|xj(n)| ≤ 1

 .

We have that supn∈N
∑m

j=1 |yj(n)| = 1, and therefore

‖ϕkm‖FBL(N) ≥ |ϕkm(y1)|+ · · ·+ |ϕkm(ym)| > m

2
.
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Now, let N+ = N ∪ {+∞}.

Lemma 4.15. FBL〈N〉 and FBL〈N+〉 are not∞-projective.

Proof. First, if FBL∗〈N〉 was λ-projective for some λ > 1, by the very definition of λ-
projectivity we would have a Banach lattice homomorphism u : FBL∗〈N〉 −→ FBL(N)

such that R ◦ u = idFBL∗〈N〉 and ‖u‖ ≤ λ. Remember that if i ∈ N, δ̇i : N∗ −→ R is the map
given by δ̇i(x∗) = x∗(i) for every x∗ ∈ N∗, that is an element of FBL∗〈N〉. We consider
ϕi = u(δ̇i) ∈ FBL(N), that we view as continuous functions ϕi : [−1, 1]N −→ R. The fact
that u is a lattice homomorphism gives condition 2 of Lemma 4.14, while the fact that
R ◦ u = idFBL∗〈N〉 gives condition 1 of Lemma 4.14. The fact that ‖u‖ ≤ λ contradicts the
conclusion of Lemma 4.14.

On the other hand, if FBL∗〈N+〉 was λ-projective for some λ > 1, there would exists a
Banach lattice homomorphism w : FBL∗〈N+〉 −→ FBL(N+) such that R ◦w = idFBL∗〈N+〉
and ‖w‖ ≤ λ. For every i ∈ N+, let ψi = w(δ̇i). Then again ψi((xn)n∈N+) = xi if
x1 ≤ x2 ≤ . . . ≤ x+∞, and ψ1 ≤ ψ2 ≤ . . . ≤ ψ+∞.

Fix U a nonprincipal ultrafilter on N and define ϕi((xn)n∈N) = ψi((x1, x2, . . . , limU xn))

for every i ∈ N. Then the functions ϕi are as in Lemma 4.14, so ‖ϕi‖FBL(N) is unbounded.
We check now that ‖ϕi‖FBL(N) ≤ ‖ψi‖FBL(N+) ≤ λ, a contradiction. Take

∑m
j=1 |ϕi(xj)|

one of the sums that appear in the definition of ‖ϕi‖FBL(N) as a supremum. Consider
yj = (xj(1), xj(2), . . . , limU xj(n)). Then,

∑m
j=1 |ϕi(xj)| =

∑m
j=1 |ψi(yj)| and this is one of

the sums that appears in the supremum defining ‖ψi‖FBL(N+) because

m∑
j=1

|yj(n)| =
m∑
j=1

|xj(n)| ≤ 1

if n ∈ N and
m∑
j=1

|yj(+∞)| =
m∑
j=1

| lim
U
xj(n)| = lim

U

m∑
j=1

|xj(n)| ≤ 1.

The following result is well known in the general theory of categories [30, Proposition
24.6.2], and tells us that λ-projectivity is transferred to complemented Banach sublattices:

Lemma 4.16. Let P and P ′ be Banach lattices, and let π̃ : P −→ P ′ and ı̃ : P ′ −→ P be
Banach lattice homomorphisms such that ‖ı̃‖ = ‖π̃‖ = 1 and π̃ ◦ ı̃ = idP ′ . If P is λ-projective
for some λ > 1, then P ′ is λ-projective.

Proof. In order to check the λ-projectivity of P ′, let Q : X −→ X/J and T ′ : P ′ −→ X/J
be as in Definition 4.1. Then, we can apply the λ-projectivity of P considering T = T ′ ◦ π̃,
so we get T̂ : P −→ X such that Q ◦ T̂ = T ′ ◦ π̃ and ‖T̂‖ ≤ λ‖T‖ ≤ λ‖T ′‖. The
desired lift is T̂ ′ = T̂ ◦ ı̃. On the one hand ‖T̂ ′‖ ≤ ‖T̂‖ ≤ λ‖T ′‖, and on the other hand
Q ◦ T̂ ′ = Q ◦ T̂ ◦ ı̃ = T ′ ◦ π̃ ◦ ı̃ = T ′.
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We prove now Theorem 4.3. Let us denote by � the linear order on L. L contains either
an increasing or a decreasing sequence. Let us suppose without loss of generality that it
contains an increasing sequence x1 ≺ x2 ≺ x3 ≺ · · · .

First, suppose that it has no upper bound. The map ı : (N,≤) −→ (L,�) given by
ı(n) = xn for every n ∈ N is a lattice homomorphism. Let π : L −→ N be the map given by

π(x) =

{
1 if x ≺ x2,

n if x ∈ [xn, xn+1) for any n ≥ 2.

Notice that π is also a lattice homomorphism and π ◦ ı = idN. We are going to use the
universal property of the free Banach lattice over a lattice as stated in Definition 2.1. Let
φL and φN be the canonical inclusion of L and N into FBL〈L〉 and FBL〈N〉, respectively,
and let ı̃ : FBL〈N〉 −→ FBL〈L〉 and π̃ : FBL〈L〉 −→ FBL〈N〉 be the corresponding
extensions of φL ◦ ı and φN ◦ π according to Definition 2.1. The composition π̃ ◦ ı̃ and the
identity mapping FBL〈N〉 −→ FBL〈N〉 are both extensions of φN so by the uniqueness in
Definition 2.1, π̃ ◦ ı̃ = idFBL〈N〉. We can apply Lemma 4.16, so if FBL〈L〉 was∞-projective,
then FBL〈N〉 would also be∞-projective, in contradiction with Lemma 4.15.

On the other hand, if the sequence x1 ≺ x2 ≺ x3 ≺ · · · has an upper bound, x+∞, we
can take ı : (N+,≤) −→ (L,�) given by ı(n) = xn for every n ∈ N+ and π : L −→ N+ given
by

π(x) =


1 if x ≺ x2,

n if x ∈ [xn, xn+1) for any n ≥ 2,

+∞ if x > xn for all n,

and apply the same reasoning substituting N by N+.

4.5 Schur property in Banach spaces with projective free
Banach lattice

In this section we prove Theorems 4.5 and 4.4, in this order. As a preparation towards
Theorem 4.5 we provide a criterion to obtain `1-subsequences in the free Banach lattice
FBL(L). We denote the index set L instead of A for convenience in latter application.

Lemma 4.17. Let L be an infinite set, (x∗n)n∈N a sequence in [−1, 1]L and (fn)n∈N a sequence
in FBL(L) with the following properties:

1. (fn)n∈N converges pointwise to 0, i.e. limn→∞ fn(x∗) = 0 for every x∗ ∈ [−1, 1]L;

2. fn(x∗n) = 1 for every n ∈ N;

3. For every finite set F ⊂ L there is a natural number n such that x∗n|F = 0, i.e. the
restriction of x∗n to F is null.

Then, for every ε > 0 there is a subsequence (fnk)k∈N such that for every l ∈ N and for every
λ1, . . . , λl ∈ R, ∥∥∥∥∥

l∑
k=1

λkfnk

∥∥∥∥∥ ≥ (1− ε)
l∑

k=1

|λk|.
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Proof. Fix ε > 0 and (εij)
∞
i,j=1 a family of positive real numbers such that ε =

∑∞
i,j=1 εij

and εij = εji for every i, j.
We are going to define a subsequence (fmk)k∈N of (fn)n∈N as follows:
Let m1 := 1. Since the elements of FBL(L) are continuous with respect to the product

topology, there is a neighbourhood Um1 of x∗m1
such that fm1(x∗) ∈ [1−ε11, 1+ε11] whenever

x∗ ∈ Um1 . In particular, there is a finite set Fm1 ⊂ L such that fm1(x∗) ∈ [1− ε11, 1 + ε11]

whenever x∗|Fm1
= x∗m1

|Fm1
.

By property 3, there exists m2 ∈ N such that x∗m2
|Fm1

= 0. Since fm2 is continuous,
there exists a finite set Fm2 ⊃ Fm1 such that fm2(x∗) ∈ [1 − ε22, 1 + ε22] whenever
x∗|Fm2

= x∗m2
|Fm2

.
Suppose that we have fm1 , . . . , fmk−1

for some k ≥ 2, and Fm1 , . . . , Fmk−1
finite subsets

of L such that Fm1 ⊂ · · · ⊂ Fmk−1
, x∗mi |Fmi−1

= 0 for every i = 2, . . . , k − 1 and fmi(x
∗) ∈

[1− εii, 1 + εii] whenever x∗|Fmi = x∗mi |Fmi .
Property 3 guarantees the existence of a number mk ∈ N such that x∗mk |Fmk−1

= 0. It
follows from property 2 that there is a finite set Fmk ⊂ L, with Fmk−1

⊂ Fmk , such that
fmk(x∗) ∈ [1− εkk, 1 + εkk] whenever x∗|Fmk = x∗mk |Fmk .

For each k ∈ N define y∗mk : L −→ [−1, 1] such that y∗mk |Fmk = x∗mk |Fmk and y∗mk(x) = 0

whenever x ∈ L \ Fmk . Notice that fmk(y∗mk) ∈ [1− εkk, 1 + εkk] for every k ∈ N. On the
other hand, if mk < mk′ and y∗mk(x) 6= 0 then x ∈ Fmk (by the definition of y∗mk) and
therefore x∗mk′ (x) = 0, so y∗mk′ (x) = 0. It follows that y∗mk and y∗mk′ have disjoint supports.
In particular,

sup
x∈L

l∑
k=1

∣∣y∗mk(x)
∣∣ ≤ 1.

Let ν1 := m1 = 1. Combining property 1 with the fact that the functions fn are
continuous in [−1, 1]L and the functions y∗mn converge to 0 in the product topology, we
have that there exists ν2 ∈ N such that

|fmn(y∗mν1
)| ≤ ε12 and |fmν1 (y∗mn)| ≤ ε21 = ε12 for every n ≥ ν2.

Again, using the above, there exists a natural number ν3 ≥ ν2 such that

|fmn(y∗mν1
)| ≤ ε13, |fmν1 (y∗mn)| ≤ ε31 = ε13

and
|fmn(y∗mν2

)| ≤ ε23, |fmν2 (y∗mn)| ≤ ε32 = ε23

for every n ≥ ν3.

Suppose that we have ν1 ≤ ν2 ≤ · · · ≤ νp ∈ N such that

|fmn(y∗mνj
)| ≤ εjp and |fmνj (y

∗
mn)| ≤ εpj = εjp for every j < p and every n ≥ νp.

Then, there exists a natural number νp+1 ≥ νp such that

|fmn(y∗mνj
)| ≤ εj(p+1) and |fmνj (y

∗
mn)| ≤ ε(p+1)j = εj(p+1) for every j < p+ 1

and every n ≥ νp+1.
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Since fmνi (y
∗
mνi

) ∈ [1− ενiνi , 1 + ενiνi ] for every i, we can write fmνi (y
∗
mνi

) = 1 + ηνiνi
with |ηνiνi | ≤ ενiνi .

On the other hand, if k 6= i, we have that fmνk (y∗mνi
) ∈ [−εik, εik], and we will write

fmνk (y∗mνi
) = ηνiνk with |ηνiνk | ≤ εik.

We take the subsequence fnk := fmνk for every k ∈ N.
Now, let λ1, . . . , λl ∈ R. We have that

∥∥∥∥∥
l∑

k=1

λkfnk

∥∥∥∥∥ = sup

{
q∑
i=1

∣∣∣∣∣
l∑

k=1

λkfnk(z∗i )

∣∣∣∣∣ : q ∈ N, z∗i ∈ [−1, 1]L, sup
x∈L

q∑
i=1

|z∗i (x)| ≤ 1

}

≥
l∑

i=1

∣∣∣∣∣
l∑

k=1

λkfmνk (y∗mνi
)

∣∣∣∣∣ =

l∑
i=1

∣∣∣∣∣∣λifmνi (y∗mνi ) +
∑
k 6=i

λkfmνk (y∗mνi
)

∣∣∣∣∣∣
=

l∑
i=1

∣∣∣∣∣∣λi(1 + ηνiνi) +
∑
k 6=i

λkηνiνk

∣∣∣∣∣∣ =
l∑

i=1

∣∣∣∣∣λi +
l∑

k=1

λkηνiνk

∣∣∣∣∣
≥

l∑
i=1

|λi| −
l∑

i=1

l∑
k=1

|λk| |ηνiνk | =
l∑

i=1

|λi| −
l∑

k=1

|λk|

(
l∑

i=1

|ηνiνk |

)

≥
l∑

i=1

|λi| −
l∑

k=1

|λk|

ενkνk +
∑
i 6=k

εik

 ≥ (1− ε)
l∑

k=1

|λk| .

Now, let L = P+
fin(ω) = Pfin(ω) \ {∅} be the set of the finite parts of ω without the

empty set.
For A ∈ L let us define the map χA : L −→ [−1, 1] given by χA(B) = 1 if B ⊂ A and

χA(B) = 0 if B 6⊂ A.
Let Φ: FBL(L) −→ c0 be the map given by

Φ(f) =
(
f
(
(χA({1}))A∈L

)
, f
(
(χA({2}))A∈L

)
, . . .

)
=
(
f
(
(χA({n}))A∈L

) )
n∈N

for every f : [−1, 1]L −→ R belonging to FBL(L).

Lemma 4.18. The map Φ: FBL(L) −→ c0 is a surjective Banach lattice homomorphism.

Proof. For every n ∈ N let gn : L −→ [−1, 1] be the function gn = (χA({n}))A∈L . Then
the sequence (gn)n∈N is pointwise convergent to zero, so f(gn) converges to zero for
every f ∈ FBL(L), and thus Φ(f) ∈ c0. Since Φ preserves linear combinations, suprema,
infima and ‖Φ(f)‖∞ ≤ ‖f‖ for every f ∈ FBL(L), we have that Φ is a Banach lattice
homomorphism.

Finally, let us see that Φ is surjective. By the very definition of Φ, if for A ∈ L we
put eA :=

∑
i∈A ei, we have that Φ(δA) = eA. Let x = (x1, x2, . . .) ∈ c0 and suppose,

without loss of generality, that x ≥ 0. Fix a sequence of natural numbers (ni)i∈N with
ni 6= nj for every i 6= j and such that xn1 ≥ xn for every n ∈ N and xni+1 ≥ xn for every
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n ∈ N \ {n1 . . . , ni}. Now, let Ai = {n1, . . . , ni} and λi = xni − xni+1 for every i = 1, 2, . . .

We have that x =
∑∞

j=1 λjeAj , and then,

x =

∞∑
j=1

λjΦ(δAj ) =

∞∑
j=1

Φ(λjδAj ) = Φ
( ∞∑
j=1

λjδAj
)
,

where the last element
∑∞

j=1 λjδAj is well-defined since
∑∞

j=1 λj < ∞ and each δAj has
norm 1.

We are ready to prove Theorem 4.5 from the introduction. Suppose that there is no
subsequence equivalent to the canonical basis of `1. Then, by Rosenthal’s `1-theorem [2,
Theorem 10.2.1], the sequence (ui)i∈N has a weakly Cauchy subsequence (uik)k∈N. Thus,
the sequence (yn)n∈N, with yn = ui2n+1 − ui2n for every n ∈ N, is weakly null and bounded.

Let us denote T (x) = (T (x)j)j∈N ∈ c0 for x ∈ X, and let T̃ : X −→ c0 be the map given
by T̃ (x) = (T (x)i2k+1

)k∈N.
Let L and Φ: FBL(L) −→ c0 like in Lemma 4.18. Since Φ is a surjective Banach lattice

homomorphism and X is∞-projective, by Proposition 4.7 there exists a bounded Banach
lattice homomorphism T̈ : X −→ FBL(L) such that Φ ◦ T̈ = T̃ . We are going to find now
fn and x∗n for the application of Lemma 4.17.

Let fn := T̈ (yn) for every n ∈ N. The sequence (fn)n∈N converges pointwise to 0, since
(yn)n∈N is weakly null. It follows from the equality Φ(fn) = (Φ ◦ T̈ )(yn) = T̃ (yn) = en and
the definition of Φ that

fn
(
(χA({n}))A∈L

)
= Φ(fn)n = en(n) = 1

for every n ∈ N. Set x∗n = (χA({n}))A∈L ∈ [−1, 1]L for every n ∈ N. Notice that if F ⊂ L is
finite (i.e. F is a finite collection of finite subsets of ω), and we take n ∈ ω \

⋃
S∈F S, then

for every S ∈ F , n /∈ S, so x∗n(S) = χS({n}) = 0, and therefore condition 3 of Lemma 4.17
is also satisfied.

We can now apply Lemma 4.17, so for every ε > 0 there is a subsequence (fnk)k∈N such
that for every l ∈ N and for every λ1, . . . , λl ∈ R,∥∥∥∥∥

l∑
k=1

λkfnk

∥∥∥∥∥ ≥ (1− ε)
l∑

k=1

|λk|.

On the other hand, since T̈ and (yn)n∈N are bounded, there are two constants C,M > 0

such that ∥∥∥∥∥
l∑

k=1

λkfnk

∥∥∥∥∥ =

∥∥∥∥∥T̈
(

l∑
k=1

λkynk

)∥∥∥∥∥ ≤ C
∥∥∥∥∥

l∑
k=1

λkynk

∥∥∥∥∥ ≤ CM
l∑

k=1

|λk|.

Thus,

(1− ε)
l∑

k=1

|λk| ≤

∥∥∥∥∥
l∑

k=1

λkfnk

∥∥∥∥∥ ≤ CM
l∑

k=1

|λk|,

so that (fnk)k∈N is equivalent to the canonical basis of `1, and in consequence, (ynk)k∈N is
also equivalent to the canonical basis of `1, which is a contradiction.
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Corollary 4.19. The Banach lattices c0 and lp (for 2 ≤ p <∞) are not∞-projective.

Proof. On the one hand, the canonical basis (ui)i∈N of c0 does not have subsequences
equivalent to the canonical basis of `1, and the identity map T = idc0 is a Banach lattice
homomorphism such that T (ui) = ei for every i ∈ N, where (ei)i∈N is the canonical basis
of c0. On the other hand, the canonical basis (ui)i∈N of lp does not have subsequences
equivalent to the canonical basis of `1, and the formal inclusion T of lp into c0 is a Banach
lattice homomorphism such that T (ui) = ei for every i ∈ N, where (ei)i∈N is the canonical
basis of c0.

Remark 4.20. N. J. Laustsen pointed out to us that Theorem 4.5 gives us something stronger
than Corollary 4.19. Indeed, let E be a Banach space with a normalized 1-unconditional
basis (ui)i∈N, and let X be the Banach lattice consisting of the Banach space E endowed
with the coordinatewise order, that is, the order given by

∞∑
i=1

αiui ≤
∞∑
i=1

βiui if, and only if, αi ≤ βi for every i ∈ N.

Then we have the following result:

Corollary (N. J. Laustsen). If X is a Banach lattice as above and the basis (ui)i∈N does not
have subsequences equivalent to the canonical basis of `1, then X is not∞-projective.

Proof. Since (ui)i∈N is normalized, we have a formal inclusion map T : X −→ c0 given
by T (

∑∞
i=1 αiui) = (αi)i∈N. By the very definition of the order on E, we have that T is a

lattice homomorphism. The fact that (ui)i∈N is 1-unconditional asserts that T has norm 1.
Finally, T (ui) = ei for every i ∈ N, where (ei)i∈N is the canonical basis of c0.

The following is a corollary of Theorem 4.5 in the context of free Banach lattices
FBL[E]:

Lemma 4.21. Let E be a Banach space such that FBL[E] is ∞-projective, and let (ui)i∈N
be a bounded sequence of vectors in E. Suppose that there exists an operator S : E −→ c0

such that S(ui) = ei for every i ∈ N, where (ei)i∈N is the canonical basis of c0. Then there is a
subsequence (uik)k∈N equivalent to the canonical basis of `1.

Proof. Let φ : E −→ FBL[E] be the inclusion of E into FBL[E], and let T : FBL[E] −→ c0

be the Banach lattice homomorphism given by the universal property of the free Banach
lattice over a Banach space which extends the operator S.

The sequence (φ(ui))i∈N is bounded in FBL[E] and T (φ(ui)) = S(ui) = ei for every
i ∈ N, so that applying Theorem 4.5 we have that (φ(ui))i∈N has a subsequence (φ(uik))k∈N
equivalent to the canonical basis of `1, which implies that (uik)k∈N is a subsequence of
(ui)i∈N equivalent to the canonical basis of `1.

We pass now to the proof of Theorem 4.4, which states that E has the Schur property
when FBL[E] is ∞-projective. Lemmas 4.22, 4.23 and 4.24 are necessary only to deal
with the case when E is nonseparable. The reader interested in the separable case may
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skip those lemmas and just apply Sobczyk’s extension theorem [2, Theorem 2.5.8] where
appropriate.

Lemma 4.22. Let E be a Banach space. If FBL[E] is∞-projective, then E is isomorphic to
a subspace of C([−1, 1]Γ) for some set Γ.

Proof. Let Γ be a dense subset of the unit ball BE of E. Let BE∗ be the closed unit ball
of the dual space E∗, endowed with the weak∗ topology. We have a surjective Banach
lattice homomorphism P : C([−1, 1]Γ) −→ C(BE∗) given by P (f)(x∗) = f((x∗(x))x∈Γ).
This is just the composition operator with the continuous injection x∗ 7→ (x∗(x))x∈Γ from
BE∗ into [−1, 1]Γ. Let ι : E −→ C(BE∗) be the canonical inclusion ι(x)(x∗) = x∗(x), and
let ι̂ : FBL[E] −→ C(BE∗) be the Banach lattice homomorphism given by the universal
property of the free Banach lattice. Since FBL[E] is supposed to be ∞-projective, by
Proposition 4.7 there exists T̂ : FBL[E] −→ C([−1, 1]Γ) such that P ◦ T̂ = ι̂. We take the
restriction T := T̂ |E : E −→ C([−1, 1]Γ). Notice that PTx = ιx, and therefore

‖Tx‖ ≥ ‖PTx‖ = ‖ιx‖ = ‖x‖

for every x ∈ E. This implies that T gives an isomorphism of E onto a subspace of
C([−1, 1]Γ).

The following fact is well known in the context of a more general theory about Valdivia
compacta, Plichko spaces and projectional skeletons (cf. for instance [22]), but we provide
a short proof for the reader’s convenience:

Lemma 4.23. For every set Γ, the Banach space C([−1, 1]Γ) has the separable complementa-
tion property. That is, for every separable subspace G ⊂ C([−1, 1]Γ) there exists a separable
complemented subspace G0 of C([−1, 1]Γ) such that G ⊂ G0.

Proof. Let S be a countable dense subset of G. By Mibu’s theorem [4, page 80, Theorem
4], for every f ∈ S there exists a countable subset Γf ⊂ Γ such that f(x) = f(y) whenever
x|Γf = y|Γf . The set A =

⋃
f∈S Γf is a countable set such that f(x) = f(y) whenever

x|A = y|A and f ∈ G. The desired separable complemented subspace is

G0 =
{
f ∈ C([−1, 1]Γ) : x|A = y|A ⇒ f(x) = f(y)

} ∼= C([−1, 1]A).

The projection P : C([−1, 1]Γ) −→ G0 is given by P (f)(x) = f(x̃) where x̃i = xi if i ∈ A
and x̃i = 0 if i 6∈ A.

Lemma 4.24. Let E be a Banach space such that FBL[E] is∞-projective, and let F ⊂ E be a
separable subspace. Every operator S0 : F −→ c0 can be extended to an operator S : E −→ c0.

Proof. By Lemma 4.22, there is an operator T : E −→ C([−1, 1]Γ) that is an isomorphism
onto its range, so that G = T (F ) is a separable subspace of C([−1, 1]Γ). By Lemma 4.23,
we can find a complemented separable subspace G0 of C([−1, 1]Γ) with G ⊂ G0. Let
P : C([−1, 1]Γ) −→ G0 be the projection. If S

′
0 : G0 −→ c0 is the extension of S0 given by

Sobczyk’s theorem, then S := S
′
0 ◦ P ◦ T : E −→ c0 is the desired operator.
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Theorem 4.4 follows from the previous results. Indeed, if E does not have the Schur
property, then there is a weakly null sequence (ui)i∈N that does not converge to 0 in norm.
By passing to a subsequence we may assume that 0 is not in the norm closure of {ui}i∈N.
By the theorem of Kadets and Pełczyński [2, Theorem 1.5.6], by passing to a further
subsequence, we can suppose that (ui)i∈N is a basic sequence. We are going to see that
there exists an operator S : E −→ c0 such that S(ui) = ei for every i ∈ N, where (ei)i∈N
is the canonical basis of c0, and then by Lemma 4.21, this will mean that (ui)i∈N has a
subsequence equivalent to the canonical basis of `1, a contradiction with the fact that it is
weakly null.

Let F = span {ui : i ∈ N} ⊂ E. For every n ∈ N let u∗n : F −→ R be the n-th coordinate
functional, given by u∗n(

∑∞
i=1 αiui) = αn, and let S0 : F −→ `∞ be the map given by

S0(x) = (u∗n(x))n∈N for every x ∈ F . Since the sequence (u∗n)n∈N is weak∗-null, we have
that S0(F ) ⊂ c0. On the other hand, S0(ui) = ei for every i ∈ N. Now, since F is separable
and FBL[E] is ∞-projective, applying Lemma 4.24 we can extend S0 to an operator
S : E −→ c0 such that S(ui) = ei for every i ∈ N, which ends the proof.

As a remark, throughout the first lines of the proof we justify that the Schur property is
characterized by the property that every basic sequence contains a subsequence equivalent
to the canonical basis of `1. We may refer to [20] for a study of this kind of facts in a more
general context.

Finally, let us see that, in the category of nonseparable Banach spaces, the converse
does not hold. By [19, Theorem 1, e) and f)], there exist a separable Banach space F and
a bounded set Λ in F ∗ such that E := span(Λ) is nonseparable, has the Schur property
and does not contain any copy of `1(ω1). Now, since for every set Γ the space [−1, 1]Γ is a
continuous image of {0, 1}m for some infinite cardinal number m, by [18, Corollary 3] we
have that E is not isomorphic to any subspace of C([−1, 1]Γ) for any set Γ, and then, by
Lemma 4.22, we have that FBL[E] cannot be∞-projective.

4.6 Projectivity of C(K)

This section is devoted to the proof of Theorem 4.6. We first start with two basic facts:

Lemma 4.25. Let A be a set and f : [−1, 1]A −→ R a continuous and positively homogeneous
function that depends on finitely many coordinates, i.e. there exist a finite subset A0 ⊂ A

and f̃ : [−1, 1]A0 −→ R such that f(x∗) = f̃(x∗|A0) for every x∗ ∈ [−1, 1]A. Then, f is in
FBL(A).

Proof. The function f̃ : [−1, 1]A0 −→ R is continuous and positively homogeneous. By [15,
Proposition 5.3], f̃ is in FBL(A0).

Let T : R[−1,1]A0 −→ R[−1,1]A be the function given by T (g)(x∗) = g(x∗|A0) for every
g ∈ R[−1,1]A0 , x∗ ∈ [−1, 1]A.

It is clear that T commutes with linear combinations and the lattice operations and
that ‖T (g)‖FBL(A) ≤ ‖g‖FBL(A0). Moreover, T (δA0

x ) = δAx for every x ∈ A0. From this, we

conclude that if g ∈ FBL(A0), then T (g) ∈ FBL(A). Now, since f = T (f̃), the affirmation
of the lemma holds.
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Lemma 4.26. Let A be a set, f : [−1, 1]A −→ R a continuous function, and a ∈ A. Then, the
FBL(A)-norm of the pointwise product f · |δa| is less than or equal to the supremum norm
‖f‖∞.

Proof.

‖f · |δa|‖ = sup

{
m∑
k=1

|f · |δa|(x∗k)| : m ∈ N, x∗k ∈ [−1, 1]A, sup
x∈A

m∑
k=1

|x∗k(x)| ≤ 1

}

= sup

{
m∑
k=1

|f(x∗k)| · |δa(x∗k)| : m ∈ N, x∗k ∈ [−1, 1]A, sup
x∈A

m∑
k=1

|x∗k(x)| ≤ 1

}

≤ sup

{
m∑
k=1

|f(x∗k)| · |x∗k(a)| : m ∈ N, x∗k ∈ [−1, 1]A,
m∑
k=1

|x∗k(a)| ≤ 1

}

≤ sup

{
max {|f(x∗k)| : k = 1, . . . ,m} : m ∈ N, x∗k ∈ [−1, 1]A,

m∑
k=1

|x∗k(a)| ≤ 1

}
≤ ‖f‖∞.

We are ready to prove Theorem 4.6. In [15, Proposition 11.7] it is proved that if C(K)

is 1+-projective (or even, ∞-projective), then K is an ANR in the category of compact
Hausdorff topological spaces, but we show the proof here for the sake of completeness.

Suppose that i : K −→ X is an homeomorphism between K and a subspace of the
compact Hausdorff topological space X. We want to see that there exist an open set V in
X and a continuous function φ : V −→ K such that i(K) ⊂ V ⊂ X and φ(i(k)) = k for all
k ∈ K.

The restriction mapR : C(X) −→ C(i(K)) is a surjective Banach lattice homomorphism.
If C(K) is 1+-projective (or∞-projective), C(i(K)) so is, so that, by Proposition 4.7, the
identity map on C(i(K)) lifts to a Banach lattice homomorphism T : C(i(K)) −→ C(X)

with R ◦ T = idC(i(K)). Now, by [1, Theorem 4.25], there is a continuous function
ω : X −→ R+ and a continuous function φ′ : V = {x ∈ X : ω(x) > 0} −→ i(K) such that

Tf(x) =

{
ω(x) · f(φ′(x)) if ω(x) > 0,

0 otherwise ,

for every f ∈ C(i(K)), x ∈ X.
If k ∈ K, then Tf(i(k)) = R(Tf(i(k))) = f(i(k)), so that ω(i(k)) = 1 (which implies

that i(K) ⊂ V ), and φ′(i(k)) = i(k). Finally, if i−1 : i(K) −→ K is the inverse of i, taking
φ = i−1 ◦ φ′ : V −→ K we have that φ(i(k)) = k as desired.

For the converse, let X := [−1, 1]BC(K) , where BC(K) = {f ∈ C(K) : ‖f‖∞ ≤ 1} is
the closed unit ball of the space of continuous functions. The map i : K −→ X given by
i(k) = (γ(k))γ∈BC(K)

is an homeomorphism between K and i(K). By Lemma 4.11 there
exist a continuous function u : X −→ [0, 1] and a continuous function ϕ : X \ u−1(0) −→ K

such that u(i(k)) = 1 and ϕ(i(k)) = k for every k ∈ K.
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By the universal property of the free Banach lattice, there is a Banach lattice ho-
momorphism T : FBL(BC(K)) −→ C(K) that extends the inclusion BC(K) ↪→ C(K).
This is clearly a quotient map and its action is given by Tf(k) = f(i(k)) for every
f ∈ FBL(BC(K)), k ∈ K.

Since FBL(BC(K)) is 1+-projective, by Proposition 4.8 it is enough to prove that there
exists a Banach lattice homomorphism S : C(K) −→ FBL(BC(K)) such that T ◦S = idC(K)

and ‖S‖ ≤ 1.
Let 1̄ ∈ BC(K) be the constant function equal to 1, and let v : {x ∈ X : x1̄ 6= 0} −→ X

be the map given by v(x) = (v(x)γ)γ∈BC(K)
, where

v(x)γ =


−1 if xγ

x1̄
< −1,

xγ
x1̄

if xγ
x1̄
∈ [−1, 1],

1 if xγ
x1̄
> 1,

for every x = (xγ)γ∈BC(K)
∈ X with x1̄ 6= 0.

For a given h ∈ C(K), define f : X −→ R by

f(x) :=

{
(h ◦ ϕ ◦ v) · (u ◦ v)(x) if x1̄ 6= 0 and u(v(x)) 6= 0,

0 otherwise .

Formally, we should call the function fh as it depends on h. But we omit the subindex
for a more friendly notation (in fact the subindex would always be “h” throughout the
proof). Notice also that x1̄ 6= 0 is required for x to be in the domain of v and u(v(x)) 6= 0 is
required for v(x) to be in the domain of ϕ.

The desired S : C(K) −→ FBL(BC(K)) will be the map given by Sh(x) = (f · |δ1̄|)(x)

for every h ∈ C(K), x ∈ X. The function Sh is a real-valued function on X = [−1, 1]BC(K) ,
and we will need to prove that, in fact, Sh ∈ FBL(BC(K)). Once that is proved, the rest of
properties required for S are relatively easy to check: It is clear that S is a linear map, and
it preserves the lattice operations ∧ and ∨. The fact that ‖S‖ ≤ 1 comes from Lemma 4.26:

‖Sh‖ = ‖f · |δ1̄|‖ ≤ ‖f‖∞ = ‖(h ◦ ϕ ◦ v)(u ◦ v))‖∞ ≤ ‖h‖∞ .

To see that T ◦ S = idC(K), take h ∈ C(K) and k ∈ K. Remember that u(i(k)) = 1 and
ϕ(i(k)) = k and notice that i(k)1̄ = 1 and v(i(k)) = i(k) for every k ∈ K, so

TSh(k) = Sh(i(k)) = (f · |δ1̄|)(i(k)) = h(ϕ(i(k))) · u(i(k)) = h(k).

So we turn now to the remaining more delicate question whether Sh ∈ FBL(BC(K))

for every h ∈ C(K). Functions in the free Banach lattice must be continuous and positively
homogeneous. We check first that Sh has these two properties. Clearly, Sh is continuous on
the open set {x ∈ X : x1̄ 6= 0, u(v(x)) 6= 0} because Sh is expressed there by the formula
(h ◦ ϕ ◦ v) · (u ◦ v) · |δ1̄|. If x1̄ = 0, then for every ε > 0 there is a neighbourhood W such
that |f(y)| · |y1̄| ≤ ‖h‖∞ · ε for all y ∈W , so Sh is also continuous at those x. If x1̄ 6= 0 but
u(v(x)) = 0, again, given ε > 0, we can find a neighbourhood W of x where y1̄ 6= 0 and
|f(y)| · |y1̄| ≤ ‖h‖∞ · ε for all y ∈W . For positive homogeneity, on the one hand, if x1̄ 6= 0,



68 Projective Banach lattices

then v(λx) = v(x) for every 0 < λ ≤ 1 and x ∈ X, while |δ1̄| is positively homogeneous. If
x1̄ = 0, then for every 0 < λ ≤ 1 we have that Sh(λx) = 0 = λSh(x).

Finally, what we are going to prove is that Sh can be obtained as the limit, in the
FBL(BC(K))-norm, of a sequence of continuous and positively homogeneous functions
that only depend on finitely many coordinates of the cube [−1, 1]BC(K) . Combining Lemma
4.25 with the fact that FBL(BC(K)) is a closed space, we will have that Sh ∈ FBL(BC(K)).

Consider L = {x ∈ X : x1̄ = 1} ⊂ X. Since the restriction f |L is a continuous function
on the compact space L, by Stone-Weierstrass’ theorem, for every n ∈ N we can find a
continuous function f+

n ∈ C(L) that depends only on finitely many coordinates of the cube
[−1, 1]BC(K) such that ∥∥f |L − f+

n

∥∥
∞ <

1

n
.

Define fn : X −→ R by

fn(x) :=

{
f+
n (v(x)) if x1̄ 6= 0,

0 otherwise .

It is clear that fn(λx) = fn(x) for all 0 < λ ≤ 1 and x ∈ X, since v(λx) = v(x). Moreover,
fn depends on finitely many coordinates because f+

n does so, and each coordinate of v
depends on two coordinates (v(x)γ only depends on xγ and x1̄). On the other hand, fn · |δ1̄|
is continuous in X. This is because fn · |δ1̄| is continuous in {x ∈ X : x1̄ 6= 0} clearly, and, if
x1̄ = 0, then for every ε > 0 there is a neighbourhood W such that |fn(y)| · |y1̄| ≤ ‖f+

n ‖∞ · ε
for all y ∈ W . Thus, the functions fn · |δ1̄| are all continuous, positively homogeneous
and depend on finitely many coordinates. It follows from Lemma 4.25 that fn · |δ1̄| ∈
FBL(BC(K)) for every n ∈ N. It only remains to prove that ‖Sh− fn · |δ1̄|‖ → 0 when
n → ∞. For this, first notice that v(v(x)) = v(x) for all x ∈ X with x1̄ 6= 0. This is just
because v(x)1̄ = 1. From this, it follows that f(x) = f(v(x)) for all x with x1̄ 6= 0. This
together with Lemma 4.26 gives:

‖Sh− fn · |δ1̄|‖ = ‖f · |δ1̄| − fn · |δ1̄|‖ = ‖(f − fn) · |δ1̄|‖
≤ ‖f − fn‖∞
= sup {|f(x)− fn(x)| : x ∈ X}
= sup {|f(x)− fn(x)| : x ∈ X,x1̄ 6= 0}
= sup

{
|f(x)− f+

n (v(x))| : x ∈ X,x1̄ 6= 0
}

= sup
{
|f(v(x))− f+

n (v(x))| : x ∈ X,x1̄ 6= 0
}

≤ sup
{
|f(y)− f+

n (y)| : y ∈ L
}

= ‖f |L − f+
n ‖∞ <

1

n
,

which ends the proof.

4.7 Complementability of c0 in FBL[c0]

Following the terminology of [3], a Banach lattice Y is said to be lattice-embeddable in a
Banach lattice X if it is isomorphic to a Banach sublattice of X, or equivalently, there exist
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a Banach lattice homomorphism u : Y −→ X and two constants K,M > 0 such that

K ‖y‖Y ≤ ‖u(y)‖X ≤M ‖y‖Y

for every y ∈ Y . Such a map u is called a Banach lattice embedding.
In this section we will prove that the Banach lattice c0 is isometrically lattice-embeddable

in FBL[c0], and that the copy of c0 inside FBL[c0] is 1-complemented (as a Banach lattice)
in FBL[c0]. Indeed, this is the main theorem of this section and can be stated as follows:

Theorem 4.27. There exist an isometric Banach lattice embedding u : c0 −→ FBL[c0] and a
Banach lattice homomorphism P : FBL[c0] −→ c0 of norm 1 such that P ◦ u = idc0 .

Remark 4.28. V. G. Troitsky pointed out to us that, by a direct consequence of [3, Theorem
4.60], we have a Banach lattice embedding u1 : c0 −→ FBL[c0] together with an operator
projection P1 : FBL[c0] −→ c0 such that P1 ◦u1 = idc0 . On the other hand, if we extend the
identity operator idc0 : c0 −→ c0, by using the universal property of the free Banach lattice,
to a Banach lattice homomorphism P2 : FBL[c0] −→ c0, we have that P2 ◦ φ = idc0 , where
φ : c0 −→ FBL[c0] is the canonical inclusion of c0 inside FBL[c0], which is not a lattice
homomorphism. So, the difficulty is in getting Banach lattice homomorphism inclusion and
projection at the same time, and this is what Theorem 4.27 tells us that it is possible to get.

In order to prove Theorem 4.27, the following weaker version of [3, Theorem 4.50]
will be very useful:

Theorem 4.29 ([3, Theorem 4.50]). Let X be a Banach lattice. If there exists a disjoint
sequence (fn)n∈N ∈ X+ such that

a) (fn)n∈N does not converge in norm to zero, and

b) the sequence of partial sums of (fn)n∈N is norm bounded, i.e. there exists some M > 0

satisfying ‖
∑n

i=1 fi‖X ≤M for every n ∈ N,

then the map u : c0 −→ X given by the formula u(x) =
∑∞

i=1 xifi for every x = (x1, x2, . . .) ∈
c0 is a Banach lattice embedding.

First, what we are going to do is to construct a sequence (fn)n∈N ∈ FBL[c0] with the
above properties.

For it, let (Nn)n∈N be a strictly increasing sequence of natural numbers.
For r ∈ R let r+ = max {r, 0} be the positive part of r, and for every n ∈ N let

fn : c∗0 −→ R be the map given by

fn(x∗) = (|x∗n| −Nn max {|x∗m| : m < n})+ ·Πm>ngnm(x∗)

for every x∗ = (x∗1, x
∗
2, . . .) ∈ c∗0 = `1, where gnm : c∗0 −→ [0, 1] is any continuous function

such that gnm(x∗) = 0 if Nm|x∗n| ≤ |x∗m|, gnm(x∗) = 1 if |x∗m| ≤ (Nm−1)|x∗n| and gnm(x∗) =

gnm( x∗

‖x∗‖) whenever x∗ 6= 0.
Let us see that (fn)n∈N is a disjoint sequence of positive elements of FBL[c0] which

satisfies both properties a) and b) in Theorem 4.29:



70 Projective Banach lattices

Lemma 4.30. The sequence (fn)n∈N satisfies the following properties:

1. fn is in FBL[c0] for every n ∈ N.

2. fn ≥ 0 for every n ∈ N.

3. fn ∧ fl = 0 for every n 6= l.

4. ‖
∑n

i=1 fi‖FBL[c0] ≤ 1 for every n ∈ N.

5. ‖fn‖FBL[c0] = 1 for every n ∈ N. In particular, the sequence (fn)n∈N does not converge
in norm to zero.

Proof. For item 1, fix n ∈ N. We are going to find a sequence of functions (hk)k∈N ∈
FBL[c0] such that limk→∞ ‖hk − fn‖FBL[c0] = 0. Then, we will have that fn ∈ FBL[c0].

Let hk : c∗0 −→ R be the map given by

hk(x
∗) = (|x∗n| −Nn max {|x∗m| : m < n})+ ·Πn<m≤n+k gnm(x∗)

for every x∗ = (x∗1, x
∗
2, . . .) ∈ c∗0 = `1. Let us see that hk ∈ FBL[c0] for every k ∈ N.

Notice that hk is continuous, positively homogeneous and satisfies that hk(x∗) = hk(y
∗)

whenever x∗1 = y∗1, . . . , x
∗
n+k = y∗n+k. Let T : FBL(Bc0) −→ Rc∗0 be the map given by

T (f)(x∗) = f((x
∗(y)
‖x∗‖ )y∈Bc0 ) · ‖x∗‖ if x∗ 6= 0 and T (f)(0) = f(0), where 0 denotes the

identically zero function in the corresponding space. We have that T (FBL(Bc0)) ⊂
FBL[c0] because T maps the evaluation functions in FBL(Bc0) to the evaluation functions
in FBL[c0], preserves linear combinations, the lattice structure and ‖T (f)‖FBL[c0] ≤
‖f‖FBL(Bc0 ).

Now, let h̃k : [−1, 1]Bc0 −→ R be the map given by

h̃k(z
∗) = hk((z

∗(e1), . . . , z∗(en+k), 0, 0, . . .))

for every z∗ ∈ [−1, 1]Bc0 . Since h̃k is continuous, positively homogeneous and depends
only on finitely many coordinates, by Lemma 4.25 we have that h̃k ∈ FBL(Bc0). It follows
that T (h̃k) = hk ∈ FBL[c0].

Now, by definition, we have that

‖hk − fn‖FBL[c0] = sup

{
l∑

i=1

|(hk − fn)|(x∗i ) : l ∈ N, x∗1, . . . , x∗l ∈ B`1 , sup
x∈Bc0

l∑
i=1

|x∗i (x)| ≤ 1

}
.

Take x∗1, . . . , x
∗
l ∈ B`1 , with x∗i = (x∗i1, x

∗
i2, . . .) for every i = 1, . . . , l and such that

(hk − fn)(x∗i ) 6= 0 for every i = 1, . . . , l and supx∈Bc0
∑l

i=1 |x∗i (x)| ≤ 1.
Note that hk ≥ fn, so we can remove absolute values in the previous expression. Then,

we have that
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l∑
i=1

(hk − fn)(x∗i ) =
l∑

i=1

(|x∗in| −Nn max {|x∗im| : m < n})+ ·

·
[
Πn<m≤n+k gnm(x∗i )−Πn<m gnm(x∗i )

]
=

l∑
i=1

(|x∗in| −Nn max {|x∗im| : m < n})+ ·

·
[
Πn<m≤n+k gnm(x∗i )−Πn<m≤n+k gnm(x∗i )Πn+k<m gnm(x∗i )

]
=

l∑
i=1

(|x∗in| −Nn max {|x∗im| : m < n})+ ·

· Πn<m≤n+k gnm(x∗i )
[
1−Πn+k<m gnm(x∗i )

]
≤

l∑
i=1

|x∗in|
[
1−Πn+k<m gnm(x∗i )

]
.

Since (hk − fn)(x∗i ) 6= 0 for every i = 1, . . . , l, we have that |x∗in| 6= 0 and also that
1−Πn+k<m gnm(x∗i ) 6= 0. Thus, for every i there exists mi > n+ k such that gnmi(x

∗
i ) 6= 1,

that is to say,
|x∗imi |
|x∗in|

> Nmi − 1. Since Nmi > Nn+k, this implies that |x∗in| < 1
Nn+k−1 |x

∗
imi
|.

Thus,

l∑
i=1

(hk − fn)(x∗i ) ≤
l∑

i=1

|x∗in| <
1

Nn+k − 1

l∑
i=1

|x∗imi |.

Therefore, since limk→∞
1

Nn+k−1 = 0, the proof will follow from the following Claim.

Claim. For every x∗1, x
∗
2, . . . , x

∗
l ∈ B`1 and every natural numbers m1,m2, . . . ,ml ∈ N

we have

l∑
i=1

|x∗imi | ≤ 1

whenever supx∈Bc0
∑l

i=1 |x∗i (x)| ≤ 1.

Proof of the Claim. Fix m = max{mi : 1 ≤ i ≤ l}. We show first that

l∑
i=1

|x∗imi | ≤ max


l∑

i=1

∣∣ m∑
j=1

ε(j)x∗ij
∣∣ : ε ∈ {−1,+1}m

 .
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In fact,

max


l∑

i=1

∣∣ m∑
j=1

ε(j)x∗ij
∣∣ : ε ∈ {−1,+1}m

 ≥ 1

2m

∑
ε∈{−1,+1}m

l∑
i=1

∣∣ m∑
j=1

ε(j)x∗ij
∣∣

=
1

2m

∑
ε̃∈{−1,+1}

l∑
i=1

∑
ε∈{−1,+1}m
ε(mi)=ε̃

∣∣ m∑
j=1

ε(j)x∗ij
∣∣

≥ 1

2

∑
ε̃∈{−1,+1}

l∑
i=1

1

2m−1

∣∣ ∑
ε∈{−1,+1}m
ε(mi)=ε̃

m∑
j=1

ε(j)x∗ij
∣∣

=

l∑
i=1

|x∗imi |.

Let ε ∈ {−1,+1}m be the function which gives the maximum above. We have that

l∑
i=1

|x∗imi | ≤
l∑

i=1

∣∣ m∑
j=1

ε(j)x∗ij
∣∣ =

l∑
i=1

|x∗i (x)| ≤ 1,

taking, in the equality, x = (ε(1), ε(2), . . . , ε(m), 0, . . .) ∈ Bc0 .

Item 2 is clear.

For item 3, suppose, for example, that n < l, and let x∗ ∈ c∗0 such that fl(x∗) 6= 0. We
have that |x∗l | > Nl max {|x∗m| : m < l}. In particular, |x∗l | > Nl|x∗n|. Now, if fn(x∗) 6= 0, we
have that gnm(x∗) 6= 0 for every m > n, and then, that |x∗m| < Nm|x∗n| for every m > n.
Taking m = l we have a contradiction.

For item 4, by definition, we have that∥∥∥∥∥
n∑
i=1

fi

∥∥∥∥∥
FBL[c0]

= sup


k∑
j=1

(
n∑
i=1

fi)(x
∗
j ) : k ∈ N, x∗1, . . . , x∗k ∈ B`1 , sup

x∈Bc0

k∑
j=1

|x∗j (x)| ≤ 1

 .

Fix x∗1, x
∗
2, . . . , x

∗
k ∈ B`1 with supx∈Bc0

∑k
j=1 |x∗j (x)| ≤ 1. Since the functions fi are

disjoint, for each j = 1, 2, . . . , k there is at most one ij ∈ {1, 2, . . . , n} such that fij (x
∗
j ) 6= 0.

Thus,
k∑
j=1

(

n∑
i=1

fi)(x
∗
j ) =

k∑
j=1

fij (x
∗
j ).

Without loss of generality, we suppose that fij (x
∗
j ) 6= 0 for every j = 1, 2, . . . , k.

Notice that each fij (x
∗
j ) ≤ |x∗jij | for every j = 1, 2, . . . , k, so

k∑
j=1

(
n∑
i=1

fi)(x
∗
j ) =

k∑
j=1

fij (x
∗
j ) ≤

k∑
j=1

|x∗jij |.
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Now the Claim in the proof of item 1 applied to x∗1, . . . , x
∗
k asserts that

∑k
j=1 |x∗jij | ≤ 1

and therefore
k∑
j=1

(
n∑
i=1

fi)(x
∗
j ) ≤

k∑
j=1

|x∗jij | ≤ 1.

Thus, ‖
∑n

i=1 fi‖FBL[c0] ≤ 1.

For item 5, we know that

‖fn‖FBL[c0] = sup


k∑
j=1

fn(x∗j ) : k ∈ N, x∗1, . . . , x∗k ∈ B`1 , sup
x∈Bc0

k∑
j=1

|x∗j (x)| ≤ 1

 .

Taking e∗n ∈ B`1 we have that fn(e∗n) = 1, so that ‖fn‖FBL[c0] ≥ 1. In general, since
fn(x∗) ≤ |x∗(en)| for every x∗ ∈ B`1 , we have that

k∑
j=1

fn(x∗j ) ≤
k∑
j=1

|x∗j (en)| ≤ sup
x∈Bc0

k∑
j=1

|x∗j (x)| ≤ 1,

so ‖fn‖FBL[c0] = 1.

Theorem 4.27 easily follows from the above. Indeed, by Lemma 4.30 and Theorem
4.29, the map u : c0 −→ FBL[c0] given by the formula u(x) =

∑∞
i=1 xifi for every x =

(x1, x2, . . .) ∈ c0 is a Banach lattice embedding. It only remains to prove that it is an isometry
between c0 and its image in FBL[c0] and the existence of the projection P : FBL[c0] −→ c0

of norm 1.
To prove the first fact, note that it is enough to check that∥∥∥∥∥

n∑
i=1

xifi

∥∥∥∥∥
FBL[c0]

= max
1≤i≤n

|xi|

for every n ∈ N and every x1, x2, . . . , xn ∈ R. Fix any x1, x2, . . . , xn ∈ R. Without loss of
generality, suppose that |x1| = max1≤i≤n |xi|. Since each function fi is positive and has
norm 1, we have that

max
1≤i≤n

|xi| = |x1| = ‖|x1|f1‖FBL[c0] ≤

∥∥∥∥∥
n∑
i=1

|xi|fi

∥∥∥∥∥
FBL[c0]

=

∥∥∥∥∥
∣∣∣∣ n∑
i=1

xifi

∣∣∣∣
∥∥∥∥∥
FBL[c0]

=

∥∥∥∥∥
n∑
i=1

xifi

∥∥∥∥∥
FBL[c0]

.

On the other hand,
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∥∥∥∥∥
n∑
i=1

xifi

∥∥∥∥∥
FBL[c0]

=

∥∥∥∥∥
n∑
i=1

|xi|fi

∥∥∥∥∥
FBL[c0]

≤

∥∥∥∥∥
n∑
i=1

|x1|fi

∥∥∥∥∥
FBL[c0]

= |x1|

∥∥∥∥∥
n∑
i=1

fi

∥∥∥∥∥
FBL[c0]

≤ |x1| = max
1≤i≤n

|xi|,

so u : c0 −→ FBL[c0] is an isometry between c0 and its image in FBL[c0].
Finally, the Banach lattice homomorphism P : FBL[c0] −→ c0 given by the formula

P (f) = (f(e∗1), f(e∗2), . . .) for every f : c∗0 −→ R belonging to FBL[c0] has norm 1 and
satisfies that P ◦ u = idc0 , so the proof of Theorem 4.27 is finished.

4.8 Problems

Concerning the different variations of projectivity, it was already observed in Proposition
4.7 that if a Banach lattice P has the property that every Banach lattice homomorphism into
a quotient T : P −→ X/J can be lifted to a Banach lattice homomorphism T̂ : P −→ X,
then P is λ-projective for some λ. It is obvious that the class of∞-projective Banach lattices
is closed under renorming but the 1+-projective class is not. It was asked in [15] whether
every∞-projective Banach lattice is the renorming of a 1+-projective Banach lattice. But, in
fact, we do not know a single example that separates these two classes, even by renorming.

Problem 4.31. Find an equivalent norm on a 1+-projective Banach lattice that makes it
∞-projective but not 1+-projective.

A natural candidate would be FBL[E] with E a suitable Banach space renorming of `1.
Theorems 4.4 and 4.5 suggest a large presence of the Banach space `1 inside projective

Banach lattices. This does not exclude other subspaces (C([0, 1]) is 1+-projective and
contains isometric copies of any separable Banach space) but we may at least ask:

Problem 4.32. If X is∞-projective and infinite-dimensional, must X contain a Banach
subspace isomorphic to `1?

We proved that E has the Schur property if FBL[E] is ∞-projective. But the only
positive case that we know is that FBL[`1(A)] = FBL(A) is 1+-projective.

Problem 4.33. Is there a Banach space E with the Schur property, not isometric to `1(A),
for which FBL[E] is 1+-projective? Is there a Banach space E with the Schur property, not
isomorphic to `1(A), for which FBL[E] is∞-projective?
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