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In fish, the fat content contributes to promoting the nutritional and organoleptic characteristics of 
the flesh, which is crucial for consumer acceptance. Methods to predict the fat in fish are important in 
nutritional and physiological research, where body content is traditionally determined by dissection 
followed by chemical analysis. However, X-ray micro-computed tomography (micro-CT) provides 
three-dimensional information in a non-destructive way. This work aims to characterize radiologically 
the fat, in situ, in a widely cultivated marine species, gilthead seabream (Sparus aurata). To validate 
the method changes in fat content in a control group (fed) and another group (unfed for 60 days) 
were assessed. Fish images were acquired on an Albira SPECT/PET/CT preclinical-scanner. Image 
analysis and measurements were performed using the Carestream Molecular Imaging Albira CT 
system in conjunction with Pmod and Amide packages. By micro-CT analysis the density values were 
determined for the whole fish body (− 1,000 to + 2,500 HU, Hounsfield units), and density ranges for 
the fat in S. aurata were established from − 115 to + 50 HU. As expected, significant differences were 
found between fed and starved groups at 60 days. The present study confirms the usefulness of high-
resolution morphological analysis for evaluating the presence and distribution of fat in this important 
fish species.

In recent decades, aquaculture has become an important social and economic activity and one of the largest 
sources of animal protein in the world. The success of modern aquaculture is based on the control of many 
parameters, among them: reproduction, a good knowledge of the biology of farmed fish, technological innovation 
and the development of specific  feeds1. For example, a knowledge of fish biology is important to evaluate how 
the nutritional value of fish can be improved by controlling certain types of conditions. In this sense, knowledge 
of the fat content is essential for feeding, reproduction and genetic  programs2. In addition, it is well known that 
fat contributes to the nutritional and organoleptic characteristics of fish flesh, which is crucial for consumer 
 acceptance2–6. Advanced methods for predicting the fat composition in aquaculture fish are also of primary 
importance in nutritional and physiological research, where body content is traditionally determined by animal 
dissection followed by chemical  analysis7,8.

In recent years, a growing number of image analysis techniques have permitted the bodies of animals to 
be studied in situ and so reduce the number of animals slaughtered, without a loss of precision or estimation 
 power4. These techniques can be used to acquire three-dimensional information of the body with high-spatial 
resolution. Among them, ultrasound, magnetic resonance imaging (MRI), dual-energy X-ray absorptiometry 
(DEXA), photoacoustic imaging and X-ray computed tomography (CT) play an important role in the study of 
humans and some  animals9–12. This work focuses on CT, a non-destructive and versatile imaging tool, which 
seems to be the best method among available 3D imaging techniques in terms of penetration power, attainable 
spatial resolution and scanning  time13. Smaller versions of CT (Micro-CT) are currently being manufactured 
for the study of small  animals12–14. Its mechanism is based on a gantry that rotates around the animal and which 
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is located in the centre of the scanner, providing sectional images of specimens of interest without disturbing 
internal  structures12,14. During CT scanning, electromagnetic radiation (X-rays) penetrates the subject from 360°. 
A computer software reconstructs the radiation absorbed by the tissues and its values are expressed in Hounsfield 
units (HU). Although this technique has been widely used to study humans and animal anatomy and assist in 
clinical  diagnosis12–17, to the best of our knowledge, CT has rarely been used in aquaculture  fish4,13,18–21. Thus, 
this study aims to establish the radiological values of fat density in gilthead seabream (Sparus aurata) in order 
to determine, in situ, where the fat is located and to quantify the same. Gilthead seabream is a marine species 
cultivated throughout the world due to its rapid growth and high survival rate, essential characteristics for the 
success of fish farming. To validate the method the fat content was assessed by studying changes in fed and starved 
fish. This paper proposes the use of micro-CT anatomical images for the evaluation of fat deposits in farmed fish.

Results
Fat analysis in gilthead seabream. The main steps of acquisition and processing of the micro-CT 
images are illustrated in Fig. 1. The averaged density value for pure fat analyzed ex vivo was stablished in − 115 
HU (Table inset in Fig. 2).

After studying, the micro-CT image of fish body with the AMIDE analysis software, a density range of − 115 
to + 50 HU was established for fat in situ, based on the previous determination of the density value for the 
isolated fat from gilthead seabream. This range allowed the automated segmentation of the images by entering 
the values into the AMIDE software and colouring yellow the areas that coincided with the established density 
range (Figs. 2, 3).

Descriptive analysis. Representative micro-CT images of the gilthead seabream in the transverse, coronal 
and sagittal axes are displayed in Figs. 4, 5, 6, 7. The images were segmented (yellow) according to the den-
sity range of − 115 to + 50 HU and the anatomical identification of areas where fat might exist or be deposited 
was studied. Segmented areas are shown in the head (including nostril, mouth, eye and operculum, Figs. 3, 4), 
delimiting the contour of the fish (which coincides topographically with the subcutaneous region, Fig. 5), in the 
abdominal cavity (Fig. 6) and in flanks (above and below the spine, Figs. 5, 6). The least segmented region can be 

Figure 1.  Diagram of the steps followed for the acquisition and processing of the micro-CT image in 
gilthead seabream specimens. (A) Fish is positioned in the micro-CT scanning bed and the image is acquire 
in micro-CT + Albira Acquirer. (B) Image is reconstructed in Albira reconstructor in the three spatial axes 
(coronal, sagittal and transverse). (C) Image is reduced in Pmod program. (D) Image analysis and quantification 
performing in AMIDE software.
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seen in the head (Fig. 4), while in the region coinciding topographically with the abdomen and flanks segmenta-
tion is more widespread (Figs. 6 and 7).

Quantitative analysis. AMIDE software allowed a volumetric analysis of the segmented fraction of the 
micro-CT images. First, the density range for the whole gilthead seabream body (− 1,000 to + 2,500 HU) was 
established in order to compare the fat volume with respect to the fish total volume. Our results showed that 
the fat volume in gilthead seabream specimens with an average weight of 26 ± 3 g and length of 12 ± 2 cm was 
16.44 cm3, which is 48% of the fish total volume (33.72 cm3, Table 1).

Validation of the method. To validate the method two groups of gilthead seabream specimens were 
kept under different nutritional conditions [fed at a rate of 1.5% body weight (control) or under starvation] for 

Figure 2.  (A) Macroscopic image of a dissected gilthead seabream specimen with part of the muscle removed 
to show visceral fat localization. Inset: Visceral fat substracted from the specimen dissected in figure. Micro-CT 
image of visceral fat from gilthead seabream (indicated by the arrows) colored according to AMIDE analysis 
software and positioned on the different axes: transverse (B), coronal (C) and sagittal (D); 0.25 mm3 ROIs 
(orange circles) are drawn on these cuts. In the red box: mean density values for fat in the analysed voxels 
expressed in Hounsfield units (HU).

Figure 3.  Micro-CT representative images of gilthead seabream colored in AMIDE analysis software to display 
the segmentation (yellow) according to the fat density range (− 115 to + 50 HU). Image is represented in sagittal 
axis. Eye, cleithrum bone (CB) and swim bladder (SB) are indicated as reference structures.
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Figure 4.  Micro-CT representative images in gilthead seabream head colored in AMIDE analysis software to 
display the segmentation (yellow) according to the fat density range (− 115 to + 50 HU). Image are represented in 
the three axes (A: sagittal; B: transverse; C: coronal). The eye (E) is indicated as reference structure. Arrows are 
indicating same areas in the three axes.

Figure 5.  Micro-CT representative images in gilthead seabream skin colored in AMIDE analysis software to 
display the segmentation (yellow) according to the fat density range (− 115 to + 50 HU). Image are represented in 
the three axes (A: sagittal; B: transverse; C: coronal). The swim bladder (SB) is indicated as reference structure. 
Arrows are indicating same areas in the three axes.
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Figure 6.  Micro-CT representative images in gilthead seabream abdominal cavity (AC) colored in AMIDE 
analysis software to display the segmentation (yellow) according to the fat density range (− 115 to + 50 HU).. 
Image are represented in the three axes (A: sagittal; B: transverse; C: coronal). The swim bladder (SB) is 
indicated as reference structure. Arrows are indicating same areas in the three axes.

Figure 7.  Micro-CT representative images in gilthead seabream flanks colored in AMIDE analysis software to 
display the segmentation (yellow) according to the fat density range (− 115 to + 50 HU). Image are represented in 
the three axes (A: sagittal; B: transverse; C: coronal). The swim bladder (SB) and spine are indicated as reference 
structures. Arrows are indicating same areas in the three axes.
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60 days. At the end of the trial, visible differences in body dimensions were obtained (Fig. 8A,B). The differences 
were also evident in the micro-CT study where, as expected, greater body mass was observed in fed fish when 
compared to those that had been starved (Fig. 8C,D). Also, when the skeletal structure under Pmod program 
was acquired, visible differences were detected, mainly in the abdominal region, which appeared compressed 
(Fig. 8E,F).

Image analysis from fed and starved fish showed macroscopic differences between groups, more segmented 
areas (yellow) being found in the head (mainly in the orbital region), flanks (intramuscular) and abdominal 
cavity of fed fish compared to starved fish (Fig. 9). Body dimensions in starved fish were smaller than in fed fish, 
and the eyeball was more prominent. When biometric parameters were compared between the two groups (fed 
and starved), all of them showed significant differences among groups (summarized in Table 2). First, the body 
weight (g), length (cm) and total volume  (cm3) of starved fish were half the values of those of fed fish (control). 
Curiously, the fat volume in relation to total volume was higher in starved fish (49%) than in the fed group (44%).

Table 1.  Biometric parameters of gilthead seabream specimens (S. aurata). Total volume and fat were 
obtained after the micro-CT acquisition and image analysis in AMIDE software. Data are represented as 
mean ± SD (n = 6).

Biometric parameters

Body weight (g) 26.385 ± 1.950

Body size (cm) 12.566 ± 0.625

Total volume  (cm3) 33.792 ± 1.164

Fat volume  (cm3) 16.442 ± 1.358

Fat related
48.737 ± 4.917

Total volume (%)

Figure 8.  Representative images of gilthead seabream after 60 days of being fed (A,C,E) or under starvation 
(B,D,F) conditions. Macroscopic images of fed (A) and starved (B) fish. Micro-CT images of fed (C) and starved 
(D) fish, images of skeletal structure in fed (E) and starved (F) fish created in Pmod program. Yellow arrows 
indicate fish border, swim bladder (SB) and abdominal cavity (AC) as reference structures; white arrows indicate 
the cleithrum bone (CB) as the densest structure in the fish body.
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Discussion
Aquaculture is predicted to increase more and more in forthcoming  years22. In the case of European aquaculture, 
gilthead seabream (S. aurata) is one of the most farmed fish  species23,24. However, to have attained this position 
breeding, handling and subsequent fish processing have been carefully studied. Body composition is an impor-
tant trait in fish production, both from the point of view of feeding costs and consumer  acceptance4, and, in this 
respect, fat plays an important role contributing to maintain or increase the nutritional and organoleptic char-
acteristics of  fish2,5,6. In the present work, micro-CT was used to assess fat determination in gilthead seabream, 
due to the above-mentioned importance of this fish in marine aquaculture.

CT assistance in assessing body composition and determining fat content in humans has been reported 
since several  decades25,26. Micro-CT studies in rats and mice have been widely used to measure adipose tissue, 
allowing accurate volumetric quantification with high spatial  discrimination27,28. In general, different ranges of 
tissue density in Hounsfield units (HU) have been established for the quantification of fat in CT studies, based 
on the assumption that the limits vary with the type of scanner used and that they differ between individuals or 
species. The most commonly used intervals are − 190 to − 30 HU and − 150 to − 50 HU. Fortunately, the varia-
tion in upper and lower limits does not have a significant effect on the assessment of fat  areas29,30. In this study, 
we acquired high resolution images (125 μm) of the entire gilthead seabream and determined for the first time 
the HU density range for the fat (− 115 to + 50 HU, on the basis of the previously extracted pure fat) and the fat 
contained within the gilthead seabream body in order to enable automatic segmentation by computer software, 
which would allow a quantitative and descriptive analysis in situ. Previous studies in body composition by CT 
in a variety of fish species, Cyprinus carpio L., Ctenopharyngodon idella Val., Hypophthalmichtis molitrix Val. 
and Stizostedion lucioperca L. 4 and Hippoglossus hippoglossus L. 29, determined different HU ranges for fat which 
confirm that density values can vary between species. Thus, the importance of this study lies in the possibility of 
characterizing radiologically the fat in gilthead seabream to provide fast and reliable results related to its content 
(spatial distribution, volumetric parameters or differences in density) in aquaculture systems. Another advantage 
of this kind of studies is that data are obtained in a comparatively short period, since the high-resolution micro-
CT provides a set of precise quantitative volumetric data that would be difficult to obtain by other traditional 
analytical  techniques13.

Figure 9.  Micro-CT representative images created with AMIDE software to display fat segmentation (yellow) 
in gilthead seabream fed (A,C) and starved (B,D) after 60 days in sagittal and transverse axes. Red lines are 
connecting the location of sagittal and transverse axes. Swim bladder (SB) is indicated as reference structure.

Table 2.  Biometric parameters of gilthead seabream (S. aurata) groups fed and starved (60 days). Data are 
represented as mean ± SD (n = 6). Statistical differences between groups are represented by an asterisk when 
P < 0.05.

Parameters

Experimental groups

Fed Fasted

Body weight (g) 53 ± 6.931 19.66 ± 2.200*

Body size (cm) 16 ± 1.00 12.416 ± 1.625*

Total volume  (cm3) 71.289 ± 0.655 37.101 ± 2.077*

Fat volume  (cm3) 31.804 ± 0.656 18.207 ± 0.774*

Fat related total volume (%) 44.618 ± 1.331 49.172 ± 3.080*
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Fat distribution in different anatomical locations and in several vertebrate species, including humans, has been 
 reported25–28. However, in fish the spatial distribution and measurement of fat depots have not been studied in 
depth. Since the presence of adipose tissue in different fish compartments also plays an important role in product 
quality, measurement of the fat content is a valuable  information31. As the resolution of in vivo micro-CT can 
be selected to be in an isometric voxel range of approximately 10 to 200 microns, it is possible to measure not 
only the total volume of adipose tissue within an animal, but also to identify and quantify very small volumes of 
fat cells residing in discrete  deposits28. This automatic method for fat segmentation that it has been developed 
for gilthead seabream is well established in murine models using computer programs similar to those used in 
this  study27.

In relation to fish consumption, fat depots that interfere with carcass quality can be roughly divided into those 
discarded and those consumed. Discarded fat depots include the visceral fat, located in the abdominal cavity 
around the digestive tract (representing 2–25% of the body weight depending on fish species and the status of 
the fish) and the subcutaneous fat, which is located all around the body of the fish. In salmonid species, it is more 
prominent in dorsal or ventral zones. Dorsal subcutaneous fat is highly developed in a region situated between 
the head and the dorsal fin. Moreover, ventral fat is one of the components of the belly flaps localized in the abdo-
men of fish and represents the part of the flesh that hangs under the  spines31. Our results showed that gilthead 
seabream have a similar pattern to salmonids in terms of fat location, where the presence of subcutaneous fat is 
higher in dorsal region and the largest area of fat segmentation is located in the abdominal cavity. In humans, 
the largest sites of adipose tissue deposition are either subcutaneous or intra-abdominal (within the abdominal 
cavity)32,33. On the other hand, consumed fat depots are located in white and red muscle species, with red muscle 
being richer in lipids than white  muscle31.

In order to compare the fat volume related to the total volume, the density range of the whole gilthead 
seabream body (− 1,000 to + 2,500 HU) was also determined. Our results showed that the segmented area in 
the range established for the fat density in gilthead seabream represents 48% related to the total volume, which 
coincides with previous studies where the traditional analysis of body composition reported a high profile of fat 
content in this fish  species34,35. Thus, our data raise the possibility of micro-CT being used to measure fat volume 
in fish in a non-destructive and reliable way.

Although there are several good reasons to accept that micro-CT scans precisely quantify fat volume based 
on voxel densities, the method described above was validated by comparing the segmentation results within in 
the range established for the fat in gilthead seabream under two different conditions (fish fed at a rate of 1.5% 
body weight or starved). For the present study the starved fish were food-deprived for 60 days, which can be 
considered a very long starvation period. The reason is that during starvation, the whole body or some organ sizes 
and weight can change or be significantly  altered36. Furthermore, our interest was to provoke the mobilization of 
lipids, which occurs later than glycogen mobilization and is influenced by extrinsic factors such as  starvation31.

Micro-CT images showed clear differences in body dimensions between fed and starved fish. The disposable 
soma theory of ageing suggests that starvation evolved as a somatic protection response to enable animals to 
survive periods of food shortage, by losing  weight37. As regards meat quality, long-term starvation results in the 
reduction of muscle and connective tissue, protein gives an insubstantial texture to the cooked  flesh35,38. Image 
analysis of the fat content of fed and starved fish pointed to a higher fat density in the cranial, subcutaneous, mus-
cular and abdominal region of fed fish, while, in starved fish a lower distribution of fat density area was observed 
in those regions. The accuracy of predicting fat distribution in our study agrees with the results of previous studies 
that reported the influence of starvation in the mobilization of fat tissues in different compartments of  fish38,39.

Our results showed that biometric parameters such as body weight and size differ after 60 days of feeding 
or starvation. Since food deprivation is a common practice in fish farming in order to regulate fish stock before 
marketing or before slaughtering to improve  preservation40, several studies with long periods of food depriva-
tion have been published to evaluate the influence of this condition on different physiological  aspects41,42. Our 
results pointed to a significant reduction in body volume in starved fish compared to fed fish. It is known that 
quantitative and qualitative modifications of nutrients modulate the global growth of different fish species as 
well as overall  adiposity31. According to our results, fat represents around 44 and 49% of total volume in fed 
and starved gilthead seabream, respectively. Previous studies in farmed gilthead seabream in starvation condi-
tions reported an increase in the storage of visceral fat, indicating that a significant proportion of the fed lipids 
was used to produce fat tissue and lipid reserves rather than being metabolised to support growth and energy 
 demand43–45, which may explain the high percentage of fat related to total body in starved fish. With innovative 
techniques, such as micro-CT such differences could be solved by evaluating in situ and in vivo the improvements 
obtained from fish feeding and management. Fortunately, non-invasive imaging techniques such as ultrasonog-
raphy or infrared spectroscopy have proven to be effective in the study of fish and seafood  quality2,46. However, 
these techniques have the limitation of not allowing a volumetric and three-dimensional analysis of the overall 
distribution and volume occupied by the fat  tissue13,46. On the other hand, available imaging techniques such 
as planar dual-energy (DEXA) uses the X-rays to study body composition in a non-invasive way, furthermore 
demonstrating be effective to study meat composition in agriculture  industry10. Therefore, it would be interesting 
to contrast this method with one of them in order to compare results and determine the most effective and eco-
nomical technique to implement it in aquaculture systems or otherwise to use a combination of non-destructive 
techniques to strengthen the analysis. It is very important to highlight that in the micro-CT study the values in 
the Hounsfield scale may vary depending on the fish species, so new studies are needed to analyses fat deposits 
in other fish species of economic importance.
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conclusions
This study describes a robust and reliable non-destructive method that can be used to determine and quantify fat 
deposits, fat content and fat infiltration into organs and tissues in gilthead seabream. According to the applied 
methodology and the established segmentation, we can consider that segmented areas coincide with the topo-
graphic location of these deposits and the range established for the fat (− 115 to + 50 HU). This work establishes 
the basis for a deeper study of fat tissue in gilthead seabream specimens, which would permit extrapolation to 
other aquaculture species. The proposed methodology is very precise and could contribute to the reduction of 
the number of sacrificed fish. Furthermore, no dissection or additional tissue processing is necessary, saving 
time and reducing costs.

Materials and methods
Animals. Eighteen male juvenile specimens (5 months) of the hermaphroditic protandrous teleost gilthead 
seabream (S. aurata) (26 ± 3 g and 12 ± 2 cm) were obtained from a local fish farm and kept in re-circulating 
seawater aquaria (250 L), with a flow rate of 900 L h−1 in the Marine Fish Facility at the University of Murcia and 
allowed to acclimatize for 4 weeks. A commercial diet (SKRETTING, Spain) was administered during acclima-
tization. The temperature and salinity were 22 ± 2 °C and 28‰, respectively. The photoperiod was of 12 h light: 
12 h dark.

Experimental trial. Fish specimens were randomly assigned into three groups (n = 6 each), and one group 
was used to determine fat distribution and biometric parameters under normal physiological conditions. Then, 
the rest of the fish were studied in two different conditions (fed and starved) to validate the method and ensure 
that the image segmentation corresponded to the fat content. The control group (fed fish) was fed with com-
mercial pellets (SKRETTING, Spain) at a rate of 1.5% body weight  day-1 and the last group was starved, while 
both groups were kept in these conditions for 60 days. All fish were euthanized by an overdose of the anaesthetic 
tricaine methanesulfonate (MS-222, 250 mg L−1, SIGMA-ALDRICH, Spain) before acquisition in the micro-CT, 
to establish a sensitive protocol with high image resolution and without interference from water or anaesthesia 
chamber. All the experimental protocols were approved by the Ethics Committee of the University of Murcia, 
following the guidelines of European Union for the animal handling (2010/63/EU).

Micro-CT imaging, reconstruction and segmentation. The acquisition and processing steps of 
micro-CT imaging are represented in Fig. 1.

Imaging. All specimens were imaged at the Preclinical Imaging Facilities at the University of Murcia, using 
the Albira SPECT/PET/CT tri-modal preclinical-scanner (BRUKER, Karlsruhe Germany). Fish specimens were 
always scanned from the mouth to the caudal fin [lying on its right side on tissue paper to separate the fish from 
the scanning bed (115 mm length, Fig. 1)]. The X-ray source was set to a current of 200 microamps (μA) and 
a voltage of 45 peak kilovolts (kVp), using a 0.5 mm filter to harden the beam. A digital flat panel X-ray detec-
tor (BRUKER, Karlsruhe, Germany), with 2,400 × 2,400 pixels and a field of view of 70 × 70 mm2 was used to 
capture 600 voxel projections of 0.125 mm3. The total scan exposure per fish was 20–25 min. The approximate 
radiation deep dose equivalent for micro-CT settings was 220 milisievert (mSv) and the shallow dose equivalent 
was 357.4 mS. An initial calibration was performed on the basis of the visceral fat extracted from the specimens 
after acquisition.

Reconstruction. After scanning with the micro-CT, images were reconstructed in the three spatial planes 
(transversal, coronal and sagittal) by means the filtered back projection (FBP) algorithm in the Albira Suite 
5.0 Reconstructor (BRUKER, Karlsruhe, Germany). These combined acquisition and reconstruction settings 
produce a final image with 125 μm isotropic voxels, which is considered, sufficient for whole animal analysis 27.

Segmentation. Images were reduced to minimize computational demands using Pmod (PMOD TECHNOLO-
GIES LTD, Zurich, Switzerland) and following the steps described by Loening and  Gambhir27. Correctly recon-
structed and reduced images were segmented using a free software tool for multimodality medical image analy-
sis (AMIDE, UCLA University, LA, USA). First, we determined the density value in Hounsfield units (HU) for 
the pure fat by dissecting visceral fat tissue from several specimens of gilthead seabream (Fig. 2). The ex vivo fat 
tissue was imaged in the micro-CT and several ellipsoidal regions of interest (ROIs) of 0.25 mm3 size were drawn 
over these micro-CT images (Fig. 2B–D) in AMIDE analysis software. More than 400 voxels were analysed in 
each ROI to obtain the mean density value for the visceral fat in HU (Table inset in Fig. 2).

Then, to segment the fat in situ, 3D isocontour ROIs were manually drawn along the micro-CT image of 
the fish body, the HU range based on the value determined for the calibration from visceral fat subtracted was 
introduced in the AMIDE software and an automatic segmentation was carried out, which was coloured yel-
low. In cases where the density of the micro-CT bed overlapped the density of some fish portions, the value of 
the empty micro-CT bed was acquired to be subtracted from the fish values. To evaluate the reliability of the 
automatic segmentation, we compared the fat segmentation in fed fish and starved fish.

Image analysis. Descriptive analysis. Segmented images were visually observed by two experts in anatomy and 
radiology. A descriptive analysis in the AMIDE software was made of fish images from each experimental group. 
To describe the fat distribution in the fish body, we analysed the images on/along three axes (transverse, coronal 
and sagittal).
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Quantitative analysis. The quantitative analysis was determined by AMIDE software through a morphomet-
ric or volumetric analysis by selecting the option “calculate ROI statistics” after automatic segmentation; this 
allowed us to determine parameters such as total volume and fat volume in  mm3 (Table 1). All morphometric 
parameters were normalized to the total volume of the specimen, and thus are independent of the absolute size 
and its variation between the specimens.

Statistical analysis. Raw data contained in each ROI isocontour (not less than 33,564) were analysed and 
averaged in the AMIDE analysis software for each fish. Then, the statistical analysis between groups (n = 6) was 
performed using the Statistical Package for Social Science (SPSS for WINDOWS v.23) by Student-T test. Data 
are presented as means ± SD (n = 6) and differences were considered statistically significant when P < 0.05.

Received: 8 May 2019; Accepted: 4 June 2020
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