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1Department of Information and Communication Engineering. Faculty of

Computer Science. University of Murcia, 30100, Murcia, Spain.

fernan@um.es, gracia@um.es, jmjuarez@um.es

December 3, 2013

Abstract

Objective: This paper presents a novel rule-based fuzzy classification methodology for

survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in

this medical scenario, physicians tend not to accept a computer-based evaluation unless they

understand why and how such a recommendation is given. Therefore, any fuzzy classifier

model must be both accurate and interpretable.

Methods and materials: The proposed methodology is a three-step process: (1) multi-

objective constrained optimization of a patient’s data set, using Pareto-based elitist multi-

objective evolutionary algorithms to maximize accuracy and minimize the complexity (num-

ber of rules) of classifiers, subject to interpretability constraints; this step produces a set of

alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to

each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers;

(3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the

preferences of the decision maker. If no classifier is satisfactory for the decision maker, the

process starts again in step (1) with a different input parameter set.

∗Contacting author: fernan@um.es, tel. +34 868 884 630, fax +34 868 884 151.
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Results: The performance of three multi-objective evolutionary algorithms, niched pre-

selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algo-

rithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algo-

rithm (NSGA-II), was tested using a patient’s data set from an intensive care burn unit and

a standard machine learning data set from an standard machine learning repository. The re-

sults are compared using the hypervolume multi-objective metric. Besides, the results have

been compared with other non-evolutionary techniques and validated with a multi-objective

cross-validation technique. Our proposal improves the classification rate obtained by other

non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and

case-based reasoning) obtaining with ENORA a classification rate of 0.9298, specificity of

0.9385, and sensitivity of 0.9364, with 14.2 interpretable fuzzy rules on average.

Conclusions: Our proposal improves the accuracy and interpretability of the classifiers,

compared with other non-evolutionary techniques. We also conclude that ENORA out-

performs niched pre-selection and NSGA-II algorithms. Moreover, given that our multi-

objective evolutionary methodology is non-combinational based on real parameter opti-

mization, the time cost is significantly reduced compared with other evolutionary approaches

existing in literature based on combinational optimization.
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1 Introduction

Severely burned patients require specialized medical care to minimize mortality [1]. Great ef-

forts have been made to analyze this problem from the clinical, the epidemiological and national

health system perspective [2–6]. Although the survival rates for burn patients have improved

substantially due to medical care in specialized burn centers, patient mortality is still the primary

outcome measure for burn care [7].

Early mortality prediction after admission is essential before an aggressive or conservative

therapy can be recommended. Severity scores are simple but useful tools for physicians when

evaluating the state of the patient. Scoring systems aim to use the most predictive pre-morbid

and injury factors to yield an expected likelihood of death for a given patient [7]. In gen-
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eral practice, physicians only use a few scores, usually internationally accepted ones involving

very simple calculations, such as the simplified acute physiology score (SAPS I-II), the acute

physiology and chronic health evaluation score (APACHE II), or the sequential organ failure

assessment (SOFA) [8, 9]. However, their daily use in burn centers gives rise to a potential

problem, since the above mentioned scores are not designed for critically ill burn patients.

Open burn wounds increase vulnerability to environmental contamination, the larger the

burn size the more vulnerable it is to contamination. Burn-related deaths depend on the total

body surface area (TBSA). Moreover, from the epidemiological point of view, sex, weight and

age are also significant for mortality from burn wounds [1, 10].

Some effort has been dedicated to predicting mortality using a scoring system after burn

trauma based on these evidences. Baux and prognostic burn index (PBI) scores provide a mor-

tality rate by summing age and TBSA [11, 12]. Other authors also consider respiratory prob-

lems, such as the model presented in [13] using a respiratory score, the CapeTown score, which

extends the Baux score with an inhalation score [14], or the score based on logistic regression

presented in [15].

Some authors suggest that, for mortality prediction in burns, TBSA, age and inhalation

injury outweigh other factors significantly enough to serve as the only components that need

to be used to give a prediction [7], for example, the probability of death estimation described

in [16]. On the other hand, the widely used abbreviated burns severity index (ABSI) considers

gender, age, inhalation injury, %TBSA and presence of the burns severity score proposed in

[17].

However, infections and co-morbidity are also relevant aspects to consider. Burn patients

with larger burn injuries (over 30%TBSA) and those colonized by multiple resistant organisms

require special precautions [1]. Indeed, 75% of deaths are currently related to infectious com-

plications and inhalation injuries from burn wounds when the TBSA is over 40% [1, 18, 19].

According to [19], about 75% of mortality is related to infections.

If infections and co-morbidity are considered, the number of parameters to analyze increases

considerably. The two main problems are the difficulty involved in selecting relevant parameters

and the need to provide a survival model that can be easily interpreted by physicians.

Further efforts can be made to combine infection and co-morbidity factors in an attempt

to provide a death estimation. For instance, in [4] a mortality prediction model is proposed

based on multivariate analysis. In this sense, the combination of evolutionary computation and
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fuzzy logic, namely evolutionary fuzzy systems [20, 21], helps to solve this kind of problem.

In particular, we focus on rule-based fuzzy classification since rules can be easily interpreted

by physicians [22–26]. In our proposal, these rules are obtained from the medical data sets

using a multi-objective constrained optimization model which maximizes the classification rate

and minimizes the number of rules of the classifier, subject to interpretability constraints. This

optimization model is solved by using Pareto-based elitist multi-objective evolutionary algo-

rithms [27–30].

The remainder of this paper takes the following form: Section 2 reviews the main works de-

veloped in the fields of fuzzy classification and evolutionary computation, particularly when ap-

plied to artificial intelligence in medicine. The main differences and advantages of our proposed

approach compared to existing studies are shown. Section 3 describes a fuzzy optimization pro-

cess for mortality scoring, where a fuzzy classification model is described and a multi-objective

constrained optimization model is proposed to learn accurate and comprehensible fuzzy clas-

sifiers. In section 4 two Pareto-based elitist multi-objective algorithms (niched pre-selection

and ENORA) are proposed to learn fuzzy classifiers according to the proposed multi-objective

constrained optimization model. In addition, the well known multi-objective evolutionary al-

gorithm NSGA-II is briefly described. Section 5 includes the experiments carried out and the

results obtained for the problem of classifying infection-related mortality in patients suffering

from severe burns. In order to compare the results obtained by our algorithm and those obtained

by other authors in the scientific community, this work also includes experiments for the well-

known problem of the Iris data set classification. An analysis of the obtained results is also

included. Section 6 discusses the novelties and benefits of our suggested methodology and the

main conclusions of the paper are outlined.

2 Background

In this section we review some of the efforts made to lend weight to prediction of mortality

using artificial intelligence techniques. We then analyze fuzzy classification and evolutionary

computation techniques and their impact in the medical field.
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2.1 Mortality scoring in Artificial Intelligence

There is increasing interest from the medical community to support mortality scoring by artifi-

cial intelligence techniques [31–35]. In particular, commonly used scoring systems have been

deeply analyzed for critical patient care, such as APACHE or SOFA and severity and organ

failure scores for Intensive Care Units (ICU) [8, 9]. In [36, 37] mortality prediction models

are presented, combining APACHE score and artificial neuronal networks. The work described

in [38] presents a case-based reasoning system using APACHE to support clinical decisions.

In [9, 39] SOFA-based models are analyzed to support mortality predictions in ICUs. In [40],

the T-CARE system based on temporal case-based reasoning is presented to support severity

scores in burns units.

In medical scenarios where mortality prediction depends on a large number of features,

some authors propose the use of evolutionary computing. For example, in [41], the authors

propose a survival prediction for breast cancer based on genetic programming. A Bayesian

model optimized by a genetic algorithm is described in [42] for mortality prediction.

2.2 Fuzzy classification in medicine

One illustrative milestone of these first works is the MYCIN system, a diagnosis support system

for infectious diseases in which the medical knowledge is provided from the physician’s team

in the form of rules [43].

Fuzzy sets [44] have been recognized for their ability to introduce notions of continuity into

deductive thinking. Because its continuous nature, the behavior of fuzzy systems is more likely

to be closer to medical reality than the behavior of classical systems. Additionally, fuzzy sets

allow symbolic models to be used. Fuzzy sets can bridge the gap between the discrete world of

reasoning and the continuity of reality, which is the main reason why they are considered useful

in [45].

One of the most important areas of application in the fuzzy set theory is fuzzy rule-based

systems (FRBSs). These fuzzy logic systems constitute an extension of the classical rule-based

systems, because they deal with if-then rules, whose antecedents and consequences are com-

posed of fuzzy logic statements, rather than classical logic ones. In a broad sense, an FRBS

is a rule-based system in which fuzzy logic is used as a tool for representing different forms

of knowledge about a problem, as well as for modeling the interactions and relationships that
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exist between its variables. Due to this property, fuzzy logic principles have been successfully

applied to a wide range of problems in different domains in which uncertainty and vagueness

emerge in varying ways.

Fuzzy classification is one of the most common applications of FRBSs. Some examples of

applications in medicine are the classification of medical images [46], interpretation of mam-

mograms [47], classification of the malformation of cortical development [48] and medical

diagnosis [49]. Basically, a classifier is an algorithm that assigns a class label to an object,

based on the object’s description. Therefore, a classifier predicts the class label. The object

description comes in the form of a vector which constraints the attribute values relevant for the

classification task. Classifiers use a training algorithm and a training data set to learn to predict

class labels.

An essential issue for medical decision support systems is the interpretability or comprehen-

sibility of the classifier. As described in [24], comprehensibility of the fuzzy partitions basically

relies on the linguistic interpretability of the fuzzy sets, and the simplicity or compactness of

the fuzzy rule base. The former is related to the separation of the neighboring fuzzy sets, also

called transparency [50], and to the number of different fuzzy sets, while the latter depends on

the number of input variables and number of rules (compactness). In a medical environment,

expert users do not accept a computer based evaluation, unless they understand why and how a

certain recommendation is given [26]. Interpretability is considered to be the main advantage of

fuzzy systems over other alternatives like neural networks or statistical models [22, 23]. Inter-

pretability means that users are able to understand the fuzzy system’s behavior by inspecting the

rule base [25], considering: (i) easily and reliably verify the acquired knowledge and to relate

it to user’s domain knowledge; (ii) facilitate debugging and improve the fuzzy model and the

related learning algorithm; (iii) validate the system, for its maintenance; (iv) convince the user

that the model’s behavior is reliable.

2.3 Evolutionary fuzzy systems

Several approaches have been proposed to generate the if-then fuzzy rules automatically from

numerical a data set. Due to the complexity of the problem, Evolutionary Computation [51] is

one of the most widely used techniques. Evolutionary computation makes use of a metaphor of

natural evolution. According to this metaphor, a problem plays the role of an environment where

lives a population of individuals, each representing a possible solution to the problem. The
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degree of adaptation of each individual to its environment is expressed by an adequacy measure

known as fitness function. Like evolution in nature, evolutionary algorithms potentially produce

progressively better solutions to the problem. The algorithms begin with a initial population of

random solutions and, in each iteration, the best individuals are selected and combined using

variation operators such as crossing and mutation to build the next generation. This process

is repeated until some stop criterion, typically when a number of iterations is reached. An

overview of evolutionary computation in medicine is shown in [52].

Evolutionary Computation has successfully been applied to learn fuzzy models [53–55],

leading to many complex algorithms, generally called evolutionary (or genetic) fuzzy systems

(EFS) [20, 21], which have been particularly applied to fuzzy classification [56]. An EFS is

a kind of hybrid system that melds the approximate reasoning method of fuzzy systems with

the adaptation capabilities of evolutionary algorithms. On the one hand, fuzzy systems have

demonstrated the ability to formalize in a computationally efficient manner the approximate

reasoning typical of humans. On the other hand, evolutionary algorithms constitute a robust

technique in complex optimization, identification, learning, and adaptation problems, including

classification. While in the past much attention has been paid to system accuracy, in recent years

an increasing number of papers have focused on a balance between interpretability and accuracy

[21, 26, 50, 57–60]. One of the current trends in the search of accurate and interpretable fuzzy

models is the use of multi-objective evolutionary algorithms (MOEAs) [27,29,30,61]. MOEAs

have proved to be very effective in searching for optimal solutions to problems that incorporate

competing multiple performance criteria, called Multi-objective Optimization Problem (MOP).

A MOP is formulated as a set of minimization/maximization problems of a tuple of n ob-

jectives functions f1 (x⃗) , . . . , fn (x⃗) where x⃗ is a vector of parameters belonging to a given

domain.

A set F of solutions for a MOP is not dominated (or Pareto optimal) if and only if for each

x⃗ ∈ F , there exists no y⃗ ∈ F for which: 1) there exists i (1 ≤ i ≤ n) so that fi (y⃗) improves

fi (x⃗), and 2) for every j, (1 ≤ j ≤ n, j ̸= i), fj (x⃗) does not improve fj (y⃗).

MOEAs are particularly suitable for multi-objective optimization [28,29], as they search for

multiple optimal solutions in parallel. MOEAs are capable of finding a set of optimal solutions

in its final population in a single run. Once the set of optimal solutions is available the most

satisfactory can be chosen by applying a preference criterion. Thus, the aim of a multi-objective

search algorithm is to discover a family of solutions that are a good approximation of the Pareto
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front. In the case of multi-objective EFS, each solution in the front represents an EFS with an

associated trade-off between accuracy and interpretability.

The first approaches involving multi-objective EFS for learning fuzzy rules appeared in the

late nineties of the last century [62–64]. In [63], a non-Pareto MOEA was used to minimize the

classification error and the number of rules. A three-objective EA for linguistic rule extraction

was proposed in [65] adding a new objective to the previous two-objective EA [63] to mini-

mize the length of the rules. As recognized in [66], the idea of using Pareto-based MOEAs to

optimize multiple objectives in fuzzy modeling was suggested in [62]. This theoretical work

was soon applied in [67,68] for function approximation and dynamic modeling in standard test

problems studied in the literature. In [64], a single objective genetic algorithm is used to mini-

mize the approximation error, complexity, sensitivity to noise and continuity of rules by means

of a weighted approach.

In [69], MOEAs are used to perform feature selection and fuzzy set granularity learning in

order to obtain compact and comprehensible FRBSs with high classification capacity. In [70],

MOEAs were used to select fuzzy rules after extracting a large number of candidate rules

by a heuristic approach. The goal is to find non-dominated subsets of candidate fuzzy rules

with respect to both accuracy maximization and complexity minimization. In [71] and [72],

sets of fuzzy rule bases are generated with different trade-offs between accuracy and complex-

ity/interpretability. Each rule is represented as a integer vector in which each integer represents

a fuzzy set, and a set of rules is represented by concatenating as many vectors as rules. In [73],

a two-objective MOEA is used to improve interpretability in Takagi-Sugeno-Kang (TSK) fuzzy

models. The algorithm minimizes the mean squared error and the similarity of the fuzzy sets.

A real parameter representation is used to encode Gaussian fuzzy sets and a multi-objective

extension of the pre-selection schema proposed in [51]. An explicit niche formation technique

is incorporated to ensure a minimum number of solutions for each number of rules. A rule

based simplification technique is used to simplify the rule set after crossing and mutation. TSK

fuzzy models are interpreted as radial basis function neural networks whose consequence pa-

rameters are trained with a gradient method after simplification. The obtained FRBS achieves

high accuracy with an acceptable degree of interpretability. In [74], a fuzzy modeling scheme

using evolutionary algorithms is proposed. In this scheme, a Non-Pareto multi-objective evo-

lutionary algorithm is applied twice in a batch process, in which similarity is first optimized

in combination with a rule-based simplification technique, before the accuracy is optimized.
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In [75], a MOEA is used to concurrently learn rule and data base of a FRBS. In this case, two

objectives are considered: the first measures the complexity as the sum of the input variable

labels used in each of the rules and the second corresponds to the mean square error. In [76],

fuzzy classifiers for imbalanced and cost-sensitive data sets are generated with a three objective

MOEA. The first and second objectives are sensitivity and specificity, which express, respec-

tively, how well the system classifies patterns belonging to the positive class and to the negative

class. The third objective is a complexity measure computed as the sum of the conditions that

compose the antecedents of the rules, which is minimized. In [77] a two-objective MOEA for

fuzzy modeling in high dimensional regression problems is described. The first objective is to

minimize the number of rules and the second objective is to minimize the mean square error.

A double coding scheme is used to represent both granularity and translation parameters and a

Wang and Mendel algorithm is considered for an ad hoc data-driven method to learn a rule base

from each data set definition within the evolutionary process by adding a cropping mechanism.

In [78], a decision support system is reported for assigning a liver from a donor to a recipient

on a waiting-list that maximizes the probability of belonging to the survival graft class after a

year of transplant and minimizes the probability of belonging to the non-survival graft class. A

multi-objective evolutionary algorithm is proposed to generate a Pareto front of neural network

models for survival classification. A rule based decision support system uses these models to

determine the best matching donor-recipient. Nevertheless, this proposal does not take into

account interpretability aspects of the models.

An overview, case study and suggestions for future research for Pareto-based multi-objective

machine learning are shown in [66, 79, 80].

2.4 Discussion of related works

In the reviewed literature, the combination of fuzzy logic, particularly fuzzy classification, with

evolutionary computation has been proved to be one of the most effective techniques in the

search for prediction models. Besides, rule-base fuzzy classification is very appropriate in

medicine since such models can be easily interpreted by physicians. However, the literature

offers a wide variety of EFS involving different methodologies. Two main groups of techniques

can be identified: single objective and multi-objective EFSs. Single objective EFSs usually

perform the modeling process by a batch execution of different evolutionary algorithms, each

of them specialized in a given process, e.g., model structure identification, linguistic fuzzy

9



partitions, tuning of the fuzzy sets, etc. The main disadvantage of these approaches is the loss

of information that occurs between one process and another. Multi-objective EFSs are therefore

more appropriate, as the optimization process is performed by a single algorithm in a global

search process. For this reason, we focus on multi-objective EFSs in this paper.

Within multi-objective EFSs, two main categories can be identified: one based on combi-

natorial optimization and the other on real parameter optimization. Combinatorial optimization

based EFSs identify the rule set by the combinatorial search for fixed input variable partitions,

where each partition has an associated linguistic label. The goal of these approaches is to im-

prove the accuracy of highly comprehensible descriptive fuzzy models. The first disadvantage

of these systems is the large number of evaluations needed to reach convergence when high

dimensional data sets are considered and therefore much time is required to generate the rule

base. Another disadvantage of these approaches is the lack of flexibility of the fixed input vari-

able partitions, which leads to obtain models that, despite being highly comprehensible, may

not be accurate enough. On the other hand, real parameter optimization based EFSs are more

efficient in the search for models with high dimensional data sets and they also perform a more

flexible search as they are not constrained by a fixed input variable partitions leading to high

accurate models. The goal of these approaches is to improve the interpretability of highly ac-

curate approximative fuzzy models and therefore these approaches usually need ad hoc rule

simplification techniques in order to obtain comprehensible models. We focus on this second

category of techniques as our goal is to learn highly accurate fuzzy systems with an accept-

able comprehensibility. Besides, it is well known that the power of evolutionary algorithms lies

in real parameter optimization. For combinatorial optimization, other non-linear optimization

techniques such as Branch-And-Bound, Monte Carlo, etc, may be more suitable.

In this paper we propose a Pareto-based elitist multi-objective evolutionary algorithm for

real parameter multi-objective constrained optimization to obtain accurate and comprehensible

fuzzy classifiers. This is a novel proposal that differs from all existing works.

3 A fuzzy classification methodology for mortality scoring

In this section, we propose a fuzzy classification methodology to classify input patterns with

both real and categorized data. The categorized data may have any number of classes. This

fuzzy classification methodology can be used specifically for the classification of mortality by
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infection in severe burn patients. Section 3.1 shows the general scheme used to obtain the fuzzy

classifier. Section 3.2 describes the fuzzy classifier model used in this work, identifying the

reasoning method and rule weight assignment. Finally, section 3.3 shows the multi-objective

constrained optimization model used in the optimization phase of the fuzzy classifiers. The

criteria and constraints taken into account in the optimization model are identified in order to

generate accurate and comprehensible fuzzy classifiers.

3.1 General scheme for fuzzy classification

In this section, we describe a general methodology for fuzzy classification that is graphically

illustrated in figure 1. The process starts by extracting instances of patients observed by a physi-

cian in a hospital. For each patient, input and output variable values are collected, and the data

set is built with this set of instances. Next, a MOEA, previously validated with a cross-validation

process, is run with a set of parameters supplied by both physician and decision maker. These

parameters are shown in table 7. The MOEA searches for fuzzy classifiers which maximize

the model classification rate and minimize the number of rules, subject to interpretability con-

straints, such as the fuzzy set similarity being below a given threshold, and the number of rules

being between a minimum and a maximum value. Given that the optimization problem is a

real parameter constrained MOP, the solution is composed of a set of Pareto-optimal single so-

lutions. A linguistic labeling process is performed over these solutions to assign a linguistic

label to each fuzzy set. Next, a decision-making process is performed over this set of solutions

in order to choose the most satisfactory solution. The decision-making process simultaneously

takes into account the satisfaction degree with respect to the accuracy and the interpretability

of the solutions. If a solution of the Pareto set satisfies both accuracy and interpretability, the

solution is shown as an output. In other cases, if no solution satisfies both criteria, the pro-

cess is started again with a new set of parameters. This process is repeated until a satisfactory

solution is found. In the following subsections, we show the fuzzy classifier model, the multi-

objective constrained optimization model and the characteristics of the two MOEAs proposed

in this paper.
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Figure 1: Proposed methodology for fuzzy classification.

3.2 A fuzzy classifier model

Let us consider a data set of N input datum ∆ = {d1, . . . , dN}. Each input data dk, (k =

1, . . . , N ) has the following form dk = (x⃗k, w⃗k, yk), where

• A vector of real input attributes x⃗k =
(
xk
1, . . . , x

k
p

)
, xk

i ∈ [li, ui] ⊂ ℜ, i = 1, . . . , p,

p ≥ 0, where li and ui are the lower and upper values for the real input attribute i, that is,

li = min
k=1,...,N

{
xk
i

}
and ui = max

k=1,...,N

{
xk
i

}
.

• A vector of integers for the categorized input attributes w⃗k =
(
wk

1 , . . . , w
k
q

)
, wk

i ∈

{1, . . . , vi}, i = 1, . . . , q, q ≥ 0, where vi > 1 is the number of classes for the cate-

gorized input attribute i.
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• An integer value for the categorized output attribute yk ∈ {1, . . . , z}, where z > 1 is the

number of classes for the categorized output attribute.

Note that a boolean input or output attribute can be represented by a categorized attribute wi

or y, so that vi = 2 or z = 2. It is also assumed that p+ q > 0.

Let us consider a fuzzy classifier Γ ∈ T formed by MΓ fuzzy rules RΓ
1 , . . . , R

Γ
MΓ

where

T is the space of all possible fuzzy classifiers. We assume that at least one rule should exist

for each of the z output classes, so that MΓ ≥ z. Besides, we assume that the number of

rules MΓ is limited by a lower value, Mmin ≥ z, and an upper value, Mmax ≥ Mmin, so that

z ≤ min ≤ MΓ ≤ max, where the values Mmin and Mmax are supplied by a physician. Each

fuzzy rule RΓ
j (j = 1, . . . ,MΓ) contains p fuzzy sets ÃΓ

ij (i = 1, . . . , p) associated to p real input

attributes, q integer values BΓ
ij ∈ {1, . . . , vi} (i = 1, . . . , q) associated to q categorized input

attributes, and an integer value CΓ
j ∈ {1, . . . , z} associated to the categorized output attribute.

The set of fuzzy rules RΓ
1 , . . . , R

Γ
MΓ

is usually called [20] rule base (RB).

Each fuzzy set ÃΓ
ij (i = 1, . . . , p) (j = 1, . . . ,MΓ) can be described by a membership

function µÃΓ
ij
: Xi → [0, 1], where Xi = [li, ui] ⊂ ℜ is the domain of the real input attribute xi.

In our model, we use, for suitability [81], gaussian membership functions:

µÃΓ
ij
(xi) = exp

−1

2

(
xi − aΓij

σΓ
ij

)2
 (1)

where aΓij ∈ ℜ is the center, and σΓ
ij ∈ ℜ is the variance. We assume aΓij ∈ [li, ui] ⊂ ℜ and

σΓ
ij ∈

[
ui−li
γ1

, ui−li
γ2

]
⊂ ℜ, with γ1 > γ2 > 0. In our case, we choose the values γ1 = 30 which

will lead to interpretable models with less than 7 linguistic labels (see section 4.8 for a detailed

explanation), and γ2 = 2 which ensures that at least 47.72% of any fuzzy set will be within the

variable domain. The set of membership functions µÃΓ
ij
: Xi → [0, 1] is usually called [20] data

base (DB).

A fuzzy rule RΓ
j , therefore, has the following structure:

RΓ
j : if x1 is ÃΓ

1j and . . . and xp is ÃΓ
pj and

w1 is BΓ
1j and . . . and wq is BΓ

qj

then y is CΓ
j

(2)

A fuzzy rule based classifier is composed of an RB and a DB, which is usually called [20]

knowledge base.
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Besides, a fuzzy rule based classifier is characterized by its reasoning method, which uses

the information from the rule to determine a class label for a specific input data. A classifier

is also characterized by a rule weight method. In our case, the weight of a rule RΓ
j , i.e., the

degree of certainty of the classification in the class CΓ
j for an input datum belonging to the

fuzzy subspace defined by the antecedent of the rule, is equal to 1 and for any other class

Ck ∈ {1, . . . , z} such as Ck ̸= CΓ
j , is equal to 0.

The firing degree (or matching degree) of a rule RΓ
j for an input datum (x⃗, w⃗) is the strength

of activation of the if-part of the rule, φΓ
j (x⃗, w⃗), calculated as:

φΓ
j (x⃗, w⃗) =

(
ϕΓ
j (w⃗) + 1

) p∏
i=1

µÃΓ
ij
(xi)

where ϕΓ
j (w⃗) is the number of integer input attributes, so that wj = BΓ

ij . The firing degree is

obtained by applying a t-norm product to the degree of satisfaction of the clauses xi is ÃΓ
ij

multiplied by the number of matches of the integer input data wi is BΓ
ij .

The degree of association of an input datum (x⃗, w⃗) and an output class C ∈ {1, . . . , z},

λΓ
C (x⃗, w⃗) is calculated by summing the firing degree φΓ

j (x⃗, w⃗) of each rule RΓ
j (j = 1, . . . ,MΓ)

whose value for the integer output attribute CΓ
j is equal to C, that is:

λΓ
C (x⃗, w⃗) =

∑
j = 1, . . . ,MΓ

CΓ
j = C

φΓ
j (x⃗, w⃗)

This degree of association λΓ
C (x⃗, w⃗) is a soundness degree of the classification of the input data

(x⃗, w⃗) in class C for the classifier Γ.

The classification for input data (x⃗, w⃗) or output of the classifier Γ, fΓ (x⃗, w⃗), corresponds

to the class C ∈ {1, . . . , z} whose degree of association λΓ
C (x⃗, w⃗) is maximum, that is:

fΓ (x⃗, w⃗) = argC
z

max
C=1

λΓ
C (x⃗, w⃗)

3.3 A multi-objective constrained optimization model for accurate and

comprehensible fuzzy classifiers

In this section, we propose the following optimization model that allows the identification of

both accurate and comprehensible fuzzy classifiers:
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Maximize CR (Γ,∆)

Minimize NR (Γ)

Subject to : MΓ ≥Mmin

MΓ ≤Mmax

S (Γ) ≤ gs

NL (Γ) ≤ Lmax

(3)

with the following boundary constraints:

aΓij ∈ [li, ui] ⊂ ℜ, i = 1, . . . , p , j = 1, . . . ,MΓ

σΓ
ij ∈

[
ui−li
γ1

, ui−li
γ2

]
⊂ ℜ, i = 1, . . . , p , j = 1, . . . ,MΓ

BΓ
ij ∈ {1, . . . , vi} , i = 1, . . . , q , j = 1, . . . ,MΓ

CΓ
j ∈ {1, . . . , z} , j = 1, . . . ,MΓ

(4)

The optimization model (3) is a two objective optimization problem with three constraints.

The first objective implements the accuracy criterion by maximizing the classification rate of

the classifier, CR (Γ). This value is calculated from the set of N input data as follows:

CR (Γ,∆) =
Φ (Γ,∆)

N

where Φ (Γ,∆) is the number of input data from ∆, dk = {x⃗k, w⃗k, yk} (k = 1, . . . , n) for which

fΓ (x⃗k, w⃗k) = yk.

The second objective implements the simplicity (or compactness) criterion by minimizing

the number of rules of the classifier, i.e.:

NR (Γ) = MΓ

Note that, by minimizing the number of rules MΓ, the number LΓ of different fuzzy sets

is also minimized. Besides, the model ensures that there are no repeated rules since a solution

with a repeated rule would be dominated by another solution without repeated rules.

The constraints MΓ ≤ Mmin and MΓ ≥ Mmax ensure that the number of rules of the fuzzy

classifier Γ is between a minimum Mmin and a maximum Mmax number.

The constraint S (Γ) ≤ gs is imposed to reach transparency by ensuring a minimum simi-

larity gs (0 < gs ≤ 1) between the fuzzy sets. To measure the degree of separation between the

fuzzy sets we use the similarity [82]. The similarity of a fuzzy classifier, S (Γ), is calculated as

the maximum similarity between different fuzzy sets in the following way:
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S (Γ) = max

j, k = 1, . . . ,MΓ

i = 1, . . . , p

ÃΓ
ij ̸= ÃΓ

ik

Sim(ÃΓ
ij , Ã

Γ
ik)

(5)

The similarity Sim between two different fuzzy sets Ã and B̃ can be measured by:

Sim(Ã, B̃) = max

{
|Ã ∩ B̃|
|Ã|

,
|Ã ∩ B̃|
|B̃|

}
(6)

Note that the similarity value of a classifier Γ represents the maximum value of overlapping

among their fuzzy sets for any input variable. The constraint S (Γ) ≤ gs ensures, therefore, that

there will not be two fuzzy sets for any input variable overlapped more than a gs value. In our

case, we choose a value gs = 0.1 which ensures a maximum overlapping of 10% between any

two fuzzy sets of the same variable.

Finally, the constraintNL (Γ) ≤ Lmax ensures that the maximum number of different fuzzy

sets for the classifier Γ, calculated as NL (Γ), is smaller than a given value Lmax. The value

NL (Γ) is calculated as:

NL (Γ) = max
i=1,...,p

ui − li
SΓ
i

where SΓ
i is the minimum distance between the centers of any two different fuzzy sets of

the classifier Γ for the i real input variable:

SΓ
i = min

j, k = 1, . . . ,MΓ

ÃΓ
ij ̸= ÃΓ

ik

∣∣aΓij − aΓik
∣∣,

4 Multi-objective evolutionary algorithm for learning fuzzy

classifiers

We propose an evolutionary learning system to search for multiple Pareto-optimal solutions

(classifiers) simultaneously, taking into account criteria of accuracy and comprehensibility ac-

cording to the multi-objective constrained optimization model (3). In this section, the main

components of the proposed evolutionary algorithm are described. These components are the
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Common characteristics

Pareto-based elitist multi-objective evolutionary algorithms.

Variable-length representation with real and categorized input variables with a Pittsburgh approach.

Handling constraints using a repair algorithm.

Adaptive variation operators.

Specific characteristics

Niched pre-selection: Steady-state substitution (n = 2), explicit niche formation technique.

ENORA: Ordering solutions by non-domination level of the individual in its niche and density.

NSGA-II: Ordering solutions by non- domination level of the individual in the population and density.

Table 1: Common and specific characteristics of niched pre-selection, ENORA and NSGA-II.

solution representation, constraints handling, initial population and variation operators. With

these common components, we study three elitist Pareto-based multi-objective evolutionary al-

gorithms with different selection, sampling and generational replacement techniques, namely

niched pre-selection, ENORA and NSGA-II. The niched pre-selection technique was initially

developed by the authors for function approximation and dynamic modeling with TSK fuzzy

models [73]. The ENORA technique was also proposed by the authors for multi-objective con-

strained real parameter optimization in [83]. NSGA-II is the well known technique proposed

in [29] which was also initially developed for real parameter optimization in multi-objective

constrained optimization problems. Table 1 resumes both common and specific components of

these algorithms.

4.1 Representation of solutions and evaluation

We use a length-variable representation involving the codification of real and discrete numbers,

using the Pittsburgh approach [63]. Each individual I of a population contains a variable number

of rules MI . Each rule RI
j , j = 1, . . . ,MI codifies the following components:

• The fuzzy sets ÃI
ij associated to the real input attributes xi, i = 1, . . . , p, by means of real

numbers aIij ∈ [li, ui] and σI
ij ∈

[
ui−li
γ1

, ui−li
γ2

]
, which define the centers and variances,

respectively.

• The discrete values associated to the categorized input attributes wi, i = 1, . . . , q, by

means of integer numbers bIij ∈ {1, . . . , vi}.
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Parameters for the codification of the fuzzy set rules.

Rules Centers of fuzzy sets Variances of fuzzy sets Categorized inputs Outputs

RI
1 = aI11 aI21 . . . aIp1 σI

11 σI
21 . . . σI

p1 bI11 bI21 . . . bIq1 cI1

RI
2 = aI12 aI22 . . . aIp2 σI

12 σI
22 . . . σI

p2 bI12 bI22 . . . bIq2 cI2
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...

RI
MI

= aI1MI
aI2MI

. . . aIpMI
σI
1MI

σI
2MI

. . . σI
pMI

bI1MI
bI2MI

. . . bIqMI
cIMI

Parameters to carry out adaptive crossing and mutation.

dI = Associated crossing.

eI = Associated mutation.

eIc = Amplitude of the mutation of the centers of the fuzzy sets.

eIv = Amplitude of the mutation of the variations of the fuzzy sets.

Table 2: Chromosome coding for an individual I .

• The discrete value associated to the categorized output attribute by means of an integer

number cIj ∈ {1, . . . , z}.

Additionally, to carry out adaptive crossing and mutation, each individual has two discrete

parameters dI ∈ {0, . . . , δ} and eI ∈ {0, . . . , ϵ} associated to crossing and mutation, where

δ ≥ 0 is the number of crossing operators and ε ≥ 0 is the number of mutation operators. In

order to perform adapting mutation, there are also two real parameters eIc , e
I
v ∈ [0, 1] that define

the amplitude of the mutation of the centers and variances of the fuzzy sets, respectively. Table

2 summarizes the chromosome coding for an individual I .

An individual I is evaluated with two fitness functions, f I
1 and f I

2 , corresponding to the two

objectives of the multi-objective constrained optimization model (3):

f I
1 = CR (ΓI ,∆)

f I
2 = NR (ΓI)

(7)

where ΓI is the fuzzy model represented by the individual I .

4.2 Handling constraints

We use problem-specific knowledge for constraints handling. The first two constraints, MΓ ≤

Mmin and MΓ ≥ Mmax, are satisfied by means of a specialized initialization procedure and

variation operators which always generate individuals with a number of rules (MI) between

Mmin and Mmax. The constraints S (Γ) ≤ gs and NL (Γ) ≤ Lmax are more difficult to satisfy.
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To fulfil these constraints, we propose a repair algorithm. These algorithms are very popular

techniques in evolutionary computation for constraints handling [84], and they use problem-

specific knowledge to transform unfeasible individuals into feasible ones.

Algorithm 1 shows the proposed repair method. In this algorithm, fuzzy sets are first joined

(steps 7 to 8), merged (steps 11 to 14) or separated (step 17) in order to make any difference

between fuzzy sets greater than the minimum allowed; to obtain classifiers with a maximum

number of fuzzy sets Lmax, the minimum separation between fuzzy sets for input real variable i

must be Si ← ui−li
Lmax

. Following the variance of the fuzzy sets is reduced (steps 24 to 25), when

needed, in order to get a maximum similarity smaller than the gs threshold allowed so that the

constraint S (Γ) ≤ gs is satisfied. Finally, the algorithm searches for identical rules from the

rule set, which are then removed (steps 30 to 32). Notice that, for a given similarity threshold

of gs and a minimum separation Si established by a maximum number of fuzzy sets Lmax, a

minimum variance σi is established and therefore γ1 parameter must be established to ensure

that this value σi is greater than the minimum variance ui−li
γ1

. In our case, for a value gs = 0.1

and a Lmax = 7, it is necessary to set γ1 = 30.

Algorithm 1 is an improvement of the rule base simplification algorithm proposed in [82].

In our algorithm the fuzzy sets are merged and separated while in the algorithm proposed in [82]

the fuzzy sets are only merged.

For the sake of illustration, we consider a fictitious problem with a single real input variable

with domain in [0, 10], and a boolean output variable. The Repair algorithm is executed with a

similarity threshold gs = 0.1 and Lmax = 7. Table 3 shows, on the left hand side, a non-feasible

classifier with 6 rules, 6 fuzzy sets and similarity S = 0.996 > gs = 0.1. During the repair

process, fuzzy set Ã12 is separated from fuzzy set Ã11 the minimum distance 1.43 and fuzzy

sets Ã15 and Ã16 is merged into a single fuzzy set Ã′15; following the variance of the fuzzy sets

are narrowed, when needed, in order to achieve a similarity smaller than the minimum allowed.

With this process, the new rules R′5 and R′6 are alike and therefore R′6 is erased. After the

repair algorithm, the new classifier has 5 rules, 5 fuzzy sets and a similarity S = 0.094 and can

therefore be considered a feasible classifier (S = 0.098 ≤ gs = 0.1). Table 4 shows a more

complex example for the same problem with an initial non-feasible classifier with 10 rules, 10

fuzzy sets and S = 0.997 > gs = 0.1. In this case, during the repair fuzzy, multiple fuzzy sets

are separated and merged and multiple rules are removed. After the repair algorithm, a feasible

classifier with 6 rules, 5 fuzzy sets and S = 0.074 ≤ gs = 0.1 is obtained.
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Algorithm 1 Repair method
Require: gs (0 < gs < 1) {Threshold value for similarity}

Require: Mmin (Mmin > 0) {Minimum number of rules}

Require: Lmax (Lmax > 0) {Maximum number of fuzzy sets}

Require: I {Individual to repair.}

{RI
j , j = 1, . . . ,MI : Rules of the model for individual I}

{ÃI
ij , i = 1, . . . , p, j = 1, . . . ,MI : Fuzzy sets for the real input variables}

{aIij , i = 1, . . . , p, j = 1, . . . ,MI : Real values of fuzzy sets centers for the real input variables}

{σI
ij , i = 1, . . . , p, j = 1, . . . ,MI : Real values of fuzzy sets variances for the real input variables}

1: for i = 1 to p do

2: Order ÃI
ij so that aIij ≤ aIij+1, j = 1, . . . ,MI − 1

{Make separation between any fuzzy sets centers greater than minimum allowed}

3: Si ← ui−li
Lmax

{Minimum separation between fuzzy sets centers for i real input variable}

4: for j = 1 to MI − 1 do

5: if ÃI
ij+1 ̸= ÃI

ij then

6: if
(
aIij+1 − aIij < 0

)
{Join ÃI

ij and ÃI
ij+1} then

7: σI
ij ← max

(
σI
ij , σ

I
ij+1

)
8: ÃI

ij+1 ← ÃI
ij

9: end if

10: if
(
aIij+1 − aIij ≥ 0

)
and

[(
aIij+1 − aIij < Si

2

)
or

(
aIij + Si > ui

)]
{Merge ÃI

ij and ÃI
ij+1} then

11: θ ←
σI
ij

σI
ij+σI

ij+1

12: aIij ← θaIij + (1− θ) aIij+1

13: σI
ij ← max

(
σI
ij , σ

I
ij+1

)
14: ÃI

ij+1 ← ÃI
ij

15: end if

16: if
(

Si
2
≤ aIij+1 − aij < Si

)
and

(
aIij + Si ≤ ui

)
{Separate ÃI

ij+1 from ÃI
ij} then

17: aIij+1 ← aIij + Si

18: end if

19: end if

20: end for

{Reduce variance of fuzzy sets with similar greater than η}

21: for j = 1 to MI − 1 do

22: if ÃI
ij+1 ̸= ÃI

ij{Reduce variance of ÃI
ij and ÃI

ij+1} then

23: while Sim
(
ÃI

ij , Ã
I
ij+1

)
> gs do

24: σI
ij ← 0.9σI

ij

25: σI
ij+1 ← 0.9σI

ij+1

26: end while

27: end if

28: end for

29: end for

{Remove identical rules}

30: while MI > Mmin and exists j, k = 1, . . . ,MI so that RI
j = RI

k do

31: Remove RI
k

32: end while
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x1 y

R1 : Ã11 = (1.0; 2.0) 1

R2 : Ã12 = (2.0; 1.0) 1

R3 : Ã13 = (4.0; 3.0) 1

R4 : Ã14 = (6.0; 4.0) 1

R5 : Ã15 = (9.0; 3.0) 2

R6 : Ã16 = (9.5; 4.0) 2
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Initial Classifier:

6 rules. 6 fuzzy Sets. S = 0.996.

x1 y

R′
1 : Ã′

11 = (1.0; 0.5) 1

R′
2 : Ã′

12 = (2.4; 0.3) 1

R′
3 : Ã′

13 = (4.0; 0.3) 1

R′
4 : Ã′

14 = (6.0; 0.3) 1

R′
5 : Ã′

15 = (9.3; 1.3) 2
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Classifier after repair algorithm:

5 rules. 5 fuzzy sets. S = 0.098.

Table 3: Example of repair algorithm (η = 0.1, Lmax = 7). Two fuzzy sets have been split; two

fuzzy sets have been merged and a rule has been removed.
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x1 y

R1 : Ã11 = (0.0; 5.0) 1

R2 : Ã12 = (10.0; 5.0) 1

R3 : Ã13 = (6.0; 3.5) 2

R4 : Ã14 = (2.0; 3.0) 1

R5 : Ã15 = (1.0; 1.5) 1

R6 : Ã16 = (9.0; 1.5) 2

R7 : Ã17 = (6.5; 2.5) 2

R8 : Ã18 = (4.0; 3.5) 1

R9 : Ã19 = (8.5; 2.0) 2

R10 : Ã110 = (1.5; 2.0) 1
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Initial classifier:

10 rules. 10 fuzzy sets. S = 0.997.

x1 y

R′
1 : Ã′

11 = (0.0; 0.6) 1

R′
2 : Ã′

12 = (9.6; 1.3) 1

R′
3 : Ã′

13 = (1.8; 0.3) 1

R′
4 : Ã′

14 = (6.2; 0.3) 1

R′
5 : Ã′

15 = (4.0; 0.3) 1

R′
6 : Ã′

16 = (6.2; 0.3) 2
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Classifier after repair algorithm:

6 rules. 5 fuzzy sets. S = 0.074.

Table 4: Example of repair algorithm (η = 0.1, Lmax = 7). Multiple fuzzy sets have been split

and mixed and multiples rules have been erased.
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4.3 Initial population

The initial population (algorithm 2) is randomly generated with the following conditions:

• The individuals are uniformly distributed with respect to the number of rules with values

between Mmin and Mmax (steps 8 to 13). This ensures a proper initial diversity in the

second objective of the optimization model.

• All individuals contain at least one rule for any output value between 1 and z (steps 23 to

27).

• The rest of parameters are randomly generated within its domain.

• The repair method (algorithm 1) is applied to all individuals in order to satisfy the con-

straints (step 33).

4.4 Variation operators

Evolutionary computation uses probabilistic transition rules to transform the populations in or-

der to exploit and explore the search space. They use random choice as a tool to find search

space regions of likely improvement. These mechanisms have the form of variation operators

that work over two individuals, making a crossover between them, or over one individual, mu-

tating it. In order to obtain a proper exploration of the search space, the variation operators

have to work at the different levels of the individuals. In our case, as the individuals represent

fuzzy set classifiers, the variation operators can operate at rule level or at fuzzy set level. Fur-

thermore, we use adaptive probabilities of crossover and mutation to realize the twin goals of

maintaining diversity in the population and sustaining the convergence capacity of the evolu-

tionary algorithm. In an adaptive evolutionary algorithm [85], the probabilities of crossover and

mutation varies depending on the fitness value of the solutions. By using adaptive probabilities

of variation operators, it is not necessary to set a priori the probabilities of application of the

different operators. We use three crossover operators and five mutation operators which work

on different levels of the fuzzy classifier. The selection of the operators is made by means of the

adaptive technique that uses parameters dI and eI to indicate which crossover and mutation is

carried out to the individual I . This technique for crossing and mutation is shown in algorithms

4 and 5 respectively. Additionally, adapting mutation is performed by using the real parameters
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Algorithm 2 Initialize population
Require: li,ui (li < ui), i = 1, . . . , p {Lower and upper limits for the i real input variable}

Require: vi > 1, i = 1, . . . , q {Number of classes for the i categorized input variable}

Require: z > 1, {Number of classes for the categorized output variable}

Require: γ1, γ2 (γ1 > γ2 > 0) {Minimum and maximum variance parameter}

Require: δ > 0 {Number of crossing operators}

Require: ϵ > 0 {Number of mutation operators}

Require: Mmin,Mmax (z ≤Mmin ≤Mmax) {Minimum and maximum number of rules}

Require: N ≥ z {Number of individuals in the population}

1: P ← Empty Population

2: for i = 1 to p do

3: αi ← ui−li
γ1
{Lower limit for variance for i real input variable}

4: βi ← ui−li
γ2
{Upper limit for variance for i real input variable}

5: end for

6: for index = 1 to N do

7: I ← new Individual

8: nClasses←Mmax −Mmin + 1

9: if index ≤ N
nClasses

then

10: MI ← (index mod nClasses) + 1

11: else

12: MI ← Int Random(0,Mmax)

13: end if

{Random rule RI
j}

14: for j = 1 to MI do

15: {Random fuzzy set ÃI
ij}

16: for i = 1 to p do

17: aIij ← Real Random(li,ui)

18: σI
ij ← Real Random(αi,βi)

19: end for

{Random Discrete Input variables}

20: for i = 1 to q do

21: bIij ← Int Random(1,vi)

22: end for

{Random Discrete Output variable}

23: if j < z then

24: cIj = j

25: else

26: cIj ← Int Random(1,z)

27: end if

28: end for

{Random Discrete and Real parameters for adaptive variation}

29: dI ← Int Random(0,δ)

30: eI ← Int Random(0,ϵ)

31: eIc ← Real Random(0,1)

32: eIv ← Real Random(0,1)

33: Repair I

34: Add I to population P

35: end for

36: return P
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eIc and eIv that define the amplitude of the mutation of the centers and variances of the gaussian

fuzzy sets, respectively, as algorithms 9 and 10 show.

Algorithm 3 is used to generate two children from two parents by adaptive crossing, adaptive

mutation and repair.

Algorithm 3 Variation
Require: Parent1, Parent2 {Individuals to vary}

1: Child1← Parent1

2: Child1← Parent2

3: Adaptive crossover Child1, Child2

4: Adaptive mutation Child1

5: Adaptive mutation Child2

6: Repair Child1

7: Repair Child2

8: return Child1, Child2

Algorithm 4 Adaptive crossover
Require: I , J {Individuals to cross}

Require: pv (0 < pv < 1) {Probability of variation}

Require: δ > 0 {Number of different crossover operators (δ = 3 in our case)}

1: if A random Bernoulli variable of probability pv takes the value 1 then

2: dI ← Int Random(0,δ)

3: end if

4: dJ ← dI

5: Carry out the type of crossover specified by dI :

{0: No cross}

{1: Fuzzy set crossover}

{2: Rule crossover}

{3: Rule incremental crossover}

The following sections describe the different each of the crossover and mutation operators.

4.4.1 Fuzzy set crossover

Given two individuals, I and J , this operator exchanges two fuzzy sets randomly selected from

the two individuals (algorithm 6).

4.4.2 Rule crossover

Given two individuals, I and J , this operator exchanges two rules randomly selected from the

two individuals (algorithm 7).
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Algorithm 5 Adaptive mutation
Require: I {Individual to mutate}

Require: pv (0 < pv < 1) {Probability of variation}

Require: ϵ > 0 {Number of different mutation operators (ϵ = 5 in our case, ϵ = 4 if there were no discrete input variables)}

1: if A random Bernoulli variable of probability pv takes the value 1 then

2: eI ← Int Random(0,ϵ)

3: end if

4: Carry out the type of mutation specified by eI :

{0: No mutation}

{1: Gaussian set center mutation}

{2: Gaussian set variance mutation}

{3: Fuzzy set mutation}

{4: Rule incremental mutation}

{5: Integer mutation}

Algorithm 6 Fuzzy set crossover
Require: I , J {Individuals to cross}

Require: p > 0 {Number of real input variables}

1: i← Int Random(0,p)

2: j ← Int Random(0,MI )

3: k ← Int Random(0,MJ )

4: Exchange fuzzy sets ÃI
ij and ÃJ

ik

Algorithm 7 Rule crossover
Require: I , J {Individuals to cross}

1: j ← Int Random(0,MI )

2: k ← Int Random(0,MJ )

3: Exchange rules RI
j and RJ

k
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4.4.3 Rule incremental crossover

Given two individuals, I and J , this operator adds to each individual a rule randomly selected

from the other individual if its number of rules is less than the maximum number of rules

(algorithm 8):

Algorithm 8 Rule incremental crossover
Require: I , J {Individuals to cross}

Require: Mmax > 1 {Maximum number of rules}

1: if MI < Mmax then

2: j ← Int Random(0,MJ )

3: add RJ
j to individual I

4: end if

5: if MJ < Mmax then

6: i← Int Random(0,MI )

7: Add RI
i to individual J

8: end if

4.4.4 Gaussian set center mutation

Given an individual I , this operator carries out the mutation of the center of a fuzzy set randomly

selected from the individual. Additionally, all the fuzzy sets which are equal to the selected

fuzzy set, are mutated in the same way (algorithm 9).

Algorithm 9 Gaussian set center mutation
Require: I {Individual to mutate}

Require: li,ui (li < ui), i = 1, . . . , p {Low and Upper limits for i real input variable}

Require: pv (0 < pv < 1) {Probability of variation}

1: if A random Bernoulli variable of probability pv takes the value 1 then

2: eIc ← Int Random(0,1)

3: end if

4: i← Int Random(0,p)

5: j ← Int Random(0,MI )

6: ζ ← Real Random(0,1)

7: a← aIij + eIc

(
li + ζ (ui − li)− aIij

)
8: for k = 1 to MI do

9: if k ̸= j and aIik = aIij then

10: aIiK ← a

11: end if

12: end for

13: aIij ← a
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4.4.5 Gaussian set variance mutation

Given an individual I , this operator carries out the mutation of the variance of a fuzzy set

randomly selected from the individual. Additionally, all the fuzzy sets which are equal to the

selected fuzzy set, are mutated in the same way (algorithm 10).

Algorithm 10 Gaussian set variance mutation
Require: I {Individual to mutate}

Require: li,ui (li < ui), i = 1, . . . , p {Low and Upper limits for i real input variable}

Require: γ1, γ2 (γ1 > γ2 > 0) {Minimum and maximum variance parameter}

Require: pv (0 < pv < 1) {Probability of variation}

1: if A random Bernoulli variable of probability pv takes the value 1 then

2: eIv ← Int Random(0,1)

3: end if

4: i← Int Random(0,p)

5: j ← Int Random(0,MI )

6: ζ ← Real Random(0,1)

7: αi =
ui−li
γ1

8: βi =
ui−li
γ2

9: σ ← σij + ev (αi + ζ (βi − αi)− σij)

10: for k = 1 to MI do

11: if k ̸= j and σI
ik = σI

ij then

12: σI
ik ← σ

13: end if

14: end for

15: σI
ij ← σ

4.4.6 Fuzzy set mutation

Given an individual I , this operator exchanges two fuzzy sets randomly selected from the indi-

vidual (algorithm 11).

Algorithm 11 Fuzzy set mutation
Require: I {Individual to mutate}

Require: p > 0 Number of real input variables

1: i← Int Random(0,p)

2: j ← Int Random(0,MI )

3: k ← Int Random(0,MI )

4: ÃI
ij ← ÃI

ik
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4.4.7 Rule incremental mutation

Given an individual I , this operator adds a new rule to the individual if the number of rules of I

is less than the maximum number of rules (algorithm 12).

Algorithm 12 Rule incremental mutation
Require: I {Individual to mutate}

Require: Mmax {Maximum number of rules}

1: if MI < Mmax then

2: Add a new random rule to I

3: end if

4.4.8 Integer mutation

Given an individual I , this operator carries out the uniform mutation of an integer random

selected value from the individual (algorithm 13).

Algorithm 13 Integer mutation
Require: I {Individual to mutate}

Require: vi > 1, i = 1, . . . , q {Number of values for i categorized input variable}

1: i← Int Random(0,q)

2: j ← Int Random(0,MI )

3: bIij ← Int Random(1,vi)

4.5 Niched pre-selection algorithm

The pre-selection mechanism [86] was one of the first efforts to induce niched-like behavior in

evolutionary algorithms. In this scheme, an offspring replaces the parent if the offspring’s fitness

exceeds that of the inferior parent. In this way, diversity is maintained because individuals

replace individuals similar to themselves (one of their parents). This technique is, implicitly, a

niche formation technique and also an elitist strategy [51].

We propose an adaptation of the pre-selection scheme for multi-objective optimization prob-

lems. An explicit niche formation technique is incorporated to improve the diversity of indi-

viduals of the population. The search space is divided into n niches so that an individual I

belongs to a niche N (I) ∈ {1, . . . , n}. The explicit niche formation technique ensures that

the number of individuals in each niche is greater than or equal to NSmin and smaller than or

equal to NSmax. That is, given a population P and n niches, the following diversity property is
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satisfied:

∀i ∈ {1, . . . , n} , NSmin ≤ NC (P, i) ≤ NSmax (8)

where NC (P, i) (niche count) is the number of individuals of the population P so that they

belong to niche i, i.e., N (I) = i.

To solve the multi-objective optimization problem of the model (3), we use a number of

niches n = Mmax−Mmin+1 and an individual I belongs to the nicheN (I) determined by its

number of rules MI as follows:

N (I) = MI −Mmin + 1 (9)

In this way, for each number of rules i ∈ {Mmin, . . . ,Mmax}, the number of individuals of

the population with i rules is between NSmin and NSmax.

The selection and generational replacement process is the following (algorithm 14): two

individuals, Parent1 and Parent2, are randomly selected from the population P . These in-

dividuals are crossed and mutated NC (number of children pairs) times, where NC > 0 is

an algorithm parameter, producing two groups of NC individuals. A random non-dominated

individual of the first group, Best1, replaces Parent1 if Best1 dominates Parent1 and the di-

versity property (8) is satisfied for population P −{Parent1}
∪
{Best1}. Similarly, a random

non-dominated individual of the second group, Best2, replaces Parent2 if Best2 dominates

Parent2 and the diversity property (8) is satisfied for population P − {Parent2}
∪
{Best2}.

4.6 ENORA: Elitist Pareto-based multi-objective evolutionary algorithm

for diversity reinforcement

ENORA is an elitist Pareto-based multi-objective evolutionary algorithm that uses a (µ+ λ)

survival. The (µ+ λ) survival, where µ corresponds to the population size popsize and λ refers

to the number of children created, was originally developed in [87] as an Evolution Strategy,

using selection, adapting mutation and a population of size one, called (1 + 1) − ES. Re-

combination and populations with more than one individual were later introduced in [88]. The

(µ+ λ) technique allows the µ best children and parents to survive and is, therefore, an elitist

method. ENORA uses a (µ+ λ) survival with µ = λ = popsize, binary tournament selection,

recombination and adapting mutation for multi-objective evolutionary optimization (algorithm

15).

30



Algorithm 14 Niched pre-selection algorithm for multi-objective optimization
Require: T > 1 {Number of iterations}

Require: N > 1 {Number of individuals in the population}

Require: NC > 0 {Number of children}

Require: NSmin, NSmax (0 < NSmin < NSmax) {Minimum and maximum size of niche}

1: Initialize P with N individuals

2: Evaluate all individuals of P

3: t← 0

4: while t < T do

5: Parent1← Random Selection from P

6: Parent2← Random Selection from P

7: Best1← Parent1

8: Best2← Parent2

9: i← 0

10: while i < NC do

11: Child1, Child2← Variation Parent1, Parent2

12: Evaluate Child1

13: Evaluate Child2

14: if Child1 dominates Best1 and P − {Best1}
∪
{Child1} satisfies the diversity property (8) then

15: P ← P − {Best1}
∪
{Child1}

16: Best1← Child1

17: end if

18: if Child2 dominates Best2 and P − {Best2}
∪
{Child2} satisfies the diversity property (8) then

19: P ← P − {Best2}
∪
{Child2}

20: Best2← Child2

21: end if

22: i← i+ 1

23: end while

24: t← t+ 1

25: end while

26: return Non dominated individuals from P

31



Algorithm 15 implements a (µ+ λ) strategy for multi-objective optimization. The algo-

rithm begins with the initialization and evaluation of a population P of N individuals.

For each of the T generations, a pair of parents are selected by a Binary Tournament Selec-

tion from the population P (algorithm 16). This selection algorithm returns the best from two

random individuals according to the Rank-Crowding-Better Function (algorithm 17). With this

function, an individual I is better than an individual J if its rank is better (lower) than the rank

of individual J in the population P . The rank of an individual I in a population P , rank (P, I),

is the non-domination level of the individual I among the individuals J of the population P so

that slot (I)=slot (J), where the slot function is calculated according to equation (10) where

d =
⌊

n−1
√
N
⌋

and hI
j is the objective function f I

j normalized in [0, 1].

slot (I) =
n−1∑
j=1

dj−1⌊d
αI
j

π/2
⌋

αI
j =


π
2

if hI
j = 0

arctan(
hI
j+1

hI
j
) if hI

j ̸= 0

(10)

If two individuals have the same rank, the best individual is the individual with the greater

crowding distance. The crowding distance of an individual I in a population P is a measure

of the search space around individual I which is not occupied by any other individual in the

population P . This quantity serves as an estimate of the perimeter of the cuboid formed by

using the nearest neighbors as the vertices. The crowding distance is calculated as follows:

crowding distance (P, I) =



∞, if f i
j = fmax

j or f i
j = fmin

j for any j

n∑
j=1

f
supIj
j − f

infI
j

j

fmax
j − fmin

j

, in other case

(11)

where fmax
j = max

I∈P

{
f i
j

}
, fmin

j = min
I∈P

{
f i
j

}
, f

supIj
j is the value of the jth objective for the

individual higher adjacent in the jth objective to the individual I , and f
infI

j

j is the value of the

jth objective for the individual lower adjacent in the jth objective to the individual I .

The selected pair of parents is crossed, mutated, repaired, evaluated and added to an ini-

tially empty auxiliary population Q. This process is repeated until Q contains a number N of

individuals. An auxiliary population R is obtained with the union of the populations P and Q.

Next, the rank of all individuals in the population R is calculated (algorithm 17). Finally, the N

32



best individuals of R according to the Rank-Crowding Better Function (algorithm 17) survive

to the next generation.

Algorithm 15 (µ+ λ) strategy for multi-objective optimization
Require: T > 1 {Number of iterations}

Require: N > 1 {Number of individuals in population}

1: Initialize P with N individuals

2: Evaluate all individuals of P

3: t← 0

4: while t < T do

5: Q← ∅

6: i← 0

7: while i < N do

8: Parent1← Binary tournament selection from P

9: Parent2← Binary tournament selection from P

10: Child1, Child2← Variation Parent1, Parent2

11: Evaluate Child1

12: Evaluate Child2

13: Q← Q
∪
{Child1, Child2}

14: i← i+ 2

15: end while

16: R← P
∪

Q

17: P ←N Best individuals from R according to the Rank-crowding better function in population R

18: t← t+ 1

19: end while

20: return Non dominated individuals from P

Algorithm 16 Binary tournament selection
Require: P {Population}

1: I ← Random selection from P

2: J ← Random selection from P

3: if I is better than J according to the Rank-crowding better function in population P then

4: return I

5: else

6: return J

7: end if

4.7 NSGA-II: elitist non-dominated sorting genetic algorithm

NSGA-II [29] is an elitist Pareto-based multi-objective evolutionary algorithm which improves

the previous NSGA algorithm by incorporating an explicit diversity technique. NSGA-II is,

perhaps, one of the most used Pareto-based multi-objective evolutionary algorithms described

in the literature.
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Algorithm 17 Rank-crowding better function
Require: P {Population}

Require: I, J {Individuals to compare}

1: if rank (P, I) < rank (P, J) then

2: return True

3: end if

4: if rank (P, J) < rank (P, I) then

5: return False

6: end if

7: return crowding distance (P, I) > crowding distance (P, J)

NSGA-II uses, as ENORA, a (µ+ λ) strategy (algorithm 15) with a binary tournament

selection (algorithm 16) and a rank crowding better function (algorithm 17). The difference

between NSGA-II and ENORA is how the calculation of the rank of the individuals in the

population is performed. In ENORA, the rank of an individual in a population is the non-

domination level of the individual in its slot, whereas in NSGA-II the rank of an individual in a

population is the non-domination level of the individual in all the population.

4.8 Linguistic labeling

The next step in the modeling process is to associate of fuzzy sets with linguistic labels that

are easily interpretable. To do this, we propose using algorithm (18) for linguistic labeling.

As inputs this algorithm requires the classifier fuzzy sets Ãij = (aij, σij), i = 1, . . . , p, j =

1, . . . ,M and the variable domains [ui, li], i = 1, . . . , p. The output of the algorithm is the set

of linguistic labels assigned to each fuzzy set. For each variable xi, i = 1, . . . , p, the number of

linguistic labels Ni is equal to the maximum number of fuzzy sets, identified by Lmin = ui−li
Si

,

if the number of different fuzzy sets for that variable is greater than one; if there is only one

different fuzzy set for that variable, the number of linguistic labels Ni for that variable is equal

to 1.

When there is only one different fuzzy set for the i variable and the value Ni is equal to 1,

the condition xi is Ãij, j = 1, . . . ,M , denoted as don’t care condition in the literature [63],

does not affect the computation of the activation degree. In other words, the variable xi is not

taken into account for the classifier.

The labeling algorithm identifies a set of Ni linguistic labels, namely Lik, and its center

values Cik, k = 1, . . . , Ni. Eventually, each fuzzy set Ãij is associated with the linguistic label

Lij which minimizes the distance between the centers Cik and aij , k = 1, . . . , Ni.
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Algorithm 18 Linguistic labeling algorithm
Require: Ãij = (aij , σij), i = 1, . . . , p, j = 1, . . . ,M

Require: li,ui (li < ui), i = 1, . . . , p {Low and Upper limits for i real input variable}

1: for i = 1 to p do

2: if There is only one different fuzzy set for i real input variable then

3: Ni ← 1

4: else

5: Si ← min

j = 1, . . . ,M

k = 1, . . . ,M

Ãij ̸= Ãik

|aij − aik|

6: Ni ← max
(
2,

⌈
ui−li
Si
− 0.5

⌉)
7: end if

8: switch (Ni)

9: case 1: Li ← {DCC} {Don’t care condition}

10: case 2: Li ← {L,H}

11: case 3: Li ← {L,M,H}

12: case 4: Li ← {L,ML,MH,H}

13: case 5: Li ← {L,ML,M,MH,H}

14: case 6: Li ← {V L,L,ML,MH,H, V H}

15: case 7: Li ← {V L,L,ML,M,MH,H, V H}

16: end switch

17: for k = 1 to Ni do

18: Cik ← li + (k − 0.5) ui−li
Ni

19: end for

20: for j = 1 to M do

21: l← argk
Ni

min
k=1
|aij − Cik|

22: LABELij ← Lil

23: end for

24: end for

25: return LABELij , i = 1, . . . , p, j = 1, . . . ,M
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4.9 Decision-making process

Let S = {s1, . . . , sD} be the set of non-dominated solutions so that CR (si) ≥ CRmin, (i =

1, . . . , D), where CRmin is the minimum classification rate acceptable by the decision maker.

In the decision-making process (algorithm 19), the most accurate solution is chosen. If this

solution is easily interpretable (transparent and compact), then the solution is shown as output.

In any other case, the chosen solution is rejected and the process is repeated until a satisfactory

solution is found. In this last case, a new run of the MOEA is required with a greater minimum

variance parameter.

Algorithm 19 Decision-making algorithm
Require: S = {s1, . . . , sD} {Set of non-dominated solutions}

Require: CRmin {Minimum acceptable classification rate}

Require: Mmax {Maximum acceptable number of rules}

1: Remove from S all solutions si such that CR (si) < CRmin

2: while S ̸= ∅ do

3: Select si with greatest CR (si) {Most accurate solution si}

4: ifNR (si) ≤Mmax and LABEL (si) ̸= ∅{si sufficiently interpretable} then

5: return si

6: else

7: Remove si from S

8: end if

9: end while

10: return EMPTY SOLUTION {There is no satisfactory solution}

5 Experiments and results

In this section, two data sets have been used to carry out the experiments. One of them, the

Medical data set, is the main goal of the work, and it is described in section 5.2. The other

one, the Iris data set, is a typical data set for classification problems, described in section 5.1.

Three different sets of experiments and results are shown. The first set (section 5.3) compares

the performance of the three presented MOEA: niched pre-selection, NSGA-II and ENORA.

Experiments involved over 100 runs for each MOEA using as test problems the Iris data set and

a medical data set. A statistical analysis of the results for the hypervolume metric is shown.

The following set of experiments (section 5.4) compares the performance of the classifiers ob-

tained with the algorithms using a multi-objective cross-validation technique proposed by the

authors. Minimum, maximum and medium classification rate values are shown for solutions
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obtained with a different number of rules for each algorithm. In the case of the Medical data

set, minimum, maximum and average sensitivity and specificity values are also shown. Sensi-

tivity and specificity are performance measures for binary classifiers. Sensitivity (true positive

rate) measures the proportion of actual positives which are correctly identified. In medicine,

sensitivity of a test is the probability of a positive test, given that the patient is ill. On the other

hand, specificity is defined as the proportion of actual negatives which are correctly identified.

In medicine, specificity of a test is defined as the probability of a negative test, given that the

patient is not ill. A detailed explanation about sensitivity and specificity in diagnostic test may

be found in [89].

For the binary classifiers obtained in this paper for the medical data set, we show aver-

age sensitivity and average specificity values, which define the receiver operating characteristic

(ROC) space [90]. In classifiers used for survival models in medicine and clinical medicine,

ROC space is a fundamental tool [91, 92]. ROC space is defined by f alse positive rate, equiva-

lent to sensitivity, and true positive rate, equivalent to 1− specificity as x and y axes respec-

tively. Therefore, each prediction result for a binary classifier represents one point in the ROC

space. The best classifier obtains the point (0, 1) of the ROC space, this is, 100% sensitivity

(no false negatives) and 100% specificity (no false positives). This is called a perfect classifi-

cation. Besides, the classifiers’ performance is compared with other non-evolutionary machine

learning techniques, such as artificial neural networks, probabilistic models, decision trees and

analogy-based approaches. Finally, in section 5.5, the third set of experiments analyzes a solu-

tion obtained with the proposed methodology shown in section 3.

5.1 Iris data set

The Iris data set is perhaps the best known data set to be found in data classification literature.

Fisher’s paper [93] is a classic in the field and is still referenced frequently. The multivariate

data set contains 3 classes of 50 instances each (150 instances), where each class refers to a type

of iris plant. One class is linearly separable from the other two, which are not linearly separable

from each other. This is an exceedingly simple domain with 4 real attributes (no missing values)

where the predicted attribute is the class of iris plant.

Although Iris data set is unrelated to medicine, it has been chosen in this paper because it

is one of the best studied database to be found in classification literature and there are multi-

ple authors which have reported different classification algorithms and the solutions obtained.
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For example, in [94], solutions from 10 different techniques, with classifications rates between

95.57% and 97.33% are compared. Given that our proposal is valid for any classification prob-

lem, not only in a medical domain, we understand it is interesting to show the results obtained

for Iris data set in order to make it possible comparisons with any other classification algorithm.

Table 5 summarizes the data set characteristics.

Name Description Type Attributes Limits

Sepal length Sepal length in cm. Real x1 4.3 − 7.9

Sepal width Sepal width in cm. Real x2 2.0 − 4.4

Petal length Petal length in cm. Real x3 1.0 − 6.9

Petal width Petal width in cm. Real x4 0.1 − 2.5

Type of flower Setosa (1), Versicolor (2), Virginica (3) Discrete y 1 , 2 , 3

Table 5: Attribute information for Iris data set.

5.2 Medical data set

In order to test the suitability of our proposal in the medical domain, we evaluate the proposed

fuzzy classification methodology in the intensive care burn unit domain (ICBU). ICBUs are hos-

pital services that provides health care to severe burn patients. The patients’ data set used were

collected from the Health Information System of the ICBU from 1999 to 2002. For the study,

the clinical team selected 99 records from this data set, taking into account demographic and

etiological diversity criteria. The physicians also summarized the patients’ records according

to the most clinically relevant evidence for establishing survival. Table 6 shows the 18 patients’

parameters considered in this study [4].

Once the parameter set has been fixed, it is necessary to establish the importance of each

parameter for survival. For this goal, we used the Mutual Information feature selection method

[95], based on Shannon’s Entropy [96]. The weights depicted in table 6 show the results ob-

tained and, for this study, the parameters with a weighting of 0 are SAPS II, weight, age and

renal co-morbidity. We are therefore left with a problem of p = 2 real inputs and q = 11

categorized inputs. The two real inputs considered are within the range [0, 85], while all the

categorized inputs (and output) are boolean type.
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Name Description Type Weight Attribute Limits

Total Total burnt surface % Real 0.164613 x1 0 − 85

Prof Deeply burnt surface % Real 0.115335 x2 0 − 85

SAPS II Severity score Real 0 −

Weight Patient’s weight Real 0 −

Age Patient’s age Real 0 −

Sex Patient’s sex Boolean 0.069403 w1 1 , 2

Inh Use of inhibitors Boolean 0.067112 w2 1 , 2

Bacteremia Presence of bacteria in blood Boolean 0.023324 w3 1 , 2

Pneumonia Presence of pulmonary infection Boolean 0.207799 w4 1 , 2

Wound-Infect Infection by surgical wound Boolean 0.034936 w5 1 , 2

Co-Card Previous cardiopathy Boolean 0.008141 w6 1 , 2

Co-Respir Previous respiratory problems Boolean 0.007035 w7 1 , 2

Co-Liver Previous liver problems Boolean 0.024223 w8 1 , 2

HBP High blood pressure Boolean 0.001650 w9 1 , 2

Diabetes Diabetic patient Boolean 0.000541 w10 1 , 2

aids-drugs HVI drug consumption Boolean 0.025781 w11 1 , 2

Co-Renal Previous kidney problems Boolean 0 −

Death Prognosis of death Boolean − y 1 , 2

Table 6: Patients’ parameters considered: name, description, type, weight, associated input

attribute and limits. For the boolean variables, the values 1 and 2 correspond to false and true

boolean values, respectively.

5.3 Comparison of the algorithms

In this section, the niched pre-selection algorithms, NSGA-II and ENORA, are compared and

the results are shown. The aim of this set of experiments was to identify best performing

algorithm.

The algorithms were run 100 times with the parameters shown in table 7 for both Iris and

Medical data sets. These parameters have been set according to the following criteria:

• Size of population N = 100 is a typically used value in EA community.

• Number of evaluations NoEvaluations = 105 has been set after a previous experimental

process. In this process, a number of evaluations around this value indicates that the

algorithms may reach an appropriate convergence.
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• A minimum number of rules Mmin = 3 and a maximum number of rules Mmax = 10 are

values usually reported in literature for the Iris data set. For the case of the Medical data

set, values Mmin = 10 and Mmax = 20 have been supplied by a physician.

• γ1 = 30 value ensures that interpretable models, with a number of linguistic labels less or

equal than 7, are obtained with a maximum overlapping of 10% (gs = 0.1) of the fuzzy

sets. We understand that a greater number of linguistic labels or a greater overlapping

value make a model hardly interpretable by an human. This maximum number of 7

linguistic labels together with a maximum overlapping of 10% are usually accepted by

the scientific community.

• γ2 = 2 value ensures that at least 47.72% of any gaussian fuzzy set will be within the

variable domain. The rest of fuzzy sets are not considered.

• pv = 0.1 has been set by a previous experimental process in which 100 different values

uniformly distributed in [0.01, 1.00] have been checked.

• gs = 0.1 indicates a maximum overlapping of the fuzzy sets of a 10%. This value is

usually accepted in the scientific community in order to get interpretable models. This

value together with the maximum number of linguistic labels 7 imply the choice of γ1 =

30, as explained above.

• The parameter NC (number of children) for the niched pre-selection algorithm is related

with the selection pressure of the algorithm. High values of NC imply a high selection

pressure, whereas low values of NC imply a low selection pressure. Similarly to the

choice of other parameters, NC has been set by a previous experimental process to obtain

an adequate selection pressure, neither too low nor too high.

• The parameters NSmin and NSmax establish the minimum and maximum number of

individuals for each niche, respectively. Given that the number of niches is n = Mmax −

Mmin + 1 and the population size is N = 100, values of NSmin = 5 and NSmax = 35

are appropriated values for the problems Iris (n = 8) and Medical (n = 11) in order to

preserve a good diversity regarding to the number of rules of the models.

To compare the algorithms, we used the hypervolume indicator (ν), which calculates the

fraction of objective space not dominated by any of the solutions obtained by the algorithm
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N = 100

No Evaluations = 105

Mmin = 3(Iris), 10(Medical)

Mmax = 10(Iris), 20(Medical)

γ1 = 30

γ2 = 2

pv = 0.1

gs = 0.1

NC = 10 (Number of Children - niched pre-selection)

NSmin = 5 (Minimum size of niche - niched pre-selection)

NSmax = 35 (Maximum size of niche - niched pre-selection)

Table 7: Parameters used to run the algorithms.

[29, 97, 98]. Although other MOEA performance metrics can be used [29], we have chosen

the hypervolume metric for this work. The hypervolume metric measures, simultaneously, both

diversity and optimality of the non-dominated solutions. The hyper volume metric does not re-

quire the use of an optimal population, which is not available for our test problems. Other met-

rics, such as error ratio, generational distance, maximum Pareto-optimal front error, spread,

maximum spread, or chi-square-like deviation, need an optimal population, which makes im-

possible their calculation for our test problems. Additionally, other metrics as spacing, only

measure the uniformity of the non-dominated solutions and do not take into account neither the

extent of spread nor the optimality. Figures 2 and 3 depict the evolution of medium hypervol-

ume of 100 runs for classifying Iris and medical data sets.

Tables 8 and 9 show the statistical values and boxplots over the hypervolume metric, ν, for

Iris and Medical data sets, respectively.

The confidence intervals of 95% for the mean obtained with the t-test show that, for the Iris

data set, niched pre-selection provided better values than ENORA and NSGA-II. The niched

pre-selection algorithm therefore performed better than NSGA-II and ENORA, according to

the hypervolume indicator. The t-test is robust with samples of more than 30 individuals, and so

the results are significant, leading us to conclude that the differences between the hypervolume

values obtained with the algorithms are statistically significant. Nevertheless, the statistics for

the Medical data set are not conclusive and there is no statistically significant difference between

the algorithms, although the medium, minimum and maximum values obtained by ENORA are
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Niched pre-selection NSGA-II ENORA

Minimum 0.0010 0.0005 0.0005

Maximum 0.0079 0.0269 0.0136

Mean 0.0066 0.0102 0.0070

S.D. 0.0015 0.0044 0.0026

C.I. Low 0.0063 0.0093 0.0065

C.I. High 0.0069 0.0111 0.0076

S.D = Standard deviation of mean

C.I. = Confidence interval for the mean (95%)
Niched Preselection NSGA−II ENORA
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Table 8: Statistics and boxplots for the hypervolume obtained with 100 runs of the algorithms

for classifying Iris data set.

better than the values obtained by the other algorithms. The box plots confirm these conclusions.

The statistical analysis shows that, for the type of multi-objective problem being considered,

a Pareto search based on the partition of the search space into radial slots is more efficient than

general search strategies based solely on diversity functions, such as NSGA-II, or based on

diversity schemes involving the explicit formation of niches, such as niched pre-selection.
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Figure 2: Evolution of medium hypervolume of 100 runs of the algorithms for classifying Iris

data set.
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Niched pre-selection NSGA-II ENORA

Minimum 0.2679 0.2663 0.2531

Maximum 0.3307 0.3541 0.3381

Mean 0.3100 0.2992 0.2821

S.D. 0.0081 0.0176 0.0154

C.I. Low 0.3084 0.2957 0.2791

C.I. High 0.3116 0.3027 0.2852

S.D = Standard deviation of mean

C.I. = Confidence interval for the mean (95%)
Niched Preselection NSGA−II ENORA
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Table 9: Statistics and boxplots for the hypervolume obtained with 100 runs of the algorithms

for classifying Medical data set.
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Figure 3: Evolution of medium hypervolume of 100 runs of the algorithms for classifying

Medical data set.

5.4 Comparison with other non-evolutionary machine learning techniques:

multi-objective cross-validation

In this section, the aim is to validate the classification systems obtained with the proposed algo-

rithms and to compare our approach with other non-evolutionary machine learning techniques.

In this case, cross-validation is required.
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5.4.1 Multi-objective cross-validation

Cross-validation [99] is a technique for assessing how the results of a given statistical analysis

can be generalized to an independent data set. It is mainly used in settings where the goal is pre-

diction and to estimate how accurately a predictive model will perform in practice. One round

of cross-validation involves partitioning a sample of the data set into two complementary sub-

sets, performing the analysis on one subset (called the training set), and validating the analysis

on the other (called the validation set or testing set). To reduce variability, multiple rounds of

cross-validation are performed using different partitions, and the validation results are averaged

over the rounds.

A common type of cross-validation is k-fold cross-validation, in which the original sample

is randomly partitioned into k subsamples. Of the k subsamples, a single subsample is retained

as the validation data for testing the model, and the remaining k − 1 subsamples are used as

training data. The cross-validation process is then repeated k times (the folds), with each of the k

subsamples used once as the validation data. The k results from the folds can then be averaged

(or otherwise combined) to produce a single estimation. The advantage of this method over

repeated random sub-sampling is that all observations are used for both training and validation,

and each observation is used for validation only once. 10-fold cross-validation is commonly

used, but, in general, k remains an unfixed parameter [100].

In multi-objective classification systems, the cross-validation process is obviously more

complex because the set of solutions to be validated is greater than in simple classification

systems. The solutions of the optimization model (3) is a set of non-dominated solutions, each

with a different number of rules. In this section, we propose an adaptation of the k-fold cross-

validation (k = 10) for multi-objective classification problems as in (3). The algorithm 20

shows the proposed technique. This algorithm requires as input K partitions of the data set D

(we use K = 10). For each partition Pk, a MOEA is run NoRuns (we use NoRuns = 100)

considering D−Pk as input data set (training data). The MOEA output, for training data D−Pk

in the run l, is a set of non-dominated solutions Sl
k. For each set of solutions Sl

k, classification

rate, sensitivity and specificity values are calculated using test data Pk by means of the functions

Evaluate CR, Evaluate Sensitivity and Evaluate Specificity, respectively. Classification

rate is evaluated as introduced in section 3.3, while specificity and sensitivity are calculated as

defined in section 5. Finally, for each rule number i, for i = Mmin to Mmax, the average clas-

sification rate of the obtained solutions (classifiers) with a number of rules equal to i is showed
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as output. The average specificity and sensitivity are similarly calculated and also included as

output.

Tables 10 and 11 show the results of the multi-objective k-fold cross-validation algorithm

for iris and medical data set respectively. Additionally, minimum and maximum values of

metrics for each number of rules are shown. As summary of the multi-objective cross-validation

process, we show, for each algorithm, the medium values over the models obtained for each

metric, including the average number of rules.

Algorithm 20 Multi-objective k-fold cross-validation algorithm
Require: Data Set D; P1, P2, . . . , PK {K partitions of D}

Require: NoRuns {Number of runs}

Require: Mmin,Mmax, (0 < Mmin ≤Mmax) {Minimum and maximum number of rules}

1: for k = 1 to K do

2: for l = 1 to NoRuns do

3: Sl
k =

{
Sli
k , i = Mmin, . . . ,Mmax

}
←MOEA (D − Pk)

4: CRl
k =

{
CRli

k , i = Mmin, . . . ,Mmax
}
← Evaluate CR

(
Sl
k, Pk

)
5: Selk =

{
Selik , i = Mmin, . . . ,Mmax

}
← Evaluate Sensitivity

(
Sl
k, Pk

)
6: Splk =

{
Splik , i = Mmin, . . . ,Mmax

}
← Evaluate Specificity

(
Sl
k, Pk

)
7: end for

8: end for

9: CRi
avg ←

1

K ·NoRuns

K∑
k=1

NoRuns∑
l=1

CRli
k , i = Mmin, . . . ,Mmax

10: Seiavg ←
1

K ·NoRuns

K∑
k=1

NoRuns∑
l=1

Sensitivitylik , i = Mmin, . . . ,Mmax

11: Spiavg ←
1

K ·NoRuns

K∑
k=1

NoRuns∑
l=1

Specificylik , i = Mmin, . . . ,Mmax

12: return CRi
avg , Se

i
avg , Sp

i
avg , i = Mmin, . . . ,Mmax

5.4.2 Comparison with other non-evolutionary machine learning techniques

Previous studies on mortality scoring and ICBU survival estimation using AI approaches have

considered a wealth of methods, with special attention paid to artificial neuronal networks [37]

and probabilistic and analogy-based techniques [9, 39, 101]. Comparing the effectiveness of

different AI techniques to solve general medical problem (such as mortality prediction) is a

complex and still unresolved issue for the scientific community. However, in order to clearly

show the advantages and disadvantages of the fuzzy classification methodology and algorithms

proposed, we consider two main dimensions: the results statistics (e.g. classification rate, speci-

ficity and sensitivity) and the complexity of the model and its comprehensibility by physicians.

The following approaches have been studied:
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M CRmin CRmax CRavg

Niched pre-selection

3 0.9333 1.0000 0.9916

4 1.0000 1.0000 1.0000

5 1.0000 1.0000 1.0000

Mean 4.0000 0.9778 1.0000 0.9972

NSGA-II

3 0.8667 1.0000 0.9623

4 1.0000 1.0000 1.0000

Mean 3.5000 0.9333 1.0000 0.9811

ENORA

3 0.8667 1.0000 0.9648

4 1.0000 1.0000 1.0000

5 1.0000 1.0000 1.0000

6 1.0000 1.0000 1.0000

7 1.0000 1.0000 1.0000

8 1.0000 1.0000 1.0000

Mean 5.5000 0.9778 1.0000 0.9941

Table 10: Minimum, maximum and average classification rate (CRmin, CRmax, CRavg), ob-

tained with 100 runs of algorithms and 10-fold for Iris data set.
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M CRmin CRmax CRavg Semin Semax Seavg Spmin Spmax Spavg

Niched pre-selection

10 0.5000 1.0000 0.8143 0.0000 1.0000 0.7334 0.5000 1.0000 0.8806

11 0.8000 1.0000 0.9400 0.7143 1.0000 0.9429 0.8571 1.0000 0.9714

12 0.9000 1.0000 0.9333 0.6667 1.0000 0.8222 1.0000 1.0000 1.0000

13 0.9000 0.9000 0.9000 1.0000 1.0000 1.0000 0.8571 0.8571 0.8571

14 0.7000 1.0000 0.8667 0.7143 1.0000 0.9048 0.6667 1.0000 0.8413

15 0.9000 0.9000 0.9000 0.6667 0.8571 0.7619 1.0000 1.0000 1.0000

18 0.8000 0.8000 0.8000 0.7143 0.7143 0.7143 1.0000 1.0000 1.0000

Mean 13.2857 0.7857 0.9429 0.8792 0.6395 0.9388 0.8399 0.8401 0.9796 0.9358

NSGA-II

10 0.5000 1.0000 0.7245 0.0000 1.0000 0.6671 0.4286 1.0000 0.7882

11 0.8000 0.8000 0.8000 0.5000 1.0000 0.7500 0.7143 1.0000 0.8571

Mean 10.5000 0.6500 0.9000 0.7622 0.2500 1.0000 0.7085 0.5714 1.0000 0.8227

ENORA

10 0.7000 1.0000 0.8693 0.2500 1.0000 0.8170 0.3333 1.0000 0.8969

13 0.9000 0.9000 0.9000 1.0000 1.0000 1.0000 0.8571 0.8571 0.8571

16 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

18 0.9000 1.0000 0.9500 0.8571 1.0000 0.9286 1.0000 1.0000 1.0000

Mean 14.2500 0.8750 0.9750 0.9298 0.7768 1.0000 0.9364 0.7976 0.9643 0.9385

Table 11: Minimum, maximum and average classification rate (CRmin, CRmax, CRavg), sen-

sitivity (Semin, Semax, Seavg) and specificity (Spmin, Spmax, Spavg) obtained with 100 runs of

algorithms and 10-fold for Medical data set.
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• Artificial neuronal networks: commonly used in the literature. In this work we have

considered the classical multilayer perceptron considering 10 hidden layers [102].

• Naive Bayes: a probabilistic model which assumes that attributes independently con-

tribute to the probability of survival (e.g. p (mortality|Total, Prof, . . .)) [103].

• Decision trees: well-known decision support techniques and easily interpretable by physi-

cians. In particular, the following classical algorithm considered: J.48 [104], altering

decision tree (AD tree) [105] and best first decision tree (BF tree) [106, 107].

• Analogy-reasoning approaches: in particular, the case-based reasoning methodology (CBR),

which we considered in previous works using this clinical data set [101]. This CBR pro-

cess considers standard similarity functions for the retrieval step and a rule-based ap-

proach for the adaptation step.

Table 12 summarizes the results of the above mentioned techniques using the ICBU data set.

Method CRavg Spavg Seavg Complexity T ime (s.)

J.48 [104] 0.6969 0.7586 0.6097 3 nodes 0.3

AD [105] 0.7273 0.8103 0.6097 31 nodes 0.3

BF [107] 0.7373 0.7758 0.6829 8 nodes 0.8

NBayes [103] 0.8282 0.8621 0.7804 18 variables 0.01

CBR [101] 0.7530 0.9720 0.6940 90 cases + 14 rules 7.28

ANN [102] 0.8282 0.8620 0.7804 10 layers 6.6

Niched pre-selection 0.8792 0.9358 0.8399 13.3 rules (avg.) 1786.07(avg.)

ENORA 0.9298 0.9385 0.9364 14.2 rules (avg.) 1528.61(avg.)

NSGA-II 0.7622 0.8227 0.7085 10.5 rules (avg.) 984.01(avg.)

Table 12: Summary of results obtained with non-evolutionary AI approaches and MOEA using

10-fold cross-validation and 100 runs for the evolutionary algorithms.

The results obtained highlight the main advantages of the evolutionary proposal: a balance

between the need for accuracy and a model that is easily understood. In general, the greater

complexity of the non-evolutionary models implies better statistical results. For example, the

ANN approach achieves an average 82% of classification, but but involves 10-layer neuronal

network, a model that cannot be easily interpreted by physicians. On the one hand, ENORA

and niched pre-selection outperform the non-evolutionary approaches, for all statistical results
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(Classification Rate, Specificity and Sensitivity), but, on average, the number of rules consid-

ered guarantees simple validation by intensivists. In this sense, some other approaches consid-

ered (e.g. decision tree algorithms) provide simple models. For example, J.48 gives a 3-node

tree or CBR uses only 14 rules to adapt the solutions. It is worth mentioning the high speci-

ficity of the CBR approach, however the system is only specialized to identify exitus since this

specificity is to the detriment of the accuracy and sensitivity. However, their classification rates

are considerably lower than those obtained with niched pre-selection or ENORA. Regarding

the analysis of computational time of the evolutionary and non-evolutionary algorithms, it is

worth mentioning that they belong to different orders of magnitude. While non-evolutionary

techniques require a maximum of 6.6 seconds to perform cross-validation with K = 10 in a

HP Proliant DL145 G2 AMD Opteron Processor 246 2GHz/1MB, evolutionary approaches re-

quires, in the same machine, at least 0.27 hours to perform cross-validation with K = 10 and

NoRuns = 100. Nevertheless, this is not a disadvantage in practice, since this kind of process

is performed offline. Moreover, note that non-evolutionary approaches require only one execu-

tion in the cross-validation process, while evolutionary algorithms require a greater number of

executions, usually NoRuns = 100, due to they are probabilistic algorithms.

5.5 Analysis of the solution

The aim of this section is to qualitatively analyze one solution of the problem obtained with

the proposed algorithms. The solution is chosen by the decision-making process described

in section (4.9) from all the sets of non-dominated solutions generated by the multi-objective

cross-over validation process in the three algorithms. The solutions chosen for the Iris and

Medical Data Sets are shown in tables 14 and 15 respectively.

The chosen solutions for the Iris and Medical Data Sets were obtained by the ENORA

algorithm. As regards the number of rules and the different fuzzy sets for each real variable, it

may be said that the models are compact. The similarity of the fuzzy sets satisfies the imposed

constraint to the optimization model (3). The linguistic label algorithm (18) found an acceptable

number of linguistic labels for both the Iris and Medical data sets. Therefore, the chosen models

fulfil the interpretability criteria (compactness and similarity) imposed by the decision-maker.

As for accuracy, the classification rate for Iris and Medical data set is maximum. Additionally

for the Medical data set, the sensitivity and specific values are also maximum. Therefore, the

chosen solutions for both the Iris and Medical data sets are accurate and easily interpretable.
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Data set Iris Medical

Algorithm Niched pre-selection ENORA

Number of rules 4 10

Number of fuzzy sets 9 8

Variables x1 x2 x3 x4 x1 x2

Number of fuzzy sets for each variable 1 2 3 3 4 4

Number of linguistic labels for each variable − 2 6 3 6 5

Similarity 0.0185 0.0921

Classification rate 1.0000 0.9293

Specificity − 0.9310

Sensitivity − 0.9268

Table 13: Accuracy and interpretability values for the chosen solutions obtained with niched

pre-selection and ENORA.

Table 13 shows the accuracy and interpretability values.

6 Discussion, conclusions and future trends

This article presents a novel methodology for the fuzzy classification of data sets with real and

categorized input variables and multiple categorized outputs, by means of multi-objective evolu-

tionary fuzzy systems, using a theme of great relevance in clinical practice – the classification of

mortality through infection in severe burn patients. We propose a multi-objective constrained

optimization model for fuzzy classification, taking into account the criteria accuracy, trans-

parency and compactness. Two Pareto-based elitist multi-objective evolutionary algorithms

are proposed (niched pre-selection and ENORA) and compared with the well known NSGA-

II using statistical tests over the hypervolume values. These algorithms use variable-length

representation and specialized variation operators over this representation. We also propose

a multi-objective cross-validation technique to validate the fuzzy classifiers obtained by these

algorithms. Besides, a linguistic labeling algorithm is proposed to associate linguistic labels

with fuzzy sets. A decision-making process is also described to choose an a posteriori solution

from the Pareto set. The results obtained are better than those obtained with other techniques

commonly used in medicine, with the added advantage that the proposed technique identifies

alternative solutions.
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6 linguistic labels
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Low L (2.63; 0.26)
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0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
4

D
eg

re
e 

of
 s

at
is

fa
ct

io
n 

(µ
)

S = 0.000011

3 linguistic labels

Low L (0.66; 0.10)

Medium M (1.42; 0.08)

High H (2.31; 0.11)

Table 14: Fuzzy model with 4 rules and 9 fuzzy sets for classifying Iris data set obtained with

niched pre-selection. Classification rate=1.000000, similarity=0.018532.
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x1 x2 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 y

H M 2 1 2 2 2 2 2 2 2 2 1 1

L ML 1 2 1 2 2 1 1 1 1 1 2 1

MH L 1 2 2 2 1 1 2 1 1 2 1 1

MH L 1 1 1 1 1 2 1 1 2 2 1 2

L ML 2 2 2 2 1 2 2 1 2 1 2 2

V H MH 1 2 2 2 1 2 1 1 2 1 1 2

V H ML 1 1 2 1 2 2 2 1 2 1 2 2

MH MH 2 2 2 1 1 1 1 1 1 1 2 2

V H L 2 2 1 1 2 1 2 2 2 2 1 2

L M 2 2 1 2 2 1 1 2 2 1 1 2
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5 linguistic labels

Low L (2.77; 2.83)

Moderately Low ML (20.00; 6.42)

Medium M (43.94; 3.91)

Moderately High MH (61.14; 4.32)

Table 15: Fuzzy model with 10 rules and 8 fuzzy sets for classifying Medical data set obtained

with ENORA. Classification rate=0.929293, specificity = 0.931034, sensitivity = 0.926829,

similarity=0.092131.

52



The following clinical conclusions about the fuzzy rule set presented in table 15, can be

considered:

• Physicians find these rules easily to interpret since the antecedent is a simple conjunction

of variables and the consequent is a single dichotomic variable.

• The knowledge base consists of 10 fuzzy rules: 3 rules suggest the survival of the patient

and 7 rules suggest a potential exitus. The number of rules is reasonable from the clinical

practice point of view.

• Physicians find these rules useful in order to support the treatment of patients according

to the survival expectancy, providing an aggressive or more conservative therapy. For

example, the 5th, 6th and 7th rules support decisions regarding patients suffering from

heart complications, a high blood pressure and bacteremia at the same time. The 2nd and

3rd rules show that no deep burnt patients with no heart/liver complications and normal

blood pressure belong to a survival profile.

• Specificity values obtained by our proposal are especially remarkable for physicians. In

this test, a positive outcome means that the system estimates and exitus and aggressive

measures must be taken.

• Unlike traditional severity scores (e.g. Baux, PBI, ABSI), age and weight variables are

neglected in our rule set (see table 6). From the statistical point of view, these variables

are not correlated to the survival of the patient in the medical database. Despite physi-

cians expected a higher analogy between our proposal and the traditional severity scores,

our rules deal with infections and co-morbidity information. In fact, in the medical liter-

ature there are some authors that suggest that simple measurements (weight, height, sex)

outweigh other significant variables [7, 16].

The following advantages and benefits compared with existing solutions can be mentioned:

• Constrained multi-objective optimization allows the simultaneous search for accurate and

interpretable fuzzy classifiers in a global way. Other works in the literature perform the

search for accurate and interpretable classifiers in separate processes with a consequent

loss of information between both processes.
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• Our proposal allows the classification of data sets containing both real and categorized

input variables, identifying a reasoning method and a rule weight assignment which com-

bines both types of input variable. Most works in the literature only allow classification

of data sets with real input variables. Besides, our proposal allows the classification of

multiple categorized outputs, whereas other works only consider binary classifications.

• Our proposal uses Pareto-based elitist MOEAs which generate a set of non-dominated so-

lutions from which a decision maker may choose, in an a posteriori process, the most sat-

isfying solution according to current preferences. In this way, a change in decision-maker

preferences does not require new runs of the algorithm as the decision-maker simply per-

form a new choice among the set of solutions. Other works in the literature propose non-

Pareto MOEAs which only return a single solution according to a priori decision-maker

preferences and while runs of the algorithm are required if decision-makers change their

preferences.

• In our proposal, the degree of interpretability is parameterized. The parameter gs con-

straints the overlapping degree of the fuzzy sets while the minimum and maximum num-

ber of rules of the classifiers is bounded by the parameters Mmin and Mmax. Other ap-

proaches establish a priori fixed levels of overlapping between the fuzzy sets. Besides,

many works just consider a fixed number of rules for the classifiers.

• Our proposal uses real parameter optimization for the fuzzy set search while other works

which use combinatorial optimization. A deterministic linguistic labeling algorithm is

used when the real parameter optimization is finished in order to assign one linguistic

label to each fuzzy set. The advantage of our proposal is the learning of high accurate

fuzzy classifiers with an acceptable degree of interpretability, and a smaller number of

evaluations is required to reach convergence in the presence of high dimensional data

sets.

• We use a Pareto-based elitist MOEA with variable-length representation which allows the

search for classifiers with a different number of rules. Many of the works in the literature

just search for classifiers with a fixed number of rules.

• We use fuzzy sets with Gaussian membership functions for our classifiers, whereas other

works use fuzzy sets with triangular or trapezoidal membership functions, which have
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been proved to be less flexible than gaussian in fuzzy modeling.

• Our proposal identifies the granularity of the real input variables and is therefore perse

a feature-selection technique, given that it allows “don’t care condition” variables to be

identified.

• In our proposal, the classifiers are validated with a multi-objective cross-validation method-

ology. Other studies use classical cross-validation.

• Compared to other MOEAs, niched pre-selection and ENORA algorithms, as proposed

in this paper, maintain diversity as regards the number of rules. Other MOEAs, such as

NSGA-II, are less effective in this aspect.

As future trends, we suggest the following:

• Asymmetric Gaussian membership functions. In our proposal we use, without losing

generality, symmetric gaussian membership functions. By using asymmetric gaussian

membership functions, which are more flexible than symmetric ones, classifiers may pro-

vide better classification rates without harming interpretability.

• Three objective optimization constrained model. An optimization model that maximizes

sensitivity and specificity and minimizes the number of rules could be considered.

• Application of the methodology to other medical and non-medical data sets from the

University of California Irvine (UCI) Machine Learning Repository.
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