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Abstract

The non-Newtonian behavior of dilute polymer solutions is investigated by

computer simulation of a bead-and-spring model, using the Brownian dynamics

technique to evaluate the shear-rate dependence of the intrinsic viscosity. This

behavior is a consequence of the combined effects of hydrodynamic interaction,

excluded volume and finite extensibility. The simulations allow the study of the

influence of each effect separately. When all the effects are considered, the simu-

lation results can be compared to experimental data of solution viscosities, which

are available just in the region of moderately small shear rates. Data from molec-

ular architecture and other solution properties are obtained to parameterize the
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bead-and-spring model, with emphasis in the description of the chain extensibility.

Comparison of simulation and experimental results are presented for both highly

flexible vinyl polymers, and for locally stiff cellulose chains.

1 Introduction

The non-Newtonian behavior, i.e. the shear rate dependence of the viscosity, is one of

the most characteristic properties of polymeric systems. It is well known that even very

dilute polymer solutions are non-Newtonian, which indicates that this phenomenon is

inherent to the properties of individual polymer molecules. Several features of polymer

chain statistics and dynamics can play some role in the non-Newtonian behavior: ex-

cluded volume, hydrodynamic interactions, chain extensibility, etc. Early attempts to

investigate the effect of the different possible causes were made using classical polymer

dynamics theory,1–8 with somehow contradictory results.9 Nowadays, computational

methodologies like the Brownian dynamics (BD) or the Molecular dynamics (MD) pro-

cedures allow an efficient simulation of the various effects (see, for instance, ref.10 for a

review of computational models and methods). Indeed, there have been several recent

descriptions of non-Newtonian behavior of dilute polymer solutions simulated in various

model systems.11–17 The numerical results are usually displayed as the dependence of

intrinsic viscosity, [η], on the flow strength, the latter being expressed either directly, as

the shear rate, γ̇, or in the form of a quantity involving polymer characteristics,

β =
[η]0η0M

RT
γ̇ (1)

where M is the polymer molecular weight, [η]0 the zero-shear intrinsic viscosity of the

solution, η0 the viscosity of the solvent, R the ideal gas constant and T the absolute
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temperature.

Experiments indicate that polymer solutions show a shear-thinning behavior, with

[η] decreasing with shear rate. Theoretical and computational results predict, under

certain conditions (vide infra), this decrease. In typical graphs, with logarithmic scale

for γ̇ or β, there is a Newtonian plateau, with [η] = [η]0, followed quite suddenly by a

decay in [η] of several orders of magnitude which obeys a power law, [η] ∝ γ̇−ν . Un-

fortunately, experimental results of the non-Newtonian behavior of very dilute polymer

solutions are not systematic and abundant and, to the best of our knowledge, all the

available results cover a range over which [η]/[η]0 goes down to about 0.5, at most18, 19

(examples will be mentioned later), and clearly do not belong to the power-law region.

It has been demonstrated that the strong, power-law decay at very high shear rates is

essentially caused by the finite extensibility (FE) of the polymer chain,12, 20, 21 although

under certain circumstances, EV effects could also lead to significant shear thinning at

high shear.22, 23 However, in the range of moderate shear rates for which the decrease in

[η] is, say 10%− 50%, the shear-rate dependence may be rather influenced by the other

effects: hydrodynamic interaction (HI) and excluded volume (EV).

In this paper we employ the Brownian dynamics (BD) simulation method to study

the shear rate dependence of the intrinsic viscosity, with particular emphasis on the

region of moderate shear rate where experimental data are available. We mention that

at these shear rates chain scission is not expected. This phenomenon, out of the goal of

the present paper, could appear at extremely high shear and can be studied following

a similar procedure to that used to simulate the more common fracture in extensional

flows.24 We study the influence of the three effects: HI, EV and FE, both separately

and in combinations. In this way we can discuss the contribution of each effect, thus
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providing a better understanding of the non-Newtonian behavior of dilute polymer solu-

tion. Very recently other authors25 have also studied the influence of HI, EV and FE on

dilute polymer solutions with a more general purpose. In order to compare simulation

results with experimental data, we describe how to assign values to the model parame-

ters from information about molecular architecture of the polymer chain or from other

solution properties. Predictions of BD simulations are compared to experimental data

for polymers with different degree of chain extensibility.

2 Theory and methods

The model that we adopt to describe the polymer molecule is a bead-and-spring chain

in a continuous solvent of viscosity η0. We employ FENE (finitely extensible, non-linear

elastic) springs with force constant H = 3kbT/b2 and maximum elongation Qmax, whose

force law is given by the classical Warner equation.26 Parameter b in force constant

expression is an arbitrary unit of length, which coincides with the mean square spring

length in the absence of flow, < Q2 >0= b2, when Qmax → ∞ (i.e. for a Gaussian

chain). The beads are spherical frictional elements with Stokes radius σ = 0.25b and

frictional coefficient ζ = 6πη0σ which corresponds to the usually adopted value of the

hydrodynamic interaction (HI) parameter h∗ = 0.25. As it will be shown later (Figure

6) the exact value of h∗ is practically irrelevant for the results presented in this paper.

In this work the number of beads is in the range N = 15 − 40, which we consider long

enough to be representative of a long polymer chain, but still feasible for the simulation

work (indeed, as shown below,the model parameterization requires relatively low values

for N).

Good solvent conditions can be introduced by means of a Lennard-Jones excluded-
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volume (EV) potential with parameters σLJ = 0.8b and εLJ = 0.1kBT .27 Attempts have

been made to relate Lennard-Jones parameters to the solvent quality.28 Nevertheless,

the limit of “perfect” good solvent conditions adopted in this work (e.g. σLJ = 0.8b

and εLJ = 0.1kBT ) gives more than acceptable results provided N is large enough.

Monte Carlo simulations with several N and good solvent conditions were performed in

order to test the validity of the N values employed. In the log-log plot of the radius of

gyration vs. N (not shown here) we obtained all points aligned even for values of N

as low as 10, as well as the correct slope of about 0.6. Alternatively, EV effects can be

ignored, which would correspond to an ideal chain. Hydrodynamic interactions (HI) are

described by a Rotne-Prager-Yamakawa tensor.29, 30 For non very large chain lengths, as

those used in this work, this implementation of HI presents a similar efficiency to that

more sophisticated procedure based on the Chebyshev polynomial.31 Although this

effect is essential for a proper description of polymer dynamics in solution, sometimes

it is interesting to neglect HI effect for comparative purposes. The polymer solution is

subject to a simple, steady shear flow, whose velocity at the position of the i-th bead,

with coordinates (xi, yi, zi) is vx = γ̇yi, where γ̇ is the shear rate.

In the computational work, quantities are handled in dimensionless forms, hereafter

denoted with an asterisk. For lengths and dimension the unit is ul = b, the unit of force

is uF = kBT/b, and the unit of time is a characteristic time of the model chain given

by ut = ζb2/kBT , so that the reduced shear rate is γ̇∗ = γ̇ut. The intrinsic viscosity

[η] is conveniently expressed in a reduced form as [η]∗ = [η]M/(NAu3
l ). This definition

is irrelevant, as we shall present our main results as ratios [η]/[η]0 where [η]0 is the

zero-shear-rate intrinsic viscosity, and this ratio is obviously identical to [η]∗/[η]∗0.

Brownian dynamics (BD) simulation is used to simulate the evolution of the chain in
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the shear flow. We employ the predictor-corrector modification of Iniesta and Garćıa de

la Torre32 of the first-order Ermak-McCammon algorithm,33 including the flow term.34

The duration of the trajectory, typically T ∗ = 2000 is many times longer than the

longest-relaxation time of the chain. The time step is ∆t∗ = 10−4 when Lennard-Jones

EV is included, and ∆t∗ = 10−3 when it is neglected. A number of conformations, typi-

cally 104, are sampled uniformly along the Brownian trajectory. At each conformation,

the cross-component of the stress tensor is evaluated as

τ ∗

xy =
N−1
∑

i=1

(F ∗

x )i(Q
∗

y)i (2)

where (Fx)i is the flow direction component of the force exerted by the i-th spring and

(Qy)i is the gradient direction component of the i-th connector vector. Because of stress

tensor symmetry τxy = τyx. From the average of τxy over the sampled conformations,

the intrinsic viscosity is evaluated as:

[η]∗ = −6πσ∗(τ ∗

xy/γ̇
∗) (3)

It is pertinent to mention here that the calculation of shear viscosity from BD simu-

lation is appreciably affected by numerical errors, particularly at the moderate or small

shear rates that are significant for the analysis of experimental data. In shear, the vis-

cosity is evaluated (eq. 2) as the quotient of two small numbers; the cross component

of the stress tensor, τxy is small and therefore the simulation uncertainties produce an

appreciable relative error. Thus, the results at low γ̇ will have a large error bar. The

remedy is to run long simulations, but this is in conflict with the important increase

in computing time with N when hydrodynamic interaction is included, as required to

predict realistic data. Due to the simulation errors at low γ̇, the calculation of the

zero-shear-rate intrinsic viscosity, [η]∗0, by extrapolation of [η]∗ to γ̇∗ = 0 produces quite
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erroneous results. Then, we have adopted and alternative way, in which the zero shear

intrinsic viscosity is evaluated by the so-called rigid-body treatment (RB).35–37 As shown

by Fixman,38 the RB treatment is a lower bound that provides an approximation to the

viscosity expected to deviate from the exact results by just a few percent (much less than

the viscosity decrease due to shear thinning). Recently, other methods to obtain the

zero-shear-rate intrinsic viscosity have been developed, most notably variance reduced

simulations39 and the use of Green-Kubo expressions.40 We chose the RB treatment

because of its less computational cost.

In previous works, the generation of conformations for the RB treatment was done

using a Monte Carlo procedure. Currently, we employ for such purpose a no-flow BD

simulation, which samples correctly the conformational space. Thus no-HI, no-flow BD

works as a “smart Monte Carlo” method.41 Conformations are picked at regular intervals

along the BD trajectory. The sample of conformations so generated is divided into five

subsamples. From the conformational averages for each subsample, the final average is

obtained, and the standard deviation of the five subsample average serves as an error

bar.

Finally, in terms of [η]∗0 and γ̇∗, the quantity β in eq. 1, which is already dimension-

less, can be derived from reduced quantities as:

β =
[η]∗0γ̇

6πσ∗

(4)

3 Numerical results

As stated in the Introduction, the first purpose of this paper is to describe the effect of

the three molecular features: finite extensibility (FE), hydrodynamic interaction (HI)

8



and excluded volume (EV) in the shear-rate dependence of the intrinsic viscosity. Several

cases can be considered in which, one, two or all of these effects are either included or

ignored. The possible cases will be indicated with the notation ±HI±EV±FE, where +

and − indicate inclusion or neglection, respectively. For this comparative study, which

has an essentially theoretical purpose, we simulate a chain with N =37 beads in all the

possible combinations. For the reduced maximum spring extension we take Q∗

max = 5,

which is in the middle of the range of values expected for typical experimental systems.

3.1 Zero-shear intrinsic viscosity and Newtonian case

Values of the zero-shear intrinsic viscosity in reduced form, [η]∗0, needed for the ratios

[η]∗/[η]∗0 and for β, obtained by the RB procedure, are given in Table I. It is evident

that HI and EV have an important influence, while FE is unimportant in the limit of

zero shear (except may be when it is the only effect considered, as also found by other

authors25). The case −HI−EV−FE, which corresponds to a chain of Gaussian bonds

without HI (a Rouse chain), can be compared with the exact result20

[η]∗0 =
πσ∗

4

N−1
∑

j=1

[

sin
( jπ

2N

)]

−2

(5)

or, for N large:

[η]∗0 =
N2σ∗

π

N−1
∑

j=1

j−2 (6)

Our RB result for the −HI−EV−FE case, [η]∗0 = 182 ± 5, agrees very well with results

from eq. 5 and eq. 6, 179 and 176 respectively.

It is important to note that the effects of HI and EV on [η]∗0 go in opposite directions:

HI decreases the viscosity due to the hydrodynamic shielding, while EV increases chain
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size and therefore the viscosity too. The same trends are expected in flows, so that,

as we will show immediately, the balance of these two effects is important in the non-

Newtonian behavior.

It is well known that the bead-and-spring chain with infinitely extensible springs,

without excluded volume (Gaussian chain in the absence of flow) and without hydrody-

namic interaction (Rouse model) predicts a Newtonian behavior over the whole range of

shear rate. We have obtained results (not shown) for the −HI−EV−FE case, combining

the [η]∗ from BD simulation with the [η]∗0 from RB calculation. The results reproduce

the independence of viscosity on shear rate: the ratio [η]/[η]0, which must be unity in

the Newtonian regime, has a mean value of 1.03 over the range β = 10−1 - 103 of shear

rate.

3.2 Influence of HI, EV and FE separately

Figure 1 displays the BD simulation results for chains including either hydrodynamic

interaction or excluded volume. At low shear rates, the BD results are in agreement

(within their noticeable error bar) with the corresponding [η]∗0 from the RB calculation.

As the shear rate is increased, the [η]∗ values change and at very high shear rates,

both cases reach asymptotically the zero-shear rate value of the Rouse chain. This is in

agreement with expectations from a simple, physical argument: at high shear the chain

is very extended and (i) the excluded volume effect disappears, and (ii) as the chain

elements are far apart, the distance-dependent hydrodynamic interactions disappear

also. Thus, in that limit both cases reduces to the Newtonian Rouse chain.

The inclusion of either the HI or the EV effects produces a shear-rate dependence that

goes from a Newtonian plateau at low shear rates, to reach another Newtonian plateau
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at high shear rates. The difference is that HI produces an increase in the viscosity with

shear rate, while EV results in a decrease.

Now, the introduction of finitely extensibility in the absence of the two other effects

give rise to a typical non-Newtonian behavior, illustrated in Figure 2, with a Newtonian

plateau at low shear rates, followed immediately by an intense shear thinning, in which

[η] follows a power law dependence, [η] ∝ γ̇−ν , or [η] ∝ β−ν with ν ≈ 0.75. This is the

typical behavior arising from FE, remarkably different (qualitative and quantitatively)

from that from HI and EV. The non-Newtonian viscosity due to FE is [η] << [η]0, or

[η]/[η]0 << 1; however, as we will comment later on, the experimentally explored region

is usually [η]/[η]0 & 0.5. Therefore, although FE is the effect that causes a most intense

decrease in viscosity, we can anticipate that it will not be the only, or even the main

contribution in the range covered by the experimental data.

3.3 Combined influence of various effects

The combined effect of hydrodynamic interaction and excluded volume (+HI+EV−FE)

case is shown in Figure 3. As commented for each individual effect, both must vanish

at high shear rates and therefore the shear-rate dependence shows a transition from the

value of [η]∗0 (+HI+EV−FE) at zero or low shear rates, to the value [η]∗0 (−HI−EV−FE)

at high shear rates. The BD simulation values in both limits seem to conform correctly

this prediction.

Some years ago, the combined effect of HI and EV was studied either theoretically

or by simulation using a dumbbell model (N=2), with the result that there would be a

monotonic decrease in the flow-rate dependence, which would justify the experimentally

observed thinning behavior.11, 42–44
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However, when the simplistic description based on the dumbbell is improved, using

chains with an appreciably large number of elements (N=37 in this study), it is clear

that the result for the dumbbell is an artifact caused by the extremely simplicity of this

model. The non-Newtonian behavior +EV+HI shows the compensation of the opposite

influence of the two effects, which were displayed separately on Figure 2: there is, first,

a decrease due to the weakening of the EV effect, which is followed by an increase

due to the weakening of the HI effect. From elementary polymer solution dynamics,

[η]0 (−HI−EV−FE), i.e. the high-shear rate limit, must be larger than the low shear

value, [η]0 (+HI+EV−FE) for a sufficiently long chain (recall that the former scales

with chain length as N1, while the latter goes as N0.8 in good solvents). So, the overall

+HI+EV should be a shear thickening, contrary to the experimental behavior. This

situation was already anticipated in previous studies which employed chains instead

of dumbbells.11, 13, 45 At intermediate shear, the compensation of the two effects may

produce an oscillation in the shear rate dependence, which is clearly noticeable in Figure

3.

The cases in which either EV or HI is combined with FE, the appearance of the

results is an obvious consequence of the previous observations (for instance, a thorough

discussion of the case +HI−EV+FE is found in46). At low shear rates, the first effect

determines a moderate decrease or increase in the viscosity, but the high-shear plateau

disappears and is replaced by the abrupt, monotonic decrease due to FE.

Finally, the most relevant, and practically important case is that combining all the

effects; (+HI+EV+FE) values are displayed in Figure 4. The log-log plot that is some-

times employed to show the non-Newtonian behavior (Figure 4.A) illustrates the power-

law regime at very high shear rates (say, beyond β ≈ 200), where the viscosity decreases
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by one or more powers of ten. This feature replaces the high-shear plateau obtained in

the −FE cases. However, at intermediate shear (say, in the range β ≈ 10− 200, there is

an interesting feature that looks like a plateau or shoulder in the curve described by the

data points. Depending on the model parameters (N and Q∗

max) there could be even an

ondulation; interestingly, this has been predicted by other authors.47, 48 In this region,

[η] decays to about half of the zero-shear value. Another perspective is provided if the

ordinate is not the ratio but the viscosity itself (Figure 4.B); it is then apparent that

[η] decreases with shear rate beyond β ≈ 1, reaching values about half of the zero-shear

rate value. HI and EV play also an important role (modulated by FE) in this region,

which is the relevant one in the analysis of experimental results, as discussed in next

section.

4 Comparison with experimental data

4.1 Model parameterization

As shown in the previous section, the BD simulation provides results for the intrinsic

viscosity ratios, [η]/[η]0, vs. the reduced shear rate, β. These results can be directly

compared with experimental data, which are usually presented in terms of these two

quantities. The comparison requires the assignation of values to the two model param-

eters, N and Q∗

max. For this purpose, we introduce a quantity, E, which gauges the

extensibility of the polymer chain, defined as the ratio of the fully extended length, L,

to the mean square radius of gyration of the coil at rest, Rg ≡< s2 >
1/2

0 .49 This quantity

can be evaluated both for the experimental system and for the simulated model as well,

since L∗ = (N − 1)Q∗

max and < s∗2 >0 can be evaluated by simulation:
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E =
L

Rg
=

(N − 1)Q∗

max

< s∗2 >
1/2

0

(7)

Provided with the experimental value of E, the model is parameterized as follows.

The number of elements, N is given an arbitrary value, sufficiently large but still mod-

erate so that the computing time required to generate the BD trajectory is within our

reach. Previous BD no-HI simulations without flow have been made to determine the

dependency of < s∗2 >0, and therefore E on Q∗

max and N . Then, for the value assigned

to N , and the experimental E, the corresponding Q∗

max is found by interpolation. Trials

with various N ’s reveal that the computed results are practically independent of this

choice. Then, as Q∗

max is determined from separate experiments, it can be somehow

affirmed that our simulation of [η]/[η]0, vs. β does not involve adjustable parameters.

Examples of the parameterization and results of non-Newtonian viscosities are next

presented for various cases. We have actually considered two kinds of systems, composed

respectively by polymers with typically flexible or stiff local structures, which therefore

differ appreciably in their extensibility.

4.2 Locally flexible chains: vinyl polymers

The chain skeleton of vinyl polymers is rather flexible: a few tens of repeating units,

with molecular weight of 103 - 104 g/mol, is sufficient for the chain to present the typical

Gaussian coil statistics.50 Their fully extended length can be estimated from that of the

chain in the all-trans conformation, given by

L = (2M/M1)dC−Ccos[(π − θ)/2] (8)

where M1 is the molecular weight of the repeating unit, so that 2M/M1 is the number
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of C-C bonds, that have a bond length dC−C = 1.54 × 10−8 cm and a bond angle

θ = 110o. The radius of gyration is usually available from light scattering measurements,

or alternatively it can be estimated from other solution properties, such as the intrinsic

viscosity or the diffusion coefficient. Thus, the extensibility of vinyl polymers can be

readily determined.

Figure 5.A displays the shear-rate intrinsic viscosity of poly(α-methyl styrene) of

M = 7.52× 106 g/mol in toluene at 25 C (good solvent conditions). At zero-shear rate,

[η]0 = 950 cm 3/g. Experimental data are from Noda et al.18 The radius of gyration

is computed using the Flory-Fox relationship for good solvent conditions (i.e. with the

Flory parameter Φ = 1.9 × 1023). Thus, Rg = [M [η]0/(6
3/2Φ)]1/3 = 13.68 × 10−6 cm.

With M1 = 118 g/mol, we obtain L = 16.07 × 10−4 cm which yields E = 117.5 for this

system. For the simulation, we have tried two choices for the number of beads, N =17

and 37, for which the value of E corresponds to Q∗

max = 14.9 and 10.7, respectively. The

results show that, within the simulation uncertainties, the two choices are practically

equivalent, and the agreement with the experimental data is good. Some simulation

results without HI and without EV are also shown to demonstrate the importance

of these effects in predicting the viscosity behavior at low shear rate. FENE springs

at low shear tend to be Gaussian and viscosity remains constant in the absence of

other effects. Figure 5.B shows similar results for polystyrene in benzene at 20 C, with

[η]0 = 830 cm 3/g52 and M = 5.1× 106 g/mol (computed from the viscometric equation

[η]0 = 12.3 × 10−3M0.7251). With an analogous calculation to that perform with the

former vinyl polymer, we get for this polystyrene L = 12.37 × 10−4 cm (with M1 = 104

g/mol) and Rg = 11.49 × 10−6 cm, which yields E =107.6. The comparison with

simulation data confirms the conclusions from the previous system.
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4.3 Locally stiff chains: cellulose derivatives

Polymers (usually of biological origin, like DNA and polysaccharides) with a locally

stiff structure show a pronounced shear-rate dependence of the solution viscosity and

therefore have been employed for experimental studies of the non-Newtonian behavior.

This polymers, when they are long enough, are in the random coil limit of the wormlike

chain model, and the present methodology is applicable. However, the number of Kuhn

segments is small, and their extensibility is appreciable smaller than that for more

flexible polymers. For these macromolecules, the parameters of the wormlike model are

used to characterize the chain; these are the persistence length, P and the mass per

unit-length, ML = M/L. For the evaluation of their extensibility, we have L = M/ML,

and Rg (if not directly available) can be obtained from the expression for the coil limit

of the wormlike model, R2
g = PL/3, so that E = (3M/PML)1/2.

A systematic and careful experimental study of the non-Newtonian viscosity of cel-

lulose polymers has been reported by Riande and Pereña.19 In Figure 6.A we show

their results for cellulose in cadoxene/water (1:1) at 25 C with M = 4.29 × 105 g/mol

and [η]0 = 843 cm 3/g as well as cellulose in cadoxene with M = 3.3 × 105 g/mol and

[η]0 = 643 cm 3/g. Among the systems that they studied, the former is the one with

a more pronounced decrease in viscosity. Unfortunately, the molecular weight per unit

length of these systems are not found in the literature. In,19 authors state that the

statistical chain element (Kuhn step) for cellulose can be considered to be about 10

nm, so that the persistence length can be set to P ' 5 nm. From data for cellulose

trinitrate,53 we estimate ML ≈450 nm−1, which along with the value of P above yield

E '23.9 for the system cellulose in cadoxene/water. On other hand, in54 we find that

the persistence length of cellulose in cadoxene is about 7 nm, which yield E '17.7 for
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the second system considered. Note that for these polymers E is much smaller than for

vinyl polymers. As a consequence, the values of Q∗

max are rather small; thus we have,

considering N = 17, Q∗

max =2.9 and 1.9 for cellulose in cadoxene/water and cellulose

in cadoxene respectively. The agreement between simulation and experiments in these

cases is not fully satisfactory. Surprisingly, the case with smaller estimated extensibil-

ity, cellulose in cadoxene with M = 3.3 × 105 g/mol, is better reproduced by the chain

model with higher extensibility E '23.9. The disagreements may be due (apart from

the uncertainty in the data for P and ML) to the fact that these cases are at the limit

of validity of our treatment. For very low Q∗

max (close to the equilibrium elongation at

rest) the Warner law for the FENE spring may be unrealistic. For a given E, higher

Q∗

max would correspond to even lower N , for which the model chain could be unreal-

istic again. A point to consider is that in the FENE model, the value chosen for the

hydrodynamic parameter, h∗, could have some influence on results,55 mainly at small

Q∗

max. In Figure 6.A we include results carried out for a reasonable h∗ range;55 these

results demonstrate that the values of [η]/[η]0 are practically independent on the exact

value of h∗ for the range of β used, even in the most unfavorable simulation conditions,

e.g. N = 17 and Q∗

max = 1.9. In the related system cellulose trinitrate in ethyl acetate

at 25 C (now a theta system),56 discussed also in,19 the agreement is much better as

it is observed in Figure 6.B. Experimental points shown in that figure are taken from

Figure 12 in.19 Riande and Pereña find a good fit of those experimental data with the

theoretical curve for λL = L/2P = 100, which gives us directly an estimate for the

extensibility: E = (3L/P )1/2 = 24.5. This value of E corresponds to the simulation

parameters N =17 and Q∗

max =3.1, which are in the range of validity of our FENE

model.
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5 Concluding remarks

The early theories of non-Newtonian viscosity usually focused on one or some of the

aspects that determine the shear rate dependence, and in most instances the main

result was an equation for low shear rates, of the form

[η]/[η]0 = 1 − Qβn (9)

where Q is a constant that is not relevant for the present discussion. Various theories

coincided finding n = 2.3–5 According to this prediction, the curvature in the variation

of [η]/[η]0 with β should be convex, and with an initial zero slope. Some experimental

studies find, at extremely low shear rate, a very slight variation of [η]/[η]0 with β which

suggest an initial zero slope compatible with n = 2 (see for instance57). However, other

experimental values (Figures 5 and 6, and other cases that we have examined), and the

simulation results do not support this prediction. Instead, data show an initially strong

decrease of [η]/[η]0 with β, which is less pronounced at higher β. This situation was

noticed by several experimental workers (for instance, Lohmander and Svensson56 and

Golub58 suggest n = 1). One of the early theories, due to Bueche2 reached a different

result, with n = 1/2, which predicts concave curvature and strong initial decrease, in

better agreement with many observations and our simulations.

Adequate understanding and numerical predictions for the non-Newtonian viscosity

of dilute solutions can be achieved nowadays using Brownian dynamics simulation, as

illustrated in this and other works. We have emphasized that BD calculations must

be aimed to simulate the experimental results, which concentrate on the region of low

shear rate where, unfortunately, the simulation results are rather sensitive to numerical

uncertainties. That is, perhaps, the reason why other BD simulations have mainly

18



displayed the region of very high shear rate, thus avoiding comparison with experiments.

Our detailed description of the influence of the various features in the model (not only

FE, but also HI and EV) shows that all of them contribute, in a mixed manner, in that

region. At the cost of a considerable computing time, BD provides sufficiently accurate

predictions, that agree well with experimental results.
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HI EV FE [η]∗0

− − − 182 ± 5

+ − − 89 ± 2

− + − 320 ± 5

+ + − 163 ± 2

− − + 164 ± 3

+ − + 80.0 ± 1.1

− + + 316 ± 5

+ + + 159 ± 2

Table 1: Reduced zero-shear intrinsic viscosities obtained from RB calculations (N = 37,

Q∗

max = 5).
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Figure captions

Figure 1. Reduced intrinsic viscosity, [η]∗, vs. relative flow rate, β, for chains including

either hydrodynamic interaction (+HI−EV−FE) or excluded volume (−HI+EV−FE).

The horizontal lines mark the values of the zero-shear intrinsic viscosity, [η]∗0, in the

−HI−EV−FE, +HI−EV−FE and −HI+EV−FE cases.

Figure 2. Reduced intrinsic viscosity, [η]∗, vs. relative flow rate, β, for chains including

only finite extensibility (−HI−EV+FE case).

Figure 3. Reduced intrinsic viscosity, [η]∗, vs. relative flow rate, β, for chains neglecting

finite extensibility but including both hydrodynamic interaction and excluded volume

(+HI+EV−FE case). The lower and upper horizontal lines mark the values of the zero

shear intrinsic viscosities [η]∗0 in the +HI+EV−FE and −HI−EV−FE cases.

Figure 4. (A) Ratio [η]/[η]0 vs. relative flow rate, β, for the case +HI+EV+FE. (B)

[η]∗ in a linear scale, and a limited range ([η]/[η]0 ≈ 1...0.5), again vs. β.

Figure 5. Experimental and simulation results for: (A) poly-(α-methyl styrene) in

toluene, and (B) polystyrene in benzene. See text for further details.

Figure 6. Experimental and simulation results for: (A) cellulose in cadoxene/water

(black circles) and cellulose in cadoxene (black triangles), and (B) cellulose trinitrate in

ethyl acetate. See text for further details.
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(B)

Figure 4

(B)
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Figure 5
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Figure 6
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