
TSOPER: Efficient Coherence-Based Strict Persistency

Per Ekemark∗§, Yuan Yao∗§, Alberto Ros†, Konstantinos Sagonas∗‡, and Stefanos Kaxiras∗

∗Dept. of Information Technology †Computer Engineering Dept. ‡School of Electrical and Computer Engineering
Uppsala University University of Murcia National Technical University of Athens
Uppsala, Sweden Murcia, Spain Athens, Greece

∗{per.ekemark,yuan.yao,konstantinos.sagonas,stefanos.kaxiras}@it.uu.se †aros@ditec.um.es

Abstract—We propose a novel approach for hardware-based
strict TSO persistency, called TSOPER. We allow a TSO persis-
tency model to freely coalesce values in the caches, by forming
atomic groups of cachelines to be persisted. A group persist is
initiated for an atomic group if any of its newly written values
are exposed to the outside world. A key difference with prior
work is that our architecture is based on the concept of a TSO
persist buffer, that sits in parallel to the shared LLC, and persists
atomic groups directly from private caches to NVM, bypassing
the coherence serialization of the LLC.

To impose dependencies among atomic groups that are per-
sisted from the private caches to the TSO persist buffer, we
introduce a sharing-list coherence protocol that naturally cap-
tures the order of coherence operations in its sharing lists, and
thus can reconstruct the dependencies among different atomic
groups entirely at the private cache level without involving the
shared LLC. The combination of the sharing-list coherence and
the TSO persist buffer allows persist operations and writes to
non-volatile memory to happen in the background and trail
the coherence operations. Coherence runs ahead at full speed;
persistency follows belatedly.

Our evaluation shows that TSOPER provides the same level
of reordering as a program-driven relaxed model, hence, approxi-
mately the same level of performance, albeit without needing the
programmer or compiler to be concerned about false sharing,
data-race-free semantics, etc., and guaranteeing all software that
can run on top of TSO, automatically persists in TSO.

I. INTRODUCTION

Non-volatile memory (NVM) has attracted significant at-
tention both as a technology [2], [24], [27], [28], [34] and
as a novel architectural feature [11]. NVM introduces a new
challenge in the hardware/software interface. The question that
arises is: what is the observed order in which memory writes
are persisted in NVM? This is similar to the question that
memory consistency aims to address, albeit with an important
difference. While consistency deals with the order in which
memory accesses appear to be performed in memory (memory
order) in relation to the order they appear in the program
(program order), persistency addresses the question of what
is the observed order of persists in NVM after a crash, for
persist operations that occurred prior to the crash.

The seminal work of Pelley et al. [31] introduced the
term persistency and identified strict and relaxed classes of

This work was supported in part from the EU Horizon 2020 research and
innovation programme (grant No 801051), from the European Research Council
(ERC grant No 819134), and from Vetenskapsrådet (grant No 2018-05254).
§First authors ordered alphabetically.

persistency models. Strict persistency semantics adhere to the
underlying memory consistency model: the order of stores, as
seen by observers in the consistency model, is preserved in the
persist order. As the authors note [31], conceptually, the same
mechanisms provided by the consistency model to enforce
store order can be used to enforce persist order. However, this
proves to be expensive. Relaxed persistency semantics, on the
other hand, decouples persistency order from consistency order
and allows the order of persist operations to deviate from the
order in which the corresponding stores become visible in the
consistency model. An example of a relaxed persistency model
proposed by Pelley et al. is epoch persistency [31], which
eventually led to language-level persistency models [8], [16],
[25] and persistency for synchronization-free regions [15].

Relaxed persistency models are potentially a very good fit
for relaxed consistency models as both require programmer
involvement for correctness. In other words, the programmer
has to fence both for the consistency model and for the persis-
tency model, and the effort for the former may be leveraged for
the latter. However, in architectures that implement a stronger
consistency model, such as x86-TSO, we are faced with a
discrepancy between the consistency model and the persistency
model. This discrepancy exists today between x86-TSO and
the relaxed persistency model introduced by Intel [19] and
formally described, as Px86, by Raad et al. [33] The consistency
model, x86-TSO, requires little or no involvement from the
programmer. In contrast, the persistency model, Px86, requires
significant involvement with insertion of CLFLUSH (program-
ordered, buffered, persist operation), CLFLUSHOPT (unordered,
buffered, persist operation), CLWB (unordered, buffered, persist
operation), and S/MFENCE (persist barrier), in the proper
places in the code. This involvement is comparable to the
effort that would be needed for a relaxed consistency model.
This largely negates the benefit of having TSO to begin with, as
anyone who wishes to achieve correct persistency would have
to fence the programs as if they were meant to run on relaxed
consistency. This is problematic for all existing software that
runs on x86-TSO but is not fenced for persistency.

Furthermore, relaxed models (either for consistency or persis-
tency) rely on data-race-free (DRF) semantics for correctness.
However, the burden falls on the programmer to provide
DRF guarantees. Arguably, correct, well-behaved programs
should adhere to DRF semantics —a stance also reflected in
the definition of the memory models of modern languages

(e.g., C++11 [5])— and data races should be considered bugs.
Unfortunately, this reasoning has two issues: (1) it does not take
into account legacy software that is written for TSO and which
may have data races as optimizations to synchronization [39];
and (2) it does not take into account data races at a coarser
granularity than individual variables, i.e., data races that are
due to false sharing.

In contrast, a hardware-only implementation of a strict
persistency model that adheres to a consistency model such as
TSO (or SC) is not plagued by such problems, because it can
simply detect run-time conflicts at cacheline granularity and
react accordingly. Thus, without any software involvement, a
program compatible with TSO will also persist correctly on
hardware-only strict TSO persistency. Furthermore, any DRF
program with no additional annotations that runs correctly on
TSO also persists correctly on this persistency architecture.

Proposal: Our work provides a new solution for an efficient
hardware-only implementation of a strict TSO persistency
model, called TSOPER. TSOPER relies on a TSO persist
buffer [32] that sits in parallel to the LLC. Private caches persist
directly to this buffer bypassing the coherence serialization
imposed by the shared LLC. This is our main differentiation
point from the prior state-of-the-art, Buffered Strict Persistency
(BSP) [22], and the driver for our design decisions.

Our insight is that we can use coherence to both automati-
cally create the proper “epochs” per thread in the corresponding
private caches and order these epochs according to the data
dependencies (among threads) that arise at runtime. The term
“epoch,” however, refers to program (instruction) execution.
We fully decouple persistency from program execution as our
approach is not software-driven. Thus, in our work, we talk
about atomic groups of cachelines (AGs), rather than epochs,
but we note that there is a relation between the two.

An atomic group is created and expands to include locally-
modified cachelines in the private cache of a thread as long as
no local modification is exposed to other threads (either via
external requests or via cache or directory evictions). Inspired
by BulkSC [7], our atomic groups preserve TSO, but in contrast
to BulkSC, we do so non-speculatively. If the cachelines of
an atomic group are persisted atomically (with no intervening
conflicting persist), we maintain TSO persistency regardless of
the order the individual cachelines of the group are persisted.
Interactions with the outside world, concerning the cachelines
of an atomic group, either create dependencies for the atomic
group, when it sees the modifications of other atomic groups,
or freeze the atomic group, when it is forced to expose its
own modifications to other atomic groups. Freezing an atomic
group automatically starts the process of persisting it; a new
atomic group (in program order) starts forming in the private
cache of the same thread, capturing subsequent stores for this
thread. Similarly to other approaches (e.g., BSP [22] and
SFR decoupled [31]), the dependencies among atomic groups
(epochs in other approaches) must be respected in the persist
order of the atomic groups. The key insight of this work is that
dependencies among atomic groups can be fully captured at
the coherence level, and in particular entirely at the L1 caches.

To demonstrate this capability, we develop a sharing-list
protocol, inspired by SCI [20], that naturally captures in a
sharing list the order in which the coherence operations for
a block are serialized by the directory. In such a protocol,
different writers of a shared block queue up one after another
in the list, and perform their persists in the order in which
their stores were inserted in the memory order. Persistency is
enforced belatedly, trailing coherence, but following the same
order. A block’s sharing list is dismantled only by the ordered
persist of the locally-modified cachelines on the sharing list.

By ensuring that it is impossible to create dependence
cycles among atomic groups, we guarantee deadlock-free
TSO persistency with enough flexibility to coalesce multiple
stores in cachelines and re-order individual cacheline persists
(within an atomic group) to match the level of performance
of the relaxed persistency models. We do not rely on any
kind of speculation or transactional approach that would
detect conflicts, roll-back, and retry. Our approach is strictly
non-speculative, rendering any cost related to out-of-core
speculation (checkpoints, maintaining speculative state, commit
overhead, etc.) unnecessary.

We envision a unified mechanism that enforces coherence
to support the consistency model (TSO) and enforces the
persistency model. For simplicity, we use the same sharing-list
protocol for both coherence and persistency in this paper, but,
in principle, a different protocol could be used for coherence.
Using the same sharing-list protocol for both coherence and
persistency has the advantage of easily demonstrating the
decoupling of coherence and persistency: coherence happens
at the heads of the sharing lists (the young memory order end)
while persistency happens at the tails of the sharing lists (the
old memory order end).

As in other persistency models, including Px86, SFR
persistency, and PTSO, we also employ persist buffering to
decouple program execution from the actual persist operations
that eventually reach the NVM. In our model, a TSO persist
buffer, similarly to Intel’s Write Pending Queue [37], guarantees
that atomic groups, persisted directly from the L1 caches, will
be made durable in NVM even in the event of a crash (e.g.,
power failure). Our TSO persist buffer, called Atomic Group
Buffer (AGB), accommodates multiple versions of same-address
cachelines in different atomic groups awaiting their writing to
NVM. This is a fundamental differentiation point from BSP
(and LAD [18]) that persist through the LLC and impose a
single-version restriction: visibility and writing to NVM must
be interlocked on the same version.

While the AGB is designed to accommodate multiple atomic
groups in flight to NVM, its storage requirements are especially
frugal, ensuring that it is feasible with existing technology. In
our evaluation (§V), we model an AGB per memory channel of
modest size (10 KB) that can fit two large atomic groups (of up
to 80 cachelines). Atomic groups are generally small (90% of
the atomic groups that are formed in the evaluated workloads
are under 10 cachelines—see §V) and, thus, the AGB size can
be easily reduced to one eighth (i.e., 1.25 KB per memory
channel) without significantly impacting performance. This

OBS 1

St A St B St C

St Y L1 Exclusion Time St B LLC Exclusion Time

Core 1
Epoch m

Core 2
Epoch n

Unlock
L1

Lock LLC

Unlock
LLC

LLC

NVM

St C St BSt A

St A St BSt C

St Y St B

Evicted
from L1

Evicted
from L1GetX

(B)

Block!

Flush
Epoch

Non-Persistent Domain
(L1, LLC)

Persistent Domain
(NVM)

OBS 2

Lock
L1

Block!

Flush
Epoch

In BSP, coherence
and persistency
interlocks each other

(a) BSP.

St A St B St CCore 1
AG m

St YCore 2
AG n St B

LLC

AGB

Tail Head

A
G

B
 R

es
v

.
A

G
B

 A
ck

.

St C St BSt A

St A St BSt CNVM

St B

St Y St B

Persist
Token

To
Core 2

SLC
GetX
(B)

Link up! &
Unlock L1

L1 time saved LLC time saved

Flush AG &
Unlock LLC Write

Non-Persistent Domain
(L1, LLC)

Persistent Domain
(NVM, AGB)

Delete Core 1:st B
from the linked list;
persist Core 2:AG n

OBS 3 OBS 4

In TSOPER, coherence runs
ahead at full speed;
persistency follows belatedly.

(b) TSOPER.

Fig. 1: Comparison between BSP [22] and TSOPER.

places our design squarely at the level of current, commercially
available, WPQ implementations, which are evaluated by Wang
et al. [45].

Advancements beyond the State of the Art: Figure 1
depicts the differences of TSOPER over the state-of-the-art,
BSP. Enabled by our techniques, TSOPER aims to hide the
overhead of persisting to NVM. From the figure, we can make
the following observations:

OBS 1. L1 exclusion time. In BSP, St B in {Core 1:Epoch
m} locks cacheline B in L1, preventing invalidations from
remote cores until St B is written to LLC. This protects Core 1
from losing the value of St B before Epoch m is persisted so
that epoch atomicity is preserved. As shown in Fig. 1a, St B in
{Core 2:Epoch n} is blocked from updating its local L1 until
St B in {Core 1:Epoch m} is installed in the LLC.
Definition 1: We define the time from the moment a core issues
a write request (GetX) until the moment the write permission
is granted as the L1 exclusion time (see Fig. 1a).

Moreover, because cachelines within the same epoch are
persisted without any particular order, worst case L1 exclusion
time is a function of epoch size (i.e., when the cacheline in
question is written last to the LLC), as shown in Fig. 1a.

OBS 2. LLC exclusion time. In BSP, the LLC acts as
the landing point between L1 and NVM, i.e., every epoch
should first be written to LLC then to NVM. Thus, the LLC
can accept a newer-epoch version of a cacheline from L1 only
after older-epoch version of the same cacheline in the LLC is
persisted in NVM. In Fig. 1a, after St B from {Core 1:Epoch
m} reaches the LLC, it “locks” cacheline B in the LLC until
St B has persisted to NVM. During this time, St B from Core 2
is restricted from updating the LLC.
Definition 2: We define the time from the moment a core issues
an epoch flush request to the LLC until the moment the epoch
flush request is granted as the LLC exclusion time (Fig. 1a).

...
st a;
st b;
st c;
...

c
b
a

Store
Buffer

a,c
b

Persist orange CL first:
b overtakes a

Persist green CL first:
c overtakes b

NVM

cache
cacheline (CL)

Fig. 2: Store coalescing in cachelines violates TSO persistency: persisting
the green cache block will violate the TSO between b and c; persisting the
orange cache block will violate the TSO between a and b. There is no way
that cachelines can be persisted that does not violate TSO.

As can be observed, LLC exclusion time is jointly determined
by the epoch size and the NVM write latency, which is typically
hundreds of cycles per write.

OBS 3. Our first innovation: Reducing the L1 exclusion
time using the SLC protocol. In TSOPER, a sharing list
protocol (SLC, see §IV) allows multiple writers to co-exist in
the sharing list, eliminating the need to lock in the L1 cache.
Different writers of a shared block queue up one after another
in the sharing list, and perform their persists in the order in
which their stores were inserted in the memory order. In this
way, Core 2 can install St B in the private cache immediately
after the cacheline is linked up in the sharing list,1 significantly
reducing the L1 exclusion time.

OBS 4. Our second innovation: Reducing the LLC
exclusion time using AGB. In TSOPER, atomic groups are
directly persisted from L1s to the AGB, in parallel to being
written in the LLC, which nearly eliminates the LLC exclusion
time. Similarly to Intel’s Write Pending Queue [37], the AGB
guarantees that atomic groups, persisted directly from the L1
caches, will be made durable in NVM even in the event of a
power failure or crash. To reduce the high write latency to NVM,
AGB banks are implemented with faster technology such as
battery-backed SRAM. More details on the AGB organization
are in §II-A.

Finally, we show through detailed simulation that our
approach decouples coherence and persistence further than the
state of the art prior solution, Buffered Strict Persistence [22],
and achieves performance levels close to relaxed persistency
(3% performance overhead on the average).

II. TSO PERSISTENCY

TSOPER is an efficient, strict TSO persistency model
that relies on coherence and TSO persist buffering for its
implementation. Compared to both PTSO [32] and Intel’s
Px86 model (as formally described by Raad et al. [33]), we
are making TSOPER transparent to the software as far as the
persist ordering of the stores is concerned.

Under strict persistency, persist order coincides with con-
sistency order. For TSO, this means that persists must follow
the store order as prescribed by program order. Unfortunately,
this introduces many dependencies. Refer to Fig. 2. In this

1A new writer is inserted as the new “head” in a doubly-linked sharing list.

example, a thread executes three stores to a, b, and c, in this
order. Two of these stores, st a and st c, coalesce in the
same cacheline with the third store, st b, interposing between
them. Strict TSO persistency requires that three separate persist
operations be performed, one for each store.

If we attempt to capitalize on coalescing to reduce the
persists down to two (one for the green cacheline and one
for the orange one) and a crash occurs between the persists,
persistent memory will be updated incorrectly with respect to
TSO: Persisting the green cacheline violates the store order
between b and c; persisting the orange cacheline violates
the order between a and b. There is no persist order for
the cachelines that does not violate TSO in a possible crash
between the persists.

To solve this problem, PTSO integrates (buffered) epoch
persistency [31] with the TSO consistency model [41]. Under
epoch persistency, the execution of each thread is delineated
into persistency epochs by explicit, programmer-inserted,
pfence instructions. Stores within an epoch can persist in
any order, preserving only the order of the stores to the
same address. A pfence instruction acts as a persist barrier,
ensuring that no stores following the barrier are persisted before
the stores preceding the barrier. A persist barrier is defined by
Pelley et al. as CLWB; SFENCE for Intel’s Px86.

Persist buffering, in turn, decouples the execution of the
pfence (or SFENCE) instruction from the actual completion
of the individual persists in NVM. Such persist buffering
already exists in actual processors, e.g., Intel’s Write Pending
Queue (WPQ) [37]. As with the WPQ, we assume that buffered
persists are considered committed to NVM even in the event
of a crash. However, we expand the WPQ concept to a TSO
persist buffer that operates at the atomic group level and is
visible by loads. Section III expounds on the AGB functionality.

While PTSO prescribes how to create epochs (by inserting
pfence instructions in a program) that guarantee TSO
persistency, TSOPER automatically creates the analogous
of epochs by observing and reacting to coherence transactions
that denote data races (conflicts). We say the “analogous of
epochs” because we do not intervene in program execution
to create epochs; we work at the cache level, decoupled from
program execution. In contrast, epochs in Joshi et al. [22] are
delineated by software–inserted (BEP) or hardware-inserted
persist barriers (BSP). Our approach is built on the concept
of an atomic group (AG) of cachelines. Broadly speaking,
an AG incorporates the changes made in the private cache
during a period between two successive exposures of local
data modifications to the outside world. In this perspective, an
atomic group is not directly connected to a program epoch.

A. From Epochs to Atomic Groups

In TSOPER, as the three stores of the example in Fig. 2
exit the store buffer and write to the cache, an atomic group is
created and expands to contain both the orange ([a,c]) and
the green ([b]) cacheline (Fig. 3). There is no immediate need
to persist this atomic group (as opposed to hitting a pfence
in PTSO) but if any of the two cachelines (green or orange)

...
st a;
st b;
st c;
...

...
st x;
st y;
st z;
...

 a,c
b

c
b
a

store buffer level
(individual

stores)

z
y
x

cache level
(cachelines
in groups,

AGCs)cache0 cachen

thread0 thread1

LLCAGB

x,z

shared level

memory level

NVM DRAM

AG

AG Space allocated
in WPQ

1

3

2

AG0 AG1
 a,c

b

 a,c
b

 a,c
b

x,z

x,z
y

Fig. 3: System model: 1 Stores a, b, c coalesce in cachelines [a,c] and
[b] and form atomic group AG0; 2 AG0 cachelines are buffered in the
Atomic Group Buffer (AGB); 3 when complete in AGB, AG0 is made durable
in NVM. In contrast, AG1 is not fully persisted in AGB, therefore, none of
its cachelines are made durable in NVM.

were to be exposed to the outside world, the atomic group
would have to be persisted on such exposure. Of course, as
Fig. 2 shows, there is no persist order for individual cachelines
that would maintain TSO (if we have coalesced stores). This
is why we need an atomic group to persist atomically, i.e.,
all or nothing and without any intervening conflicting persist.
Same as with persist epochs in PTSO, an atomic-group persist
maintains TSO for the stores it encapsulates, no matter what
the persist order of individual cachelines is.

To summarize from a different perspective: Stores exit a
FIFO store buffer (i.e., in program order) and locally modify
cachelines in a cache. As long as the cache is not forced to
reveal any of its modifications to the outside world, it can
continue to accept stores without having to persist anything.
At the point, however, that the cache must reveal any of its
locally-modified cachelines, either because of an eviction or
because of a coherence request (someone else wishes to read
or write a locally-modified cacheline), the cache must go into
a persist mode and persist its dirty cachelines as an AG.

There are two observations, here, that give us a greater
insight into the formation of atomic groups:
1. No other cache in the system has a (valid) copy of a

cache’s locally-modified cachelines. We assume single-
writer/multiple-reader semantics (SWMR), and the cache is
the exclusive holder of its locally-modified cachelines.

2. The set of locally-modified cachelines in a cache is ef-
fectively locked in place simply by means of cacheline
exclusivity: the release of these cachelines to the outside
world, is wholly controlled by the cache that holds them.
Atomicity, for persisting an atomic group, is implemented

via a persist buffer which fills a similar role of a logging
mechanism. This buffer must guarantee that we are not left
with a partial atomic group in NVM, when a crash occurs in
the middle of making an atomic group durable.

The Basics: Creating, Freezing, and Persisting AGs: AGs are
formed in private caches. An AG, generally, contains the locally-
modifed cachelines —but as we will see it can also contain
locally-unmodified cachelines that are read from other AGs—
up to the point where it is forced to expose its modifications.

This happens when:
1. An eviction of a locally-modified cacheline forces a write-

back to a shared cache level (or memory).
2. A directory eviction forces the writeback of a locally-

modified cacheline to memory.
3. Another core requests a downgrade/invalidation, wanting

to read/write a locally-modified cacheline via a coherent
read/write request.

4. The AG reaches the size of the persist buffer. AGs cannot
exceed this size limit; otherwise, their atomicity in NVM is
not guaranteed.

On such an event, the AG is frozen, i.e., it can no longer
expand, and must be persisted to NVM. We will detail this
procedure in later sections.

When we decouple coherence from persistency, more than
one AG can be present in a private cache at any one time. In
that case, AGs are ordered in program order: the oldest AG
is the one to persist first, followed by other AGs, and with
the youngest AG being the one that is currently expanding to
accommodate stores exiting the store buffer.

An atomic group ID, AG ID, tags the cachelines of an AG.
In practice, only few AGs are present in a cache at any point
in time, thus, only a few bits are needed for the AG ID. Two
AG ID registers indicate the oldest (first to persist) and the
youngest (still open) AG in the cache. A stall will occur if
after AG ID wraparound, the youngest ID catches up with
the ID of the oldest group in the cache, but the size of the
IDs can be adapted to ensure this rarely happens. AG IDs
are locally managed by L1 controllers, i.e., each core assigns
its own sequence of AG IDs to its local AGs. There is no
global AG ID number, thus no synchronization on AG ID is
necessary.

Multiversioning: A store, trying to exit the store buffer and
write to the local cache, is blocked if tries to write a cacheline
in a frozen atomic group. We do, however, allow multiple
versions of the same block to reside across different caches for
the purpose of persistency as we explain in §IV. All except
one of these versions are invalid and part of a frozen AG. The
only usable valid version is owned by the last writer and is
part of an open AG. We use a sharing list protocol to maintain
the order in which these versions must be persisted (§IV).

Atomicity: Atomicity of an AG is guaranteed by two
mechanisms: The first mechanism is to ensure that atomic
groups are made durable in NVM either in their entirety or
not at all. This is accomplished by the atomic group persist
buffering mechanism, shown in Fig. 3 and explained in the
following sections. The second mechanism to guarantee AG
atomicity concerns the ordering constraints that we place on
the persist order of the atomic groups so as to order conflicting
or dependent persists and guarantee TSO. In §III, we explain
how we establish the dependencies among atomic groups and
how we order them for persist without deadlock.

B. Persisting via the Atomic Group Buffer

The key advancement of our work is that our system
architecture is based on the concept of a FIFO TSO persist

1

2

HeadSupergroup
Tail

Tail

Supergroup:
all order is lost except for
same-address cachelines

AG allocation
base pointers

Ingress

cache0 cache1 ...

MC0 ...MC1 MCm

Egress

cachen

a0 b0a1b1a2

Logical/Centralized AGB a2
a1
a0 b0

b1

...

Fig. 4: Logical (centralized) view of AGB.

buffer that persists atomic groups directly from L1s to NVM.
The TSO persist buffer is exemplified in the Px86 model of
Raad et al. [32]. In our work, the TSO persist buffer is the
Atomic Group Buffer (AGB), that sits in parallel to the LLC. In
contrast, related works (e.g., BSP [22] and LAD [18]) persist
through the LLC, which imposes single-value semantics.

This architectural choice provides a new degree of decou-
pling between persistence and coherence. In BSP, the LLC
can accept a newer-epoch version of a cacheline only after the
LLC’s older-epoch version of the same cacheline is persisted
in NVM. In TSOPER, the LLC is constantly updated with
the newest-epoch version of a cacheline while simultaneously
enqueueing the same version in the AGB. The durable write
from the AGB to NVM is thus fully decoupled from the LLC.

Similarly to Intel’s WPQ, the AGB is in the persistent domain.
It guarantees the durability of its contents in NVM even in
the event of a crash. To persist an AG, we simply buffer it
cacheline-by-cacheline from the L1 to the AGB. To guarantee
its durability in NVM, we wait for the whole AG to be placed
in the AGB before making any of its cachelines durable in
NVM. The only limitation imposed by this approach is that
an AG cannot exceed the size of the AGB. If an AG cannot
fit, because other AGs are buffered in the AGB, we stall its
buffering until enough space is available for it to fit. In case
of a crash, the AGB will not make durable in NVM any AG
that is not completely buffered, as previously shown in Fig. 3.

It is important to note that because the AGB works at the
atomic-group level, all order is relaxed for the cachelines
within an atomic group; conceptually, FIFO semantics apply
to AGs but as we will show below this degenerates to FIFO
semantics applying only for same-address cachelines.

AGB Ingress: Figure 4 provides an overview of the logical
structure of the AGB. The goal of the AGB ingress (Fig. 4 1)
is to allow concurrent AGs (persisting in parallel from different
L1s) to be buffered easily. To avoid complex scheduling in the
AGB when we persist concurrent AGs, we simply reserve space
for the whole atomic group when we buffer its first cacheline.2

For each AG, cachelines are allocated consecutively in the
AGB, starting from an allocation base pointer that is assigned

2An AG’s size is known by the time it is frozen, which happens before its
first cacheline is persisted.

to the AG on allocation. AGs, in turn, are laid out consecutively,
on a first-come first-served basis, if they are concurrent. If they
have dependencies, the dependency ordering mechanism (§III)
orders their allocation. After allocating an AG, the L1 sends
its AG cachelines (in any order) to the AGB and the LLC.

AGB Egress: While AG ingress in the AGB is ordered, AG
egress is largely unordered and provides ample parallelism for
multiple memory controllers (Fig. 4 2). Consecutive, fully-
persisted AGs, starting with the AG at the head of the AGB,
form an atomic super group that is guaranteed to become
durable in NVM. Thus, the order among unique cachelines
within this super group does not matter. On the other hand,
the order among same-address cachelines (e.g., a0, a1, a2
in Fig. 4) within this super group matters: same-address
cachelines are written in NVM in a FIFO fashion. In other
words, AG dependencies are implicitly encoded in the AGB in
the allocation order of same-address cachelines. Same-address
order is automatically taken care of by the mapping of addresses
to memory controllers (MCs).

Searching the AGB: Like any TSO store buffer, loads must
take the latest value from AGB before going to NVM. Since
the LLC is always updated with the latest version of the data
in parallel to the AGB, the latter needs to be searched only on
LLC misses. We can easily afford to serially search a small-
sized AGB (as the one used in §V), under the shadow of an
LLC miss. Further, we can completely avoid searching the
AGB by making the LLC always inclusive of the contents of
the AGB, e.g., by pinning LLC cachelines, from the time they
enter the AGB to the time they exit the AGB. We leave this
as a future optimization.

C. AGB Organizations

Centralized AGB: In this model (Fig. 4), the non-volatile
state of the MCs is unified in a (power-backed) centralized,
circular, SRAM buffer (AGB). The AGB is written by multiple
private caches in parallel and drained out to multiple MCs.
Unique cachelines in the AGB super group can be written
out in any order to the corresponding MCs. Same-address
cachelines are routed to the same MC. The AGB is scanned
head to super-group tail and can skip over cachelines, but it
never reorders cachelines going to the same MC.

Distributed AGB: The AGB itself can be distributed across
multiple memory controllers as shown in Fig. 5. In that case,
the cachelines of an AG are distributed to the corresponding
AGB slice based on their address. Slices of an AG are allocated
to AGB slices in a single step via a centralized AG allocation
arbiter (Fig. 5 1). This arbitration is usually not in the
critical path as it concerns the ingress of the AGB slices and
therefore is often hidden behind fully-persisted AGs awaiting
to be written to NVM. Once an AG slice is filled in an
AGB slice, the arbiter is signalled (Fig. 5 2) which in turn
broadcasts to all AGB slices (Fig. 5 3) when the AG is fully
entered everywhere. After this two-phase allocation-completion
ingress the AG slices become part of the supergroups in the
corresponding AGB slices, and, in contrast to BSP [22], no
further coordination is needed for the egress (Fig. 5 4). This

4

HeadSupergroup
(SG) Tail

cache0
MC0a0a1a2

Distributed/multi-MC AGB

...

MC1b0b1
...

... MCm

cache1

cachen

... allocation
AG

arbiter In
te

rc
on

n
ec

t

Head

Head

SGTail

SGTail

supergroup

3

Tail

Tail

Tail

Allocate Slices (adv. Tails)

Slices Filled

Advance SG Tails

2

1

Fig. 5: On-chip distributed AGB (multiple MCs).

is because cachelines within a super group can be written
out to NVM in any order regardless of their AG order. Of
course, same-address cachelines are written in FIFO order
by virtue of being enqueued in the same AGB slice (same
MC) based on their address. This property does not hold in
cross-chip distribution where each chip has its own set of
MCs, and MC exclusivity in handling address sets is lost. Thus,
AG dependencies that span across chips (as reflected in the
global order of same-address cachelines) must be preserved
with an external protocol (across MCs), along the lines of the
cross-chip LAD protocol [18].

D. Discussion: Recovery

A TSO guarantee for persistence has the potential to
impact the recovery of applications that are based on lock-
free algorithms and data structures. These applications do not
necessarily fit the mould of epoch (or SFR) persistence. We
leave this for the future work.

For other applications whose recovery is based on software-
defined epochs, the software must indicate to TSOPER such
epochs. This can be achieved with marker store instructions
(uniquely identified by TSOPER) that are inserted in the
store stream to control AG boundaries (e.g., start and freeze
AGs). In the AGB, markers assemble collections of AGs into
super groups that correspond to the software-defined epochs.
TSOPER is limited by the size of the super group that can fit
in the AGB, thus LAD-inspired solutions [18] can be adopted.

III. ATOMIC GROUP ORDERING

A naı̈ve approach to maintain TSO persistency when any
local modification of an atomic group must be exposed, is
to “stop the world” and persist the AG; we denote this STW.
This means that both local and remote cores are prevented
from making further modifications until the atomic group is
buffered in the AGB for persist. In contrast to the naı̈ve STW
approach, TSOPER allows coherent operations to continue
after an atomic group is frozen. This is shown in Fig. 6.

Atomic groups grow when stores exit the store buffer and
write to the cache. This includes cachelines brought into the
cache as a result of the write misses that are caused by the stores.
Cache0 expands its AG by requesting b and c from cache1
and cache2 respectively. The act of accessing the cachelines in
cache1 and cache2, (Fig. 6 1 and 2), freezes the respective

cache2

Open AG

Frozen AG

a

...
c

...
b

cache1

cache0 cache2

a
b

...
b

cache1

cache0

cache2

a
b
c

...
c

...
b

cache1

cache0

...
c

1 2

3 4

a

cache3

cache2

a
b
c

...
c

...
b

cache1

cache0

cache3

pb

req.
resp.

req.

resp.
req.

resp.

pb pb

pb

pb

pb

Fig. 6: Establishing pb dependencies among AGs.

AGs and creates persists-before (pb) dependencies among the
atomic groups. Specifically, the AGs in cache1 and cache2
must persist before the AG of cache0:

AG1
pb−→ AG0 and AG2

pb−→ AG0

Finally, cache3 requests a from cache0 (Fig. 6 3) and freezes
the AG of cache0 (Fig. 6 4). This creates a pb between the
AG of cache3 and that of cache0:

AG0
pb−→ AG3

The invariant here is: An AG can create arbitrary incoming
pb dependencies from other AGs by accessing remote cache-
lines, as long as it is not forced to reveal its modifications. On
the first access to its own cachelines, i.e., on the first outgoing
pb dependence, the AG is frozen and cannot create any new
incoming dependencies. Additional outgoing dependencies can
be created even after an AG is frozen, when remote AGs access
(as allowed by coherence) its cachelines.

A. The Role of the Reads

While it is obvious that an AG includes locally-modified
cachelines, i.e., cachelines accessed with the intent to write, it
is also the case that an AG includes cachelines that are accessed
only for reading but belong to remote AGs. An example is
shown in Fig. 7. We conservatively assume that any store
following a load (e.g., st c that follows ld b in Fig. 7) may
depend on the value accessed by the load. If the load brings
to the cache a cacheline belonging to an external AG, and
this cacheline is not included in the local AG (Fig. 7 1), a
pb dependence cannot be established between the AGs. Yet,
concurrently persisting the AGs of Fig. 7 1 is an error as st c
depends on the value written by st b in the second thread
(on the right). This means that the currently expanding AG in
the first cache (on the left) must include the cacheline that is
read in order to encode the dependency to the remote AG. As
we show in the next section, the dependencies of an AG are
encoded in the cachelines it contains. Symmetrically to writes,
a read freezes a remote atomic group.

st a
ld b
st c

st b

a

c

b

b

rf

1

st a
ld b
st c

st bpo

a
b
c

b 2

value dep.

rf

pb
dep.

dep.

Fig. 7: Reads: 1 Not including cacheline [b] in the AG on the left fails to
establish a pb dependence to the AG on the right. 2 Cacheline [b] included
in the AG: a correct pb dependence is established.

B. Cache and Directory Evictions

Similarly to requests from other caches (cores), cache
evictions or directory evictions have the potential to expose
modifications within an AG to the outside world. Cache and
directory evictions differ from requests of other caches, as they
are not directly related to an expansion of another AG.

Potentially, a future AG that incorporates an evicted cacheline
could establish a pb dependence to the AG that lost this cache-
line. This is the approach taken by Joshi et al. [22], by keeping
epoch information along with LLC cachelines. However, this
is complicated as it requires important dependence information
to be maintained in the face of LLC or directory evictions,
which is not addressed in their work [22].

Instead, we opt for a different, more direct and simpler,
solution with the help of some extra buffering: We immediately
freeze and persist an AG that suffers an eviction. To hide the
eviction latency —i.e., avoid delaying the replacement— we
move the evicted cacheline into an eviction buffer on the side.
The cacheline remains there until it persists, in accordance to
the AG’s pb dependencies. During that time, the cacheline
still behaves as a member of the AG. Only after the AG is
persisted, we perform the eviction at the coherence protocol
level. A small eviction buffer typically suffices: Most items
that are waiting to persist were recently written and, thus, less
likely to be selected for eviction and cause pressure in the
eviction buffer by occupying its entries for prolonged time.3

Similarly, an evicted directory entry is moved to a small
buffer to immediately free up its place in the directory and
expedite the replacement. It remains buffered until the affected
cachelines have persisted. Potentially this can take a long time,
but directory evictions are rarer and thus the buffering needed
does not increase inordinately.

C. Deadlock Freedom

Unlike BSP [22], which uses a detection-and-avoidance
policy to break deadlocks, in TSOPER, all deadlocks are
prevented from happening by the inherent design of the system.
BSP breaks and starts a new epoch and notes a dependency
when it detects the use of a cacheline from an active epoch
in another thread. This dependency is only resolved when the
epoch of the other thread is eventually persisted. TSOPER
instead pro-actively freezes an open AG in another thread if
a cacheline is requested. Dependencies are thus resolved as
soon as possible once detected.

3A 16-entry eviction buffer does not experience any pressure in our
evaluations.

st a
st b
st x

st x
st y
st a

po

a
b

x

x
y

a

st a
st b
st x

st x
st y
st a

a
b

x

x
y

a

req.req.

+ + pb

Open AG

Frozen AG

pb pb

pb1

2

Fig. 8: Racing misses cannot create cycles among atomic groups because a
cacheline joins an atomic group after the response arrives from the remote
cache. By that time, the requests have frozen the old AGs and the newly
installed cachelines start new AGs in the caches.

In TSOPER, absence of persists-before cycles that would
lead to persist deadlocks is established by two policies:
1. Persist-before dependencies are always formed along the

flow of (logical) time. Intra-cache dependencies are formed
between the last frozen AG and the newly opened AG
(Fig. 8 1). Inter-cache dependencies are formed along
responses to coherence requests, i.e., a cacheline is added
to an AG only once it has arrived, not at the time of the
request (Fig. 8 2).

2. All incoming pb dependencies of an AG are formed before
all outgoing pb dependencies. This is because AGs can only
create incoming pb dependencies as long as they are open,
and they are frozen before they service the first request for
one of their modified cachelines.

Thus, (logical) time passes with every established pb de-
pendency and between the last incoming and first outgoing
dependency of an AG. This naturally establishes a cycle-free
dependence graph among all AGs.

IV. DEPENDENCE-TRACKING COHERENCE

As we have shown, persists-before dependencies among AGs
must be tracked to correctly persist in TSO. A key insight of our
work is that tracking pb dependencies can be accomplished by
the coherence protocol at the level of individual cachelines: The
dependencies of an AG (to other AGs) are the dependencies
of its cachelines. We next show that the desired properties
for AG dependence tracking are encapsulated in sharing-list
coherence protocols, such as SCI [20]. Two properties of a
sharing list which are important in our case are that: (1) a
sharing list naturally captures the serialization of operations
that happens at the directory; and (2) it keeps this information
entirely in the L1 caches. This sharing list “order” is used to
enforce TSO persistency by ordering the persist of entire atomic
groups. Our L1 coherence-based dependence tracking subsumes
the dependence tracking mechanisms of Joshi et al. [22] that
span the whole cache hierarchy (i.e., the IDT and LLC epoch
information).

A. Sharing-List Persistency

One of the main contributions of our work is to show that
we can use the concept of the sharing list to seamlessly provide
TSO of the persists for a single (cacheline-granularity) address.
Atomic groups, discussed next, order persists across multiple
(cacheline-granularity) addresses. Different writers of a shared
block queue up, one after the other, in the same sharing list,
and perform their persists in the order in which they joined

Dir.
5

1

4

Invalidation direction

Persistency direction (persist token passing)

first writersecond writer

2 3

v0v0v0

persist
& delete

67

persist
& delete

8

v1

Inv. Inv. Inv.

new writer
attaching to the list
and starting
the invalidation

v1v1

delete delete

9 10

read-only
sharers

Fig. 9: Sharing-List Persistency.

the sharing list. Contrary to the typical coherence protocols,
we do not discard cachelines after they are invalidated; instead,
we keep them until we persist their version of the data.
Thus, sharing lists are not destroyed at invalidation; they are
dismantled by the orderly persist of their locally-modified
cachelines. Persistency is enforced belatedly, lagging behind
coherence, but following the same order. Our approach is
distilled in three principles:
1. Non-destructive invalidations Invalidations do not remove
cachelines from the sharing lists. Instead, when invalidated,
such cachelines are forced to persist (if they carry locally-
modified data). They remain in the sharing list in an invalid
state, until their local modifications are persisted (cf. Fig. 9).
Being invalid means that their version of the data is not
available to anyone (either local or remote core) to access. It
is strictly there to persist in order.

2. Multiversioning Not removing invalidated cachelines, im-
plies that a sharing list can contain multiple versions of the
same data simultaneously. Only one version is valid (and
current) and can be accessed: the version at the head of the
sharing list. All other versions are invalid (and stale) but
remain in the sharing list until they are persisted. In Fig. 9,
at some point in time, two versions (v0 and v1) co-exist.

3. Tail-to-head persist Invalid cachelines in a sharing list can
only persist when they become the tail in their sharing list.
After persisting, invalidated tails disconnect from the sharing
list, making the next cacheline (towards the head) the new
tail. One way to visualize our approach is to consider that the
tail of each sharing list owns a persist token that is passed up
the list, from tail to head. Invalidated, locally-modified tails
first persist and then pass the token; invalidated unmodified
tails immediately pass the token and disappear. Cachelines
are deleted once they become both invalid and pass on their
persist token. Figure 9 shows an example.
Sharing-list persistency is reminiscent of the “Queue on

Lock Bit” (QOLB) hardware queue lock, proposed by Goodman
et al. [17] and adopted in SCI. Indeed, this is the case. The
novel aspects of our work are:
• We allow multi-versioning to go on while building the

sharing list, while QOLB’s purpose is to spin (locally) on
all cachelines on the list, except the tail which is the lock
holder.

• In QOLB, all cachelines on the list except the tail are waiting
to become valid, while, in our case, all the cachelines on the
list except the head are invalid and waiting to be deleted.

forward
backward

head tail

reads from forward

reads from forward

pb
AG1

AG2 AG0

Dir.

forward

forward
backward

head
pb tail

AG3

forward
backward

tail
AG4

headforward

forward

pb

pb

AG0 incoming pb dependencies: All incoming pb dep.
 are formed before the first outgoing pb dep.

AG0 outgoing pb dependencies

Fig. 10: The pb dependencies of AG0 are encoded by the sharing lists of its
three cachelines.

If desired, and convenient, protocol functionality can double up
for both schemes, but we leave this to be examined in future
work.

B. Putting it All Together

The last remaining piece of the puzzle is to bring together
the concept of the atomic group persistency and the concept
of the sharing-list persistency. Their combination gives us
hardware TSO persistency. As we have alluded, the incoming
and outgoing pb dependencies of an AG are, in fact, encoded
in the cachelines it contains. They are the sharing list forward
and backward pointers of its cachelines.

Figure 10 shows this relationship: A valid forward pointer is
an incoming pb dependence: we have read local modifications
from an AG towards the tail. A valid backward pointer is an
outgoing pb dependence: an AG towards the head has read
out local modifications.

Finally, to put everything together, we need to clarify how
an AG persists based on the sharing list state of its cachelines.
The two invariants we must keep for an AG are:
1. All incoming pb dependencies must be satisfied (all atomic

groups on which the AG depends on must be persisted)
before any of the AG’s cachelines are persisted.

2. No cacheline of any AG that depends on an AG can be
persisted before all of that AG’s cachelines are persisted.
An AG freezes and starts the persist process when another

AG requests one of its cachelines containing locally-modified
data. The persist process consists of a phase in which the cache
controller waits (if needed) for all cachelines of the AG to
become tails and a phase in which the cache controller persists
the cachelines of the AG to the AGB. We use a counter to keep
track of the number of cachelines in an AG that are waiting to
become tail throughout the AG’s lifetime.4 Recall that all AG
cachelines eventually become tails because they trigger their
predecessor AGs to freeze and persist. Once the AG is frozen
and the “waiting to become tail” counter reaches 0, the AG is
ready to persist. The persist token is passed immediately on
persist: as soon as a cacheline is buffered in the AGB it leaves
the sharing list, making the next-in-list cacheline the tail.

4In the evaluation we use eight counters per cache so the cost is negligible.

TABLE I: System configuration.

Private L1 I&D caches 32 KB, 8 ways, 4 hit cycles,
64-byte block size, 16-entry eviction buffer

Private L2 cache 256 KB, 8 ways, 12 hit cycles,
16-entry eviction buffer

Shared LLC (8 banks) 1 MB per bank, 8 ways, 35 hit cycles
Directory (8 banks) 512 sets, 8 ways (200% coverage)
Atomic Group Buffer 8 AGBs, each holds 160 cachelines

(2×80-cacheline AGs)
NVM size 4.0 GB, 4096-byte page size
NVM ranks 8 DDR (8 MCs)
NVM write / read delay 360 / 240 cycles
NoC Fully connected, 128-bit datapath,

5-flit data msg/1-flit ctrl msg, 6 cycles per hop

V. EVALUATION

In this section, we evaluate how TSOPER performs against
state-of-the-art approaches for strict and relaxed persistency.

System configuration: Our simulation infrastructure is
driven by a Sniper [6] front-end that feeds instructions to an
in-order processor model. Our sharing list coherence (SLC) pro-
tocol is implemented using the SLICC language [29]. We use
the MOESI CMP directory protocol (found in gem5/GEMS
distributions) as an example to indicate that SLC is not
unreasonably complex compared to a widely used directory
protocol. The SLICC implementation of SLC compared to the
standard MOESI protocol requires fewer base states (15 vs. 25),
fewer transient states (24 vs. 64), slightly higher SLICC actions
(133 vs. 127), and far fewer SLICC transitions (148 vs. 264).
We simulate a multi-core processor consisting of eight cores.
The private caches have eviction buffers for cachelines pending
to persist, sized to prevent a bottleneck. The processors are
connected to Ruby, a cycle-accurate memory hierarchy model.
The interconnection network is modelled with GARNET [1].
Details of the simulated system appear in Table I.

Memory and AGB: We model 8 NVM ranks, each as a
double data-rate (DDR) rank with 360(240) cycles write(read)
latency [22]. As depicted in Fig. 5, we simulate eight distributed
AGBs, one per NVM rank, with one centralized AGB arbiter.
We follow BSP [22] to implement the handshaking protocol
between the centralized AGB arbiter and the distributed AGBs.
The AGB arbiter tracks free space across AGBs and accepts
AGB reservations from up to eight different L1 caches in
parallel when enough space is present. Each AGB is simulated
as a (power-backed) circular SRAM buffer, which is associated
to the memory space slice of one PM rank.

Benchmarks: We run applications from PARSEC 3.0 [4] and
Splash-3 [39] suites with both small (barnes, cho., fft, freq., lu,
stream., swap., and vips) and large (black., body., can., dedup,
ferret, fluid., ocean, radio., radix, raytrace, volrend, water, and
x264) inputs and present results for their region of interest.

Systems: We compare against the following PM systems:
1. Baseline A system with SCI-like [20] sharing list coher-
ence (SLC) that builds sharing lists in the L2 (private) caches
with no persistency support. In our simulation infrastructure, we
confirm previous studies [14] that SLC carries a ∼3% overhead
compared to MESI. However, in future work this performance

0%

25%

50%

75%

100%

125%

150%

175%
R

el
at

iv
e

ap
p
li

ca
ti

o
n

ex
ec

u
ti

o
n

 t
im

e

HW-RP BSP STW TSOPER

204% 492%

Fig. 11: Relative application execution time comparison across baseline, HW-RP, BSP, STW, and TSOPER.

gap can be addressed with a hybrid protocol that combines a
MESI component with an SLC component, especially in cases
where only a small subset of addresses are persisted, as for
example in the WHISPER benchmark suite which persists only
∼4% of the stores [30]. The SLC component would then be
used exclusively for such addresses. Since in our workloads,
all addresses are persisted, we indiscriminately use SLC for
all coherence.
2. HW-RP Because we propose a hardware approach, we
cannot directly compare with a software implementation,
such as SFR persistency [15], that: (1) includes significant
instruction overhead (both in the static binary and during
execution); (2) relies on fine-grain persist operations (which
we do not encounter in actual hardware implementations);
and (3) implements its own unconstrained redo logging that
effectively doubles the writes to NVM. Instead, we opt to
characterize the cost of TSO. We compare TSOPER to a
hardware implementation of a hypothetical relaxed-persistency
model, which we call HW-RP. HW-RP imposes no order
among persist operations within synchronization-free regions.
Similarly to SFR persistency, in HW-RP: (1) synchronization
must be exposed to the hardware by the programmer, and
(2) persist order is enforced across synchronization points.
HW-RP persists at cacheline granularity. We disregard false-
sharing that may creep up in various programs, giving HW-RP
an advantage. Evictions of dirty lines are counted as sponta-
neous persists. As in TSOPER, persists are buffered in the
AGB but the AGB size is unconstrained to fit arbitrary large
SFRs. There is no other undo (or redo) logging implemented,
meaning that there are no guarantees for atomic persistency of
complete synchronization-free regions. The point of HW-RP is
to remove the ordering overhead of TSOPER and thus allow
its characterization.
3. BSP We implemented BSP following the paper of Joshi
et al. [22]. Qualitative differences between BSP and TSOPER
have been discussed in §I.
4. STW and TSOPER The “stop-the-world” version of TSO
persistency and our full proposal as described in §III and §IV. In
both STW and TSOPER, we set a hard limit of 80 cachelines
per AG for the atomic groups.

A. Performance

Figure 11 reports application execution time for HW-RP,
BSP, STW, and TSOPER, normalized to the baseline SLC
protocol. As shown, by stalling both local cores and remote
cores, STW manages the worst performance among all ap-

proaches, adding on average 53% overhead to application
execution time. The two worst cases are lu (ncb) and radix,
where STW increases total execution time by 104% and 392%.
This is because the total NVM persist volume of radix and
lu (ncb) is high and both programs create a large number of
AGs, causing frequent NVM writes. In STW, this can lead to
frequent stalls of both local and remote cores.

In contrast to STW, the other systems, HW-RP, BSP and
TSOPER, maintain memory persistency in a non-blocking way,
(i.e., both local and remote cores are allowed to continuously
execute without stopping). However, due to L1 and LLC
exclusion time shown in Fig. 1, BSP performs worse than
both HW-RP and TSOPER.

Both HW-RP and TSOPER add less overhead to the
application execution time than BSP. On average, HW-RP
increases application execution time by about 7% (max 13%)
and TSOPER by 10% (max 15%). In contrast, BSP increases
execution time by 22% (max 34%). TSOPER achieves this
result by further decoupling core execution from persistency,
using the SLC protocol to reduce L1 exclusion time and the
AGB to reduce LLC exclusion time.

B. Comparison to BSP

To understand the difference between BSP and TSOPER,
we model two intermediate mechanisms, BSP+SLC and
BSP+SLC+AGB, as stepping-stones from BSP to TSOPER.

BSP+SLC is implemented by replacing the coherence
protocol of BSP with our first innovation, the SLC protocol.
This enables L1 multi-versioning, reducing L1 exclusion time.

BSP+SLC+AGB further enhances BSP+SLC with our
second innovation, the AGB arbiter and distributed AGBs,
reducing LLC exclusion time. However, BSP relies on large
10,000-store AGs that are rarely broken (only when a possible
possible deadlock is detected) that will not fit in a small AGB.
Thus, BSP+SLC+AGB represents an idealized case (infeasible
in current technology) that models an unbounded AGB, able
to fit the very large AGs of BSP.

Figure 12 compares the execution time of BSP, BSP+SLC,
BSP+SLC+AGB, and TSOPER, with results normalized to
TSOPER.

We can observe that from BSP to BSP+SLC, reducing
the L1 exclusion time achieves an average of 3% (max
7%) execution time improvement. Unlike BSP, BSP+SLC
allows modification of any remote dirty L1 cacheline in the
local L1 without waiting for the remote cacheline to be
written out to LLC. We also observe that in applications

0%

25%

50%

75%

100%

125%
R

el
at

iv
e

ap
p

li
ca

ti
o

n

ex
ec

u
ti

o
n
 t

im
e

BSP BSP+SLC BSP+SLC+AGB TSOPER

Fig. 12: Relative application execution time comparison across baseline, BSP, BSP+SLC, BSP+SLC+AGB, and TSOPER.

0 10 20 30 40 50 60 70 80 90 100
AG size (cacheline)

0

25%

50%

75%

100%

Pe
rc

en
ta

ge

barnes
blackscholes
bodytrack
canneal
cholesky
dedup
ferret
fft
fluidanimate
fmm
freqmine
lu_cb
lu_ncb

ocean_cp
ocean_ncp
radiosity
radix
raytrace
streamcluster
swaptions
vips
volrend
water_nsquared
water_spatial
x264

Fig. 13: AG size cumulative histogram.

with few simultaneous writes (such as black., swap.), BSP
and BSP+SLC achieve similar results. It is worth noting
here that the L1 buffering achieved by SLC is reflected in
the average length of the persist lists which reaches ∼ 4
across all benchmarks, while the length of the corresponding
coherence sharing lists is, on average, below ∼ 2. Depending
on benchmark characteristics, the average size of the persist
lists varies, e.g., from ∼ 2 in dedup, to ∼ 4 in x264 and to ∼ 6
in body.

Further, by reducing LLC exclusion time, BSP+SLC+AGB
enhances results of BSP+SLC on average by 7% (max 10%).

We can observe in Fig. 12 that BSP+SLC+AGB still suffers
on average another 3% (max 5%) worse application perfor-
mance than TSOPER. This is because in BSP+SLC+AGB,
epochs are set to static sizes (10,000 stores [22]) unless
deadlock happens. According to our study shown in Fig. 13, we
find that throughout all benchmarks, AG size is seldom (less
than 1%) larger than 80 cachelines. Compared to the AG size
in TSOPER, large epoch size in BSP+SLC+AGB introduces
higher serialization overhead when transmitted to the NVM,
hurting performance. With epoch size changed to 80 cachelines,
we find that BSP+SLC+AGB indeed achieves close results
to TSOPER. This also reveals that by optimizing epoch size
only (without using SLC nor AGB), the improvement potential
for BSP is limited to between 3% and 5% of execution time.

C. Total Volume of Persists

Figure 14 shows the write traffic caused by coherence and
persistence, respectively. The dotted bars represent normal
downgrades and writebacks to LLC banks (coherence write),
while the solid bars represent writes to AGBs and NVMs
(persistence write). All results are normalized to the SLC
baseline (not shown in Fig. 14). The baseline does not persist

anything so it corresponds in its entirety to normal coherence
downgrade and writeback traffic (100%). We can make the
following observations:
1. BSP, STW and TSOPER do not cause any significant

difference with respect to coherence and persistence traffic,
i.e., persistence writebacks are about as many as coherence
writebacks (but network traffic appears doubled because they
are routed to different destinations). This is consistent with
the illustration in Fig. 1, where one AG is both written back
to LLC for coherence and to NVM for persistence, albeit at
different times.

2. Compared to STW and TSOPER, HW-RP produces much
higher persist traffic. Although HW-RP and TSOPER have
the same level of persist re-ordering, HW-RP coalesces
much less than TSOPER, as will be explained later.

3. By allowing coalescing as much as possible, BSP, STW,
and TSOPER reduce the persist traffic significantly to the
level of the coherence downgrade and writeback traffic.

D. Store Coalescing and SFR/AG size

Figure 15 compares the SFR size in HW-RP and AG size
in TSOPER using ocean cp (the worst case application in
Fig. 14). Ocean cp simulates large-scale ocean movements
where waveforms are partitioned into grids. Grids are peri-
odically synchronized, thus the SFR and AG size exhibits
periodical increases (during non-synchronization regions) and
decreases (during synchronization regions), as can be observed
in the timeline figures. The cumulative histograms show that
HW-RP creates a large number (over 90%) of small sized SFRs
(=1 store) and a small number (less than 3%) of large sized ones
(over 2.5K stores). This is because ocean cp is synchronized
using critical sections (CS). In HW-RP, a CS itself and the
intermediate zone between two CSs are both counted as SFRs.
On one hand, CS-oriented SFRs are limited in size, with one
CS usually issuing one store updating one shared variable. On
the other hand, SFRs created by the intermediate regions are
free in size. While large SFRs enjoy high coalescing rate, small
SFRs lose the benefits of coalescing due to limited stores. In
TSOPER, AGs are dynamically created by data sharing among
cores. Because cachelines stay in L1s as long as possible until
eviction or until they are exposed, TSOPER achieves a high
coalescing rate, and a lower NVM write volume than HW-RP.

VI. RELATED WORK

Byte-addressable NVM technologies, such as PCM [28], [34],
STT-RAM [24], [27], and ReRAM [2], have enabled persistent

0%
100%
200%
300%
400%
500%
600%
700%

a b c d a b c d

barnes black. body. can. cho. dedup ferret fft fluid. fmm freq. lu

 (cb)

lu

 (ncb)

ocean

(cp)

ocean

(ncp)

radio. radix ray. stream. swap. vips vol. water

 (ns)

water

 (s)

x264 Avg.R
el

at
iv

e
co

h
er

en
ce

 a
n

d

p
er

si
st

en
ce

 t
ra

ff
ic

w
it

h
 r

ef
er

en
ce

 t
o

 c
ac

h
e

w
ri

te
b

ac
k

 i
n

 t
h

e
b

as
el

in
e

CohW in HW-RP PerW in HW-RP CohW in BSP PerW in BSP CohW in STW PerW in STW CohW in TSOPER PerW in TSOPER

7.1x 7.5x

Fig. 14: Coherence write (CohW) and persist write (PerW) traffic. Case a denotes HW-RP, b BSP, c STW, and d TSOPER.

0e+00 1e+08 2e+08
Simulation cycles

0

10 k

SF
R

siz
e

(C
L) Timeline, HW-RP

0 2.5 k 5 k 7.5 k 10 k
SFR size (cacheline)

0

50%

100%
Pe

rc
en

ta
ge

Cumu. Hist. HW-RP

0e+00 1e+08 2e+08
Simulation cycles

0

50

AG
 si

ze
 (C

L) Timeline, TSOPER

0 10 20 30 40 50 60 70 80
AG size (cacheline)

0

50%

100%

Pe
rc

en
ta

ge

Cumu. Hist. TSOPER

Fig. 15: SFR, AG size timeline and cumulative histogram through ocean cp
execution.

memory (PM) to approach the performance and capacity of
DRAM [3], [8], [31], [36], [38], [40], [44]. Current research in
this area mainly focuses on defining persistency models (i.e.,
models which define persist ordering and atomicity). Related
work on persistency can be categorized into: (1) data structure
level persistency (e.g., [9], [12], [43], [46]), (2) ISA level
persistency, and (3) language level persistency. Further, because
logging has been widely used in PM to ensure persistency
atomicity, various works propose efficient logging.

ISA Level Persistency: ISA level persistency depends on
special instructions or transactional memory to write persists
into PM and keep them in order. Recently, Intel has announced
a new persistency model and a corresponding Development
Kit (PMDK). The ordering effects of Intel-x86 instructions
(flush, flushopt , CLWB) on persists were recently described
by Raad et al. [33]. Ren et al. propose a checkpointing
mechanism named ThyNVM [35] to hide the log writing time
to PM. To achieve this, ThyNVM dynamically determines
checkpoint granularity so that the trade-off between application
stall time and metadata storage overhead can be found. Volos
et al. [44] proposed a lightweight mechanism implementing
programming interfaces for PM that provides logging-based
consistent update to persistent data structures, and a durable
memory transaction mechanism that enables consistent updates
of arbitrary data structures.

Language Level Persistency: Such approaches argue for ex-
tending the language-level memory model to provide guarantees
on the order of persistent writes. Atlas [8] provides persistency
semantics for lock-based multi-threaded C++ programs. It
guarantees failure atomicity for the coarse-grained outermost
critical section (CS). Compared to our proposal, ATLAS does

not consider PM support outside critical sections while we
continuously persist in TSO. In contrast to ATLAS, acquire-
release persistency (ARP) [25], [26] maintains persistency at
fine-grained individual stores. Compared to ARP, our proposal
provides strict TSO both within and outside epochs. ARP re-
orders persists within epochs (the region between lock acquire-
release or release-acquire), but forbids persist reordering across
epochs. Seeking the middle-ground between ATLAS and ARP,
synchronization-free region (SFR) persistency [15] advocates
for PM persistency at the granularity of the region between
two synchronization operations. To ensure PM atomicity, SFR
uses an undo-log based mechanism (coupled or decoupled to
the SFR frontier) to roll back to the last durable SFR block in
the PM. We have compared to SFR in previous sections.

Efficient Logging: Cohen et al. [10] and Joshi et al. [23]
propose low-overhead logging cache coherence protocol and
controller. Instead of manipulating cache controller, Doshi
et al. [13] implement dedicated hardware controller off-loading
PM logging to run in parallel with application execution. Jeong
et al. [21] propose redo-based logging (ReDU), which performs
direct and asynchronous in-place data update to NVM. ReDU
exploits a small region of DRAM as a write-cache to remove
NVM writes from the critical path. Shin et al. [42] observe that
PM instructions (such as flush, CLWB, etc.) in conjunction
with SFENCE incur long pipeline stalls. They reduce such
stalls by proposing a speculative execution mechanism: rather
than letting the SFENCE stall the core to wait for persists to
become durable, the mechanism checkpoints the architectural
state and retires the SFENCE speculatively so that the core
does not need to stall. In our work, we rely on a modified
feature of Intel architectures, the WPQ, or AGB in our case,
to provide logging functionality.

VII. CONCLUDING REMARKS

We describe a new approach to strict persistency: after a
crash, we offer an observable total order of the stores executed
before the crash, using limited (potentially little) hardware
buffering in the form of a TSO persist buffer. We achieve this
by bundling persists (at cacheline granularity) in atomic groups
(AGs), and enforcing an order among the AGs that respects
TSO consistency. We show that enforcing order among AGs,
as opposed to relaxing all order of cacheline persists between
synchronizations, has a negligible impact on performance.
We further propose an elegant way to detect and encode the
ordering dependencies of AGs by using sharing-list coherence.
In this respect, we do not add cost to track the order of AGs.

Finally, we show that we achieve a greater decoupling of
coherence and persistence than BSP, the prior state-of-the-
art solution for strict persistency. TSOPER offers continuous
TSO persistency, independently of synchronization. One can
build on top of it (with other forms of logging) to offer more
stringent language-level guarantees, for example, consistent
persists across synchronization fronts.

REFERENCES

[1] N. Agarwal, T. Krishna, L. Peh, and N. K. Jha, “GARNET: a detailed on-
chip network model inside a full-system simulator,” in IEEE International
Symposium on Performance Analysis of Systems and Software, ser.
ISPASS 2009. IEEE Computer Society, Apr. 2009, pp. 33–42. [Online].
Available: https://doi.org/10.1109/ISPASS.2009.4919636

[2] H. Akinaga and H. Shima, “Resistive random access memory
(ReRAM) based on metal oxides,” Proceedings of the IEEE,
vol. 98, no. 12, pp. 2237–2251, 2010. [Online]. Available: https:
//doi.org/10.1109/JPROC.2010.2070830

[3] J. Arulraj, A. Pavlo, and S. R. Dulloor, “Let’s talk about
storage & recovery methods for non-volatile memory database
systems,” in ACM International Conference on Management of
Data, ser. SIGMOD 2015, 2015, pp. 707–722. [Online]. Available:
https://doi.org/10.1145/2723372.2749441

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC
benchmark suite: Characterization and architectural implications,” in
17th International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT 2008. ACM, Oct. 2008, pp. 72–81. [Online].
Available: https://doi.org/10.1145/1454115.1454128

[5] H. Boehm and S. V. Adve, “Foundations of the C++ concurrency
memory model,” in Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation,
ser. PLDI 2008. ACM, Jun. 2008, pp. 68–78. [Online]. Available:
https://doi.org/10.1145/1375581.1375591

[6] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core
simulation,” in Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC 2011. ACM, Nov. 2011, pp. 1–12.
[Online]. Available: https://doi.org/10.1145/2063384.2063454

[7] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas, “BulkSC: Bulk
enforcement of sequential consistency,” in Proceedings of the 34th
Annual International Symposium on Computer Architecture, ser.
ISCA 2007. ACM, Jun. 2007, pp. 278–289. [Online]. Available:
https://doi.org/10.1145/1250662.1250697

[8] D. R. Chakrabarti, H. Boehm, and K. Bhandari, “Atlas: Leveraging locks
for non-volatile memory consistency,” in Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages & Applications, ser. OOPSLA 2014. ACM, Oct. 2014, pp.
433–452. [Online]. Available: https://doi.org/10.1145/2660193.2660224

[9] N. Cohen, D. T. Aksun, and J. R. Larus, “Object-oriented
recovery for non-volatile memory,” Proc. ACM Program. Lang.,
vol. 2, no. OOPSLA, pp. 153:1–153:21, 2018. [Online]. Available:
https://doi.org/10.1145/3276523

[10] N. Cohen, M. Friedman, and J. R. Larus, “Efficient logging in
non-volatile memory by exploiting coherency protocols,” Proc. ACM
Program. Lang., vol. 1, no. OOPSLA, pp. 67:1–67:24, 2017. [Online].
Available: https://doi.org/10.1145/3133891

[11] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better I/O through byte-addressable, persistent memory,”
in Proceedings of the 22nd ACM Symposium on Operating Systems
Principles, ser. SOSP 2009. ACM, Oct. 2009, pp. 133–146. [Online].
Available: https://doi.org/10.1145/1629575.1629589

[12] T. David, A. Dragojević, R. Guerraoui, and I. Zablotchi, “Log-free
concurrent data structures,” in USENIX Annual Technical Conference,
ser. USENIX ATC 2018, Jul. 2018, pp. 373–385. [Online]. Available:
https://www.usenix.org/conference/atc18/presentation/david

[13] K. Doshi, E. Giles, and P. Varman, “Atomic persistence for SCM
with a non-intrusive backend controller,” in IEEE International
Symposium on High-Performance Computer Architecture, ser. HPCA
2016. IEEE Computer Society, 2016, pp. 77–89. [Online]. Available:
https://doi.org/10.1109/HPCA.2016.7446055

[14] R. Fernández-Pascual, A. Ros, and M. E. Acacio, “Are distributed sharing
codes a solution to the scalability problem of coherence directories
in manycores? An evaluation study,” Journal of Supercomputing
(JSC), vol. 72, no. 2, pp. 612–638, Feb. 2016. [Online]. Available:
https://doi.org/10.1007/s11227-015-1596-4

[15] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen,
and T. F. Wenisch, “Persistency for synchronization-free regions,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018. ACM, Jun. 2018,
pp. 46–61. [Online]. Available: https://doi.org/10.1145/3192366.3192367

[16] V. Gogte, W. Wang, S. Diestelhorst, P. M. Chen, S. Narayanasamy, and
T. F. Wenisch, “Relaxed persist ordering using strand persistency,” in
Proceedings of the 47th Annual International Symposium on Computer
Architecture, ser. ISCA 2020. ACM, Jun. 2020, pp. 652–665. [Online].
Available: https://doi.org/10.1109/ISCA45697.2020.00060

[17] J. R. Goodman, M. K. Vernon, and P. J. Woest, “Efficient synchronization
primitives for large-scale cache-coherent multiprocessors,” in Proceedings
of the Third International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS
1989. ACM Press, Apr. 1989, pp. 64–75. [Online]. Available:
https://doi.org/10.1145/70082.68188

[18] S. Gupta, A. Daglis, and B. Falsafi, “Distributed logless atomic
durability with persistent memory,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO 2019. ACM, Oct. 2019, pp. 466–478. [Online]. Available:
https://doi.org/10.1145/3352460.3358321

[19] “Intel R© 64 and IA-32 architectures software developer’s manual
(combined volumes),” Oct. 2019, Order Number: 325462-071US.
[Online]. Available: https://software.intel.com/sites/default/files/managed/
39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

[20] D. V. James, A. T. Laundrie, S. Gjessing, and G. S. Sohi,
“Distributed-directory scheme: Scalable coherent interface,” IEEE
Computer, vol. 23, no. 6, pp. 74–77, Jun. 1990. [Online]. Available:
https://doi.org/10.1109/2.55503

[21] J. Jeong, C. H. Park, J. Huh, and S. Maeng, “Efficient hardware-assisted
logging with asynchronous and direct-update for persistent memory,” in
Proceedings of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 2018. IEEE Computer Society, Oct.
2018, pp. 520–532. [Online]. Available: https://doi.org/10.1109/MICRO.
2018.00049

[22] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient
persist barriers for multicores,” in Proceedings of the 48th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO 2015. ACM, Dec. 2015, pp. 660–671. [Online]. Available:
https://doi.org/10.1145/2830772.2830805

[23] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “ATOM: atomic
durability in non-volatile memory through hardware logging,” in IEEE
International Symposium on High-Performance Computer Architecture,
ser. HPCA 2017. IEEE Computer Society, Feb. 2017, pp. 361–372.
[Online]. Available: https://doi.org/10.1109/HPCA.2017.50

[24] T. Kawahara, R. Takemura, K. Miura, J. Hayakawa, S. Ikeda, Y. M.
Lee, R. Sasaki, Y. Goto, K. Ito, T. Meguro, F. Matsukura, H. Takahashi,
H. Matsuoka, and H. Ohno, “2Mb spin-transfer torque RAM (SPRAM)
with bit-by-bit bidirectional current write and parallelizing-direction
current read,” in IEEE International Solid-State Circuits Conference,
Digest of Technical Papers, ser. ISSCC 2007. IEEE, Feb. 2007, pp. 480–
617. [Online]. Available: https://doi.org/10.1109/ISSCC.2007.373503

[25] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language-level persistency,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA 2017. ACM, Jun. 2017, pp. 481–493. [Online].
Available: https://doi.org/10.1145/3079856.3080229

[26] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, W. Wang, P. M. Chen,
S. Narayanasamy, and T. F. Wenisch, “Language support for memory
persistency,” IEEE Micro, vol. 39, no. 3, pp. 94–102, 2019. [Online].
Available: https://doi.org/10.1109/MM.2019.2910821

[27] E. Kultursay, M. T. Kandemir, A. Sivasubramaniam, and O. Mutlu,
“Evaluating STT-RAM as an energy-efficient main memory alternative,” in
IEEE International Symposium on Performance Analysis of Systems and
Software, ser. ISPASS 2013. IEEE Computer Society, Apr. 2013, pp. 256–
267. [Online]. Available: https://doi.org/10.1109/ISPASS.2013.6557176

[28] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and
D. Burger, “Phase-change technology and the future of main memory,”

https://doi.org/10.1109/ISPASS.2009.4919636
https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1145/2723372.2749441
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1145/1250662.1250697
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.1145/3276523
https://doi.org/10.1145/3133891
https://doi.org/10.1145/1629575.1629589
https://www.usenix.org/conference/atc18/presentation/david
https://doi.org/10.1109/HPCA.2016.7446055
https://doi.org/10.1007/s11227-015-1596-4
https://doi.org/10.1145/3192366.3192367
https://doi.org/10.1109/ISCA45697.2020.00060
https://doi.org/10.1145/70082.68188
https://doi.org/10.1145/3352460.3358321
https:// software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https:// software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://doi.org/10.1109/2.55503
https://doi.org/10.1109/MICRO.2018.00049
https://doi.org/10.1109/MICRO.2018.00049
https://doi.org/10.1145/2830772.2830805
https://doi.org/10.1109/HPCA.2017.50
https://doi.org/10.1109/ISSCC.2007.373503
https://doi.org/10.1145/3079856.3080229
https://doi.org/10.1109/MM.2019.2910821
https://doi.org/10.1109/ISPASS.2013.6557176

IEEE Micro, vol. 30, no. 1, pp. 131–141, 2010. [Online]. Available:
https://doi.org/10.1109/MM.2010.24

[29] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–99, 2005.
[Online]. Available: https://doi.org/10.1145/1105734.1105747

[30] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“An analysis of persistent memory use with WHISPER,” in Proceedings
of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS
2017. New York, NY, USA: ACM, 2017, pp. 135—-148. [Online].
Available: https://doi.org/10.1145/3037697.3037730

[31] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in
ACM/IEEE 41st International Symposium on Computer Architecture, ser.
ISCA 2014. IEEE Computer Society, Jun. 2014, pp. 265–276. [Online].
Available: https://doi.org/10.1109/ISCA.2014.6853222

[32] A. Raad and V. Vafeiadis, “Persistence semantics for weak memory:
Integrating epoch persistency with the TSO memory model,” Proc. ACM
Program. Lang., vol. 2, no. OOPSLA, pp. 137:1–137:27, 2018. [Online].
Available: https://doi.org/10.1145/3276507

[33] A. Raad, J. Wickerson, G. Neiger, and V. Vafeiadis, “Persistency
semantics of the Intel-x86 architecture,” Proc. ACM Program. Lang.,
vol. 4, no. POPL, pp. 11:1–11:31, 2020. [Online]. Available:
https://doi.org/10.1145/3371079

[34] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M.
Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung, and C. H. Lam,
“Phase-change random access memory: A scalable technology,” IBM
Journal of Research and Development, vol. 52, no. 4–5, pp. 465–479,
2008. [Online]. Available: https://doi.org/10.1147/rd.524.0465

[35] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “ThyNVM:
Enabling software-transparent crash consistency in persistent memory
systems,” in Proceedings of the 48th International Symposium on
Microarchitecture, ser. MICRO 2015, Dec. 2015, pp. 672–685. [Online].
Available: https://doi.org/10.1145/2830772.2830802

[36] A. Rudoff, “Programming models for emerging non-volatile memory
technologies,” ;login:, vol. 38, no. 3, pp. 40–45, Jun. 2013. [Online].
Available: https://www.usenix.org/publications/login/june-2013-volume-
38-number-3/programming-models-emerging-non-volatile-memory

[37] ——, “Deprecating the PCOMMIT instruction,” Sep. 2016. [Online].

Available: https://software.intel.com/en-us/blogs/2016/09/12/deprecate-
pcommit-instruction

[38] ——, “Persistent memory programming,” ;login:, vol. 42, no. 2, pp.
34–40, 2017. [Online]. Available: https://www.usenix.org/publications/
login/summer2017/rudoff

[39] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A
properly synchronized benchmark suite for contemporary research,” in
IEEE International Symposium on Performance Analysis of Systems and
Software, ser. ISPASS 2016. IEEE Computer Society, Apr. 2016, pp. 101–
111. [Online]. Available: https://doi.org/10.1109/ISPASS.2016.7482078

[40] S. Scargall, Programming Persistent Memory: A Comprehensive Guide
for Developers, 1st ed. Apress Open, Jan. 2020.

[41] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen,
“x86-TSO: A rigorous and usable programmer’s model for x86
multiprocessors,” Commun. ACM, vol. 53, no. 7, pp. 89–97, Jul. 2010.
[Online]. Available: https://doi.org/10.1145/1785414.1785443

[42] S. Shin, J. Tuck, and Y. Solihin, “Hiding the long latency of
persist barriers using speculative execution,” in Proceedings of the
44th Annual International Symposium on Computer Architecture,
ser. ISCA 2017, Jun. 2017, pp. 175–186. [Online]. Available:
https://doi.org/10.1145/3079856.3080240

[43] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-addressable
memory,” in Proceedings of the 9th USENIX Conference on File and
Storage Technologies, ser. FAST 2011. USENIX, Feb. 2011, pp.
61–75. [Online]. Available: http://www.usenix.org/events/fast11/tech/
techAbstracts.html#Venkataraman

[44] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in Proceedings of the 16th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS 2011, Mar. 2011, pp. 91–104. [Online]. Available:
https://doi.org/10.1145/1950365.1950379

[45] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and J. Zhao,
“Characterizing and modeling non-volatile memory systems,” in Pro-
ceedings of the 53rd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 2020. IEEE Computer Society, Oct.
2020, pp. 496–508.

[46] J. Yang, Q. Wei, C. Wang, C. Chen, K. L. Yong, and B. He, “NV-Tree:
A consistent and workload-adaptive tree structure for non-volatile
memory,” IEEE Trans. Computers, vol. 65, no. 7, pp. 2169–2183, 2016.
[Online]. Available: https://doi.org/10.1109/TC.2015.2479621

https://doi.org/10.1109/MM.2010.24
https://doi.org/10.1145/1105734.1105747
https://doi.org/10.1145/3037697.3037730
https://doi.org/10.1109/ISCA.2014.6853222
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3371079
https://doi.org/10.1147/rd.524.0465
https://doi.org/10.1145/2830772.2830802
https://www.usenix.org/publications/login/june-2013-volume-38-number-3/programming-models-emerging-non-volatile-memory
https://www.usenix.org/publications/login/june-2013-volume-38-number-3/programming-models-emerging-non-volatile-memory
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://www.usenix.org/publications/login/summer2017/rudoff
https://www.usenix.org/publications/login/summer2017/rudoff
https://doi.org/10.1109/ISPASS.2016.7482078
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/3079856.3080240
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Venkataraman
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Venkataraman
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1109/TC.2015.2479621

	Introduction
	TSO Persistency
	From Epochs to Atomic Groups
	Persisting via the Atomic Group Buffer
	AGB Organizations
	Discussion: Recovery

	Atomic Group Ordering
	The Role of the Reads
	Cache and Directory Evictions
	Deadlock Freedom

	Dependence-Tracking Coherence
	Sharing-List Persistency
	Putting it All Together

	Evaluation
	Performance
	Comparison to BSP
	Total Volume of Persists
	Store Coalescing and SFR/AG size

	Related work
	Concluding Remarks
	References

