
Speculative Enforcement of Store Atomicity
Alberto Ros

Computer Engineering Department
University of Murcia

Murcia, Spain
aros@ditec.um.es

Stefanos Kaxiras
Department of Information Technology

Uppsala University
Uppsala, Sweden

stefanos.kaxiras@it.uu.se

Abstract—Various memory consistency model implementations
(e.g., x86, SPARC) willfully allow a core to see its own stores
while they are in limbo, i.e., executed (and perhaps retired) but
not yet inserted in memory order. This is known as store-to-load
forwarding and it is a necessity to safeguard the local thread’s
sequential program semantics while achieving high performance.
However, this can lead to counter-intuitive behaviours, requiring
fences to prevent such behaviours when needed.

Other vendors (e.g., IBM 370 and the z/Architecture series)
opt for enforcing what we call in this work store atomicity, that
is, disallowing a core to see its own stores before they are written
to memory, trading off performance for a more intuitive memory
model. Ideally, we want a stricter model to ease programability
at the same time that architects can provide high-performance
solutions. We make a simple observation. What holds for any
other rule in a consistency model, also holds for store atomicity:
it is not a crime to break the rule, unless we get caught.

In this work, we detail the different ways of detecting a
store atomicity violation. This leads us to a new insight: a
load performed by a forwarding from an in-limbo store is
not speculative; younger loads performed after that forwarding
are. Based on this insight we propose an effective and cheap
speculative approach to dynamically enforce store atomicity only
when the detection of its violation actually occurs. In practice,
these cases are rare during the execution of a program. In all
other cases (the bulk of the execution of a program) store-to-
load forwarding can be done without violating store atomicity.
The end result is that we provide the best of both worlds: a
more intuitive store-atomic memory model, i.e., the 370 model,
with the performance and cost approaching (at an average of just
2.5% and 2.7% overhead for parallel and sequential applications,
respectively) that of a non-store-atomic model, i.e., the x86 model.

Index Terms—Memory consistency model, store atomicity,
multi-copy atomicity, load-to-store forwarding

I. INTRODUCTION

Memory consistency models allow us to reason about pro-
gram correctness in terms of program order, the order in which
memory access instructions appear in each thread, and memory
order, the order in which accesses from different cores read
and write memory. Take for example Sequential Consistency
(SC) [24], which is widely considered to be the most intuitive
memory model for programmers. SC requires that the four
possible program orders among loads and stores (load→load,

This project has received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research and innovation
programme (grant agreement No 819134), the European joint Effort toward
a Highly Productive Programming Environment for Heterogeneous Exascale
Computing (EPEEC) (grant No 801051), and Vetenskapsrdet project 2018-
05254.

store→store, store→load, load→store) appear to respect at all
times memory order.

Total Store Order (TSO) relaxes the store→load order with
the express purpose of accommodating a store buffer. The
store buffer is a critical component for performance. It allows
a core to retire its store instructions and continue executing
without having to wait for the stores to write memory. In
TSO, a younger load bypasses older unperformed stores (on
different addresses) in the store buffer, hence the store→load
order is relaxed. Relaxing just the store→load strikes a good
balance between performance (hiding store latency) and clean
semantics (the memory model remaining fairly intuitive for
the majority of programming idioms) [38].

However, TSO implementations can come in different fla-
vors, as memory models are not defined just by program order
guarantees [26]. These flavors differentiate in store atomicity
guarantees. We say that store atomicity is guaranteed if all
cores agree in the memory order of stores (Section II-B).

For example, IBM 370 systems [18], [22] and their present-
day descendants, the z/Architecture series [23] opt for respect-
ing store atomicity. We refer to this store-atomic TSO memory
model as the 370 model. In the IBM 370, store atomicity
is achieved by requiring that a store in limbo, in the store
buffer, must first be inserted in memory order before it can be
forwarded to any local load [22]. This means that whenever
a load matches a store in the store buffer, the load is not
performed until the store buffer is drained in the memory
system (at least up to the matched store). The penalty can be
expensive when loads depend frequently on previous stores
but store atomicity violations rarely occur in practice. The
alternative is to resort to speculation, but the only established
approach for such speculation stems from SC speculation [9],
[19], [20], [30], which as we show in this work, is broader
than what is needed.

On the other hand, x86 and SPARC go a step further. They
relax store atomicity by allowing a core to see its own stores
while they are in limbo, i.e., executed (and perhaps retired) but
not yet inserted in memory order [36]. Letting a load take its
value from the most recent matching store in the store buffer
(if such a store exists), known as store-to-load forwarding, is
a necessity to safeguard the local thread’s sequential program
semantics while achieving high performance. However, if this
is allowed without guaranteeing that all other threads can also
see the same store at that time —i.e., without guaranteeing

store atomicity— the resulting memory model assumes less
intuitive semantics.

The reason for abandoning store atomicity is threefold: i)
it gives a significant performance advantage: it allows us to
forward a store value to a load long before the store is ordered
in the memory system —after all, satisfying loads as soon
as possible is of paramount importance for performance; ii)
there is no established solution to enforce store atomicity
without incurring significant performance or hardware cost;
and iii) the problem can be delegated to the software. Software
memory fencing is required in cases where the breaking of
store atomicity is possible but unacceptable. However, this
means that the burden falls on the programmer or compiler
to assess whether the code is problematic and properly fence
it, for the rare case when a store atomicity violation (during
runtime) would result in an unacceptable program behavior.

In this paper, we offer the following insight. Store atomicity
is like any other rule in consistency models: it does not matter
if no one is looking. In other words, we only have to ensure
that the rule is enforced if the detection of its violation is
imminent. Key for exploiting this insight is to identify under
which conditions store atomicity can be seen violated. Once
we identify these conditions we can react dynamically using
the processor’s built-in speculation and rollback capabilities as
prior work has proposed for other consistency rules [9], [19],
[20], [30]. To help identifying non-store-atomic behaviours
in x86 we developed a tool that compares the outcome of
a program under the 370 model and the x86 model.1

As far as we know, this is the first work that proposes
a specific model for in-window store-atomicity speculation,
distinct from the more general SC speculation. We propose
a highly-efficient, dynamic enforcement of store atomicity
to provide programmers with the illusion of a store-atomic
memory model but without its cost. In particular, this work
offers the following contributions:

• We demonstrate that lack of store atomicity matters in the
cases when it can be observed and detail the conditions
under which such observation can occur (Section III).

• We show that, against the prevailing view [19], [20], [30],
loads seeing in-limbo store values are not speculative, but
are the sources of speculation, i.e., what makes younger
loads speculative (Section IV-A).

• We propose an efficient mechanism for store atomicity
using just low-overhead in-window speculation (Sec-
tion IV-B).

• We compare our proposal to three state-of-the-art im-
plementations (Section V and Section VI): x86 (non-
store-atomic); 370 (non-speculative store-atomic); and a
speculative 370 version directly adapted from state-of-
the-art in-window SC speculation. As far as we know, this
is the first quantitative comparison of these implementa-
tions on the same out-of-order execution baseline. Our
results show that blanket enforcement of store atomicity
incurs a heavy cost in execution time (1.27× and 1.23×

1https://github.com/alberto-ros/ConsistencyChecker

for parallel and sequential applications, respectively), and
that existing speculative solutions are still inneficient.
Our approach improves existing speculative techniques by
3.7% and 10.3%, on average, for parallel and sequential
applications, respectively, achieving similar performance
than x86 while providing a stronger memory model.

II. BACKGROUND

A. The Store Queue and the Store Buffer

In out-of-order cores that relax the store→load order there
are actually two structures that are involved: the store queue
(SQ) and the store buffer (SB). Stores in the SB are retired
but not yet inserted in memory order. Stores in the SQ are at
an even earlier stage: they have not been retired, i.e., they are
still in the instruction window of out-of-order execution, and
hence in the reorder buffer (ROB). In actual implementations
(e.g., in Intel x86 architectures) the SQ and the SB are a single
physical structure and the division between them is a pointer
that separates the retired from the non-retired stores. A load
must search both the SQ (for older-in-program-order stores)
and the SB to find the most recent store (if it exists in there)
to the same address. This is a requirement to satisfy sequential
execution semantics. All our discussions apply equally well to
retired stores in the SB and non-retired stores in the SQ. To
avoid repeating this inconsequential distinction between stores
in the SB and stores in the SQ, in the rest of the paper we
refer simply to stores in the store buffer (SQ/SB).

B. Store Atomicity, Write Atomicity, and Multi-Copy Atomicity

There is some ambiguity in the literature surrounding the
use of the terms “store atomicity,” “write atomicity,”, and
“multi-copy atomicity,” often employed to refer to the same
property [38], [41]. Here, we give our interpretation of these
terms in relation to previous definitions.

The term multi-copy atomicity (MCA) was first defined by
Collier [13], and implies that all cores see the new value
of a store at the same time. Allowing the local core to see
the value of the store before other cores was named by
Adve and Gharachorloo [1] as read-own-write-early, which
led to Trippel et al. [40] to use the term read-own-write-
early multiple-copy atomic (rMCA) to name that relaxation
of MCA. Wickerson et al. [41] use the term MCA to refer to
rMCA.

In our view, write atomicity refers to how coherence treats
write requests in the memory system, i.e., if a write is
atomic or not. For example, a typical invalidation-based MESI
protocol that acknowledges a write only after all invalidations
have been performed is write-atomic. In contrast, the DASH
protocol [25] is not write-atomic as it overlaps the invalidations
with the write. So our view of write atomicity matches the
definition of rMCA.

Differently, we see store atomicity equivalent to MCA, and
we define it as follows: all cores (threads) in the system,
without exception, see a store inserted in the global memory
order at the same time. In other words, a core is not allowed
to see its own stores before they are globally ordered. Table I

TABLE I
ATOMICITY OF STORE OPERATIONS

Model Adve & Gharachorloo Trippel et al. Ros & Kaxiras
370 MCA Store atomicity
x86 Read own write early rMCA Write atomicity
PC Read others’ write early non-MCA Non write-atomic

summarizes this discussion and shows which of the memory
models described next represents each category.

C. IBM 370

IBM 370 implements a store-atomic TSO model [18], [22]
in which the forwarding of a store to a load is not allowed
unless the store is inserted in memory order, i.e., made globally
visible to all other cores in the system. This means that when
a load matches a store in the store buffer we must wait until
that particular store is written to the L1 before we give its
value to the load. In this paper, we quantify the cost of an
IBM 370-style enforcement of store atomicity.

D. The x86-TSO model

x86 systems implement the x86-TSO model [36], which
allows a load to be performed with a store-to-load forwarding
from the store buffer. If the load is at the head of the ROB
it can retire. This allows the next younger load to retire too
when it is performed. As we will show, this is at the heart of
the problem with respect to store atomicity. In x86 a core can
see only its own stores earlier than other cores. Thus, x86 is
a write-atomic or rMCA model.

E. Processor Consistency

Processor Consistency (PC) is defined by Goodman [21]. As
IBM 370 and x86, PC forbids all memory reorderings except
store→load. However, PC is a weaker model than x86 in that
it allows any store to be seen from some cores earlier than
other cores. PC is therefore a non-write-atomic model. The
behavior of PC can be seen when cache coherence protocols
do not enforce write atomicity.

In this paper, we assume a typical invalidation-based MESI
protocol that acknowledges a write only after all invalidations
have been performed. Under this assumption, it is not possible
for a remote core to see a store at a time when another remote
core is not able to see it. Therefore, we do not consider PC in
this work. For am in-depth discussion of PC, see Adve’s and
Gharachorloo’s tutorial [1].

F. SC speculation

SC is a store-atomic memory model. Naturally, existing
approaches for SC speculation also guarantee store atomic-
ity [19], [20], [30]. The invariant in those proposals is that all
loads that bypass any unperformed store are speculative by
definition. This is a stricter condition than the one we adopt
in our work for the store-atomic speculative loads. In our new
definition, loads reading values from in limbo stores are not
speculative, but they are the source of speculation for younger
loads that are speculative. In this paper, we also compare our

proposal with a straightforward adoption of in-window SC
speculation to the 370 model, for the purpose of providing
store atomicity. Note that in our study we do not consider
techniques that require post-retirement speculation [9] as they
are in a different class of complexity and cost. Our goal is to
keep the complexity of the speculative support on par with
current practice for an easier adoption of our proposal in
commodity processors.

III. X86 NON-STORE-ATOMIC SEMANTICS

Relaxing store atomicity results in less intuitive semantics,
as we elaborate in this section. The new behaviors that
arise from relaxing store atomicity can be classified in two
categories, depending on whether we are observing ordered or
independent stores (independent stores that are not bound by
program or synchronization order). More specifically, violating
store atomicity can result in:

1) seeing ordered stores in a different order than their
memory order. A core that forwards a store value from
the store buffer to a load (possibly) causes that load
to see a newer write in memory order, than the write
seen by a younger load (in program order) to a different
address [6]. (Section III-A)

2) disagreeing about the order of independent stores. Two
cores that forward their stores to their loads cannot agree
in which order their stores appear in memory order.
(Section III-B)

In contrast, we show that none of these behaviors can be
present in a store-atomic implementation.

A. Ordered Stores

Consider the code shown in Figure 1, which is known
as the mp (message passing) litmus test. The code has a
parallel structure of two program-ordered loads (ld x and
ld y in Core1) and two program-ordered stores (st y,1
and st x,1 in Core2) in the opposite order of the loads.

In Figure 1 and all following figures, we use a notation
where we show the value of a memory location before and
after it is written by stores (depicted as diamonds): the old
value of the memory location before the store is positioned
above the store (top corner) and new value that the store writes
is positioned below the store (bottom corner).

Figure 1 shows an execution of the code where rx==1
(meaning that the register loaded by ld x takes a value
of 1) and ry==0. This creates a cycle, as it implies that
st x,1 happened before2 ld x and ld y happened before3

st y,1. This cycle implies that program order, and therefore
TSO, has not been respected, as the loads in Core1 observe
the younger store (st x,1) being performed before the older
store (st y,1). All other outcomes ({0, 0}, {0, 1}, and {1, 1}
for rx and ry respectively) are legal in TSO.

Yet, we can easily re-create this violation if we allow store-
to-load forwarding from the store buffer of Core1. Consider

2read from—rf —in the terminology of Alglave et al. [3]
3from read—fr—in the terminology of Alglave et al. [3]

ld x

Core2Core1

PO

1

0
(old)

(new)

PO

HBHB

st y
1

0

st x
1

0
ld y

HB: happens-before
PO: program-order
Initially: x = 0, y = 0

Fig. 1. Forbidden execution in x86 for the mp litmus test

HB: happens-before
PO: program-order

ld x

Core2Core1

Initially: x = 0, y = 0

PO

1

0
(old)

(new)

PO

HBHB

st y
2

0

st x
2

0
ld y

st x
1

2

store-load
forwarding

a

b

c

d

Fig. 2. Allowed execution in x86 but forbidden in store-atomic TSO for the
n6 litmus test

the code shown in Figure 2, which is known as n6 [36].4

Compared to the code in Figure 1, n6 adds a new store,
st x,1, in Core1. The stores in Core2, each, write now a
value of 2 in their respective memory locations.

After this code executes in actual x86 implementations5 we
have the following result: rx==1, ry==0, [x]==1, [y]==2,
where the notation [x]==1 means that the memory location
x has a value of 1 after the code finishes.

Seeing [x]==1 implies that st x,1 took place in mem-
ory order after st x,2 (Figure 2 a©).6 Otherwise, we would
see [x]==2. Since stores are written to program order by
Core2, this implies that transitively st x,1 also took place
in memory order after st y,2 (Figure 2 b©).

The younger load, ld y, sees the value 0. This means that
it happened in memory order before7 st y,2 (Figure 2 c©).
The older load, ld x, sees the value 1 as it loads it directly
from the store buffer with a store-to-load forwarding8 from
st x,1 (Figure 2 d©). In Figure 2, if store-to-load forwarding
(rfi) enforces memory order, we have a cycle and store atomic
behavior. Otherwise, we have a counter-intuitive behavior as
there is a dependency that does not follow memory order. As a
result, the loads in Core1 see values that contradicts the order
of the respective stores of Core2.

Execution Trace (or how did this happen). Delving
deeper into how this code produces this behavior we can

4Similar litmus tests are presented by Mador-Haim et al. [27] and by Arvind
and Maessen [6].

5We used the litmus7 framework [5] to run litmus tests on Intel
Skylake Platinum 8168, Broadwell i5-7400, and Ivy Bridge i5-3230M, and
we witnessed this output at a rate of about one in a million.

6write serialization—ws—in the terminology of Aflglave et al. [3]
7from read
8read from internal—rfi— in the terminology of Alglave et al. [3]

ld x

Core1

PO

0
(old)

(new)

HB

HB

st y
1

0

st x
1

0
ld y

ld y

PO

ld x

Core2

HB

HB
1

(new)
1

0
(old)

unordered
stores performed
by independent cores

HB: happens-before
PO: program-order
Initially: x = 0, y = 0

Fig. 3. Forbidden execution in x86 for the iriw litmus test

see the architectural mechanisms that make this possible. The
execution trace that leads to this situation is the following.
Core1 executes and retires st x,1. The store goes into the
store buffer so it is not yet ordered in the memory system.
The store atomicity of st x,1 is compromised when ld x
matches it in the store buffer and reads the store’s value (store-
to-load forwarding). Since ld x is now performed (it has
received its data) and all prior instructions (st x,1 in this
case) have retired, ld x is at the head of the reorder buffer
and it can also retire.

But what is the actual memory order of ld x? It is
“hitched” to the store, which —while in the store buffer—
is unordered. This could be seen as if the load itself remained
unordered, until the time the store is inserted in the memory
order when written to the L1. This observation is key to why
loads in Core1 see the stores in Core2 in a different order. In
order to restrict this behavior, when ld y bypasses st x,1
in the store buffer and sees the old value of [y] (0), it should
not have been able to do so until ld x is ordered with the
insertion of st x in memory order.

Furthermore, note that loads seeing different store orders
can only happen for loads (e.g., ld y) following (in program
order) a load that receives its value from store-to-load for-
warding (i.e., ld x). This scenario cannot occur for loads that
precede (in program order) ld x as such loads are inserted
before ld x in the memory order.
Store Atomicity. In a store-atomic implementation, ld x
would not be performed until st x is inserted in the memory
order and all cores can see the new value, thereby preventing
loads seeing different store orders, since a cycle will be created
in Figure 2 when store-to-load forwarding enforces memory
order.

B. Independent Stores

We have shown that two program-ordered loads can see
two program-ordered stores in a different order (Figure 1).
The situation is more complex when the stores are not bound
by program-order or synchronization-order. Figure 3 shows an
example where st x,1 and st y,1 are independent (i.e.,
performed by different cores, without intervening synchroniza-
tion). This litmus test is known as iriw (independent reads
of independent writes). There is no predetermined order for

st y
1

0

st x
1

0

ld y

PO

ld x

Core2

HB

HB

(new)

(new)

st y
1

0

st x
1

0

ld y

PO

ld x

Core2

HB

HB 0
(old)

(new)

st y
1

0

st x
1

0

ld y

PO

ld x

Core2

HB

HB
0

(old)

0
(old)

st y
1

0

st x
1

0

ld y

PO

ld x

Core2

HB

HB

(new)
1

0
(old)

unordered stores performed by independent cores

a

b

c

d

11

1

Fig. 4. The four possible outcomes for a core trying to detect whether two
independent stores have a particular memory order

independent stores and perhaps no order can be established
(consider for example that the stores can take place simulta-
neously in separate, independent memory/directory modules).

Let us assume that for the purpose of establishing (if
possible) an order for these stores we employ two cores that
execute two loads in program order, but each of them in a
different order. Core1 executes ld x and ld y in program
order and Core2 executes ld y and ld x in program order.
Core1 can test whether st x changes [x] before st y
changes [y], but can provide no other ordering information
for the two stores. Core2 can only test the opposite case.

Figure 4 shows the four possible outcomes for Core2. If
Core2 sees {1, 1} as the values for [y] and [x] respectively
(Figure 4. a©), it means that each store was performed before its
corresponding load but the relative order of the stores cannot
be discerned. Similarly, {0, 0} (Figure 4. b©) means that both
stores have not been performed yet and their future order is,
of course, unknown. Seeing {0, 1} (Figure 4. c©) also yields
no useful order information for the stores as ld y does not
see [y] change and although the later instruction ld x sees
[x] change, the relative order between the stores remains
unknown. It is only when Core2 sees {1, 0} (Figure 4. d©) that
it is certain that st y is before st x in the memory order.

Core2 may not be able to discern any order in the stores.
However, if Core2 does detect an order, this order must be
respected throughout the whole system. No other core is
allowed to see the same memory locations change in an order
different than that detected by any other core. Otherwise TSO
is violated (Figure 3).

This is the case depicted in Figure 3. Core2 detects that
st y is actually performed first before st x (sees the new
value, 1, of [y] and the old value, 0, of [x]), if Core1
sees st x performed first (sees the new value of [x] and
the old value of [y]), a cycle takes place, which means that
both cores cannot agree in the order of stores. Actual systems
rectify this behavior by squashing one of the loads when the
store to the same address performs [19].

While not agreeing in the memory order of two stores

ld x

Core1

PO

1

0
(old)

(new)

HB
HB

st y
1

0
st x
1

0

ld y

ld y

PO

ld x

Core2

1
(new)

0
(old)

store-load
forwarding

store-load
forwarding

unordered
stores performed
by independent cores

HB: happens-before
PO: program-order
Initially: x = 0, y = 0

Fig. 5. Store atomicity violation in both cores causes them to not agree on
the order of their independent stores

results in a non-intuitive behavior, a store-atomicity violation
via store-to-load forwarding easily allows us to recreate this
situation. Consider the code in Figure 5. In this case we have
again two cores trying to detect the order of the stores. The
load sequence in one core is designed to detect the opposite
store order than the load sequence in the other core. We also
need to have the two independent stores in the example. For
this, we simply distribute the two stores to the two cores: st x
in Core1 and st y in Core2. The stores are still performed by
different cores, hence, they are independent. In x86 systems,
this code can result in Core1 seeing [x] change before [y],
and Core2 insisting on the opposite.9

Execution Trace (or how did this happen). The root cause
of this behavior is the same as in the case of the ordered stores.
In Core1, ld x is performed (by the store-to-load forwarding)
and since there is no other instruction before it in the reorder
buffer it can safely retire. Subsequently, ld y bypasses st x
in the store buffer and sees the old value of [y]. In exact
symmetry, ld x in Core2 is allowed to bypass st y in the
store buffer and see the old value of [x]. No matter how
and when the stores of the two cores are written from their
respective store buffers in the L1s, each core believes that it
has seen the stores in an order that is in direct conflict with
the order seen by the other core.

There is no way to tell which core is wrong or right, unless
we bring in a third independent core to “decide” a memory
order for the stores. 10 Even in such a case, it may not be even
possible for a third core to discern any order in the stores (e.g.,
when it can only see both as either performed or not, as we
discussed above).

Store Atomicity. In a store-atomic implementation, ld x
in Core1 and ld y in Core2 would not be able perform until
the respective stores in the two cores are written from the
store buffers to the L1s and hence inserted in memory order.
Exhaustively searching all possible interleavings for the code
in Figure 5 reveals that there are only three possible outcomes

9We have confirmed this behavior in several recent Intel microarchitectures
(Skylake Platinum 8168, Broadwell i5-7400, and Ivy Bridge i5-3230M) using
the litmus7 tools [5].

10We note an analogy to the Einstein’s thought experiment to explain the
special theory of relativity, where two observers traveling at different speeds
cannot agree in the simultaneity of two strokes of lightning [17].

TABLE II
ALL POSSIBLE OUTCOMES FOR THE CODE IN FIGURE 5

Case Core1 [x],[y] Core2 [x],[y] Comment
1 1,0 (new,old) 0,1 (old,new) Disagreement in order
2 1,0 (new,old) 1,1 (new,new) Core2 cannot see order
3 1,1 (new,new) 1,0 (new,old) Core1 cannot see order
4 1,1 (new,new) 1,1 (new,new) None can see any order

HB: happens-before

PO: program-order

ld x

Core2Core1

Initially: x = 0, y = 0

1

0
(old)

(new)

PO

HB
HB

st y
2

0

st x
2

0
ld y

st x
1

2

HB: store-load
forwarding

Inv
Window of
Vulnerability

Fig. 6. Window of Vulnerability for invalidations from ordered stores

for a store-atomic implementation. All outcomes are listed in
Table II, including the outcome shown in Figure 5 that only
appears in the non-store-atomic case (in red).

As we have shown, the first outcome (non-store-atomic)
allows the two cores to see the memory locations change in a
different order. In the other three outcomes, which are common
in store-atomic and non-store atomic implementations, if one
of the cores is able to discern an order between the two
independent stores (cases 2 and 3) then the other core cannot
(it sees both stores as performed, hence it cannot tell the order
between them); or both cores see both stores performed (case
4), therefore the cores remain agnostic about the store order.
This means that there is no disagreement about the order of
independent stores in a store-atomic implementation.

IV. SPECULATIVE ENFORCEMENT OF
STORE ATOMICITY

In the previous section we discussed how store-to-load
forwarding in x86 can lead to non-intuitive executions as a
consequence of store atomicity violations. The key here is
that store-to-load forwarding (seeing a core’s own store before
other cores do) does not by itself violate the store atomicity
of the store. For this to happen, the core in question must also
perform at least one more load access to a different memory
location that happens to change while the store is still in limbo
in the store buffer.11 It is the discrepancy between when we
see our own store in relation to an external write and when
others observe our store in relation to the same write, that
highlights the importance of a store atomicity violation.

This is shown in Figures 6 and 7. A necessary condition for
Core1 to break store atomicity in both figures, assuming that
st x has forwarded the data to ld x, is that st y in Core2
must be inserted in the memory order sometime between ld y

11Recall that a store in limbo is executed and (possibly) retired but not
inserted in the memory order yet.

ld x

Core1

PO

1

0
(old)

(new)

HBHB

st y
1

0
st x
1

0

ld y

ld y

PO

ld x

Core2

1 1
(new)

1

0
(old)

HB: store-load
forwarding

HB: store-load
forwarding

HB: happens-before

PO: program-order

Initially: x = 0, y = 0

Inv
Inv

Window of
Vulnerability

Window of
Vulnerability

Fig. 7. Window of Vulnerability for invalidations from independent stores

being performed (and seeing the old value of [y]) and st x
in Core 1 being inserted in the memory order. This means that
Core1 should receive an invalidation for the memory location
[y] in the same time window. We call this the invalidation
window of vulnerability for ld y.

More specifically, the reason why store atomicity is violated
under x86 in Core1 in a detectable way is that ld y is able
to retire and exit the reorder buffer before the end of this
window (before st x is written to the L1). There is nothing
in the out-of-order microarchitecture, as we know it today,
that can stop ld y from retiring and exiting the ROB: ld x
(which is before ld y) is performed from the store buffer
and retires, leaving ld y at the head of the reorder buffer; at
that point, ld y is already performed, therefore it can also
exit the reorder buffer. An invalidation for [y] arriving after
ld y retires but before st x is written to the L1, seals the
fate of the values seeing by the loads, which violates store
atomicity.

The only solutions known to guarantee store atomicity are
i) to prevent ld x, the consumer load of the store-to-load
forwarding, from being performed until st x is inserted
in memory order or ii) to treat ld x as speculative, and
therefore, not allowing it to retire, until the store buffer
empties. The first solution, can be a serious impediment
to performance as no instruction dependent on ld x can
progress, but keeps ld y speculative for the vulnerability
window since there is an older unperformed load in the reorder
buffer before it. The second solution also impacts performance
as prevents ld x from retiring until the store buffer drains.
In both cases, within the vulnerability window, if ld y is
matched by an invalidation, it is squashed as a speculative load,
which prevents store atomicity violations. The performance
implications of both known techniques are shown in our
evaluation.

Evictions. An eviction of cacheline y, that occurs during
the invalidation window of vulnerability of ld y, has the un-
desirable effect of filtering out a possible invalidation, making
a violation of store atomicity —in such a case— inevitable. As
a precautionary measure, to fend off this possibility, evictions
are treated the same as invalidations. The same policy is used
for speculative load reordering in actual systems [16].

The above analysis, which holds in both cases where store
atomicity violation is detected (Section III-A and Section

III-B), forms the basis of our solution. In short, we will
make ld y in Core1 speculative until st x is ordered. If an
invalidation is received for [y] in the interim we must squash
ld y and re-execute it —in Figure 7, symmetrically, we will
do the same (with x and y switching places) for Core2.

A. A Speculative Solution

There are various ways in which a load can be speculative
in an out-of-order core. Previous work has defined loads as:

• M-Speculative [14]: the load is performed (receives its
data) before a previous unperformed load. The oldest un-
performed load is called Source of Speculation load [31].

• C-Speculative [31]: there is an unresolved branch before
the load (which means that the load might be on the
wrong path).

• D-Speculative [31]: there is an unresolved store before
the load and the load was issued speculatively assuming
no dependence with the store.

• E-Speculative [34]: there is an unresolved previous in-
struction that may cause an exception.

We define a new state of speculation for a load:
• SA-Speculative (Store-Atomicity Speculative): there is an

older (in program order) load that is performed via a
store-to-load forwarding and the corresponding store has
not written to cache yet.

To clarify: it is not the load performed by store-to-load
forwarding that is speculative, but potentially all the loads
that follow it. This is a key difference in comparison with
the state-of-the-art knowledge regarding speculation. The SA-
Speculative state of the load ld y holds from the moment it
is performed to the moment st x, that was involved in the
store-to-load forwarding with ld x (preceding ld y), writes
to memory. Our approach can be summarized as follows. While
a load is SA-Speculative: i) it cannot retire, and ii) must be
squashed and re-executed if matched by an invalidation or
eviction.

The load that is involved in a store-to-load forwarding is
not speculative but it is the source of the store-atomicity
speculation for all younger loads. We call such a load SLF
load (Store-to-Load-Forwarded load). To cast a younger load
as SA-Speculative, we simply require an “older” SLF load.
We make no assumptions on:

• when the store-to-load forwarding takes place with re-
spect to when the younger load is performed, e.g., the
store-to-load forwarding can occur (chronologically) after
the younger load has been performed.12

• whether the SLF load is still in the reorder buffer by the
time a younger load is performed. The SLF load may
have already retired by that time. But even in this case,
information about a store-to-load forwarding can be left
behind with the store (in the store buffer) and at the load
queue, for younger loads to see.

12In this case the younger load starts as M-Speculative and becomes SA-
Speculative when the older load is performed.

tail

head

SA-Spec

tailhead

L1

retired

SB SQ

ld y

LQ

st x

ld x

ld x matches a store in the SQ/SB
and it becomes an SLF load.
It also gets the position of
the store in the SQ/SB (the key).
Younger loads (e.g., ld y)
become SA-Speculative

tailhead

tailhead

L1
SB SQ

ld y

LQ

st x

ld x

SLF ld x retires and closes the
retire gate behind it using its key.
ld y cannot retire since the
retire gate is closed.

tail

head

ld y

LQ

st x exits the store buffer and
and opens the retire gate using
the key shared with ld x.
ld y is now able to retire.

Retire
Gate OPEN

tailhead

SB SQ
st x

ordered

Retire
Gate CLOSED

Retire
Gate RE-OPENED

SLF

non-retired

retired non-retired

retired non-retired

a

b

c

SLF

st-ld forwarding
data,
key

SA-Spec
SLF

Fig. 8. The basic operation of the Retire Gate.

Keeping track of multiple store-to-load forwardings, the
overlapping SA-speculative “shadows” they cast over younger
loads, and the points when such shadows are lifted, as stores
exit the store buffer, may seem as a daunting task. However,
it is not so. We propose a simple and efficient implementation
that adds negligible hardware overhead and does not penalize
energy or performance.

B. A Simple and Efficient Implementation

Key to a simple implementation are the SLF loads. An
SLF load establishes a connection between a store in the
store buffer and a “retire gate” at the head of the load queue
(LQ), thereby preventing the retirement of any younger SA-
Speculative loads until the store is inserted in memory order.
The SLF load can freely retire (provided that it is not prevented
by an even older SLF load). While our solution is based on
the LQ, it can be easily adapted to use the ROB instead.

Figure 8 depicts the three parts of our technique:
a© A load receives its value from a store: the load is marked

as an SLF load and keeps a pointer to the position of the
store in the store buffer. We refer to the value stored in
this pointer as the key. In other words, the load makes
a copy of the key of the store.

b© An SLF load retires: if the load has the valid key of the
older store (i.e., the older store has not written yet to the
cache), the retire gate is closed by the key of the load,
preventing younger SA-speculative loads from retiring.

c© A store exits the store buffer: the retire gate is reopened
if the key of the store matches the key that closed the
gate.

The next subsections detail the operations on each step.

1) Setting SLF loads on store-to-load forwarding: In cur-
rent out-of-order processors, when a load executes, it searches
the store buffer for a matching store. In case of a hit, the
load takes its value from the store. Our proposal extends the
implementation by marking at that point the load as being SLF
and also by recording the position in the store buffer of that
store (i.e., keeps a copy of the key of the store). This entails
extending each LQ entry with two new fields. Note that most
implementations allow the SLF-load to get the data from a
single store buffer entry. In case the underlying implementation
allows store-to-load forwarding from multiple store entries, the
SLF load copies the key of the younger store providing partial
data to the load.

2) Closing the retire gate: The retire gate is nothing more
than a single open/closed bit and a register that stores the
key. The open/closed bit indicates if the gate is closed (no
loads can retire) or open (loads can freely retire). Loads at
the head of the LQ (ROB) consult this bit to see if they can
retire. The register stores the key that locked the gate when it
closed. When the gate is closed it can only be unlocked (and
opened) with the same key that it was (closed and) locked.
Here is how our mechanism works: When an SLF load retires
(assuming the gate is already open), it checks if the store that
forwarded the data has already written to cache and has exited
the store buffer. In such a case, the load retires without closing
the retire gate, as there is no risk of breaking store atomicity
(the window of vulnerability of store atomicity has already
closed). Otherwise, the SLF load closes the gate behind it and
locks the gate using its key. The invariants here are that there
will be one and only one store in the store buffer matching
the key and that there is only one load that closed the gate,
since the gate is closed after the SLF load retires. Therefore,
a simple register can keep the information about the key that
closed the gate.

Loads need to check if their matching store has already
exited the store buffer. This operation can be implemented in
several ways. For example, stores can have a monotonically
increasing sequence number (the key), where a lower value
indicates an older store [33]. A better implementation, and
the one we use in this work, is to augment the position of
the store in the store buffer with an extra bit per entry (called
the sorting bit) to account for the wrap-around, as the store
buffer is typically a circular buffer [10]. This requires also to
augment the key with an extra bit. The retiring load checks
the presence of the store by directly accessing the store buffer
entry indicated by the position bits of the key, and comparing
it sorting bit with the one in the store buffer entry. A match
means that the store is still in the store buffer.

3) Reopening the retire gate: The final act takes place when
a store exits the store buffer and is written to the L1 cache
(Fig. 8. c©). The store compares its key with the key that locked
the gate. In case of a match, the store finds that an SLF load
has left the LQ closing the retire gate behind it, and that the
store forwarded the data to that load since both keys match.
After the store writes to cache, and before exiting the store
buffer it unlocks and opens the retire gate and invalidates the

TABLE III
SYSTEM CONFIGURATION

Processor (Skylake-like)
Issue / Retire width 5 instructions
Reorder buffer 224 entries
Load queue 72 entries
Store queue + store buffer 56 entries
Memory dep. predictor StoreSet [12]
Branch predictor L-TAGE [37]

Memory
Private L1 I&D caches 32KB, 8 ways, 4 hit cycles,

pipelined, stride L1 prefetcher [7]
Private L2 cache 128KB, 8 ways, 12 hit cycles
Shared L3 cache (8 banks) 1MB per bank, 8 ways,

35 hit cycles
Directory (8 banks) 8 ways, 200% L2 coverage
Memory access time 160 cycles

Network
Topology Fully connected
Data / Control msg size 5 / 1 flits
Switch-to-switch time 6 cycles

key stored in the gate register. Younger loads can now retire.

C. No Deadlock

In our approach, stores may delay the retirement of younger
loads. This can cause extra stalls as we will analyze in the
evaluation. However, there is no circular dependence in the
implementation that would allow a deadlock to occur, since
stores cannot be blocked from writing to the L1 cache because
of a blocked younger load. Once a store retires to the SB it is
guaranteed to write to cache and reopen the gate.

D. Storage Requirements

The proposed implementation entails negligible storage
overhead. Assuming a 72-entry LQ and a 56-entry SQ/SB
(see simulation details in Section V) the extra memory re-
quirements are the following: Each LQ entry is augmented
with a SLF bit and the key of the store —log2(56)+1 bits (for
56 position bits + 1 sorting bit). A total of 8 bits are required
per LQ entry. The implementation of the retire gate entails an
open/closed bit and a register to store the key of the retired
SLF load (7 bits). Finally, the store buffer requires one sorting
bit per entry. Overall, the extra memory requirements are just
640 bits (80 bytes).

V. SIMULATION ENVIRONMENT

We simulate a multicore processor consisting of 8 Skylake-
like out-of-order cores. We use a detailed in-house out-of-order
processor model driven by a Sniper [11]. The out-of-order
core implements both macro-operation and micro-operation
fusion. The memory hierarchy is modeled with the cycle-
accurate GEMS simulator [29], which offers a timing model
of the memory hierarchy and the cache coherence protocol.
The interconnect is modeled with GARNET [2]. The main
architectural parameters of the simulated system are shown in
Table III.

We model processors implementing two consistency models
found in current systems: 370 and x86. x86 does not imple-
ment any mechanism to enforce store atomicity, and therefore,

is excepted to be the more efficient implementation. The x86
implementation includes support for load-load reordering with
in-window speculation, as currently implemented in Intel and
AMD processors.

We also evaluate four different processor implementations
that provide store atomicity, that is, offer a 370 consistency
model: 370-NoSpec, a store-atomic consistency model with
a blanket enforcement of store atomicity as in IBM 370;
370-SLFSpec, a store-atomic consistency model following SC-
like speculation [19], [20], [30] —but strictly for in-window
speculation— where SLF loads are considered speculative;
370-SLFSoS, an in-window speculation technique where SLF
loads are not considered speculative but the source of spec-
ulation (SoS), as described in Section IV-A, and can retire
closing the gate behind themselves, reopening the gate when
the SB drains; and 370-SLFSoS-key, our speculative store-
atomic implementation where the SLF load acts as a source
of speculation and locks the retire gate with the key of its
forwarding store, thus reopening the gate as soon as the
forwarding store completes the write to L1. We do not model
techniques that require post-retirement speculation, as they
represent a different level of complexity and cost.

We run all applications from the SPLASH-3 [35] and
PARSEC 3.0 [8] parallel benchmark suites, with simsmall
(fmm, ocean cp, oceanncp, radiosity, radix, raytrace, vol-
rend, water nsquared, water spatial, freqmine, streamcluster,
swaptions, and vips) and simmedium (barnes, cholesky, fft,
lu cb, lu ncb, blackscholes, bodytrack, canneal, dedup, ferret,
fluidanimate, and x264) inputs. Results correspond to their
parallel region. Additionally, we present results for sequen-
tial applications (the whole SPECrate CPU 2017 benchmark
suite [39]) with reference input sets and reporting numbers
for the execution of ≈ 1 billion instructions after the warm up
phase.

VI. EVALUATION

A. Impact of store-atomicity speculation

Adding speculative support for store atomicity allows for-
warding from non-performed stores to loads, which is fun-
damental for applications’ performance. However, speculation
sometimes fails, having to re-execute the instructions again.
Until the SA-speculation is validated (forwarding stores are
written to L1), SA-speculative loads cannot retire, thus having
to wait at the head of the ROB (when the gate is closed)
and stalling the processor if its resources (ROB, LQ or
SQ) are full. These re-executions and stalls can jeopardize
performance if they occur frequently. This section explains
why the performance penalty of speculative store atomicity
is small, leading to performance that is close to a non-store-
atomic model as x86.

Table IV offers a detailed characterization of parallel (top)
and sequential (bottom) applications when running under our
speculative store atomicity implementation (370-SLFSoS-key).
The first column shows the evaluated applications. The second
column presents the number of retired instructions for each
application. The third column shows the percentage of retired

loads with respect to retired instructions, averaging around
24% for both parallel and sequential applications. Then we go
to the key column that shows that forwarding is not a frequent
operation. Only barnes has a very high forwarding ratio
(18.3% of the total instructions). This is due to the large num-
ber of recursive function calls that use the stack to write and
read parameters. Specifically, the recursive function “walksub”
in barnes is by far the most store-load forwarding intensive
function of the benchmark. On average, only 3.69% of the
instructions are loads that get the data forwarded from a store
(SLF loads) for parallel applications. Regarding sequential
applications only 500.perlbench 2 and 511.povray show more
than 10% forwarded loads, which is still a low percentage
compared to barnes. On average, sequential applications incur
slightly more forwarding than parallel applications (4.55%).

In most of these cases, the store that forwarded the data
to the load writes to memory before the load retires, and
therefore, the retire gate is never closed. Only 1.12% of
instructions stall at the head of the ROB because the gate is
closed (the fifth column) for parallel applications, and this stall
takes an average of 18.4 cycles until the gate opens again (the
sixth column). For sequential applications, the average of stalls
is 1.48% and the number of cycles the gate is closed is lower
than for parallel applications (11.5 cycles). As a conclusion,
closing the gate is a rare and short-lived event, and does not
cause noticeable performance degradation, as we show in the
next section.

Finally, the other possible disadvantage of speculation is the
occurrence of misspeculations. As we mentioned earlier, store
atomicity misspeculations are a rare event. The seventh column
in Table IV shows the percentage of instructions that are re-
executed due to store atomicity misspeculations, accounting
from the speculative load that is caught by an invalidation or
replacement to the tail instruction in the ROB. This percentage
is 0.492% for parallel applications and 0.565% for sequential
applications, so it hardly impacts execution time. Two outliers,
in this case, are x264, with 10.2%, and 505.mcf, with 11.7%
re-executed instructions due to store atomicity misspeculation.
This high re-execution percentage in x264 is due to the code
in the “pthread cond wait” function, frequently called in this
application. This code incurs store-to-load forwarding in a
highly contended synchronization variable. The reason for the
large number of misspeculations in 505.mcf is due to frequent
cache evictions that hit SA-speculative loads in the LQ. In
general, all misspeculations seen in sequential applications are
due to cache evictions.

B. x86, 370, and SC speculation

This section compares the performance of our speculative
store atomicity solution to three state-of-the-art implemen-
tations: x86, 370 without store-atomicity speculation (370-
NoSpec), and 370 with SC-like speculation (370-SLFSpec).
We present two configurations for our solution. The first one,
370-SLFSoS is just presented to show the advantages of letting
the SLF load retire. The second one, 370-SLFSoS-key is our

TABLE IV
CHARACTERIZATION OF STORE-ATOMICITY SPECULATION FOR PARALLEL (TOP) AND SEQUENTIAL (BOTTOM) APPLICATIONS

Benchmark Instructions Loads Forwarded Gate Stalls Avg. stall cycles Re-executed instr.
(% total instr.) (% total instr.) (% total instr.) per gate stall (% total instr.)

barnes 2230309927 31.780 18.336 5.929 6.460 0.194
blackscholes 1053954449 19.745 7.272 2.208 4.428 0.001
bodytrack 3871819525 17.915 4.119 1.028 4.375 0.292
canneal 911238793 24.259 2.755 0.730 5.226 0.035
cholesky 873398060 26.320 1.604 0.406 6.188 0.027
dedup 852338767 13.762 6.481 1.467 3.183 0.012
ferret 843881294 20.542 3.527 1.411 11.112 0.147
fft 2305314837 17.282 0.010 0.006 6.113 0.000
fluidanimate 3439523371 25.233 1.044 0.316 8.459 0.035
fmm 1391062359 15.439 0.294 0.118 19.345 0.013
freqmine 2594696106 26.120 2.584 1.185 5.960 0.167
lu cb 4160074138 22.165 0.230 0.124 4.850 0.015
lu ncb 4331579576 24.261 1.352 0.636 16.362 0.048
ocean cp 958925716 30.497 0.031 0.017 94.560 0.002
ocean ncp 876550467 27.233 0.064 0.033 52.584 0.007
radiosity 1071130503 29.947 4.201 0.628 7.783 0.106
radix 160864073 28.182 1.411 0.790 98.644 0.235
raytrace 1582601968 28.501 5.625 2.045 8.151 0.145
streamcluster 1352721745 29.899 0.031 0.020 53.851 0.000
swaptions 2086529095 24.576 4.498 2.184 5.284 0.245
vips 4360543980 18.061 1.962 0.534 5.000 0.005
volrend 801497112 24.514 5.097 1.353 5.484 0.184
water nsquared 276836113 26.834 7.687 1.680 6.181 0.145
water spatial 2259979795 27.851 8.669 1.608 6.292 0.045
x264 1368542748 26.209 3.314 1.432 13.723 10.191
Average 1840636580 24.285 3.688 1.115 18.384 0.492

Benchmark Instructions Loads Forwarded Gate Stalls Avg. stall cycles Re-executed instr.
(% total instr.) (% total instr.) (% total instr.) per gate stall (% total instr.)

500.perlbench 1 964505810 23.866 7.527 2.686 6.967 0.146
500.perlbench 2 973276968 29.159 11.192 3.969 4.979 0.038
500.perlbench 3 929430787 7.889 1.075 0.378 4.979 0.020
502.gcc 1 980611000 24.143 8.032 2.094 9.263 1.152
502.gcc 2 980660274 24.132 8.027 2.090 9.293 1.156
502.gcc 3 984563265 24.955 8.300 2.183 9.568 0.987
502.gcc 4 983294223 25.847 8.044 2.188 9.900 1.054
502.gcc 5 983293143 25.847 8.043 2.187 9.896 1.063
503.bwaves 1 973162848 30.147 1.722 0.782 17.455 0.032
503.bwaves 2 973162943 30.147 1.722 0.782 17.450 0.034
503.bwaves 3 1013214128 33.200 2.094 0.814 29.580 0.044
503.bwaves 4 980379698 30.310 1.765 0.855 35.334 0.040
505.mcf 1033168380 29.973 4.958 2.411 13.084 11.722
507.cactuBSSN 988799146 31.857 5.593 1.479 18.801 0.014
508.namd 957464484 23.369 2.448 1.316 3.973 0.008
510.parest 977387085 33.230 1.852 0.530 6.907 0.067
511.povray 1047422921 30.513 10.185 2.911 5.772 0.003
519.lbm 939699615 20.561 7.695 3.074 74.749 0.440
520.omnetpp 1011815225 27.695 7.978 2.437 15.927 0.329
521.wrf 1006331121 25.615 2.004 0.730 11.495 0.016
523.xalancbmk 1036626285 26.679 2.804 0.700 8.810 0.167
525.x264 1 910390076 22.529 3.381 0.607 6.611 0.012
525.x264 2 911740169 23.605 1.397 0.303 8.870 0.015
525.x264 3 909357540 22.722 2.841 0.520 6.546 0.006
526.blender 982134804 23.531 6.116 1.752 5.680 0.139
527.cam4 900052617 22.683 0.001 0.000 0.000 0.000
531.deepsjeng 1005818672 22.159 6.743 2.632 5.926 0.960
538.imagick 901182035 18.552 0.103 0.023 6.798 0.001
541.leela 1013351926 23.706 5.085 2.031 6.795 0.393
544.nab 966696584 22.047 4.176 1.426 5.726 0.126
548.exchange2 1212408138 24.982 4.140 1.289 6.112 0.032
549.fotonik3d 1000196710 20.950 7.703 2.800 6.293 0.012
554.roms 1034743008 25.549 3.700 1.037 10.122 0.016
557.xz 1 925428657 14.427 3.312 1.913 4.493 0.092
557.xz 2 930899613 10.098 1.064 0.181 5.094 0.002
557.xz 3 928391278 12.466 0.981 0.167 5.096 0.002
Average 979196144 24.143 4.550 1.480 11.510 0.565

 barnes

 blackscholes

 bodytra
ck

 canneal

 cholesky
 dedup

 ferre
t fft

 flu
idanimate

 fm
m

 fre
qmine

 lu_cb
 lu_ncb

 ocean_cp

 ocean_ncp

 ra
diosity

 ra
dix

 ra
ytra

ce

 stre
amcluster

 swaptions
 vips

 volrend

 water_nsquared

 water_spatial
 x264

 Average
0.0

20.0

40.0

60.0

80.0

100.0

P
ro

ce
ss

or
 s

ta
lls

 (
%

)
ROB LQ SQ/SB1. x86 2. 370-NoSpec 3. 370-SLFSpec 4. 370-SLFSoS 5. 370-SLFSoS-key

 5
00

.p
er

lb
en

ch
_1

 5
00

.p
er

lb
en

ch
_2

 5
00

.p
er

lb
en

ch
_3

 5
02

.g
cc

_1
 5

02
.g

cc
_2

 5
02

.g
cc

_3
 5

02
.g

cc
_4

 5
02

.g
cc

_5
 5

03
.b

w
av

es
_1

 5
03

.b
w

av
es

_2
 5

03
.b

w
av

es
_3

 5
03

.b
w

av
es

_4
 5

05
.m

cf

 5
07

.c
ac

tu
BS

SN
 5

08
.n

am
d

 5
10

.p
ar

es
t

 5
11

.p
ov

ra
y

 5
19

.lb
m

 5
20

.o
m

ne
tp

p
 5

21
.w

rf
 5

23
.x

al
an

cb
m

k
 5

25
.x

26
4_

1
 5

25
.x

26
4_

2
 5

25
.x

26
4_

3
 5

26
.b

le
nd

er
 5

27
.c

am
4

 5
31

.d
ee

ps
je

ng
 5

38
.im

ag
ic

k
 5

41
.le

el
a

 5
44

.n
ab

 5
48

.e
xc

ha
ng

e2
 5

49
.fo

to
ni

k3
d

 5
54

.ro
m

s
 5

57
.x

z_
1

 5
57

.x
z_

2
 5

57
.x

z_
3

 A
ve

ra
ge

0.0

20.0

40.0

60.0

80.0

100.0

P
ro

ce
ss

or
 s

ta
lls

 (
%

)

ROB LQ SQ/SB1. x86 2. 370-NoSpec 3. 370-SLFSpec 4. 370-SLFSoS 5. 370-SLFSoS-key

Fig. 9. Percentage of processor stalls for parallel (top) and sequential (bottom) applications

efficient implementation of speculative enforcement of store
atomicity.

Figure 9 shows the percentage of cycles in which the proces-
sor cannot make progress due to a full ROB, LQ, or SQ/SB
for both parallel (top) and sequential (bottom) applications.
Preventing store-to-load forwarding until the store writes to
memory (370-NoSpec) delays the execution of loads, which
results in extra processor stalls with respect to x86 when
resources (e.g., ROB, LQ) fill up. 370-SLFSpec reduces the
stalls cycles by allowing SLF loads to perform speculatively.
Not being able to retire these loads until the store buffer
empties, still entails extra stalls compared to x86. Our solutions
allow SLF loads to retire, thus reducing ROB/LQ stalls (370-
SLFSoS) and the use of the key allows the retire gate to
open even earlier than in previous speculative solutions (370-
SLFSoS-key), achieving stall levels close to x86.

Figure 10 shows the execution time of all four store-atomic
implementations normalized to x86 and for both parallel (top)
and sequential (bottom) applications. The increase in processor
stalls translates to increased execution time. Blanket enforce-
ment of store atomicity (370-NoSpec) increases execution time
over x86 by 1.27x (1.23x for sequential applications), on
average. SC-like speculative store atomicity (370-SLFSpec)
reduces execution time compared to 370-NoSpec but still
entails a noticeable overhead (1.07x for parallel applications
and 1.14x for sequential applications). For some applications
(e.g. radix and 519.lbm), 370-NoSpec can outperform 370-
SLFSpec as in 370-NoSpec as soon as the previous stores
calculate their address, the load can execute non speculatively,
while speculation in 370-SLFSpec remains until all previous

stores exit the store buffer. Allowing SLF loads to retire
(370-SLFSoS) brings execution time down to 1.05x (1.12x for
sequential applications), and when adding the key mechanism
(370-SLFSoS-key) the overhead is just 1.025x (1.027x for
sequential applications). The outlier here is radix, which is
dominated by long-latency writes that stress the SQ/SB capac-
ity (Figure 9, top), thus having the larger average stall cycles
per gate stall (99 cycles, Table IV). The average performance
improvement of our proposal compared to speculative SC
is moderate for parallel applications (3.7%) but excels for
sequential applications (10.3%).

Finally, we do not significantly alter dynamic energy con-
sumption in the structures involved in our techniques (SQ/SB,
LQ, ROB) as we do not require extra snoops in our mech-
anism, and naturally, overall energy consumption (including
static energy) is dominated by the changes in execution time.

VII. RELATED WORK

SC++. One of the reference points for our work is the work
of Gniady et al. [20] which shows that with deep enough
post-retirement speculation, SC can be as liberally relaxed as
RC. Since that work aims to cover reordering in SC, it must
obviously cover store atomicity, as there can be no SC without
it. Gniady et al. introduce a post-retirement speculative version
of SC, called SC++, which allows any instruction reordering
(loads and stores bypassing each other). More specifically,
all loads that bypass any unperformed store are speculative
by definition. This is the fundamental difference between the
work of Gniady et al. and our work. In the memory model
that we focus on, it is perfectly legal for a load to overtake

 barnes

 blackscholes

 bodytra
ck

 canneal

 cholesky
 dedup

 ferre
t fft

 flu
idanimate

 fm
m

 fre
qmine

 lu_cb
 lu_ncb

 ocean_cp

 ocean_ncp

 ra
diosity

 ra
dix

 ra
ytra

ce

 stre
amcluster

 swaptions
 vips

 volrend

 water_nsquared

 water_spatial
 x264

 Geomean
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

x86 370-NoSpec 370-SLFSpec 370-SLFSoS 370-SLFSoS-key

2.4
 5

00
.p

er
lb

en
ch

_1

 5
00

.p
er

lb
en

ch
_2

 5
00

.p
er

lb
en

ch
_3

 5
02

.g
cc

_1
 5

02
.g

cc
_2

 5
02

.g
cc

_3
 5

02
.g

cc
_4

 5
02

.g
cc

_5
 5

03
.b

w
av

es
_1

 5
03

.b
w

av
es

_2
 5

03
.b

w
av

es
_3

 5
03

.b
w

av
es

_4
 5

05
.m

cf

 5
07

.c
ac

tu
BS

SN
 5

08
.n

am
d

 5
10

.p
ar

es
t

 5
11

.p
ov

ra
y

 5
19

.lb
m

 5
20

.o
m

ne
tp

p
 5

21
.w

rf
 5

23
.x

al
an

cb
m

k
 5

25
.x

26
4_

1
 5

25
.x

26
4_

2
 5

25
.x

26
4_

3
 5

26
.b

le
nd

er
 5

27
.c

am
4

 5
31

.d
ee

ps
je

ng
 5

38
.im

ag
ic

k
 5

41
.le

el
a

 5
44

.n
ab

 5
48

.e
xc

ha
ng

e2
 5

49
.fo

to
ni

k3
d

 5
54

.ro
m

s
 5

57
.x

z_
1

 5
57

.x
z_

2
 5

57
.x

z_
3

 G
eo

m
ea

n

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

x86 370-NoSpec 370-SLFSpec 370-SLFSoS 370-SLFSoS-key

2.0
3.0

3.0

Fig. 10. Normalized execution time for parallel (top) and sequential (bottom) applications

a store and not be speculative. Finally, our proposal strictly
concerns in-window speculation, in contrast to post-retirement
speculation, a more complex technique not implemented in
current processors [9], [28].
Store Atomicity. Arvind and Maessen show that memory
models are effectively defined by the allowable instruction
ordering and store atomicity [6]. Differences between the non-
store-atomic x86 and the store-atomic 370 were described
in earlier work [18]. Arvind and Maessen describe a single
aspect of how a store-atomicity violation becomes evident:
ordered loads see ordered stores in a different order. Their
intent is only to model this behavior, rather than to address
it. In contrast, we demonstrate the precise conditions for store
atomicity violations (window of vulnerability for invalidations)
and propose an efficient solution to dynamically prevent such
violations from occurring. As far as we know, this is the first
work that describes such a solution.
Speculative fences. An alternative to our speculative enforce-
ment of store-atomicity is to add the necessary fences to the
programs and enforce them speculatively. WeeFence [15] is
an example of an speculative enforcement of fences. Unfor-
tunately it is not practical for store-atomicity as it requires
the target memory block of a forwarded load to be stored in
the local cache of the core before executing the load (Section
5.2). In addition, WeeFence involves non-trivial changes in the
memory system, while our proposal leaves the memory system
unmodified.
Sentinels. The use of our key may resemble the sentinels em-
ployed in prior work [10], [32]. In our proposal we leverage the
sorting bit proposed by Buyuktosunoglu et al. [10]. Different
from NoLQ [32], we do not require heavy modifications or
extra snoops in the store buffer, but we reuse the snoop already

performed for every load in the store buffer to get a copy of
the store key.

VIII. CONCLUSION

Until now, store atomicity represented a dilemma. On
one hand, some architectures (e.g., x86, SPARC) chose to
abandon store atomicity for more performance and delegate
any possible problems to be solved with software fencing.
On the other hand, some architectures (e.g., IBM 370 and
z/Architecture) put more emphasis on a stronger and more
intuitive memory model. Speculation for store atomicity, based
on SC-speculation, on the other hand, seems unable to fully
bridge the performance gap between the two memory models.

Proponents of the former approach (Intel and AMD) may
argue that the problems stemming from the lack of store
atomicity are rare and, if they appear, the responsibility for
correctness falls to patching the software with fences [4].
Proponents of the latter (IBM) may argue that having a more
intuitive memory model is of critical importance and some
performance loss can be acceptable in exchange of this virtue.

In this work, we bridge the performance gap by presenting,
a solution to guarantee store atomicity dynamically, when
needed. It has a small impact on performance compared
to a baseline without store atomicity (≈ 2%) and negligi-
ble implementation cost (for supporting the concept of SA-
Speculation). On the other hand, it offers store atomicity
with a sizable performance increase (10.3% for sequential
applications) over an implementation that relies on existing
in-window speculation.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
comments which helped to improve the quality of this work.

REFERENCES

[1] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” IEEE Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996.

[2] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in Int’l Symp.
on Performance Analysis of Systems and Software (ISPASS), Apr. 2009,
pp. 33–42.

[3] J. Alglave, “A formal hierarchy of weak memory models,” Formal
Methods in System Design (FMSD), vol. 41, no. 2, pp. 178–210, Oct.
2012.

[4] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Fences in weak
memory models,” in 22nd International Conference on Computer Aided
Verification (CAV), Jul. 2010, pp. 258–272.

[5] ——, “Litmus: Running tests against hardware,” in International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2011, pp. 41–44.

[6] Arvind and J.-W. Maessen, “Memory model = instruction reordering +
store atomicity,” in 33rd Int’l Symp. on Computer Architecture (ISCA),
Jun. 2006, pp. 29–40.

[7] J.-L. Baer, Microprocessor Architecture: From Simple Pipelines to Chip
Multiprocessors, 1st ed. Cambridge University Press, 2009.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in 17th Int’l Conf.
on Parallel Architectures and Compilation Techniques (PACT), Oct.
2008, pp. 72–81.

[9] C. Blundell, M. M. Martin, and T. F. Wenisch, “Invisifence:
Performance-transparent memory ordering in conventional multiproces-
sors,” in 36th Int’l Symp. on Computer Architecture (ISCA), Jun. 2009,
pp. 233–244.

[10] A. Buyuktosunoglu, A. El-Moursy, and D. H. Albonesi, “An oldest-
first selection logic implementation for non-compacting issue queues,”
in 15th Annual Int’l ASIC/SOC Conference, Sep. 2002, pp. 31–35.

[11] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulations,”
in Conf. on Supercomputing (SC), Nov. 2011, pp. 52:1–52:12.

[12] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in 25th Int’l Symp. on Computer Architecture (ISCA), Jun.
1998, pp. 142–153.

[13] W. W. Collier, Reasoning About Parallel Architectures. Prentice-Hall,
Inc., 1992.

[14] Y. Duan, D. Koufaty, and J. Torrellas, “Scsafe: Logging sequential
consistency violations continuously and precisely,” in 22nd Int’l Symp.
on High-Performance Computer Architecture (HPCA), Mar. 2016, pp.
249–260.

[15] Y. Duan, A. Muzahid, and J. Torrellas, “WeeFence: Toward making
fences free in tso,” in 40th Int’l Symp. on Computer Architecture (ISCA),
Jun. 2013, pp. 213–224.

[16] M. Dubois, M. Annavaram, and P. Stenström, Parallel Computer Orga-
nization and Design. Cambridge University Press, 2012.

[17] A. Einstein, Relativity: The Special and General Theory. Henry Holt
and Company, 1920.

[18] K. Gharachorloo, “Memory consistency models for shared-memory
multiprocessors,” Western Research Laboratory, Research report 95/9,
Dec. 1995.

[19] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques to
enhance the performance of memory consistency models,” in 20th Int’l
Conf. on Parallel Processing (ICPP), Aug. 1991, pp. 355–364.

[20] K. Gniady, B. Falsafi, and T. Vijaykumar, “Is SC + ILP = RC?” in 26th
Int’l Symp. on Computer Architecture (ISCA), May 1999, pp. 162–171.

[21] J. R. Goodman, “Cache consistency and sequential consistency,” Uni-
versity of Wisconsin-Madison Department of Computer Sciences, Tech.
Rep. TR1006, Feb. 1991.

[22] IBM, “System/370 principles of operation,” GA22-7000, IBM Data
Processing Division, White Plains, NY.

[23] ——, “z/architecture principles of operation,” SA22-7832-09, IBM Data
Processing Division, White Plains, NY.

[24] L. Lamport, “Times, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, Jul.
1978.

[25] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. L.
Hennessy, M. A. Horowitz, and M. S. Lam, “The Stanford DASH
multiprocessor,” IEEE Computer, vol. 25, no. 3, pp. 63–79, Mar. 1992.

[26] D. Lustig, C. Trippel, M. Pellauer, and M. Martonosi, “ArMOR: Defend-
ing against memory consistency model mismatches in heterogeneous
architectures,” in 42nd Int’l Symp. on Computer Architecture (ISCA),
Jun. 2015, pp. 388–400.

[27] S. Mador-Haim, R. Alur, and M. M. Martin, “Generating litmus tests
for contrasting memory consistency models,” in 22nd International
Conference on Computer Aided Verification (CAV), Jul. 2010, pp. 273–
287.

[28] S. P. Marti, J. S. Borras, P. L. Rodriguez, R. U. Tena, and J. D. Marin, “A
complexity-effective out-of-order retirement microarchitecture,” IEEE
Transactions on Computers (TC), vol. 58, no. 12, pp. 1626–1639, Jul.
2009.

[29] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
ACM SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–99,
Sep. 2005.

[30] V. S. Pai, P. Ranganathan, S. V. Adve, and T. Harton, “An evaluation
of memory consistency models for shared-memory systems with ilp
processors,” in 7th Int’l Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), Oct. 1996, pp. 12–23.

[31] A. Ros, T. E. Carlson, M. Alipour, and S. Kaxiras, “Non-speculative
load-load reordering in tso,” in 44th Int’l Symp. on Computer Architec-
ture (ISCA), Jun. 2017, pp. 187–200.

[32] A. Ros and S. Kaxiras, “The superfluous load queue,” in 51st IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), Oct. 2018, pp. 95–107.

[33] A. Roth, “Store vulnerability window (SVW): Re-execution filtering
for enhanced load optimization,” in 32nd Int’l Symp. on Computer
Architecture (ISCA), Jun. 2005, pp. 458–468.

[34] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective delay and
value prediction,” in 46th Int’l Symp. on Computer Architecture (ISCA),
Jun. 2019, pp. 723–735.

[35] C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, “Splash-3: A
properly synchronized benchmark suite for contemporary research,” in
Int’l Symp. on Performance Analysis of Systems and Software (ISPASS),
Apr. 2016, pp. 101–111.

[36] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-
TSO: A rigorous and usable programmer’s model for x86 multiproces-
sors,” Communications of the ACM, vol. 53, no. 7, pp. 89–97, Jul. 2010.

[37] A. Seznec, “The L-TAGE branch predictor,” The Journal of Instruction-
Level Parallelism, vol. 9, pp. 1–13, May 2007.

[38] D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on Memory
Consistency and Cache Coherence, ser. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2011.

[39] Standard Performance Evaluation Corporation, “SPEC CPU2017,”
2017. [Online]. Available: http://www.spec.org/cpu2017

[40] C. Trippel, Y. A. Manerkar, D. Lustig, M. Pellauer, and M. Martonosi,
“TriCheck: Memory model verification at the trisection of software,
hardware, and ISA,” in 22nd Int’l Conf. on Architectural Support for
Programming Language and Operating Systems (ASPLOS), Apr. 2017,
pp. 119–133.

[41] J. Wickerson, M. Batty, T. Sorensen, and G. A. Constantinides, “Au-
tomatically comparing memory consistency models,” in 44th Symp. on
Principles of Programming Languages (POPL), Jan. 2017, pp. 190–204.

