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Abstract
Pteridines are bicyclic heterocyclic compounds with a pyrazino[2,3-d]pyrimidine nucleus that have shown a wide range of
therapeutic utilities. Concretely, 4-aminopteridine derivatives have demonstrated both anti-inflammatory and anti-cancer prop-
erties, and some of them, such as methotrexate, are profusely used in medical practice. We have recently synthesized and tested
the biological activity of a novel series of 4-amino-2-aryl-6,9-dichlorobenzo[g]pteridines, finding that they present anti-
inflammatory properties, as they were able to inhibit in vitro the production of pro-inflammatory cytokines TNF-α and IL-6.
Now, we have evaluated the anti-tumor potential of these compounds on HL-60 and K562 leukemia cell lines. Cells growing at
exponential rate were exposed to decreasing doses of each compound, from 50 to 0.39μM, for 24, 48, and 72 h. Cell viability was
tested byMTTassay and cell death fashion determined by annexin V/propidium iodide assay. The cytotoxicity of the compounds
was determined in differentiated macrophage-like HL-60 cells and in human peripheral blood mononuclear cells to evaluate the
potential side effects on quiescent tumor cells and normal cells, respectively. Among the series, compounds 1a, 1b, 1g, 1j, and 1k
showed anti-proliferative activity. Compounds 1j and 1k were active against both HL-60 and K562 cells, with a lower IC50

against HL-60 cells. Compounds 1a, 1b, and 1g had a great cytotoxic activity against HL-60, but they were far less potent against
K562 cells. None had side effects in differentiated tumor cells or in human peripheral bloodmononuclear cells. In conclusion, our
results demonstrate that some compounds of this series of 4-amino-2-aryl-6,9-dichlorobenzo[g]pteridines have anti-cancer
properties in vitro.

Keywords Pteridine derivatives . Anti-tumor drugs . Anti-proliferative agents . Late apoptosis . Necrosis

Introduction

Pteridines are bicyclic compounds based on pyrimido[4,5-
b]pyrazine structures. They are naturally produced by
many living organisms and are involved in several meta-
bolic pathways in both health and disease conditions
(Kośliński et al. 2011). Pteridine derivatives have been
widely synthesized and their biological activities have
been broadly studied as they have multiple therapeutic po-
tential (Carmona-Martínez et al. 2018). These compounds
can act as anti-inflammatory (De Jonghe et al. 2011;
Pontiki et al. 2015), antiviral (Ding et al. 2005; El-
Sabbagh et al. 2007), and antibacterial (Cheng et al.
2007) agents. They can also reduce tissue damage induced
by ischemia/reperfusion (Palanki et al. 2007) and septic
shock (Ma et al. 2009), or inhibit several enzymatic activ-
ities associated with neurodegenerative diseases (Prins
et al. 2009). Many pteridine derivatives have also shown
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anti-tumor potential by inhibiting several enzymes such as
carbonic anhydrase (Marques et al. 2010), dihydrofolate
reductase (Zhang et al. 2009; Li et al. 2012), and several
kinases (Rudolph et al. 2009; Tandon et al. 2015), as well
as the monocarboxylate transporter 1 (Wang et al. 2014),
among others (Nelson et al. 2004; Mullice et al. 2012).

The biological activity of 4-aminopteridines has been ex-
tensively studied. In fact, methotrexate, a 4-aminopteridine
also known as MTX, is a dihydrofolate reductase inhibitor
that blocks cell proliferation by inhibiting the synthesis of
purines and pyrimidines. Thus, MTX has been used for many
years as an anti-cancer drug, but also for the treatment of some
autoimmune diseases such as rheumatoid arthritis (Abolmaali
et al. 2013).

On an earlier study, we discovered that polychloro-
cyclohexanediones are excellent synthetic equivalents of un-
available chlorinated 1,2-benzoquinones (Guirado et al. 2011).
In view of this peculiar chemical behavior, we focused our in-
terest in exploiting these inexpensive and highly attractive
starting materials to develop new synthetic methods to produce
previously unattainable heterocyclic compounds (Guirado et al.
2011). Some of the compounds obtained by these new synthetic
methods, such as certain quinoxaline (Guirado et al. 2012;
Tristán-Manzano et al. 2015; Ruiz-Alcaraz et al. 2017) and
pteridine derivatives (Guirado et al. 2013), displayed an inten-
sive anti-inflammatory activity. The first synthesis of 4-amino-2-
aryl-6,9-dichlorobenzo[g]pteridines was achieved by a route in-
volving a first reaction between 3,3,6,6-tetrachloro-1,2-
cyclohexanedione and diaminomaleonitrile to give 5,8-
dichloro-2,3-dicyanoquinoxaline, whose reactions with amidines
led directly to the targeted products.

In a previous work, we synthesized a series of 4-amino-2-
aryl-6,9-dichlorobenzo[g]pteridines that showed a potent anti-
inflammatory activity, as they were able to inhibit in vitro the
production of pro-inflammatory cytokines TNF-α and IL-6
(Guirado et al. 2013). Now, we have tested in vitro the anti-
tumor potential of this series of compounds against the tumor
cells lines HL-60 and K562.

Methods

Cell culture

The compounds were tested using the human myeloid leu-
kemia cell line HL-60 (ATCC® CCL-240™), and the
K562 cell line (ATCC® CCL-243™) derived from chronic
myelogenous leukemia. Cells were incubated in complete
culture medium (CCM) consisting on RPMI-1640
(Biowest, Nuaillé, France) with 10% fetal bovine serum
(GIBCO Invitrogen, Paisley, UK) and 1% penicillin/
streptomycin (GIBCO), at 37 °C with 5% CO2. All assays

based on cell lines were performed after passage number 5
and before passage number 20.

Human peripheral blood mononuclear cells (PBMCs) were
cultured in the same conditions, in CCM at 37 °C and 5%
CO2. PBMC were obtained from peripheral blood of healthy
donors as described elsewhere (Ruiz-Alcaraz et al. 2016).
Briefly, blood was diluted at a 1:1 ratio with sterile PBS and
layered in tubes containing Ficoll (Axis-Shield PoC As, Oslo,
Norway). The PBMC fractions were collected and washed
with RPMI-1640 before being cultured as explained above.

Compound preparation for in vitro assays

Pteridine derivatives, shown in Table 1, were synthesized fol-
lowing the previously described protocol (Guirado et al.
2013). Purity of compounds was equal or superior to 99% as
determined by LC-MS and NMR spectral analysis.
Compounds for in vitro assays were first dissolved in
DMSO as stock solution, at a concentration of 1 mg/mL,
and later diluted in CCM to the desired concentrations for
assays. The same procedure was done with methotrexate
(MTX; Sigma Chemical Co., St. Louis, MO, USA), which
was used as positive cytotoxic control. At the highest com-
pounds’ doses, the final DMSO dilution varied from 1:150
(6.65 μL/mL, DMSO in MCC) to 1:84 (11.95 μL/mL,
DMSO in MCC), with final DMSO concentrations in the
range of 0.67 to 1.19%, depending on the molecular weight
of the dissolved compound.

Cytotoxicity assays

Anti-tumor activity of the compounds was evaluated by MTT
viability assays (reduction of 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide, a yellow tetrazole, to purple
formazan by cellular mitochondrial enzymes) (Guirado et al.
2012). Briefly, cells were incubated at an exponential growth
rate (106 HL-60 cells/mL and 0.5·106 K562 cells/mL) in 96-
well plates containing 200 μL CCM, and exposed to different
doses of the tested compounds (0.39 μM, 0.78 μM, 1.56 μM,
3.13 μM, 6.25 μM, 12.5 μM, 25 μM, and 50 μM) for 24, 48,
and 72 h. Then, MTT (Alfa Aesar, Thermo Fisher, Karlsruhe,
Germany) was added at a final concentration of 483 μM
(0.2 mg/mL) and cells were incubated for 2 h at 37 °C and
5% CO2. Afterwards, an acidified isopropanol solubilization
solution containing 0.04M hydrochloric acid and 0.1%NP-40
detergent was added to each well to dissolve the insoluble
purple formazan product, retained inside the cells, giving a
colored solution. Finally, the absorbance was measured at
550 nm by a plate-reading spectrophotometer. The percentage
of compound cytotoxicity, and thus, the anti-tumor activity
was obtained by comparison with the control conditions, in
which the cells were exposed to an equivalent dose of vehicle
(DMSO) (100% viability, 0% cytotoxicity) and an equivalent
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dose of MTX as a positive control of cytotoxicity. Each assay
was repeated at least three independent times (n = 3), using
different cell passages (after passage number 5 and before
passage number 20).

Alternatively, to test the toxicity of pteridine derivatives in
non-proliferative cell assays, human PBMC and HL-60 cells
differentiated to macrophage-like cells were also cultured at a
ratio of 0.2·106 cells/well in 96-well plates and treated with the
tested compounds for 24 h. HL-60 cells were differentiated to

macrophage-like cells with 16.2 nM (10 ng/mL) phorbol
myristate acetate (PMA; Sigma Chemical Co., St. Louis,
MO, USA) for a period of 24 h, and then, cells rested in
CCM without PMA for another 24 h. After differentiation
and resting periods (Guirado et al. 2013; Gupta et al. 2014),
vehicle (DMSO; MERK, Whitehouse Station, NJ, USA) as
negative control, or maximum dose of tested compounds were
added to each well, and plates were then incubated at 37 °C
with 5% CO2 for 24 h.

Table 1 Chemical structure of tested pteridine derivatives

Compound Chemical Structure Compound Chemical Structure

1a 1g

1b 1h

1c 1i

1d 1j

1e 1k

1f 1l

Pteridine derivatives were synthesized following the previously reported protocol (Guirado et al. 2013)
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Human PBMCs were obtained from the blood of three
healthy donors. Blood was first diluted 1:2 with sterile
PBS (Biowest, Nuaillé, France) and layered in tubes con-
taining Ficoll (Axis-Shield PoC As, Oslo, Norway).
Lympho/monocyte fractions were collected and washed
with CCM.

The ethics committees (Comité Ético de Investigación
Clínica del Hospital Universitario Virgen de la Arrixaca, and
Comité de Bioética de la Universidad de Murcia) approved
the study protocol according to the 1975 Declaration of
Helsinki.

Flow cytometry cell death assays and cell cycle assays

Cells incubated at an exponential rate (105 cells/mL, in 6
wells plates) were exposed for 72 h to a 15 μM dose of the
previously selected active compounds 1a, 1b, 1g, 1j, and
1k, which showed anti-tumor potential in the MTT assays,
and 0.5 μM MTX as positive control. The type of cellular
death was determined by the annexin V/propidium iodide
assay (Annexin V Apoptosis Detection Kit FITC;
eBiosciences, Thermo Fisher, Karlsruhe, Germany; PBS
and distilled water; Biowest, Nuaillé, France) following
manufacturer’s instructions. To analyze cell cycle, cells
were first suspended in 2 mL of ethanol/PBS (70:30%)
and incubated for 30 min at 0 °C. Then, cells were centri-
fuged for 10 min at 1000 rpm and resuspended in a mix of
800 μL of PBS, 100 μL of RNAse (1 mg/mL) and 100 μL
of propidium iodide (400 μg/mL) and incubated for
30 min at 37 °C. Flow cytometry analyses were performed
with a FACSCalibur cytometer (BD Medical Technology,
USA) using its own software, or the version 2.5.1 of
Flowing Software. Ten thousand to 30,000 events were
acquired and analyzed.

Statistical analysis

Data are reported as mean ± SEM. Statistical differences were
analyzed using the Mann–Whitney U test and p values lower
than 0.05 were considered to indicate statistical significance.
Calculations were performed using the SPSS 21.0 software
(Chicago, IL, USA).

Results and discussion

Evaluation of the anti-proliferative potential

The anti-proliferative potential of pteridine derivatives against
leukemic cell lines HL-60 and K562 was evaluated in vitro.
Cell viability was measured by performing MTT assays, and
the compound cytotoxicity was calculated in comparison with
the control conditions. Sensibility of cells lines to a referential
chemotherapeutic agent was tested by using equivalent doses
of MTX as positive controls.

The most active group of compounds among the tested
series of pteridine derivatives included compounds 1a, 1b,
1g, 1j, and 1k (Table 2, Fig. 1), while the rest were considered
non-active or poorly active compounds, as the majority did
not reach 50% cytotoxicity at any of the tested times (Suppl.
Table 1). Both compounds 1a and 1b reached 100% cytotox-
icity in the HL-60 cell line at the highest dose (50 μM), and
similar levels of cytotoxicity (> 93%) at the sub-maximal
dose of 25 μM, at all times (24, 48, and 72 h) (Table 3).
The most effective compound, 1b (Fig. 1b), showed the
lowest IC50 (Table 2), followed closely by compound 1a,
which was the second most potent cytotoxic compound in
this cell line (Fig. 1a, Table 2). Nonetheless, the effect of
these two compounds against K562 cells was weaker, with
compound 1a showing the highest cytotoxicity level of

Table 2 IC50 values of pteridine derivatives obtained from MTT assays

IC50 (μM)

HL-60 K562

Compound 24h 48h 72h 24h 48h 72h

1a 4.8 ± 1.2 5.8 ± 1.3 5.4 ± 1.2 – – 10.4 ± 1.4

1b 3.2 ± 0.6 3.3 ± 1.1* 3.5 ± 1.0 – 34.1 ± 1.3 18.5 ± 3.1

1g 18.8 ± 4.6*,# 12.5 ± 0.7*,# 10.7 ± 4.9 – – 6.6 ± 0.5#

1j 6.8 ± 2.3 9.3 ± 1.3*,# 7.5 ± 1.7*,# 37.2 ± 1.42 20.5 ± 0.2# 9.4 ± 1.0

1k 29.0 ± 4.7*,# 10.0 ± 2.2*,# 9.7 ± 1.7*,# 19.0 ± 2.4$ 13.7 ± 1.4#,$ 10.9 ± 1.4

MTX – 0.0013 ± 0.0002 0.0007 ± 0.00006 – 0.0029 ± 0.0009 0.0013 ± 0.0001

Results summarized represent values of IC50 (μM) ± SEM following 24-, 48-, and 72-h exposure to different doses of compounds whose cytotoxicity
reached at least 75%with the highest dose at any of the studied times inMTTassays, and 50% of cytotoxicity at the corresponding time point. Statistical
significance was analyzed by theMann–WhitneyU test. p < 0.05 for *compound 1a vs. others; # compound 1b vs. others; and, $ compound 1j vs. others.
IC50 values of MTX were significantly different to all compounds analyzed at all time points (n = 3)
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73% at the maximum dose after 72 h of exposure, with an
IC50 of 10.4 μM, while the most potent agent for HL-60
cells, compound 1b, reached 93% of cytotoxicity at the
highest dose, but with a higher IC50 (18.5 μM) after 72 h
of exposure, which was actually the highest IC50 obtained
among the active compounds that showed anti-tumor po-
tential against K562 cells at this time point (Table 2).

The cytotoxicity of compounds 1j and 1k exceeded 90% at
the highest doses when used against HL-60 and K562 cells
(Fig. 1d, e, respectively), with a slightly higher IC50 at 72 h in
the case of K562 cells (Table 2).

Compound 1g was the least potent among the active com-
pounds, since its maximum cytotoxicity level in HL-60 cells
did not exceed 70% at the highest dose of 50 μM, and its IC50

at 72 h was also the highest (10.7 μM). In contrast, in the case

of K562 cells, the IC50 of compound 1 g after 72 h was in fact
the lowest found with a dose of 6.62 μM, but the maximum
cytotoxicity level of this compound did not even reach 70%
(Fig. 1c; Table 2).

When we analyzed the kinetics of the cytotoxic activity of
these compounds at the different time points studied, we real-
ized that, in general, the HL-60 cells were more sensitive to
the anti-proliferative effect of the tested compounds than the
K562 cells, which were able to resist more time to this effect.
In fact, most of the active compounds did not even reach 50%
cytotoxicity on K562 cells after 24 h of treatment, or when
they did, as in the case of compounds 1j and 1k, the doses
needed to reach that cytotoxicity level were very high, with
IC50 levels at 24 h of 37.2 μM and 19.0 μM, respectively
(Table 2). On the contrary, the active compounds were already
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Fig. 1 Cytotoxic potential of pteridine derivatives on leukemia cell lines.
Data represent the % of cytotoxicity as mean ± SEM of those compounds
that achieved at least 80% of cytotoxicity at the highest dose in both HL-

60 or K562 cells after 72-h treatment (HL-60, n = 3; K562, n = 3). The
most active compounds displayed include compounds 1a (a), 1b (b), 1g
(c), 1j (d) and 1k (e)

Table 3 Cytotoxicity of pteridine derivatives on leukemia cell lines obtained from MTT assays

Cytotoxicity (%)

HL-60 K562

Compound 24h 48h 72h 24h 48h 72h

1a 93.5 ± 1.1 96.4 ± 2.1 97.9 ± 1.4 19.7 ± 4.2 29.6 ± 11.4 60.2 ± 1.2

1b 90.4 ± 2.3 96.2 ± 2.7 97.1 ± 1.2 35.1 ± 7.7 39.0 ± 15.6 49.8 ± 8.9

1g 65.1 ± 9.5 76.5 ± 3.3 77.8 ± 8.3 7.1 ± 3.8 28.0 ± 4.5 65.5 ± 10.0

1j 77.2 ± 0.2 83.2 ± 1.8 92.6 ± 3.2 13.0 ± 3.2 55.4 ± 0.1 72.6 ± 6.0

1k 80.6 ± 8.0 91.0 ± 3.8 94.7 ± 2.9 91.6 ± 3.5 97.5 ± 0.8 99.1 ± 0.5

MTX 31.2 ± 0.0 64.9 ± 4.2 76.9 ± 7.0 18.9 ± 3.1 54.3 ± 6.2 75.9 ± 2.5

Results summarized represent mean % of cytotoxicity ± SEM in MTTassays following 24-, 48-, and 72-h exposure to active compounds with the sub-
maximal dose of 25 μM (n = 3)

Naunyn-Schmiedeberg's Arch Pharmacol (2019) 392:219–227 223

Author's personal copy



effective against HL-60 after 24 h of treatment, among which
the most potent were 1a, 1b, and 1j, with levels of IC50 at this
time point very similar to those obtained at 48 h and at the
final time point of 72 h (Table 2).

Whenwe compared the cytotoxicity levels of the new com-
pounds with those ofMTX, used as positive cytotoxic control,
we observed that, although MTX’s IC50 levels were signifi-
cantly lower than those of the pteridine derivatives for both
HL-60 and K562 cell lines after 48 and 72 h treatments (<
0.1 μM), the most active pteridine derivatives, compounds 1a,
1b, 1g, 1j, and 1k, showed higher levels of cytotoxicity than
MTX against HL-60 at the two highest doses assayed (25 μM
and 50μM) for all times (24, 48, 72 h) (Table 3). In the case of
K562 cells, only compound 1k was able to clearly overcome
the cytotoxicity of MTX, while the cytotoxicity levels of other
active compounds were similar or lower than those of MTX
(Table 3). In this regard, the remarkable capacity of most active
pteridine derivatives to produce maximum/total levels of cyto-
toxicity at maximum and sub-maximal doses, as in the case of
compounds 1a, 1b, 1j, and 1k in HL-60, and 1k in K562 should
be noted. This property would be useful to avoid episodes of
relapse as well as the appearance o multidrug-resistant (MDR)
leukemic cells in long-term low-dose treatments.

Regarding structure–activity relationships, we found that
the important structural features for greater anti-proliferative
effects corresponded to the presence of the following radicals

Table 4 Cytotoxicity levels of pteridine derivatives on different cell
types after 24-h treatment obtained from MTT assays

Cytotoxicity (%)

Compound PBMC Macrophage-
like

HL-60 K562

1a 0.0 ± 9.9 13.0 ± 9.6 100.0 ± 1.2 39.9 ± 2.3

1b 0.4 ± 4.4 0.2 ± 10.1 98.6 ± 0.6 54.2 ± 3.7

1g 9.0 ± 8.0 15.7 ± 19.3 65.1 ± 9.5 7.1 ± 3.8

1j 0.4 ± 4.2 6.1 ± 7.8 87.6 ± 1.1 88.6 ± 0.8

1k 7.0 ± 4.1 1.8 ± 11.9 60.9 ± 22.9 94.5 ± 3.5

MTX 6.6 ± 4.1 – 49.74 ± 0.1 18.93 ± 0.03

Results summarize cytotoxicity (%) ± SEM of active compounds (1a, 1b,
1g, 1j, 1k) in MTT assays against human PBMC (n = 3), HL-60 cells
differentiated to macrophage-like cells, and undifferentiated HL-60 and
K562 cells after 24 h of exposure to the maximum dose of each com-
pound (50 μM)
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Fig. 2 Cell death analysis. Representative dot-plots of annexin V/propidium iodide assays of HL-60 (a) and K562 cells (b) under control conditions
(CON), and the corresponding cells exposed to 15 μM of active compounds (1a, 1b, 1g, 1j, and 1k) for 72 h
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in position 2: phenyl (1a), 3-methylphenyl (1b), 4-
aminophenyl (1g), and methyl (1j), or the absence of any
radical as in compound 1k. In contrast, the presence of halo-
gen atoms such as chlorine and fluorine, as well as the
trifluoromethyl group, corresponded to inactive compounds
(i.e., compounds 1e, 1f, 1h, 1i). Something similar happened
with the acetylation of the 4-amino group of 1a to obtain
compound 1l, which attenuated the potent activity shown by
the original structure (1a). Other modifications entailing inac-
tivity included 3-nitrophenyl (1c) and 4-methylphenyl (1d)
substituents.

Evaluation of cytotoxicity in differentiated cells

In order to test whether the pteridine derivatives could act as
specific anti-proliferative agents, we tested the effect of these
compounds on a non-proliferative cell model. To do that, we
used a model of differentiated HL-60 cells to macrophage-like

cells. As shown in Table 4, all active anti-proliferative com-
pounds (1a, 1b, 1g, 1j, and 1k) did not show significant levels
of cytotoxicity at 24 h compared to the effect of those com-
pounds on undifferentiated HL-60 and K562 cells growing at
an exponential rate, where the cytotoxic effect is quite signif-
icant, except for the compound 1g on K562 cells, which is
actually active in longer treatments (72 h). Therefore, these
active compounds function as anti-proliferative agents capa-
ble of inhibiting active growth without affecting the viability
of differentiated cells.

Evaluation of cytotoxicity in human peripheral blood
mononuclear cells

To test their potential usefulness as therapeutic drugs, we also
evaluated the toxicity of the pteridine derivatives in human
PBMC from three different healthy donors. As shown in
Table 4, all of the potent anti-proliferative compounds
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Fig. 3 Cell cycle analysis. Representative histograms of cell cycle assays
of HL-60 (a) and K562 cells (b) under control conditions (CON), after
treatment with 15 μM of active compounds (1a, 1b, 1g, 1j, and 1k), and
after treatment with 0.5 μM methotrexate (MTX) as positive control for

72 h. Pile up bars represent frequencies (%) of HL-60 (c) and K562 cells
(d) as mean ± SEM included in each cell cycle phase (G0/G1, S and G2/
M) (HL-60, n = 3; K562, n = 3)
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indicated above (1a, 1b, 1g, 1j, and 1k) did not show signif-
icant levels of cytotoxicity after 24-h exposure in human
PBMC. Our data suggest that these compounds may be useful
as potent anti-tumor agents without presenting collateral tox-
icity in normal human cells.

Cell death and cell cycle analysis

To gain insight on how the tested compounds killed the tumor
cells, annexin V/propidium iodide cell death assays were per-
formed after 72 h of treatment with a 15 μMdose of the active
compounds 1a, 1b, 1g, 1j, and 1k. The results of these assays
demonstrated that the tested compounds induced late apopto-
sis, also considered as necrosis, of both HL-60 and K562 cells
in all cases. Figure 2 displays representative dot-plots of these
results, showing how both cell types were double-stained with
annexin V and propidium iodide, which means cell death via
late apoptosis/necrosis. Our results are in part similar to those
of other authors who have shown the same type of cell death
with different pteridine derivatives (Chiu et al. 2014; Sun et al.
2016), although, differently to those studies, in which tumor
cells were arrested either in phase G2/M (Chiu et al. 2014) or
in phase G0/G1 (Sun et al. 2016), and differently to reference
compound MTX, which arrests HL-60 and K562 cells in
phases subG0 and G0/G1, this new series of compounds does
not significantly affect the cell cycle of these two leukemia
cell lines (Fig. 3).

Conclusions

Our results have demonstrated the anti-tumor potential of five
out of the 12 pteridine derivatives analyzed herein, com-
pounds 1a, 1b, 1g, 1j, and 1k, which present a remarkable
cytotoxic activity against undifferentiated HL-60 and K562
cells growing at an exponential rate, without affecting the
viability of human peripheral blood mononuclear cells or dif-
ferentiated cells. Some of these anti-proliferative compounds
were able to achieve 100% cytotoxicity even at sub-maximal
doses, and in all cases the active compounds showed low IC50

values at the longer treatment of 72 h. Finally, we also dem-
onstrated that these anti-proliferative pteridine derivatives
caused cell death by late apoptosis/necrosis with no significant
effect on the cell cycle.
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