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Abstract 

 Via a thoughtful analysis it is demonstrated that the mathematical problem of the 

voltammetry of a simple charge transfer process of any reversibility degree at a 

macrointerface is totally equivalent to those of the CE, EC and CEC mechanisms such 

that they all can be reduced to a formally identical one-variable problem. The simplicity 

and generality of the resulting boundary value problem makes it very easy and rapid the 

study of the response in any voltammetric technique by analytical or numerical methods. 
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1. Introduction 

Through a thoughtful a priori analysis of the equations, the total equivalence 

between the boundary value problems (bvp) of a variety of charge transfer (CT) 

mechanisms in voltammetric techniques at macrointerfaces is demonstrated. This has 

enabled us to derive a very general theoretical framework for a number of electrochemical 

situations (namely, the Eirrev mechanism for any electrode kinetics and the CE, EC and 

CEC schemes when the coupled chemical reactions are not slow) pointing out that a 

formally identical bvp with only one differential equation applies in all cases. This 

obviously simplifies and speeds up importantly the resolution of the bvp and the analysis 

of the electrochemical signal. 

 The unique bvp of the Eirrev, CE, EC and CEC mechanisms holds in any 

voltammetric technique and regardless of whether the diffusion coefficients of the 

oxidized and reduced species are equal or not. Its resolution through appropriate 

analytical or numerical mathematical methods allows for the study of the current-

potential-time response of all the above mechanisms at once, with a single mathematical 

expression or computer code. This contrasts with ‘brute force’ strategies where the 

original problem, which includes as many variables as participating species, is solved 

separately for each mechanism. 

As an example, an exact analytical solution for the application of a constant 

potential pulse at a macroelectrode is derived as a function of a single dimensionless 

parameter that accounts for the influence of the electrochemical or chemical kinetics of 

the Eirrev, CE, EC and CEC mechanisms. Also, a simple numerical finite-difference 

approach on the basis of the common bvp has been employed to simulate very efficiently 

the cyclic voltammetry of such mechanisms. 
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2. Theory 

The schemes for the Eirrev, CE, EC and CEC mechanisms can be written as: 
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where fk  and bk  are the heterogeneous rate constants of the forward (reduction) and 

backward (oxidation) processes, respectively. Species B in the CE mechanism, species C 

in the EC, and species B and E in the CEC are electro-inactive in the whole range of 

applied potentials. Also, 1k  and 2k  are the forward and backward rate constants, 

respectively, of the chemical reaction coupled to the charge transfer in the CE and EC 

mechanisms, and of the chemical reaction preceding the CT for a CEC process. In this 

last case, 3k  and 4k  are the forward and backward rate constants, respectively, of the 

chemical reaction following the CT [1–3]. Thus, we define 

 

*

2 B
1 *

1 C

k c
K

k c
   (1) 

 1 1 2k k   (2) 

 

*

4 D
2 *

3 E

k c
K

k c
   (3) 

 2 3 4k k   (4) 

where 1K  and 2K  are the concentration-based equilibrium constants and *
ic  is the 

equilibrium concentration of species i (  B, C, D, E).  

In the CE, EC and CEC mechanisms, a Nernstian behaviour for the CT reaction 

will be assumed, as well as that the equilibrium perturbation functions remain under 
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steady state conditions according to the kinetic steady state approach (kss) [4,5] (see also 

Eq. (A13)) that yields accurate results for 5t   [6].  

2.1. Equal diffusion coefficients 

By defining appropriate linear combination of the variables (concentrations, see 

Appendix A with 1  ), and taking into account that when the diffusion coefficients of 

the species are equal it is fulfilled that [3]: 

 
* *

1 2 1 2( , ) ( , )c x t c x t c c    (5) 

where 
1c  and 2c  refer to the total concentration of oxidized and reduced species, 

respectively, in each mechanism (see Table 1 with 1  ), then the bvp for the four 

mechanisms can be formulated in a general way with only one differential equation, 

 1 1
ˆ ( , ) 0c x t   (6) 

*

1 1

0, 0
( , )

0,

t x
c x t c

t x

  


 
  (7) 

0, 0t x   

 
1

1 1 eq

0

( , )
( ) (0, ) (0)

x

c x t
A B c t c

x 

 
        

 (8) 

where 1 eq(0)c  is the surface concentration of 1c  under total equilibrium (electrochemical 

and chemical) conditions. The expressions for 1 eq(0)c  and the diffusion operator 1̂ , 

together with the definitions of  ,  A and B are given in Table 1 making 1   where 

necessary and with:  

  
 0'( )F E t E

t
RT


    (9) 

where 0'E  is the formal potential of the redox couple and other symbols have their usual 

meaning. 
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The above simple and general form for the bvp as a function of only one variable 

1c  given by equations (6)-(8) greatly simplifies and speeds up its resolution, allowing us 

to obtain a formally-identical general solution for any of the mechanisms considered.  

2.2. Unequal diffusion coefficients 

As proven in Appendix A, when the diffusion coefficients of the oxidized and 

reduced species are different, the analysis of the bvp for the four mechanisms considered 

enables us to reduce them at first to a common two-variable problem: 

  1 1 2 2
ˆ ˆ( , ) , 0c x t c x t     (10) 

 * *

1 1 2 2

0, 0
( , ) ; ,

0,

t x
c x t c c x t c

t x

  
 

 
 (11) 

0, 0t x   1 2

2

0 0

( , ) ( , )1

x x

c x t c x t

x x 

    
    

     
 (12) 

 1 1 2

0

( , ) (0, ) (0, )
( )

x

c x t Ac t Bc t
A B

x A B

   
      

     
 (13) 

where  ˆ 1,2i i   and other definitions can be found in Table 1. 

2.2.1. Simplification to a one-variable problem 

The analysis of the mathematical problem when the diffusion coefficient of the 

oxidized and reduced species are different ( 1  ) points out that condition (5) does not 

apply in such case [7]. Nevertheless, in any electrochemical technique the following 

equivalent relationship holds for the surface concentrations ‘weighted’ by the square root 

of the diffusion coefficients: 

 
* *

1 1 2 2 1 1 2 2(0, ) (0, )D c t D c t D c D c    (14) 

as proven in Appendix B for the particular case of single pulse techniques. Taking into 

account Eq. (14) in the surface condition (13), the bvp (10)-(13) can be re-formulated as 
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a function of only one variable comprised by the differential equation (6), the condition 

(7) and the following surface condition, 

0, 0t x   1
1 1 eq

0

( , )
( ) (0, ) (0)

x

c x t
A B c t c

x 

 
         

 (15) 

that reproduces Eq. (8) for 1  . The definitions of  ,  A, B and 1 eq(0)c are given in 

Table 1. 

The general and formally identical problem given by Eqs. (6), (7) and (15) covers 

all the reaction mechanisms in Scheme (I) in any voltammetric technique and regardless 

of the  –value by just specifying the corresponding potential perturbation ( )E t  in Eq. 

(9). For example, in the case of the linear sweep voltammetry, ( ) initialE t E vt   is to be 

employed in Eq. (15) (with v  being the scan rate) so that it can be solved at once for the 

Eirrev, CE, EC and CEC mechanisms by whatever suitable mathematical method, either 

analytical or numerical [8,9].  

 The current-potential-time response for all the mechanisms considered is given 

by:    

    1
1

0

( , )

x

c x t
I FAD

x


 
  

 
    (16) 
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3. Discussion and Results 

3.1. Normal pulse voltammetry 

For the sake of example, in Appendix B the bvp above-discussed has been solved 

analytically for single pulse techniques, obtaining an explicit analytical solution for 

1( , )c x t  (Eq. (B19)) and, together with Eq. (16), the following expression for the current-

potential-time response is deduced for any of the mechanisms studied: 

 
eq ( )I I F   (17) 

where   is a dimensionless parameter that accounts for the electrochemical and chemical 

kinetics and eqI  is the current corresponding to total electrochemical and chemical 

equilibrium conditions (see Table 1). Function ( )F   monotonously increases with   up 

to 1 for   where it holds that eqI I . 

From Eq. (17), the normal pulse voltammetry of the Eirrev, CE, EC and CEC 

mechanisms is studied in Figure 1 as a function of their electrochemical (
0k ) or chemical 

(
1  and 

2 ) kinetics. The behaviours expected are well described in all cases by the 

general analytical solution reported here. Thus, in the case of the Eirrev mechanism (Figure 

1a), the increase of the electrode kinetics (indicated by the horizontal arrow in the figure) 

gives rise to steeper current-potential waves that shift towards less negative potential 

values when electro-reductions are considered. With regard to the CE mechanism (Figure 

1b), the most apparent effect of the homogeneous chemical kinetics is the increase of the 

wave magnitude with 
1  given the more rapid interconversion between the 

electroinactive species B and the electroactive species C. The NPV curves of the 

irreversible EC mechanism studied in Figure 1c ( 1 0K  ) shift towards less negative 

potentials when the chemical kinetics is faster as a response to the quick disappearance 

of the electrogenerated species B . The CECirrev mechanism in Figure 1d ( 1 21, 0K K   
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and 1 2   ) shows a ‘mixed’ CE-EC behavior such that the magnitude of the wave 

increases (CE-like) while it shifts to less negative potential values (EC-like) as 
1  and 

2  increase.  

 

3.2. Cyclic voltammetry 

In general, the species surface concentrations in the mechanisms considered are 

time-dependent such that the superposition principle does not apply [10] and the 

derivation of analytical solutions for multipulse techniques is prohibitively complicated. 

Alternatively, simple numerical approaches can be considered for the simultaneous 

simulation of the cyclic voltammetry (CV) response of the four mechanisms, taking 

advantage of the simplicity of the one-variable bvp with a single differential equation 

(Eqs. (6), (7) and (15)). In particular, the results included in this section have been 

obtained via a finite-difference method with backward implicit time integration and 

central three-point approximation of the spatial derivative, which leads to a tridiagonal 

equation system that can be solved very efficiently by the simple Thomas algorithm [8,9] 

(see Appendix C).  

The results reproduce satisfactorily the behaviour expected [1–3] for the CV 

response of the four reaction mechanisms as shown in Figure 2. Thus, the main effects on 

the shape of the cyclic voltammograms when increasing the electrochemical or chemical 

kinetics are: (Figure 2a) the decrease of the peak-to-peak separation in the Eirrev 

mechanism and also… , (Figure 2b) the increase of the peak magnitudes in the CE 

mechanism as the conversion B-to-C is faster and so more electroactive species is 

available for electrolysis, and (Figure 2c) the gradual disappearance of the reverse peak 

and the shift of the signal towards more positive potentials in the case of the ECirrev 

mechanism. Similarly to the NPV response (Figure 1), the CECirrev case considered in 
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Figure 2d ( 1 21, 0K K   and 1 2   ), shows both CE-like and EC like features: the 

faster the chemical kinetics, the larger the forward reductive peak and the smaller the 

reverse oxidative one. 
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Table 1. Definitions for the different reaction mechanisms considered (see Scheme (I)). 
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Figure 1. Influence of the electrochemical (Eirrev) or chemical (CE, EC and CEC) kinetics on the normalized normal pulse voltammograms obtained 

from the general analytical solution (17) with  5 2

1 2 10 cm /sD D    for the different mechanisms considered. 1st  , (a) 0.5  , 

     0 4 3 2
 10 ,  10   and 10 cm/sk   

       (b, c, d)      2 4 1
 5 ,  5 10  and 5 10  s            
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Figure 2. Influence of the electrochemical (Eirrev) or chemical (CE, EC and CEC) kinetics on the cyclic voltammetry of the four mechanisms 

considered as obtained numerically by solving the bvp with 1 2D D  (Eqs. (6)-(8)) as discussed in Section 3.2 and in Appendix C. 
*
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Appendix A. Specific boundary value problem of the four mechanisms considered 

when the diffusion coefficients are different  

a) For the Eirrev mechanism (see Scheme (I)), the differential equation system and 

boundary conditions are given by,  

 A A B B
ˆ ˆ( , ) ( , ) 0c x t c x t    (A1) 

* *

A A B B

0, 0
( , ) ; ( , )

0,

t x
c x t c c x t c

t x

  
 

 
 (A2) 

0, 0t x  , 

 A B
A B

0 0

( , ) ( , )

x x

c x t c x t
D D

x x
 

    
    

    
 (A3) 

 
 A f

A B

A0

( , )
(0, ) (0, )

x

tc x t k
c t c t

x D
e



        
 (A4) 

where (see Eq. (9)), 

 
  b

f

t k

k
e


  (A5) 

whatever the electrode kinetic model. 

b) For a CE mechanism as given in Scheme (I), the differential equation system and 

bvp are,  

 
B B C C 1 B 2 C

D D

ˆ ˆ( , ) ( , ) ( , ) ( , )

ˆ ( , ) 0

c x t c x t k c x t k c x t

c x t

    



 


 (A6) 

* * *

B B C C D D

0, 0
( , ) ; ( , ) ; ( , )

0,

t x
c x t c c x t c c x t c

t x

  
  

 
 (A7) 

0, 0t x  , 
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( , ) ( , )
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 

    
    

    
 (A8) 

 
B

0

( , )
0

x

c x t

x


 
 

 
 (A9) 
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 C

D

(0, )

(0, )

tc t

c t
e


  (A10) 

where Nernstian behaviour has been assumed for the CT reaction (Eq. (A10)).  

 Introducing the variables, 

      B C, , ,x t c x t c x t    (A11) 

      B 1 C, , ,x t c x t K c x t    (A12) 

and assuming the kinetic steady state (kss) approximation [4,5],  

 
 ,

0
x t

t





 (A13) 

which implies that, 

     1 C0
D x

x e
 

    (A14) 

and then,  

  
 C

1

1 0

ζ ,
0

x

x tD
K

x


 
   

  

 (A15) 

Eqs. (A6)-(A10) assuming B CD D  become into, 

  C D D
ˆ ˆζ , ( , ) 0x t c x t     (A16) 

  * * * *

B C D D

0, 0
ζ , ζ ; ( , )

0,

t x
x t c c c x t c

t x

  
   

 
 (A17) 

0, 0t x  , 

 
  D

C D

00

ζ , ( , )

xx

x t c x t
D D

x x


   
    

   
 (A18) 

 
   1

1 D

1 C0

ζ , 1
ζ(0,t) (1 ) (0,t)

x

tx t
K c

x K D
e



          
 (A19) 
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c) The case of the EC mechanism (see Scheme (I)) assuming kss conditions for 

the chemical reaction is equivalent to that of the CE one, by substituting in Eqs. (A16)-

(A19) 

       

 
 

     

CE EC D A D ACE EC CE EC

1 CE
CE

1 EC
EC

ζ ζ ; ; ;

1 1
;

t

t

c c D D

K
K

e
e





  

 
 (A20) 

in such a way that, from Eqs. (A18) and (A19), it is obtained that 

 
 

 
 A

C 1 1 A 1

0 A

c , 1
(1 ) (0, ) ζ(0, )

x

t

t

x t
D K c t K t

x D
e

e





 
        

 (A21) 

d) For the CEC mechanism (see Scheme (I)), by using the variables,  

      1 B C, , ,x t c x t c x t    (A22) 

      1 B 1 C, , ,x t c x t K c x t    (A23) 

      2 D E, , ,x t c x t c x t    (A24) 

      2 D 2 E, , ,x t c x t K c x t    (A25) 

and considering that both equilibrium perturbation functions, 1  and 2 , are time-

independent, the bvp can be written in the following way, 

   * * * * * *

1 1 B C 2 2 D E

0, 0
ζ , ζ ; ζ , ζ

0,

t x
x t c c x t c c

t x

  
     

 
 (A26) 

0, 0t x  , 

 
 1 2

C D

00

ζ , ζ ( , )

xx

x t x t
D D

x x 

   
    

   
 (A27) 

 
 

 1 1
2 1 1 2 2

C0 1 2 1 1 2

ζ , 1
(1 )ζ (0,t) (1 ) ζ (0,t)

(1 ) (1 )x

t

t

x t
K K K

x DK K K
e

e





                 

 

 (A28) 
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 Note that the above points out that, for all the mechanisms considered, the bvp can 

be expressed at first as a function of two variables in the general form given by Eqs. (10)

-(13) so that, taking into account Eq. (14) (see Eq. (B23) in Appendix B) in Eqs. (A4), 

(A19), (A21) and (A28), the general bvp with only one variable (Eq. (15)) is obtained. 
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Appendix B : General unified solution of the problem of the four mechanisms in 

single pulse techniques when the diffusion coefficients are different  

In this appendix the case corresponding to different diffusion coefficients 1   

will be treated since, under these conditions, the problem is slightly more complex than 

in the case 1   where the application of Eq. (5) enables us to reduce directly the problem 

to the one-variable bvp given by (6)-(8).  

Thus, the boundary conditions in Eqs. (11)-(13) become into: 

*

i , ( ) ( 1, 2)i i is c s c i      (B1) 

i 0s   

 

1 2

1 1 2 2

1 20 0

( ) ( )1

s s

c s c s

s s
 

    
    

     
 (B2) 

 

1

1 1 1 2

1 0

( ) (0, ) (0, )

s

c s Ac t B c t

s A B


    
    

    
 (B3) 

where  

 i

i

( 1, 2)
2

x
s i

D t
                                 (B4) 

and   and   are given in Table 1.  

 Thus, with the variables is  and   the equation system (10) becomes: 

 

2

1 1 1 1 1 1
1

1 1

2

2 2 2 2 2 2
2

2 2

( , ) ( , ) ( , )
2 2 0

( , ) ( , ) ( , )
2 2 0

c s c s c s
s

s s

c s c s c s
s

s s

     
   

  

     
   

  

 (B5) 

 The solutions of the differential equations system (B5) with the boundary 

conditions given by Eqs. (B1)-(B3) can be written as follows [3,11], 
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1 1 1 1

0

2 2 2 2

0

( , ) ( , ) ( )

( , ) ( , ) ( )

j

j

j

j

j

j

c x t c s s

c x t c s s









    

    




 (B6) 

By introducing Eq. (B6) in Eq. (B5) the following equation´s system is obtained, 

 

'' '

1 1 1 1

'' '

2 2 2 2

( ) 2 ( ) 2 ( ) 0

( ) 2 ( ) 2 ( ) 0

j j j

j j j

s s s j s

s s s j s

     

     
 (B7) 

with the boundary conditions, 

* *

i 0 1 1 0 2 2

1 2

, ( ) ; ( )

( ) 0 ; ( ) 0 1j j

s s c s c

s s j

      

      
 (B8) 

i 0s  , 

 
' '1
(0) (0) 0j j j    


 (B9) 

 

'

0

1 1'

(0) 0

(0) (0)
(0) 1

j j

j

A B
j

A B

 

 

  
  

 

 (B10) 

with [3] 

 

*

0 1 0 0 1 1 1

1 1

( ) ( ) ( )

( ) ( ) 1j j j

s h s c erf s

s h s j

   

   
 (B11) 

 

*

0 2 0 0 2 2 2

2 2

( ) ( ) ( )

( ) ( ) 1j j j

s g s c erf s

s g s j

   

   
 (B12) 

where ( )j is  ( 1, 2)i   are the Koutecký functions, which fulfill  

 

0

'

1

0

lim ( ) 1

lim ( ) 0

( ) ( )

( ) 1 ( )

i

i

j i
s

j i
s

j i j j i

i i

s

s

s p s

s erf s







 

 

   

  

 (B13) 

with jp  being 
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2 1
2

1

2 2

j

j

p
j

 
  
 
 

  
 

 (B14) 

and   is the gamma function. From the above,  

 
' * ' *

0 0 0 1 0 0 0 2

' '

          (0) ; (0) 0

(0) ( ) ; (0) ( )

      (0) ;  (0) 1

j j j j

j j j j j j

h g j

p h c p g c

h p g p j

    

       

      

 (B15) 

and introducing Eqs. (B15) into Eqs. (B9) and (B10), it is obtained that, 

 

*

0 1

*

0 2

* *

1 2

1

( 1)
1

1

j

j j

l

l

j j

h c

g c

Ac Bc
h j

A B
p

g h j








 

 

  


 (B16) 

with, 

 

* *
*1 2
1 1 eq(0)

Ac Bc
c c

A B


 

 
 (B17) 

Thus, from (B11)-(B13) and (B16), 

 

*

0 1 1

*

0 2 2

*

1 1 1 eq 1

1

*

2 1 1 eq 2

1

( )

( )

( 1)
( ) ( (0) ) ( ) 1

( 1)
( ) ( (0) ) ( ) 1

j

j jj

l

l

j

j jj

l

l

s c

s c

s c c s j

p

s c c s j

p





 

 


    


     





 (B18) 

and the concentration profiles (Eq. (B6)) are: 
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*

1 1 eq 1

1 1 eq 1

0

0

*

1 1 eq 1

2 2 eq 2

0

0

( (0) )2 ( 1)
( , ) ( , ) ( )

( (0) )2 ( 1)
( , ) ( , ) ( )

j
j

jj
j

l

l

j
j

jj
j

l

l

c c
c x t c x t s

p

c c
c x t c x t s

p















 
   



  
   









 (B19) 

and 1 eq( , )c x t  and 2 eq( , )c x t  are the concentration profiles for a total electrochemical and 

chemical equilibrium process, given by [1–3], 

 

* *

1 eq 1 1 eq 1 1

* *

2 eq 2 1 eq 1 2

( , ) ( (0) ) ( )

( , ) ( (0) ) ( )

c x t c c c erfc s

c x t c c c erfc s

  

   
 (B20) 

and 1 eq(0)c  is given in Table 1. From Eqs. (B19), the surface concentrations ( 0x  ) are 

immediately obtained, 

 

*

1 1 eq

1 1 eq

*

1 1 eq

2 2 eq

( (0) )2
(0, ) (0) ( )

( (0) )2
(0, ) (0) ( )

c c
c t c F

c c
c t c F


  



 
  



 (B21) 

where ( )F   is given in Table 1, and 1 eq(0)c  and 2 eq(0)c  fulfil that, 

 
* *

1 eq 2 eq 1 2(0) (0)c c c c      (B22) 

Thus, from Eqs. (B21) and (B22) one finally obtains that, 

 
* *

1 2 1 eq 2 eq 1 2(0, ) (0, ) (0) (0)c t c t c c c c         (B23) 

such that taking into account the relationship (B23) in the surface condition (13), the latter 

can be reformulated as a function of a single variable (Eq. (15)).  
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Appendix C. Numerical simulation  

 For the discretization of the differential equation (6), a central three-point 

approximation for the spatial second derivative and the backward implicit time 

integration for each spatial point i and time-step k can be considered so that: 

  ( ) 1, 1 ( ) 1, ( ) 1, 1 2k k k

i i i i i i iC C C i n                        (C1) 

where *
1 1 1/C c c . The two-point forward difference approximation for the surface 

derivative in the surface condition (15) leads to: 

  1,1 1,0 eq

1,0 1,0

1

( )
X

k k

ke
C C r

A B C C
D

 
   


  (C2) 

with X  being the first interval of the spatial grid, where X / ex r  and 
er  is the radius 

of the macroelectrode.  

The above is a tridiagonal equation system equivalent to that of a single chemical 

species subject to diffusion, a Robin-type surface condition and a Dirichlet-type bulk 

condition at 1i n  : 

 1, 1 1k

nC       (C3) 

Hence, it can be solved very efficiently by means of the simple Thomas algorithm [8,9]. 

Thus, for example, the numerical solution and C++ code for a simple reversible charge 

transfer process given in Chapter 3 in [9] can be easily adapted to simulate the cyclic 

voltammetry of the four mechanisms considered by just replacing the Thomas algorithm 

coefficients for the surface point ( 0i  ) by: 

 

0

1

0

eq

0 1,0

1

1 ( ) X

1

( ) X

e

e

r
A B

D

r
A B C

D


     

  


    

  (C4) 

 


