This document is the Accepted Manuscript version of a Published Work that appeared in final form in PLoS Genetics, after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1371/journal.pgen.1008192

1 Title

2 Quorum sensing and stress-activated MAPK signaling repress yeast to hypha transition in the fission

3 yeast Schizosaccharomyces japonicus.

4

- 5 Short Title
- 6 Quorum sensing in the fission yeast *Schizosaccharomyces japonicus*.
- 7
- 8

9 Author list

- 10 Elisa Gómez-Gil¹, Alejandro Franco¹, Marisa Madrid¹, Beatriz Vázquez-Marín¹, Mariano Gacto¹, Jesualdo
- 11 Fernández-Breis², Jero Vicente-Soler¹, Teresa Soto^{1#} and José Cansado^{1#}.
- ¹Yeast Physiology Group, Departmento de Genética y Microbiología, Facultad de Biología. Universidad de
- 13 Murcia. 30071 Murcia, Spain.
- ¹⁴ ² Departamento de Informática y Sistemas, Facultad de Informática. Universidad de Murcia. 30071 Murcia,
- 15 Spain.
- 16

- 18 [#]Corresponding authors:
- 19 José Cansado, Department of Genetics and Microbiology, Universidad de Murcia, 30071 Murcia, Spain.
- 20 e-mail: jcansado@um.es
- 21 Teresa Soto, Department of Genetics and Microbiology, Universidad de Murcia, 30071 Murcia, Spain.
- 22 e-mail: <u>teresaso@um.es</u>
- 23
- 24
- 25

26 Abstract

27 Quorum sensing (QS), a mechanism of microbial communication dependent on cell density, governs 28 developmental decisions in many bacteria and in some pathogenic and non-pathogenic fungi including yeasts. In these simple eukaryotes this response is mediated by the release into the growth medium of quorum-29 sensing molecules (OSMs) whose concentration increases proportionally to the population density. To date 30 the occurrence of QS is restricted to a few yeast species. We show that a QS mediated by the aromatic 31 32 alcohols phenylethanol and tryptophol represses the dimorphic yeast to hypha differentiation in the fission yeast S. japonicus in response to an increased population density. In addition, the stress activated MAPK 33 pathway (SAPK), which controls cell cycle progression and adaptation to environmental changes in this 34 35 organism, constitutively represses yeast to hypha differentiation both at transcriptional and post-translational 36 levels. Moreover, deletion of its main effectors Sty1 MAPK and Atf1 transcription factor partially suppressed 37 the QS-dependent block of hyphal development under inducing conditions. RNAseq analysis showed that the expression of $nrg1^+$, which encodes a putative ortholog of the transcription factor Nrg1 that represses yeast to 38 39 hypha dimorphism in C. albicans, is downregulated both by QS and the SAPK pathway. Remarkably, Nrg1 40 may act in S. japonicus as an activator of hyphal differentiation instead of being a repressor. S. japonicus emerges as an attractive and amenable model organism to explore the QS mechanisms that regulate cellular 41 42 differentiation in fungi.

44 Author Summary

45 Quorum sensing is a relevant mechanism of communication dependent on population density that controls cell 46 development and pathogenesis in microorganisms including fungi. We describe a quorum sensing mediated by the release of aromatic alcohols in the growth medium that blocks hyphal development in the fission yeast 47 Schizosaccharomyces japonicus. This is the first description of such a mechanism in the fission yeast lineage, 48 49 and confirms its expansion along Ascomycota fungi. The stress-responsive pathway (SAPK), which regulates 50 fungal growth and differentiation, limits hyphal growth in S. japonicus in a constitutive fashion, and nonfunctional SAPK mutants are partially insensitive to quorum sensing and able to form hyphae in high cell 51 density cultures. Nrg1, an important factor that blocks hyphal development in the pathogen Candida albicans, 52 53 activates hyphal growth in S. japonicus, and its expression counteracted by both quorum sensing and the 54 SAPK pathway. Nrg1 function may thus have diverged evolutionary in this organism from being a repressor to an activator of hyphal development. S. japonicus emerges as a suitable model organism to explore the 55 intricate mechanisms regulating fungal differentiation. 56

58 Introduction

59 The highly conserved mitogen-activated protein kinase (MAPK) signaling pathways are key players in eukaryotic cells to elicit proper adaptive responses to environmental changes. Once activated in response to 60 external and internal cues, MAPKs phosphorylate a wide range of extranuclear proteins and/or shift into the 61 62 nucleus to phosphorylate transcription factors that do, in turn, execute transcriptional programs that promote cellular adaptation to the triggering stimulus [1]. The stress-activated pathway (SAPK), one of the three 63 MAPK pathways present in the rod-shaped fission yeast *Schizosaccharomyces pombe*, shows significant 64 65 functional homology to the mammalian p38 pathway [2], and plays a critical role in the control of cell cycle and the general response to stress. Its central element, the MAPK Styl, becomes phosphorylated at two 66 conserved threonine and tyrosine residues within its activation loop in response to multiple stressful 67 68 conditions [2]. Activated Sty1 then moves in turn to the nucleus and phosphorylates the bZIP domain transcription factor Atf1 to modulate the expression of a group of genes including the CESR (Core 69 Environmental Stress Response) genes, which participate in the consequent adaptive cell response. Activated 70 71 Styl also controls mRNA stabilization, cell cycle progression at the G2/M transition, and polarized growth 72 during growth and stress [2, 3].

73 The fission yeast species S. *japonicus* is becoming an attractive model organism to explore 74 evolutionary physiological and developmental changes within the *Schizosaccharomyces* clade [4, 5]. However, the biological significance of the stress-activated MAP kinase signaling pathway in S. japonicus 75 76 remains to be established. Both S. pombe and S. japonicus grow by binary fission during vegetative growth 77 and share similar mechanisms for conjugation and sporulation. However, S. japonicus has distinctive features 78 including a defective respiration, a highly dynamic actin cytoskeleton, and semi-open mitosis [6-12]. S. pombe 79 and S. japonicus are able to show pseudohyphal/hyphal growth under specific conditions, although the 80 penetrance of such phenotype is very different in the two species. Pseudohyphal growth in S. pombe requires 81 high cell density and occurs in strains of specific genetic backgrounds growing in media with low nitrogen 82 content and abundant carbon source [13-15]. In contrast, S. japonicus cells undergo robust yeast to hypha 83 differentiation in either liquid or solid media under various conditions including nutrient stress [16-19], or 84 DNA damage induced with camptothecin (CPT), a topoisomerase I inhibitor [19, 20]. Indeed, low CPT

concentrations trigger yeast to hypha transition through a mechanism involving the Chk1 kinase and the
Rad3–Rad9 pathway, but without induction of checkpoint arrest [20, 21]. Moreover, differentiation is a
reversible process, and hyphal cells quickly return to the fission yeast morphology after drug removal from the
growth medium [20]. This feature makes *S. japonicus* a suitable model organism to unveil novel and crucial
mechanisms for the comprehension of the dimorphism process.

Quorum sensing (QS) is a mechanism of microbial communication dependent on cell density that 90 91 governs developmental decisions in many bacterial species and in some pathogenic and non-pathogenic yeast 92 species like *Candida albicans* and *Saccharomyces cerevisiae* [22-24]. The main effectors of QS, known as 93 auto-inducers or quorum-sensing molecules (OSM), are secreted into the growth medium and their 94 concentration increases proportionally to the population density [22, 23]. Fungal QSMs, which include acyclic 95 and/or aromatic alcohols such as farnesol, tyrosol, phenylethanol and tryptophol, impact morphogenesis, 96 germination of macroconidia and apoptosis [22, 23]. Consequently, they also play a role in fungal 97 pathogenesis, as is the case with farnesol and tyrosol, which modulate yeast to hyphae morphological switch 98 and biofilm formation in C. albicans [22, 23].

In this work we demonstrate the existence of an inducible cell density dependent QS in *S. japonicus* that negatively controls yeast to hypha transition and that is mediated by aromatic alcohols. This mechanism is reinforced by the SAPK pathway, which also negatively regulates hyphal initiation and maintenance in a constitutive fashion. Remarkably, QS and the Sty1-Atf1 pathway downregulate the expression of Nrg1, which, contrary to its *C. albicans* ortholog [25, 26], is not a repressor but an activator of hyphal differentiation.

105

106 **Results**

A quorum sensing mechanism mediated by aromatic alcohols inhibits yeast to hypha transition in *S. japonicus*.

Treatment of exponentially growing wild type *S. japonicus* yeast cells with very low doses of CPT
 (0.2 µM) prompts their differentiation into filamentous cells (hyphae) with relative quick kinetics and without
 inducing a checkpoint arrest [20]. We noticed that the ability of *S. japonicus* yeast cells to differentiate into

112 filaments and/or hyphae inversely correlates with the initial population density present in the medium. In our experimental setup the average cell length of filamentous wild type cells after 6h of incubation in the presence 113 of 0.2 μ M CPT (~40 μ m) did not changed significantly when the initial inoculum was of 5.5.10⁵ or 10⁶ 114 cells/ml (Fig 1A). However, cell differentiation became strongly limited when cells where inoculated at >115 2.10^{6} cells/ml (~18 µm), and progressively reduced as cell density was raised to 10^{7} cells/ml (~10 µm) (Fig. 116 1A). S. japonicus cells divided normally during the course of the experiment at these population densities (Fig 117 118 1A), confirming that inhibition of the dimorphic switch was not due to a growth arrest. Therefore, a quorum 119 sensing mechanism might be responsible for the inhibition of hyphal differentiation of S. *japonicus* at high cell densities. As support for this hypothesis, the elongated/hyphal cells induced with CPT where almost 120 undetectable when the wild type strain was inoculated at a low density (10⁶ cells/ml) in filter-sterilized 121 conditioned medium obtained from a high cell density culture of the same strain ($>5.10^7$ cells/ml) (Fig 1B). 122 123 Contrariwise, filamentation in the presence of CPT was very strong when the wild type strain was inoculated 124 at low density in unconditioned medium supplemented with the same glucose concentration (~ 3%) remaining 125 in the conditioned medium (Fig 1B). Accordingly, the average cell length of CPT-treated wild type cells incubated for 6h in unconditioned medium became progressively reduced when incubated in conditioned 126 medium obtained from 5.10⁶, 5.10⁷, and 10⁸ cells/ml density cultures (43.8 + 14,6 μ m versus 21.6 + 11.6, 127 14.4+ 5.5 and 11.4+ 1.9 µm, respectively; Fig 1C). S. japonicus strains produce a readily visible mycelium 128 when cultured for several days in a malt extract-based solid medium (YEMA) [19]. This provides an 129 130 alternative biological readout to CPT treatment to explore a putative negative role of QS during hyphal growth progression in response to nutritional changes. As compared to unconditioned medium, the mycelial area 131 expansion of wild type cells in YEMA plates also decreased progressively when supplemented with 132 conditioned medium obtained from 5.10^6 cells/ml 5.10^7 cells/ml density cultures (Fig 1D). 133 134 Several acyclic and/or aromatic alcohols, such as farnesol, tyrosol, phenylethanol and tryptophol have been described to mediate QS in yeasts species from the genera Candida, Debaryomyces and Saccharomyces 135 [22, 23]. To identify the QS molecule/s responsible for the inhibition of S. japonicus hyphal growth at high 136 population densities, the conditioned medium obtained from a stationary phase culture was extracted with 137 organic solvents, and the lipophilic compounds were separated, identified, and quantified by GC/MS, 138

139 HPLC/MS and/or HPLC/UV analysis. This experimental approach, which included a comparative analysis of

140 chemically synthesized standards, revealed the presence of different peaks that were unequivocally identified as phenylethanol, tyrosol, and tryptophol (Fig S1 and Materials and Methods). The accumulation of these 141 142 aromatic alcohols in the culture medium was growth phase-dependent, and reached a maximum during stationary phase (~100 µM for phenylethanol, ~75 µM for tyrosol, and ~10 µM for tryptophol; Fig 1E). We 143 found that the cell length average of CPT-treated wild type cells after 6h of incubation in rich medium at low 144 population density (initial inoculum of 10⁶ cells/ml) became significantly reduced in the presence of 1 mM 145 phenylethanol and/or tryptophol, but not with tyrosol (Fig 1F). Furthermore, the growth of S. japonicus wild 146 type cells was not altered in the presence of ≤ 2 mM of the above aromatic alcohols in the growth medium 147 (Fig S2). As compared to untreated medium, the mycelial area expansion of wild type cells in YEMA plates 148 149 was significantly decreased in the presence of 1 mM of either phenylethanol or tryptophol, and further reduced with a combination of both alcohols (Fig 1G). Contrariwise, mycelium expansion was not negatively 150 151 affected by the addition of tyrosol (Fig 1G). Virtually identical results were obtained after incubation in YES solid media plates supplemented with 10% red grape extract (RGE medium), which has been recently shown 152 153 to induce strong a mycelial development in S. japonicus (Fig 1G) [27]. Altogether, these results demonstrate the existence of a QS mechanism mediated by the aromatic alcohols phenylethanol and tryptophol in S. 154 *japonicus* that represses dimorphic yeast to hypha differentiation in response to increased population density. 155

156

157 The stress-responsive functions of the SAPK pathway are conserved in *S. japonicus*

158 Styl, the key member of the SAPK pathway, controls multiple cellular events in response to 159 environmental cues in S. pombe [2]. An amino-acid sequence comparison (ClustalW) revealed that the putative MAPK Sty1 in S. japonicus (Gene ID: SJAG 02592) shows ~94% identity with S. pombe Sty1 (Fig. 160 161 S3). This includes residues involved in ATP binding, the proton acceptor site, MAPKK (-DXXD- motif) and 162 common (-ED- motif) docking sites, as well as the -TGY- activation loop present in MAP kinases of the p38 type (Fig. S3) [28]. By employing anti-Hog1 and phospho-p38 antibodies that specifically detect the 163 respective total and dually phosphorylated isoforms in yeast MAPKs of the p38 type [29], a single band of the 164 predicted molecular weight (~42 kDa) was detected with both antibodies in extracts from exponentially 165 growing S. *japonicus* wild type cells (Fig. S3). These signals were totally absent in extracts from a S. 166

167 *japonicus* strain lacking the putative Sty1 ORF via homologous recombination ($sty1\Delta$; see Materials and 168 Methods; Fig. S3), thereby confirming that it encodes the sole p38-type MAPK present in this organism.

169 In S. pombe Styl positively regulates cell cycle progression during the G2/M transition, the initiation of sexual differentiation and the chronological lifespan [30-32]. S. japonicus sty $l\Delta$ cells also display elongated 170 cell length at division as compared to control cells ($25.5 \pm 2.5 vs 18.8 \pm 1.8 \mu m$; Fig 2A), and either h⁺ or h⁻ 171 heterotallic kinase-deleted mutants were totally defective for mating when crossed with wild type cells of the 172 173 opposite mating types (Fig 2B). In addition, S. japonicus sty $I\Delta$ cells quickly lost viability in stationary phase 174 cultures after 2-3 days of growth in rich medium as measured by either phloxine B staining or growth plate 175 assays (Fig S4). The relative total levels of Sty1 in unperturbed exponentially growing S. japonicus cells were 176 approximately half of those present in S. pombe. However, basal Sty1 phosphorylation in S. japonicus was significantly increased as compared to that of S. pombe (Fig 2C), and maintained relatively constant during 177 the growth curve at cellular densities ranging from 2.10^6 to 2.10^8 cells/ml (Fig S3). The specific tyrosine 178 phosphatase Pyp1 is the main negative regulator of basal Sty1 phosphorylation in S. pombe [2]. Similar to the 179 180 equivalent S. pombe mutant, S. japonicus cells with a deletion in the Pyp1 ortholog (gene ID SJAG_02013) displayed a clear reduction in cell length at division as compared to the wild type strain $(11.0 + 0.2 \,\mu\text{m}; \text{Fig})$ 181 182 2A). Hence, the role of Pyp1 as a negative regulator of Sty1 function may be conserved in both fission yeast 183 species. S. pombe Sty1 is activated in response to multiple stress conditions such as heat shock, saline, or oxidative stress, as well as and glucose deprivation, in order to promote cellular adaptation to environmental 184 changes (Fig 2D) [2, 33]. Similarly, S. japonicus Sty1 became highly activated when cultures were incubated 185 at 45°C (heat shock), treated with 0.6 M KCl (salt stress), after addition of 0.5 mM hydrogen peroxide 186 (oxidative stress), or starved from glucose (Fig 2D). The growth sensitivity of S. pombe styl Δ cells in 187 response to high temperature, saline stress (KCl), oxidative stress (hydrogen peroxide), caffeine and SDS [2, 188 189 33, 34], was also shared by the S. japonicus styl Δ mutant (Fig 2E). The bZIP domain protein Atf1 is the main transcription factor regulated downstream by Sty1 in S. pombe [35]. A Blast search revealed the presence of a 190 191 single Atf1 ortholog in S. japonicus genome (Gene ID: SJAG_00266). S. japonicus Atf1 shows an overall ~43.5% amino acid identity with S. pombe Atf1 (Fig. S3). The HRA, osmotic stress, and basic-leucine zipper 192 193 domains involved in recombination, stress response, and DNA binding, respectively [36], are strongly 194 conserved in S. japonicus Atf1 with regard to the S. pombe counterpart (88, 61.3, and 95.3% identity,

195 respectively), and also includes several of the putative MAPK-dependent phoshorylation sites (SP/TP) present in S. pombe Atf1 (Fig. S3). Remarkably, a S. japonicus mutant lacking the Atf1 ortholog (atf1 strain) showed 196 a defective G2/M progression similar to that of the $styl\Delta$ mutant (cell length at division: 24.3 + 4.5 µm; Fig 197 2A). As compared to styl Δ cells, S. japonicus atfl Δ cells were slightly less defective during mating (Fig 2B), 198 199 and showed a significant growth sensitivity in response to stress (Fig. 2E). The above results indicate that the SAPK pathway plays a critical role in the regulation of cell cycle progression, the sexual differentiation, the 200 201 chronological lifespan, and the general cellular adaptive response to environmental stress in S. japonicus. 202 They also suggest that many of these functions may rely on the transcriptional activity mediated by Atf1.

203

204 **SAPK** function negatively modulates induction and progression of hyphal growth in *S. japonicus*.

205 When growing in solid rich medium (YES-agar; 24h) S. japonicus sty $l\Delta$ and atf $l l\Delta$ mutants displayed 206 a wash-resistant invasive phenotype that is absent in wild type and $pyp I\Delta$ cells (Fig 3A), suggesting the 207 existence of an altered developmental and/or growth pattern. S. japonicus morphological transition from yeast 208 to hypha during inducing conditions (i.e. after CPT treatment or in RGE medium) involves three successive stages that are known as vacuolated yeast (bipolar growing cells with and numerous cytoplasmic vacuoles), 209 210 transition forms (monopolar growing cells with and numerous small vacuoles at the non-growing end), and 211 hyphae (large monopolar growing cells with 1-2 large vacuoles at the non-growing end) [16, 27]. Remarkably, 212 as compared to wild type cells, both SAPK mutants, and in particular the $styl\Delta$ mutant, showed a significant increase in the number of vacuolated yeast, transition forms and/or hyphae after 12 hours of growth under 213 214 non-inducing conditions rich YES-agar plates (Fig 3B). The average cell length of filamentous styl A and $atfl\Delta$ cells after 6h of incubation in rich medium supplemented with 0.2 μ M CPT was significantly higher 215 than in wild type cells (81,5 \pm 15,4 μ m and 67,3 \pm 16,6 μ m in *sty1* Δ and *atf1* Δ cells *versus* 42,6 \pm 16 μ m in 216 wild type cells; Fig. 3C), whereas differentiation in $pyp1\Delta$ cells became strongly impaired (13,9 ± 3,6 µm; Fig. 217 3C). Wild type, *styl* Δ , *atfl* Δ , and *pypl* Δ mutants grew normally at those CPT concentrations (Fig S4). 218 Moreover, total and activated Sty1 levels remained unchanged and irrespective of the presence or absence of 219 CPT in the medium (Fig 3D). Thus, in S. japonicus the SAPK pathway appears to negatively impact the 220 221 induction of hyphal differentiation in a constitutive fashion. Prolonged incubation in the presence of CPT 222 (24h) produced a much higher percentage of filaments and/or hypha in $sty I\Delta$ and $atf I\Delta$ mutants than in wild

223 type cells (~98% and ~75% versus ~12%, respectively), while they remained absent in $pyp I\Delta$ cells (Fig 3E). 224 Interestingly, $styl\Delta$ hyphae were highly branched as compared to those from the $atfl\Delta$ mutant (~50% versus $\sim 10\%$, respectively) (Fig 3E), suggesting that Sty1 function, but not Atf1, negatively affects the later stages of 225 hyphal differentiation. Congruent with the above prediction, the $styl\Delta$ mutant showed a significant increase in 226 227 the mycelial area of expansion with respect to either wild type or $atf \Delta$ cells when incubated in YEMA plates 228 (Fig 3F). Contrariwise, mycelium production under the above conditions was strongly reduced in $pyp I\Delta$ cells 229 (Fig 3F). Hence, in S. japonicus the SAPK pathway effectors Sty1 MAPK and Atf1 transcription factor downregulate the initiation of yeast to hypha transition in response to environmental cues, and Sty1 230 additionally represses the later stages of hyphal differentiation in an Atf1-independent fashion. Moreover, our 231 232 results indicate that Sty1 phosphorylation must be maintained under a certain threshold to allow efficient yeast to hypha differentiation, and suggest that an increase in MAPK activity may result in a complete inhibition of 233 234 this process. Indeed, treatment of low density S. japonicus cultures with either 0.3 M or 0.6M KCl that hyperactivate Sty1 (Fig 2D), reduced hyphal differentiation in the presence of CPT (Fig 3G), and mycelial 235 236 expansion in YEMA plates, respectively (Fig 3H).

237

238 S. japonicus QS is attenuated in the absence of SAPK function.

239 The observation that a QS mechanism and the SAPK pathway negatively regulate the induction and 240 progression of S. japonicus hyphal growth prompted us to analyze the possible functional relationship 241 between both pathways. We found that $styl\Delta$ and, to a lesser extent, $atfl\Delta$ cells were able to differentiate into filaments to some extent after 6h of incubation in the presence of 0.2 µM CPT when inoculated at an initial 242 cell density of 5.10⁶ cells/ml that completely blocks hyphal differentiation in wild type cells (Fig 4A). This 243 behavior was observed in the *sty1* Δ mutant even at higher densities of 5.10⁷ cells/ml (Fig 4A). The ability of 244 $styl\Delta$ and $atfl\Delta$ mutants to partially suppress cell density dependent inhibition of hyphal differentiation was 245 not due to a defective production of QSMs, since the levels of phenylethanol and tryptophol in the respective 246 cultures were similar to those of wild type cells (Fig 4B). Moreover, and in agreement with the above results, 247 CPT-treated styl Δ and atfl Δ mutants were able to partially differentiate into elongated forms when incubated 248 in conditioned medium obtained from 5.10^7 and 10^8 cells/ml density cultures, which strongly inhibits the 249

morphological transition in wild type cells (Fig 4C). Finally, exogenous addition of increased concentrations
of QSMs (phenylethanol from 1 to 10 mM; 60 min) did not change basal Sty1 phosphorylation status in
exponentially growing *S. japonicus* cultures (Fig 4D). Altogether, these observations further confirm the
biological relevance in *S. japonicus* of the SAPK pathway as a constitutive repressor of hyphal development
that allows QS to operate over a specific cell density threshold.

255

Nrg1 is an activator of hyphal growth in *S. japonicus* whose basal and induced expression is repressed by the SAPK pathway and QS.

258 Our findings suggest that the SAPK pathway through the Sty1–Atf1 branch may act transcriptionally 259 to repress hyphal initiation in S. japonicus. To obtain further insight into this hypothesis, we performed a 260 transcriptome analysis via high-coverage RNA sequencing (RNAseq). We thereby specifically searched for 261 differentially expressed genes in $sty 1\Delta$ and $atf 1\Delta$ mutants up- and down-regulated as compared to wild type 262 cells, and whose products might positively or negatively regulate yeast to hypha dimorphic switch. Two biological replicates were tested for global gene expression in wild type versus sty $I\Delta$ and atf $I\Delta$ strains 263 growing in rich medium at the early exponential growth phase. As shown in Fig 5A, transcript levels of 29 264 genes from a total of 188 (~15%) were increased more than twofold ($\log_2 \text{ fold change} \ge 1$) in both *sty1* Δ and 265 266 $atf I\Delta$ mutants as compared to wild type cells, whereas 37 genes from a total of 171 (~22%) were 267 downregulated (\log_2 fold change < 1) in both mutants. Contrariwise, only 5 (~3%) and 14 (~5%) genes were up- and downregulated, or down- and upregulated, respectively, in both $sty l\Delta$ and $atf l\Delta$ mutants. Hence, while 268 there is a relatively low level of similarity in gene expression changes between sty/Δ and atf/Δ cells during 269 unperturbed growth, shared induction or repression of common genes is enriched in both mutants. A heatmap 270 271 of the subset of common up- and downregulated genes revealed evident differences in expression between $styl\Delta$ and $atfl\Delta$ mutants (Fig 5B). The complete gene lists of specific and common up- and downregulated 272 273 genes is shown in Table S3. Validation of RNAseq data was made through qPCR, for which a set of six significantly differentially expressed genes up- and downregulated in $sty I\Delta$ and $atfI\Delta$ mutants as compared to 274 wild type cells was confirmed (Fig S5). Approximately half of the identified common up-regulated genes 275 encode putative hypothetical proteins without assigned function (Tables S1 to S8). The remaining 15 genes 276

277 were functionally categorized by gene ontology (GO) terms and include, among others, urea, glucose, and amino acids plasma membrane transporters, as well as others involved in the oxidation-reduction process (Fig 278 S6). Similarly, half of the common down-regulated genes encode either fungal and/or hypothetical proteins 279 without assigned function whereas the other 23 are functionally diverse, including genes involved in 280 281 oxidation-reduction mechanisms, cell wall ascospore formation, DNA metabolism, and transcription (Fig S6). Among the genes whose mRNA expression is induced in both $styl\Delta$ and $atfl\Delta$ mutants we identified 282 $nrg1^+$, which encodes a putative ortholog of the C₂H₂ zinc finger transcriptional repressor Nrg1 that negatively 283 284 regulates, respectively, pseudohyphal growth and yeast to hypha dimorphism in S. cerevisiae and C. albicans 285 [25, 26, 37]. S. japonicus Nrg1 is a putative 217 amino-acids protein with a low level of overall sequence identity with C. albicans Nrg1 (~27%), that rises to ~57% within the 50 amino-acids C₂H₂ zinc finger region 286 (Fig. S7). qPCR analysis confirmed that nrg1+ mRNA levels increase ~3 to ~7 fold in exponentially growing 287 288 $styl\Delta$ and $atfl\Delta$ mutants, respectively, as compared to wild type cells (Fig 5C). Contrariwise, nrgl + mRNAlevels were modestly reduced in the $pyp l\Delta$ mutant (Fig 5C). The cAMP-PKA pathway-activated 289 290 transcriptional down-regulation of Nrg1 expression promotes yeast to hypha transition in *C.albicans* [38]. However, the $nrg1^+$ mRNA levels in a S. japonicus mutant lacking the single Pka1 catalytic subunit ($pka1\Delta$) 291 [39] were similar to those present in wild type cells when growing in glucose-rich medium (Fig 5C), 292 suggesting that the cAMP-PKA pathway does not regulate Nrg1 expression in this organism. As compared to 293 294 untreated cells, $nrg1^+$ expression increased in wild type cells after 3h in the presence of CPT, and this rise was 295 much more evident in both $styl\Delta$ and $atfl\Delta$ mutants (Fig 5D). Moreover, exogenous addition of QSMs 296 (phenylethanol 0.5 mM) partially reduced the enhanced expression of $nrg1^+$ in CPT-treated control and $styl\Delta$ cells, and quite strongly in *atfl* Δ cells (Fig 5D). Therefore, Nrg1 expression may be repressed via two 297 298 different/independent mechanisms, one involving Sty1-Atf1, and another mediated by QS. 299 The above findings draw a scenario where S. japonicus Nrg1 is an activator rather than a repressor of hyphal growth. In support of this hypothesis, we found that both the average cell length and size distribution 300 of filamentous $nrg l\Delta$ cells after 6h of incubation with 0.2 μ M CPT was lower than in wild type cells (34 + 301 12,1 μ m in *nrg1* Δ cells *versus* 43,8 \pm 18,4 μ m in wild type cells) (Fig. 5E). Importantly, this phenotype was 302 accompanied by a significant reduction in the mycelial area expansion in $nrgl\Delta$ cells as compared to wild type 303

304 cells (Fig 5F). Indeed, simultaneous deletion of Nrg1 in $styl\Delta$ cells ($nrgl\Delta$ $styl\Delta$ double mutant) reduced, but

did not suppress, the increased mycelial expansion shown by the $styl\Delta$ single mutant (Fig 5F). Hence, the

306 SAPK pathway may limit Nrg1 function as an activator of hyphal differentiation in *S. japonicus*.

307

308 Discussion

309 OS mediates developmental responses in several fungal species within the phylum Ascomycota, 310 including the subphyla Pezizomycotina (several Aspergillus species) and Saccharomycotina (budding yeasts 311 S. cerevisiae and Debaryomyces hansenii) [22, 23]. The demonstration of a QS brought about by aromatic 312 alcohols that inhibits S. japonicus hyphal development is, to our knowledge, the first description of such a mechanism within the fission yeast clade (subphylum Taphrinomycotina). The yeast to hypha transition in 313 response to CPT is blocked in S. *japonicus* when the initial inoculum is $\geq 2.10^6$ cells/ml, a value fairly similar 314 to that of C. albicans, which develops into filamentous forms during inducing conditions at densities $\leq 10^6$ 315 316 cells/ml [22, 23]. Importantly, S. japonicus hyphal growth is strongly abolished in conditioned medium obtained from high cell density cultures. An exhaustive compositional analysis of this medium identified 317 phenylethanol and tryptophol as the main QSMs of S. japonicus. Both compounds satisfy the main criteria 318 319 proposed to classify a molecule/s as true QSMs [22, 23]. They accumulate during the growth curve in a density-dependent manner until reaching a maximum during the stationary phase. Moreover, their exogenous 320 321 addition limited yeast to hypha transition in liquid medium and reduced the mycelial expansion in solid medium. Phenylethanol and tryptophol act as QSMs in S. cerevisiae, where they positively control 322 323 pseudohyphal and invasive filamentous morphology during nitrogen starvation [40]. Although similarly produced in response to environmental changes, our findings suggest that the biological responses induced by 324 the above QSMs have evolved differently in these fungal species. Phenylethanol and tryptophol are also 325 326 produced by C. albicans in addition to farnesol, the major QSM that represses hyphal development in this 327 organism, but their putative role as QSMs is not clear [22, 23]. Repeated attempts failed to detect farnesol in 328 S. japonicus conditioned medium. However, we found out that addition of increased concentrations of this aromatic alcohol that do not interfere with cell growth (5 to 40 µM), significantly blocked S. japonicus hyphal 329 330 differentiation induced with CPT, and were able to reduce hyphal expansion in YEMA solid plates (Fig. S8). 331 Hence, farnesol behaves similarly as a QSM than the naturally produced phenylethanol and tryptophol to 332 block hyphal formation in this organism. The amount of chemically synthesized/purified phenylethanol and tryptophol that elicit the QS mechanism (500-1000 µM) is higher than the maximal concentrations of both 333 compounds secreted by S. japonicus into rich medium (~10 to 100 µM). This discrepancy, as reported in other 334 fungal species like C. albicans or Cryptococcus neoformans [41], might be related to either different 335 physicochemical and compositional nature of the conditioned medium (pH, nitrogen source,..), or to the 336 337 presence of other unknown metabolites that might synergize the QS effect of both aromatic alcohols. S. 338 *japonicus* releases important amounts of tyrosol into the growth medium (75 µM). However, similarly to S. 339 *cerevisiae* [40], this molecule does not appear to play a noticeable role during hyphal development.

340 The SAPK MAPK cascade governs multiple cellular events during vegetative growth and in response 341 to environmental changes S. pombe. Many of these functions, such as the cellular adaptation to stress 342 conditions and the sexual differentiation, are executed transcriptionally by Atf1, which becomes 343 phosphorylated and stabilized by activated Sty1 [42, 43]. Other roles are mostly prompted in a transcriptionindependent manner and depend upon the ability of Sty1 to either activate or inhibit different substrates such 344 as cell cycle kinases, mRNA binding proteins, and translation factors [2, 30]. Like the equivalent S. pombe 345 mutants, S. japonicus sty $I\Delta$ and atf $I\Delta$ mutants are virtually sterile, and quickly lose viability when reaching 346 347 the stationary phase, indicating that the SAPK pathway positively regulates sexual differentiation and chronological lifespan. Although showing a higher basal activity than in S. pombe during unperturbed growth, 348 349 Styl is strongly activated in S. japonicus in response to multiple stress situations, and $styl\Delta$ and $atfl\Delta$ mutants are growth sensitive under these conditions. Hence, even though S. japonicus displays some distinctive 350 351 biological features with regard to S. pombe [6-10], the core stress-responsive functions of the SAPK pathway 352 appear to be evolutionary conserved in both Schizosaccharomyces species. However, an unexpected exception to this rule is the finding that, contrary to the S. pombe ortholog [44], Atf1 may positively regulate G2/M 353 354 progression in S. japonicus, since $atfI\Delta$ strain showed an increased cell size at division similar to that of the 355 *styl* Δ mutant.

In contrast to *S. pombe*, *S. japonicus* undergoes robust hyphal development in response to environmental cues [19]. Our results suggest that the SAPK pathway acts as a general negative regulator of yeast to hypha transition in this organism. This conclusion is supported by several findings, such as the

359 increased presence of pseudohyphal cells and an invasive phenotype in $styl\Delta$ and $atfl\Delta$ mutants, the increased length of the hyphae and branching in these mutants during hyphal initiation as compared to wild type cells, 360 361 and the enhanced hyphal expansion displayed by the $styl\Delta$ mutant in solid medium. Recently, it has been show that S. japonicus mutants lacking the Sty1 activator MAPKK Wis1, but not Sty1 itself, shows increased 362 363 mycelial expansion [45]. This is a puzzling observation, since both kinases act in a linear pathway, and their deletion should therefore give rise to highly similar, if not identical, cellular phenotypes. Moreover, we found 364 365 that cells lacking the tyrosine phosphatase Pyp1 that inactivates Sty1 were highly impaired in hyphal 366 development under both conditions, thus confirming the general role of the SAPK pathway in the negative 367 regulation of yeast to hypha transition.

368 In S. japonicus Styl and/or Atfl appear to negatively regulate yeast to hyphal development both at the transcriptional and post-translational levels. In S. pombe Atf1 becomes phosphorylated by Sty1 during stress 369 370 to induce the expression of CESR genes that modulate the adaptive cell response to the triggering stimuli [46]. 371 However, a number of genes are also up- or down-regulated in $atf 1\Delta$ cells under unperturbed conditions (low 372 Sty1 activity) [46], which suggests that Sty1 activation threshold prompts Atf1 to function either as a repressor or as a transcriptional activator. This mechanism is likely conserved in S. japonicus, considering the 373 374 similar activation pattern of Sty1 in response to stress, and the conserved phenotypes of $sty1\Delta$ and $atf1\Delta$ 375 mutants. The fact that Styl activity is maintained at a basal level during the early stages of hyphal initiation, together with the observation that both $styl \Delta$ and $atfl \Delta$ cells are derepressed for filamentation in absence of 376 stimulus, indicate that the Sty1-Atf1 branch negatively controls the initial step of this developmental process 377 transcriptionally and in a constitutive fashion. However, Atf1 function seems less relevant during hyphal 378 379 growth and maintenance, since, contrary to the $styl\Delta$ mutant, mycelial expansion is not enhanced in $atfl\Delta$ cells. Sty1 might negatively regulate the later stages of hyphal growth transcriptionally and independently of 380 Atf1, at a post-translational level, or in both ways. The functional relationship between Sty1 and Atf1 during 381 control of this transition in S. japonicus somehow resembles that between the Sty1 ortholog Hog1 and the 382 383 transcriptional repressor Sko1 in C. albicans. In this organism the basal level of phosphorylated Hog1 represses the yeast to hypha development through Sko1 [47], which also serves as activator of genes induced 384 385 by stress [47, 48]. Indeed, both Hog1 and Sko1 repress yeast-to hypha transition and *hog1* and *sko1* mutants 386 display a hyperfilamentous phenotype under non-inducing conditions [49, 50]. In our model, the functional

387 relevance of the SAPK pathway as a constitutive repressor of dimorphism was further confirmed as Atf1 or Styl deletion partially attenuated the QS mechanism that blocks hyphal development at high the cell densities. 388 389 The transcriptional repressor Nrg1 is a key negative regulator of hyphal initiation and maintenance in C. albicans. whereas nrg1 mutants constitutively grow as long pseudohyphae as the expression of hypha-390 391 specific genes is constitutively derepressed [25, 26]. Hyphal initiation in C. albicans requires a quick and 392 temporary disappearance of Nrg1, whereas hyphal maintenance leads to exclusion of Nrg1 binding to 393 promoters of hypha-specific genes through a mechanism involving reduction in Hog1 activity [38]. 394 Remarkably, in *S. japonicus* the Nrg1 ortholog is not a repressor but an activator of hyphal differentiation, 395 while the SAPK pathway may act as a major negative regulator of its expression and/or function. With respect to control cells $nrg1^+$ expression is up-regulated in both $sty1\Delta$ and $atf1\Delta$ mutants during vegetative growth and 396 397 hyphal initiation in response to CPT. Most important, Nrg1 absence elicited a reduction in cell filamentation 398 in response to CPT, and also in the mycelial area of expansion of both wild type and $sty1\Delta$ cells. Therefore, 399 repression of $nrg1^+$ expression is biologically relevant during hyphal initiation and maintenance. However, 400 despite the large increase in $nrg1^+$ expression in the $atfl\Delta$ mutant with respect to the wild type cells, mycelial 401 expansion is similar in both backgrounds, suggesting that Sty1 may also negatively regulate Nrg1 function 402 post-translationally. Nrg1 amino-acid sequence contains several putative-SP/TP and -PXSP/TP- MAPK 403 consensus phosphorylation sites (Fig. S7). It will be interesting to explore if whether Sty1 phosphorylates Nrg1 in vivo and the biological impact on its function. From a broader perspective, another important issue 404 will be to elucidate the nature of the evolutionary structural and signaling constraints that define Nrg1to 405 function either as activator (S. japomicus) or repressor (C. albicans) of hyphal growth in two distantly related 406 yeast species. Importantly, QS represses Nrg1 expression independently of the SAPK pathway, as shown by 407 the reducción in $nrg1^+$ mRNA leves displayed by CPT-treated $styl\Delta$ and $atfl\Delta$ cells in the presence of 408 phenylethanol (QSM). 409

In conclusion, our results show that QS and SAPK signaling are major negative regulators of the dimorphic switch in *S. japonicus*. At low cellular densities the limited amount of QSMs in the growth medium make QS not functional, and the SAPK pathway negatively controls hyphal differentiation by downregulating elicitors of the yeast to hypha switch (Nrg1 and likely other factors) both transcriptionally and posttranscriptionally. This control is bypassed in response to specific environmental cues as yeast cells commit

- 415 into hyphal growth. Contrariwise, increased presence of QSMs in high density cultures activates QS that
- 416 blocks hyphal differentiation in response to those stimuli. *S. japonicus* positions as an alternative and suitable
- 417 model organism to explore the intricate mechanisms regulating cellular differentiation in fungi.
- 418

419 Materials and Methods

420 Strains, growth conditions and reagents

The S. *japonicus* strains used in this work derive from the original isolates described by Niki *et al.* [18], and 421 are listed in Table S9. For comparative studies the wild type *S. pombe* strain 972 (h⁻) was employed. They 422 were routinely grown with shaking at 30°C in rich (YES) or minimal (EMM2) medium with 2% glucose, and 423 supplemented with adenine, leucine, histidine, or uracil (100 mg/L, Sigma Chemical)[51]. In osmotic-saline 424 and oxidative stress experiments log-phase cultures ($OD_{600} = 0.5$; ~10⁶ cells/ml) were supplemented with either 425 KCl (Sigma-Aldrich) or hydrogen peroxide (Sigma-Aldrich), respectively. In glucose starvation experiments 426 427 cells grown in YES medium with 6% glucose were recovered by filtration, and resuspended in the same medium lacking glucose and osmotically equilibrated with 3% glycerol. Log-phase cultures grown in YES 428 medium with 6% glucose were used in yeast to hyphae induction experiments with camptothecin (CPT, 429 Sigma-Aldrich) supplemented to a final concentration of 0.2 µM. YEMA [16] and RGE [27] media with 2% 430 agar were used to quantify mycelial growth. Chemically synthetized standards of phenylethanol, tyrosol, and 431 tryptophol were obtained from Sigma-Aldrich. Conditioned media were prepared by inoculating cells from 432 log-phase cultures (~ 10^6 cels/ml) into fresh YES or YEMA medium to a final density of 5.10⁶, 5.10⁷, or 10⁸ 433 434 cells/ml, incubated by 1-1.5h, and recovered by filtration.

435

436 *Gene disruption*

437 Sequences of *S. japonicus* genes and those corresponding to *S. pombe* orthologs were obtained from the
438 annotated database at *EnsemblFungi*

439 (<u>http://fungi.ensembl.org/Schizosaccharomyces_japonicus/Info/Index?db=core</u>). The S. japonicus sty 1^+ , atf 1^+ ,

- 440 $pyp1^+$, $pka1^+$ and $nrg1^+$, null mutants were obtained by entire deletion of the corresponding coding sequences
- by PCR-mediated strategy using plasmids pFK14 (*S. japonicus ura4*⁺ gene cloned into pGEMT-easy vector;

- [52]) or pFA6a-*natMX6* [53] as templates, and their replacement with either $ura4^+$ or *natMX6* cassettes
- flanked by long 5' and 3' UTRs of respective genes following a PCR approach [54]. Oligonucleotides
- 444 employed to obtain each one of the transformation cassettes are shown in Table S10. S. japonicus
- transformation by electroporation was performed exactly as described [55].
- 446

447 Quantification of mating efficiency

- Equivalent amounts (~10⁷ cells) of strains of the opposing mating type were mixed, poured on EMM2 plates lacking nitrogen source (EMM2-N), and incubated at 28°C. The mating efficiency was determined after 24h of incubation by microscopic counting of number of vegetative cells (V), zygotes (Z), and asci (A), according to the following equation: % mating efficiency = $(2Z+2A) \times 100/(2Z+2A) + V$. Triplicate samples (n≥300 cells) were counted for each cross.
- 453

454 Plate assay of stress sensitivity for growth

455 *S. japonicus* wild type and mutant strains were grown in YES liquid medium to $OD_{600}= 0.5$, and appropriate 456 decimal dilutions were spotted per duplicate on YES solid medium or in the same medium supplemented with 457 varying concentrations of potassium chloride, hydrogen peroxide, caffeine, and sodium dodecyl sulphate 458 (SDS; all purchased from Sigma). Plates were incubated at either 30 or 42°C for 3 days and then 459 photographed. All the assays were repeated at least three times with similar results. Representative 460 experiments are shown in the corresponding Figures.

461

462 Quantification of mycelial growth during nutritional stress

Approximately 2.10⁶ cells from log-phase cultures ($OD_{600}= 0.5$) of wild type and mutant strains growing in YES medium were spotted on YEMA or RGE plates, incubated at 30°C for 7 days, and then photographed and saved as 16-bit .jpg digital images. The area of mycelial expansion was drawn by freehand for each strain (n>6) and measured with the *analyze* tool using ImageJ [56].

467

468 *cDNA synthesis and quantitative real time polymerase chain reaction (qPCR)*

469 S. japonicus wild type and mutant strains were grown in YES (6% glucose) in the absence or presence of CPT (0.2 µM) for the indicated times. Total RNAs were purified using the RNeasy mini kit (Qiagen), treated with 470 DNase (Invitrogen), and quantitated using Nanodrop 100 spectrophotometer (ThermoScientific). Total RNAs 471 (1 µg) were reverse transcripted into cDNA with the iScriptTM reverse transcription supermix (BioRad). 472 473 Quantitative real time polymerase chain reactions (qPCR) were performed using the iTaqTM Universal SYBR® Green Supermix and a CFX96™ Real-Time PCR system (Bio-Rad Laboratories, CA, USA). Relative 474 gene expression was quantified based on $2^{-\Delta\Delta CT}$ method and normalized using *leu1*⁺ mRNA expression in each 475 476 sample. The list of gene-specific primers for qPCR is indicated in Table S9.

477

478 **RNA** sequencing and bioinformatics

High quality DNA-free total RNAs (two biological replicates each; RIN value >8.0) were purified from wild 479 type, styl Δ and atfl Δ mutants growing in YES medium to early log-phase (OD₆₀₀= 0.5). Total RNA was 480 481 extracted using the Ambion PureLink RNA Mini Kit according to manufacturers instructions Library construction and sequencing was performed by BaseClear, Netherlands. The Illumina TruSeq RNA-seq 482 library preparation kit was used. Briefly, the mRNAs were purified by polyA capture, fragmented and 483 converted to double-stranded cDNA. DNA adapters were ligated to both ends of the DNA fragments and 484 485 subjected to PCR amplification. The sequence reads were generated using the Illumina HiSeq2500 system. FASTQ read sequence files were generated using bcl2fastq2 (version 2.18). Initial quality assessment was 486 487 based on data passing the Illumina Chastity filtering. The second quality assessment was based on the remaining reads using the FASTQC quality control tool (version 0.11.5). Tophat2 (version 2.1.1) [57] has 488 489 been used to align RNA-seq reads to the reference genome of Schizosaccharomyces japonicus (assembly: 490 GCA_000149845.2 at ENA/EMBL). Cufflinks (version 2.2.1) [58] has been used to assemble the transcripts 491 and estimate their abundances. The data analysis and the graphical representations have been done using an 492 in-house R script. The NOISeq R package (version 2.24.0) [59] has been used for the differential expression 493 tests. The results were filtered using q-value=0,9 and FC=2. The enrichment analysis was performed using the gProfileR R package (version 0.6.7) [60]. The Schizosaccharomyces japonicus GO annotation for biological 494 processes has been retrieved from Ensembl Fungi version 41 [61] using the biomaRt R package (version 495

2.36.1) [62]. Complete RNAseq data are available from the European Nucleotide Archive (ENA) database
(accession numbers ERS3040049, ERS3040050, ERS3040051, ERS3040052, ERS3040053, ERS3040054).

498

499 Detection and quantification of total and activated Sty1 levels

500 In stress experiments cell extracts were prepared under native conditions employing chilled acid-washed glass beads and lysis buffer (10% glycerol, 50 mM Tris HCl pH 7.5, 15 mM Imidazole, 150 mM NaCl, 0.1% 501 502 Nonidet NP-40, plus specific protease and phosphatase inhibitor, Sigma Chemical) [63]. In yeast to hypha 503 experiments with CPT cell extracts were obtained by trichloroacetic acid precipitation as described in [64]. 504 Dual phosphorylation in Sty1 was detected employing mouse monoclonal anti-phospho-p38 antibody (Cell 505 Signaling). Total Styl levels were detected with rabbit polyclonal anti-Hog1 (y-215) antibody (Santa Cruz 506 Biotechnology Inc). Mouse monoclonal anti-PSTAIR (anti-Cdc2, Sigma-Aldrich) was used for loading 507 control. Immunoreactive bands were revealed with anti-rabbit or anti-mouse-HRP-conjugated secondary 508 antibodies (Sigma-Aldrich) and the ECL system (GE-Healthcare). Densitometric quantification of Western 509 blot signals as of 16-bit .jpg digital images of blots was performed using ImageJ [56]. Relative Units for Sty1 510 activation were estimated by determining the signal ratio of the anti-phospho-p38 blot (activated Sty1) with 511 respect to the anti-Hog1 blot (total Sty1) at each time point. Relative Units for total Sty1 were calculated by 512 determining the signal ratio of the anti-Hog1 blot (total Sty1) with respect to the anti-Cdc2 blot (loading control). Unless otherwise stated, results shown correspond to experiments performed as biological triplicates. 513 Mean relative units + SD and/or representative results are shown. P-values were analyzed by unpaired 514 515 Student's t test.

516

517 *Microscopy analysis*

Fluorescence images were obtained with a Leica DM4000B microscope equipped with a Leica DC400F camera, and processed using IM500 Image Manager software. Calcofluor white and DAPI were employed, respectively, for cell wall/septum and nuclei staining as described [51]. To determine cell length at division the yeast strains were grown in YES medium to an A_{600} of 0.5 and stained with calcofluor white. A minimum of 200 septated cells were scored per triplicate for each strain. To quantify the increase in cell length during hyphal induction experiments with CPT, samples were taken at the indicated times and fixed immediately with formaldehyde [65]. After staining with calcofluor white and/or DAPI the length of mononuclear late G2 cells ($n \ge 200$) was measured. Three biological replicates were scored for each strain genotype.

526

527 GC/MS analysis.

528 Phenyethanol in the conditioned medium was extracted with ethyl acetate at a ratio of 5:1, dried with N₂ at room temperature, and resuspended in dichloromethane. The samples were analyzed by a GC 7890A (Agilent 529 530 Technologies, Santa Clara, CA, USA) coupled to a MS 5977 (Agilent Technologies, Santa Clara, CA, USA) 531 with an inert EI source and a Quadrupole detector. The column was a 30m Agilent Technologies HP 532 INNOWAX, 0.25 mm of internal diameter and 0.25 μ M of flow with an operating range from 40 to 270°C. 533 GC used a 1µl sample, injector and detector temperatures of 240 (splitless mode) and 150°C, respectively. The 534 oven temperature program started at 120°C, increased at 3°C/min to reach 220°C, and then at 10°C/min to 535 reach 250°C. The mass spectra were recorded in range of 35–300 m/z. Detection and quantification of 536 phenylethanol was performed in the extracted-ion chromatogram (EIC) selecting a characteristic ion 537 of *m/z* 91.

538

539 HPLC/MS analysis.

540 The detection and quantification of tyrosol and tryptophol in conditioned medium was determined with a HPLC/MS system consisting of a 1290 Infinity II Series HPLC (Agilent Technologies, Santa Clara, CA, 541 USA), and connected to a 6550 Q-TOF Mass Spectrometer (Agilent Technologies, Santa Clara, CA, USA) 542 using an Agilent Jet Stream Dual electrospray (AJS-Dual ESI) interface. Aromatic alcohols in 1 ml samples 543 from conditioned medium were extracted with 3 ml of ethyl-acetate and vortexed for 1 min. After centrifuging 544 for 5 min, the organic phase was transferred to a new tube, evaporated, and resuspended in 100 µl of MilliQ 545 water. Aromatic alcohol standards were disolved in ethanol. Samples and standards (20 µl each) were injected 546 547 into a Waters XBridge C18 HPLC column (2.1 × 100 mm, 5 µm, Agilent Technologies), thermostated at 548 30°C, and eluted at a flow rate of 400 µl/min. Mobile phase A (0.1% formic acid (w/v) in MilliQ water), and mobile phase B (0.1% formic acid (w/v) in acetonitrile), were used for the chromatographic separation. The 549 initial HPLC running conditions were solvent A:B 95:5 (v/v). The gradient elution program was 5% solvent B 550

for 3 min; a linear gradient from 5 to 100% solvent B in 10 min; 2 min at constant 100% solvent B. The mass spectrometer was operated in the positive mode. Profile data were acquired for both MS and MS/MS scans in extended dynamic range mode. MS and MS/MS mass range was 50-250 m/z and scan rates were 8 spectra/sec for MS and 3 spectra/sec for MS/MS. Tyrosol was detected as the 130.1591 m/z, whereas tryptophol was detected as the [M+H]+ ion at 162.0909 m/z, and confirmed with the transition 162.0909 > 144.0807.

556

557 HPLC/UV analysis.

Alternatively, concentrations of 2-phenyl ethanol, tyrosol and tryptophol in conditioned medium were 558 determined using an Agilent 1100 Series high-performance liquid chromatography system (HPLC, Agilent 559 Technologies, Santa Clara, CA, USA) equipped with a thermostated µ-wellplate autosampler, a quaternary 560 pump, and a multiple wavenumber detector. Samples and standards (40 µl) were injected into a Zorbax 561 Eclipse XDB-C18 HPLC column (Agilent Technologies), thermostated at 30°C, and eluted at a flow rate of 562 400 μ l/min. Mobile phase A (0.1% acetic acid (w/v) in MilliQ water) and mobile phase B (0.1% formic acid 563 564 (w/v) in methanol), were used for the chromatographic separation. The initial HPLC running conditions were solvent A:B 95:5 (v/v). The gradient elution program was 5% solvent B for 5 min; a linear gradient from 5 to 565 100% solvent B in 20 min; 5 min at constant 100% solvent B. The detection wavelength was 210 nm. 566

567

568 Acknowledgements

569 Members of the yeast physiology group wish to dedicate this work to Professor Mariano Gacto on the

570 occasion of his retirement. We thank Professor Hironori Niki for S. japonicus yeast strains and plasmids, and

571 to F. Garro for technical assistance. Thanks to José Rodriguez and Alejandro Torrecillas for their invaluable

572 help with gas chromatography/mass spec and liquid chromatography/mass spec analysis, respectively. Thanks

to Pilar Pérez and Jaime Correa-Bordes for many helpful discussions and comments on the manuscript, and to

574 Esther Guarinos for language revision. Elisa Gómez-Gil is a PhD fellow (FPI program) from the University of

- 575 Murcia, Spain. This work was supported by grants from Ministerio de Economía y Competitividad
- 576 (BFU2017-82423-P), and Fundación Séneca-Region de Murcia (20856/PI/18), Spain. European Regional
- 577 Development Fund (ERDF) co-funding from the European Union.

References

580	1. Bluthgen N, Legewie S. Systems analysis of MAPK signal transduction. Essays Biochem. 2008;45:95-107.
501	Epub 2008/09/17. doi: 10.1042/08e0430095. Fublice and Deserves to Stress in Fission Vesst Connect Dustain & Dentide
302 592	2. Perez P, Cansado J. Cen finegrity Signaling and Response to Stress in Fission Teast. Current Protein & Peptide
594	Muteuchieu DP, Lode M, Sewin KE, Demodeling of the Fission Vesst Cde/2 Cell Delevity Medule via the Stu1
J04 505	5. Multaveniev DK, Leda M, Sawiii KE. Reinodening of the Fission Feast Cuc42 Cell-Polarity Module via the Styl
383 596	p38 Stress-Activated Protein Kinase Pathway. Curr Biol. 2010;20(21):2921-8. Epub 2010/10/18. doi: 10.1016/j. mb.2016.08.048. Dr.h.M. d DMID: 27746022. Dr.h.M. d Cantral DMCID: DMCDMC5106288
580 597	10.1016/J.cub.2016.08.048. Publied PMID: 27746023; Publied Central PMCID: PMCPMC5106388.
58/	4. Kiar AJ. Schizosaccharomyces japonicus yeast poised to become a lavonie experimental organism for where the research C2 (Dethanda) 2012/2(10)/18/0 72 Erwh 2012/08/12 dai: 10.1524/-2.112.007187 DubMed
580	Eukaryotic research. G5 (Betnesda). 2015;5(10):1809-75. Epud 2015/08/15. doi: 10.1554/g5.115.00/187. PudMed
589	PMID: 25954997; Publied Central PMCID: PMCPMC5789812.
590	5. Runna N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, et al. Comparative functional genomics of the finite subsets Science 2011/222(6022)/020 C Errch 2011/04/02 dai: 10.1126/criteres 1202257, DubMed DMID:
591	11ssion yeasis. Science. 2011;552(6052):950-6. Epub 2011/04/25. doi: 10.1126/science.1205557. Publied PMID: 21511000; DickMad Control DMCID: DMCDMC2121102
592 502	21511999; PubMed Central PMCID: PMCPMC5151105.
595	o. Yam C, He Y, Zhang D, Cham KH, Ohlerenko S. Divergent strategies for controlling the nuclear memorane
594 505	satisfy geometric constraints during nuclear division. Curr Biol. 2011;21(15):1514-9. Epud 2011/08/02. doi: 10.1016/j. out. 2011.06.052. Bub Mod DMID: 21802204
595 506	10.1010/J.cu0.2011.00.052. Publied PMID: 21802294.
507	7. Gu 1, 1 and C, Onterenko S. Divergence of initotic strategies in fission yeasis. Nucleus. 2012;5(5):220-5. Epub 2012/05/11. doi: 10.4161/musl.10514. Dub Mod DMID: 22572060; Dub Mod Control DMCID: DMCDMC2414207
500	2012/05/11. doi: 10.4101/http://www.usert.com/archive/biology.of.coll/division in the fission weest clade. Cum Onin Microbiol
598 500	8. Gu 1, Onicienko S. Comparative biology of cen division in the fission yeast clade. Curl Opin Microbiol.
599	2015,20.16-25. Epub 2015/06/12. doi: 10.1010/j.iiib.2015.07.011. FubMed FMID. 20205465.
601	9. Kalio I, Tonoko K, Mochizuki S, Takasinina I, Kawanukai M. Schizosaccharonyces japonicus has low levels
602	2018.82(6):1031.42 Emph 2017/12/02 doi: 10.1080/00168451.2017.1401014. DubMod DMID: 20101001
602	10 Chaw TG, Huang I, Palani S, Sommese P, Kamney A, Hatano T, et al. Actin turnover maintains actin filament
604	homostasis during sytekinetic ring contraction I Call Biol 2017;216(0):2657-67 Epub 2017/06/20 doi:
605	10 1083/jcb 201701104 PubMed PMID: 28655757: PubMed Central PMCID: PMCPMC5584170
606	11. Alfa CE, Hyams IS, Distribution of tubulin and actin through the cell division cycle of the fission yeast
607	Schizosaccharomyces ianonicus var. versatilis: a comparison with Schizosaccharomyces nombe. I Cell Sci 1000.96 (Pt
608	1):71.7 PubMed PMID: 2197287
609	12 Aoki K Havashi H Furuya K Sato M Takagi T Osumi M et al Breakage of the nuclear envelope by an
610	extending mitotic nucleus occurs during anaphase in Schizosaccharomyces japonicus Genes Cells 2011;16(9):911-26
611	Enub 2011/07/08 doi: 10 1111/i 1365-2443 2011 01540 x PubMed PMID: 21733045
612	13. Amoah-Buahin E. Bone N. Armstrong J. Hyphal Growth in the Fission Yeast Schizosaccharomyces pombe.
613	Eukarvot Cell. 2005;4(7):1287-97. Epub 2005/07/09. doi: 10.1128/ec.4.7.1287-1297.2005. PubMed PMID: 16002654:
614	PubMed Central PMCID: PMCPMC1168962.
615	14. Dodgson J, Avula H, Hoe KL, Kim DU, Park HO, Hayles J, et al. Functional genomics of adhesion, invasion,
616	and mycelial formation in Schizosaccharomyces pombe. Eukaryot Cell. 2009;8(8):1298-306. Epub 2009/06/23. doi:
617	10.1128/ec.00078-09. PubMed PMID: 19542312; PubMed Central PMCID: PMCPMC2725560.
618	15. Dodgson J, Brown W, Rosa CA, Armstrong J. Reorganization of the growth pattern of Schizosaccharomyces
619	pombe in invasive filament formation. Eukaryot Cell. 2010;9(11):1788-97. Epub 2010/09/28. doi: 10.1128/ec.00084-10.
620	PubMed PMID: 20870879; PubMed Central PMCID: PMCPMC2976291.
621	16. Sipiczki M, Takeo K, Yamaguchi M, Yoshida S, Miklos I. Environmentally controlled dimorphic cycle in a
622	fission yeast. Microbiology. 1998;144 (Pt 5):1319-30. Epub 1998/06/05. doi: 10.1099/00221287-144-5-1319. PubMed
623	PMID: 9611807.
624	17. Papp L, Sipiczki M, Holb IJ, Miklos I. Optimal conditions for mycelial growth of Schizosaccharomyces
625	japonicus cells in liquid medium: it enables the molecular investigation of dimorphism. Yeast. 2014;31(12):475-82. Epub
626	2014/10/14. doi: 10.1002/yea.3048. PubMed PMID: 25308606.
627	18. Aoki K, Furuya K, Niki H. Schizosaccharomyces japonicus: A Distinct Dimorphic Yeast among the Fission
628	Yeasts. Cold Spring Harb Protoc. 2017;2017(12):pdb.top082651. Epub 2017/07/25. doi: 10.1101/pdb.top082651.
629	PubMed PMID: 28733412.
630	19. Niki H. Induction of Hyphal Growth in Schizosaccharomyces japonicus. Cold Spring Harb Protoc.
631	2017;2017(12):pdb.prot091868. Epub 2017/07/25. doi: 10.1101/pdb.prot091868. PubMed PMID: 28733395.
632	20. Furuya K, Niki H. The DNA damage checkpoint regulates a transition between yeast and hyphal growth in
633	Schizosaccharomyces japonicus. Mol Cell Biol. 2010;30(12):2909-17. Epub 2010/04/07. doi: 10.1128/mcb.00049-10.

634 PubMed PMID: 20368354; PubMed Central PMCID: PMCPMC2876669.

- 635 21. Furuya K, Niki H. Hyphal differentiation induced via a DNA damage checkpoint-dependent pathway engaged in 636 crosstalk with nutrient stress signaling in Schizosaccharomyces japonicus. Curr Genet. 2012;58(5-6):291-303. Epub 637 2012/10/24. doi: 10.1007/s00294-012-0384-4. PubMed PMID: 23090706; PubMed Central PMCID: PMCPMC3490063.
- 638 Albuquerque P, Casadevall A. Quorum sensing in fungi--a review. Med Mycol. 2012;50(4):337-45. Epub 22.
- 2012/01/25. doi: 10.3109/13693786.2011.652201. PubMed PMID: 22268493; PubMed Central PMCID: 639 640 PMCPMC4294699.
- 641 Wongsuk T, Pumeesat P, Luplertlop N. Fungal quorum sensing molecules: Role in fungal morphogenesis and 23. pathogenicity. J Basic Microbiol. 2016;56(5):440-7. Epub 2016/03/15. doi: 10.1002/jobm.201500759. PubMed PMID: 642 26972663. 643
- 24. González Villa T, Vinas M, SpringerLink (Online service). New Weapons to Control Bacterial Growth. 1st ed. 644 Cham: Imprint Springer; 2016. 1 recurso en línea p. 645
- Braun BR, Kadosh D, Johnson AD. NRG1, a repressor of filamentous growth in C.albicans, is down-regulated 646 25. during filament induction. Embo j. 2001;20(17):4753-61. Epub 2001/09/05. doi: 10.1093/emboj/20.17.4753. PubMed 647 648 PMID: 11532939; PubMed Central PMCID: PMCPMC125265.
- 649 Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D, et al. NRG1 represses veast-hypha 26. morphogenesis and hypha-specific gene expression in Candida albicans. Embo j. 2001;20(17):4742-52. Epub 650
- 2001/09/05. doi: 10.1093/emboj/20.17.4742. PubMed PMID: 11532938; PubMed Central PMCID: PMCPMC125592. 651
- 652 27. Kinnaer C, Dudin O, Martin SG. Yeast-to-hypha transition of Schizosaccharomyces japonicus in response to
- 653 environmental stimuli. Mol Biol Cell. 2019;30(8):975-91. Epub 2019/02/06. doi: 10.1091/mbc.E18-12-0774. PubMed 654 PMID: 30726171.
- 655 Nguyen T, Ruan Z, Oruganty K, Kannan N. Co-conserved MAPK features couple D-domain docking groove to 28. distal allosteric sites via the C-terminal flanking tail. PLoS One. 2015;10(3):e0119636. Epub 2015/03/24. doi: 656 10.1371/journal.pone.0119636. PubMed PMID: 25799139; PubMed Central PMCID: PMCPMC4370755.
- 657 658 29. Clotet J, Posas F. Control of cell cycle in response to osmostress: lessons from yeast. Methods Enzymol.
- 659 2007;428:63-76. Epub 2007/09/19. doi: 10.1016/s0076-6879(07)28004-8. PubMed PMID: 17875412.
- 660 30. Lopez-Aviles S, Grande M, Gonzalez M, Helgesen AL, Alemany V, Sanchez-Piris M, et al. Inactivation of the Cdc25 phosphatase by the stress-activated Srk1 kinase in fission yeast. Mol Cell. 17. United States2005. p. 49-59. 661
- 662 31. Petersen J, Hagan IM. Polo kinase links the stress pathway to cell cycle control and tip growth in fission yeast. Nature. 435. England2005. p. 507-12. 663
- Zuin A, Carmona M, Morales-Ivorra I, Gabrielli N, Vivancos AP, Ayte J, et al. Lifespan extension by calorie 664 32. restriction relies on the Sty1 MAP kinase stress pathway. EMBO J. 29. England2010. p. 981-91. 665
- Madrid M, Soto T, Franco A, Paredes V, Vicente J, Hidalgo E, et al. A cooperative role for Atf1 and Pap1 in the 666 33. 667 detoxification of the oxidative stress induced by glucose deprivation in Schizosaccharomyces pombe. Journal of
- 668 Biological Chemistry. 2004;279(40):41594-602. doi: 10.1074/jbc.M405509200. PubMed PMID:
- 669 WOS:000224075500044.
- Quinn J, Findlay VJ, Dawson K, Millar JB, Jones N, Morgan BA, et al. Distinct regulatory proteins control the 670 34. 671 graded transcriptional response to increasing H(2)O(2) levels in fission yeast Schizosaccharomyces pombe. Mol Biol Cell. 2002;13(3):805-16. Epub 2002/03/22. doi: 10.1091/mbc.01-06-0288. PubMed PMID: 11907263; PubMed Central 672 PMCID: PMCPMC99600. 673
- Wilkinson MG, Samuels M, Takeda T, Toone WM, Shieh JC, Toda T, et al. The Atf1 transcription factor is a 674 35. target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev. 1996;10(18):2289-301. Epub 675 676 1996/09/15. PubMed PMID: 8824588.
- Gao J, Davidson MK, Wahls WP. Distinct regions of ATF/CREB proteins Atf1 and Pcr1 control recombination 677 36. hotspot ade6-M26 and the osmotic stress response. Nucleic Acids Res. 36. England2008. p. 2838-51. 678
- 679 Kuchin S, Vyas VK, Carlson M. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid 37. 680 invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol. 2002;22(12):3994-4000. Epub 2002/05/25.
- PubMed PMID: 12024013; PubMed Central PMCID: PMCPMC133850. 681
- 682 38. Lu Y, Su C, Liu H. Candida albicans hyphal initiation and elongation. Trends Microbiol. 2014;22(12):707-14. Epub 2014/09/30. doi: 10.1016/j.tim.2014.09.001. PubMed PMID: 25262420; PubMed Central PMCID: 683 684 PMCPMC4256103.
- Papp L, Sipiczki M, Miklos I. Expression pattern and phenotypic characterization of the mutant strain reveals 685 39. target genes and processes regulated by pka1 in the dimorphic fission yeast Schizosaccharomyces japonicus. Curr Genet. 686 2017;63(3):487-97. Epub 2016/09/30. doi: 10.1007/s00294-016-0651-x. PubMed PMID: 27678009. 687
- 688 Chen H, Fink GR. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 40.
- 689 2006;20(9):1150-61. Epub 2006/04/19. doi: 10.1101/gad.1411806. PubMed PMID: 16618799; PubMed Central PMCID: 690 PMCPMC1472474.
- Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR, Silva-Pereira I, et al. Quorum sensing-691 41.
- 692 mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. MBio.
- 693 2013;5(1):e00986-13. Epub 2014/01/02. doi: 10.1128/mBio.00986-13. PubMed PMID: 24381301; PubMed Central
- 694 PMCID: PMCPMC3884061.

- 42. Sanso M, Gogol M, Ayte J, Seidel C, Hidalgo E. Transcription factors Pcr1 and Atf1 have distinct roles in
 stress- and Sty1-dependent gene regulation. Eukaryot Cell. 7. United States2008. p. 826-35.
- 43. Lawrence CL, Maekawa H, Worthington JL, Reiter W, Wilkinson CR, Jones N. Regulation of
- Schizosaccharomyces pombe Atf1 protein levels by Sty1-mediated phosphorylation and heterodimerization with Pcr1. J
 Biol Chem. 282. United States2007. p. 5160-70.
- 70044.Shiozaki K, Russell P. Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase701through Atf1 transcription factor in fission yeast. Genes Dev. 1996;10(18):2276-88. Epub 1996/09/15. PubMed PMID:702502 1507
- 8824587.
- 45. Nozaki S, Furuya K, Niki H. The Ras1-Cdc42 pathway is involved in hyphal development of
- Schizosaccharomyces japonicus. FEMS Yeast Res. 2018;18(4). Epub 2018/03/23. doi: 10.1093/femsyr/foy031. PubMed
 PMID: 29566183.
- Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, et al. Global transcriptional responses of fission
 yeast to environmental stress. Mol Biol Cell. 2003;14(1):214-29. Epub 2003/01/17. doi: 10.1091/mbc.e02-08-0499.
 PubMed PMID: 12529438; PubMed Central PMCID: PMCPMC140239.
- 70947.Alonso-Monge R, Román E, Arana DM, Prieto D, Urrialde V, Nombela C, et al. The Sko1 protein represses the
yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans. Fungal Genet Biol.7102010 (217) (20
- 711 2010;47(7):587-601. Epub 2010/04/11. doi: 10.1016/j.fgb.2010.03.009. PubMed PMID: 20388546.
- 48. Rauceo JM, Blankenship JR, Fanning S, Hamaker JJ, Deneault JS, Smith FJ, et al. Regulation of the Candida
- albicans cell wall damage response by transcription factor Sko1 and PAS kinase Psk1. Mol Biol Cell. 2008;19(7):2741-
- 51. Epub 2008/04/23. doi: 10.1091/mbc.e08-02-0191. PubMed PMID: 18434592; PubMed Central PMCID:
 PMCPMC2441657.
- 49. Alonso-Monge R, Navarro-García F, Molero G, Diez-Orejas R, Gustin M, Pla J, et al. Role of the mitogenactivated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol. 1999;181(10):3058-68.
 PubMed PMID: 10322006; PubMed Central PMCID: PMCPMC93760.
- 50. Eisman B, Alonso-Monge R, Román E, Arana D, Nombela C, Pla J. The Cek1 and Hog1 mitogen-activated
 protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen
 Candida albicans. Eukaryot Cell. 2006;5(2):347-58. doi: 10.1128/EC.5.2.347-358.2006. PubMed PMID: 16467475;
- 722 PubMed Central PMCID: PMCPMC1405885.
- Moreno S, Klar A, Nurse P. Molecular Genetic-Analysis Of Fission Yeast Schizosaccharomyces pombe.
 Methods in Enzymology. 1991;194:795-823. PubMed PMID: WOS:A1991FN84200056.
- Furuya K, Niki H. Isolation of heterothallic haploid and auxotrophic mutants of Schizosaccharomyces
 japonicus. Yeast. 2009;26(4):221-33. Epub 2009/03/31. doi: 10.1002/yea.1662. PubMed PMID: 19330769.
- Hentges P, Van Driessche B, Tafforeau L, Vandenhaute J, Carr AM. Three novel antibiotic marker cassettes for
 gene disruption and marker switching in Schizosaccharomyces pombe. Yeast. 2005;22(13):1013-9. doi:
- 729 10.1002/yea.1291. PubMed PMID: 16200533.
- 730 54. Krawchuk MD, Wahls WP. High-efficiency gene targeting in Schizosaccharomyces pombe using a modular,
- PCR-based approach with long tracts of flanking homology. Yeast. 1999;15(13):1419-27. doi: 10.1002/(SICI)1097-0061(19990930)15:13<1419::AID-YEA466>3.0.CO;2-Q. PubMed PMID: 10509024; PubMed Central PMCID:
- 733 PMCPMC3190138.
- 734 55. Aoki K, Niki H. Transformation of Schizosaccharomyces japonicus. Cold Spring Harb Protoc.
- 735 2017;2017(12):pdb.prot091850. Epub 2017/07/25. doi: 10.1101/pdb.prot091850. PubMed PMID: 28733403.
- 56. Schneider C, Rasband W, Eliceiri K. NIH Image to ImageJ: 25 years of image analysis. Nature Methods.
- 737 2012;9(7):671-5. doi: 10.1038/nmeth.2089. PubMed PMID: WOS:000305942200020.
- 57. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of
 transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology. 2013;14(4). doi: 10.1186/gb2013-14-4-r36. PubMed PMID: WOS:000322521300006.
- Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression
 analysis of RNA-seq experiments with TopHat and Cufflinks (vol 7, pg 562, 2012). Nature Protocols. 2014;9(10):2513-.
 doi: 10.1038/nprot1014-2513a. PubMed PMID: WOS:000343227800017.
- Tarazona S, Furio-Tari P, Turra D, Di Pietro A, Jose Nueda M, Ferrer A, et al. Data quality aware analysis of
 differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Research. 2015;43(21). doi:
 10.1093/nar/gkv711. PubMed PMID: WOS:000366410900003.
- Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, et al. g:Profiler-a web server for functional
 interpretation of gene lists (2016 update). Nucleic Acids Research. 2016;44(W1):W83-W9. doi: 10.1093/nar/gkw199.
 PubMed PMID: WOS:000379786800015.
- 750 61. Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, et al. Ensembl Genomes 2018: an integrated omics
- infrastructure for non-vertebrate species. Nucleic Acids Research. 2018;46(D1):D802-D8. doi: 10.1093/nar/gkx1011.
 PubMed PMID: WOS:000419550700119.

- Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with
 the R/Bioconductor package biomaRt. Nature Protocols. 2009;4(8):1184-91. doi: 10.1038/nprot.2009.97. PubMed
- 755 PMID: WOS:000268858800008.
- Madrid M, Jimenez R, Sanchez-Mir L, Soto T, Franco A, Vicente-Soler J, et al. Multiple layers of regulation
 influence cell integrity control by the PKC ortholog Pck2 in fission yeast. J Cell Sci. 128. England: 2015. Published by
 The Company of Biologists Ltd.; 2015. p. 266-80.
- 759 64. Grallert A, Hagan IM. Preparation of Protein Extracts from Schizosaccharomyces pombe Using Trichloroacetic
- Acid Precipitation. Cold Spring Harb Protoc. 2017;2017(2). Epub 2017/02/01. doi: 10.1101/pdb.prot091579. PubMed
 PMID: 28148851.
- 762 65. Hagan IM. Immunofluorescence Microscopy of Schizosaccharomyces pombe Using Chemical Fixation. Cold
- 763 Spring Harb Protoc. 2016;2016(7). Epub 2016/07/01. doi: 10.1101/pdb.prot091017. PubMed PMID: 27371599.
- 764
- 765

766 Figure legends

Fig. 1. Quorum sensing negatively regulates yeast to hypha transition in *S. japonicus*.

768 (A) Exponentially growing S. *japonicus* wild type cells were recovered by filtration, inoculated at the indicated initial cell densities in high glucose (6%) YES medium, and incubated for 6h in the presence or 769 absence of 0.2 µM CPT. Cell length is represented as box and whisker plots. Data obtained after quantification 770 771 of one experiment performed per triplicate ($n \ge 200$ cells/strain) is shown. ****, P<0.0001, as calculated by 772 unpaired Student's t test. Fixed cells from representative experiments were stained with calcofluor white and 773 observed by fluorescence microscopy. Scale bar: 10 µm. (B) S. japonicus wild type cells were inoculated at low density (10⁶ cells/ml) in fresh YES medium (3% glucose) or in filter-sterilized conditioned medium (~3% 774 remaining glucose concentration) obtained from a culture of the same strain growing to high cell density 775 (>10⁸ cells/ml), and supplemented with 0.2 µM CPT. Aliquots were recovered after 6h of incubation, stained 776 777 with calcofluor white, and the percentage of elongated/hyphal cells was determined by fluorescence 778 microscopy. Data are expressed as mean \pm SD and correspond to biological triplicates (n \geq 200 cells/sample). 779 **, P < 0.005, as calculated by unpaired Student's t test. (C) Cell length represented as box and whisker plots in 780 S. *japonicus* wild type cells growing exponentially for 6h in the presence of 0.2 μ M CPT in either fresh (unconditioned) or conditioned YES medium (3% glucose) obtained from a culture of the same strain growing 781 at a density of 5.10^6 , 5.10^7 or 10^8 cells/ml. The experiment was performed per triplicate (n> 200 cells) and 782 quantification of one is shown. ****, P<0.0001, as calculated by unpaired Student's t test. CPT-treated cells 783 growing in unconditioned and conditioned medium (density of 5.10⁷ cells/ml) stained with calcofluor white 784 and observed by fluorescence microscopy. Scale bar: 10 µm. (D) Cells from S. japonicus wild type cells 785 growing in YES medium (2.10^6) were spotted on YEMA plates prepared with unconditioned or conditioned 786 medium obtained from a culture of the same strain growing to a density of 5.10^6 or 5.10^7 cells/ml, incubated at 787 30°C for 7 days, and then photographed. The total area of mycelial expansion (expressed as relative units) was 788 measured (n>6) and is represented as scatter plot. ****, P<0.0001, as calculated by unpaired Student's t test. 789 (E) Growth curve of wild type S. japonicus in high glucose (6%) YES medium was followed by determining 790 OD₆₀₀ values at different times (black circles). Media supernatants were recovered by filter-sterilization at the 791 indicated time points, and the concentration of phenylethanol (black bars), tyrosol (grey bars), and tryptophol 792

(white bars) secreted into the growth medium was determined by GC/MS or HPLC/MS analysis. Data are expressed as mean \pm SD and correspond to biological triplicates.

(F) Exponentially growing S. *japonicus* wild type cells were inoculated at an initial cell density of 10^6 cells/ml 795 in high glucose (6%) YES medium and incubated for 6h with 0.2 µM CPT without further treatment 796 797 (untreated) or in the presence of the indicated amounts of either phenylethanol, tyrosol, tryptophol, or phenylethanol plus tryptophol. Cell length is represented as box and whisker plots. Data obtained after 798 quantification of one experiment performed per triplicate (n> 200 cells/sample) is shown. ****, P < 0.0001; ns, 799 800 not significant, as calculated by unpaired Student's t test. (G) Cells from S. japonicus wild type cells growing in YES medium (2.10⁶) were spotted on YEMA or RGE plates in the absence or presence of the indicated 801 802 amounts of either phenylethanol, tyrosol, tryptophol, or phenylethanol plus tryptophol, incubated at 30°C for 7 803 days, and then photographed. The total area of mycelial expansion (expressed as relative units) was measured 804 (n>6) and is represented as scatter plot. *, P<0.05; ***, P<0.001; ns, not significant, as calculated by unpaired 805 Student's t test.

806

Fig. 2. The stress-regulatory functions of the SAPK pathway are conserved in *S. japonicus*.

808 (A) Cell length at division represented as box and whisker plots in S. japonicus wild type, $sty1\Delta$, $pyp1\Delta$ and 809 atf1 Δ mutants. Experiment was performed per triplicate (n \geq 200 cells/strain) and quantification of one is shown. ****, P<0.0001, as calculated by unpaired Student's t test. Cell morphology of each strain was 810 analyzed by fluorescence microscopy after staining with calcofluor white. Scale bar: 10 µm. (B) S. japonicus 811 812 wild type, $styl\Delta$ and $atfl\Delta$ mutants of the h⁺ mating type were mixed with wild type h⁻ cells, poured on 813 EMM2-N plates, and incubated at 28°C. The percentage of conjugation efficiency (as mean \pm SD) was 814 determined after 24h of incubation by microscopic counting of number of vegetative cells, zygotes, and asci. Biological triplicate samples (n>300 cells) were counted for each cross. ***, P<0.005; ****, P<0.001, as 815 816 calculated by unpaired Student's t test. (C) Wild type S. pombe and S. japonicus strains were grown in YES 817 medium to mid-log phase. Activated/total Sty1 were detected with anti-phosho-p38 and anti-Hog1 antibodies, respectively. Anti-cdc2 was used as loading control. Relative units as mean \pm SD (biological triplicates) for 818 Sty1 phosphorylation (anti-phosho-p38 blot) were determined with respect to the internal control (anti-Hog1 819 blot). *, P<0.05, as calculated by unpaired Student's t test. (D) Wild type S. pombe and S. japonicus strains 820

821 were grown in YES medium to mid-log phase, and treated with either 0.6 M KCl (upper left panel), 1 mM H₂O₂ (lower left panel), incubated at 40°C (S. pombe) or 45°C (S. japonicus) (upper right panel), and shifted to 822 the same medium without glucose and supplemented with 3% glycerol (lower right panel). Activated/total 823 Sty1 were detected with anti-phosho-p38 and anti-Hog1 antibodies, respectively. Anti-cdc2 was used as 824 825 loading control. Relative units as mean \pm SD (biological triplicates) for Sty1 phosphorylation (anti-phoshop38 blot) were determined with respect to the internal control (anti-Hog1 blot). (E) Serially diluted cells of 826 827 wild type, $sty1\Delta$ and $atf1\Delta$ strains were spotted on YES plates supplemented with either 1.2 M KCl, 1.5 mM H₂O₂, 6 mM caffeine, or 0.01% SDS, and incubated for 3 days at either 30 or 42°C. Results representative of 828 829 three independent experiments are shown.

830

Fig. 3. The SAPK pathway negatively regulates hyphal growth in *S. japonicus*.

(A) Cells (~10⁶) of wild type, $sty1\Delta$, $atf1\Delta$ and $pyp1\Delta$ strains were spotted on YES plates, incubated for 2 days 832 at 30°C, and photographed before and after washing extensively (30 sec) with distilled water. Results 833 834 representative of three independent experiments are shown. (B) Cells of the above strains were grown in YES plates for 12 h at 30°C, recovered by extensive washing with YES medium, and observed by phase-contrast 835 microscopy. Quantification (expressed as percentage) of yeasts (Y), vacuolated yeasts (V), transition forms 836 (T) and hyphae (H) present in each culture is shown in the left panel. Percentages are expressed as mean + SD 837 and correspond to biological triplicates (n>200 cells/sample). *, P<0.05; **, P<0.005; ****, P<0.0001, as 838 839 calculated by unpaired Student's t test. Representative phase-contrast micrographs different cell morphologies 840 found for each strain are shown in the right panel. Scale bar: 10 µm. (C) Cell length represented as box and whisker plots in S. japonicus wild type, $sty1\Delta$ atf 1Δ , and $pyp1\Delta$ mutants growing exponentially in high 841 842 glucose (6%) YES medium for 6h in the absence or presence of 0.2 µM CPT. Experiment was performed per 843 triplicate (n> 200 cells) and quantification of one is shown. ****, P<0.0001, as calculated by unpaired Student's t test. (D) Wild type S. *japonicus* strain growing exponentially (10^6 cels/ml) in high glucose (6%) 844 YES medium remained untreated (DMSO; negative control) or treated with 0.2 µM CPT for the indicated 845 846 times. Activated/total Sty1 were detected with anti-phosho-p38 and anti-Hog1 antibodies, respectively. Anti-847 cdc2 was used as loading control. Relative units as mean + SD (biological triplicates) for Sty1 848 phosphorylation (dark grey bars) and total Styl levels (light grey bars) were determined with respect to the

849 internal control (anti-cdc2 blot). (E) Wild type, $sty I\Delta$, $atfI\Delta$, and $pypI\Delta$ strains were grown in high glucose (6%) YES medium with 0.2 µM CPT for 24h, and the percentage of filaments/hyphae (dark grey bars) and 850 branched filaments/hyphae (light grey bars) were quantified. Percentages are expressed as mean + SD and 851 correspond to biological triplicates (n>200 cells/sample). **, P<0.005; ***, P<0.001; ****, P<0.0001, as 852 853 calculated by unpaired Student's t test. The right panels show the representative cell morphology of each strain observed by fluorescence microscopy after staining with calcofluor white. Scale bar: 10 µm. (F) Cells 854 from log-phase cultures of the indicated strains growing in YES medium (2.10^6) were spotted on YEMA 855 856 plates, incubated at 30°C for 7 days, and then photographed. The total area of mycelial expansion (expressed as relative units) was measured for each strain (n>6) and represented as scatter plot. **, P<0.005; ****, 857 P < 0.001; ns, not significant, as calculated by unpaired Student's t test. (G) Exponentially growing S. 858 *japonicus* wild type cells were inoculated at an initial cell density of 10⁶ cells/ml in high glucose (6%) YES 859 medium and incubated for 6h with 0.2 µM CPT without further treatment or supplemented with 0.3 M KCl, 860 861 Cell length is represented as box and whisker plots. Data obtained after quantification of one experiment performed per triplicate ($n \ge 200$ cells/sample) is shown. ****, P<0.0001, as calculated by unpaired Student's 862 t test. (H) Cells from a log-phase culture of wild type strain growing in YES medium (2.10^6) were spotted on 863 YEMA and YEMA+0.6 M KCl plates, incubated at 30°C for 7 days, and then photographed. The total area of 864 865 mycelial expansion was measured ($n\geq 6$) and represented as scatter plot. ****, P<0.001, as calculated by 866 unpaired Student's t test.

867

Fig. 4. *S. japonicus* QS is partially suppressed in the absence of SAPK function.

869 (A) Exponentially growing S. *japonicus* wild type, $sty1\Delta$, and $atf1\Delta$ cells were inoculated at the initial cell densities of 5.10^5 , 5.10^6 , or 5.10^7 cells/ml in high glucose (6%) YES medium, and incubated for 6h in the 870 871 absence or presence of $0.2 \,\mu$ M CPT. Cell length is represented as box and whisker plots. Data obtained after quantification of one experiment performed per triplicate ($n \ge 200$ cells/strain) is shown. ****, P<0.0001; ns, 872 873 not significant, as calculated by unpaired Student's t test. (B) Media supernatants were recovered by filtersterilization of stationary phase cultures of wild type, $styI\Delta$, and $atfI\Delta$ strains, and the concentration of 874 phenylethanol (grey bars) and tryptophol (black bars) secreted into the medium was determined by GC/MS or 875 HPLC/MS analysis. Data are expressed as mean + SD and correspond to biological triplicates. (C) Cell length 876

877 represented as box and whisker plots in S. *japonicus* wild type, $sty1\Delta$, and $atf1\Delta$ strains cells growing exponentially for 6h in the presence of 0.2 µM CPT in either unconditioned or conditioned YES medium (3% 878 glucose) obtained from a culture of the wild type strain growing to a density of 5.10^6 , 5.10^7 , or 10^8 cells/ml. 879 The experiment was performed per triplicate (n> 200 cells) and quantification of one is shown. ****, 880 P<0.0001, as calculated by unpaired Student's t test. (D) Wild type S. japonicus strain growing exponentially 881 (10⁶ cells/ml) in high glucose (6%) YES medium remained untreated (DMSO; negative control) or treated 882 with 1, 2, 5 or 10 mM phenylethanol for 60 minutes. Activated Sty1 was detected with anti-phosho-p38, while 883 884 anti-cdc2 was used as loading control. Relative Sty1 activation units as mean + SD (biological triplicates) 885 were determined with respect to the internal control (anti-cdc2 blot).

886

Fig. 5. Nrg1 activates hyphal growth in *S. japonicus* and is repressed by QS and the SAPK pathway. 887 888 (A) Venn diagrams indicating the number of differentially expressed up- and downregulated genes during 889 unperturbed growth in styl Δ and atfl Δ mutants with respect to wild type cells. (B) Heatmap of the subset of 890 differentially expressed genes (up- and downregulated) during unperturbed growth in $sty I\Delta$ and $atfI\Delta$ mutants 891 with respect to wild type cells. Green indicates decrease and red indicates increase in gene expression. (C) 892 $nrg1^+$ mRNA levels were measured by qPCR from total RNA extracted from cell samples corresponding to S. 893 *japonicus* wild type, $styl\Delta$, $atfl\Delta$, $pypl\Delta$, and $pkal\Delta$ strains growing exponentially in YES medium. Results are shown as relative fold expression (mean \pm SD) from three biological repeats. **, P<0.005; ns, not 894 significant, as calculated by unpaired Student's t test. (D) $nrg1^+$ mRNA levels measured by qPCR from total 895 RNA extracted from cell samples from wild type, $sty1\Delta$ and $atf1\Delta$ strains growing exponentially (time 0h), 896 incubated for 3h in the presence of 0.2 µM CPT, or for 3h in the presence of 0.2 µM CPT plus 0.5 mM 897 phenylethanol (PE). Results are shown as relative fold expression (mean \pm SD) from three biological repeats. 898 *, P<0.05; **, P<0.005; as calculated by unpaired Student's t test. (E) Cell length represented as box and 899 whisker plots in S. japonicus wild type, and $nrg1\Delta$ mutants growing exponentially in high glucose (6%) YES 900 medium for 6h in the presence of 0.2 µM CPT. Experiment was performed per triplicate (n> 300 cells) and 901 quantification of one is shown. ****, P<0.0001, as calculated by unpaired Student's t test. (F) Cells from log-902 phase cultures of the indicated strains growing in YES medium (2.10^6) were spotted on YEMA plates, 903 904 incubated at 30°C for 7 days, and then photographed. The total area of mycelial expansion (expressed as

- 905 relative units) was measured for each strain (n \geq 6) and is represented as scatter plot. *, P<0.05; **, P<0.005;
- 906 ***, *P*<0.001; as calculated by unpaired Student's *t* test.

910 Supplementary figure legends

Figure S1. (A) Detection of phenylethanol by GC/MS analysis. Upper panel shows a typical gas chromatogram of an extracted sample from conditioned medium. Lower panel shows the mass spectra correspondent to peak visible at a ~9.1 min retention time that is identified as phenylethanol by the presence of the characteristic ion of m/z 91. (B) Detection of tryptophol by HPLC/MS analysis. Upper panel shows a liquid chromatogram of an extracted sample from conditioned medium. Lower panel: tryptophol was detected as the peak with a ~4.3 min retention time by the characteristic ion of m/z 162.09.

917

Figure S2. Growth curves of *S. japonicus* wild type strain in YES medium (6% glucose) supplemented with
the indicated amounts of phenylethanol, tryptophol and tyrosol.

920

921 Figure S3. (A) ClustalW analysis of amino-acids sequences of Sty1 MAPKs in S. pombe and S. japonicus. 922 The analysis was performed on the genome.jp server (https://www.genome.jp/tools-bin/clustalw) using the 923 default settings. Identical amino-acids are marked with * and shaded in blue. Conserved residues/motifs involved in ATP binding are shaded in yellow. Putative MAPKK (-DXXD- motif) and common (-ED- motif) 924 925 docking sites are shaded in purple. The conserved -TGY- activation loop specific of MAP kinases of the p38 926 type is shaded in green. (B) Anti-Hog1 and phospho-p38 antibodies specifically detect the respective total 927 and dually phosphorylated isoforms of Sty1 in total extracts from S. *japonicus* wild type cells, but not in the 928 $styl\Delta$ mutant (C) Anti-Hog1 and phospho-p38 antibodies were employed to detect the respective total and dually phosphorylated isoforms of Sty1 in samples from wild type S. japonicus cells growing in YES medium 929 930 at the indicated cellular densities. (D) ClustalW analysis of amino-acids sequences of Atf1 transcription factor in S. pombe and S. japonicus. Identical amino-acids are marked with * and shaded in blue. The conserved 931 932 HRA (recombination), osmotic stress response, and basic-leucine zipper (DNA binding) domains are shown. Putative MAPK-dependent phoshorylation sites (SP/TP) present in both proteins are underlined. 933

934

Figure S4. (A) Upper panel. *S japonicus* wild type and *styl* Δ strains were grown in YES medium. Samples were taken at the indicated times (days), incubated with phloxine B, and the percentage of viable (non-

stained) cells was determined microscopically. Results from an experiment performed per triplicate are shown. Lower panel. Serially diluted cells from samples described above were spotted on YES solid plates, incubated for 3 days at 30°C, and photographed. Results representative of three independent experiments are shown. (B) Serially diluted cells of wild type, $sty1\Delta$, $atf1\Delta$ and $pyp1\Delta$ strains were spotted on YES plates supplemented with or without 0.2 μ M CPT and incubated for 3 days at 30°C. Results representative of three independent experiments are shown.

943

Figure S5. mRNA levels of selected up- and down-regulated genes identified in RNAseq experiments were measured by qPCR from total RNA extracted from cell samples corresponding to *S. japonicus* wild type, *sty1* Δ , and *atf1* Δ strains growing exponentially in YES medium. Results are shown as relative fold expression (mean \pm SD) from three biological repeats. *, *P*<0.05; **, *P*<0.005; ***, *P*<0.001, as calculated by unpaired Student's *t* test.

949

Figure S6. Frequency of GO terms for common up-regulated (A) and down-regulated (B) genes in $sty1\Delta$ and $atf1\Delta$ mutants.

952

Figure S7. ClustalW analysis of amino-acids sequences of Nrg1 transcription factor in *S. pombe* and *S. japonicus*. The analysis was performed on the genome.jp server (https://www.genome.jp/tools-bin/clustalw) using the default settings. Identical amino-acids are marked with * and shaded in blue. The putative C₂H₂ zinc finger region and the conserved cysteine and histidine residues are marked with a black line and shaded in red, respectively. The putative MAPK consensus phosphorylation sites are shown underlined.

958

Figure S8. (A) Exponentially growing *S. japonicus* wild type cells were inoculated at an initial cell density of 10⁶ cells/ml in high glucose (6%) YES medium and incubated for 6h with 0.2 μ M CPT without further treatment (untreated) or in the presence of the indicated amounts of farnesol. Cell length is represented as box and whisker plots. Data obtained after quantification of one experiment performed per triplicate (n \geq 200 cells/sample) is shown. ****, *P*<0.0001, as calculated by unpaired Student's *t* test. (B) Cells from *S. japonicus* wild type cells growing in YES medium (2.10⁶) were spotted on YEMA plates in the absence or presence of

- 40μ M farnesol, incubated at 30°C for 7 days, and then photographed. The total area of mycelial expansion
- 966 (expressed as relative units) was measured ($n\geq 6$) and is represented as scatter plot. **, P<0.005, as calculated
- 967 by unpaired Student's *t* test.

Fig 1

Fig 2

Fig 3

Α

С

В

D

Fig 4

Fig S1

- Control
- ^{...}■^{...} Phenylethanol 1mM
- Phenylethanol 2mM
- ····▼··· Tyrosol 1mM
- ···◆··· Tyrosol 2mM
- Tryptophol 1mM
- ...⊡... Tryptophol 2mM
- ۳۰۰۵۰۰۰ Phenylethanol + Tryptophol (0.5mM each)
- Phenylethanol + Tryptophol (1mM each)
- Phenylethanol + Tryptophol + Tyrosol (0.5mM each)
- Phenylethanol + Tryptophol + Tyrosol (1mM each)

Fig S2

А		
		Sty1
	S.japonicus S.pombe	MAEFVRTQIFGTCFEITTRYTDLQPIGMGAFGLVCSARDQLTGQNVAVKKIMKPFSTPVL MAEFIRTQIFGTCFEITTRYSDLQPIGMGAFGLVCSAKDQLTGMNVAVKKIMKPFSTPVL ****:*************************
	S.japonicus S.pombe	AKRTYRELKLLKHLRHENIISLSDIFISPF <mark>ED</mark> IYFVTELLGTDLHRLLTSRPLETQFIQY AKRTYRELKLLKHLRHENIISLSDIFISPF <mark>ED</mark> IYFVTELLGTDLHRLLTSRPLETQFIQY
	S.japonicus S.pombe	FLYQILRGLKYVHSAGVIHRDLKPSNILINENCDLKICDFGLARIQDPQM <mark>TGY</mark> VSTRYYR FLYQILRGLKFVHSAGVIHRDLKPSNILINENCDLKICDFGLARIQDPQM <mark>TGY</mark> VSTRYYR *********
	S.japonicus S.pombe	APEIMLTWQKYNVEVDIWSAGCIFAEMLEGKPLFPGRDHVNQFSIITELLGTPPDEVIET APEIMLTWQKYNVEVDIWSAGCIFAEMIEGKPLFPGRDHVNQFSIITELLGTPPMEVIET
	S.japonicus S.pombe	ICSKNTLRFVQSLPKREKVPFSERFKNAD PAAVDLLEKMLVFDPRKRISAADALAHEYLA ICSKNTLRFVQSLPQKEKVPFAEKFKNADPDAIDLLEKMLVFDPRKRISAADALAHNYLA ***************:::*****:*:******
	S.japonicus S.pombe	PYH <mark>DPTD</mark> EPVAEEVFDWSFQDNDLPVETWKVMYSEILSFHNVDSEVQA PYH <mark>DPTDEPVADEVFDWSFQDNDLPVETWKVMYSEVLSFHNMDNELQ</mark> S **********

S. japonicus

В

Cdc2

С

OD₆₀₀: 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Cells/ml (x10⁶): 2.5 5.0 7.5 10 12.5 15 17.5 200 225

D

Atf1

S. japonicus S. pombe	MSEASASANGNRTSDTSANNTSNPSTDALNTIGGRSANGSMSTVSNAAEQPVPSQPNNNS M <u>SPSP</u> VNTSTEPASVAAVSNGNATASSTQVPENNQSDSFAPPSNNS
	* :*.:*:: * : *:*.:* :: * *.****
S. japonicus S. pombe	SAGGDSSQTKQLNTAPESAQVASNGLTTDQQRQQQQQPRPPVGVTPSFVGFLKLDYEPN QQNQQSSTIAPNGGAGSVANANPADQSD
	HRA domain
S. japonicus S. pombe	PFEHSFATTAAGRPPAPNVAQNMPAAHGAIGAG-FNSRTMLPPVSSIASPDILS-AVAAG PFEHSFGSTASVGQGNPSLNRNPSLSNIPSGVPPAFARTLLPPVSSIASPDILSGAPGIA
	osmotic stress domain
S. japonicus S. pombe	SPFGYNSWSPFARSNVPNELSPAITDSAYRADYMNNGAQPSMONPTAPVGVATPSGPNV SPLGYPAWSAFTRGTMHNELSPAITDATLRPDYLNNPSDASAAARFSG
	osmotic stress domain
S. japonicus S. pombe	PNQPENAPMFQANSRLPTGLTPGANDSFRSLLTPGAGVNFPAPSPGTAALLGLHPSESQQ TGF <u>TP</u> GVNEPFRSLL <u>TP</u> -TGAGFPAP <u>SP</u> GTANLLGFHTFDSQ
	:*.*:.******* :******************
S. japonicus S. pombe	FNDPSTMYRYATARSKLAAGTAGMPEOTDYFGTSAAANGLYLLSOAQEOOKARRGSMAEN PDQYRFTPRDGKPPVVNGTNGDQSDYFGANAAVHGLCLLSQVPDQQCKLQQPISSE
-	**::* :*:****:.** ****. :** ****
S. japonicus S. pombe	PROPISSTDAAAILNOAQSQMNNGNTMMDAPRLQAQQQQQQQQQSSQSMPYYNVNG NDQ-AASTTANNLLKQTQQQTFPDSIRPSFTQNTNPQAVTGTMNPQASRTQQQPMYFMGS
	* :** * :*:*:*.* . * *: : : * . :*. * *:
S. japonicus S. pombe	NTNARRS <mark>SIQANTAAGQQPSQQASNIT</mark> GIPSGARANEAPVTIDPSATSINRPVNTAPAPK QQFNGMPSVYGDTVNPADPSITIRQTTDFSGQNAENGSTNLPQKTSNSDMPTANSMPVKL
	· .*· .:*. ·** · *.· * ·. · · ·.* ·*· *.
S. japonicus S. pombe	QEPSEVNGLQSQQ TVVSPESGSHSPESQSKTLTSSSQNGGSANGKGSSRRGAKYETDEDK ENGTDYSTSQEPSSNANNQSSPTSSINGKASSESANGTSYSKGSSRRNSKNETDEEK
	:: :: . :.* * ** *. : :***:: .*****:* basic-leucine zipper domain
S. japonicus S. pombe	RRSFLERNRQAALKCRQRKKQWLSNLQAKVEFYGNENEILSAQVTALREEIVSLKTLLIA RKSFLERNRQAALKCRQRKKQWLSNLQAKVEFYGNENEILSAQVSALREEIVSLKTLLIA
	*:*************************************
S. japonicus S. pombe	HKDCPVAQSNSVAVANSAAAPTMTNRDAQRINLGF HKDCPVAKSNSAAVATSVIGSGDLAQRINLGY *******

А

Gene	Function	Up-regulated	Down-regulated
Gene	runction	$atf1\Delta$ cells	atf1∆ cells
SJAG_00179	Glutathione	+/+	
	S-transferase		
SJAG_00124	Transcriptional	+/+	
	regulator Nrg1		
SJAG_00223	Hsp9-like protein		+/+
SJAG_00979	Transcription factor		+/+
	Atf31		
SJAG_00981	Fungal cellulose		+/+
	binding domain-		
	containing protein		
SJAG_02834	Siderophore iron	+/-	-/+
	transporter 1		

Α

Frequency of GO terms for common upregulated genes in $sty1\Delta$ and $atf1\Delta$ cells

В

Frequency of GO terms for common downregulated genes in $sty1\Delta$ and $atf1\Delta$ cells

983

Nrg1

S.japonicus C.albicans	MSASLCVTTATGMSASLCVTTATG MLYQQSYPITNKLLNASAAGSTSTASIIDGGCTLSKPGSGKTKSTTSLPSFNELLTSIPL : . *. : .*
S.japonicus C.albicans	PRPVVPPISSMPSVTSAVPVSVSAD PNEFKPSTNNTNQAAAATATSPYNYYMGPPAQHRLPTPPYPMSSPTTATAATPLSQQSP
	* .: : :*:: * * * *:** .: *:* .:
S.japonicus C.albicans	MPKPTTIYRSRIPLGLLTDPMPPLTPIMPASS
S.japonicus C.albicans	PTPPTTPPAGECAGGPVRKRQRSAVRNTTKGKKTYQCHCGKTFTTS PSPGLITPTSTTFDHAKIRSNSTGDLSANSLALSSNNNTQSKDPRRKHVCKVCSRSFTTS
	: .* :*: :: :* *.::***
S.japonicus C.albicans	G <mark>HLARHNRIHMGE</mark> KNYE <mark>C</mark> RICHS <mark>RFSRRDNC</mark> S <mark>QHTRTH</mark> FKNQKPNSVLISSFAPIYL <mark>K</mark> G <mark>HLARHNRIH</mark> T <mark>GE</mark> RKHQ <mark>C</mark> PWPT <mark>CEARFARQDNCNQH</mark> YK <mark>TH</mark> TNGK
	******* **::::* *.:**:*****************
S.japonicus C.albicans	SPSNTSPFRDTVS <mark>S</mark> PRSCSSSPNSISSLLSS NKRNRQQHRTLEASHVGTKYNTKSLV
	. ** :*::*:

986 Supplementary Tables

- **Table S1-S8.** Lists of up- and downregulated genes in exponentially growing $sty1\Delta$ and $atf1\Delta$ mutants
- 988 extracted from RNA seq data.
- **Table S9.** Yeast strains used in this study
- 990 Table S10. Oligonucleotides

Table S9. S. japonicus and S. pombe strains used in this work.

S. japonicus strains	Genotype	Source
NIG2017	h^+	Furuya & Niki 2009
NIG5091	h ⁻ ura4-D3	Furuya & Niki 2009
NIG2028	h-	Furuya & Niki 2009
TSJ101	h ⁻ ura4-D3 sty1::ura4 ⁺	This work
TSJ105	h ⁻ ura4-D3 atf1::ura4 ⁺	This work
TSJ106	h ⁻ ura4-D3 nrg1::ura4 ⁺	This work
TSJ108	h ⁻ ura4-D3 nrg1::ura4 ⁺ sty1::NatMX6	This work
TSJ109	h ⁻ ura4-D3 pyp1::ura4 ⁺	This work
TSJ110	h ⁻ ura4-D3 pka1::ura4 ⁺	This work
S. pombe strains	Genotype	Source
L972	h- prototroph	U. Leupold

Table S10. Oligonucleotides used in this work.995

OLIGONUCLEOTIDE	SEQUENCE 5'-3'	Use
Leu1 FWD	GATGTCGGCGATGTGAATAAA	a-PCR
Leu1 REV	GGGAGGACGACAATCTTCTTA	g-PCR
Nrg1 (SJAG_00124)	TAAGAACCAGAAGCCCAACT	d-PCR
FWD		4101
Nrg1 (SIAG_00124)		d-PCR
REV		4101
Gst2 (SIAG 00179)		d-PCR
EWD		4101
Get2 (S AG 00179)	ТСТТАСССТССТСАСТААТ	d-PCR
REV		4101
Hep9 (SIAG 00223)		d-PCR
FWD		4-1 01
$H_{\text{SD}}(S AG 00223)$	ΤΟΤΩΟΤΟΩΤΟΩΤΟΤΤΩΛΛΛ	
REV		4-1 01
Λ tf31 (SIAG 00070)	ТТСААСССАСААССАСАААС	
		4-1 01
Atf31 (SIAC 00979)	ΤΟΤΟΩΟΤΤΤΛΩΛΑΤΟΩΩΑΛΟΑ	a-PCP
REV		4-1 CIX
		d-PCR
SIAC_00901 PEV		
SIAG_00981 KEV		
SIAG_02834 FWD		
3JAG_02034 KEV		q-FCK
		Common oligonuolootido
URA4-JP-COMP-R		for confirmation of ura 4 ⁺
		Common oligonucleotido for
NAT-COMP-R		
		confirmation of Natk
		deletions.
NRG1Djp-W2		nrg1 deletion
NRG1Djp-X (URA4)	GAGCGGAAGAACGGAATCGTGGCGGCCCGGTGCAGTCGCTTAGC	nrg1 [®] deletion (ura4 [®])
NRG1Djp-Y (URA4)	GCAGTGCGGTATCGTATAATTAGTGTCCATAACTCTCGCTCG	nrg1 [®] deletion (ura4 [®])
NRG1Djp-Z2		nrg1 deletion
NRG1Djp-COMP5	CACIGCCIGICIGCACGACAACCIG	Confirmation of <i>nrg1</i>
		deletion.
STY1Djp-W		sty1 deletion
STY1Djp-X (URA4)	GAGCGGAAGAACGGAATCGTGGCGGCCACACCAGCACTGTGGACG	sty1' deletion (ura4')
STY1Djp-Y (URA4)	GCAGTGCGGTATCGTATAATTAGTGTGACGATCTGCAGCAAGAATAC	sty1 deletion (ura4)
	AIIG	
STY1Djp-Z	TGCTTGCACCTCACTATCCACATTATG	sty1 ⁺ deletion
STY1Djp-X (NAT)	TTAATTAACCCGGGGATCCGACACCAGCACTGTGGACGTACTTC	sty1 ⁺ deletion (NatR)
STY1Djp-Y (NAT)	GTTTAAACGAGCTCGAATTCGACGATCTGCAGCAAGAATACATTG	sty1 ⁺ deletion (NatR)
STY1Djp-COMP5'	ATGGCTGAATTTGTTCGTACACAGAT	Confirmation of <i>sty1</i> ⁺ deletion.
ATF1Djp-W	TGGTGAACCACGGTTTGATTACC	atf1 ⁺ deletion
ATF1Djp-X (URA4)	GAGCGGAAGAAC	<i>atf1</i> ⁺ deletion (<i>ura4</i> ⁺)
	GGAATCGTGGCGGCCCGTTTGCTGAGGCAGAGGCTTC	
ATF1Djp-Y (URA4)	GCAGTGCGGTATCGTATAATTAGTGTCAATGACAAATCGTGATGCGC	<i>atf1</i> ⁺ deletion (<i>ura4</i> ⁺)
	AG	
ATF1Djp-Z	TGAATGGCCTGCACTAAAGTGACG	atf1 ⁺ deletion
ATF1Djp-COMP5'	GCTCTGCCCGATTCGCCTCTTACG	Confirmation of <i>atf1</i> ⁺ deletion.
PYP1Djp-W	CACGTGGAAACAGCTCGTATCTC	pyp1 ⁺ deletion
PYP1Djp-X	GAGCGGAAGAACGGAATCGTGGCGGCCCATCATCGCGTTAAAGTGT	$pyp1^+$ deletion (<i>ura4</i> ⁺)
	CCAGG	
PYP1Djp-Y	GCAGTGCGGTATCGTATAATTAGTGTGACTTTGTCAGGATGATTCTC	$pyp1^+$ deletion (<i>ura4</i> ⁺)
	TCG	
PYP1Djp-Z	AACGAAAGACGCACAAGTCACTGC	$pyp1^+$ deletion
PYPDjp-COMP5'	GGCCTATTTAAAGGTAGTCTACCACC	Confirmation of pyp1 ⁺
		deletion.
PKA1Dip-W	TGTTTAGTGCGTAGAGGAACTCAGAG	$pka1^+$ deletion

PKA1Djp-X (URA4)	GAGCGGAAGAACGGAATCGTGGCGGCC <i>CTCCGTATCGGTTCGATTT</i> GGAAC	<i>pka1</i> ⁺ deletion (<i>ura4</i> ⁺)
PKA1Djp-Y (URA4)	GCAGTGCGGTATCGTATAATTAGTGTTATCAACTGGGAATCTATCCT TAC	$pka1^+$ deletion (<i>ura4</i> ⁺)
PKA1Djp-Z	AATGTACCCGCTATCTCAAACGCTGC	<i>pka1</i> ⁺ deletion
PKA1Djp-COMP5'	CTGCTGCATGTATGACGTTTGAGAAC	Confirmation of <i>pka1</i> ⁺ deletion.

Gene	STY1_mean	CONTROL_me	og2FC	Description
SJAG_00006	2,828265	1,0102715	1,48517425	hypothetical protein
SJAG_00084	366,671	166,756	1,1367475	adenylyl-sulfate kinase
SJAG_00110	7,22275	2,445735	1,56228014	But2 family protein
SJAG_00124	1,66348	0,571147	1,54227051	transcriptional regulator NRG1
SJAG_00179	382,0535	20,78725	4,20000386	glutathione S-transferase Gst2
SJAG_00257	81,33485	26,4993	1,61791939	hypothetical protein
SJAG_00258	2,58856	1,168465	1,14753524	hypothetical protein
SJAG_00780	8,07228	3,74854	1,10664742	hypothetical protein
SJAG_00927	4,638925	1,62873	1,51004306	hypothetical protein
SJAG_01239	53,99655	25,8489	1,06276434	protein phosphatase Fmp31
SJAG_01416	102,9918	45,6613	1,17348564	pig-L
SJAG_01552	1,30329	0,262511	2,31170836	hypothetical protein
SJAG_01690	25,12765	2,77317	3,17966779	NADP-dependent L-serine/L-allo-threonine dehydrogenase ydfG
SJAG_01986	282,2025	31,3656	3,1694757	alcohol dehydrogenase
SJAG_02076	24,68605	10,296	1,26161205	hypothetical protein
SJAG_02106	32,4933	9,72536	1,74031871	hypothetical protein
SJAG_02125	1,43034	0,3757585	1,92848048	urea transporter
SJAG_02788	8,671825	3,759075	1,20595794	fungal protein
SJAG_02812	2112,84	992,902	1,08946028	translation elongation factor eIF5A
SJAG_02834	48,4188	10,446155	2,21259531	siderophore iron transporter 1
SJAG_02928	5,475095	2,62326	1,06152319	hypothetical protein
SJAG_02955	9,830835	2,923165	1,74978269	general amino acid permease AGP2
SJAG_03475	827,443	306,516	1,43269755	sulfate adenylyltransferase
SJAG_03492	152,82	28,58845	2,41832906	NADP-dependent L-serine/L-allo-threonine dehydrogenase ydfG
SJAG_03494	310,1275	154,196	1,00809612	glutamate-cysteine ligase regulatory subunit
SJAG_03643	39,9933	18,15125	1,13968942	arrestin Aly1
SJAG_03759	166,094	76,68555	1,1149733	phosphoglycerate mutase
SJAG_03820	1,533005	0,6743025	1,18489455	hexose transporter Ght8
SJAG_03821	62,91495	11,698135	2,42712433	hypothetical protein
SJAG_03822	2,992785	0,3968775	2,91472296	alcohol dehydrogenase Adh4
SJAG_03961	237,067	118,08965	1,00541233	5-aminolevulinate synthase
SJAG_04124	66,65625	33,2334	1,00410626	DUF1776 family protein

SJAG 04269	4,114675	1,878215	1,13141626 hypothetical protein
	11,09255	5,15836	1,10460669 hypothetical protein
	1,356375	0,239964	2,49886621 peptidase
SJAG_04743	338,644	168,974	1,00296816 ferric reductase transmembrane component
SJAG_04833	1,768965	0,5627125	1,65243559 hypothetical protein
SJAG_05015	173,3225	73,83375	1,23110661 NADPH dehydrogenase
SJAG_05173	1,091205	0,272538	2,00139286 hypothetical protein
SJAG_06097	95,57135	12,44505	2,94100617 hypothetical protein
SJAG_06596	58,5555	27,9081	1,06912078 hypothetical protein
SJAG_06627	3,01731	1,146061	1,39657909 hypothetical protein
SJAG_16028	34,78845	9,8846	1,81535391 n/a
SJAG_16042	36,4151	0,5	6,1864649 n/a
SJAG_16075	151,8425	45,91295	1,72560261 n/a
SJAG_16103	13,7006	0,5	4,77616717 n/a
SJAG_16118	68,82765	31,54525	1,12556547 n/a
SJAG_16119	7,6375	0,5	3,93310047 n/a
SJAG_16127	45,75075	16,9944	1,42873597 n/a
SJAG_16129	7,5881	0,5	3,92373869 n/a
SJAG_16303	10,0963	0,5	4,33575478 n/a
SJAG_16443	42,96995	12,0673	1,83222518 n/a
SJAG_16445	26,1039	12,46605	1,06626096 n/a

Gene	STY1_mean	$CONTROL_m\varepsilon$	log2FC	Description
SJAG_00085	33,5832	93,55445	-1,47806657	DUF423 protein
SJAG_00097	0,8823105	3,21019	-1,86330033	5-aminolevulinate synthase
SJAG_00099	8,79049	24,04305	-1,45160443	Delta(12) fatty acid desaturase
SJAG_00138	8,03058	36,25915	-2,17476901	fungal protein
SJAG_00145	15,8531	44,5811	-1,49166723	RNA-binding protein
SJAG_00223	48,6741	929,2205	-4,25479477	hsp9-like protein
SJAG_00260	2,68744	7,657265	-1,51059664	succinate dehydrogenase iron-sulfur protein subunit
SJAG_00265	3,643795	10,015555	-1,45872867	D-arabinono-1,4-lactone oxidase
SJAG_00266	38,37745	95,6701	-1,31780925	transcription factor Atf1
SJAG_00372	156,1285	526,95	-1,75493216	plasma membrane proteolipid Pmp3
SJAG_00409	229,6135	468,7315	-1,02955428	glycerol-3-phosphate dehydrogenase Gpd1
SJAG_00449	8,891805	22,5877	-1,34498916	cytochrome C oxidase copper chaperone Cox17
SJAG_00452	29,10365	185,126	-2,66923553	ubiquitin
SJAG_00555	7,298095	16,41875	-1,16975246	zf-PARP type zinc finger protein
SJAG_00625	76,95695	214,6395	-1,47979207	hypothetical protein
SJAG_00635	7,916765	25,35125	-1,67907395	ornithine carbamoyltransferase Arg3
SJAG_00667	33,0519	81,79525	-1,30728386	endo-1,3-beta-glucanase Eng1
SJAG_00699	62,72575	145,7685	-1,21654927	tspO/peripheral benzodiazepine receptor
SJAG_00709	0,725534	1,94908	-1,42567818	hypothetical protein
SJAG_00788	1,18238	3,05638	-1,37013015	hypothetical protein
SJAG_00789	4,04648	64,51565	-3,9949098	hypothetical protein
SJAG_00812	90,649	187,0795	-1,04528847	phosphatidyl-N-methylethanolamine N-methyltransferase
SJAG_00979	0,559284	2,79279	-2,32005413	transcription factor atf31
SJAG_00980	0,481918	1,42571	-1,56482096	ATP-dependent DNA helicase Rdh54
SJAG_00981	14,18285	53,25545	-1,90878171	fungal cellulose binding domain-containing protein
SJAG_00993	15,34695	32,4833	-1,08174624	STE/STE7/MEK1 protein kinase Byr1
SJAG_01084	11,718	31,05845	-1,40625948	CAMK/CAMK1 protein kinase Srk1
SJAG_01427	8,280035	31,116	-1,90994784	alpha,alpha-trehalose-phosphate synthase
SJAG_01432	23,1352	46,4439	-1,00539955	hydroxyacid dehydrogenase
SJAG_01490	1,989295	6,141705	-1,62638198	ubiquinol-cytochrome-c reductase complex subunit 8
SJAG_01531	42,26305	105,29145	-1,3169195	alpha,alpha-trehalose-phosphate synthase
SJAG_01540	3,23956	6,63801	-1,03495292	Cullin 4

SJAG_01578	1,0064045	2,492915	-1,30862341 fungal protein
SJAG_01725	14,7266	57,46855	-1,96434826 transcription factor Atf21
SJAG_01757	0,463756	1,14554	-1,30458998 hypothetical protein
SJAG_01795	10,906255	25,53405	-1,22726659 hydrolase
SJAG_01815	10,44543	45,781	-2,13187709 hypothetical protein
SJAG_01869	15,6442	60,43445	-1,94974329 NADH/NADPH dependent indole-3-acetaldehyde reductase AKR3C2
SJAG_01905	2,58805	10,483995	-2,01825118 progesterone binding protein
SJAG_01968	128,5035	426,0035	-1,72905763 pepsin A
SJAG_02013	15,01195	52,2071	-1,79813463 tyrosine phosphatase Pyp1
SJAG_02122	1,80947	5,272385	-1,54288853 hypothetical protein
SJAG_02338	8,6195	24,4972	-1,50694077 non classical export pathway protein
SJAG_02432	85,245	214,9425	-1,33426365 vacuolar serine protease Isp6
SJAG_02442	11,92445	32,49385	-1,44624396 hypothetical protein
SJAG_02496	13,83025	52 <i>,</i> 88875	-1,93513364 D-amino acid oxidase
SJAG_02550	35,49925	71,71425	-1,01447127 DUF1941 family protein
SJAG_02569	2,09771	4,86485	-1,21358008 transcription factor
SJAG_02612	7,964325	18,86985	-1,24445896 fungal protein
SJAG_02626	88,75885	238,559	-1,42638323 protein kinase inhibitor
SJAG_02701	23,01955	50,6588	-1,13795327 bromodomain protein
SJAG_02744	15,508	85,72525	-2,46670757 cytochrome c
SJAG_02950	2,374475	7,339975	-1,62816658 galactokinase Gal1
SJAG_02951	2,412265	11,48828	-2,25170251 gal10
SJAG_02975	3,28861	7,20358	-1,13123614 hypoxia induced family protein
SJAG_02983	0,5	1,342175	-1,42457279 hypothetical protein
SJAG_02984	0,6448745	1,71266	-1,40914845 phosphoglycerate mutase family protein
SJAG_03063	47,9229	160,5175	-1,74394347 dienelactone hydrolase
SJAG_03201	2,70036	7,198125	-1,4144694 hypothetical protein
SJAG_03318	12,2909	24,67255	-1,00531627 N-acetyltransferase
SJAG_03388	18,3117	39,3405	-1,10324956 transcription factor Hsr1
SJAG_03603	38,1346	89,70465	-1,2340822 high-mobility group non-histone chromatin protein
SJAG_03606	4,75909	22,6118	-2,2483182 hexose transporter Ght6
SJAG_03786	426,936	1153,405	-1,43380746 aldehyde dehydrogenase
SJAG_03794	26,2432	52,5063	-1,00054689 DNAJ domain-containing protein Psi1

SJAG_03803	5,80574	13,00355	-1,16335367 hypothetical protein
SJAG_03804	8,008845	19,45315	-1,28033768 D-lactate dehydrogenase
SJAG_03818	0,588267	1,641725	-1,48066947 gal10
SJAG_03830	2,85949	18,212145	-2,67107109 hypothetical protein
SJAG_03958	7,90094	22,58115	-1,51502275 xylose and arabinose reductase
SJAG_04007	214,8525	774,7965	-1,85047087 fungal protein
SJAG_04008	7,278295	15,30665	-1,07248614 cytochrome c heme lyase
SJAG_04043	1,145435	16,41645	-3,84117469 hypothetical protein
SJAG_04055	132,8925	304,623	-1,19676519 heat shock protein S
SJAG_04135	1,690565	6,730355	-1,99317712 amino acid permease
SJAG_04227	9,251075	20,0122	-1,11318685 fungal protein
SJAG_04297	0,2512055	2,202005	-3,13187779 sulfonate dioxygenase
SJAG_04298	3,44859	21,84355	-2,66312882 hydantoin racemase family protein
SJAG_04299	0,190673	1,105964	-2,53613195 uricase
SJAG_04312	11,0821	25,6105	-1,20850413 AGC/PKA protein kinase Pka1
SJAG_04375	45,27445	156,9915	-1,79391743 septin Spn3
SJAG_04430	33,1786	70,6924	-1,09130211 hypothetical protein
SJAG_04458	2,66698	9,036025	-1,76048126 NAD binding dehydrogenase
SJAG_04568	1,154575	2,69024	-1,22037299 decaprenyl diphosphate synthase subunit Dps1
SJAG_04625	0,9118215	4,53031	-2,31278644 DUF1761 family protein
SJAG_04660	14,0903	29,39945	-1,06108684 xylose and arabinose reductase
SJAG_04662	1,698225	3,68487	-1,11758611 hypothetical protein
SJAG_04673	7,478895	21,97705	-1,55510071 thiamine transporter Thi9
SJAG_04682	8,80014	19,2508	-1,12932002 CCCH tandem zinc finger protein
SJAG_04711	18,9278	42,69435	-1,17353843 GTP cyclohydrolase II
SJAG_04713	12,0446	24,56965	-1,02849082 uracil phosphoribosyltransferase
SJAG_04789	1,192355	2,573135	-1,10971332 alpha-amylase Aah4
SJAG_04859	23,1768	63,57825	-1,45585192 alpha,alpha-trehalase Ntp1
SJAG_04868	1,2909	2,82928	-1,13205771 chitin synthase I
SJAG_05005	3,9484	13,89165	-1,81487791 fungal protein
SJAG_05181	24,6118	55,4105	-1,17080921 glutathione S-transferase Gst3
SJAG_05305	14,42907	53,44455	-1,88906452 membrane protein complex assembly protein
SJAG_05558	40,4894	91,0148	-1,1685569 fungal protein

SJAG_05896	1,846875	12,0208	-2,70237478	hypothetical protein
SJAG_06002	2,33124	9,252875	-1,98880416	hypothetical protein
SJAG_06111	0,357933	1,31765	-1,88020574	hypothetical protein
SJAG_16057	0,5	8,91508	-4,15624774	n/a
SJAG_16122	0,5	20,83475	-5,38091988	n/a
SJAG_16123	18,41485	37,4238	-1,02308641	n/a
SJAG_16142	0,5	19,4437	-5,28123087	n/a
SJAG_16183	11,58695	38,0743	-1,71631665	n/a

Gene	ATF1_mean	CONTROL_me	og2FC	Description
SJAG_00006	3,52446	1,0102715	1,80265918	hypothetical protein
SJAG_00026	2,218455	0,5596825	1,98687475	hypothetical protein
SJAG_00075	39,1397	13,81595	1,50229793	trichothecene 3-O-acetyltransferase
SJAG_00084	479,4945	166,756	1,5237756	adenylyl-sulfate kinase
SJAG_00091	43,2244	15,7396	1,45744706	fungal protein
SJAG_00097	15,22735	3,21019	2,2459343	5-aminolevulinate synthase
SJAG_00099	58,62485	24,04305	1,2858924	Delta(12) fatty acid desaturase
SJAG_00110	10,45211	2,445735	2,09545421	But2 family protein
SJAG_00121	44,57215	2,62936	4,08335897	hypothetical protein
SJAG_00124	23,6943	0,571147	5,37453412	transcriptional regulator NRG1
SJAG_00144	32,15515	15,1846	1,08244091	GRIP domain-containing protein
SJAG_00179	127,9507	20,78725	2,62181722	glutathione S-transferase Gst2
SJAG_00191	17,8584	6,109495	1,54747779	hypothetical protein
SJAG_00211	20,36705	10,15739	1,00370729	DUF803 domain-containing protein
SJAG_00237	18,19995	8,80279	1,04790173	hexitol dehydrogenase
SJAG_00238	1,42617	0,354537	2,00813786	glutathione S-transferase Gst1
SJAG_00240	4,04428	1,453455	1,47639648	alcohol dehydrogenase Adh4
SJAG_00242	337,2605	51,89395	2,7002251	hypothetical protein
SJAG_00258	2,35646	1,168465	1,01200667	hypothetical protein
SJAG_00358	15,3797	5,249965	1,55064765	tRNA(5-methylaminomethyl-2-thiouridylate)-methyltransferase
SJAG_00415	105,15965	33,7224	1,64080212	hypothetical protein
SJAG_00451	318,584	147,304	1,11287721	carboxypeptidase
SJAG_00528	2,839715	0,2986125	3,24939968	hypothetical protein
SJAG_00556	20,5942	7,48616	1,4599403	hypothetical protein
SJAG_00567	31,69675	13,29445	1,25351083	dymeclin 1
SJAG_00587	35,00715	0,518409	6,07741504	sphingoid long-chain base transporter RSB1
SJAG_00589	1,3611	0,538239	1,33845423	hypothetical protein
SJAG_00658	1616,32	420,4315	1,94277018	hypothetical protein
SJAG_00720	47,77305	20,3411	1,23179929	COP9/signalosome complex subunit Csn5
SJAG_00780	7,74405	3,74854	1,04675947	hypothetical protein
SJAG_00781	2,9274	1,0203895	1,52049993	P-factor pheromone Map2
SJAG_00788	10,336065	3,05638	1,75779122	hypothetical protein

SJAG_00804	13,24095	6,042075	1,13189064 SNARE Sft1
SJAG_00832	12,10435	3,880455	1,64122788 sulfatase modifying factor 1
SJAG_00927	3,357835	1,62873	1,04378388 hypothetical protein
SJAG_00963	4,003585	1,770175	1,17740044 HAL protein kinase Ppk8
SJAG_00976	18,0149	8,44574	1,0928949 cytochrome c oxidase subunit IV
SJAG_01007	38,9311	13,6062	1,51665891 nramp family manganese ion transporter
SJAG_01078	77,5771	18,2457	2,08807434 zinc homeostasis factor 1
SJAG_01130	53,8363	26,20115	1,03894913 hypothetical protein
SJAG_01168	53,5055	21,7217	1,30055018 membrane transporter
SJAG_01239	208,762	25,8489	3,01368434 protein phosphatase Fmp31
SJAG_01316	18,80215	6,42103	1,550021 hypothetical protein
SJAG_01346	70,62135	35,3004	1,00041987 hypothetical protein
SJAG_01372	160,385	60,0997	1,41610953 porphobilinogen synthase Hem2
SJAG_01437	158,7445	73,07695	1,11921828 synaptotagmin family C2 domain-containing protein
SJAG_01490	16,9497	6,141705	1,46454862 ubiquinol-cytochrome-c reductase complex subunit 8
SJAG_01505	2,83172	0,962165	1,55732239 acetate transporter
SJAG_01552	1,376025	0,262511	2,3900569 hypothetical protein
SJAG_01553	64,24945	6,28722	3,35318995 hypothetical protein
SJAG_01555	2,385185	0,384876	2,63163555 hypothetical protein
SJAG_01690	15,0661	2,77317	2,44169805 NADP-dependent L-serine/L-allo-threonine dehydrogenase ydfG
SJAG_01794	47,39245	22,8938	1,0497003 hypothetical protein
SJAG_01835	644,992	269,1125	1,26107186 1,3-beta-glucanosyltransferase Gas2
SJAG_01888	21,40515	10,5975	1,01423398 glucan 1,3-beta-glucosidase Exg2
SJAG_01919	109,405	11,7641	3,21721582 RNA-binding protein M
SJAG_01922	284,574	130,6165	1,1234667 citrate synthase Cit1
SJAG_01932	3,582	1,2158425	1,55880898 hypothetical protein
SJAG_01970	142,649	50,10715	1,50938125 thiamine-repressible acid phosphatase pho4
SJAG_01971	3,678785	1,274135	1,52971122 DNA-3-methyladenine glycosylase Mag1
SJAG_01975	85,19675	22,74925	1,90497941 kinetochore protein fta5
SJAG_01986	126,09425	31,3656	2,00724742 alcohol dehydrogenase
SJAG_02011	16,23465	6,60893	1,29658766 hypothetical protein
SJAG_02091	34,1475	6,51127	2,39076909 phospholipase B Plb1
SJAG_02106	22,11515	9,72536	1,18521147 hypothetical protein

SJAG_02113	2,42219	0,136585	4,14844108 amino acid permease
SJAG_02125	1,5768	0,3757585	2,06912204 urea transporter
SJAG_02148	15,5967	7,53826	1,04893735 glucose-6-phosphate 1-dehydrogenase
SJAG_02338	431,606	24,4972	4,13902616 non classical export pathway protein
SJAG_02339	49,7367	10,262295	2,27695739 RecA family ATPase Rlp1
SJAG_02344	57,10755	16,59905	1,78258082 spermine family transporter
SJAG_02350	3,404115	1,411325	1,27022953 fungal protein
SJAG_02567	81,39255	28,11675	1,5334669 phosphoprotein phosphatase
SJAG_02569	18,01355	4,86485	1,8886153 transcription factor
SJAG_02580	106,1455	29,4589	1,84926774 phosphoprotein phosphatase
SJAG_02665	53,65455	19,815	1,43710755 Vac7
SJAG_02735	1,0490945	0,2359565	2,15255182 siderophore iron transporter 1
SJAG_02785	62,02285	8,203305	2,91852265 protein kinase activator
SJAG_02788	10,9714	3,759075	1,54529803 fungal protein
SJAG_02794	84,2098	22,7356	1,88903506 cytochrome b5 reductase
SJAG_02925	56,11355	22,93625	1,29071965 hypothetical protein
SJAG_02941	11,552705	0,02960005	8,60841536 amino acid permease
SJAG_02946	12,14245	0,3109585	5,28719368 amino acid permease
SJAG_02950	15,5452	7,339975	1,08262212 galactokinase Gal1
SJAG_02955	12,6681	2,923165	2,11559699 general amino acid permease AGP2
SJAG_02963	46,6704	13,6811	1,7703236 NADP-dependent alcohol dehydrogenase
SJAG_02968	19,67215	4,56034	2,10894135 iron/zinc ion transporter
SJAG_02970	4,09503	1,25628	1,70471597 hypothetical protein
SJAG_02976	38,91575	9,70592	2,00341729 hypothetical protein
SJAG_03019	14,7853	4,85297	1,60722367 hypothetical protein
SJAG_03074	38,8345	14,58115	1,41323438 hypothetical protein
SJAG_03114	57,35875	27,7081	1,0497058 F1-ATPase delta subunit
SJAG_03204	29,98145	12,5273	1,25899465 phospholipase
SJAG_03221	100,9289	31,6753	1,67190915 Swi5 protein
SJAG_03244	352,0545	163,8685	1,10326023 bcap family protein
SJAG_03245	808,426	392,6545	1,04185529 RING finger-like protein Ini1
SJAG_03296	6,169375	0,7552015	3,03019081 inner membrane protein
SJAG_03297	2,3213	0,2212995	3,39086089 ribosomal protein subunit L19

SJAG_03303	2875,905	1131,475	1,34581131 manganese superoxide dismutase
SJAG_03304	46,36	12,03685	1,94542267 hypothetical protein
SJAG_03305	63,31895	24,8974	1,34664224 glycerol-3-phosphate O-acyltransferase
SJAG_03340	30,89875	7,856265	1,97563298 adaptor protein Ste4
SJAG_03361	591,3645	175,7075	1,75087187 rho GDP dissociation inhibitor Rdi1
SJAG_03493	10,5544	1,552435	2,7652398 peroxin Pex28/29
SJAG_03608	859,105	133,9883	2,68072744 hexose transporter Ght5
SJAG_03624	30,841	11,7394	1,39349087 phosphoric ester hydrolase Ssu72
SJAG_03643	55,77625	18,15125	1,61958204 arrestin Aly1
SJAG_03646	36,4625	13,58765	1,42411752 glucan 1,3-beta-glucosidase Exg3
SJAG_03647	28,72215	10,6076	1,43706547 MBF transcription factor complex subunit Rep1
SJAG_03735	47,51005	20,5794	1,2070318 transcription factor Esc1
SJAG_03766	14,02355	5,99919	1,22501198 hypothetical protein
SJAG_03778	2,36076	0,3692305	2,67665775 hypothetical protein
SJAG_03818	35,52125	1,641725	4,43539796 gal10
SJAG_03820	3,693395	0,6743025	2,45347971 hexose transporter Ght8
SJAG_03822	1,61908	0,3968775	2,02840859 alcohol dehydrogenase Adh4
SJAG_03824	5,118845	0,09830715	5,70237816 alpha-glucosidase
SJAG_03827	76,7924	2,4037	4,99763478 tryptophan permease
SJAG_03828	38,6559	18,67975	1,04921348 glyceraldehyde-3-phosphate dehydrogenase Tdh1
SJAG_03911	18,29925	6,66472	1,45716835 transcription factor Rsv1
SJAG_04152	34,07395	14,22205	1,26053977 NADH dehydrogenase
SJAG_04167	5,043805	0,611357	3,04442551 P-type ATPase
SJAG_04187	399,352	112,76655	1,82432176 hsp104-like protein
SJAG_04301	3156,08	95,5734	5,04538082 invertase
SJAG_04323	66,26155	20,7473	1,67524835 cardiolipin-specific phospholipase
SJAG_04348	36,7969	7,769485	2,24369335 hypothetical protein
SJAG_04373	51,48345	21,83735	1,23731094 hypothetical protein
SJAG_04374	59 <i>,</i> 85985	20,67045	1,53401887 hypothetical protein
SJAG_04376	1,387495	0,239964	2,53159268 peptidase
SJAG_04458	27,16445	9,036025	1,58795967 NAD binding dehydrogenase
SJAG_04568	9,150215	2,69024	1,76607076 decaprenyl diphosphate synthase subunit Dps1
SJAG_04590	69,95405	23,3712	1,58167577 hypothetical protein

SJAG_04662	7,929175	3,68487	1,10555704 hypothetical protein
SJAG_04664	13,42665	4,49326	1,57926494 protein disulfide isomerase
SJAG_04673	55,69455	21,97705	1,34153841 thiamine transporter Thi9
SJAG_04723	35,76975	10,256815	1,80215723 cell agglutination protein mam3
SJAG_04828	47,03065	20,94525	1,16697817 membrane transporter
SJAG_04830	197,9915	74,5486	1,40918533 NiCoT heavy metal ion transporter Nic1
SJAG_04831	55,62585	4,39112	3,66309461 hypothetical protein
SJAG_04833	4,808525	0,5627125	3,0951245 hypothetical protein
SJAG_04866	2,70414	0,3138275	3,10712616 hypothetical protein
SJAG_04927	405,6065	178,4075	1,18490451 inosine-uridine preferring nucleoside hydrolase
SJAG_04950	5,219825	1,71713	1,60400217 tat binding protein 1(TBP-1)-interacting protein
SJAG_04953	8039,635	2814,545	1,51422829 cytosolic thioredoxin Trx1
SJAG_05004	9,29404	3,515715	1,40248773 fungal protein
SJAG_05006	13,08465	2,171105	2,59137393 homeobox transcription factor Phx1
SJAG_05015	162,507	73,83375	1,13814952 NADPH dehydrogenase
SJAG_05201	1,572565	0,420429	1,90318556 hypothetical protein
SJAG_05221	33,45985	8,449645	1,98546834 translation release factor
SJAG_05311	45,2658	22,3167	1,02029774 sphingosine hydroxylase
SJAG_05348	1229,97	514,669	1,25690633 oligosaccharyltransferase subunit Ost4
SJAG_05358	9,34962	2,22779	2,06929449 hypothetical protein
SJAG_05896	27,1796	12,0208	1,17699131 hypothetical protein
SJAG_06097	231,7035	12,44505	4,21863591 hypothetical protein
SJAG_06585	30,83505	5,6095	2,4586271 hypothetical protein
SJAG_06627	5,154365	1,146061	2,16911087 hypothetical protein
SJAG_06641	6,19631	2,061835	1,58748044 hypothetical protein
SJAG_16081	91,40795	29,46455	1,63333941 n/a
SJAG_16103	18,42235	0,5	5,2033852 n/a
SJAG_16119	19,09405	0,5	5,25505124 n/a
SJAG_16129	13,5228	0,5	4,757322 n/a
SJAG_16142	49,0638	19,4437	1,3353562 n/a
SJAG_16303	8,32705	0,5	4,05780549 n/a
SJAG_16445	47,03775	12,46605	1,91581465 n/a
SJAG_16452	1224,585	37,1451	5,0429772 hypothetical protein

Gene	ATF1_mean	CONTROL_me	log2FC	description
SJAG_00057	223,016	481,0225	-1,10895716	hexose transporter Ght2
SJAG_00085	16,69245	93,55445	-2,48661056	DUF423 protein
SJAG_00145	13,8455	44,5811	-1,68701506	RNA-binding protein
SJAG_00223	93,0847	929,2205	-3,31940502	hsp9-like protein
SJAG_00254	18,9159	39,04945	-1,04570281	aspartic proteinase sxa1
SJAG_00372	149,103	526,95	-1,82135679	plasma membrane proteolipid Pmp3
SJAG_00501	23,31405	95,9914	-2,04170551	ribulose phosphate 3-epimerase
SJAG_00625	101,89775	214,6395	-1,0747934	hypothetical protein
SJAG_00635	8,483495	25,35125	-1,57932624	ornithine carbamoyltransferase Arg3
SJAG_00668	11,3639	104,869	-3,20605832	superoxide dismutase Sod1
SJAG_00699	70,76145	145,7685	-1,04264348	tspO/peripheral benzodiazepine receptor
SJAG_00709	0,483755	1,94908	-2,01044483	hypothetical protein
SJAG_00789	16,67275	64,51565	-1,95215709	hypothetical protein
SJAG_00812	82,98055	187,0795	-1,17280635	$phosphatidyl-N-methyle than olamine\ N-methyl transferase$
SJAG_00890	19,92625	75,0591	-1,91335676	mannose-1-phosphate guanyltransferase
SJAG_00926	28,0165	62,37485	-1,1546877	transcription factor
SJAG_00970	19,0124	79,06055	-2,05601733	actin cortical patch component Lsb4
SJAG_00979	0,4138285	2,79279	-2,75460219	transcription factor atf31
SJAG_00980	0,258785	1,42571	-2,46185466	ATP-dependent DNA helicase Rdh54
SJAG_00981	0,652187	53,25545	-6,35149968	fungal cellulose binding domain-containing protein
SJAG_01017	10,16585	50,22795	-2,30475955	endo-1,3-beta-glucanase Eng2
SJAG_01057	13,4347	50,34585	-1,90590876	dihydroceramide delta-4 desaturase
SJAG_01066	14,25145	28,9241	-1,02116336	hypothetical protein
SJAG_01077	7,90111	17,50955	-1,14801475	cytochrome c oxidase subunit V
SJAG_01089	201,241	433,2365	-1,10623053	UTP-glucose-1-phosphate uridylyltransferase
SJAG_01154	0,9317715	1,903405	-1,03053446	phosphoprotein phosphatase
SJAG_01171	11,18231	33,86205	-1,59845107	glucan 1,3-beta-glucosidase
SJAG_01174	18,0904	49,8082	-1,46115897	Sad1 interacting factor 3
SJAG_01227	21,9884	63,47415	-1,52942654	glycosylceramide biosynthesis protein
SJAG_01262	7,85122	18,19225	-1,21233523	endonuclease Uve1
SJAG_01432	16,8482	46,4439	-1,46289466	hydroxyacid dehydrogenase
SJAG_01493	21,77135	89,5284	-2,03991453	copper transporter complex subunit Ctr5

SJAG_01725	10,944945	57,46855	-2,39250794	transcription factor Atf21
SJAG_01757	0,08403505	1,14554	-3,76889284	hypothetical protein
SJAG_01815	10,7115	45,781	-2,09558845	hypothetical protein
SJAG_01904	84,5536	211,904	-1,32547273	hypothetical protein
SJAG_01905	0,939823	10,483995	-3,47965569	progesterone binding protein
SJAG_01965	29,7269	117,3225	-1,98063879	hypothetical protein
SJAG_01968	146,617	426,0035	-1,53881289	pepsin A
SJAG_01982	19,79725	62,29695	-1,65386149	hypothetical protein
SJAG_01985	31,7183	75,83865	-1,25761783	hypothetical protein
SJAG_02016	20,90685	48,03675	-1,20016284	apoptosis-inducing factor Aif1
SJAG_02040	39,53965	107,375	-1,44128613	tubulin specific chaperone cofactor B
SJAG_02150	58,4723	159,739	-1,44989134	amino acid permease inda1
SJAG_02154	6,11194	37,79945	-2,62866296	GFO/IDH/MocA family oxidoreductase
SJAG_02191	67,21825	200,6245	-1,57757291	GFO/IDH/MocA family oxidoreductase
SJAG_02301	44,35205	89,6165	-1,01476359	ER associated protein disulfide isomerase Pdi2
SJAG_02442	11,63375	32 <i>,</i> 49385	-1,48185048	hypothetical protein
SJAG_02646	7,89437	20,0922	-1,3477395	cytochrome c1 Cyt1
SJAG_02696	9,059455	28,42915	-1,6498748	glucose-6-phosphate 1-dehydrogenase
SJAG_02697	361,251	2609,39	-2,8526391	ubiquitinated histone-like protein Uhp1
SJAG_02744	27,8429	85,72525	-1,62241072	cytochrome c
SJAG_02799	18,53065	40,6513	-1,133388	glucan 1,4-alpha-glucosidase
SJAG_02834	0,2257115	10,446155	-5,53234828	siderophore iron transporter 1
SJAG_02958	0,297207	1,1395535	-1,93892866	hexose transporter Ght5
SJAG_02983	0,5	1,342175	-1,42457279	hypothetical protein
SJAG_02987	384,3105	827,8625	-1,10711878	hypothetical protein
SJAG_03013	2,75083	7,06544	-1,36091242	chitin deacetylase Cda1
SJAG_03049	366,742	2338,635	-2,67282931	fungal protein
SJAG_03063	6,24407	160,5175	-4,68410007	dienelactone hydrolase
SJAG_03178	232,842	547,0645	-1,23235962	hypothetical protein
SJAG_03202	3,71334	10,3474	-1,47847898	hypothetical protein
SJAG_03266	355,161	874,8685	-1,30059302	NADP-specific glutamate dehydrogenase Gdh1
SJAG_03293	64,11735	281,5225	-2,13446353	succinate-semialdehyde dehydrogenase
SJAG_03363	14,1678	37,8714	-1,418493	leptomycin efflux transporter Pmd1

SJAG_03434	51,9867	159,035	-1,61312982 4-aminobutyrate aminotransferase
SJAG_03497	7,205865	14,45005	-1,00383096 ATP-binding cassette-type vacuolar membrane transporter Hmt1
SJAG_03784	457,4635	917,289	-1,0037197 hypothetical protein
SJAG_03794	21,30585	52,5063	-1,30124093 DNAJ domain-containing protein Psi1
SJAG_03815	30,0942	82,1334	-1,44848356 hsp16-like protein
SJAG_04031	0,933131	1,88392	-1,01358617 ferrichrome synthetase Sib1
SJAG_04043	0,40353	16,41645	-5,34632244 hypothetical protein
SJAG_04247	10,14334	29,0013	-1,51558479 hypothetical protein
SJAG_04269	0,8054355	1,878215	-1,22152125 hypothetical protein
SJAG_04297	1,0731775	2,202005	-1,03692903 sulfonate dioxygenase
SJAG_04375	73,8523	156,9915	-1,08797169 septin Spn3
SJAG_04430	13,7788	70,6924	-2,35910487 hypothetical protein
SJAG_04607	11,54383	24,6897	-1,09678735 CCAAT-binding factor complex subunit Php4
SJAG_04608	12,31475	53,01955	-2,10613709 flavin dependent monooxygenase
SJAG_04625	1,90336	4,53031	-1,25106132 DUF1761 family protein
SJAG_04637	17,13685	92,28685	-2,42902315 general amino acid permease GAP1
SJAG_04675	15,9272	177,694	-3,4798304 iron permease Fip1
SJAG_04743	5,903495	168,974	-4,83908815 ferric reductase transmembrane component
SJAG_04751	5,59802	13,15665	-1,23280364 ELLA family acetyltransferase
SJAG_04777	5,95359	12,8742	-1,11265101 STE/STE11 protein kinase
SJAG_04867	12,4708	25,47315	-1,03042336 ferrous iron transporter Pcl1
SJAG_04868	1,302775	2,82928	-1,11884702 chitin synthase I
SJAG_04944	34,83685	89,6238	-1,36326772 coproporphyrinogen III oxidase
SJAG_05005	6,91778	13,89165	-1,00583693 fungal protein
SJAG_05021	57,8696	171,5655	-1,56788189 RNA-binding protein Vip1
SJAG_05182	8,628025	17,9432	-1,05633494 allantoate permease
SJAG_05208	56,10865	113,516	-1,01660055 splicing factor 3B
SJAG_05213	11,95025	23,9631	-1,00377376 ATP-binding cassette transporter abc1
SJAG_05305	9,796965	53,44455	-2,44763605 membrane protein complex assembly protein
SJAG_05558	44,85575	91,0148	-1,02080823 fungal protein
SJAG_05889	12,9199	29,58455	-1,19524905 hypothetical protein
SJAG_06002	1,79372	9,252875	-2,366947 hypothetical protein
SJAG_16057	0,5	8,91508	-4,15624774 n/a

SJAG_16075	22,255265	45,91295	-1,04475445 n/a
SJAG_16118	0,5	31,54525	-5,97935088 n/a
SJAG_16122	0,5	20,83475	-5,38091988 n/a
SJAG_16183	17,3323	38,0743	-1,1353544 n/a

S5 Table. Common up-regulated genes in sty1 Δ and atf1 Δ cells

Gene	ATF1_mean	STY1_mean	CONTROL_me	log2FC_ATF1	log2FC_STY1 Description
SJAG_00006	3,52446	2,828265	1,0102715	1,80265918	1,48517425 hypothetical protein
SJAG_00084	479,4945	366,671	166,756	1,5237756	1,1367475 adenylyl-sulfate kinase
SJAG_00110	10,45211	7,22275	2,445735	2,09545421	1,56228014 But2 family protein
SJAG_00124	23,6943	1,66348	0,571147	5,37453412	1,54227051 transcriptional regulator NRG1
SJAG_00179	127,9507	382,0535	20,78725	2,62181722	4,20000386 glutathione S-transferase Gst2
SJAG_00258	2,35646	2,58856	1,168465	1,01200667	1,14753524 hypothetical protein
SJAG_00780	7,74405	8,07228	3,74854	1,04675947	1,10664742 hypothetical protein
SJAG_00927	3,357835	4,638925	1,62873	1,04378388	1,51004306 hypothetical protein
SJAG_01239	208,762	53,99655	25,8489	3,01368434	1,06276434 protein phosphatase Fmp31
SJAG_01552	1,376025	1,30329	0,262511	2,3900569	2,31170836 hypothetical protein
SJAG_01690	15,0661	25,12765	2,77317	2,44169805	3,17966779 NADP-dependent L-serine/L-allo-threonine dehydrogenase ydfG
SJAG_01986	126,09425	282,2025	31,3656	2,00724742	3,1694757 alcohol dehydrogenase
SJAG_02106	22,11515	32,4933	9,72536	1,18521147	1,74031871 hypothetical protein
SJAG_02125	1,5768	1,43034	0,3757585	2,06912204	1,92848048 urea transporter
SJAG_02788	10,9714	8,671825	3,759075	1,54529803	1,20595794 fungal protein
SJAG_02955	12,6681	9,830835	2,923165	2,11559699	1,74978269 general amino acid permease AGP2
SJAG_03643	55,77625	39,9933	18,15125	1,61958204	1,13968942 arrestin Aly1
SJAG_03820	3,693395	1,533005	0,6743025	2,45347971	1,18489455 hexose transporter Ght8
SJAG_03822	1,61908	2,992785	0,3968775	2,02840859	2,91472296 alcohol dehydrogenase Adh4
SJAG_04376	1,387495	1,356375	0,239964	2,53159268	2,49886621 peptidase
SJAG_04833	4,808525	1,768965	0,5627125	3,0951245	1,65243559 hypothetical protein
SJAG_05015	162,507	173,3225	73,83375	1,13814952	1,23110661 NADPH dehydrogenase
SJAG_06097	231,7035	95,57135	12,44505	4,21863591	2,94100617 hypothetical protein
SJAG_06627	5,154365	3,01731	1,146061	2,16911087	1,39657909 hypothetical protein
SJAG_16103	18,42235	13,7006	0,5	5,2033852	4,77616717 n/a
SJAG_16119	19,09405	7,6375	0,5	5,25505124	3,93310047 n/a
SJAG_16129	13,5228	7,5881	0,5	4,757322	3,92373869 n/a
SJAG_16303	8,32705	10,0963	0,5	4,05780549	4,33575478 n/a
SJAG_16445	47,03775	26,1039	12,46605	1,91581465	1,06626096 n/a

Gene	ATF1_mean	STY1_mean	CONTROL_me	log2FC_ATF1	log2FC_STY1 [Description
SJAG_00085	16,69245	33,5832	93,55445	-2,48661056	-1,47806657 [DUF423 protein
SJAG_00145	13,8455	15,8531	44,5811	-1,68701506	-1,49166723 F	RNA-binding protein
SJAG_00223	93,0847	48,6741	929,2205	-3,31940502	-4,25479477 ł	hsp9-like protein
SJAG_00372	149,103	156,1285	526,95	-1,82135679	-1,75493216 p	plasma membrane proteolipid Pmp3
SJAG_00625	101,89775	76,95695	214,6395	-1,0747934	-1,47979207 ł	hypothetical protein
SJAG_00635	8,483495	7,916765	25,35125	-1,57932624	-1,67907395 (ornithine carbamoyltransferase Arg3
SJAG_00699	70,76145	62,72575	145,7685	-1,04264348	-1,21654927 t	tspO/peripheral benzodiazepine receptor
SJAG_00709	0,483755	0,725534	1,94908	-2,01044483	-1,42567818 k	hypothetical protein
SJAG_00789	16,67275	4,04648	64,51565	-1,95215709	-3,9949098 ł	hypothetical protein
SJAG_00812	82,98055	90,649	187,0795	-1,17280635	-1,04528847 p	phosphatidyl-N-methylethanolamine N-methyltransferase
SJAG_00979	0,4138285	0,559284	2,79279	-2,75460219	-2,32005413 t	transcription factor atf31
SJAG_00980	0,258785	0,481918	1,42571	-2,46185466	-1,56482096 A	ATP-dependent DNA helicase Rdh54
SJAG_00981	0,652187	14,18285	53,25545	-6,35149968	-1,90878171 f	fungal cellulose binding domain-containing protein
SJAG_01432	16,8482	23,1352	46,4439	-1,46289466	-1,00539955 ł	hydroxyacid dehydrogenase
SJAG_01725	10,944945	14,7266	57,46855	-2,39250794	-1,96434826 t	transcription factor Atf21
SJAG_01757	0,08403505	0,463756	1,14554	-3,76889284	-1,30458998 k	hypothetical protein
SJAG_01815	10,7115	10,44543	45,781	-2,09558845	-2,13187709 ł	hypothetical protein
SJAG_01905	0,939823	2,58805	10,483995	-3,47965569	-2,01825118 p	progesterone binding protein
SJAG_01968	146,617	128,5035	426,0035	-1,53881289	-1,72905763 p	pepsin A
SJAG_02442	11,63375	11,92445	32,49385	-1,48185048	-1,44624396 ł	hypothetical protein
SJAG_02744	27,8429	15,508	85,72525	-1,62241072	-2,46670757 (cytochrome c
SJAG_02983	0,5	0,5	1,342175	-1,42457279	-1,42457279 ł	hypothetical protein
SJAG_03063	6,24407	47,9229	160,5175	-4,68410007	-1,74394347 (dienelactone hydrolase
SJAG_03794	21,30585	26,2432	52,5063	-1,30124093	-1,00054689 [DNAJ domain-containing protein Psi1
SJAG_04043	0,40353	1,145435	16,41645	-5,34632244	-3,84117469 k	hypothetical protein
SJAG_04297	1,0731775	0,2512055	2,202005	-1,03692903	-3,13187779 s	sulfonate dioxygenase
SJAG_04375	73,8523	45,27445	156,9915	-1,08797169	-1,79391743 s	septin Spn3
SJAG_04430	13,7788	33,1786	70,6924	-2,35910487	-1,09130211	hypothetical protein
SJAG_04625	1,90336	0,9118215	4,53031	-1,25106132	-2,31278644 [DUF1761 family protein
SJAG_04868	1,302775	1,2909	2,82928	-1,11884702	-1,13205771 (chitin synthase I
SJAG_05005	6,91778	3,9484	13,89165	-1,00583693	-1,81487791 f	fungal protein
SJAG_05305	9,796965	14,42907	53,44455	-2,44763605	-1,88906452 r	membrane protein complex assembly protein

S6 Table. Common down-regulated genes in sty1 Δ and atf1 Δ cells

SJAG_05558	44,85575	40,4894	91,0148	-1,02080823	-1,1685569 fungal protein
SJAG_06002	1,79372	2,33124	9,252875	-2,366947	-1,98880416 hypothetical protein
SJAG_16057	0,5	0,5	8,91508	-4,15624774	-4,15624774 n/a
SJAG_16122	0,5	0,5	20,83475	-5,38091988	-5,38091988 n/a
SJAG_16183	17,3323	11,58695	38,0743	-1,1353544	-1,71631665 n/a

Gene

SJAG_02834 SJAG_04269 SJAG_04743 SJAG_16075 SJAG_16118 Gene SJAG_00097 SJAG_00788 SJAG_01490 SJAG_02338 SJAG_02569 SJAG_02950 SJAG_02950 SJAG_04568 SJAG_04568 SJAG_04662 SJAG_04673 SJAG_05896 SJAG_16142