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Abstract

In this paper we show that an L1-2-type surface M2 ⊂ S3 is either an open
portion of a standard Riemannian product S1(a) × S1(b), of any radii, or it has
non constant mean curvature H, non constant Gaussian curvature K, and non
constant principal curvatures κ1 and κ2.
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1 Introduction

Submanifolds of finite type M (i.e. submanifolds whose isometric immersion in the Eu-
clidean space is constructed by using eigenfunctions of their Laplacian) were introduced
by B.Y. Chen during the late 1970s, and the first results on this subject were collected
in his book [5]. In subsequent papers, Chen has provided a detailed account of recent
development on problems and conjectures about finite type submanifolds, [6, 7]. It is
well known that the Laplacian operator ∆ can be seen as the first one of a sequence of
operators L0 = ∆, L1, . . . , Ln−1, n = dim(M), where Lk stands for the linearized opera-
tor of the first variation of the (k+ 1)-th mean curvature arising from normal variations
(see, for instance, [13]). L1 is nothing but the differential operator � introduced by
Cheng and Yau, [8].

The notion of finite type submanifold can be defined for any operator Lk, [10], and
then it is natural to try to obtain new results and compare them with the classical ones.
For example, it is well known that the only 2-type surfaces in the unit 3-sphere S3 are
open portions of the product of two circles S1(a)× S1(b) of different radii, [5, 4, 9].

In the present article we study the same problem for the operator L1, that is, we study
isometric immersions ψ : M2 → S3 ⊂ R4 of L1-2-type. These surfaces are characterized
by the following spectral decomposition of the position vector ψ:

ψ = a+ ψ1 + ψ2, L1ψ1 = λ1ψ1, L1ψ2 = λ2ψ2, λ1 6= λ2, λi ∈ R,
∗Corresponding author.
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where a is a constant vector in R4, and ψ1, ψ2 are R4-valued non-constant differentiable
functions on M2. It is easy to see that open portions of the product of two circles
S1(a) × S1(b), of any radii, are surfaces of L1-2-type (see the example 2). Our main
theorem is the following local result:

Theorem. Let ψ : M2 → S3 be an orientable surface of L1-2-type. Then either M2 is
an open portion of a standard Riemannian product S1(a)×S1(b) of any radii, or M2 has
non constant mean curvature H, non constant Gaussian curvature K, and non constant
principal curvatures κ1 and κ2.

2 Preliminaries

Let ψ : M2 → S3 ⊂ R4 be an isometric immersion in the unit 3-sphere S3 (centered at
the origin of R4) of a connected orientable surface M2, with Gauss map N . We denote
by ∇0, ∇ and ∇ the Levi-Civita connections on R4, S3 and M2, respectively. Then the
Gauss and Weingarten formulas are given by

∇0
XY = ∇XY + 〈SX, Y 〉N − 〈X, Y 〉ψ, (1)

SX = −∇XN = −∇0
XN, (2)

for all tangent vector fields X, Y ∈ X(M2), where S : X(M2) → X(M2) stands for
the shape operator (or Weingarten endomorphism) of M2, with respect to the chosen
orientation N . The mean curvature H and the scalar curvature H2 (also called the
extrinsic curvature) of M2 are defined by H = 1

2
(κ1 + κ2) and H2 = κ1κ2, respectively,

κ1 and κ2 being the eigenvalues of S (i.e. the principal curvatures of the surface). From
the Gauss equation we know that the Gaussian curvature K is given by K = 1+det(S) =
1 +H2.

The Newton transformation of M2 is the operator P : X(M2)→ X(M2) defined by

P = 2HI − S. (3)

Note that by the Cayley-Hamilton theorem we have S ◦ P = H2I. Observe also that,
at any point p ∈M2, S(p) and P (p) can be simultaneously diagonalized: if {e1, e2} are
the eigenvectors of S(p) corresponding to the eigenvalues κ1(p) and κ2(p), respectively,
then they are also the eigenvectors of P (p) with corresponding eigenvalues κ2(p) and
κ1(p), respectively.

According to [12, p. 86], for a tensor T the contraction of the new covariant slot in
its covariant differential ∇T with one of its original slots is called a divergence of T .
Hence the divergence of a vector field X is the differential function defined by

div(X) = C(∇X) = 〈∇E1X,E1〉+ 〈∇E2X,E2〉 ,

{E1, E2} being any local orthonormal frame of tangent vectors fields. For an operator
T : X(M2) → X(M2) the divergence associated to the metric contraction C12 will be
the vector field div(T ) ∈ X(M2) defined as

div(T ) = C12(∇T ) = (∇E1T )E1 + (∇E2T )E2.
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We have the following properties of P . The first three claims are direct computations;
for a proof of claims (d) and (e), see e.g. [1].

Lemma 1 The Newton transformation P satisfies:

(a) tr(P ) = 2H.

(b) tr(S ◦ P ) = 2H2.

(c) tr(S2 ◦ P ) = 2HH2.

(d) tr(∇XS ◦ P ) = 〈∇H2, X〉, where ∇H2 stands for the gradient of H2.

(e) div(P ) = 0.

Associated to the Newton transformation P , we can define a second-order linear
differential operator L1 : C∞(M2)→ C∞(M2) by

L1(f) = tr
(
P ◦ ∇2f

)
, (4)

where ∇2f : X(M2)→ X(M2) denotes the self-adjoint linear operator metrically equiva-
lent to the Hessian of f , given by 〈∇2f(X), Y 〉 = 〈∇X(∇f), Y 〉. An interesting property
of L1 is the following. For every couple of differentiable functions f, g ∈ C∞(M2) we
have

L1(fg) = gL1(f) + fL1(g) + 2 〈P (∇f),∇g〉 . (5)

The operator L1 can be extended to vector functions as follows. If F = (f1, f2, f3, f4) :
M2 → R4, fi ∈ C∞(M2), then L1F := (L1f1, L1f2, L1f3, L1f4).

3 First results

Let a ∈ R4 be an arbitrary fixed vector. A direct computation shows that the gradient
of the function 〈ψ, a〉 is given by

∇〈ψ, a〉 = a> = a− 〈N, a〉N − 〈ψ, a〉ψ, (6)

where a> ∈ X(M2) denotes the tangential component of a. Taking covariant derivative
in (6), and using the Gauss and Weingarten formulae, we obtain

∇X∇〈ψ, a〉 = ∇Xa
> = 〈N, a〉SX − 〈ψ, a〉X, (7)

for every vector field X ∈ X(M2). Finally, by using (4) and Lemma 1, we find that

L1 〈ψ, a〉 = 〈N, a〉 tr(S ◦ P )− 〈ψ, a〉 tr(P )

= 2H2 〈N, a〉 − 2H 〈ψ, a〉 . (8)

Then L1ψ can be computed as

L1ψ = 2H2N − 2Hψ. (9)
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A straightforward computation yields

∇〈N, a〉 = −Sa>.

From the Weingarten formula and (7), we find that

∇X∇〈N, a〉 = −(∇XS)a> − S(∇Xa
>)

= −(∇a>S)X − 〈N, a〉S2X + 〈ψ, a〉SX,

for every tangent vector field X. This equation, jointly with (4) and Lemma 1, yields

L1 〈N, a〉 = −tr(∇a>S ◦ P )− 〈N, a〉 tr(S2 ◦ P ) + 〈ψ, a〉 tr(S ◦ P )

= −〈∇H2, a〉 − 2HH2 〈N, a〉+ 2H2 〈ψ, a〉 . (10)

In other words,
L1N = −∇H2 − 2HH2N + 2H2ψ. (11)

From (9), (11) and (5) we obtain the following result.

Lemma 2 For any f ∈ C∞(M2), we have

L1(fψ) = 2P (∇f) + 2fH2N + (L1f − 2Hf)ψ,

L1(fN) = −(f∇H2 + 2H2∇f) + (L1f − 2HH2f)N + 2H2fψ.

On the other hand, equations (5), (8) and (10) lead to

L2
1 〈ψ, a〉 = 2H2L1 〈N, a〉+ 2L1(H2) 〈N, a〉+ 4

〈
P (∇H2),∇〈N, a〉

〉
− 2HL1 〈ψ, a〉 − 2L1(H) 〈ψ, a〉 − 4

〈
P (∇H),∇〈ψ, a〉

〉
,

= −2H2 〈∇H2, a〉 − 4 〈(S ◦ P )(∇H2), a〉 − 4 〈P (∇H), a〉
+
[
2L1H2 − 4HH2(H2 + 1)

]
〈N, a〉

+
[
4H2

2 + 4H2 − 2L1H
]
〈ψ, a〉 .

Finally, we get

L2
1ψ = −4P (∇H)− 3∇H2

2

+ 2
[
L1H2 − 2HH2

(
H2 + 1

)]
N

+ 2
[
2H2

2 + 2H2 − L1H
]
ψ. (12)

3.1 L1-biharmonic surfaces

An isometric immersion x : Mn → Rm is said to be biharmonic if ∆H = 0, where ∆
and H are the rough Laplacian on the submanifold Mn and the mean curvature vector
field of the immersion, respectively (see e.g. [6]). From the Beltrami formula ∆x = nH,
we know that the submanifold Mn is biharmonic if and only if ∆2x = 0. The following
definition appears in a natural way (see [3] and [11]).
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Definition 3 An isometric immersion ψ : M2 → R4 is said to be L1-biharmonic if
L2
1ψ = 0. In the case L2

1ψ = 0 and L1ψ 6= 0, we will say that ψ is a proper L1-
biharmonic surface.

If M2 is a totally geodesic surface of S3, then the equation (9) implies L1ψ = 0, and
hence M2 is a (trivial) L1-biharmonic surface in R4.

Let ψ : M2 → S3 ⊂ R4 be an L1-biharmonic surface. Then (12) yields

4P (∇H) + 3∇H2
2 = 0, (13)

L1H2 − 2HH2(H2 + 1) = 0, (14)

L1H − 2(H2 +H2
2 ) = 0. (15)

If H is constant, then (15) yields H = H2 = 0, i.e. M2 is a totally geodesic surface
in S3; in other words, M2 is an open portion of a unit 2-sphere S2. If K is constant
(and so H2 also is), by taking divergence in (13) we get L1H = 0. Then from (15) we
also deduce that M2 is an open portion of a unit 2-sphere S2. We have obtained the
following result.

Proposition 4 Let ψ : M2 → S3 ⊂ R4 be an L1-biharmonic surface. Then either M2

is an open portion of a unit 2-sphere S2 or M2 has non constant curvatures H and K.

This result can be improved as follows. If H is an L1-harmonic function (i.e. L1H = 0),
then (15) implies again that M2 is an open portion of a unit 2-sphere S2. The same
conclusion is also reached when H2 (or K) is an L1-harmonic function. In this case, (14)
yields

HH2(H2 + 1) = 0.

Let us assume that H is non constant (otherwise, there is nothing to prove) and take
the non-empty set U = {p ∈ M2 | ∇H2(p) 6= 0}. On this set we have H2(H2 + 1) = 0,
and then H2 is constant on U. Hence Proposition 4 implies that U is an open portion of
a unit 2-sphere S2, but then the mean curvature H is constant. This is a contradiction.
The following result has been proved.

Proposition 5 Let ψ : M2 → S3 ⊂ R4 be an L1-biharmonic surface. Then either M2 is
an open portion of a unit 2-sphere S2 or the curvatures H and K are not L1-harmonic.

When M2 is a closed surface, we can improve that result. By taking divergence in (13)
we get

L1H = −3

4
∆H2

2 .

From here and (15), and by using the divergence theorem, we obtain

0 =

∫
M

L1H dv = 2

∫
M

(H2 +H2
2 ) dv.

This implies H = H2 = 0. We have proved the following result.

Proposition 6 Let ψ : M2 → S3 ⊂ R4 be a closed surface. Then M2 is an L1-
biharmonic surface if and only if it is a unit 2-sphere S2.
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3.2 Equations characterizing the L1-2-type surfaces

Let us suppose that M2 is of L1-2-type in R4, that is, the position vector ψ of M2 in
R4 can be written as follows,

ψ = a+ ψ1 + ψ2, L1ψ1 = λ1ψ1, L1ψ2 = λ2ψ2, λ1 6= λ2, λi ∈ R,

where a is a constant vector in R4, and ψ1, ψ2 are R4-valued non-constant differentiable
functions on M2.

Since L1ψ = λ1ψ1 + λ2ψ2 and L2
1ψ = λ21ψ1 + λ22ψ2, an easy computation shows that

L2
1ψ = (λ1 + λ2)L1ψ − λ1λ2(ψ − a),

and by using (9) we obtain

L2
1ψ = λ1λ2a

> +
[
2(λ1 + λ2)H2 + λ1λ2 〈N, a〉

]
N

−
[
2(λ1 + λ2)H + λ1λ2 − λ1λ2 〈ψ, a〉

]
ψ.

This equation, jointly with (12), yields the following equations, that characterize the
L1-2-type surfaces in S3:

λ1λ2a
> = −3∇H2

2 − 4P (∇H), (16)

λ1λ2 〈N, a〉 = 2L1H2 − 2H2

(
2HH2 + 2H + λ1 + λ2

)
, (17)

λ1λ2 〈ψ, a〉 = 4H2
2 + 4H2 + 2(λ1 + λ2)H + λ1λ2 − 2L1H. (18)

Example 1 (Surfaces of L1-1-type)
Totally umbilical surfaces in S3 are of L1-1-type. Indeed, let M2 ⊂ S3 be a totally
umbilical surface, then its shape operator S is given by S = HI. We know that H and
H2 are constants. By taking covariant derivative we get

∇0
X(N +Hψ) = 0,

for all X ∈ X(M2), and then N +Hψ = b, for a constant vector b. By using this in (9)
we deduce

L1ψ = 2H2b+ λψ, λ = −2H(1 +H2).

If λ 6= 0, then we write

ψ = a+ ψ1, a = −2H2

λ
b, ψ1 = ψ +

2H2

λ
b,

with L1ψ1 = λψ1, i.e. M2 is of L1-1-type.

In the case λ = 0, the surface M2 is totally geodesic (H = H2 = 0) and then (9)
yields L1ψ = 0, showing that M2 is of L1-1-type.

By using [2], we easily deduce the following proposition.

Proposition 7 Let ψ : M2 → S3 ⊂ R4 be an isometric immersion. Then ψ is of
L1-1-type if and only if M2 is an open portion of a 2-sphere S2(r).
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Example 2 (Surfaces of L1-2-type)
We will see that the standard Riemannian product M2

r = S1(
√

1− r2) × S1(r) ⊂ S3,
0 < r < 1, is of L1-2-type in R4. Let us consider

M2 = {x = (x1, x2, x3, x4) ∈ S3 |x23 + x24 = r2}.

In this case, the Gauss map on M2 is given by

N(x) =

(
−r√
1− r2

x1,
−r√
1− r2

x2,

√
1− r2
r

x3,

√
1− r2
r

x4

)
,

and its principal curvatures are

κ1 =
r√

1− r2
and κ2 =

−
√

1− r2
r

.

If we put ψ1 = (x1, x2, 0, 0) and ψ2 = (0, 0, x3, x4), it is easy to see that ψ = ψ1 + ψ2,
and by using (9) we get that

L1ψ1 = λ1ψ1 and L1ψ2 = λ2ψ2, with λ1 =
1

r
√

1− r2
and λ2 = −λ1.

Therefore, M2 is of L1-2-type in R4.

4 Main results

Theorem 8 Let ψ : M2 → S3 ⊂ R4 be an orientable surface of L1-2-type. Then M2 has
constant mean curvature if and only if M2 is an open portion of a standard Riemannian
product S1(

√
1− r2)× S1(r), 0 < r < 1.

Proof. Let M2 be a surface of L1-2-type with constant mean curvature. Our goal is
to prove that the scalar curvature H2 of M2 is constant. Otherwise, let us consider the
non-empty open set

U2 =
{
p ∈M2 | ∇H2

2 (p) 6= 0
}
.

By taking covariant derivative in (18) we have λ1λ2a
> = 4∇H2

2 . Using this in (16) we
deduce H2 = 0, which is a contradiction.

Therefore, M2 is an isoparametric surface in S3, and then either M2 is an open portion
of a 2-sphere S2(r), 0 < r ≤ 1, or M2 is an open portion of a Riemannian product M2

r ,
0 < r < 1. Since the totally umbilical surfaces are of L1-1-type, the result follows. �

Theorem 9 Let ψ : M2 → S3 ⊂ R4 be an orientable surface of L1-2-type. Then M2

has constant Gaussian curvature if and only if M2 is an open portion of a standard
Riemannian product S1(

√
1− r2)× S1(r), 0 < r < 1.
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Proof. Let M2 be a surface of L1-2-type with constant Gaussian curvature K, and
consider the open set

U =
{
p ∈M2 | ∇H2(p) 6= 0

}
.

Our goal is to show that U is empty. Suppose it is not empty.

By taking covariant derivative in (17), and using that H2 is constant, we obtain

λ1λ2Sa
> = 4H2(H2 + 1)∇H.

From (16) and bearing in mind that S ◦ P = H2I, we have λ1λ2Sa
> = −4H2∇H, and

therefore
H2(H2 + 2)∇H = 0.

Consequently, on U we have either H2 = −2 or H2 = 0. We will study each case
separately.

Case 1 : H2 = −2. By applying the operator L1 on both sides of (17) and using (18)
we get

λ1λ2L1 〈N, a〉 = 4
[
λ1λ2 〈ψ, a〉 − 4H2 − 2(λ1 + λ2)H − λ1λ2 − 16

]
.

On the other hand, (10) leads to

λ1λ2 〈N, a〉H − λ1λ2 〈ψ, a〉 = λ1λ2 〈a, ψ〉 − 4H2 − 2(λ1 + λ2)H − λ1λ2 − 16,

and using (17) we find that

λ1λ2 〈ψ, a〉 = −2H2 + 3(λ1 + λ2)H +
1

2
(λ1λ2 + 16). (19)

Taking gradients in (19), and using (16) and (3), we obtain[
− 4H + 3(λ1 + λ2)

]
∇H = −4P1(∇H) = −8H∇H + 4S(∇H), (20)

that is,

S(∇H) =
4H + 3(λ1 + λ2)

4
∇H.

Now, by applying the operator S on both sides of the first equality of (20), and bearing
in mind that S ◦ P = −2I, we obtain

S(∇H) =
8

−4H + 3(λ1 + λ2)
∇H.

The last two equations for S(∇H) imply that H is constant on U, which is a contradic-
tion.

Case 2 : H2 = 0. Let us suppose κ1 = 0 and κ2 = 2H 6= 0 (otherwise, M2 would be
a totally geodesic surface and then of L1-1-type). Let {E1, E2} be a local orthonormal
frame of principal directions of S such that SEi = κiEi. From Codazzi’s equation, we
easily obtain

∇E1E1 = 0, ∇E1E2 = 0,

∇E2E1 = − α
H
E2, ∇E2E2 = α

H
E1 [E1, E2] = α

H
E2,
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where α = E1(H). Now, from the definition of curvature tensor, we get

R(E1, E2)E1 = ∇[E1,E2]E1 −∇E1∇E2E1 +∇E2∇E1E1

=
[
E1

(
α
H

)
−
(
α
H

)2]
E2,

and from the Gauss equation we have R(E1, E2)E1 = E2. By equating the last two
equations we deduce

HE1(α) = H2 + 2α2. (21)

On the other hand, from the definition of L1, see (4), and after a little calculation, we
obtain

L1H = κ2 〈E1,∇E1∇H〉+ κ1 〈E2,∇E2∇H〉 = 2HE1(α). (22)

By using (21) and (22), (18) can be rewritten as

λ1λ2 〈ψ, a〉 = 2(λ1 + λ2)H + λ1λ2 − 8α2. (23)

Taking covariant derivative along E1 here, we have

E1(λ1λ2 〈ψ, a〉) = 2(λ1 + λ2)α− 16αE1(α). (24)

On the other hand, from (18) we get λ1λ2a
> = −8HαE1, and therefore

E1(λ1λ2 〈ψ, a〉) =
〈
λ1λ2a

>, E1

〉
= −8Hα.

This equation, jointly with (24), implies that (λ1 + λ2)α − 8αE1(α) = −4Hα. Since
α 6= 0, see (21), we deduce

8E1(α) = 4H + λ1 + λ2. (25)

From here and using (22) we get 4L1H = 4H2 + (λ1 + λ2)H. By using this in (18), we
find

λ1λ2 〈ψ, a〉 = 2H2 +
3

2
(λ1 + λ2)H + λ1λ2. (26)

Taking gradient here, and using (16) and (3), we obtain[
4H +

3

2
(λ1 + λ2)

]
∇H = −4P (∇H) = −8H∇H + 4S(∇H), (27)

that is,

S(∇H) =
(
3H +

3

8
(λ1 + λ2)

)
∇H.

On the other hand, by applying the operator S on both sides of the first equality of
(27), and bearing in mind that S ◦ P = 0, we obtain[

4H +
3

2
(λ1 + λ2)

]
S(∇H) = 0.
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The last two equations imply that H is constant on U, which is a contradiction.

We have proved that if M2 is a L1-2-type surface with constant Gaussian curvature,
then its mean curvature is constant. Then reasoning as in the proof of Theorem 8 we
deduce that M2 is an open portion of a Riemannian product M2

r , 0 < r < 1. This
finishes the proof of Theorem 9. �

A surface in S3 is said to have a constant principal curvature if one of its principal
curvatures is constant.

Theorem 10 Let ψ : M2 → S3 ⊂ R4 be an orientable surface of L1-2-type. Then M2

has a constant principal curvature if and only if M2 is an open portion of a standard
Riemannian product S1(

√
1− r2)× S1(r), 0 < r < 1.

Proof. Let M2 be a surface of L1-2-type and assume that κ1 is a nonzero constant
(otherwise, H2 = 0 and Theorem 9 applies). Consider the open set

U =
{
p ∈M2 | ∇κ22(p) 6= 0

}
.

Our goal is to show that U is empty.

Otherwise, the equations (16)–(18) of L1-2-type can be rewritten in terms of κ2 as
follows

λ1λ2a
> = [−6κ21κ2 − 2(κ1 + κ2)]∇κ2 + 2S(∇κ2), (28)

λ1λ2 〈N, a〉 = 2κ1L1κ2 − 2κ1κ2
[
(κ1 + κ2)(κ1κ2 + 1) + λ1 + λ2

]
, (29)

λ1λ2 〈ψ, a〉 = 4κ21κ
2
2 + (κ1 + κ2)

2 + (λ1 + λ2)(κ1 + κ2) + λ1λ2 − L1κ2. (30)

From (29) and (30) we find

λ1λ2 〈N, a〉 = −2κ1λ1λ2 〈ψ, a〉+ 2κ1

[
3κ21κ

2
2 + κ21 + κ1κ2 + (λ1 + λ2)κ1 + λ1λ2 − κ1κ32

]
.

By taking gradient here we obtain

−λ1λ2Sa> = −2κ1λ1λ2a
> + 2κ21

[
1 + 6κ1κ2 − 3κ22

]
∇κ2. (31)

On the other hand, by using S ◦ P = H2I, we get

λ1λ2Sa
> = −6κ21κ2S(∇κ2)− 2κ1κ2∇κ2. (32)

Now, from (28), (31) and (32) we deduce

(3κ1κ2 + 2)S(∇κ2) = (−3κ1κ
2
2 + (12κ21 + 1)κ2 + 3κ1)∇κ2.

Since 3κ1κ2 + 2 6= 0 (otherwise, κ2 would be constant), we deduce

S(∇κ2) = f(κ1, κ2)∇κ2, f(κ1, κ2) =
−3κ1κ

2
2 + (12κ21 + 1)κ2 + 3κ1

(3κ1κ2 + 2)
.
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This equation implies that either f(κ1, κ2) = κ1 or f(κ1, κ2) = κ2. In any case it follows
that κ2 is constant on U, and this is a contradiction. This finishes the proof of Theorem
10. �

As a consequence of theorems 8, 9 and 10, we have the following characterization of
L1-2-type surfaces in S3.

Theorem 11 Let ψ : M2 → S3 ⊂ R4 be an orientable surface of L1-2-type. Then
either M2 is an open portion of a standard Riemannian product S1(

√
1− r2) × S1(r),

0 < r < 1, or M2 has non constant mean curvature H, non constant Gaussian curvature
K, and non constant principal curvatures κ1 and κ2.
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